
Comparison-based methods in machine learning

Comparison-based methods in
machine learning

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M.Sc. Siavash Haghiri

Tübingen
2019

Tag der mündlichen Qualifikation: 04.07.2019
1. Berichterstatter: Prof. Dr. Ulrike von Luxburg
2. Berichterstatter: Prof. Dr. Felix Wichmann

Abstract
This thesis focuses on developing and analyzing novel algorithms for a new setting of
machine learning, which we call the “comparison-based” setting. There has been a
plethora of methods and analysis over the last decades concerning machine learning
tasks for datasets that either have a Euclidean representation or a distance/dissim-
ilarity matrix between pairs of items in the dataset. In contrast to this traditional
setting, we consider the setting in which no Euclidean representation of the items is
available. We consider a general setting where items come from an arbitrary metric
space (X ,δ). We have no access to the metric function δ , however, we can ask
an oracle triplet comparisons of the form: “Is item x closer to item y or to item
z?” This implies that the oracle can make a judgment on the following distance
comparison:

δ (x,y)
?
> δ (x,z).

In Chapter 1, the introductory chapter, we elaborate on various aspects of the
comparison-based setting. We emphasize on the importance and usefulness of the
comparison-based methods, by enumerating numerous applications. We also provide
an intuitive example of a machine learning task performed with triplet comparisons.
We briefly discuss the few existing approaches to perform machine learning in the
comparison-based setting.
The contributions of the thesis are arranged in two parts. In the first part, Chapters 2
and 3, we are concerned with the development and analysis of algorithms which per-
form common machine learning tasks using only the answers to triplet comparisons.
In Chapter 2, we propose a tree structure for the nearest neighbor search problem,
using only triplet comparisons. We prove that if the metric space satisfies certain ex-
pansion conditions, then with high probability the height of the tree is logarithmic in
the number of input items, leading to efficient search performance. We also provide
an upper bound for the failure probability to return the true nearest neighbor. Chap-
ter 3 extends the idea of constructing trees for nearest neighbor search to building an
ensemble of trees as random forests for classification/regression tasks. We prove the
consistency of a simplified version of the proposed trees leading to the consistency
of the random forest. In addition, we demonstrate the desirable performance of the
proposed random forest through comprehensive experiments in different settings.
In the second part of the thesis, Chapters 4 and 5, we apply the comparison-based ap-
proach to the scaling problem in psychophysics. The goal of psychophysical scaling

v

Abstract

is to find the functional relation between a physical stimulus and the perception of a
human observer. The relative feedback in the form of triplet comparisons is not new
in psychophysics. However, the approaches based on triplet comparisons are very
limited in the psychophysics literature. In Chapter 4, we apply ordinal embedding
methods, proposed in the machine learning literature, to psychophysical scaling. We
demonstrate the satisfactory performance of ordinal embedding using extensive sim-
ulations and a real-world psychophysical scaling experiment. Chapter 5 examines
the potential capability of crowdsourcing platforms for psychophysical scaling tasks
using the comparison-based setting. Traditionally, the experiments of psychophysics
are conducted in well-controlled Lab conditions. We run a representative experi-
ment of psychophysics in both our psychophysics Lab and Amazon’s Mechanical
Turk (MTurk) platform. We compare the quality of the collected triplet comparisons
from the Lab and the MTurk platform. The results show that the MTurk platform
produces data which has slightly lower — however acceptable — quality.

vi

Kurzfassung
Diese Dissertation befasst sich mit der Entwicklung und Analyse von Algorithmen in
einem neuen Ansatz des maschinellen Lernens, den wir “vergleichbasiertes” Lernen
nennen. In den letzten Jahrzehnten gab es eine Fülle von Methoden und Analysen für
Datensätze, die entweder eine euklidische Darstellung oder eine Distanz zwischen
den Objekten besitzen. Im Gegensatz zu dieser traditionellen Herangehensweise
betrachten wir den Fall, wenn keine euklidische Darstellung der Objekte gegeben
ist. Wir sagen, dass im Allgemeinen die Objekte aus einem beliebigen metrischen
Raum (X ,δ) stammen. Wir haben allerdings keinen direkten Zugriff auf die Metrik
δ , und können lediglich von einem Orakel einen Tripletvergleich abfragen: “Ist das
Objekt x näher an Objekt y oder an Objekt z?”. Wir nehmen an, dass das Orakel auf
diese Weise den folgenden Vergleich entscheidet:

δ (x,y)
?
> δ (x,z).

In der Einführung in Kapitel 1 gehen wir auf die verschiedenen Aspekte des ver-
gleichbasierten Lernens ein. Wie wichtig und nützlich vergleichsbasierte Methoden
sind, zeigen wir anhand mehrerer Anwendungsfälle. Außerdem geben wir ein in-
tuitives Beispiel für eine Machine Learning-Aufgabe, die mit Tripletvergleichen
durchgeführt wird. Wir diskutieren die wenigen bisherigen Ansätze, vergleichsba-
siertes maschinelles Lernen durchzuführen.
Diese Arbeit ist in zwei Teile aufgeteilt. Im ersten Teil, den Kapiteln 2 und 3, be-
fassen wir uns mit der Entwicklung und Analyse von Algorithmen, die klassische
Aufgaben des maschinellen Lernens durchführen, wobei nur die Antworten auf die
Tripletvergleiche verwendet werden. In Kapitel 2 schlagen wir eine Baumstruk-
tur für die Suche nach dem nächsten Nachbarn vor, wobei nur Tripletvergleiche
verwendet werden. Wir beweisen, dass, wenn der metrische Raum bestimmte Ex-
pansionsbedingungen erfüllt, die Höhe des Baumes mit hoher Wahrscheinlichkeit
logarithmisch in der Anzahl der Eingabeelemente ist, was zu einer effizienten Such-
leistung führt. Wir liefern auch eine obere Schranke für die Wahrscheinlichkeit,
den falschen nächsten Nachbarn zurückzugeben. Kapitel 3 erweitert die Idee dieses
Suchbaumes auf den Bau mehrerer Bäume als Random Forests für Klassifizierungs-
/Regressionsprobleme. Wir beweisen die Konsistenz einer vereinfachten Version
der Bäume, die zur Konsistenz des Random Forest führt. Darüber hinaus zeigen wir
die erwünschte Leistung des vorgeschlagenen Random Forests durch umfassende

vii

Kurzfassung

Experimente in verschiedenen Szenarios.
Im zweiten Teil der Arbeit, den Kapiteln 4 und 5, wenden wir den vergleichsba-
sierten Ansatz auf das Skalierungsproblem in der Psychophysik an. Das Ziel der
psychophysikalischen Skalierung ist es, die funktionelle Beziehung zwischen einem
physischen Reiz und der Wahrnehmung desselben Reizes für einen menschlichen
Beobachter zu finden. Tatsächlich ist das relative Feedback in Form von Triplet-
vergleichen in der Psychophysik nicht neu. Die vorgeschlagenen Ansätze zur Nut-
zung der Tripletvergleiche sind in der psychophysikalischen Literatur jedoch sehr
begrenzt. In Kapitel 4 wenden wir ordinale Einbettungsmethoden, die in der Lite-
ratur des maschinellen Lernens vorgeschlagen werden, auf das Skalierungsproblem
der Psychophysik an. Wir demonstrieren die erwünschte Performance der ordinalen
Einbettungen mit Hilfe umfangreicher Simulationen und eines realen psychophy-
sikalischen Experimentes. Kapitel 5 untersucht das Potenzial von Crowdsourcing-
Plattformen für psychophysikalische Skalierungsaufgaben in einem vergleichsba-
sierten Szenario. Traditionell werden die Experimente der Psychophysik unter gut
kontrollierten Laborbedingungen durchgeführt. Wir führen ein repräsentatives Ex-
periment der Psychophysik sowohl in unserem Psychophysik-Labor als auch auf der
Mechanical Turk (MTurk) Plattform von Amazon durch. Wir vergleichen die Qua-
lität der gesammelten Tripletvergleiche aus dem Labor und der MTurk-Plattform.
Die Ergebnisse zeigen, dass die MTurk-Plattform Daten produziert, die eine etwas
geringere - aber akzeptable - Qualität aufweisen.

viii

Acknowledgments
First of all, I would like to thank my supervisor Prof. Dr. Ulrike von Luxburg for
her thorough support of my PhD study, her patience, her motivating attitude, and her
in-depth knowledge. Throughout the four years of my PhD studies, she was always
open to listen to my ideas and guide me with her opinions. Besides my supervisor,
I am grateful to my co-advisor Prof. Dr. Felix Wichmann for his profound help in
my PhD studies and research. Moreover, I thank my second co-advisor Prof. Dr.
Philipp Berens for the valuable discussions.
I thank my colleagues, for the fruitful discussions we had, their technical and per-
sonal support, and for all the fun activities we had together. Particularly I thank my
colleagues and co-authors Debarghya Ghoshdastidar and Damien Garreau. In addi-
tion, I would like to thank Matthäus Kleindessner, Lennard Schulz, Leena Chennuru
Vankadara, Michael Lohaus and Michael Perrot.
I acknowledge the funding received towards my PhD from the German Research
Foundation DFG (SFB 936/Z3). This thesis is also supported by the International
Max Planck Research School for Intelligent Systems (IMPRS-IS).
Last but not least, I would like to thank my parents and my sister for their spiritual
support and encouragement.

ix

Contents
1 Introduction 1

1.1 An example of a machine learning task in the comparison-based
setting . 2

1.2 When is the comparison-based setting helpful? 5
1.3 Sampling triplet comparisons . 6
1.4 Existing approaches for comparison-based machine learning 7

1.4.1 Ordinal embedding . 7
1.4.2 Kernels based on triplet comparisons 8

1.5 Datasets . 8
1.6 Overview of the contributions . 10

2 Comparison-based nearest neighbor search 13
2.1 Comparison-tree . 14
2.2 Theoretical analysis . 16

2.2.1 Expansion conditions . 16
2.2.2 Main results . 17

2.3 Experiments . 23
2.3.1 Euclidean setting . 24
2.3.2 Comparison-based setting 25
2.3.3 Expansion rate approximation 26

2.4 Conclusion . 28

3 Comparison-based random forests 31
3.1 Comparison-Based random forests 32
3.2 Theoretical analysis . 35

3.2.1 Continuous comparison-tree 36
3.2.2 Consistency . 37
3.2.3 Proof of consistency . 38
3.2.4 Auxiliary results . 42
3.2.5 Technical results . 49

3.3 Experiments . 59
3.3.1 Euclidean setting . 59
3.3.2 Metric, non-Euclidean setting 64
3.3.3 Comparison-based setting 65

xi

Contents

3.4 Conclusion and future work . 68

4 Estimation of perceptual scales using ordinal embedding 69
4.1 Psychophysical scaling . 69

4.1.1 Scaling and the method of triads 71
4.2 Embedding methods . 73

4.2.1 Non-metric multi-dimensional scaling (NMDS) 73
4.2.2 Maximum likelihood difference scaling (MLDS) 75
4.2.3 Ordinal embedding . 76
4.2.4 Summary of embedding methods 79

4.3 Simulations . 80
4.3.1 Simulation setup . 80
4.3.2 One-dimensional perceptual space 83
4.3.3 Multi-dimensional perceptual space 86

4.4 Experiments . 89
4.5 How to apply ordinal embedding methods in psychophysics 91

4.5.1 How to make the subset of triplets? 91
4.5.2 How many triplets? . 91
4.5.3 How to evaluate the quality of embedding? 91
4.5.4 How to choose the embedding dimension? 92
4.5.5 Which algorithm, which implementation? 92

4.6 Discussion . 92
4.6.1 Open issues . 93

5 Psychophysical scaling using crowd-sourcing platforms 95
5.1 Introduction . 95
5.2 Triplet subsampling strategies . 96
5.3 Simulations . 97

5.3.1 Simulation setup . 97
5.3.2 Result . 98

5.4 The eidolon experiment: Lab and MTurk 100
5.4.1 Lab experiment setup . 100
5.4.2 MTurk setup . 102
5.4.3 Results . 103

A Supplementary Material 109
A.1 Extended simulation results of Chapter 4 109

Bibliography 115

xii

Chapter 1

Introduction

In traditional settings of machine learning, data is given either in the form of
points in a Euclidean space or a matrix of pairwise similarities or distances be-
tween points/items. Recently, comparison-based settings have become increasingly
popular (Schultz and Joachims, 2003; Agarwal et al., 2007; van der Maaten and
Weinberger, 2012; Amid and Ukkonen, 2015; Ukkonen et al., 2015; Balcan et al.,
2016). Here the assumption is that points come from some metric space (X ,δ),
but the metric δ is unknown. We only have indirect access to the metric through
distance comparisons. There exists a variety of ways to ask distance comparisons.
However, the most common types of distance comparisons are as follows:

1 - Triplet comparisons: for a triplet of items (x,y,z) one can ask whether the
following inequality is true or false.

δ (x,y)≤ δ (x,z) (1.1)

In other words, the triplet comparison asks: Which of the items — y or z — is more
similar to the item x?

2 - Quadruplet comparisons: for a quadruplet of items (x,y,z, t) one can ask
whether the following inequality is true or false.

δ (x,y)≤ δ (z, t) (1.2)

The quadruplet comparison can be rephrased as the following question: Is the dis-
tance between x and y smaller or greater than the distance between z and t?
Throughout this thesis we use the terms triplet comparison (respectively quadruplet
comparison) and triplet question (respectively quadruplet question) interchangeably.
Unless it is explicitly mentioned, the assumption throughout the whole thesis is that
we have no access to any sort of representation for the items. The exact distance
between pairs of items is also not available. The only information that is available
is through answers to some of the triplet (or quadruplet) comparisons.

1

Chapter 1 Introduction

Even though the quadruplet comparisons seem to characterize a more general frame-
work, there are a couple of reasons that make the triplet comparisons more favorable.
First, if the feedback is gathered from humans, the triplet question is always easier
to answer. In the triplet question, there exists a pivot item that the observer can
compare with the two choices. Secondly, it is shown that having access to triplet
answers carries the same amount of information as the quadruplet answers to con-
struct a Euclidean embedding (Arias-Castro et al., 2017). The number of triplets is
one order of magnitude smaller than quadruplets, and thus one can gather the same
information with less queries. Considering the benefits of the triplet comparisons,
this thesis is mainly focused on the triplet comparisons.

Our contribution in this thesis is twofold:

1) Performing machine learning tasks in the comparison-based setting: We
propose and analyze methods for general machine learning tasks (classifica-
tion and regression) in the comparison-based setting. We assume that neither
a vector space representation nor a distance matrix of items is given. We only
have access to an oracle who answers triplet comparisons.

2) Application of the comparison-based approach in psychophysics: We ap-
ply the comparison-based approach on practical problems of psychophysics.
Psychophysical scaling is a long-standing problem at the very heart of psy-
chophysics (Marks and Gescheider, 2002). There exist a large body of re-
search dealing with this problem. Recently, the comparison-based approach
is applied to a restricted version of the problem (Maloney and Yang, 2003).
We demonstrate the efficiency of comparison-based methods, proposed in the
machine learning literature, for general psychophysical scaling tasks.

We elaborate on the contributions of the thesis at the end of this chapter. In the rest of
this chapter, we first provide an example of the comparison-based approach in Sec-
tion 1.1. Then, we discuss some general aspects of the comparison-based approach
in Sections 1.2 and 1.3. Next, we briefly discuss readily available approaches for
machine learning tasks in the comparison-based setting in Section 1.4. Section 1.5
lists the available datasets in the comparison-based setting. Finally, we present an
overview of the contributions of the thesis in Section 1.6.

1.1 An example of a machine learning task in the
comparison-based setting

In this section, we present a simple illustrative example of a machine learning task in
the comparison-based setting. Suppose that we are given 10 food images belonging

2

1.1 An example of a machine learning task in the comparison-based setting

(a)

(b)

Figure 1.1: (a) A sample of 10 images from the food dataset. (b) An example of a
triplet question made with three images of the food dataset.

to different categories: main dish, salads, desserts, etc. The goal is to cluster the
set of food images based on their taste. Since the taste of food is a subjective
feature, triplet comparisons are used to gather feedback from people. We use the
food dataset, which is a dataset of triplet comparisons for 100 food images1. The
answers to triplet comparisons are asked from the human observers (workers of
Amazon’s mechanical Turk platform). More details on the dataset are given in
Section 1.5. We pick 10 images uniformly at random from the set of 100 food
images as shown in Figure 1.1 (a).
As we restrict our experiment to 10 food images, we consequently consider only the
triplet comparisons which are formed with the 10 images. There exist 136 triplet
comparisons in the dataset associated with the chosen images. An example of such
a triplet question is shown in Figure 1.1 (b). The final clustering that we suggest
should be consistent with the answers to the triplet comparisons. Let assume a triplet
answer suggests that item A is closer to item B than to item C. Then, intuitively
speaking, the likelihood of item A sharing a cluster with item B is higher than the
likelihood of item A being in the same cluster with item C.
In this example, we use the t-distributed stochastic triplet embedding (t-STE) algo-
rithm to estimate a two-dimensional representation of the 10 images. The algorithm
embeds the images into a two-dimensional Euclidean space such that the answers

1https://vision.cornell.edu/se3/projects/cost-effective-hits/

3

https://vision.cornell.edu/se3/projects/cost-effective-hits/

Chapter 1 Introduction

Figure 1.2: The embedding and clustering result of the example with 10 food images.
The center of each depicted image corresponds to the two-dimensional embedding
estimation of the image. The k-means algorithm clusters the set of images into two
sets which is shown by the red dashed line in the middle.

to the triplet comparisons are satisfied. More precisely, the distances of estimated
items in the two-dimensional space agree with the answers to the triplet comparisons.
After gathering a Euclidean representation of food images in the two-dimensional
space, one can run any clustering algorithm, such as the k-means algorithm, to clus-
ter the images into two sets. Figure 1.2 shows the two-dimensional embedding and
the clustering of the images into two sets, performed by the k-means algorithm. The
clustering is shown by the dashed red line between the two clusters.
The results show meaningful categorization of the food images based on the triplet
comparisons. In fact, the left cluster contains main dishes and one salad, while the
right cluster contains desserts. Even inside the clusters the distances of images are
meaningful. For instance in the left cluster, three food images with meat are at the
very left, whereas the salad is located on their opposite side. Note that the embedding
algorithm and the k-means clustering is one of the various possible approaches that
can be used in the comparison-based setting. We give a brief review of general
approaches (related work) later in this chapter.
In addition to the desirable performance of the comparison-based approach we would
like to emphasize on some of the other benefits. A triplet question, such as the
example in Figure 1.1 (b), is very convenient to answer for a human observer. If we
ask the observer to describe the subjective features of the food with precise values,
or to provide a similarity value for pairs of images, in either case the response
is significantly harder compared to answering triplet questions. There also exists a

4

1.2 When is the comparison-based setting helpful?

different bias for each observer, when we ask for a quantitative response. Eliminating
the bias is an intricate task in itself.

1.2 When is the comparison-based setting helpful?
To motivate the study of comparison-based setting we specify some general cases in
which the comparison-based approach is favorable. In addition, we believe that in-
dependent of the underlying applications, theoretical challenges posed by the setting
alone merit further study and analysis.

• Abstract data/ human feedback: The comparison-based setting is partic-
ularly of interest where the items in the dataset are abstract and human re-
sponses are needed to describe them. There are studies, in various fields
ranging from psychology to computer graphics, that suggest human beings
are better in making relative judgments than providing quantitative (numeri-
cal) feedback (Miller, 1956; Stewart et al., 2005; Demiralp et al., 2014; Li
et al., 2016).

The main alternative to the triplet comparisons, or relative judgments in gen-
eral, is to ask quantitative responses from human observers. However, these
responses can be very biased. This issue has been particularly investigated in
the psychophysics literature. The Stevens’ method of magnitude estimation
is a well-known psychophysical scaling method based on direct quantitative
responses from human observers (Stevens, 1957). In this method, observers
are asked to describe the sensation of a physical stimulus with a numerical
value (magnitude) such that ratios of stimulus intensities match the ratios of
given magnitudes. Shepard observed the intrinsic bias in this method by intro-
ducing the “response transformation function ” (Shepard, 1981). The response
transformation function takes the sensation as input and produces the magni-
tude value. This function is unknown for a typical observer and may differ
among the observers. Therefore, the numerical magnitude values can be bi-
ased. Using the relative judgments (such as triplet comparisons) can eliminate
the effect of response transformation function (Torgerson, 1958; Maloney and
Yang, 2003), leading to unbiased information.

• Complex data structures: The input data to machine learning algorithms
can sometimes be very complex. Consider, for instance, cancer medications
with big complex molecular structures. The molecular structure cannot be
represented in Euclidean spaces. In addition, even if we represent molecules
with graphs, it is still a cumbersome task to compare the graphs and come up
with dissimilarity values between them. However, in many cases a clinician or

5

Chapter 1 Introduction

chemist can provide the answer to a triplet comparison of complex medications
based on her expertise in the field.

• Implicit comparisons: There are cases that the information is not in the form
of triplet comparisons at the first glance, however, one can interpret them as
triplet (or quadruplet) comparisons. An example is provided in Schultz and
Joachims (2003): Consider the click-through rates of web-pages in a search
engine. If three pages X ,Y,Z are shown as the search results and X ,Y have
on average more click-through rates, one can deduce that page X is more
similar to Y than to Z. Even though the click-through rates do not explicitly
indicate a distance/dissimilarity between the pages, it is possible to interpret
them as answers to triplet questions and consequently apply comparison-based
methods.

1.3 Sampling triplet comparisons
If we consider a dataset of n items, there will be 3

(n
3

)
possible triplet questions

to query. Since the number of possible triplets grows very fast with the number
of items, it is impossible in practice to query all the possible triplets. Moreover,
a significant number of triplets contain redundant information. To see this fact,
one can consider the complete ranking of pairwise distances. The full ranking of
distances contains sufficient information to answer all triplet questions. There exist(n

2

)
pairwise distances. In order to sort them, we require O

(
n2 logn

)
comparisons.

This amount is one order of magnitude smaller than the total number of triplets.
In addition, if the underlying metric space is a Euclidean space of dimension d, it
is shown that having the answers to O(nd logn) triplet comparisons is sufficient to
reconstruct the Euclidean representation of items (Jain et al., 2016). Therefore, the
number of informative triplets is actually significantly smaller than all triplets. A
naturally arising question is “how should we pick the subset of triplets from the set
of all possible triplets?” There are three general scenarios to query a subset of triplet
comparisons:

• Random triplet scenario: The subset of triplet questions to query is sampled
from the set of all valid triplet questions uniformly at random. The algorithm
has no influence on the choice of items appearing in the triplet questions. In
this way, the algorithm is provided with the answers to a subset of randomly
chosen triplet questions. The main advantage of this scenario is that it does
not require a constant interaction between the algorithm and the oracle.

• Active triplet scenario: We let the algorithm actively choose the triplet ques-
tion to query. Triplet questions are queried consecutively and the algorithm

6

1.4 Existing approaches for comparison-based machine learning

can choose the indices of necessary triplets, actively, during the running pro-
cess. This is the most straightforward scenario from the perspective of algo-
rithm design. In other words, proposing machine learning algorithms is easier
in this case. However, in practice it is more challenging to implement, as the
algorithm needs constant interaction with the oracle which provides answers
to the triplet questions.

• Batch triplet scenario: The algorithm can choose a batch (subset) of triplet
questions to query. The answers to this batch of triplets is queried from the
oracle. In this setting, one needs a one-time query from the oracle, which is
less interaction comparing to the active triplet scenario. On the other hand,
in contrast to the random triplet scenario, the choice of triplet questions is
specified by the algorithm. Therefore, we can consider it as a trade-off between
the two previous scenarios.

Our focus in Chapters 2 and 3 is on the algorithms working in the active triplet
scenario. In the next two chapters, we apply comparison-based methods based on
the random triplet scenario.

1.4 Existing approaches for comparison-based
machine learning

Here we briefly discuss the existing approaches to the comparison-based setting in
machine learning. As the field itself is quite new, only a few approaches are currently
proposed in the literature. We cover two general approaches to the problem. Our
approach to the problem is presented in Chapters 2 and 3.

1.4.1 Ordinal embedding
A natural approach in the comparison-based setting of machine learning is ordinal
embedding. In this procedure, one seeks a Euclidean representation of abstract items
which is consistent with the answers to the set of queried triplet (or quadruplet)
comparisons. Since there is a vast literature of machine learning dealing with data
in Euclidean spaces, the machine learning problem can be solved consequently with
the methods designed for Euclidean spaces. We give a formal definition of the
ordinal embedding problem and discuss one of the existing solutions to the problem
in Chapter 4.
The ordinal embedding approach has a couple of advantages. First, the ordinal
embedding problem is studied and analyzed comprehensively (Kleindessner and
von Luxburg, 2014; Arias-Castro et al., 2017) and there are a couple of algorithms

7

Chapter 1 Introduction

provided to solve the problem (Agarwal et al., 2007; Tamuz et al., 2011; van der
Maaten and Weinberger, 2012; Terada and Luxburg, 2014). Secondly, the traditional
algorithms of machine learning are readily applicable in the Euclidean space. Finally,
in two or three dimensions, one can also visualize the output of the embedding which
is favorable for visual inspection of algorithms.
In spite of the aforementioned benefits, the approach of ordinal embedding has
some drawbacks which makes it less practical. First, the ordinal embedding prob-
lem requires one to solve a quadratic optimization problem which has O

(
n3) time

complexity. In practice, even the fastest algorithms cannot embed more than 1000
items in a reasonable time. Secondly, the embedding dimension should be given as
input to the ordinal embedding algorithm. In a general scenario items are abstract
and the proper Euclidean dimension to embed the items is unknown. There exist
limited studies on dimensionality estimation without exact distances (Kleindessner
and Luxburg, 2015). Incorrect specification of dimension can significantly affect
the result of embedding and consequently affect the performance of the machine
learning task. Lastly, ordinal embedding finds a Euclidean configuration of the items
which is not necessary for machine learning tasks such as classification or regression.
A common inductive bias assumption of classification states that items in the same
neighborhood tend to have the same label. Therefore, one only needs to identify the
neighborhood of a query item to predict the label of the item.

1.4.2 Kernels based on triplet comparisons
Constructing a kernel matrix based on the triplet comparisons is an alternative solu-
tion for comparison-based machine learning tasks. Kernel methods are among the
most popular methods in machine learning (Scholkopf and Smola, 2001; Bishop,
2006; Hofmann et al., 2008). Building a kernel matrix based on the triplet compar-
isons allows us to use existing kernel-based methods. There is one recent study that
proposes two approaches to produce kernel matrices based on comparison-based
data (Kleindessner and von Luxburg, 2017). The proposed kernels are significantly
faster than ordinal embedding methods. Moreover, they show desirable performance
in some experimental cases. However, they still lack theoretical justification.

1.5 Datasets
The idea of gathering information via triplet comparisons is quite new in machine
learning. Currently there exist few available datasets for this setting. Here, we list
the available datasets:

• Music dataset: This dataset consists of 16,449 triplet comparisons on the sim-
ilarity of 412 popular musicians (Ellis et al., 2002). The triplets are queried via

8

1.5 Datasets

an online survey with 1,032 attending users. The raw dataset and a filtered ver-
sion of the dataset are available at https://labrosa.ee.columbia.edu/
projects/musicsim/musicseer.html.

• Food dataset: The dataset contains 100 images of food taken from the website
Yummly.com; The dataset was initially used in a study to compare triplet
comparisons with similar query types (Wilber et al., 2014). The answers to
190376 triplet questions are asked from the workers of Amazon’s mechanical
Turk platform. This dataset is available at https://vision.cornell.edu/
se3/projects/cost-effective-hits/

• Nature and Vogue datasets: The Nature dataset contains triplet comparisons
of 120 natural images in thematic clusters (forest, open country, coast, moun-
tain). The triplet question is not the same as the question we defined in
Equation (1.1). For a triplet of items A, B and C, it asks: “which of the
items is the outlier?” In other words: “which of the two items are close
together and which item is irrelevant?” The Vogue dataset consists of the
same triplet question of the 60 cover images of the UK edition of the Vogue
magazine, chosen at random from the time interval 1970 to 2012. The an-
swers to triplet comparisons are gathered from six human workers. The two
datasets are used in Ukkonen et al. (2015); both datasets are available at
http://anttiukkonen.com/nature_and_vogue_triplets.zip.

• Car dataset: This dataset contains distance comparisons of 60 car images.
The distance comparison is not exactly in the form of triplet comparisons,
which we defined in (1.1). For a triplet of items A, B and C it asks: “which
of the items is the most central?” The central item should conceptually lie in
between the two other items. The information that one gets with such a com-
parison is slightly different from that of triplet comparisons of the form (1.1).
The dataset is available at http://www.tml.cs.uni-tuebingen.de/team/
kleindessner/60_cars_data.zip

• Eidolon dataset: In Chapter 5, we present a psychophysics experiment de-
signed to study human visual perception. Triplet questions are formed based
on a set of 100 images generated by the Eidolon factory toolbox (Koenderink
et al., 2017). The answers to the triplet questions are obtained from 8 par-
ticipants in a well-controlled situation in our psychopysics lab, as well as 60
workers of Amazon’s mechanical Turk platform. Each lab participants gives
answers to 6000 triplet comparisons, while each mechanical Turk worker an-
swers 2000 triplet comparisons.

9

https://labrosa.ee.columbia.edu/projects/musicsim/musicseer.html
https://labrosa.ee.columbia.edu/projects/musicsim/musicseer.html
Yummly.com
https://vision.cornell.edu/se3/projects/cost-effective-hits/
https://vision.cornell.edu/se3/projects/cost-effective-hits/
http://anttiukkonen.com/nature_and_vogue_triplets.zip
http://www.tml.cs.uni-tuebingen.de/team/kleindessner/60_cars_data.zip
http://www.tml.cs.uni-tuebingen.de/team/kleindessner/60_cars_data.zip

Chapter 1 Introduction

1.6 Overview of the contributions
• Chapter 2: As a stepping stone to solve machine learning problems, such

as classification and regression, we propose an efficient algorithm for nearest
neighbour search in the comparison-based setting. Machine learning prob-
lems can then be solved using the popular nearest neighbor methods (k-NN
classifier, k-NN graph clustering and etc.).

We introduce a data structure called “comparison-tree” for the nearest neigh-
bor search based on triplet comparisons. We have two theoretical results
concerning the comparison-tree. First, we prove that the height of proposed
trees is in the order of logn with certain assumptions on the metric space.
Consequently this leads to an upper bound for the required number of triplet
comparisons. More precisely, O(n logn) and O(logn) triplet comparisons
are required for comparison-tree construction and nearest neighbor search re-
spectively. Secondly, we provide an upper bound for the failure probability
to return the true nearest neighbor. In addition to the theoretical results, we
conduct experiments to show the efficiency of comparison-trees in various
settings. This chapter is based on Haghiri et al. (2017).

• Chapter 3: In this chapter, we propose a novel random forest algorithm for
regression and classification that relies only on triplet comparisons. We use
the comparison-trees (from the previous chapter) as building blocks, to make
an ensemble of comparison-trees for classification and regression tasks. As
a theoretical result, we establish sufficient conditions for the consistency of
the proposed random forest. In a set of comprehensive experiments, we then
demonstrate that the proposed random forest is efficient both for classification
and regression. In particular, it is even competitive with other methods that
have direct access to the Euclidean representation of the data. The results of
this chapter has appeared in Haghiri et al. (2018).

• Chapter 4: This chapter is concerned with the application of comparison-
based approaches in psychophysics. We consider a general (difference) “scal-
ing problem” in psychophysics. Even though one can precisely measure physi-
cal stimuli (such as light or sound), the perception of physical stimuli is usually
hard to measure and quantify. The (difference) scaling problem aims to find
the relationship between the perceived magnitude and the physical stimulus.
This problem is as old as the psychophysics itself and there exists a large body
of research for the problem. The comparison-based approach is also applied
to this problem in a very limited scenario (Maloney and Yang, 2003). We
apply ordinal embedding methods, proposed in the machine learning litera-
ture, to various simulation scenarios and a real experiment of psychophysics.

10

1.6 Overview of the contributions

We demonstrate the efficiency of the comparison-based approach for the psy-
chophysical scaling problem.

• Chapter 5: The last chapter also deals with the application of comparison-
based setting in the psychophysics. Traditionally, psychophysical experi-
ments are conducted by repeated measurements on few participants under
well-controlled conditions, often resulting in, if done properly, high quality
data. In recent years, however, crowdsourcing platforms are becoming increas-
ingly popular means of data collection, measuring many participants at the
potential cost of obtaining data of worse quality. We study whether the use
of comparison-based approach, combined with machine learning algorithms,
can boost the reliability of crowdsourcing studies for psychophysics, such that
they can achieve a performance close to a lab experiment. To this end, we
compare three setups: simulations, a psychophysics lab experiment, and the
same experiment on Amazon Mechanical Turk. All these experiments are
conducted in a comparison-based setting where participants have to answer
triplet questions. We then use ordinal embedding to solve the triplet prediction
problem: given a subset of triplet questions with corresponding answers, we
predict the answer to the remaining questions. Considering the limitations and
noise on MTurk, we find that the accuracy of triplet prediction is surprisingly
close—but not equal—to our lab study.

11

Chapter 1 Introduction

List of publications
This thesis is based on the following papers:

• Haghiri, S., Garreau, D., and von Luxburg U. (2018). Comparison-Based
Random Forest. In International Conference on Machine Learning (ICML).
Paper available at: http://proceedings.mlr.press/v80/haghiri18a/

haghiri18a.pdf

Code available at: https://github.com/SiavashCS/CompRF

• Haghiri, S., Ghoshdastidar, D., and von Luxburg, U. (2017). Comparison-
Based Nearest Neighbor Search. In International Conference on Artificial
Intelligence and Statistics (AISTATS).
Paper available at: http://proceedings.mlr.press/v54/haghiri17a/

haghiri17a.pdf

Code available at: https://github.com/SiavashCS/CompTree

• Haghiri, S., Wichmann, F., and von Luxburg, U. Estimation of perceptual
scales by ordinal embedding. Manuscript in preparation.

• Haghiri, S., Wichmann, F., and von Luxburg, U. Comparison-based frame-
work for psychophysics: Lab. vs crowdsourcing. Manuscript in preparation.

During the PhD program the author had major contribution to the following paper
which is not immediately related to the thesis:

• Forlim, C.G., Haghiri, S., Düzel, S., Lindenberger, U., and Kühn, S. (2019).
Efficient small-world and scale-free functional brain networks at rest using
k-nearest neighbors thresholding. bioRxiv preprint, bioRxiv: 628453.

12

http://proceedings.mlr.press/v80/haghiri18a/haghiri18a.pdf
http://proceedings.mlr.press/v80/haghiri18a/haghiri18a.pdf
https://github.com/SiavashCS/CompRF
http://proceedings.mlr.press/v54/haghiri17a/haghiri17a.pdf
http://proceedings.mlr.press/v54/haghiri17a/haghiri17a.pdf
https://github.com/SiavashCS/CompTree

Chapter 2

Comparison-based nearest neighbor
search

This chapter focuses on the nearest neighbor search problem in the comparison-
based setting. Let us assume that S is a set of n items in some metric space (X ,δ).
There is no representation given for the items, nor do we have direct access to the
metric distance values. We can only ask the answers to triplet questions of the
form (1.1). The goal is to find the approximate nearest neighbor of a query point q
in the set S with the fewest number of triplet comparisons and the highest accuracy.
To this end, we propose a nearest neighbor search tree structure which relies only
on triplet comparisons.
Many algorithms for exact or approximate nearest neighbor search use data struc-
tures based on space partitioning. Most popular is the setting where points live in the
Euclidean space. KD-Tree (Bentley, 1975), principal axis tree (PA-Tree) (McNames,
2001), Spill-Tree (Liu et al., 2004), random projection tree (RP-Tree) (Dasgupta and
Freund, 2008), and max-margin tree (MM-Tree) (Ram and Gray, 2013) are among
the algorithms in Euclidean setting. In addition, the setting where data points only
lie on a more abstract metric space has been explored considerably. Metric Skip List
(Karger and Ruhl, 2002), Navigating Net (Krauthgamer and Lee, 2004), and Cover-
Tree (Beygelzimer et al., 2006) are some of the methods in this category. However,
in nearly all these algorithms, we either need to know the vector representation of the
points or the distance values between the points. Few exceptional methods exist that
even work in the setting where we only have access to triplet comparisons (Goyal
et al., 2008; Lifshits and Zhang, 2009; Tschopp et al., 2011; Houle and Nett, 2015).
To our taste, the most appealing data structure, applicable in the comparison-based
setting, is what we call the comparison-tree. The structure has been introduced as
“metric tree based on a generalized hyperplane decomposition” in Uhlmann (1991).
For the sake of simplicity we refer to it as the comparison-tree. To partition the space
into smaller subsets, two pivot points are picked uniformly at random from the given
dataset. The space is then separated into two “generalized half-spaces”, namely the
two sets of points that are closer to the two respective pivots. This is done recursively

13

Chapter 2 Comparison-based nearest neighbor search

until the resulting subsets become smaller than a given size. Once this tree structure
has been constructed, the nearest neighbor search proceeds by comparing the query
point to the two pivot points and proceeding into the corresponding half-space. On
an intuitive level, comparison-trees are promising: because (i) the splits seem to
adapt to the geometry of the data, (ii) it seems that the splits are not extremely
unbalanced, (iii) there is “enough randomness” in the construction. Unfortunately,
none of these intuitions has been proved or formally investigated yet.
Our first contribution is to analyze the performance of comparison-trees in general
metric spaces. Under certain assumptions on the expansion rate of the space, we
prove that comparison-trees are nicely balanced and their height is of the order
Θ(logn). This means that to construct a comparison-tree, we only need of the
order n logn many triplet comparisons. Corollary, a nearest neighbor query requires
Θ(logn) triplet comparisons. Moreover, we bound the probability that the nearest
neighbor algorithm finds the correct nearest neighbor. Our second contribution
consists of simulations that compare the behavior of comparison-trees to standard
data structures in Euclidean spaces and other comparison-based data structures on
metric spaces. We find that the comparison-tree performs surprisingly well even
if compared to competitors that access vector representations in Euclidean spaces
(KD-Tree, RP-Tree and PA-Tree), and favorably in comparison to one of the recent
comparison-based algorithms proposed in Houle and Nett (2015).

2.1 Comparison-tree
To construct a comparison-tree on S, we proceed as follows (see Algorithm 1
below). The root of the tree T.root consists of the whole set S, and each of the
subsequent nodes represents a partition of the set S. In each step of the tree construc-
tion, the elements of the current node are partitioned into two disjoint sets, which
in turn are the root nodes for the left and right sub-trees denoted by T.le f tchild
and T.rightchild. More concretely, to form a partition of the current node of the
tree, we randomly choose two pivot elements among its current elements, denoted
by T.le f t pivot and T.right pivot. Then we group the remaining elements according
to whether they are closer to the left or right pivot. Observe that this step does not
require actual distance values, but just triplet comparisons. Then we recurse, until
the current set of elements has at most size n0 for some prespecified n0.
The computational complexity of the tree construction is governed by the number of
triplet comparisons required in the procedure, which depends on the height of tree.
In the next section, we show that under certain growth assumptions on the metric,
the comparison-tree has height h = O(logn) with high probability.
To use the comparison-tree for (approximate) nearest neighbor search, we em-
ploy the obvious greedy procedure (sometimes called the defeatist search; see Algo-

14

2.1 Comparison-tree

Algorithm 1 CompTree(S,n0): Comparison-tree construction
Input: S⊆X , and maximum leaf size n0
Output: Comparison-tree T

1: T.root← S
2: if |S|> n0 then
3: Uniformly sample distinct points x1,x2 ∈ S
4: S1←{x ∈ S : δ (x,x1)≤ δ (x,x2)}
5: T.le f t pivot← x1, T.right pivot← x2
6: T.le f tchild←CompTree(S1,n0)
7: T.rightchild←CompTree(S\S1,n0)
8: end if
9:

10: return T

rithm 2): starting at the root, we compare the query element q to the current two pivot
elements, and using a triplet comparison we decide whether to proceed in the left or
right branch. When we reach a leaf, we carry out an exhaustive search among all its
elements to determine the one that is closest to the given query. This step requires
n0 triplet comparisons. Overall, the nearest neighbor search in a comparison-tree of
height h requires at most h+n0 triplet comparisons, which boils down to O(logn).

Algorithm 2 NN(q,T): Nearest neighbor search
Input: Comparison-tree T , and query q.
Output: x̂q = approximate nearest neighbor of q in S

1: if T.le f tchild 6= null then
2: if δ (q,T.le f t pivot)≤ δ (q,T.right pivot) then
3: x̂q← NN(q,T.le f tchild)
4: else
5: x̂q← NN(q,T.rightchild)
6: end if
7: else
8: choose x̂q s.t. δ (q, x̂q)≤ δ (q,x) ∀x ∈ T.root
9: end if

10:
11: return x̂q

15

Chapter 2 Comparison-based nearest neighbor search

2.2 Theoretical analysis
In this section, we analyze the complexity and performance of the tree construction
as well as the nearest neighbor search. We first provide a high probability bound
on the height of the comparison-tree, which in turn bounds the number of triplet
comparisons required for both tree construction and nearest neighbor search. In
addition, we derive an upper bound on the probability with which the above approach
fails to return the exact nearest neighbor of a given query.

2.2.1 Expansion conditions
Finding the nearest neighbor for a query point q in a general metric space (X ,δ) can
require up to Ω(n) comparisons in the worst case, using any data structure built on
the given set S (Beygelzimer et al., 2006). Hence, most similarity search methods are
analyzed under the natural assumption that the metric δ is growth-restricted (Karger
and Ruhl, 2002; Krauthgamer and Lee, 2004). Informally, such restrictions imply
that the volume of a closed ball in the space does not increase drastically when its
radius is increased by a certain factor. Various related notions are used to characterize
the growth rate of such metrics, for instance Assouad dimension (Assouad, 1979),
doubling dimension (Gupta et al., 2003), homogeneity (Luukkainen and Saksman,
1998), and expansion rate (Karger and Ruhl, 2002) among others. The analysis of
most tree based search methods in the Euclidean setting requires only a doubling
property of the metric (Dasgupta and Sinha, 2015). Such results hold for metric
spaces with finite doubling dimension or Assouad dimension. When dealing with
general metric spaces, it is more convenient to consider the expansion rate, which
is an empirical variant of the doubling property defined for a given finite set S⊆X .
Typically, the analysis of data dependent tree constructions requires even stronger
restrictions.
In this work, we use a slightly weaker variant of the strong expansion rate condition
used in Ram and Gray (2013). Intuitively, we need bounds on the expansion rate
for all the finite point sets that can possibly occur in the non-leaf nodes of the
comparison-tree. Let (X ,δ) be a metric space, S⊆X and n0 < |S|. We construct a
collection CS ⊆ 2S as follows:

1. S ∈ CS,

2. If A∈ 2S and there exist x,y∈ S such that δ (z,x)≤ δ (z,y) ∀z∈ A, then A∈ CS,
S\A ∈ CS,

3. If A,B ∈ CS, then A∩B ∈ CS.

We finally remove all A ∈ CS with size |A| ≤ n0. Observe that CS characterizes

16

2.2 Theoretical analysis

the collection of all possible non-leaf nodes of the tree1. We define the strong
expansion rate of S as the smallest c̃≥ 1 such that

|B(x,2r)∩A| ≤ c̃|B(x,r)∩A| (2.1)

for all A ∈ CS, x ∈ A and r > 0, where B(x,r) is the closed ball in (X ,δ) centered at
x with radius r.
Inequality (2.1) states that every A ∈ CS has an expansion rate at most c̃ similar to
the definition in Karger and Ruhl (2002). This requirement for all A ∈ CS is strong,
but seems unavoidable due to the data dependent, yet random, tree construction.

2.2.2 Main results

The following theorem provides an upper bound on the height of the comparison-
tree.

Theorem 1 (Height of a comparison-tree) Consider a set S of size n in a metric
space that satisfies the strong expansion rate condition with constant c̃. Fix some
n0 ∈N. Then for any ε > 0, with probability 1−ε , the comparison-tree construction
algorithm returns a tree with height smaller than

h∗ = 3log
(e

ε

)
+96c̃2 log

(
n
n0

)
(2.2)

We prove the theorem later in the section. Theorem 1 implies that if the expan-
sion rate c̃ = O(1), then the height of the randomly constructed tree is bounded by
O(logn) with high probability. In particular, one can expect this to happen if the
set of points is sampled from an “evenly” spread distribution in a growth-restricted
spaceX . As a consequence of Theorem 1, one can comment on the number of triplet
comparisons required for tree construction and nearest neighbor search. We state
this in the following corollary, which is a simple consequence of Theorem 1.

Corollary 2 (Number of triplet comparisons) For ε > 0, let h∗ be the constant
defined as in (2.2). Then with probability 1− ε , the comparison-tree construction
algorithm requires at most nh∗ triplet comparisons to construct the comparison-
tree. Furthermore, for any q ∈ X , with probability 1− ε , nearest neighbor search
algorithm uses at most h∗+n0 triplet comparisons to find an approximate nearest
neighbor of q.

1Technically, CS is a subset of the algebra generated by the “generalized half spaces” of the induced
space (S,δ).

17

Chapter 2 Comparison-based nearest neighbor search

The other applicable methods in the comparison-based setting make different as-
sumptions on the dataset, thus the upper bound on the required number of triplets is
hardly comparable with them. If we neglect this fact and only compare the depen-
dency on n, we can summarize the theoretical comparison in Table 2.1.

Table 2.1: Theoretical comparison with existing methods

Method Construction Query
Comparison Tree n logn logn

(Goyal et al., 2008) n2 logn logn
(Lifshits and Zhang, 2009) n log2 n logn

(Tschopp et al., 2011) n log2 n log2 n
(Houle and Nett, 2015) n log3 n log3 n

While the above discussion sheds light on the required number of triplet comparisons,
it still leaves one wondering about the quality of the nearest neighbor obtained from
the comparison-tree. In the following result, we show that under certain conditions
on the behavior of the metric in a neighborhood of a given query q, the search method
succeeds in finding the true nearest neighbor of q. We use xq ∈ S to denote the true
nearest neighbor of q, while x̂q is the element returned by the nearest neighbor search
on a randomly constructed comparison-tree. We write B(x,r) and B◦(x,r) to denote
closed and open balls, respectively.

Theorem 3 (Exact nearest neighbor) Given S ⊆ X and q ∈ X . If there exist con-
stants C > 0 and α ∈ (0,1] such that for every A ∈ CS containing xq, and for all
x ∈ A\{xq},∣∣B(q,δ (q,x)+2δ (q,xq)

)
∩A
∣∣≤ ∣∣B◦(q,δ (q,x))∩A

∣∣+C|A|1−α , (2.3)

then

P
(
x̂q 6= xq

)
≤ 360Cc̃2

α
n−α

0 , (2.4)

where the probability is with respect to the random construction of the tree.

The condition on q implies that there are not many points that have the same distance
to q as the nearest neighbor. Under the local restrictions defined in (2.3) on the
query q, the error bound (2.4) states that one can achieve an arbitrarily small error
probability if n0 is chosen large enough, depending on the strong expansion rate c̃.

Remark 4 The assumption in (2.3) can also be substituted by alternative conditions.
For instance, the error bound in (2.4) holds (up to constants) if there exists D > 1
such that

|B(q,λ r)∩A| ≤ λ
D|B(q,r)∩A| (2.5)

18

2.2 Theoretical analysis

for all A ∈ CS, λ > 1, and r > δ (q,xq). One can see the inherent resemblance
of (2.5) to the notion of strong expansion rate (2.1).

We remark again on the required conditions. The notion of strong expansion rate,
though used in Ram and Gray (2013), is stronger than standard conditions used in
many works (Dasgupta and Sinha, 2015; Karger and Ruhl, 2002). Our main reason
for resorting to this notion is because of the data dependent random splits used in
comparison-tree construction. While projection-based methods also use random
hyperplanes for splitting each node, such hyperplanes are independent of the given
set, making the analysis simpler (Dasgupta and Sinha, 2015). On the other hand,
prior works in non-Euclidean setting construct data structures that naturally adhere
to the structure of the metric balls (Karger and Ruhl, 2002). Unlike both these works,
in the present setting, one cannot guarantee that a condition defined on the whole set
will also hold for each of the partitions obtained during splits. Hence, the condition
of strong expansion rate has been used in our analysis. The additional assumption
on q seems essential since one can construct trivial examples where the nearest
neighbor search is quite likely to fail.

Proof of Theorem 1

We now prove Theorem 1 using two lemmas.

Lemma 5 (Probability of unbalanced split) For any A ∈ CS and β ∈ (0,1), the
probability that the random split in the comparison-tree construction algorithm
creates a child of A with less than β |A| elements is at most 4c̃2β .

Thus, each split in the tree is reasonably balanced, and hence, it is likely that the size
of the nodes decays rapidly with their depth. This fact is formalized below.

Lemma 6 (Maximum node size at depth h) Let A∈ CS be a node at depth h of the
tree. If 4c̃2β ≤ 1, then the probability that A has more than m elements is at most
(8c̃2β)h−1 (n/m)(1/β) log(1/4c̃2β).

We finish the proof of Theorem 1 by observing that the height of the tree is greater
than h only if there is a node at depth h of size greater than n0. By taking a union
over all possible 2h nodes at depth h, one can see that the probability of this event is
at most 2(16c̃2β)h−1 (n/n0)

(1/β) log(1/4c̃2β). This probability is less than ε if we fix
β = 1/32c̃2, and

h =

(
1+2log

(e
ε

)
+96c̃2 log

(
n
n0

))
≤ h∗ .

19

Chapter 2 Comparison-based nearest neighbor search

We now prove the above two lemmas.

Proof. [Proof of Lemma 5] Let |A|= m, and 1(·) denote the indicator function. Then
the probability of splitting A to create a child of size smaller than βm is at most

1
m(m−1) ∑

x1∈A
x2∈A\{x1}

1
(
{|{x ∈ A : δ (x,x2)≤ δ (x,x1)}| ≤ βm}

∪{|{x ∈ A : δ (x,x1)< δ (x,x2)}| ≤ βm}
)

≤ 1
(m

2)
∑

x1∈A
x2∈A\{x1}

1
(∣∣{x ∈ A : δ (x,x1)< δ (x,x2)}

∣∣≤ βm
)
.

Note that the set {x ∈ A : δ (x,x1)< δ (x,x2)} contains the set B
(
x1,

1
4δ (x1,x2)

)
∩A,

where B(·, ·) is the closed ball. Thus, one may bound the above probability by the
fraction of x1,x2 pairs for which this ball contains less than βm elements. Moreover,
using the condition of strong expansion rate (2.1), one has

∣∣B(x1,δ (x1,x2)
)
∩A
∣∣≤ c̃2 ∣∣B(x1,

1
4δ (x1,x2)

)
∩A
∣∣ .

Thus, one may only count the x1,x2 pairs for which B(x1,δ (x1,x2))∩A contains at
most c̃2βm elements. Now, for every x1, if one sorts x2 in the increasing order of
δ (x1,x2), then the indicator is true only for the first c̃2βm of x2’s. Thus, the proba-
bility of an unbalanced split is at most 2c̃2βm2/m(m−1)≤ 4c̃2β . 2

Proof. [Proof of Lemma 6] We denote the path from the root of the tree to A by
S = A1 ⊃ A2 ⊃ . . .⊃ Ah−1 ⊃ Ah = A. Let A′j denote the sibling of A j for j ≥ 2. By
the Markov inequality, one can write for any t > 0,

P(|A|> m)≤
(n

m

)t
E

[
|Ah|t

|A1|t

]
=
(n

m

)t
E

[
|Ah−1|t

|A1|t
E

[
|Ah|t

|Ah−1|t

∣∣∣∣Ah−1

]]
.

One can bound the inner conditional expectation as

E

[
|Ah|t

|Ah−1|t

∣∣∣∣Ah−1

]
= E

[
|Ah|t

|Ah−1|t
1
(
|Ah|> (1−β)|Ah−1|

)∣∣∣∣Ah−1

]
+E

[
|Ah|t

|Ah−1|t
1
(
|Ah| ≤ (1−β)|Ah−1|

)∣∣∣∣Ah−1

]

20

2.2 Theoretical analysis

≤ P
(
|A′h| ≤ β |Ah−1|

)
+(1−β)t ,

where the inequality follows by replacing the ratio by 1 in the first expectation,
and |Ah| by its upper bound in the second one. Due to Lemma 5, one can see that
this bound is at most

(
4c̃2β +(1−β)t). For t = (1/β) log(1/4c̃2β), one can use

the fact that (1/β) log(1/1−β) ≥ 1 to show that the above expectation is at most
8c̃2β . Subsequently, we use the same technique of conditioning with every A j,
j = 2, . . . ,h−2 to obtain

P(|A|> m)≤
(n

m

) 1
β

log(1
4c̃2β

)
(8c̃2

β)h−1.

2

Proof of Theorem 3

The nearest neighbor search for a query point q is done by traversing the tree from
the root to one of the leaves. Let us denote the visited path by S = A1 ⊃ A2 ⊃
. . . ⊃ Ak−1 ⊃ Ak, where Ak is the leaf node containing x̂q. We assume that q /∈ S,
as otherwise the nearest neighbor search algorithm returns the query. By simple
reasoning, it follows that x̂q 6= xq only if xq /∈ Ak, which happens if there is l ∈
{1,2, . . . ,k−1} such that xq ∈ Al\Al+1. Hence,

P(x̂q 6= xq) = P

(
k−1⋃
l=1

{xq ∈ Al,xq /∈ Al+1}

)

≤
k−1

∑
l=1

P(xq /∈ Al+1|xq ∈ Al)P(xq ∈ Al)

≤
k−1

∑
l=1

P
(
xq /∈ Al+1

∣∣xq ∈ Al, |Al| ≥ ml
)
P(|Al| ≥ ml)+

P
(
xq /∈ Al+1

∣∣xq ∈ Al, |Al|< ml
)
P(|Al|< ml) (2.6)

where ml = n0/(1− γ)k−1−l for some γ ∈ (0,1). The first inequality is due to union
bound, while the second one uses P(xq ∈ Al)≤ 1 and further decomposes based on
|Al|.

Lemma 7 (Probability of missing nearest neighbor in one branch) Under the
condition on q stated in Theorem 3, for any l = 1,2, . . . ,k−1,

P(xq /∈ Al+1|Al,xq ∈ Al)≤C|Al|−α .

Note that for the two conditional probabilities in (2.6), |Al| is at least ml and n0,

21

Chapter 2 Comparison-based nearest neighbor search

respectively. Using Lemma 7, one can bound these probabilities. To obtain a bound
on P(|Al|< ml), we follow Lemma 6.

Observe that Lemma 6 implies that after repeated splits, it is less likely that the ratio
of the final node to the root node will be large. In the present context, we know that
|Ak−1| ≥ n0, and so, for any l < k−1, the bound in Lemma 6 can be used to argue
that |Ak−1|/|Al| cannot be large. Formally,

P(|Al|< ml) = P

(
|Ak−1|
|Al|

>
n0

ml

)
≤ (8c̃2

β)k−1−l
(

1
(1− γ)k−1−l

) 1
β

log(1
4c̃2β

)

=

(
0.25

(1− γ)96c̃2 log2

)k−1−l

,

using β = 1/32c̃2 as in Theorem 1. Substituting the above bound in (2.6) and using
Lemma 7, we have

P(x̂q 6= xq)≤
k−1

∑
l=1

Cn−α

0 (1− γ)α(k−1−l)+Cn−α

0

(
0.25

(1− γ)96c̃2 log2

)k−1−l

.

Choosing γ = 1− (0.25)1/(α+96c̃2 log2), one can see that the second term is smaller
than the first, and hence,

P(x̂q 6= xq)≤
2Cn−α

0
1− (1− γ)α

≤
2Cn−α

0

1− (0.25)α/67.5c̃2 .

From above, we obtain the bound in (2.4) by using the relation 1−a≤ b(1−a1/b),
which holds for any a ∈ (0,1) and b > 1. This proves Theorem 3.

We end the section with the proof of Lemma 7.

Proof. [Proof of Lemma 7] Let |Al| = m, and let us order the elements such that
δ (q,xi)≤ δ (q,x j) for i < j. Since xq ∈ Al , we have x1 = xq. Note that if xq /∈ Al+1,
then it is certainly not a pivot element. Moreover, if xi,x j ∈ Al are the pivot elements
for i < j, then xq /∈ Al+1 implies δ (xq,xi) ≥ δ (xq,x j). The inequality can even be
strict depending on which is chosen as the left pivot. Hence, we have

P(xq /∈ Al+1|Al,xq ∈ Al)≤
1

m(m−1) ∑
2≤i< j≤m

1
(
δ (xq,xi)≥ δ (xq,x j)

)
.

22

2.3 Experiments

By the triangle inequality,

δ (xq,xi)≤ δ (q,xi)+δ (q,xq) and
δ (xq,x j)≥ δ (q,x j)−δ (q,xq) .

Hence, one may count the pairs i < j for which

δ (q,x j)≤ δ (q,xi)+2δ (q,xq) .

As a consequence, we can write

P(xq /∈ Al+1|Al,xq ∈ Al)≤
1

m(m−1)
·

m

∑
i=2

∣∣{x ∈ A : δ (q,xi)≤ δ (q,x)≤ δ (q,xi)+2δ (q,xq)}
∣∣,

where each term in the sum is at most Cm1−α due to the assumption on q. Thus, the
claim of the lemma is true. 2

2.3 Experiments

The experiments are divided into three subsections. In the first part we compare
the performance of comparison-trees with other binary space partitioning trees. We
used datasets in Euclidean space as the other tree structures require the vector rep-
resentations. In the next part we compare the performance of comparison-tree with
the Rank Cover Tree (Houle and Nett, 2015). Only a few methods have consid-
ered the nearest neighbor search with distance comparisons (Houle and Nett, 2015;
Tschopp et al., 2011). We choose the more recent method proposed by Houle and

Table 2.2: Description of datasets

Dataset Size Dimension Distance
MNIST 70000 784 Euclidean
Gisette 12500 5000 Euclidean

CoverType 50000 53 Euclidean
Corel 19787 44 Euclidean
Chess 28056 6 Mismatch

CoAuth 11204 - Shortest Path
MSC 10848 - Shortest Path

23

Chapter 2 Comparison-based nearest neighbor search

Nett (2015) as a competitor to our proposed comparison-tree. In the last subsection,
we investigate the defined growth parameter on real datasets.

2.3.1 Euclidean setting

In this subsection, we compare the performance of comparison-trees to standard
space partitioning trees in Euclidean spaces. Note that the latter have access to the
vector representation of the points (and thus also to all pairwise distances), whereas
the comparison-tree only has access to triplet comparisons. Thus, the purpose of
this comparison is not to show that the comparison-tree “outperforms” the other
ones, but to examine whether it is much worse or not. There are numerous tree
constructions in Euclidean spaces. Based on the results in Ram and Gray (2013), we
compare our method with KD-Tree (Bentley, 1975), RP-Tree (Dasgupta and Freund,
2008) and PA-Tree (McNames, 2001).
A description of the datasets is presented in Table 2.2. MNIST is a dataset of
hand-written digits (Lecun and Cortes, 1998). Gisette, CoverType and Chess (King-
Rook vs. King) are from the UCI repository (Lichman, 2013). Corel is a subset
of histograms defined and used in Liu et al. (2004). CoAuth is the collaboration
network of Arxiv High Energy Physics from Davis and Hu (2011). We consider
the largest connected component of the graph as the set of items, and the shortest
path in the graph as the distance metric. MSC (Boeing/msc10848) is a similar but
weighted graph from Davis and Hu (2011)2. Note that only the first four datasets
live in Euclidean spaces.
We assess the performance of the nearest neighbor search by the leave-one-out
method. As a performance measure, we report the empirical probability of missing
the nearest neighbor:

1/|S|∑
q∈S

1
(
NNalg(q) 6= NN(q)

)
.

Here S is the whole dataset, NNalg denotes the result of nearest neighbor search by
the algorithm while the true nearest neighbor is NN(q).
Figure 2.1 shows the performance of comparison-tree versus other methods in the
Euclidean space. The comparison-tree has less error compared to RP-Tree and
KD-Tree, and has slightly worse performance comparing with the PA-Tree. How-
ever, the differences are not huge, and we find the behavior of the comparison-tree
quite satisfactory, given that it receives much less input information than the other
methods.

2There are negative edge weights in the graph, however we use absolute values of edge weights to
have a metric by using shortest path distances.

24

2.3 Experiments

n
0
: Max points in leaves

32 64 128 256 512 1024

E
m

p
ir
ic

a
l
P

ro
b
a
b
ili

ty
 o

f
E

rr
o
r

0

0.2

0.4

0.6

0.8

1
MNIST

n
0
: Max points in leaves

32 64 128 256 512 1024

E
m

p
ir
ic

a
l
P

ro
b
a
b
ili

ty
 o

f
E

rr
o
r

0

0.2

0.4

0.6

0.8

1
Gisette

n
0
: Max points in leaves

32 64 128 256 512 1024

E
m

p
ir
ic

a
l
P

ro
b
a
b
ili

ty
 o

f
E

rr
o
r

0

0.2

0.4

0.6

0.8

1
CoverType

n
0
: Max points in leaves

32 64 128 256 512 1024

E
m

p
ir
ic

a
l
P

ro
b
a
b
ili

ty
 o

f
E

rr
o
r

0

0.2

0.4

0.6

0.8

1
Corel

RP-Tree
Comp-Tree
KD-Tree
PA-Tree

Figure 2.1: Performance comparison of comparison-tree versus other binary space
partitioning trees with respect to the maximum leaf size, n0. The experiment is
performed on four datasets; the name of dataset is appeared on top of each plot.

2.3.2 Comparison-based setting

Among the few comparison-based methods cited in the introduction, many are not
practical or have already been shown to perform sub-optimally (see the theoretical
comparison in table 2.1). The most promising competitor to our method is the Rank
Cover Tree (RCT) (Houle and Nett, 2015). As the original implementation of the
authors was not available, we implemented the method ourselves in MATLAB.
We have two objectives when comparing the two comparison-based trees: the num-
ber of required triplet questions, and the accuracy they achieve in the nearest neigh-
bor search. While the latter is easy to compare, the former is more of a challenge. It is
impossible to construct an RCT with the same number of triplets that the comparison-
tree requires in construction phase, since the RCT needs orders of magnitude more
triplets in construction. Thus, we construct both trees in such a way that the number
of triplet comparisons in the query phase is matched. We then compare the nearest

25

Chapter 2 Comparison-based nearest neighbor search

neighbor search performance, but also the number of triplets in the tree construction
phase. For the RCT, the performance and the number of comparisons can be bal-
anced by adjusting the coverage parameter ω (see Houle and Nett, 2015, Section 4).
For comparison-trees, n0 plays a similar role. By varying these two parameters we
match the number of comparisons in the query phase.
We randomly choose 1000 data points in each experiment as test set for the query
phase and the rest of the dataset for the tree construction. The empirical error defined
in previous subsection is not well-defined for some of datasets in this subsection. In
CoAuth and Chess datasets, many points have more than one nearest neighbor. In
this way, considering the probability of eTrro for exact nearest neighbor search can
be missleading. Thus, we report the average relative distance error (Liu et al., 2004)
defined as the following:

(1/|S|) ∑
q∈S

(
dalg

dNN
−1
)
.

Here dalg denotes the distance of the query to the predicted nearest neighbor by the
algorithm and dNN denotes the distance of the query to the true nearest neighbor.
Figure 2.2 shows the performance of the comparison-tree compared to the RCT
on four datasets from Table 2.2. The results on the remaining Euclidean datasets
are very similar to MNIST, hence we do not present them. We consider different
parameter settings and match the average number of triplets used in the query phase.
In terms of the relative distance errors, the RCT works slightly better in datasets
with low intrinsic dimension, specially when we are provided with more triplets
in query phase. However, as the bottom rows in Figure 2.2 show, to achieve this
performance the RCT needs orders of magnitude more triplet comparisons in the
tree construction phase. Therefore, if answering triplet comparisons is expensive,
then the comparison-tree clearly is a good alternative to the RCT.

2.3.3 Expansion rate approximation

In our theoretical analysis, we used the strong expansion condition defined in Equa-
tion (2.1). It is an obvious question to find out how strong these conditions really
are and what the corresponding constants in our datasets would be. To this end, we
provide a method to estimate the expansion rates for our datasets. We fix a dataset,
for each point x we look for the smallest c̃ such that Equation (2.1) holds for that par-
ticular point. We find the smallest value with respect to various radii r. In this way
we estimate an empirical pointwise c̃(x) value for each point. Since the definition
depends on the number of points in the dataset, we randomly choose 10000 points
from each dataset for these experiments. The distribution of empirical expansion
rates c̃(x) are plotted by box-and-whisker plots in Figure 2.3.

26

2.3 Experiments

Avg #triplets in query phase
0 500 1000 1500 2000

A
v
g

.
R

e
la

ti
v
e

 D
is

ta
n

c
e

 E
rr

o
r

0.02

0.04

0.06

0.08

0.1

0.12
MNIST

Avg #triplets in query phase
0 500 1000 1500 2000

#
tr

ip
le

ts
 i
n

 c
o

n
s
tr

u
c
ti
o

n
 p

h
a

s
e

10
5

10
6

10
7

10
8

(a) MNIST

Avg #triplets in query phase
0 500 1000 1500

A
v
g

.
R

e
la

ti
v
e

 D
is

ta
n

c
e

 E
rr

o
r

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Chess

Avg #triplets in query phase
0 500 1000 1500

#
tr

ip
le

ts
 i
n

 c
o

n
s
tr

u
c
ti
o

n
 p

h
a

s
e

10
5

10
6

10
7

10
8

(b) Chess

Avg #triplets in query phase
0 1000 2000 3000 4000

A
v
g

.
R

e
la

ti
v
e

 D
is

ta
n

c
e

 E
rr

o
r

0.02

0.04

0.06

0.08

0.1

0.12

0.14
MSC

Avg #triplets in query phase
0 1000 2000 3000 4000

#
tr

ip
le

ts
 i
n

 c
o

n
s
tr

u
c
ti
o

n
 p

h
a

s
e

10
4

10
5

10
6

10
7

10
8

(c) MSC

Avg #triplets in query phase
0 1000 2000 3000 4000

A
v
g
.
R

e
la

ti
v
e
 D

is
ta

n
c
e
 E

rr
o
r

0

0.01

0.02

0.03

0.04

0.05

0.06
CoAuth

RCT
Comp-Tree

Avg #triplets in query phase
0 1000 2000 3000 4000

#
tr

ip
le

ts
 i
n
 c

o
n
s
tr

u
c
ti
o
n
 p

h
a
s
e

10
4

10
5

10
6

10
7

10
8

RCT
Comp-Tree

(d) CoAuth

Figure 2.2: Comparing the performance of the comparison-tree versus the RCT with
various parameters in the construction phase. In each of the four plots, corresponding
to the four datasets, the upper row denotes the average relative distance error, while
the bottom row is the number of triplets used in the construction phase. 27

Chapter 2 Comparison-based nearest neighbor search

MNIST Gisette

E
m

p
ir
ic

a
l
E

x
p
a
n
s
io

n
 R

a
te

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

CT Corel Chess CA MSC
0

200

400

600

800

1000

1200
Median

Mean

%25-%75

%15-%85

Figure 2.3: Distribution of empirical expansion rates c̃(x) estimated for various
datasets. Each bar represents the distribution of pointwise expansion rates for the
corresponding dataset. CoAuth and CoverType datasets are abbreviated as “CA”
and “CT” respectively. Note that the range of expansion rates is 10 times higher for
the first two datasets, thus we plotted them separately.

For our theoretical analysis, we used the smallest possible c̃ for the whole dataset.
However the distribution of pointwise values c̃(x) is a more practical criterion to con-
sider. Except for MNIST and Gisette, these values are reasonably small. Therefore,
the values can justify the validity of the assumption on real datasets.

2.4 Conclusion

Comparison-based nearest neighbor search is a fundamental ingredient in machine
learning algorithms in the comparison-based setting. Because triplet comparisons
are expensive, we investigate the query complexity of comparison-based nearest
neighbor algorithms. In particular, we study the comparison-tree, which leads to
a nice and simple, yet adaptive data structure. We prove that under strong con-
ditions on the underlying metric, the comparison-tree has logarithmic height, and
we can bound the error in nearest neighbor search. We also show in simulations
that comparison-trees perform not much worse than Euclidean data structures (al-
beit using much less information about the data), and perform favorably to other
comparison-based methods if we take both the number of triplet comparisons and
the nearest neighbor errors into account.
There are still a number of interesting open questions to address. The conditions
we use in our analysis are rather strong, and this seems to be the case for all other
studies in this area as well. Can they be considerably weakened? Can we prove

28

2.4 Conclusion

that our conditions will be satisfied with small constants if we sample point from a
nice metric or Euclidean space? Finally, all the above work assumes that a ground
truth for the triplet comparisons exists and that the answers to the triplet queries
are always correct. It would be interesting to see how the query complexity of the
comparison-tree increases if the error in the triplets increases.

29

Chapter 3

Comparison-based random forests

In this chapter, we consider classification and regression problems in a comparison-
based setting where we are given the labels y1, . . . ,yn of unknown objects x1, . . . ,xn,
and we can actively query triplet comparisons, as defined in Equation 1.1. We
solve the classification/regression problems by a new random forest algorithm that
requires only triplet comparisons. Standard random forests (Biau and Scornet, 2016)
are one of the most popular and successful classification/regression algorithms in
Euclidean spaces (Fernández-Delgado et al., 2014). However, they heavily rely on
the underlying vector space structure. In our comparison-based setting we require
a completely different tree building strategy. We use a modified version of the
comparison-tree defined in the previous chapter.
We introduce comparison-based random forest (CompRF), which consists of a col-
lection of comparison-trees built on the training set. The construction of each tree
requires only some triplet comparisons of the training items. In the test phase, we
again need only the answers to some of the triplet comparisons. Triplet comparisons
are used to traverse the tree and reach the leaf node that contains the query point.
The final prediction of the forest is an aggregation of the label of items in the leaf
nodes of trees. Similar to traditional random forests, aggregating a bunch of trees
leads to a desirable generalization.
We study the proposed CompRF both from a theoretical and a practical point of view.
In Section 3.2, we give sufficient conditions under which a slightly simplified variant
of the comparison-based random forest is statistically consistent. The required tech-
niques are already tricky for standard random forests (Scornet, 2016), but require
a lot of extra work for comparison-based random forests. In Section 3.3, we apply
the CompRF to various datasets. In the first set of experiments we compare our
random forests to traditional random forests, based on classification and regression
tree (CART), on Euclidean data. In the second set of experiments, the distances
between objects are known while their representation is missing. Here, traditional
random forests cannot be used any more. However, the comparison-based random
forests are still applicable in this setting. Finally, we consider a case in which only
triplet comparisons are available. In this setting we compare the performance of

31

Chapter 3 Comparison-based random forests

our method with the embedding algorithms and subsequently applying the KNN
classifier.

3.1 Comparison-Based random forests

Figure 3.1: Construction of the comparison tree, illustrated in the Euclidean setting.
(i) The current cell contains points with two different labels. (ii) Two pivot points
with opposite labels are chosen randomly from all sample points in the current cell
(circled black dots). (iii) The current cell is split according to whether points are
closer to the one or the other pivot; in the Euclidean setting this corresponds to a
hyperplane split. (iv) Result after recursive application of this principle with final
leaf size n0 = 10.
Random forests, first introduced in Breiman (2001), are one of the most popular
algorithms for classification and regression in Euclidean spaces. In a comprehen-
sive study on more than 100 classification tasks, random forests show the best per-
formance among many other general purpose methods (Fernández-Delgado et al.,
2014). However, standard random forests heavily rely on the vector space represen-
tation of the underlying data points, which is not available in a comparison-based
setting. Instead, we propose a comparison-based random forest algorithm for classifi-
cation and regression tasks. The main ingredient is the comparison-tree, which only
uses triplet comparisons and does not rely on Euclidean representation or distances
between items.
We first recall the CART random forest. The input consists of a labeled set Dn =
{(x1,y1),(x2,y2), . . . ,(xn,yn)} ⊂ Rd×R. To build an individual tree, we first draw a
random subsample Ds of an points from Dn. Second, we select a random subset Dims
of size mtry of all possible dimensions {1,2, . . . ,d}. The tree is then built based on
recursive, axis-aligned splits along a dimension randomly chosen from Dims. The
exact splitting point along this direction is determined via the CART criterion, which
also involves the labels of the subset Ds of points (see Biau and Scornet (2016) for
details). The tree is grown until each cell contains at most n0 points—these cells
then correspond to the leaf nodes of the tree. To estimate a regression function m(x),
each individual tree routes the query point to the appropriate leaf and outputs the
average response over all points in this leaf. The random forest aggregates M such

32

3.1 Comparison-Based random forests

trees. Let us denote the prediction of tree i at point x by mi(x,Θi,Dn), where Θi
encodes the randomness in the tree construction. Then the final forest estimation
at x is the average result over all trees (for classification, the average is replaced by
a majority vote):

mM,n(x;(Θi)1≤i≤M ,Dn) =
1
M

M

∑
i=1

mi(x,Θi,Dn) .

The general consensus in the literature is that CART forests are surprisingly robust
to parameter choices. Consequently, people use explicit rules of thumb, for example
to set mtry= dd/3e, and n0 = 5 (resp. n0 = 1) for regression (resp. classification)
tasks.
We now suggest to replace CART trees by comparison trees, leading to comparison-
based random forests (CompRF). We suggest to use the comparison-tree structure
(as described in previous chapter) for regression tasks. However, for classification
tasks we propose a supervised variant of the comparison tree, which we refer to
as “supervised comparison-tree”. The tree structure is quite similar to the main
definition proposed in section 2.1. We describe the two variations of the CompRF
algorithm for the regression and classification tasks separately.

Algorithm 3 CompTree(S,n0):
Supervised comparison tree construction
Input: Labeled data S and maximum leaf size n0
Output: Comparison tree T

1: T.root← S
2: if |S|> n0 then
3: Sample distinct (x1,y1),(x2,y2) ∈ S s.t. y1 6= y2

(if all points have the same label choose randomly)
4: S1←{(x,y) ∈ S : δ (x,x1)≤ δ (x,x2)}
5: T.le f t pivot← x1, T.right pivot← x2
6: T.le f tchild←CompTree(S1,n0)
7: T.rightchild←CompTree(S\S1,n0)
8: end if
9: Return T

CompRF for classification

The supervised comparison tree construction for a labeled set S ⊂ X ×{0,1} is as
follows (see Algorithm 3 and Figure 3.1): we randomly choose two pivot points
x1 and x2 with different labels y1 and y2 among the points in S (the case where all

33

Chapter 3 Comparison-based random forests

the points in S have the same label is trivial). For every remaining point (x,y) ∈ S,
we request the triplet comparison “δ (x,x1) < δ (x,x2).” The answer to this query
determines the relative position of x with respect to the generalized hyperplane
separating x1 and x2. We assign the points closer to x1 to the first child node of S
and the points closer to x2 to the other one. We now recurse the algorithm on the
child nodes until less than n0 points remain in every leaf node of the tree.
The supervised pivot selection is analogous to the CART criterion. However, instead
of a costly optimization over the choice of split, it only requires to choose pivots
with different labels. In Section 3.3.1, we empirically show that the supervised split
procedure leads to a better performance than the CART forests for classification
tasks.

CompRF for regression

In contrast to the classification task, it is not obvious how the pivot selection should
depend on the output values for a regression task. Here we use an unsupervised
version of the forest (unsupervised CompRF): we choose the pivots x1,x2 without
considering y1,y2.(line 3 of Algorithm 3)

Label prediction with the CompRF

The final comparison-based random forest consists of M independently constructed
comparison trees. To assign a label to a query point, we traverse every tree to a
leaf node, then we aggregate all the items in the leaf nodes of M trees to estimate
the label of the query item. For classification, the final label is the majority vote
over the labels of the accumulated set (in the multiclass case we use a one vs. one
approach). For regression we use the mean output value. The pseudocode of the
CompRF algorithm is provided in Algorithm 4.

Intuitive comparison with the CART random forests

The general understanding is that the efficiency of CART random forests is due to:
(1) the randomness due to subsampling of dimensions and data points (Breiman,
1996); (2) the CART splitting criterion that exploits the label information already in
the tree construction (Breiman et al., 1984). A weakness of CART splits is that they
are necessarily axis-aligned, and thus not well-adapted to the geometry of the data.
In comparison trees, randomness is involved in the tree construction as well. But
once a splitting direction has been determined by choosing the pivot points, the exact
splitting point along this direction cannot be influenced any more, due to the lack
of a vector space representation. On the other hand, the comparison tree splits are

34

3.2 Theoretical analysis

Algorithm 4 CompRF(Dn,q,M,n0,r):
CompRF prediction at query q

Input: Labeled dataset Dn ⊂ X ×{0,1}, query q ∈ X , leaf size n0, trees M and
subsampling ratio r.

Output: yq = label prediction for q
1: Set C = /0 as the list of predictor items
2: for j=1,. . . ,M do
3: Take a random subsample Ds ⊂ Dn, s.t., |Ds|

|Dn| = r
4: Tj←CompTree(Ds,n0)
5: Given q, traverse the tree Tj to the leaf node N j
6: C←C∪N j
7: end for
8: Return MajorityVote({y|(x,y) ∈C})

well adapted to the data geometry by construction, giving some advantage to the
comparison trees.
All in all, the comparison-based random forest is a promising candidate with slightly
different strengths and weaknesses than CART random forest. Our empirical com-
parison in Section 3.3.1 reveals that it performs surprisingly well and can even
outperform CART random forests in certain settings.

3.2 Theoretical analysis
Despite their intensive use in practice, theoretical questions regarding the consis-
tency of the original procedure of Breiman (2001) are still under investigation. Most
of the research focuses on simplified models in which the construction of the forest
does not depend on the training set at all (Biau, 2012), or only via the xis but not
the yis (Biau et al., 2008; Ishwaran and Kogalur, 2010; Denil et al., 2013). Recent
efforts nearly closed this gap, notably Scornet et al. (2015), where it is shown that
the original algorithm is consistent in the context of additive regression models and
under suitable assumptions. However, there is no previous work on the consistency
of random forests constructed only with triplet comparisons.
As a first step in this direction, we investigate the consistency of individual compari-
son trees, which is the first building block in the study of random forests consistency.
As it is common in the theoretical literature on random forests, we consider a slightly
modified version of the comparison tree. We assume that the pivot points are not
randomly drawn from the underlying sample but according to the true distribution
of the data. In this setting, we show that, when the number of observations grows to
infinity, (i) the diameter of the cells converges to zero in probability, and (ii) each

35

Chapter 3 Comparison-based random forests

cell contains an arbitrarily large number of observations. Using a result of Devroye
et al. (1996), we deduce that the associated classifier is consistent. The challenging
part of the proof is to obtain control over the diameter of the cells. Intuitively, as
in Dasgupta and Freund (2008, Lemma 12), it suffices to show that each cut has a
larger probability to decrease the diameter of the current cell than that of leaving it
unchanged. To prove this in our case is very challenging since both the position and
the decrease in diameter caused by the next cut depend on the geometry of the cell.

3.2.1 Continuous comparison-tree
As it is the case for most theoretical results on random forests, we carry out our
analysis in a Euclidean setting (however, the comparison-forest only has indirect
access to the Euclidean metric via triplet queries). We assume that the input space is
X = [0,1]d with distance δ given by the Euclidean norm, that is, δ (x,y) = ‖x− y‖.
Let X be a random variable with support included in [0,1]d . We assume that the ob-
servations X1, . . . ,Xn ∈ [0,1]d are drawn independently according to the distribution
of X . We make the following assumptions:

Assumption 3.2.1 (Bounded density on the unit cube) The random variable X ∈
[0,1]d has density f with respect to the Lebesgue measure on [0,1]d . Additionally,
there exist constants 0 < fmin ≤ fmax <+∞ such that

∀x ∈ X , fmin ≤ f (x)≤ fmax .

For any x,y ∈ Rd , let us define

∆(x,y) :=
{

z ∈ Rd | δ (x,z) = δ (y,z)
}
.

In the Euclidean setting, ∆(x,y) is a hyperplane that separates Rd in two half-spaces.
We call Hx (resp. Hy) the open half-space containing x (resp. y). The set S1 in
Algorithm 3 corresponds to S∩Hx1 .
We can now define the continuous comparison tree.

Definition 8 (Continuous comparison tree) A continuous comparison tree is a ran-
dom infinite binary tree T 0 obtained via the following iterative construction:

• The root of T 0 is [0,1]d;

• Assuming that level ` of T 0 has been built already, then level `+1 is built as
follows: For every cell C at height `, draw X1,X2 ∈C independently according
to the distribution of X restricted to C. The children of C are defined as the
closure of C∩HX1 and C∩HX2 .

36

3.2 Theoretical analysis

For any sequence (pn)n≥0, a truncated, continuous comparison tree T 0(pn) consists
of the first bpnc levels of T 0.

From a mathematical point of view, the continuous tree has a number of advantages.
(i) Its construction does not depend on the responses Y1, . . . ,Yn. Such a simplification
is quite common because data-dependent random tree structures are notoriously
difficult to analyze (Biau et al., 2008). (ii) Its construction is formally independent
of the finite set of data points, but “close in spirit”: Rather than sampling the pivots
among the data points in a cell, pivots are independently sampled according to the
underlying distribution. Whenever a cell contains a large number of sample points,
both distributions are close, but they may drift apart when the diameter of the cells
go to 0. (iii) In the continuous comparison tree, we stop splitting cells at height bpnc,
whereas in the discrete setting we stop if there is less than n0 observations in the
current cell. As a consequence, T 0(pn) is a perfect binary tree: each interior node
has exactly 2 children. This is typically not the case for comparison trees.

3.2.2 Consistency
To each realization of T 0(pn) is associated a partition of [0,1]d into disjoint cells
A1,n,A2,n, . . . ,A2pn ,n . These cells correspond to the leaf nodes of the continuous
comparison-tree T 0(pn). For any x ∈ [0,1]d , let A(x) be the cell of T 0(pn) contain-
ing x. Let us assume that the responses (Yi)1≤i≤n are binary labels. We consider the
classifier defined by majority vote in each cell, that is,

gn(x) :=

{
1 if ∑Xi∈A(x)1Yi=1 ≥ ∑Xi∈A(x)1Yi=0

0 otherwise.

Define Ln := P(gn(X) 6= Y |Dn) . Following Devroye et al. (1996), we say that the
classifier gn is consistent if

E [Ln] = P(gn(X) 6= Y)−−−−→
n→+∞

L? ,

where L? is the Bayes error probability. Our main result is the consistency of the
classifier associated with the continuous comparison tree truncated to a logarithmic
height.

Theorem 9 (Consistency of comparison-based trees) Under Assumption 3.2.1, the
classifier associated to the continuous, truncated tree T 0(α logn) is consistent for
any constant 0 < α < 1/ log2.

In particular, since each individual tree is consistent, a random forest with base
tree T 0(pn) is also consistent. Theorem 9 is a first step towards explaining why

37

Chapter 3 Comparison-based random forests

comparison-based trees perform well without having access to the representation of
the points. Also note that, even though the continuous tree is a simplified version
of the discrete tree, they are quite similar and share all important characteristics. In
particular, they roughly have the same depth—with high probability, the comparison
tree has logarithmic depth according to Theorem 1.

3.2.3 Proof of consistency

Since the construction of T 0(pn) does not depend on the labels, we can use The-
orem 6.1 of Devroye et al. (1996) to prove the consistency of the tree. It gives
sufficient conditions for classification rules based on space partitioning to be consis-
tent. In particular, we have to show that the partition satisfies two properties: first,
the leaf cells should be small enough, so that local changes of the distribution can be
detected; second, the leaf cells should contain a sufficiently large number of points
so that averaging among the labels makes sense. More precisely, we have to show
that

(i) diamA(X)→ 0 in probability, where diamA := supx,y∈A δ (x,y) is the diameter
of A

(ii) N(X)→ ∞ in probability, where N(X) is the number of points in the cell
containing X .

We first prove the second point (ii) which is easier.
Proof of (ii). According to Lemma 20.1 in Devroye et al. (1996) and the remark that
follows, it is sufficient to show that the number of regions is o(n). For each n, by con-
struction, T 0(α logn) has 2α logn = nα log2 leaves. Since α log2 < 1, 2α logn = o(n)
as n→+∞. 2

Proving (i) is much more challenging. The critical part of the proof is to show that,
for any cell of the continuous comparison tree, the diameter of its descendants at
least k levels below is halved with high probability. More precisely, the follow-
ing proposition shows that this probability is lower bounded by 1−β , where β is
exponentially decreasing in k.

Proposition 10 (Diameter control) Assume that Assumption 3.2.1 holds. Let C be
a cell of T 0 such that diamC≤D. Then the probability that there exists a descendant
of C which is more than k levels below and yet has diameter greater than D/2 is at
most N f ,d(N f ,d +1)γk

f ,d/2, where 0<N f ,d and 0< γ f ,d < 1 are constants depending
only on d, fmin, and fmax.

38

3.2 Theoretical analysis

Proposition 10 is an analogous of Lemma 12 in Dasgupta and Freund (2008). In
plain words, it states that for any cell of the continuous comparison tree, the diameter
of any descendant at least k levels below is halved with high probability depending
on k. Our proof follows closely that of Dasgupta and Freund (2008, Lemma 12),
the main difference being in the auxiliary lemmas used to control the probability
of certain events, due to the radically different nature of the random tree that we
consider.
Proof. Consider a cover of C by balls of radius r = D/cr, with cr := 26 ·d ·25d · f 2

max
f 2
min

.
According to Shalev-Shwartz and Ben-David (2014, Section 27.1), at most(

2D
√

d
r

)d

=

(
27 ·d3/2 ·25d · f 2

max

f 2
min

)d

=: Nd, f

such balls are needed, since diamC ≤ D.
Fix any pair of balls B,B′ from this cover whose centers are at distance at least
D/2− r from one another. Given any x and y, we say that the split according to
∆(x,y) is a good cut if it cleanly separates B from B′, i.e., if B ⊂ Hx and B′ ⊂ Hy
or B′ ⊂ Hx and B ⊂ Hy. If the split cuts both B and B′, that is, B∩∆(x,y) 6= /0 and
B′∩∆(x,y) 6= /0, we say that it is a bad cut. See Figure 3.2 for illustration.
For any k≥ 1, let ρk be the probability that there is some cell k levels below C which
contains points from both B and B′. We write

ρk ≤ P(top split is a good cut) ·0+P(top split is a bad cut) ·2ρk−1

+P(all other split configurations) ·ρk−1

≤ (1+P(top split is a bad cut)−P(top split is a good cut))ρk−1 .

Since d ≥ 1 and cr > 50, according to Lemma 11 and 12 (stated later in Sec-
tion 3.2.4),

P(top split is a bad cut)−P(top split is a good cut)≤ fmax

fmin
· 64d

cr
−2 · fmin

fmax
· 1

25d

=− fmin

fmax
· 1

25d < 0 .

Set γ f ,d := 1− fmin
fmax
· 1

25d , we just showed that

ρk ≤ γ f ,dρk−1 . (3.1)

Since ρ0 = 1, we deduce that ρk ≤ γk
f ,d . We conclude by a union bound over all the

pairs from the cover that are at the prescribed minimum distance from each other. 2

39

Chapter 3 Comparison-based random forests

A

B

B′

good cut

bad cut

Figure 3.2: Good cuts and bad cuts. The current cell A contains B and B′, two
faraway balls of small radius—with respect to the diameter of A. A good cut (in
green) cleanly separates B and B′, whereas a bad cut (in red) intersects both.

40

3.2 Theoretical analysis

Proof of (i). Let 0 < ε < 1, we show that

P(diamA(X)> ε)−→ 0 when n→+∞ .

We first notice that

P(diamA(X)> ε)≤max
i

P(diamAi,n > ε) .

Let A be the leaf of T 0(pn) with maximal diameter and define π :=
⌈

log(
√

d)−logε

log2

⌉
,

so that ε >
√

d/2π . We write

P(diamA > ε)≤ P

(
diamA >

√
d

2π

)
.

Define C1, . . . ,Cpn the path from C0 = [0,1]d to Cpn = A in the tree T 0(pn). Set
k =

⌊ pn
π

⌋
. Set A(0) =C0, A(1) =Ck, A(2) =C2k, . . . , A(π−1) =C(π−1)k and A(π) = A.

We define the event E j :=
{

diamA(j) >
√

d/2 j}. Then

P

(
diamA >

√
d

2π

)
= P(Eπ |Eπ−1) ·P(Eπ−1)+P

(
Eπ

∣∣Ec
π−1
)
·P
(
Ec

π−1
)

(law of total probability)

≤ P
(
Eπ

∣∣Ec
π−1
)
+P(Eπ−1) .

Repeating π times this reasoning, and since diamA(0) ≤
√

d almost surely, we de-
duce that

P
(

diamA(π) > ε

)
≤

π

∑
t=1

P

(
diamA(t) >

√
d

2t

∣∣∣∣∣diamA(t−1) ≤
√

d
2t−1

)
.

There are always more than k levels between A(tk) and A((t−1)k) by construction.
Hence, according to Proposition 10,

P(diamA > ε)≤ π ·
N f ,d(N f ,d +1)

2
· γk

f ,d .

Since k = O(logn) and γ f ,d ∈ (0,1), we can conclude the proof. 2

41

Chapter 3 Comparison-based random forests

3.2.4 Auxiliary results
In this subsection we present two necessary Lemmas for the proof of Proposition 10.
The key in proving Proposition 10 is to show that, for a given cell, the probability
of a “good cut” is greater than the probability of a “bad cut.” We thus proceed to
prove a lower bound for the probability of a good cut and an upper bound for the
probability of a bad cut. Since the first cell is the unit cube and all subsequent cells
are obtained by intersection with half-spaces, note that any cell of the comparison
tree is a full-dimensional convex polytope almost surely. Thus we state and prove
our results for such objects.

Good cuts

The following Lemma is an analogous of Lemma 10 in Dasgupta and Freund (2008).
It provides a lower bound on the probability of cleanly separating faraway balls.

Lemma 11 (Probability of good cut is lower bounded) Let Assumption 3.2.1 be
true, and A⊂ Rd be a full-dimensional convex polytope such that diamA≤D <+∞.
Let cr > 10 be a constant. Pick any two balls B := B (z,r) and B′ := B (z′,r) such
that

(i) both B and B′ intersect A;

(ii) their radius is at most D/cr;

(iii) the distance between their centers satisfies ‖z− z′‖ ≥ D/2− r.

Then, if X1 and X2 are chosen independently from A according to the distribution
of X,

P
(
A∩B⊂ A∩HX1 and A∩B′ ⊂ A∩HX2

)
≥ 2

fmin

fmax

(
cr−10

4cr

)2d

.

As a direct consequence, if cr > 50,

P
(
A∩B⊂ A∩HX1 and A∩B′ ⊂ A∩HX2

)
≥ fmin

fmax

2
25d .

While the statement of Lemma 11 is close to that of of Lemma 10 in Dasgupta and
Freund (2008), a major difference lies in the quality of the bound we obtain. Indeed,
our bound depends exponentially in the dimension, therefore becoming arbitrarily
loose for large values of d.
Proof. The proof follows the following scheme. First, we conveniently restrict
ourselves to the case where the centers of B and B′ both belong to A by geometric

42

3.2 Theoretical analysis

arguments. We then use Lemma 15 to lower bound the probability of a good split by
the probability that x and y belong to certain balls γ and γ ′. We conclude the proof
by finding an upper bound for the volume of A and a lower bound for the volume
of γ ∩A. We refer to Figure 3.3 throughout this proof.

Preliminary computations. Set a := πA(z), a′ := πA(z′), β := B (a,r), and β ′ :=
B (a′,r). Then, according to Lemma 13, A∩B⊂ β and A∩B′ ⊂ β ′. For any x,y ∈ A
such that β ⊂ Hx and β ′ ⊂ Hy. Since A∩B⊂ β , we have A∩B⊂ Hx. Furthermore,
A∩B ⊂ A, thus A∩B ⊂ A∩Hx. A similar reasoning shows that A∩B′ ⊂ A∩Hy.
Hence

P
(
A∩B⊂ A∩HX1 and A∩B′ ⊂ A∩HX2

)
≥ P

(
β ⊂ HX1 and β

′ ⊂ HX2

)
.

Set δ := ‖a−a′‖. Since a ∈ B and a′ ∈ B′, by the triangle inequality, ‖a−a′‖ ≥
‖z− z′‖−2r. By hypothesis, ‖z− z′‖ ≥ D/2− r and r ≤ D/cr, thus∥∥a−a′

∥∥≥ D
2
−3r ≥ cr−6

2cr
·D .

Define ρ := ‖a−a′‖/2− r. We have ρ ≥ cr−10
4cr
·D. In particular, as cr > 10, ρ > 0.

Then, according to Lemma 15,

P
(
β ⊂ HX1 and β

′ ⊂ HX2

)
≥ P

(
X1 ∈ γ and X2 ∈ γ

′ or X2 ∈ γ and X1 ∈ γ
′) ,

where γ := B (a,ρ) and γ ′ := B (a′,ρ). Since X1 and X2 are independent and identi-
cally distributed and γ ∩ γ ′ = /0,

P
(
X1 ∈ γ and X2 ∈ γ

′ or X2 ∈ γ and X1 ∈ γ
′)≥ 2P(X1 ∈ γ)P

(
X2 ∈ γ

′) .
Since we sample X1 and X2 according to the law of X restricted to A and since
Assumption 3.2.1 holds,

P(X1 ∈ γ)≥ fmin

fmax

Vold (γ ∩A)
Vold (A)

.

In the next paragraphs, we find an upper bound for Vold (A) and a lower bound for
Vold (γ ∩A). We will see that the latter also holds for γ ′.

Upper bound for Vold (A). We refer to Figure 3.3 for the geometric constructions
that follow. Let us first define Ω := ∆(a,a′)∩A the intersection between the convex
polytope A and the hyperplane ∆(a,a′). We also need to define Π the set of all

43

Chapter 3 Comparison-based random forests

•a •
a′

Ω
Γ′ ΓΣ

γ ∩Π

γ = B (a,ρ) γ ′ = B (a′,ρ)

ΠΠ′

Figure 3.3: Construction of Ω, Π and Σ. The central thick line represents Ω, the
intersection between A and the hyperplane ∆(a,a′). The half-cone Π is the union
for all ω ∈ Ω of the half-lines [a,ω). Finally, the spherical cap Σ is defined as the
intersection between S (a,ρ) and Π. In dotted lines we draw the counter-parts of
these objects for a′. The gray area represents γ ∩Π.

44

3.2 Theoretical analysis

half-lines going from a through Ω, namely,

Π :=
{

a+ t(w−a) | ω ∈Ω and t > 0
}
,

and the conic section Γ := B (a,diamA)∩Π. We claim that A∩Ha′ ⊂ Γ. Indeed,
let ξ ∈ A∩Ha′ . Since ξ ∈ Ha′ , [a,ξ] intersects ∆(a,a′) in a unique point, say ζ .
By convexity, the segment [a,ξ] is contained into A. In particular, ζ ∈ A. Thus
ζ ∈ ∆(a,a′)∩A = Ω, and

ξ = a+
‖ξ −a‖
‖ζ −a‖

(ζ −a) ∈ A .

Moreover, since ξ ∈ A,

‖a−ξ‖ ≤ sup
s∈A
‖a− s‖= diamA ,

and ξ ∈ B (a,diamA). A similar reasoning shows that A∩Ha ⊂ Γ′, where Γ′ is the
symmetric of Γ with respect to ∆(a,a′). Therefore,

Vold (A)≤ 2Vold (Γ) .

Define the hyperspherical cap Σ := S (a,ρ)∩Π. Then we can express the volume
of the conic section Γ as

Vold (Γ) =
Vold−1 (Σ)

Vold−1 (S (a,ρ))
Vold (B (a,diamA)) ,

which leads to

Vold (A)≤
2Vold−1 (Σ)

Vold−1 (S (a,ρ))
Vold (B (a,diamA)) . (3.2)

Lower bound for Vold (γ ∩A). By convexity, γ ∩Π⊂ γ ∩A. Moreover,

Vold (γ ∩Π) =
Vold−1 (Σ)

Vold−1 (S (a,ρ))
Vold (B (a,ρ)) .

Hence the following lower bound holds:

Vold (γ ∩A)≥ Vold−1 (Σ)

Vold−1 (S (a,ρ))
Vold (B (a,ρ)) . (3.3)

45

Chapter 3 Comparison-based random forests

Conclusion. Putting together Eq. (3.2) and (3.3), we obtain

P(X1 ∈ γ)≥ fmin

fmax

Vold (B (a,ρ))
Vold (B (a,diamA))

=
fmin

fmax

(
ρ

diamA

)d
.

Since ρ ≥ (cr−10)/(4Dcr) and diamA≤ D, we deduce that

P(X1 ∈ γ)≥ fmin

fmax

(
cr−10

4cr

)d

.

We conclude the proof by using the preliminary computations. 2

Bad cuts

We now focus on the probability of a “bad split,” that is, ∆(x,y) intersects both
B (z,r) and B (z′,r). The following result is an analogous of Lemma 11 in Dasgupta
and Freund (2008).

Lemma 12 (Probability of bad cut is upper bounded) Let Assumption 3.2.1 be
true, and A⊂ Rd be a full-dimensional convex polytope such that diamA≤D <+∞.
Let cr > 10 be a constant. Pick any two balls B := B (z,r) and B′ := B (z′,r) such
that

(i) both B and B′ intersect A;

(ii) their radius is at most D/cr;

(iii) the distance between their centers satisfies ‖z− z′‖ ≥ D/2− r.

Then, if X1 and X2 are chosen independently from A according to the distribution
of X,

P
(
A∩B∩∆(X1,X2) 6= /0 and A∩B′∩∆(X1,X2) 6= /0

)
≤ fmax

fmin

32dcr

(cr−2)(cr−6)
.

As a direct consequence, if cr > 15,

P
(
A∩B∩∆(X1,X2) 6= /0 and A∩B′∩∆(X1,X2) 6= /0

)
≤ fmax

fmin

64d
cr

.

Note that, as in Lemma 11, the bound we obtain worsens as the dimension increases.
Proof. We first restrict ourselves to the case where the centers of B and B′ both
belong to A with the same argument than in the proof of Lemma 11. Namely, define

46

3.2 Theoretical analysis

a := πA(z), a′ := πA(z′), β := B (a,r), β ′ := B (a′,r). According to Lemma 13,
A∩B⊂ β and A∩B′ ⊂ β ′. Thus

P
(
A∩B∩∆(X1,X2) 6= /0 and A∩B′∩∆(X1,X2) 6= /0

)
≤ P

(
β ∩∆(X1,X2) 6= /0 and β

′∩∆(X1,X2) 6= /0
)
.

For any x ∈ Rd , define Bx the set of points y such that ∆(x,y) is a bad cut, that is,

Bx :=
{

y ∈ Rd | β ∩∆(x,y) 6= /0 and β
′∩∆(x,y) 6= /0

}
.

Then, since we sample X1 according to the law of X restricted to A and since we
assume Assumption 3.2.1 to be true,

P
(
β ∩∆(X1,X2) 6= /0 and β

′∩∆(X1,X2) 6= /0
)
≤ fmax

fmin

E [Vold (BX1 ∩A)]
Vold (A)

,

where the expectation is relative to the random variable X1.

Upper bound for Vold (Bx∩A). Let x ∈ A and y ∈ Bx. By Lemma 14,{
(‖x−a‖−2r)+ ≤ ‖y−a‖ ≤ ‖x−a‖+2r
(‖x−a′‖−2r)+ ≤ ‖y−a′‖ ≤ ‖x−a′‖+2r .

Equivalently, Bx⊂A(a,r1,r2)∩Bx⊂A(a′,r′1,r
′
2), where we defined r1 := ‖x−a‖−

2r, r2 := ‖x−a‖+ 2r, r′1 := ‖x−a′‖ − 2r and r′2 := ‖x−a′‖+ 2r. Recall that
A(a,r1,r2) = B (a,r2) whenever r1 ≤ 0. See Figure 3.4 for an illustration.

For any ξ ∈ (a,a′), denote by Dξ the hyperplane orthogonal to (a,a′) and passing
through ξ . According to Lemma 17, the width of A(a,r1,r2)∩A(a′,r′1,r

′
2) along

the (a,a′) axis is upper bounded by 16D/(cr−2), hence there exists ξ− and ξ+ ∈
(a,a′) such that ‖ξ+−ξ−‖ ≤ 16D/(cr− 2) and Bx∩A is contained between Dξ−

and Dξ+ . For each ξ ∈ (a,a′), set Ωξ := Dξ ∩A. There exists ξ ? ∈ [ξ−,ξ+] such
that Vold−1

(
Ωξ ?

)
is maximal, and

Vold (Bx∩A) =
∫

ξ∈[ξ−,ξ+]
Vold−1

(
Ωξ

)
dξ

≤
∥∥ξ

+−ξ
−∥∥ ·Vold−1

(
Ωξ ?

)
Vold (Bx∩A)≤ 16

cr−2
·DVold−1

(
Ωξ ?

)
. (3.4)

47

Chapter 3 Comparison-based random forests

•a •
a′

•
x

Bx

C1

C2

C′1

C′2

β β ′

Figure 3.4: Sketch of Bx in R2. For a fixed x, Bx is the set of all y such that ∆(x,y)
cuts both β and β ′ (border marked in red). We show that Bx is the intersection of two
geometric loci (solid lines border). In particular, Bx is included in the intersection
of two annuli (border in dotted lines).

48

3.2 Theoretical analysis

Lower bound for Vold (A). Suppose that ξ ? belongs to the segment [a,a′]. By
convexity, A contains the (disjoint) union of the two hyperpyramids of apexes a
and a′ with (d−1)-dimensional basis Ωξ ? , which we denote by Q and Q′. Therefore,

Vold (A)≥ Vold (Q)+Vold
(
Q′
)

=
‖a−ξ ?‖Vold−1

(
Ωξ ?

)
d

+
‖a′−ξ ?‖Vold−1

(
Ωξ ?

)
d

=
δ Vold−1

(
Ωξ ?

)
d

.

Since δ ≥ (cr−6)D/(2cr),

Vold (A)≥
cr−6
2dcr

·DVold−1
(
Ωξ ?

)
. (3.5)

A similar reasoning holds whenever ξ ? does not belong to [a,a′].

Conclusion. Putting together Eq. (3.4) and (3.5), we obtain

P
(
β ∩∆(X1,X2) 6= /0 and β

′∩∆(X1,X2) 6= /0
)
≤ fmax

fmin

32dcr

(cr−2)(cr−6)
,

which concludes the proof. 2

Note that in the plane defined by a, a′ and x, we can actually describe precisely
the shape of the curves defining the border of Bx—see Figure 3.4. These curves
correspond to the images of x by all the symmetries with respect to a line tangent
to β or β ′. Individually, they are called the orthotomics of a circle, or second
caustic (Lawrence, 2013, p. 60).

3.2.5 Technical results

This first lemma is used in the proofs of Lemma 11 and 12 to deal with cases where
the center of B or B′ does not belong to A. See Figure 3.5 for an illustration of such
a situation.

Lemma 13 (Construction of β) Let A ⊂ Rd be a convex compact set and B (z,r)
be a ball that intersects A. Define β := B (πA(z),r). Then A∩B⊂ β .

49

Chapter 3 Comparison-based random forests

z• a•

B (z,r) β = B (a,r)
A

A∩B (z,r)

Figure 3.5: Construction of β . The point a is the image of z by the orthogonal
projection on A. The ball β has the same radius than B (z,r) and contains A∩B (z,r),
which is marked in gray.

Proof. Set a := πA(z). Let x be an element of A∩B. Then,

‖x−a‖2 = 〈x−a,x−a〉
= 〈x− z+ z−a,x− z+ z−a〉
= ‖x− z‖2 +2〈x− z,z−a〉+‖z−a‖2

‖x−a‖2 = ‖x− z‖2 +2〈x−a,z−a〉−‖z−a‖2 .

Since πA is a the orthogonal projection, given that x ∈ A, we have 〈x−a,z−a〉 ≤ 0.
Moreover, ‖z−a‖ ≥ 0, thus ‖x−a‖2 ≤ ‖x− z‖2. But x also belongs to B, hence
‖x− z‖ ≤ r. As a consequence, ‖x−a‖ ≤ r, that is, x ∈ β . 2

The next lemma shows that, for a given x, the set of every possible y such that ∆(x,y)
intersects B (a,r) is contained into an annulus centered in a. We refer to Figure 3.6
for an illustration.

Lemma 14 (Localization of Bx) Let a,x ∈ Rd and r > 0. Then, for any y ∈ Rd such
that ∆(x,y)∩B (a,r) is non-empty,

(‖x−a‖−2r)+ ≤ ‖y−a‖ ≤ ‖x−a‖+2r .

50

3.2 Theoretical analysis

Proof. Let y ∈ Rd such that ∆(x,y)∩B (a,r) is non-empty. In particular, there exists
b ∈ Rd such that ‖y−b‖= ‖x−b‖ and ‖a−b‖ ≤ r. By the triangle inequality,

|‖y−a‖−‖y−b‖| ≤ ‖a−b‖ ≤ r .

Hence {
‖y−a‖ ≤ r+‖y−b‖= r+‖x−b‖
‖y−a‖ ≥ −r+‖y−b‖=−r+‖x−b‖ .

Since |‖x−b‖−‖a−b‖| ≤ ‖x−a‖ (again by the triangle inequality), we have{
‖y−a‖ ≤ ‖x−a‖+2r
‖y−a‖ ≥ ‖x−a‖−2r .

2

We now present a result stating that, for any two points a,a′ ∈ Rd , there exists a
simple set of possible x and y such that balls with center a and a′ are well-separated
by ∆(x,y). It is the key element in the proof of Lemma 11.

Lemma 15 (Sufficient conditions for a good cut) Let a,a′ ∈ Rd , and let 0 < r <
‖a−a′‖/2. Set ρ := ‖a−a′‖/2− r. Then, for any x ∈ B (a,ρ) and y ∈ B (a′,ρ),
we have B (a,r)⊂ Hx and B (a′,r)⊂ Hy.

Remark 16 Note that Lemma 15 holds in any metric space (X ,δ) since the proof
only uses the triangle inequality.

Proof. We refer to Figure 3.7 for this proof. We have to prove that for any s∈B (a,r),
δ (s,x)≤ δ (s,y) (the case t ∈ B (a′,r) is identical up to notations). We first write

δ (s,x)≤ δ (s,a)+δ (a,x)≤ r+ρ = δ
(
a,a′

)
/2 ,

where we used (i) the triangle inequality, (ii) s ∈ B (a,r) and x ∈ B (a,ρ), (iii) the
definition of ρ . Then,

δ
(
a,a′

)
≤ δ (a,y)+δ

(
a′,y
)
≤ δ (a,y)+ρ ,

where we used (i) triangle inequality, (ii) y ∈ B (a′,ρ). Thus δ (a,y)≥ δ (a,a′)−ρ .
Moreover,

δ (a,y)≤ δ (a,s)+δ (s,y)≤ r+δ (s,y) ,

where we used (i) triangle inequality, (ii) s ∈ B (a,r). Combining the two, we get

δ (s,y)≥ δ
(
a,a′

)
− (r+ρ) = δ

(
a,a′

)
/2 .

51

Chapter 3 Comparison-based random forests

•a

B (a,r)

•x

•y

∆(x,y)

•b

Figure 3.6: Bx is included in the intersection of two annuli. As in the proof of
Lemma 14, a and x are fixed, and y is such that ∆(x,y) intersects B (a,r). Then y
belongs to an annulus of radii (‖x−a‖−2r)+ and ‖x−a‖+2r.

Therefore δ (s,y)≥ δ (s,x) and we can conclude. 2

Finally, we state and prove a technical lemma used in the proof of Lemma 12 to
control the size of the intersection of two annuli.

Lemma 17 (Bx has small width) Assume the set of hypotheses of Lemma 12 and
define r1, r2, r′1 and r′2 as in the proof of Lemma 12. Then there exist two hyper-
planes Lx and L′x, orthogonal to (a,a′), such that the intersection of A(a,r1,r2) and
A(a′,r′1,r

′
2) is included between Lx and L′x. Additionally,

δ
(
Lx,L′x

)
≤ 16D

cr−2
. (3.6)

Even though the statement of Lemma 17 may seem intuitive at first sight (since the
intersection is contained in two annuli of width O(D/cr), one would expect its width
to be of the same order), we do not know of a simpler proof. We believe that it is
necessary to describe precisely the intersection of the two annuli depending on the
radii in order to make sure that the situation where the two annuli are overlapping
is excluded. Indeed, in this case the width of the intersection is not bounded by a
quantity depending on D/cr but rather on D, since it has the same order than the
diameter of the annuli.
Proof. By rotational symmetry around (a,a′), it suffices to prove the result in a
2-plane containing a and a′. Hence from now on we work in the plane P defined by
the triple (x,a,a′). We first describe the shape of the intersection between the two

52

3.2 Theoretical analysis

a• a′
•

∆(a,a′)

B (a,r)

B (a′,r)

B (a,ρ) B (a′,ρ)

•x

•
y

∆(x,y)

Figure 3.7: Guaranteed good cut. Set a,a′ ∈ Rd and ρ = ‖a−a′‖/2− r. Then, for
any x ∈ B (a,ρ) and y ∈ B (a′,ρ), the hyperplane ∆(x,y) separates cleanly B (a,r)
from B (a′,r).

53

Chapter 3 Comparison-based random forests

annuli depending on the position of x relatively to a and a′. Then, in each case, we
bound the width of the intersection in the direction of the (a,a′) axis.

Shape of A(a,r1,r2)∩A(a′,r′1,r
′
2). Let us equip P with an orthogonal frame

such that a = (0,0), a′ = (δ ,0) and x = (x1,x2). The width of the intersection is
invariant by line symmetry with respect to ∆(a,a′) and (a,a′), thus we can restrict our
analysis to the quadrant defined by x1 ≤ δ/2 and x2 > 0. In particular, ‖x−a‖ ≤
‖x−a′‖. Define Ci := C (a,ri) and C′i := C (a′,r′i) for i ∈ {1,2}. The shape of
A(a,r1,r2)∩A(a′,r′1,r

′
2) depends on the mutual intersections between C1,C2,C′1

and C′2. Recall that C (a,ρ)∩C (a′,ρ) 6= /0 if, and only if,∣∣ρ−ρ
′∣∣≤ δ ≤ ρ +ρ

′ .

We now proceed to describe these intersection depending on the position of x rela-
tively to a and a′.

• Since r > 0, r1 < r2 and r′1 < r′2 and thus C1∩C2 =C′1∩C′2 = /0;

• By the triangle inequality, |r2− r′2| = |‖x−a‖−‖x−a′‖| ≤ δ and r2 + r′2 =
‖x−a‖+‖x−a′‖+4r ≥ δ , hence C2∩C′2 is always non-empty;

• By the triangle inequality, |r1− r′1|= |‖x−a‖−‖x−a′‖| ≤ δ . Hence C1∩C′1
is non-empty if, and only if, r1 + r′1 ≥ δ , that is, ‖x−a‖+‖x−a′‖ ≥ δ −4r.
The border is an ellipse with focal points a,a′ and semi-major axis (δ +4r)/2.

• By the triangle inequality, r1 + r′2 = ‖x−a‖+‖x−a′‖ ≤ δ . Since ‖x−a‖ ≤
‖x−a′‖, |r1− r′2| = 4r−‖x−a‖+ ‖x−a′‖. Thus C1 ∩C′2 is non-empty if,
and only if, ‖x−a′‖−‖x−a‖ ≤ δ −4r. The border is a hyperbola with focal
points a,a′ and semi-major axis (δ −4r)/2.

• Using the triangle inequality, r′1 + r2 = ‖x−a′‖+ ‖x−a‖ ≥ δ . Moreover,
|r′1− r2| = |‖x−a′‖−‖x−a‖−4r|. Again, the triangle inequality yields
‖x−a′‖− ‖x−a‖ ≤ δ ≤ δ + 4r. On the other side, ‖x−a‖− ‖x−a′‖ ≤
0≤ δ −4r because r < δ/4. Hence C2∩C′1 is always non-empty.

The different cases are summarized in Figure 3.8, and we provide a visual depiction
of the intersection for each case in Figure 3.9. Note that in Case III, ‖x−a‖ ≤ 2r is
a possibility, implying r1 < 0. In this event, we see in Figure 3.9 that the extremal
points are the same.

54

3.2 Theoretical analysis

•
a

•
(δ/2,0)

•
(2r,0)

•
(−2r,0)

•(δ

2 ,
√

2rδ +4r2)

I

II

III
IV

Figure 3.8: Shape of A(a,r1,r2)∩A(a′,r′1,r
′
2) (I). Depending on the relative posi-

tion of x with respect to a and a′, the shape of A(a,r1,r2)∩A(a′,r′1,r
′
2) changes.

Case I: C1 ∩C′1 and C1 ∩C′2 are both non-empty. Case II: C1 ∩C′1 is non-empty,
whereas C1∩C′2 is. Case III: C1∩C′1 and C1∩C′2 are both empty. Case IV: C1∩C′2 is
non-empty whereas C1∩C′1 is. The shape of Bx as well asA(a,r1,r2)∩A(a′,r′1,r

′
2)

in this last case is depicted in Figure 3.4.

55

Chapter 3 Comparison-based random forests

Case I Case II

Case III Case IV

• • • •

• • • •

Figure 3.9: Shape of A(a,r1,r2)∩A(a′,r′1,r
′
2) (II). For each case described in

Figure 3.8, we sketch A(a,r1,r2)∩A(a′,r′1,r
′
2). Note that the points realizing the

minimum and maximum abscissa in each case are different, leading to different
bounds on the width of A(a,r1,r2)∩A(a′,r′1,r

′
2).

56

3.2 Theoretical analysis

Width of A(a,r1,r2)∩A(a′,r′1,r
′
2). For each case, we show that Eq. (3.6) holds.

Recall that we assumed r/δ ≤ 2/(cr−2) and diamA≤ D. We will use the fact that

‖x−a‖2−‖x−a′‖2

2δ
=

x2
1 + x2

2− x2
1 +2δx1 +δ 2 + x2

2
2δ

= x1−
δ

2
.

• Case I: The left-most points of A(a,r1,r2)∩A(a′,r′1,r
′
2) belong to C1∩C′2.

We solve {
ξ 2

1 +ξ 2
2 = r2

1 = (‖x−a‖−2r)2

(ξ1−δ)2 +ξ 2
2 = r′22 = (‖x−a′‖+2r)2 .

and find
ξ1 = x1−

2r
δ

(
‖x−a‖+

∥∥x−a′
∥∥) .

The right-most points of A(a,r1,r2)∩A(a′,r′1,r
′
2) belong to C2 ∩C′1. We

solve {
ζ 2

1 +ζ 2
2 = r2

2 = (‖x−a‖+2r)2

(ζ1−δ)2 +ζ 2
2 = r′21 = (‖x−a′‖−2r)2 .

and find
ζ1 = x1 +

2r
δ

(
‖x−a‖+

∥∥x−a′
∥∥) .

Thus the width of A(a,r1,r2)∩A(a′,r′1,r
′
2) along (a,a′) is given by

|ζ1−ξ1|=
4r
δ

(
‖x−a‖+

∥∥x−a′
∥∥)≤ 16D

cr−2
.

• Case II: The left-most point of A(a,r1,r2)∩A(a′,r′1,r
′
2) belongs to C′2 ∩

(a,a′), and we have

ξ1 = δ − r′2 = δ −
∥∥x−a′

∥∥−2r .

The right-most points belongs to C2∩C′1, and we have, as in Case I,

ζ1 = x1 +
2r (‖x−a‖+‖x−a′‖)

δ
.

Thus the width of A(a,r1,r2)∩A(a′,r′1,r
′
2) along (a,a′) is given by

|ζ1−ξ1|=
2r
δ

(
‖x−a‖+

∥∥x−a′
∥∥)+∥∥x−a′

∥∥+ x1−δ −2r .

The equation of the asymptotes of the hyperbola ‖x−a′‖−‖x−a‖= δ −4r

57

Chapter 3 Comparison-based random forests

are given by

x2 =±
2
√

2rδ −4r2

δ −4r
(x1−δ/2) ,

and considering the lines parallel to these asymptotes passing through (δ ,0)
we deduce that, in case II,

x2
2

(x1−δ)2 ≤
4(2rδ −4r2)

(δ −4r)2 ≤ 8rδ

(δ −4r)2 ≤ 8
r
δ

1(
1−4 r

δ

)2 ≤
16(cr−10)2

(cr−2)3 .

Thus

∥∥x−a′
∥∥=√(x1−δ)2 + x2

2 ≤ |x1−δ |

√
1+

16(cr−10)2

(cr−2)3 ,

and we have

∥∥x−a′
∥∥+ x1−δ ≤ |x1−δ |

(√
1+

16(cr−10)2

(cr−2)3 −1

)
≤ 8D(cr−10)2

(cr−2)3 ,

where we used
√

1+ x2−1≤ x/2 in the last inequality. Finally,

|ζ1−ξ1| ≤
8D(cr−10)2

(cr−2)3 +
8D

cr−2
.

• Case III: The left-most point of A(a,r1,r2)∩A(a′,r′1,r
′
2) belongs to C2∩C′2.

We solve {
ξ 2

1 +ξ 2
2 = r2

2 = (‖x−a‖+2r)2

(ξ1−δ)2 +ξ 2
2 = r′22 = (‖x−a′‖+2r)2 ,

which yields

ξ1 = x1 +
2r
δ

(
‖x−a‖−

∥∥x−a′
∥∥) .

The right-most points belongs to C2∩C′1, and we have, as in Case I,

ζ1 = x1 +
2r (‖x−a‖+‖x−a′‖)

δ
.

Thus the width of A(a,r1,r2)∩A(a′,r′1,r
′
2) along (a,a′) is given by

|ζ1−ξ1|=
4r
δ

∥∥x−a′
∥∥≤ 8D

cr−2
.

58

3.3 Experiments

• Case IV: as in Case I, the width of A(a,r1,r2)∩A(a′,r′1,r
′
2) is given by

|ξ1−ζ1|=
4r (‖x−a‖+‖x−a′‖)

δ
.

Since in this case ‖x−a‖+‖x−a′‖ ≤ δ −4r, we have

|ξ1−ζ1| ≤ 4r ≤ 4D
cr

.

Overall, since cr > 10, we have shown that the width of A(a,r1,r2)∩A(a′,r′1,r
′
2)

along (a,a′) is upper bounded by 16D/(cr−2). 2

3.3 Experiments

In this section, we first examine comparison-based random forests in the Euclidean
setting. Secondly, we apply the CompRF method to non-Euclidean datasets with a
general metric available. Finally, we run experiments in the setting where we are
only given triplet comparisons.

3.3.1 Euclidean setting

Here we examine the performance of CompRF on classification and regression
tasks in the Euclidean setting, and compare it against CART random forests as well
as the KNN classifier as a baseline. As distance function for KNN and CompRF
we use the standard Euclidean distance. Since the CompRF only has access to
distance comparisons, the amount of information it uses is considerably lower than
the information available to the CART forest. Hence, the goal of this experiment is
not to show that comparison-based random forests can perform better, but rather to
find out whether the performance is still acceptable.
To emphasize the role of supervised pivot selection, we report the performance of the
unsupervised CompRF algorithm in classification tasks as well. The tree structure
in the unsupervised CompRF chooses the pivot points uniformly at random without
considering the labels.
For the sake of simplicity, we do not perform subsampling when building the Com-
pRF trees. We report some experiments concerning the role of subsampling in a sep-
arate subsection. All other parameters of CompRF are adjusted by cross-validation.

59

Chapter 3 Comparison-based random forests

10
0

10
1

10
2

M: Number of trees

0

5

10

15

20

A
v
e

rg
a

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r

Gisette

10
0

10
1

10
2

M: Number of trees

0

5

10

15

20

A
v
e

rg
a

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r

MNIST

10
0

10
1

10
2

M: Number of trees

0

5

10

15

20

A
v
e

rg
a

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r

UCIHAR

10
0

10
1

10
2

M: Number of trees

0

5

10

15

20
A

v
e

rg
a

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r

Isolet

n
0
=1

n
0
=4

n
0
=16

n
0
=64

Figure 3.10: Average classification error of the CompRF algorithm on classification
datasets. X-Axis shows the number of trees used in the forest. The title denotes the
dataset and each curve corresponds to a fixed value of n0.

Classification

We use four classification datasets. MNIST (Lecun and Cortes, 1998) and Gisette are
handwritten digit datasets. Isolet and UCIHAR are speech recognition and human
activity recognition datasets respectively (Lichman, 2013). Details of the datasets
are shown in the first three rows of Table 3.1.
Parameters of CompRF: We examine the behaviour of the CompRF with respect
to the choice of the leaf size n0 and the number of trees M. We perform 10-fold
cross-validation over n0 ∈ {1,4,16,64} and M ∈ {1,4,16,64,256}. In Figure 3.10
we report the resulting cross validation error. Similar to the recommendation for
CART forests (Biau and Scornet, 2016), we achieve the best performance when the
leaf size is small, that is (n0 = 1). Moreover, there is no significant improvement for
M greater than 100.

60

3.3 Experiments

Table 3.1: Average and standard deviation of classification error for the CompRF vs.
other methods. The first three rows describe datasets.

MNIST Gisette UCIHAR Isolet

Dataset Size 70000 7000 10229 6238
Variables 728 5000 561 617
Classes 10 2 5 26

KNN 2.91 3.50 12.15 8.27
CART RF 2.90 (± 0.05) 3.04 (± 0.26) 7.47 (± 0.32) 5.48 (± 0.27)

CompRF (U) 4.21 (± 0.05) 3.28 (± 0.19) 8.70 (± 0.32) 6.65 (± 0.14)
CompRF 2.50 (± 0.05) 2.48 (± 0.13) 6.54 (± 0.11) 4.43 (± 0.26)

Comparison between CompRF, CART and KNN: Table 3.1 shows the average
and standard deviation of classification error for 10 independent runs of CompRF,
CART forest and KNN. We also report the performance of the unsupervised Com-
pRF algorithm denoted by CompRF(U) in Table 3.1. Training and test sets are given
in the respective datasets. The parameters n0 and M of CompRF and CART, and k
of KNN are chosen by 10-fold cross validation on the training set. Note that KNN
is not randomized, thus there is no standard deviation to report.
The results show that, surprisingly, CompRF can slightly outperform the CART
forests for classification tasks even though it uses considerably less information. The
reason might be that the CompRF splits are better adapted to the geometry of the
data than the CART splits. While the CART criterion for selecting the exact splitting
point can be very informative for regression (see below), for classification it seems
that a simple data dependent splitting criterion as in the supervised CompRF can be
as efficient. Conversely, we see that unsupervised splitting as in the unsupervised
CompRF is clearly worse than supervised splitting.

Regression

Next we consider regression tasks on four datasets. Online news popularity (ONP)
is a dataset of articles with the popularity of the article as target (Fernandes et al.,
2015). Boston is a dataset of properties with the estimated value as target variable.
ForestFire is a dataset meant to predict the burned area of forest fires, in the northeast
region of Portugal (Cortez and Morais, 2007). WhiteWine (Wine) is a subset of wine
quality dataset (Cortez et al., 2009). Details of the datasets are shown in the first
two rows of Table 3.2.
Since the regression datasets have no separate training and test set, we assign 90%
of the items to the training and the remaining 10% to the test set. In order to remove

61

Chapter 3 Comparison-based random forests

10
0

10
1

10
2

M: Number of trees

6

6.5

7

7.5

8

8.5

A
v
e

ra
g

e
 R

M
S

E

Boston

10
0

10
1

10
2

M: Number of trees

0.7

0.75

0.8

0.85

0.9

0.95

A
v
e
ra

g
e
 R

M
S

E

Wine

10
0

10
1

10
2

M: Number of trees

30

32

34

36

38

40

42

44

A
v
e

ra
g

e
 R

M
S

E

ForestFire

10
0

10
1

10
2

M: Number of trees

1

1.1

1.2

1.3

1.4

1.5

A
v
e

ra
g

e
 R

M
S

E

10
4 ONP

n
0
=1

n
0
=4

n
0
=16

n
0
=64

n
0
=256

Figure 3.11: Average RMSE of the CompRF algorithm on regression datasets. X-
Axis shows the number of trees used in the forest. The title denotes dataset and each
curve corresponds to a fixed value of n0.

the effect of the fixed partitioning, we repeat the experiments 10 times with random
training/test set assignments. Note that we use CompRF with unsupervised tree
construction for regression.

Parameters of CompRF: We report the behaviour of the CompRF with respect to
the parameters n0 and M. We perform 10-fold cross-validation with the same range
of parameters as in the previous subsection. Figure 3.11 shows the average root mean
squared error (RMSE) over the 10 folds. The cross-validation is performed for 10
random training/test set assignments. The figure corresponds to the first assignment
out of 10 (the behaviour for the other training/test set assignments is similar). The
CompRF algorithm shows the best performance with n0 = 1 for the Boston and
ForestFire datasets, however larger values of n0 lead to better performance for other
datasets. We believe that the main reason for this variance is the unsupervised tree

62

3.3 Experiments

Table 3.2: Average and standard deviation of the RMSE for the CompRF vs. CART
regression forest.

ONP Boston ForestFire WhiteWine

Dataset Size 39644 506 517 4898
Variables 58 13 12 11

CART RF 1.04 (± 0.50) ·104 3.02 (± 0.95) 45.32 (± 4.89) 59.00 (± 2.94)·10−2

CompRF 1.05 (± 0.50) ·104 6.16 (± 1.00) 45.37 (± 4.69) 72.46 (± 3.16) ·10−2

construction in the CompRF algorithm for regression.

Comparison between CompRF and CART: Table 3.2 shows the average and stan-
dard deviation of the RMSE for the CompRF and CART forests over the 10 runs with
random training/test set assignment. For each combination of training and test sets
we tuned parameters independently by cross validation. CompRF is constructed with
unsupervised splitting, while the CART forests are built using a supervised criterion.
We can see that on the Boston and Wine datasets, the performance of the CART
forest is substantially better than the CompRF. In this case, ignoring the Euclidean
representation of the data and just relying on the comparison-based trees leads to
a significant decrease in performance. However the performance of our method on
the other two datasets is quite the same as CART forests. We can conclude that
in some cases the CART criterion can be essential for regression. However, note
that if we are just given a comparison-based setting—without actual vector space
representation—it is hardly possible to propose an efficient supervised criterion for
splitting.

CompRF and subsampling

Here, we investigate the role of subsampling in the performance of the CompRF. To
construct each tree of the CompRF, we randomly pick a subsample of r|S| points
among the set of training points (S) without replacement and make the tree only
based on the subsample. We use the following range for the subsampling ratio:
r ∈ {0.1,0.2,0.4,1}. The left panel of Figure 3.12 shows the average classification
error of the CompRF for various values of r. The right plot in this figure shows
the normalized average MSE of the CompRF for regression datasets. Note that the
range of MSE depends on the dataset. To make a unified figure, for each dataset, we
divided all average values of the MSE by the maximum value of the MSE on that
particular dataset.

63

Chapter 3 Comparison-based random forests

Gisette MNIST UCIHAR Isolet

Dataset

0

1

2

3

4

5

6

7

8

9

A
v
e

rg
a

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r
r=0.1

r=0.2

r=0.4

r=1

Boston ForestFire Wine ONP
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
o

rm
a

liz
e

d
 a

v
e

rg
a

e
 M

S
E

r=0.1

r=0.2

r=0.4

r=1

Figure 3.12: (Left) Average classification error of the CompRF algorithm on four
classification datasets and various subsampling ratios (r). (Right) Normalized av-
erage MSE of the CompRF algorithm on four regression datasets and various sub-
sampling ratios (r). The X-axis denotes the datasets. Note that for each dataset we
divided all MSE values by the maximum value of the dataset. In this way bars can
be plotted together.

Our results hardly show any significant positive effect of subsampling. On the
contrary, in classification tasks we see a significant decrease in error when the
whole dataset is used. Only in case of ForestFire dataset do we see some slight
improvement.

3.3.2 Metric, non-Euclidean setting
In this set of experiments we aim to demonstrate the performance of the CompRF in
general metric spaces. We choose graph-structured data for this experiment. Each
data-point is a graph, and as a distance between graphs we use graph-based kernel
functions. In particular, the Weisfeiler-Lehman graph kernels are a family of graph
kernels that have promising results on various graph datasets (Shervashidze et al.,
2011). We compute the WL-subtree and WL-edge kernels on four of the datasets
reported in Shervashidze et al. (2011): MUTAG, ENZYMES, NCI1 and NCI109. In
order to evaluate triplet comparisons based on the graph kernels, we first convert the
kernel matrix to a distance matrix in the standard way (expressing the Gram matrix
in terms of distances).
We compare supervised and unsupervised CompRF with the Kernel SVM and KNN
classifier in Table 3.3. Note that in this setting, CART forests are not applicable
as they would require an explicit vector space representation. Parameters of the

64

3.3 Experiments

Table 3.3: Average and standard deviation of the classification error for the CompRF
in comparison with kernelSVM on graph datasets with two graph kernels: WL-
subtree and WL-edge.

MUTAG ENZYMES NCI1 NCI109

Train Size 188 600 4110 4127
Classes 2 6 2 2

WL-subtree kernel

Kernel SVM 17.77 (± 7.31) 47.16 (± 5.72) 15.96 (± 1.56) 15.55 (± 1.40)
KNN 14.00 (± 8.78) 48.17 (± 4.48) 18.13 (± 2.27) 18.74 (± 1.97)

CompRF unsupervised 14.44 (± 7.94) 39.33 (± 6.49) 17.96 (± 1.85) 19.10 (± 2.22)
CompRF supervised 13.89 (± 7.97) 39.83 (± 5.00) 17.35 (± 1.98) 18.71 (± 2.61)

WL-edge kernel

Kernel SVM 15.55 (± 6.30) 53.67 (± 6.52) 15.13 (± 1.44) 15.38 (± 1.69)
KNN 12.78 (± 7.80) 51.00 (± 4.86) 18.56 (± 1.36) 18.30 (± 1.82)

CompRF unsupervised 11.67 (± 7.15) 38.50 (± 4.19) 17.91 (± 1.42) 19.56 (± 1.61)
CompRF supervised 11.11 (± 8.28) 38.17 (± 5.35) 18.05 (± 1.63) 18.40 (± 2.27)

Kernel SVM and k of the KNN classifier are adjusted with 10-fold cross-validation
on training sets.
We set the parameters of the CompRF to n0 = 1 and M = 200, as it shows acceptable
performance in the Euclidean setting. We assign 90% of the items as training and
the remaining 10% as the test set. The experiment is repeated 10 times with random
training/test assignments. The average and standard deviation of classification error
is reported in Table 3.3. The CompRF algorithm outperforms the kernel SVM on
the MUTAG and ENZYMES datasets. However, it has slightly lower performance
on the other two datasets. However, note that the kernel SVM requires a lot of
background knowledge (one has to construct a kernel in the first place, which can be
difficult), whereas our CompRF algorithm neither uses the explicit distance values
nor requires them to satisfy the axioms of a kernel function.

3.3.3 Comparison-based setting

Now we assume that the distance metric is unknown and inaccessible directly, but
we can actively ask for triplet comparisons. In this setting, the major competitors
to comparison-based random forests are indirect methods that first use ordinal em-
bedding to a Euclidean space, and then classify the data in the Euclidean space. As
practical active ordinal embedding methods do not really exist (with the exception of
(Jamieson and Nowak, 2011), but this algorithm is mostly of theoretical interest and

65

Chapter 3 Comparison-based random forests

unsuitable in practice), we settle for a batch setting in this case. After embedding,
we use CART forests and the KNN classifier in the Euclidean space.

Gisette n=1000

 M=1

 T=12100

 M=5

 T=60964

 M=10

 T=120494

 M=20

 T=239554

M: Number of trees, T: Number of triplets

0

10

20

30

40

50

A
v
e
rg

a
e
 c

la
s
s
if
ic

a
ti
o
n
 e

rr
o
r

MNIST n=1000

 M=1

 T=11792

 M=5

 T=57952

 M=10

 T=116076

 M=20

 T=227595

M: Number of trees, T: Number of triplets

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
e

rg
a

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r
UCIHAR n=1000

 M=1

 T=10380

 M=5

 T=51896

 M=10

 T=103317

 M=20

 T=207462

M: Number of trees

0

5

10

15

20

25

A
v
e
rg

a
e
 c

la
s
s
if
ic

a
ti
o
n
 e

rr
o
r

Isolet n=480

 M=1

 T=4338

 M=5

 T=22028

 M=10

 T=44366

 M=20

 T=87629

M: Number of trees, T: Number of triplets

0

1

2

3

4

5

6

7

8
A

v
e
rg

a
e
 c

la
s
s
if
ic

a
ti
o
n
 e

rr
o
r

CompRF

EmbKNN-Same

EmbCART-Same

EmbKNN-Rand

EmbCART-Rand

Figure 3.13: Average classification error of the CompRF in comparison with embed-
ding approach on classification datasets with less than 1000 items. EmbKNN-Same
(resp. EmbCART-Same) denotes the TSTE+KNN using the same triplets as Com-
pRF, while EmbKNN-Rand (resp. EmbCART-Rand) stands for using TSTE with the
same number of random triplets. X-Axis show the number of trees (M) used for the
CompRF and the corresponding number of triplets (T) for the embedding. Each set
of bars corresponds to a fixed M. Note that by increasing M, the number of triplets
used by CompRF will be increased, as it appears in the X-Axis.

Comparing various ordinal embedding algorithms, such as GNMDS (Agarwal et al.,
2007), LOE (Terada and Luxburg, 2014) and TSTE (van der Maaten and Weinberger,
2012) shows that the TSTE in combination with a classifier consistently outperforms
the others. Therefore, we here only report the comparison with the TSTE embed-
ding algorithm. The dimension of embedding is a crucial parameter for embedding
methods. Since the running time also grows with dimension it is infeasible to embed

66

3.3 Experiments

in very high dimensions. Moreover in a general comparison-based setting, we do not
know the proper Euclidean dimension that items should lie in. We choose the em-
bedding dimension by 2-fold cross-validation in the range of d ∈ {10,20,30,40,50}
(embedding in more than 50 dimensions is impossible in practice due to the running
time of the TSTE). We also adjust k of the KNN classifier in the cross-validation
process.
We design a comparison-based scenario based on Euclidean datasets. First, we let
CompRF choose the desired triplets to construct the forest and classify the test points.
The embedding methods are used in two different scenarios: once with exactly the
same triplets as in the CompRF algorithm, and once with a completely random set
of triplets of the same size as the one used by CompRF.
The size of our datasets by far exceeds the number of points that embedding algo-
rithms, particularly TSTE, can handle. To reduce the size of the datasets, we choose
the first two classes, then we subsample 1000 items. Isolet has already less than
1000 items in first two classes. We assign half of the dataset as training and the other
half as test set. Bar plots in Figure 3.13 show the classification error of the CompRF
in comparison with embedding methods with various numbers of trees in the forests
(M). We set n0 = 1 for the CompRF.
In each set of bars, which corresponds to a restricted comparison-based regime,
CompRF outperforms embedding methods or has the same performance. Another
significant advantage of CompRF in comparison with the embedding is the low
computation cost. A simple demonstration is provided in the following subsection.

Running time of CompRF vs. embedding method

Here we report the running time of CompRF in comparison with TSTE embedding
combined with KNN. Note that if we apply CART forest after embedding, it can
be even more time consuming. In addition, the running time of embedding does
not change significantly if we apply the same triplets as the CompRF or a random
subsample of triplets, therefore we report the running time based on the same triplets
as the CompRF.
We use the subsample of Gisette dataset with n = 1000 point, similar to the previous
subsection. We perform the embedding with d = 10 and d = 50 dimensions and
fixed k = 5. Table 3.4 shows the running time of the experiments. Since the running
time of embedding can change significantly based on the initial conditions, we
run embedding algorithms five times and we report the average running time. The
algorithms are implemented on a single core CPU and the running times are reported
in seconds.
The required running time for the embedding algorithm is orders of magnitude longer
than the CompRF. Moreover, the embedding algorithms need a cross-validation step
to adjust the number of dimensions and other parameters of the classifier.

67

Chapter 3 Comparison-based random forests

Table 3.4: Comparison of computation time between CompRF and TSTE+KNN.
The reported values are in seconds.

Number of trees (M) 1 5 10 20

CompRF 1 4 8 16
TSTE+KNN (d=10) 148 236 350 595
TSTE+KNN (d=50) 185 654 1214 2398

3.4 Conclusion and future work
We propose comparison-based random forests for classification and regression tasks.
This method only requires comparisons of distances as input. From a practical point
of view, it works surprisingly well in all kinds of circumstances (Euclidean spaces,
metric spaces, comparison-based setting) and is much simpler and more efficient
than some of its competitors such as ordinal embeddings.
We have proven consistency in a simplified setting. As future work, this analysis
should be extended to more realistic situations, namely tree construction depend-
ing on the sample; forests with inconsistent trees, but the forest is still consistent;
and finally the supervised splits. In addition, it would be interesting to propose a
comparison-based supervised tree construction for the regression tasks.

68

Chapter 4

Estimation of perceptual scales using
ordinal embedding

4.1 Psychophysical scaling

The quantitative study of human behavior dates back to 1860, when the experimental
physicist Gustav Theodor Fechner published Die Elemente der Psychophysik (Fech-
ner, 1860). Fechner not only founded the scientific discipline of psychophysics, but
his work is widely regarded as the beginning of the quantitative, scientific study
of psychology. Since the seminal work of Fechner, the “measurement of sensation
magnitude” has been at the very heart of psychophysics (Gescheider, 1988). This
problem is called “psychophysical scaling” later in the literature, which is formally
defined as the problem of quantifying the magnitude of sensation induced by a
physical stimulus (Marks and Gescheider, 2002; Krantz et al., 2007).

Here, we focus on a general psychophysical scaling problem. More precisely, there
exists a physical quantity as the stimulus, which we can objectively measure. The
perception (or sensation) of the stimulus is usually hard to measure and quantify.
The (difference) scaling problem refers to experiments and methods designed to
find the functional relation between the perceived magnitude and the stimulus. An
example of a psychophysical scaling function is outlined in Figure 4.1. For brevity,
throughout the rest of the thesis, we refer to this function as scaling function. In
Figure 4.1, the physical stimulus S and its perceived counterpart ψ are denoted
on the X and Y axes respectively. The scaling function, also called psychometric
function, relates the perceived value and the raw stimulus values as follows:

ψ = f (S)

69

Chapter 4 Estimation of perceptual scales using ordinal embedding

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

P
e
rc
e
p
ti
o
n
(
) ψ9

ψ4

S4 S9

Figure 4.1: An example of psychopysics scaling function. The X-axis shows the
physical stimulus values (S) with 10 discrete steps. Y-axis denotes the perceived
value (ψ)

The approach of Fechner, which led to the Fechner’s law, is based on experiments
with measurements of the just-noticeable-difference (JND). One JND is the smallest
amount of change in the stimulus level which is noticeable by the human observer.
Assuming that each JND corresponds to one unit of the perceptual scale, one can
reconstruct the scaling function (Fechner, 1860; Luce and Edwards, 1958). Even
though the Fechner’s law holds for many cases of sensory stimuli, there exists a great
deal of criticism to the method (Norris and Oliver, 1898; Stevens, 1957; Gescheider,
1988).

Thurstonian scaling is another common approach for the scaling problem (Thurstone,
1927). Thurstonian scaling is based on discrimination of stimuli pairs. In simple
words, the perceptual distance of two stimuli is determined by the probability that
a human observer can discriminate the stimuli pair. The other alternative to scaling
is the direct approach of magnitude estimation (Stevens, 1957). In this approach,
a human observer is asked to provide perceived intensity values corresponding to
physical stimuli in a way that ratios of given values represent the ratios of perception.
Shepard pointed out a possible flaw of the direct approach later in Shepard (1981).
According to Shepard, there exists an unknown and undesirable response transfor-
mation function, which in the direct magnitude estimation method is neglected. The
intervening response transformation function causes a bias on direct responses. For
a detailed overview of the psychophysical scaling methods see Gescheider (1988).
In the following, we discuss the method of triads for psychophysical scaling.

70

4.1 Psychophysical scaling

Degree = 0 Degree = 10 Degree = 20 Degree = 30 Degree = 40 Degree = 50 Degree = 60 Degree = 70

Si

Sj Sk 0 20 40 60 80

Slant degree (S)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
iv

e
d
 a

n
g
le

 (
)

Embedding result

Figure 4.2: Top: Eight stimuli used in the slant-from-texture experiment (Aguilar
et al., 2017). Bottom-left: An example of a triplet question used for the slant-from-
texture experiment. The triplet question is: “Which of the bottom images –S j or Sk–
is more similar to the top image Si?” Bottom-right: The scaling function gathered
by the comparison-based approach.

4.1.1 Scaling and the method of triads
An alternative approach to data acquisition in vision science—and cognitive science
in general—is based on triplet comparisons (Torgerson, 1958). This approach is
traditionally referred to as method of triads, in the psychophysics literature. There
exists a fixed discretization of the physical stimulus, say S1, . . . ,Sn. The method
of triads, proposed in Torgerson (1958), asks participants triplet questions in the
form of Equation (1.1). Rather than attempting accurate quantitative measurements
of a particular phenomenon, triplet questions aim for qualitative observations. The
obvious potential of such an approach is that the statements are not dependent on the
response transformation function of the observers, thus the issue of scaling answers
across many observers becomes easier.
The approach is to collect the answers to a set of triplet questions from the observers
and then perform a method to estimate the scaling function from triplet compar-
isons. Suppose that ψ̂1, . . . ψ̂n denote the perceived values of stimuli S1, . . . ,Sn (see
Figure 4.1). The problem boils down to estimating the magnitudes of perception
ψ̂1, . . . ψ̂n, which are consistent with the answers to the queried triplet questions.
We give an example to clarify the procedure of scaling using the triplet questions.
The psychophysics experiment, called “slant-from-texture” experiment, is designed
to find the functional relation of perceived angle with the true angle of the tilted flat

71

Chapter 4 Estimation of perceptual scales using ordinal embedding

plane with a dotted texture. (see Aguilar et al. (2017) for details). Figure 4.2 (Top)
shows the various stimuli used in the experiment. The bottom-left image depicts an
example of a triplet question designed for this task. The participant is asked “which
of the two bottom images — S j or Sk — is more similar to the top image Si?”; see
Figure 4.2 (Bottom-left). Having the answers to a set of triplet questions, one can
reconstruct the scaling function. The function, shown in Figure 4.2 (Bottom-right),
describes the relation of perceived angle ψ and the slant degree S (actual stimulus).
The approach of triplet comparisons—the method of triads—is not new to psy-
chophysics; there has been a very long tradition in psychology to explore methods
to estimate perceptual (difference) scales from clearly visible supra-threshold dif-
ferences in stimulus appearance (Torgerson, 1958; Coombs et al., 1970; Marks and
Gescheider, 2002). The earlier approaches are based on inferring a similarity matrix
using the triplet comparisons. Recently a more generic approach based on the triplet
comparisons, called the “maximum likelihood difference scaling (MLDS)”, has be-
come popular in vision science for estimation of perceptual (difference) scales (Mal-
oney and Yang, 2003; Knoblauch and Maloney, 2010). There have been reports
that both naive, as well as seasoned observers, find the method of triads with supra-
threshold stimuli intuitive and fast, requiring less training (Aguilar et al., 2017).
However, the MLDS method comes with major obstacles which severely limit its
use in psychophysics: First, it makes a strong model assumption. It assumes that
the scaling function is monotonic with respect to the stimulus. Secondly, the MLDS
method is capable of finding only one-dimensional scaling functions. Thus, it cannot
deal with the cases that the perception is intrinsically multi-dimensional (e.g. color).
Both issues are of high relevance in a general psychophysics scaling problem.
On the other hand, the evaluation of comparison-based data (data gathered from
triplet comparisons) has been an active field of research in computer sciences and
machine learning (Schultz and Joachims, 2003; Agarwal et al., 2007; Tamuz et al.,
2011; Ailon, 2011; Jamieson and Nowak, 2011; van der Maaten and Weinberger,
2012; Kleindessner and von Luxburg, 2014; Terada and Luxburg, 2014; Ukkonen
et al., 2015; Arias-Castro et al., 2017; Jain et al., 2016; Haghiri et al., 2017). The
core question of the studies is to find a Euclidean representation of the items based
on the answers to triplet questions. This problem is systematically studied in the
machine learning literature under the name of ordinal embedding. There are a
number of fast and accurate algorithms developed to solve the ordinal embedding
problem (Agarwal et al., 2007; van der Maaten and Weinberger, 2012; Terada and
Luxburg, 2014). As we will show in this chapter, these algorithms can be extremely
useful in the field of psychophysics as well.
In this chapter, we demonstrate and discuss how the new machine learning methods
can be applied to the field of psychophysics, and how and when they can be of ad-
vantage. The rest of this chapter is organized as follows: In section 4.2, we review

72

4.2 Embedding methods

two traditional embedding methods of psychophysics which are closely related to
the approach of triplet comparisons. In addition, we formally introduce the ordinal
embedding problem in machine learning and discuss its advantages in comparison
to the traditional embedding methods of psychophysics. Section 4.3 is dedicated
to extensive simulation scenarios which compare the performance of ordinal em-
bedding against the applicable competitors in the psychophysics. In section 4.4,
we apply the comparison-based approach and ordinal embedding methods on a real
psychophysics experiment. In the next section, we provide instructions on how to
use the comparison-based approach and the ordinal embedding algorithms in psy-
chophysics experiments. In the last section, we conclude the chapter by discussing
the advantages of the ordinal embedding for scaling problem and mentioning the
open problems.

4.2 Embedding methods

In this section, we discuss three embedding methods which are either proposed to
estimate a scaling function with triplet comparisons, or related to the method of triads
in psychophysics. First, we review the traditional non-metric multi-dimensional
scaling (NMDS) (Shepard, 1962; Kruskal, 1964b). Even though this method is
not based on triplet comparisons, it uses the rank order of dissimilarities which
makes it relevant to the method of triads. Secondly, we explain the more recent
method of maximum likelihood difference scaling (MLDS) (Maloney and Yang,
2003). This method works with triplet comparisons, however, it can deal with a
very restricted set of scaling functions. Finally, we introduce the problem of ordinal
embedding in machine-learning. We show that the ordinal embedding can tackle the
scaling problem of psychophysics in a broad sense. We also discuss one of the most
successful algorithms to solve the ordinal embedding problem.

4.2.1 Non-metric multi-dimensional scaling (NMDS)

The non-metric multi-dimensional scaling (NMDS) by Shepard and Kruskal is one of
the well-established methods to analyze dissimilarity data (Shepard, 1962; Kruskal,
1964a,b). It is assumed that a matrix of dissimilarities (not necessarily a metric
distance) between pairs of items is given. In the psychophysics studies, this matrix
usually comes from human feedback. Shepard posed the problem of estimating a
d-dimensional Euclidean representation of items, say y1,y2, . . .yn ∈ Rd , such that the
pairwise distances of estimates are consistent to a monotonic transform of the given
dissimilarities. The monotonic transform takes only the rank order of dissimilari-
ties into consideration. As in many psychophysics experiments, the magnitude of

73

Chapter 4 Estimation of perceptual scales using ordinal embedding

dissimilarity (or similarity) cannot be quantitatively measured, considering the rank
order of distances is more plausible.
If δi j denotes the dissimilarity of items i and j, given as the input, and di j = ‖yi−y j‖
is the Euclidean distance of embedded items yi and y j in Rd , then the goodness of a
Euclidean representation is measured by a quantity called stress (Kruskal, 1964b):

stress =
∑i j (di j− f (δi j))

2

∑i j di j
2 .

A smaller value of stress means a better fit of the Euclidean representation. The
nominator, which is the squared loss between the input dissimilarities and the Eu-
clidean distances, makes the distances as close as possible to the dissimilarities. The
denominator is added to remove the degenerate solution (di j and f (δi j) can become
infinitesimal together). Finding the Euclidean representation of items which min-
imizes the stress function is very troublesome, as the function f (.) can be chosen
from the set of all monotonic transform functions.
The approach proposed in Kruskal (1964a) finds an estimation of the optimal so-
lution through a two-step optimization procedure. In the first step, a configuration
of embedding points y1,y2, . . .yn is fixed; this means that distance values di j are
also fixed. Then he suggests a greedy algorithm (called isotonic regression) to find
the closest monotonic function f (.) that minimizes the stress function. In the sec-
ond step of optimization, the values of f (δi j) are fixed and the embedding points
y1,y2, . . .yn are adjusted by the gradient descent algorithm to minimize the stress.
The two steps are repeated consecutively until the stress value shows no further
improvement or it becomes smaller than a certain threshold.
The NMDS algorithm has been used extensively in psychology (Reed, 1972; Smith
and Ellsworth, 1985; Barsalou, 2014), neuroscience (Op de Beeck et al., 2001;
Kayaert et al., 2005; Kaneshiro et al., 2015) and broader fields (Liberti et al., 2014;
Machado et al., 2015). The non-parametric flavor of the method makes it a general
purpose algorithm that is easy to apply. In addition, it can find representations
in multi-dimensional spaces. However, there are two major drawbacks. First, the
proposed optimization algorithm does not consider all monotonic transforms of the
dissimilarity values. In other words, separating the two steps can lead to a local
minimum solution of the proposed optimization. Moreover, fixing the function f (.)
leaves a non-convex optimization algorithm. This means that again in one step of
the algorithm the solution is a local minimum. The second issue with the NMDS
is that it requires the full rank order of pairwise distances as input. If we assume
that the order of distances comes from triplet questions, then we require in order
of O

(
n2 logn

)
triplet questions to sort all pairwise distances. This property makes

it infeasible in practice, as the number of required triplets grows very fast with the
number of items (stimuli).

74

4.2 Embedding methods

4.2.2 Maximum likelihood difference scaling (MLDS)

Decades after the introduction of NMDS, the authors of Knoblauch et al. (1998)
introduced the maximum likelihood difference scaling (MLDS) method to solve a
specific instance of difference scaling problem (Krantz et al., 2007). Later the full
description and analysis of the MLDS method appeared in Maloney and Yang (2003).
The MLDS method asks quadruplet questions which involve four stimulus levels. If
we denote the perceptual scale of four stimuli Si,S j,Sk,Sl by ψi,ψ j,ψk,ψl , then a
quadruplet question asks whether the difference in perception |ψi−ψ j| is smaller or
larger than the difference of perception |ψk−ψl| (see the definition in (1.2)).
There are two main assumptions in the MLDS model. First, it assumes that the
perceived value is a scalar (one-dimensional) denoted by ψ . Secondly, the MLDS
method assumes the monotonicity of the perceptual scale with respect to the stimulus.
More precisely, it assumes that the order of two stimuli in the physical space implies
the same order in the perceptual scale: Si < S j⇒ ψi < ψ j.
In contrast to the NMDS, the MLDS method considers a parametric model on the
feedback of subjects. For a quadruplet of stimulus levels Si,S j,Sk,Sl , which be
briefly write it as (i, j;k, l)), a decision random variable is defined as follows:

D(i, j;k, l) = |ψi−ψ j|− |ψk−ψl|+ ε,

where ε ∼N (0,σ2) is a zero-mean Gaussian noise with standard deviation σ > 0.
The observer would respond the pair (i, j) has a larger difference if D(i, j;k, l)> 0.
In this case the response to the quadruplet q = (i, j;k, l) is set to Rq = 1, otherwise
the response is Rq = 0. The goal of MLDS is to estimate the perception scale (ψ)
which maximizes the likelihood of queried quadruplet questions. Assuming that
R1,R2, . . . ,Rm ∈ {0,1} denote independent responses to m quadruplet questions, the
likelihood of perception scales will be:

L(R1, . . . ,Rm|ψ2, . . . ,ψn−1,σ) =
m

∏
q=1

Φ(∆q)
Rq [1−Φ(∆q)]

1−Rq,

where Φ(.) denotes the cumulative distribution function of ε ∼N (0,σ2) and ∆q =
|ψi−ψ j|−|ψk−ψl| for the quadruplet q. Note that we set ψ1 = 0,ψn = 1 to remove
degenerate solutions. The likelihood is not convex with respect to the perceptual
scale values. Thus, the proposed numerical methods can lead to local maxima.
There MDLS method has a couple of advantages from the theoretical and practical
point of view. The maximum likelihood estimator is unbiased and has minimum
variance among the unbiased estimators. As a practical advantage, it is empirically
shown that a small subset of quadruplets is enough for the convergence of the algo-
rithm. Finally, it is shown empirically that the MLDS method produces low variance
output embeddings with respect to the input noise level (Maloney and Yang, 2003).

75

Chapter 4 Estimation of perceptual scales using ordinal embedding

In spite of the above-mentioned benefits, the MLDS method has a couple of draw-
backs. First of all, the algorithm is proposed solely for one-dimensional perception
scales. In some cases (see the examples of color and pitch perception in Figure 4.3)
the perception scale needs more than one dimension. Secondly, even in the one-
dimensional case, the monotonic function assumption is very restrictive and may
not hold for many psychophysics experiments. Finally, the unbiased and minimum
variance properties of the MLDS holds for the global maximum. However, there is
no guarantee that the optimization method reaches the global solution.

4.2.3 Ordinal embedding

Instead of the stimulus levels, in machine learning we deal with a set of abstract
items, say x1,x2, . . . ,xn ∈ X . We assume that no representation is available for
the items, instead, it is assumed that a metric dissimilarity function δ (., .) exists to
describe the dissimilarity of the items. The metric δ is not accessible, yet we have
access to an oracle which responds to a triplet question t = (i, j,k), based on the
metric. The triplet question will be “Is item xi more similar to item x j or item xk”?
We denote this triplet question by t = (i, j,k). The response to the triplet is denoted
by Rt and stored as the following:

Rt =

{
1, if the oracle responds x j is more similar to xi

−1, if the oracle responds xk is more similar to xi
(4.1)

Assume that the answers to a subset of triplet questions T ⊂ {(i, j,k)|xi,x j,xk ∈ X}
are collected from the oracle. Given an embedding dimension d and the answers to
the triplet questions T , the ordinal embedding task is to find points y1,y2, . . .yn ∈ Rd

in a d-dimensional Euclidean space which is consistent with the answers of the
queried triplet questions. The consistency of an embedding with a triplet t = (i, j,k)
can be determined as the following:

Rt ·sgn(‖yi−y j‖2−‖yi−yk‖2)=

{
1, The embedding is consistent with Rt

−1, The embedding is not consistent with Rt

The function sgn(.) returns the sign of a real value and ‖yi− y j‖ denotes the Eu-
clidean distance between the points yi and y j. The ordinal embedding attempts
to find an embedding which maximizes the number of consistent triplets. It can be
formally written as the following:

76

4.2 Embedding methods

max
y1,...,yn∈Rd

∑
t=(i, j,k)∈T

Rt · sgn(‖yi− y j‖2−‖yi− yk‖2), (4.2)

It is not always possible to find a d-dimensional embedding for an arbitrary dis-
similarity metric δ (., .). Moreover, in a practical setting the answers to the triplets
might be noisy. Therefore, the optimal solution is not necessarily consistent with the
full set of triplets T . An extension to this problem, is the case that the embedding
dimension (d) is also unknown.

Connection with the scaling problem

Ordinal embedding problem can actually solve the scaling problem of psychophysics
in a broad setting. The different stimuli play the same role as the abstract items
in the ordinal embedding problem. Indeed, the ordinal embedding does not care
about the physical parameters of the stimulus. In other words, all various stimuli
in the experiment are treated the same. The advantage is that all sorts of stimulus,
possibly with different modalities, can be used with this approach. In addition,
ordinal embedding methods can find a multi-dimensional embedding that describes
the perceptual space of humans.
The slant-from-texture problem (discussed earlier, see Figure 4.2) can be approached
by one-dimensional ordinal embedding. Since the perceived angle is a scalar, the
ordinal embedding with dimension d = 1 can find the proper solution to the scaling
problem. In this example we apply one of the ordinal embedding algorithms with
the answers to queried triplet questions. The output embedding is a one-dimensional
scalar. We plot the functional relation of stimulus and the perceptual scale in Fig-
ure 4.2 (Bottom-right). Note that the perception is only measured through the triplet
questions from the participant and no similarity or distance value is asked. More
details on this experiment is provided in Section 4.4.
Before moving to the particular methods for ordinal embedding we briefly dis-
cuss two examples in the psychophysics to demonstrate the benefits of the multi-
dimensional ordinal embedding. The color perception is usually described by more
than one perceptual dimension. Figure 4.3 (Left) shows the two-dimensional color
circle proposed in Shepard (1962); Ekman (1954). The color circle is reconstructed
with the NMDS method based on the original 14*14 similarity judgment matrix. The
wavelength is written at the right side of each colored dot. Surprisingly, the violet
dots are similar to the red dots for a human observer. This fact suggests a circular
perceptual curve which is only possible in two dimensions. The second example is
the the pitch perception, which is thought to be perceived on a two-dimensional he-
lix, even though the frequency is one-dimensional (Shepard, 1982; Houtsma, 1995).

77

Chapter 4 Estimation of perceptual scales using ordinal embedding

0 0.2 0.4 0.6 0.8 1

Dimension (1)

0

0.2

0.4

0.6

0.8

1

D
im

e
n

s
io

n
 (

2
)

434
445

465
472

490

504

537
555

584

600

610

628
651
674

Figure 4.3: Left : The two-dimensional circle of color perception gathered by sim-
ilarity measurements between 14 colors (Shepard, 1962). The wavelength of each
color is written on the right side of the colored dot. Right: The helix proposed by
Shepard for the pitch perception. The chroma of the pitch varies along the spiral
path of the curve and the two-dimensional space describes the perception (Shepard,
1982).

Figure 4.3 (Right) shows the proposed perception space by Shepard. In both cases,
pitch and color, the multi-dimensional ordinal embedding can enable the researcher
to find perceived values in a two-dimensional (or higher) Euclidean spaces that
properly describes the perception.

Stochastic triplet embedding

In recent years, there has been a surge of methods to address the ordinal embed-
ding problem in the machine learning community, for example generalized non-
metric multidimensional scaling (GNMDS) (Agarwal et al., 2007), crowd-median
kernel (Tamuz et al., 2011), stochastic triplet embedding (STE) (van der Maaten and
Weinberger, 2012) and local ordinal embedding(LOE) (Terada and Luxburg, 2014).
In general, the focus of the machine learning community is to build methods that
require only a small number of triplets to embed a large number of items, make as
few assumptions as possible, and to be robust towards noise in the data.
In the following we focus on the stochastic triplet embedding (STE) and its varia-
tion, t-distributed stochastic triplet embedding (t-STE), because in our experience
they work the best and also have a simple model that might also be plausible in a
psychophysics setting. The STE method introduces a probabilistic model to solve
the ordinal embedding problem defined in equation 4.2. Assume that y1, . . . ,yn ∈ Rd

78

4.2 Embedding methods

are the correct representations of our objects. The model assumes if a participant is
being asked if yi is closer to y j than to yk, then he gives a positive answer according
to the following probability:

pi jk =
exp(−‖yi− y j‖2)

exp(−‖yi− y j‖2)+ exp(−‖yi− yk‖2)
.

Intuitively, easy triplet questions (where ‖yi−y j‖ is relatively smaller than ‖yi−yk‖)
will be answered correctly in most of the cases, whereas difficult triplet questions
(where ‖yi− y j‖ is about as large as ‖yi− yk‖) can be mixed up. Given the answers
to a set of triplets, the STE algorithm attempts to maximize the likelihood of the
embedding (point configuration) with respect to the answered triplets. The answer
to a triplet t = (i, j,k) is given according to Equation 4.1. Assuming that triplets
are answered independently, one can form the likelihood of an embedding given the
answers to a set of triplets T , as the following:

L
(
y1, . . . ,yn|R1, . . . ,R|T |

)
= ∏

t=(i, j,k)∈T,Rt=1
pi jk · ∏

t=(i, j,k)∈T,Rt=−1
(1− pi jk).

The log-likelihood is maximized to find the solution of ordinal embedding. In the
above formulation, the probability of satisfying a triplet goes rapidly to zero even if
a triplet is slightly violated. As a result a severe and a slight violation of triplets are
penalized almost the same. To make the statistic more robust, the authors proposed
using a t-Student kernel with a heavy tail instead of the Gaussian kernel (van der
Maaten and Weinberger, 2012). Note that the kernel function measures similarities
of estimated outputs. The modified method is called t-distributed STE (t-STE).
The STE and t-STE algorithms can deal with a large number of items (stimulus
levels) and reasonable number of triplets. Moreover, the heavy-tail distribution of
t-STE makes it robust to noise, which is an important characteristic dealing with
psychophysics data. Unlike MLDS, the algorithm is capable of embedding in higher
dimensional Euclidean spaces. Finally, the functional relation is not restricted to
monotonic functions, which is the case for the MLDS method. In spite of all ad-
vantages, the proposed optimization is not convex, which makes it vulnerable to
inappropriate local optima.

4.2.4 Summary of embedding methods
Here we sum up the properties of ordinal embedding and compare it with the related
work in psychophysics, namely NMDS and MLDS. Table 4.1 summarizes the
methods based on various criteria. Ordinal embedding methods can produce high
quality results with a small partial set of triplet answers. This property makes them

79

Chapter 4 Estimation of perceptual scales using ordinal embedding

superior to the traditional NMDS that requires the full order of distances. On the
other hand, the embedding methods are not limited to the case of one-dimensional
monotonic functions (as it is assumed in MLDS).
As the number of items, and consequently the number of triplets, grows, ordinal
embedding algorithms become drastically slow. This is however, more a concern
for machine learning purposes that deal with thousands of items and hundreds of
thousands of triplets. The algorithms (particularly STE and t-STE) have a quite
acceptable running time for the psychophysics experiments.

4.3 Simulations
In this section, we aim to compare the empirical performance of ordinal embedding
methods against the traditional embedding approaches in psychophysics (NMDS and
MLDS) with diverse simulations. We consider one-dimensional and two-dimensional
perceptual spaces. First, we explain the setup of the simulations for both one-
dimensional and two-dimensional scenarios in detail. Then, we present the sim-
ulation results of the one-dimensional and two-dimensional perceptual spaces in
separate subsections.

4.3.1 Simulation setup
Stimulus and perceptual scale: We assume that the stimulus and perception are
measured on a scale from 0 to 1, and the true relation between the physical stimulus
and the perception is encoded by a function f : (0,1)→ (0,1)d . The parameter d
denotes the dimension of the perceptual spaces. We consider two cases: d = 1, and
d = 2. We consider n uniformly chosen steps for the stimulus levels, denoted by
S = {S1,S2, . . . ,Sn}. These steps are used to evaluate the perception of the observer
through triplet questions. The true perceptual scale for the stimulus Si is expressed
by yi = f (Si).
Generating subsets of triplet questions: The assumptions of the MLDS affects the
set of valid triplets for this method. The MLDS method assumes that the percep-

Method Data required Statistical model Multi-dimensional
NMDS Order of distances No Yes
MLDS Partial quadruplet set Yes No
t-STE Partial triplet set Yes Yes

Table 4.1: The comparison of ordinal embedding methods. Each row corresponds
to one method, while the properties are listed in the columns.

80

4.3 Simulations

tual function is monotonic. In this way, if we sample three stimuli Si,S j,Sk such
that i < j < k, then the only non-obvious triplet question for the MLDS method is
t = (j, i,k). This triplet asks whether the distance δ (i, j) is smaller or larger than the
distance δ (j,k). By the assumption of MLDS the distance δ (i,k) is the largest dis-
tance among the three distances. Thus the other two triplet questions with the three
items are already known, and cannot be fed into the algorithm. However, ordinal
embedding methods do not have the monotonic assumption, thus they can deal with
three triplet questions based on the three items. In this way, by any combination of
three stimuli we can make one non-obvious (valid) triplet question for the MLDS
method and three non-obvious (valid) questions for the ordinal embedding methods.
Having n stimuli steps, leads to

(n
3

)
valid triplets for the MLDS method and 3

(n
3

)
valid triplets for the ordinal embedding methods.
In order to have a fair comparison, we always feed the same number of triplets to all
embedding algorithms. A random subset of triplets are chosen without replacement
from the set of all valid triplets for each algorithm. The size of the random subset is
chosen in the range r ·

(n
3

)
|r ∈ {0.2,0.4,0.6,0.8,1}. The value r = 1 is equivalent to

the whole set of valid triplets for the MLDS method.
Underlying model to generate triplet answers: In order to generate answers to
the triplet questions, we construct a model that resembles a typical observer of the
psychophysics experiment. We assume that the simulated observer answers a triplet
question based on a noisy version of the perceptual scale, denoted by ỹi = f (Si)+ ε .
In this notation ε ∼N (0,Σ) is a zero-mean Gaussian noise in d-dimensional space.
The parameter Σ = σ ·Id is a diagonal matrix with entries equal to σ on the diagonal.
The simulated observer produces the answer to the queried triplet question t =(i, j,k)
as follows:

Rt =

{
1, if ‖ỹi− ỹ j‖< ‖ỹi− ỹk‖,
−1, Otherwise.

Here, ‖.‖ denotes the Euclidean distance, which in one-dimensional space equals to
the absolute difference. The above formulation means that the model samples three
noisy versions of the perceptual function to answer each triplet question.
We use the range σ ∈ {0.01,0.05,0.1,0.5} for various noise regimes in our simula-
tions. Note that the perceptual scale (y) plays the same role as the perceptual scale
(ψ) in the psychophysics notation. We use a different notation to emphasize the fact
that perceptual space can be multi-dimensional, and to make a clear separation to
scalar values of ψ .
The above-mentioned model produces answers to the triplet questions. The simu-
lated answers to the triplets cannot be used to run NMDS though. In order to run
NMDS one needs measured dissimilarities (exact values of δi j) between the pairs
of items. To have a comparison with the NMDS method we propose an alternative

81

Chapter 4 Estimation of perceptual scales using ordinal embedding

model to generate the dissimilarity values. We generate one set of noisy perceptual
values for n stimuli levels as before, ỹi = f (Si)+ ε . We then generate the dissimi-
larity values δi, j = ‖ỹi− ỹ j‖ to feed into the NMDS algorithm. The information is
equivalent to having the answers to all triplet questions. Therefore, we compare the
NMDS with the embedding methods when r = 1.
Embedding methods: Given the answers to the set of queried triplets, we then
apply various embedding algorithms to generate embeddings of the simulated data.
The MATLAB implementation by van der Maaten and Weinberger (2012) is used
for the STE and t-STE methods 1. We use the default optimization parameters of
both methods. The degree of freedom for the t-Student kernel is set to α = 1 for the
t-STE method. We use the R-package, available on CRAN repository, for the LOE
and MLDS algorithms2. Again, we run both algorithms with default optimization
parameters. We set the embedding dimension according to the dimension of true
perceptual function d = 1.
All embedding methods solve a non-convex optimization problem and thus are prone
to find inaccurate local optima. To reduce this effect, we run all the algorithms 10
times with random initiations. Among the 10 embedding outputs we choose the
one that has the least triplet error (defined below). Note that, this procedure is valid
since we only use the set of input triplets and the true perceptual function f (.) is not
involved.
Independent of the above repetition (which is done to remove the effect of local
minima), each embedding method is executed 10 times. This repetition is meant
to analyze the average behaviour and the variances of the algorithms. We finally
report the average performance of the methods over the 10 repetitions. The standard
deviations are reported in the supplementary material, Section A.1.
Evaluating the results: We consider two approaches to evaluate the performance
of various methods:

1. Mean-squaed-error (MSE): For one-dimensional perceptual spaces we can
compute the Mean-Squared-Error (MSE) between the estimated scales (ŷ)
and the true function values (y). Since the embedding result is unique only
up to scaling, rotation and translation, we need two steps of normalization
before computing the MSE. First, we re-scale the output of embedding to
be in the range of (0,1) as our functions are defined in this range. This will
solve translation and scaling issues. Secondly, If we get the output ŷ as a
result of embedding, this answer is not unique due to the rotation possibility.
More precisely, −ŷ can also be considered as an answer without violating any
answered triplet of the input set. Therefore, we choose between ŷ and −ŷ, the

1https://lvdmaaten.github.io/ste/Stochastic_Triplet_Embedding.html
2https://cran.r-project.org/web/packages/loe, https://cran.r-project.org/

package=MLDS

82

https://lvdmaaten.github.io/ste/Stochastic_Triplet_Embedding.html
https://cran.r-project.org/web/packages/loe
https://cran.r-project.org/package=MLDS
https://cran.r-project.org/package=MLDS

4.3 Simulations

output which shows a smaller MSE. In this way we consider the best rotation
of the output.

2. Triplet error: The MSE criterion can be only used for one-dimensional embed-
ding outputs. In more than one dimension there will be infinite ways to rotate
the embedding output without violating the input triplets. Each of the rota-
tions is a valid answer and should be considered to compute the MSE, which
in practice is impossible. As an alternative, we measure the performance of
the estimated embedding to evaluate new triplet questions. To this end, we
compute a quantity called the triplet error for each embedding output. Let as-
sume the embedding algorithm produces the set of embedding {ŷ1, ŷ2, . . . , ŷn}
given the set of input triplets T . The triplet error is defined based on the a new
set of triplets T ′ as the following:

triplet error =
1
|T ′| ∑

t=(i, j,k)∈T ′
1
[
Rt · sgn(‖ŷi− ŷ j‖2 > ‖ŷi− ŷk‖2) =−1

]
.

(4.3)

where 1(.) equals to one, if the inside expression is true and it is zero otherwise.
Note that Rt · sgn(‖ŷi− ŷ j‖2 > ‖ŷi− ŷk‖2) = −1 if the estimated embedding
is not consistent with new triplet t. Thus, we count the ratio of non-consistent
triplets in this way. In practice we are provided with only one set of answered
triplets, which we denote by T . We suggest two ways to make the new triplet
set T ′, which we call the validation set. First we can assign T ′ = T , meaning
that we feed the same set of input triplets to measure the triplet error. In
a second way, we perform k-fold cross-validation to avoid overfitting. We
partition the set of input triplets (T) into k non-intersecting folds. We perform
the embedding and the evaluation k times. In each iteration we pick one of the
folds as the validation set (T ′) and the rest of the folds as the training set (the
input to the embedding algorithm). The final triplet error is the average triplet
error over k validation sets. Throughout the rest of the thesis, we refer to the
latter approach as cross-validated triplet error, while the first approach is
called the triplet error.

4.3.2 One-dimensional perceptual space

We start with one-dimensional scenarios where both the stimulus and the perception
scale are one-dimensional, d = 1. We present the simulations results in two parts
concerning the monotonic and non-monotonic scales.

83

Chapter 4 Estimation of perceptual scales using ordinal embedding

Simulations with monotonic scales

Our first simulation involves a typical monotonic function as it occurs in many psy-
chophysics experiments. The true perceptual function f (.) (a Sigmoid function) is
shown in Figure 4.5 (a). Figure 4.4 (b) and (c) show the output embedding of the
MLDS and STE algorithms for 10 iterations respectively. The other ordinal em-
bedding methods, which have a similar performance, are reported in supplementary
material (Section A.1). The average (over 10 repetitions) MSE and triplet error of
various embedding algorithm are depicted in Figure 4.5 (d) and (e) respectively.
Considering the embedding output, the MSE and the triplet errors, the MLDS
method performs better than ordinal embedding algorithms. The main reason is
the assumptions that MLDS makes. As MLDS seeks a monotonic function, it has
much more chance to find a function shape close to the original function. The ordi-
nal embedding algorithms also show an acceptable performance. In particular, when
we provide more triplet answers (r = 1) the average MSE and triplet error of MLDS
and ordinal embedding algorithm tends to be the same.
A detailed result of this simulation including the four ordinal embedding outputs
and the performance of algorithm with other values of σ is appeared in supple-
mentary material; see Figure A.1. We also examine another monotonic function in
Figure A.2 of the supplementary material, however the results are consistent with
the first function.

Simulations with non-monotonic scales

We perform the same experiment on a non-monotonic function as well. A second-
degree polynomial function is chosen as the true perceptual function f (.); see Fig-
ure 4.5 (a). Figure 4.5 (b) and (c) show the output embedding of MLDS and STE
algorithms for 10 iterations respectively. The embedding output of LOE and t-STE
are quite similar to the STE (see supplementary material). The average (over 10
repetitions) MSE and triplet error of various embedding algorithm are depicted in
Figure 4.5 (d) and (e) respectively.
The function shapes depicted in Figure 4.5 (b) show the poor performance of the
MLDS method for the non-monotonic function. The embedding result is indeed
not surprising as MLDS tries to fit the most consistent monotonic function with
the given triplet answers. The average MSE and triplet error are also significantly
larger for MLDS. Note that in this regime, the ordinal embedding algorithms can
correctly estimate the true function shapes. Notably, the ordinal embedding methods
are capable of discovering broader scaling functions (non-monotonic scales) with
the same number of triplets as we used for the monotonic scales.
Similar to the monotonic functions we report the full details of the simulation in
supplementary material; see Figure A.4. We also perform the simulation on a Sinu-

84

4.3 Simulations

soid function. The results are demonstrated in the Figure A.3 of the supplementary
material.

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

p
tu

a
l
s
c
a

le
 (

Y
)

True perceptual function

(a)

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

MLDS, = 0.1, r = 0.4

(b)

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

STE, = 0.1, r = 0.4

(c)

10
-1

10
0

Fraction of triplets (r)

0

0.02

0.04

0.06

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.1

TSTE

STE

MLDS

LOE

NMDS

(d)

10
-1

10
0

Fraction of triplets (r)

0.2

0.25

0.3

0.35

0.4

T
ri
p
le

t
e
rr

o
r

 = 0.1

TSTE

STE

MLDS

LOE

(e)

Figure 4.4: The comparison of various ordinal embedding methods (LOE, STE,
t-STE) against the traditional embedding methods in psychophysics (MLDS and
NMDS) for a monotonic one-dimensional perceptual function (Sigmoid). (a) The
true perceptual function (y). (b) Ten embedding results (ŷ) of the MLDS method for
a fixed value of standard deviation (σ) and triplet fraction (r). (c) Ten embedding
results (ŷ) of the STE method for a fixed value of standard deviation (σ) and triplet
fraction (r). (d) The average MSE of embedding methods. (e) The average triplet
error of embedding methods.

85

Chapter 4 Estimation of perceptual scales using ordinal embedding

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1
P

e
rc

e
p

tu
a

l
s
c
a

le
 (

Y
)

True perceptual function

(a)

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

MLDS, = 0.1, r = 0.4

(b)

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

STE, = 0.1, r = 0.4

(c)

10
-1

10
0

Fraction of triplets (r)

0

0.05

0.1

0.15

0.2

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.1

TSTE

STE

MLDS

LOE

NMDS

(d)

10
-1

10
0

Fraction of triplets (r)

0.15

0.2

0.25

0.3

0.35

0.4

T
ri
p
le

t
e
rr

o
r

 = 0.1

TSTE

STE

MLDS

LOE

(e)

Figure 4.5: The comparison of various ordinal embedding methods (LOE, STE,
t-STE) against the traditional embedding methods in psychophysics (MLDS and
NMDS) for a non-monotonic one-dimensional perceptual function (second degree
polynomial). (a) The true perceptual function (y). (b) Ten embedding results (ŷ) of
the MLDS method for a fixed value of standard deviation (σ) and triplet fraction
(r). (c) Ten embedding results (ŷ) of the STE method for a fixed value of standard
deviation (σ) and triplet fraction (r). (d) The average MSE of embedding methods.
(e) The average triplet error of embedding methods.

4.3.3 Multi-dimensional perceptual space
So far, we considered simulations in which the perception could be represented in
a one-dimensional Euclidean space. However, in some cases such as the examples
of color and pitch perception in Figure 4.3, more than one dimension is required to
represent the perception. It seems quite possible that a physical stimulus is perceived
in higher dimensions than the psychical quantity. Here, we perform a simulation
with a function mapping from one-dimensional stimulus space into two-dimensional
perception space.
As a classic question in visual perception, we choose the color perception. We

86

4.3 Simulations

use the color similarity data presented in Ekman (1954) and the NMDS embedding
as a ground truth for our simulations. Figure 4.6 (a) shows the embedding of the
similarity data 3 in two dimensions by the NMDS method. The wavelength of each
color is also denoted beside the color. The X-Y axes of the plot correspond to the
two perceptual dimensions of the color. Note that the NMDS embedding is used
as a ground truth in our simulations. In other words, we fix the NMDS embedding,
depicted in Figure 4.6 (a), then we generate noisy answers to the triplet questions
based on that.

Note that the stimulus is color, represented by the wavelength. We use the wave-
length values in our illustration, however, one can rescale the wavelengths to the
range of S ∈ (0,1) to be consistent with the underlying model we defined earlier. In
this setting, the true perceptual function yi = f (Si), the noisy perceptual scale ỹi and
the estimated perceptual scale ŷi are all two-dimensional vectors.

We fix the embedding dimension to d = 2 for the following embedding methods:
NMDS, LOE, STE and t-STE. However, the MLDS is only capable of embedding in
one dimension. Thus, we perform MLDS with d = 1. Figure 4.6 (b) and (c) show the
two-dimensional embedding output of the NMDS and STE algorithms respectively.
The embedding outputs are shown for the parameter values σ = 0.1 and r = 1. The
average triplet error of various embedding methods is shown in Figure 4.6 (d) for
the parameter value σ = 0.1.

The comparison of Figure 4.6 (b) and (c) reveals the performance of NMDS and
ordinal embedding methods in presence of noise. The STE produces a circle of
colors fairly similar to the true perceptual function, while the colors are mixed up in
the embedding obtained with the NMDS. The triplet error also shows that ordinal
embedding algorithms outperform the NMDS method significantly. It is also worth
to mention that MLDS produces large triplet error as it finds an embedding in one
dimension. Detailed results of the experiment has appeared in the supplementary
material; see Figure A.5.

3Data is taken from https://faculty.sites.uci.edu/mdlee/similarity-data/

87

https://faculty.sites.uci.edu/mdlee/similarity-data/

Chapter 4 Estimation of perceptual scales using ordinal embedding

0 0.2 0.4 0.6 0.8 1

Perceptual dimension (1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

p
tu

a
l
d

im
e

n
s
io

n
 (

2
)

True perceptual function

434
445

465
472

490

504

537

555

584

600

610

628

651

674

(a)

10-1 100

Fraction of triplets (r)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

T
ri
p
le

t
e
rr

o
r

σ = 0.1

TSTE

STE

MLDS

LOE

NMDS

(b)

-1 -0.5 0 0.5 1

Perceptual dimension (1)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

P
e
rc

e
p
tu

a
l
d
im

e
n
s
io

n
 (

2
)

NMDS, σ = 0.1, r = 1

(c)

-1.5 -1 -0.5 0 0.5 1 1.5

Perceptual dimension (1)

-1.5

-1

-0.5

0

0.5

1

1.5

P
e
rc

e
p
tu

a
l
d
im

e
n
s
io

n
 (

2
)

STE, σ = 0.1, r = 1

(d)

Figure 4.6: The comparison of ordinal embedding methods (MLDS, STE and TSTE)
against the traditional NMDS method of psychophysics for the two-dimensional
color perception function. (a) The perceptual function in two dimensions. The
stimulus value, color wavelength, is written in front of each colored dot. The two-
dimensional vector space represents the perceptual space. (b) The average triplet
error of various ordinal embedding methods in comparison with the NMDS method.
(c) The embedding result of the NMDS method depicted in two dimensions for a
fixed value of standard deviation (σ) and triplet fraction (r). (d) The embedding
result of the STE method depicted in two dimensions for a fixed value of standard
deviation (σ) and triplet fraction (r).

88

4.4 Experiments

4.4 Experiments

In addition to the extensive simulations, we apply the comparison-based approach
and ordinal embedding methods on a real world experiment of the psychophysics. In
this experiment we examine the perception of angle for a tilted plane with a dotted
pattern on the surface. The experiment is called “slant-from-Texture”.

Slant-from-texture experiment

The experiment is intended to find the functional relation between the perceived
angle of the slant with a dotted surface and the actual physical degree of slant. The
dataset is originally used in Aguilar et al. (2017) (see the main paper for more
information on the experiment settings). Figure 4.2 (Top) shows the eight stimuli
used in this experiment. The degree of slant is varied from 0 to 70 degrees in steps
of 10 degrees, making 8 stimulus levels. The experiments is initially performed
with the assumption of a monotonic relation of slant degree and the perception. In
this way, for each combination of three stimuli Si < S j < Sk(three degrees of tilting)
only one triplet question is asked, whether δ (S j,Si)< δ (S j,Sk). There are

(8
3

)
= 56

possible triplet questions considering 8 levels of the stimulus. Each subject has
answered the whole set of possible triplets multiple times to remove the effect of
noisy response as much as possible. Subjects {1,6,8} have answered 420 triplet
question in total, while the other subjects answered 840.

Since the ground truth embedding is unknown, we can only rely on the triplet er-
ror for evaluation of the output embedding. To avoid overfitting we use 10-fold
cross-validation to compute the cross-validated triplet error (See the definition in
Simulation setup). Figure 4.7 (Top) shows the average and standard deviation of the
cross-validated triplet error for 8 subjects and four embedding methods, including:
MLDS, STE, t-STE and LOE. All ordinal embedding algorithm have very similar
performance to the MLDS. We can notice that t-STE slightly works better than other
algorithm. Thus, we suggest this method as the main candidate for psychophysics
experiments.

In addition to the triplet error, we also show the embedding outputs of MLDS and
t-STE for 8 subjects in Figure 4.7 (Bottom). Note that the plots are gathered with
the full set of triplets, not the only the training folds. The resulting functions are
very similar, unless that the t-STE embeddings tend to be non-monotonic in some
cases. Even-though the t-STE predicts non-monotonic outputs it still has the same
triplet error as the MLDS. This shows that for a couple of subjects a non-monotonic
function, which is totally ignored by the MLDS, can be a better fit.

89

Chapter 4 Estimation of perceptual scales using ordinal embedding

Triplet errors and STD of errors (with 0 extra trips for embeddings)

1 2 3 4 5 6 7 8

Subject

0

0.05

0.1

0.15

0.2

0.25

0.3

T
ri
p

le
t

e
rr

o
r

STE

TSTE

MLDS

LOE

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

MLDS, Sub=1

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

TSTE, Sub=1

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

MLDS, Sub=2

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

TSTE, Sub=2

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

MLDS, Sub=3

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

TSTE, Sub=3

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

MLDS, Sub=4

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

TSTE, Sub=4

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

MLDS, Sub=5

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

TSTE, Sub=5

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

MLDS, Sub=6

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

TSTE, Sub=6

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

MLDS, Sub=7

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

TSTE, Sub=7

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

MLDS, Sub=8

0 5

Stimulus

0

0.5

1

P
e
rc

e
p
tu

a
l
s
c
a
le

TSTE, Sub=8

Figure 4.7: (Top) Average and standard deviation of cross-validated triplet error for 8
subjects of the slant-from-texture experiment. Each group of bar shows the error for
one subject, as each bar in the group corresponds to one of the embedding methods
shown with different colors. (Bottom) The embedding outputs for 8 subjects with
two embedding methods: MLDS and t-STE. The MLDS method is depicted at the
top row while the t-STE is shown at the bottom.

90

4.5 How to apply ordinal embedding methods in psychophysics

4.5 How to apply ordinal embedding methods in
psychophysics

We introduced ordinal embedding and its capabilities in psychophysics. Here we
present advice as rules of thumb to make it more applicable for a researcher who is
unfamiliar with the methods. We describe how to perform a typical psychophysical
scaling task using triplet questions and ordinal embedding methods. We organize
this section by answering the questions arises in each step of applying the method.

4.5.1 How to make the subset of triplets?
Initially, we are given a set of n stimuli. At the fist step, one needs to consider the
whole set of possible triplet questions. As we mentioned earlier in simulations, every
combination of three items from the stimuli set gives rise to three triplet questions.
Therefore, the complete set of possible triplet questions contains 3

(n
3

)
triplets. The

set of all possible triplet might be huge, thus a small subset of triplets needs to be
subsampled. A natural question is ”which of the triplet questions among the whole
set of possible questions should be chosen? Which subset is more informative?”.
In chapter 5, we answer this question with various simulations and one experiment.
We tried various strategies to sample a subset of triplets form the full set of triplets.
However, in our experience a random selection strategy works best, meaning that
it leads to the best performance of embedding algorithms with the fewest triplet
questions possible.

4.5.2 How many triplets?
A small subset of triplets already contains enough information for the ordinal em-
bedding. Formally, if the required embedding dimension is d, it is proven that
O(dn log(n)) triplet answers are sufficient to reconstruct the true embedding of n
items (stimulus levels) (Jain et al., 2016). According to this result, we suggest to
start with a subset of size dn log(n) and perform the ordinal embedding. If the em-
bedding algorithm gives a desirable cross-validated triplet error, it means that we
already fed enough triplets to the algorithm. However, in case of a high error, we
increase the number of triplets until the embedding shows acceptable performance.

4.5.3 How to evaluate the quality of embedding?
We reported the MSE in our simulations; however, the true perceptual scale is not
available in a real experiment. The general approach that we suggest for the evalu-
ation of ordinal embedding is through the cross-validated triplet error (see Equa-

91

Chapter 4 Estimation of perceptual scales using ordinal embedding

tion 4.3). The chosen subset of triplets needs to be partitioned into training and
validation sets. The embedding algorithm finds a Euclidean embedding for the
perceptual scales, given the training set of triplet as input. Having the estimated
embedding, we calculate the cross-validated triplet error based on the validation set.
This procedure is preferable as it can avoid the overfitting of the embedding.

4.5.4 How to choose the embedding dimension?

In our ordinal embedding formulation, we always assumed that the embedding di-
mension is given as input. However, in practice this information might be not
provided. Note that the embedding dimension refers to the perceptual dimension
which is in general unknown to the psychophysicist. We suggest to run the embed-
ding algorithms in various dimensions and choose the smallest dimension which
shows an acceptable cross-validated triplet error. Indeed, increasing the dimension
can always produce less triplet error. However, we should only count significant
improvements of the error to choose the proper embedding dimension.

4.5.5 Which algorithm, which implementation?

Considering the results of the various algorithms on the many tasks, we believe
that t-STE is the general recommended method to be used in psychophysical scal-
ing experiments based on the triplet questions. The original implementation of
the authors is available at https://lvdmaaten.github.io/ste/Stochastic_
Triplet_Embedding.html implemented in MATLAB. In addition, there exists a
Python implementation at https://github.com/gcr/tste-theano.

4.6 Discussion

In this chapter, we introduced the ordinal embedding methods, proposed in the ma-
chine learning literature, as a powerful approach to perform psychophysical scaling
tasks. The recommended ordinal embedding methods require a small subset of
triplet comparison. This property makes them preferable to the traditional NMDS
which needs the total rank order of the pairwise distances. On the other hand, ordi-
nal embedding methods are capable of embedding in multi-dimensional Euclidean
spaces without restrictions on the scaling function. Hence, they have the advantage
over the MLDS method of psychophysics. In spite of above mentioned benefits,
there are a few open issues regarding the usage of ordinal embedding methods that
we mention in the following.

92

https://lvdmaaten.github.io/ste/Stochastic_Triplet_Embedding.html
https://lvdmaaten.github.io/ste/Stochastic_Triplet_Embedding.html
https://github.com/gcr/tste-theano

4.6 Discussion

4.6.1 Open issues
Confidence intervals: There has been considerable efforts to propose algorithms
for the ordinal embedding problem. However, there exists no particular study which
provides confidence intervals for the estimated embeddings. Although this issue is
not taken very seriously in machine learning, for the psychophysics studies it is of
high importance.
Interpreting the embedding: A challenging yet important step is to interpret the
embedding results. After gathering an embedding (possibly in a multi-dimensional
perceptual space), and a mapping of stimuli in this space, there are a couple of
natural questions arising. What does each perceptual dimension mean? How are the
perceptual dimensions related to the variations of the physical stimulus? These are
essential questions which can lead to better understanding of human perception.
Conjoint measurement: In addition to the general scaling problem, we believe
that the ordinal embedding is a very good candidate to tackle conjoint measurement
problems of psychophysics. In a conjoint measurement experiment the sensory
stimulus consists of more than one modality. The ordinal embedding treats all the
sensory stimuli as abstract items. Therefore, one can possibly apply the ordinal
embedding methods with less restrictions, such as the independence or additivity
assumptions, which are common assumptions for methods dealing with the conjoint
measurement problem.

93

Chapter 5

Psychophysical scaling using
crowd-sourcing platforms

5.1 Introduction
Since the earliest studies of psychophysics, precise stimulus control has been con-
sidered as the “first commandment of psychophysics” (Geisler, 1987, p. 30), and the
quantitative study of human behavior preferred accuracy over quick (and painless)
data acquisition: “The search for short-hand methods in technology is laudable
enough, but it is entirely out of place in science, where new trails are being blazed
and attempts are made to reduce and to eliminate all of the errors of observation.
Ease and convenience are poor experimental guides.” (Dallenbach, 1966, p. 656).
Nonetheless, crowdsourcing experiments are becoming increasingly popular, and
there have been positive discussions of using Amazon Mechanical Turk (MTurk)
in behavioral experiments (e.g. Chandler et al., 2014; Marder and Fritz, 2015),
and suggestions that crowdsourcing may, for some purposes, even be better than
traditional laboratory experiments in terms of broader demographics (c.f. Henrich
et al., 2010). However, the worry whether “behavioral facts” could ever be obtained
without (much) control over hardware, observer concentration, attention, viewing
distance, language competence, etc., or even distractions by peers or children and
multi-tasking while doing online experiments, are very serious indeed.
It seems quite clear that a naive approach of simply re-implementing traditional
psychophysics experiments on MTurk is likely to fail: the traditional tools such
as the just noticeable difference (JND) framework have been developed with the
intention to be used in well-controlled lab environments, as they crucially rely on
the fine control of the stimuli, and on highly-trained observers. From a purely
methodological point of view the reliance on JND-style experiments is reasonable:
JND-style data, particularly using the method of forced-choice, are the most reliable
and robust estimates of human behavior (Blackwell, 1952; Jäkel and Wichmann,
2006). It would not come as a surprise if such methods failed in crowdsourcing
setups.

95

Chapter 5 Psychophysical scaling using crowd-sourcing platforms

For this reason we believe it misleading to ask whether it is possible to perform
psychophysics in a crowdsourcing setup; one would have to ask how the basic
methods in psychophysics need to be changed in order to enable crowdsourcing as
a new tool for psychophysics.
In this chapter, we hypothesize that data acquisition by means of triplet comparisons,
combined with the ordinal embedding, is a suitable approach for performing psy-
chophysics tasks on crowdsourcing platforms. The immediate benefit comparison-
based setting is that the statements may be less dependent on the fine details of
the experimental setup, and that the issue of scaling answers across many diverse
participants becomes easier. However, there are two major points that we address in
this chapter:

1. Subsampling approach for triplets: In previous chapter, Section 4.5.1, we
mentioned that random triplet subsampling is empirically shown to be the best
choice. Here, we examine this point through simulations and one experiment.
We use different subsampling strategies and different ordinal embedding algo-
rithms and compare them in three different setups (simulations, lab, MTurk).

2. Lab versus crowdsourcing: We run the same psychophysics task in a well-
controlled lab environment (few participants, each participant measured on a
number of different days, and without distractions) and on MTurk (many par-
ticipants, none of them highly motivated, and each participant only measured
once) and compare the results.

As the main contribution of this chapter, we provide empirical results that suggest the
feasibility of crowdsourcing with the comparison-based approach for psychophysics
experiments as an easier alternative to well-controlled lab experiments. We open
doors towards using the comparison-based approach in crowdsourcing platforms.
In addition we perform the simulations, as well as lab and MTurk experiments,
using various triplet subsampling strategies. We then compare the performance of
subsampling strategies, in order to find out the best strategy. Before moving to the
simulation and experiments, we discuss different triplet subsampling strategies used
in this chapter.

5.2 Triplet subsampling strategies
In our simulations and experiments, we use three different subsampling strategies to
generate a subset of m triplets to be used as input to ordinal embedding algorithms:

1. Random: We sample m triplets uniformly at random from the set of all possi-
ble triplets.

96

5.3 Simulations

2. l-repeated-random: We sample m/l triplets uniformly at random from the
set of all possible triplets, and ask each triplet l times. Answers to triplets that
are systematically repeated l times are aggregated via majority vote, i.e., the
answer to a triplet that we provide as input to the embedding algorithm is the
same that is given in more than l

2 of the l repetitions of that same triplet (note
that we always choose l to be odd).

3. Landmark: We fix a small number of landmark objects `1, ..., `k, then ask all
triplet questions of the form (x, `i, ` j). The number of landmark points, k, is
chosen in a way that it leads to approximately m triplet questions.

5.3 Simulations

5.3.1 Simulation setup
Since the aim of this section is to investigate the subsampling, we choose a very
simple and generic dataset. The dataset consists of n items, sampled uniformly at
random in [0,1]3. The procedure to generate the triplet questions and the answers
to them is as follows: we first sample a set of m triplets over the items of the
dataset (with different subsampling strategies). The three subsampling strategies
are used in separate experiments. The answers to the set of subsampled triplets are
generated according to the actual Euclidean distances of points combined with a
simple noise model. The noise model perturbs the correct triplet answers (as given
by the Euclidean distance) as follows: for a fixed noise probability p < 0.5, we flip
the answers to triplet questions with probability p, for each triplet independently.
The noisy triplet answers are given as input to different ordinal embedding methods.
We tried various ordinal embedding methods, including: Generalized Non-Metric
Multidimensional Scaling (GNMDS, Agarwal et al., 2007), (t-)Stochastic Triplet
Embedding (STE/t-STE, van der Maaten and Weinberger, 2012) and Local Ordinal
Embedding (LOE, Terada and Luxburg, 2014). In case of our dataset, the LOE
method outperforms the other algorithms. Thus, we only report the comparison of
different strategies performed with the LOE method.
The efficiency of triplet subsampling strategies is measured by means of triplet
prediction accuracy. Triplet prediction accuracy has a similar definition to the cross-
validation triplet error, defined in Equation (4.3). In addition to the set of m triplet
answers, which is used for ordinal embedding, an independent validation set is also
constructed. The ratio of triplet answers in the validation set which are consistent
with the ordinal embedding output is defined as the triplet prediction accuracy. In
this way: triplet prediction accuracy ≈ 1− cross-validated error. The relation is
approximate as in the cross-validation procedure the folds are fixed. However, to
calculate the prediction accuracy, we randomly assign triplets to the validation set.

97

Chapter 5 Psychophysical scaling using crowd-sourcing platforms

noise level

pr
ed

ic
tio

n
ac

cu
ra

cy
Repeated triplets, 20 items

2000, 3 rep
6000
2000, 5 rep
10000

0.0 0.1 0.2 0.3

0.
90

0.
94

0.
98

noise level

pr
ed

ic
tio

n
ac

cu
ra

cy

Repeated triplets, 100 items

2000, 3 rep
6000
2000, 5 rep
10000

0.0 0.1 0.2 0.3

0.
70

0.
80

0.
90

Figure 5.1: The comparison of the l-repeated-random triplet subsampling strategy
against the random strategy. The number of total items in the dataset is 20 and
100, for the left and right plot respectively. The x-axis corresponds to varying noise
parameters p, while the y-axis denotes the prediction accuracy. Each curve in the
plot corresponds to a subsampling strategy and a fixed value of l (repetition of each
triplet)

5.3.2 Result

We present the comparison of the three subsampling strategies in two parts. First
we compare the performance of random subsampling against the l-repeated-random
strategy. Secondly, we report the results for the comparison of the random strategy
against the landmark strategy.

Random vs. l-repeated-random

We vary the number of items n, the number l of repetitions per triplet and the noise
level p. We run the experiments with two values n ∈ {20,100}. For the l-repeated-
random strategy, we use 2000 triplets, each of them get answered l ∈ {3,5} times.
In this way the total number of triplet question is m = 2000 · l. In order to have
a fair comparison, we use the same number of total triplets for the random triplet
subsampling strategy.
In Figure 5.1, we show the results of triplet prediction with the l-repeated-random
sampling and the random subsampling, for different values of l, n and the noise
level p. The left plot corresponds to the experiment with n = 20 items. The noise
level is denoted on the x-axis, and each curve shows the prediction accuracy of one
strategy with a fixed value of l. In this plot, we see that repeated sampling and
employing majority vote may slightly improve prediction accuracy if the noise level

98

5.3 Simulations

number of landmarks

pr
ed

ic
tio

n
ac

cu
ra

cy

Landmark vs random (100 items)

Landmarks
Random

2 3 4 5 7 9 12 15 18 25 30 35 40

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Figure 5.2: The comparison of the landmark subsampling strategy against the ran-
dom strategy for n = 100 items. The x-axis corresponds to the number of landmarks
k, used for the landmark strategy. Each curve in the plot corresponds to a subsam-
pling strategy.

is moderate (0.1 or 0.2) and the number of triplets is relatively high in relation to the
number of items. For a higher noise level, random sampling outperforms repeated
sampling, which is in accordance with results by Lin et al. (2014) that repeated
answers with majority voting may be beneficial especially for moderate noise levels.
In a situation that we consider more interesting, namely if the number of given
triplets m is low in comparison to the number of items n, relative to the number of
items (right plot), repeated triplets lead to worse prediction accuracy than the same
number of distinct triplets.

Random vs landmark

We make a dataset of n = 100 items similar to the previous part. Then, k landmarks
`1, . . . , `k are selected uniformly at random from all n= 100 items. Next, we evaluate
t(x, `i, ` j) for all 1≤ i< j≤ k, x∈ S\{`i, ` j} to produce input triplets for embedding.
We use the same number of triplets, i.e.

(k
2

)
(n−2), chosen uniformly at random to

construct another embedding for comparison. Similar to the repeated strategy, we
only show LOE results in Figure 5.2, as it exhibits the best performance.
The results show that using the landmark strategy for triplet subsampling leads to a
worse triplet prediction accuracy than random triplet sampling, except in a regime
when very few triplets are known. In this regime, with very few triplets, the triplet
prediction accuracy is hardly better than random guessing.

99

Chapter 5 Psychophysical scaling using crowd-sourcing platforms

Figure 5.3: Left: the original (basis) waterfall image used for the eidolon experiment.
Right: An example triplet question — “Which of the bottom two images is more
similar to the top image?”

5.4 The eidolon experiment: Lab and MTurk
As a representative psychophysics task we choose a comparison task between images.
To generate the images, we use the Eidolon Factory by Koenderink et al. (2017)—
more specifically, its partially coherent disarray() function. In this toolbox, a given
basis image can be distorted systematically, using three different parameters called
reach, grain and coherence. An eidolon of a basis image then corresponds to a
parametrically altered version of this image. Reach controls the strength of a distor-
tion (the higher the value, the stronger the amplification), grain modifies how fine-
grained the distortion is (low values correspond to ‘highly fine-grained’), whereas
a parameter value close to 1.0 for coherence indicates that “local image structure
[is retained] even when the global image structure is destroyed” (Koenderink et al.,
2017, p. 10). From a psychophysics point of view, we want to know which and to
what degree the image modifications influence the percept. Starting with a black and
white image of a natural landscape as basis image (see Figure 5.3, left), we generate
100 altered images, using reach and grain in {5,12,26,61,128} and coherence in
{0.0,0.33,0.67,1.0}. All possible combinations of these parameter values result in
5 ·5 ·4 = 100 different images.

5.4.1 Lab experiment setup
In our psychophysical lab, we ask eight participants (4 male, 4 female, aged 19 to
25, mean 21 years) to answer triplet questions. See Figure 5.3 (right) for an example
triplet question. For this purpose, participants use a standard computer mouse to
click on one of the two bottom images that they deem more similar to the top im-
age. Stimuli are presented on a 1920×1200 pixels (484×302 mm) VIEWPixx LCD

100

5.4 The eidolon experiment: Lab and MTurk

monitor (VPixx Technologies, Saint-Bruno, Canada) at a refresh rate of 120 Hz in an
otherwise dark chamber. Viewing distance is 100 cm, corresponding to 3.66×3.66
degrees of visual angle for a single 256× 256 pixels image. The surround of the
screen is set to a grey value of 0.32 in the [0,1] range, the mean value of all experi-
mental images. The experiment is programmed in MATLAB (Release 2016a, The
MathWorks, Inc., Natick, Massachusetts, United States) using the Psychophysics
Toolbox extensions version 3.0.12 (Brainard, 1997; Kleiner et al., 2007) along with
the iShow library (http://dx.doi.org/10.5281/zenodo.34217).

Answers have to be given within 4.5 seconds after a triplet presentation onset, other-
wise the triplet will be registered as unanswered and the experiment will proceed to
the next triplet. (this occurred in 0.013% of all cases only). The experiment is self-
paced, i.e., once a participant answers a question, the next one will appear directly
after a short fixation time of 0.3 seconds, during which only a white 20×20 pixels
fixation rectangle at the center of the screen is shown. Before the experiment starts,
all test subjects are given instructions by a lab assistant and practice on 100 triplets
to gain familiarity with the task. The set of practice triplets is disjoint from the set of
experimental triplets. Participants are free to take a break every 200 triplet questions.
They give their written consent prior to the experiment and are either compensated
with e10 per hour for their time or gain course credit towards their degree. All test
subjects were students and reported normal or corrected-to-normal vision.

We implement three triplet subsampling strategies: random, 3-repeated-random and
landmark. Every participant answers 6000 triplet questions in three approximately
75-min sessions of 2000 triplets each. In the landmark subsampling experiment we
have a fourth session during which participants answer 1500 triplet questions as a
test set. Subjects 1, 2 and 3 each answer 6000 triplets, which are sampled uniformly
at random (with repetitions). Subjects 4, 5 and 6 each answer 2000 triplets which are
repeated 3 times. The triplets for the first sessions of subjects 1 and 4 are identical
and presented in the same order. In their second and third session, subject 4 answers
the same triplets as in their first session, but the order is randomized in each session.
In the same way, subject 5 answers a subset of subject 2’s triplets and subject 6
answers a subset of subject 3’s triplets.

The triplets for subjects 7 and 8 are selected according to the landmark strategy.
We select 12 landmarks, giving rise to

(12
2

)
(100− 2) = 6468 triplets, from which

we subsample 6000 triplets that are presented to the subjects over three sessions.
The landmarks are picked by hand, such that they provide a good covering of the
parameter space. The triplets are identical for both subjects. Subjects 7 and 8 also
answer 1500 triplets sampled uniformly at random, as a test set.

101

http://dx.doi.org/10.5281/zenodo.34217

Chapter 5 Psychophysical scaling using crowd-sourcing platforms

Figure 5.4: 10 out of 20 triplet questions used as Gold Standards in one of the MTurk
experiments. Each column corresponds to one triplet question. The first row is the
query image. The second and third row show the options of the participant. The
obvious answers are denoted by red frames

5.4.2 MTurk setup

In order to achieve a fair comparison between the lab and crowdsourcing settings,
we design our crowdsourcing experiment on MTurk to be as similar as possible to
the lab experiment. To this end, we create a survey page on our local webservers to
which all participants get redirected. The page layout, background color and stimuli
presentation times are chosen as in the lab experiment.
Similar to the lab experiment, we generate sessions consisting of 2000 (2500 for
the landmark setting) triplet questions. In the case of experiments with test sets we
increased the task size to 2500 questions. The allocated time for sessions is 4 hours,
however a session is done in less than 2 hours on average. To obtain datasets of 6000
triplets, one needs three consecutive sessions from each participant, taking more
than 6 hours. In the lab, these sessions were held on separate days. Conducting
many repeated sessions with the same participant and precise time schedules is the
strength of the lab, which we sacrifice by using the crowd on MTurk. On MTurk,
we do not conduct long tasks of 6000 triplets.
To filter out participants that may just give random answers to our triplet questions,
we implement a sanity check (validation procedure). We pick 20 triplet questions
with very obvious correct answers in every session and mark them as our Gold
Standard Questions (see Figure 5.4 for an example set of 10 gold standard questions).
We excluded participants (and their corresponding session) from the evaluation if
their error rate on those questions was larger than 20%. This was the case for 7
out of 60 sessions (12%); thus it is as well to note that in a crowdsourcing setting
the exclusion of—for whatever reason—poorly performing participants is an issue
that typically does not, or to a much lesser extent, affect lab experiments. This
is a potentially thorny issue, as one should not, of course, exclude participants
because their behavior does not align well with one’s hypothesis. Sanity checks for

102

5.4 The eidolon experiment: Lab and MTurk

crowdsourcing experiments certainly deserve more thought in the future.

We run three sets of experiments, corresponding to our three strategies of triplet
subsampling. In the first set of experiments, we ask 2000 uniformly random triplets
from 30 participants. Out of those, 23 participants passed the sanity check in the end.
In the second set of experiments we implement the 3-repeated-random subsampling
strategy in 15 sessions each consisting of 2000 triplets. We fix 5 sets of 2000 random
triplets and ask each of them three times. All these participants were accepted in the
end. The third set of experiments is the landmark setting. Here we use exactly the
same triplets as the lab experiments. We divide the 6000 landmark triplets and 1500
test triplets each into 3 sets. In this way, each participant has to perform a session
consisting of 2000 landmark triplets and 500 test triplets. We have 15 sessions for
this task, and all of them were validated.

5.4.3 Results

For the eidolon experiment, we do not have ground truth information about the
distances. Therefore, we can only measure how well we can predict answers to
a set of test triplets using a set of training triplets (triplet prediction accuracy), in
the knowledge that the answers to the test triplets may be noisy. The 3-repeated-
random setting provides some information about that noise level: For lab subjects 4,
5 and 6, for each triplet we can take the majority vote of the answers for that triplet.
The agreements between triplet answers and majority votes over these subjects are
90.8%, 90.8% and 89.0%, respectively. As a result, the highest accuracy that we
can expect for predicting participants’ triplet answers is about 90%.

We have made two observations that apply to all of the following results. First, the
t-STE method consistently outperforms other methods for triplet prediction. Sec-
ondly, perhaps surprisingly, prediction accuracy is the best for embedding in 2
dimensions, even though images are generated using 3 parameters. This may be due
to interaction of the parameters. At the end of this section, the results of embedding
with various methods and in different dimensions, ranging from 1 to 6, are reported.
The rest of experiments are conducted with t-STE and embedding in 2 dimensions.

In the following we first report the comparison of lab and MTurk data. In a separate
subsection, we examine the performance of various subsampling strategies using
the lab data. Then, we present cross-subject analysis of triplets in the random sub-
sampling strategy. Next, we examine if pooling (accumulating) the triplet answers
of various subjects leads to better triplet prediction accuracy. Finally, the results of
embedding in various Euclidean dimensions are reported

103

Chapter 5 Psychophysical scaling using crowd-sourcing platforms

Lab vs. MTurk

Random: The two left boxes in Figure 5.5 (a) show the triplet prediction accuracy
for the lab and MTurk experiments. We use 1500 random triplets of each participant
for the embedding and 250 triplets for evaluation. For the MTurk experiments we
report the performance based on 23 participants who passed the sanity check.
The results for each participant, for the random subsampling scenario in both lab
and MTurk setup, are reported in Figure 5.6. Each point corresponds to one session
of 2000 triplets. The MTurk participants are sorted based on the performance of
t-STE method on the horizontal axis. The last 7 subjects are exactly the same
subject who did not pass the sanity check. Most of the other MTurk participants
have acceptable accuracy. This figure is the expansion of the two left box plots
presented in Figure 5.5 (a).
Repeated-Random: For the training set we merge 1500 triplets from each session
which we ask 3 times. In this way the training set contains 4500 triplets. As the
test set we choose 250 random triplets from the remaining triplets of the 3 repeated
sessions. The two middle boxes in Figure 5.5 (a) show the triplet prediction accuracy
for both MTurk and lab experiments in this setting.
Landmark: The training set contains 6000 triplets of 3 sessions. The test set con-
tains 1500 triplets. The two right boxes in Figure 5.5 (a) show the triplet prediction
accuracy in this setting.
Figure 5.5 (a) shows that in most cases the MTurk participants’ responses can be
predicted with about 5 percent less accuracy than those of the lab participants. Fur-
thermore, MTurk data have a higher variance. Clearly, lab data are of higher quality
than MTurk data; however, the difference is certainly not dramatic, and one can
imagine scenarios where the ease of data acquisition and the much larger sample of
participants outweights the (slightly) lower data fidelity.

Comparison of subsampling strategies

We also report the prediction accuracy of various subsampling strategies for the lab
experiments in a comparable setting in Figure 5.5 (b). We use 4500 triplets for
training, selected according to the respective strategy, i.e., random or 1500 triplets
three times each, or 4500 triplets from the set of landmark triplets, and test prediction
accuracy on a test set of 250 random triplets. Note that this analysis is done based
on the lab experiments.
Similar to the results of simulation, the random subsampling strategy outperforms
the other two strategies. The variance of prediction accuracy is relatively small for
all three strategies.

104

5.4 The eidolon experiment: Lab and MTurk

p
re

d
ic

tio
n

 a
c
c
u

ra
c
y

Lab/MTurk comparison

L
a

b

M
Tu

rk

L
a

b

M
Tu

rk

L
a

b

M
Tu

rk

0
.6

0
0

.7
0

0
.8

0
0

.9
0

Random
RRandom
Landmark

(a)
p

re
d

ic
tio

n
 a

c
c
u

ra
c
y

Sampling strategies (Lab)

R
a

n
d

o
m

R
e

p
e

a
te

d

L
a

n
d

m
a

rk

0
.7

6
0

.8
0

0
.8

4
(b)

Cross−subject

L
a
b
/L
a
b

M
Tu
rk
/M
Tu
rk

L
a
b
/M
Tu
rk

M
Tu
rk
/L
a
b

0
.6
0

0
.7
0

0
.8
0

(c)

number of pooled sessions

Pooling sessions

Lab
MTurk

1 2 3 4 5 6 7 8

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5

(d)

Figure 5.5: (a) Comparison of triplet prediction accuracy for MTurk vs. lab in 3
subsampling strategies. Note that boxes with different colors are not comparable
since they have different training sizes. (b) Prediction accuracies for 3 various
subsampling strategies from the lab experiment in a comparable setting. (c) Cross-
subject triplet prediction accuracies. (d) Prediction accuracy with respect to pooling
size.

105

Chapter 5 Psychophysical scaling using crowd-sourcing platforms

test subject id

fr
ac

tio
n

of
 c

or
re

ct
ly

 p
re

di
ct

ed
 tr

ip
le

ts Train on 1500, test on 250 triplets (Lab)

1 2 3 4 5 6

0.
5

0.
7

0.
9

participants

fr
ac

tio
n

of
 c

or
re

ct
ly

 p
re

di
ct

ed
 tr

ip
le

ts Train on 1500, test on 250 triplets (MTurk)

GNMDS
STE
t−STE
SOE

0.
5

0.
7

0.
9

Figure 5.6: Triplet prediction accuracy for each subject of lab and MTurk experi-
ments. We check how well the triplets of a single subject can predict the triplets of
the same subject. From the set of 2000 triplets of a subject (we only use the first
2000 for lab experiment participants), we select 250 triplets at random as validation
set, select 1500 triplets from the rest as training set for embedding and report the
accuracy on the validation set. The accuracies are averaged over 20 repetitions. Top:
Lab participants 1–6; Bottom: MTurk participants, sorted by t-STE triplet prediction
accuracy.

106

5.4 The eidolon experiment: Lab and MTurk

Cross-subject analysis

Assuming a ground truth embedding over the eidolon images, we investigate the
consistency of the triplets of one participant with the embedding gathered from
another participant. We focus on the sessions with random triplets. We use 9 sessions
from the first three subjects in the lab experiments and 23 validated sessions from
the random strategy in the MTurk experiments. We perform this analysis in 4 parts:
Lab/Lab, Lab/MTurk, MTurk/Lab and MTurk/MTurk. Lab/MTurk means that all
combinations of sessions from MTurk and sessions from the lab are used for training
and testing, respectively. Box plots in Figure 5.5 (c) show the prediction accuracies
in four parts of the experiments.

The average accuracy in the first two parts (Lab/Lab and MTurk/MTurk) is only
slightly worse than the experiments on the same subject (Figure 5.5 (c) two left
boxes). This strongly suggests that participants—both in the Lab and on MTurk—
perceive the similarities between images in a consistent manner. The prediction
accuracies convinced us that visual perception in our experimental scenario can be
captured in a Euclidean space with two dimensions. Considering this embedding
space participants show very similar interpretation of the similarities. The difference
between Lab and MTurk is likely due to the noise and uncontrolled setting of data
gathering in MTurk. Again the MTurk experiments show a higher variance—this,
clearly, is a drawback of crowdsourcing in comparison with lab experiments: Whilst
the average difference in prediction accuracy is only around 5%, the difference is
larger than 10% for the most difficult to predict observers.

Pooling triplets

In this section, we examine if pooling many triplets can improve the triplet prediction
accuracy. We only include triplets from the random strategy, namely 9 sessions from
subjects 1 to 3 in the lab and 23 sessions from the MTurk participants who pass the
sanity check. We run this experiment on 20 trials. In each trial, we permute the list
of sessions in both lab and MTurk session lists. The first session of the permuted list
is then used as the test set and the remaining ones are added to the pool of training
set one by one. We report the average and standard deviation of prediction accuracy
over 20 trials in Figure 5.5 (d) with respect to the size of training pool. We see a
similar pattern in pooling of the sessions for both lab and MTurk experiments. We
can roughly gain about 5 percent in accuracy with 4 sessions. However, adding more
sessions can not help to improve. We again see about 5 percent difference in the
accuracy of MTurk pooled sessions in comparison to the lab pooled sessions.

107

Chapter 5 Psychophysical scaling using crowd-sourcing platforms

embedding dimension

pr
ed

ic
tio

n
ac

cu
ra

cy

Eidolon embedding in n dimensions

GNMDS
STE
t−STE
SOE

1 2 3 4 5 6

0.
70

0.
75

0.
80

0.
85

0.
90

Figure 5.7: Triplet prediction accuracy of subject 1 in the lab experiment, using
different embedding methods and embedding dimensions. 1500 triplets from lab
subject 1 are used for training, 250 for testing (as in several of our evaluations).

Embedding dimension

Here, we report the prediction accuracy of various embedding methods with differ-
ent embedding dimensions. Figure 5.7 shows the prediction result of embedding
for subject 1 of the lab experiment with 1500 triplets as training set and 250 triplets
as test set. Increasing the dimension from 1 to 2 improves the prediction accu-
racy significantly, however more than 2 dimensions cannot lead to a considerable
improvement. We also observe that t-STE outperforms the other methods in all
dimensions. The results for other subjects have slight differences, however, in most
cases the best accuracy is obtained with 2 dimensions.

108

Appendix A

Supplementary Material

A.1 Extended simulation results of Chapter 4
Monotonic scaling functions: Here we present extensive results of the simulations
with the monotonic scaling functions. Figure A.1 shows the extended results of the
embeddings for a Sigmoid function. Beside the MSE and triplet error we also show
the standard deviation of these two criteria. We again see that MLDS works slightly
better than other methods, as the scaling function meets the assumptions of MLDS.
We also report the results for the same experiment with a different scaling function
(See Figure A.2. The function is a conditional degree 3 polynomial. Again, the
MLDS outperforms all other embeddings.

Non-monotonic scaling functions: Similar to the monotonic functions, we com-
pare the performance of the embedding methods on two non-monotonic function.
Figure A.4 shows the extra results for a degree two polynomial scaling function.
The MSE and triplet error both show poor performance of MLDS in comparison
with the embedding methods. The second scaling function is a Sinusoid. The results
of comparison are shown in Figure A.3. The ordinal embedding methods perform
clearly better than the MLDS, however the difference is not as big as the previous
function. The reason might be that the Sinusoid is closer to a monotonic function
than the second degree polynomial.

109

Appendix A Supplementary Material

0 0.2 0.4 0.6 0.8 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
p
tu

a
l
s
c
a
le

 (
Y

)

True perceptual function

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

LOE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

STE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

TSTE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

MLDS, = 0.1, r = 0.4

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.5

TSTE

STE

MLDS

LOE

NMDS

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

S
T

D
 o

f
M

S
E

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

S
T

D
 o

f
M

S
E

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

0.06

S
T

D
 o

f
M

S
E

 = 0.1

10-1 100

Fraction of triplets (r)

0.025

0.03

0.035

0.04

0.045

0.05

S
T

D
 o

f
M

S
E

 = 0.5

TSTE

STE

MLDS

LOE

NMDS

10-1 100

Fraction of triplets (r)

0

0.05

0.1

0.15

0.2

0.25

0.3

T
ri
p
le

t
e
rr

o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0.15

0.2

0.25

0.3

T
ri
p
le

t
e
rr

o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0.2

0.25

0.3

0.35

0.4

T
ri
p
le

t
e
rr

o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.45

0.46

0.47

0.48

0.49

0.5

T
ri
p
le

t
e
rr

o
r

 = 0.5

TSTE

STE

MLDS

LOE

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

0.1

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0.01

0.02

0.03

0.04

0.05

0.06

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.5

TSTE

STE

MLDS

LOE

Figure A.1: The comparison of various ordinal embedding methods (LOE, STE, t-STE) against
the traditional methods in psychophysics (MLDS and NMDS) for a monotonic one-dimensional
perceptual function. The true perceptual function (y) is appeared at the top left corner. Ten embedding
results (ŷ) for a fixed value of noise standard deviation (σ) and triplet fraction (r) is shown on the top
right corner. The second and third row depict the average MSE and the standard deviation of MSE
for 10 runs of the algorithms. The fourth and fifth row show the average triplet error and the standard
deviation of triplet error for 10 runs of the algorithms.

110

A.1 Extended simulation results of Chapter 4

0 0.2 0.4 0.6 0.8 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
p
tu

a
l
s
c
a
le

 (
Y

)

True perceptual function

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

LOE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

STE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

TSTE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

MLDS, = 0.1, r = 0.4

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

0.06

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.5

TSTE

STE

MLDS

LOE

NMDS

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

0.06

S
T

D
 o

f
M

S
E

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

0.06

S
T

D
 o

f
M

S
E

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

S
T

D
 o

f
M

S
E

 = 0.1

10-1 100

Fraction of triplets (r)

0.01

0.02

0.03

0.04

0.05

0.06

S
T

D
 o

f
M

S
E

 = 0.5

TSTE

STE

MLDS

LOE

NMDS

10-1 100

Fraction of triplets (r)

0

0.05

0.1

0.15

0.2

T
ri
p
le

t
e
rr

o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0.1

0.15

0.2

0.25

0.3

T
ri
p
le

t
e
rr

o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0.15

0.2

0.25

0.3

0.35

0.4

T
ri
p
le

t
e
rr

o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.44

0.45

0.46

0.47

0.48

0.49

T
ri
p
le

t
e
rr

o
r

 = 0.5

TSTE

STE

MLDS

LOE

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

0.06

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

0.1

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.005

0.01

0.015

0.02

0.025

0.03

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.5

TSTE

STE

MLDS

LOE

Figure A.2: The comparison of various ordinal embedding methods (LOE, STE, t-STE) against
the traditional methods in psychophysics (MLDS and NMDS) for a monotonic one-dimensional
perceptual function. The true perceptual function (y) is appeared at the top left corner. Ten embedding
results (ŷ) for a fixed value of noise standard deviation (σ) and triplet fraction (r) is shown on the top
right corner. The second and third row depict the average MSE and the standard deviation of MSE
for 10 runs of the algorithms. The fourth and fifth row show the average triplet error and the standard
deviation of triplet error for 10 runs of the algorithms.

111

Appendix A Supplementary Material

0 0.2 0.4 0.6 0.8 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
p
tu

a
l
s
c
a
le

 (
Y

)

True perceptual function

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

LOE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

STE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

TSTE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

MLDS, = 0.1, r = 0.4

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

0.06

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

0.1

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.05

0.1

0.15

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.5

TSTE

STE

MLDS

LOE

NMDS

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

0.06

S
T

D
 o

f
M

S
E

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

S
T

D
 o

f
M

S
E

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

S
T

D
 o

f
M

S
E

 = 0.1

10-1 100

Fraction of triplets (r)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

S
T

D
 o

f
M

S
E

 = 0.5

TSTE

STE

MLDS

LOE

NMDS

10-1 100

Fraction of triplets (r)

0.05

0.1

0.15

0.2

0.25

0.3

T
ri
p
le

t
e
rr

o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
ri
p
le

t
e
rr

o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0.1

0.15

0.2

0.25

0.3

0.35

T
ri
p
le

t
e
rr

o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.42

0.43

0.44

0.45

0.46

0.47

0.48

T
ri
p
le

t
e
rr

o
r

 = 0.5

TSTE

STE

MLDS

LOE

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

0.1

0.12

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

0.1

0.12

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

0.1

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.5

TSTE

STE

MLDS

LOE

Figure A.3: The comparison of various ordinal embedding methods (LOE, STE, t-STE) against
the traditional methods in psychophysics (MLDS and NMDS) for a non-monotonic one-dimensional
perceptual function (Sinusoid). The true perceptual function (y) is appeared at the top left corner.
Ten embedding results (ŷ) for a fixed value of noise standard deviation (σ) and triplet fraction (r) is
shown on the top right corner. The second and third row depict the average MSE and the standard
deviation of MSE for 10 runs of the algorithms. The fourth and fifth row show the average triplet
error and the standard deviation of triplet error for 10 runs of the algorithms.

112

A.1 Extended simulation results of Chapter 4

0 0.2 0.4 0.6 0.8 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
p
tu

a
l
s
c
a
le

 (
Y

)

True perceptual function

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

LOE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

STE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

TSTE, = 0.1, r = 0.4

0 0.5 1

Stimulus (S)

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 p

e
rc

e
p
tu

a
l
s
c
a
le

MLDS, = 0.1, r = 0.4

10-1 100

Fraction of triplets (r)

0

0.05

0.1

0.15

0.2

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.05

0.1

0.15

0.2

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.05

0.1

0.15

0.2

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.05

0.1

0.15

0.2

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 = 0.5

TSTE

STE

MLDS

LOE

NMDS

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

0.06

S
T

D
 o

f
M

S
E

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

S
T

D
 o

f
M

S
E

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.01

0.02

0.03

0.04

0.05

S
T

D
 o

f
M

S
E

 = 0.1

10-1 100

Fraction of triplets (r)

0.02

0.03

0.04

0.05

0.06

S
T

D
 o

f
M

S
E

 = 0.5

TSTE

STE

MLDS

LOE

NMDS

10-1 100

Fraction of triplets (r)

0

0.1

0.2

0.3

0.4

T
ri
p
le

t
e
rr

o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
ri
p
le

t
e
rr

o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0.15

0.2

0.25

0.3

0.35

0.4

T
ri
p
le

t
e
rr

o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.42

0.44

0.46

0.48

0.5

T
ri
p
le

t
e
rr

o
r

 = 0.5

TSTE

STE

MLDS

LOE

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

0.1

0.12

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0

0.02

0.04

0.06

0.08

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.01

0.015

0.02

0.025

S
T

D
 o

f
T

ri
p

le
t

e
rr

o
r

 = 0.5

TSTE

STE

MLDS

LOE

Figure A.4: The comparison of various ordinal embedding methods (LOE, STE, t-STE) against
the traditional methods in psychophysics (MLDS and NMDS) for a non-monotonic one-dimensional
perceptual function. The true perceptual function (y) is appeared at the top left corner. Ten embedding
results (ŷ) for a fixed value of noise standard deviation (σ) and triplet fraction (r) is shown on the top
right corner. The second and third row depict the average MSE and the standard deviation of MSE
for 10 runs of the algorithms. The fourth and fifth row show the average triplet error and the standard
deviation of triplet error for 10 runs of the algorithms.

113

Appendix A Supplementary Material

0 0.2 0.4 0.6 0.8 1

Perceptual dimension (1)

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

p
tu

a
l
d

im
e

n
s
io

n
 (

2
)

True perceptual function

434
445

465
472

490

504

537
555

584

600

610

628
651
674

0 0.5 1

Perceptual dimension (1)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
p
tu

a
l
d
im

e
n
s
io

n
 (

2
)

LOE, = 0.05, r = 1

0 0.5 1

Perceptual dimension (1)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
p
tu

a
l
d
im

e
n
s
io

n
 (

2
)

TSTE, = 0.05, r = 1

0 0.5 1

Perceptual dimension (1)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
p
tu

a
l
d
im

e
n
s
io

n
 (

2
)

STE, = 0.05, r = 1

0 0.5 1

Perceptual dimension (1)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
p
tu

a
l
d
im

e
n
s
io

n
 (

2
)

NMDS, = 0.05, r = 1

10-1 100

Fraction of triplets (r)

0

0.05

0.1

0.15

0.2

0.25

T
ri
p
le

t
e
rr

o
r

 = 0.01

10-1 100

Fraction of triplets (r)

0.05

0.1

0.15

0.2

0.25

T
ri
p
le

t
e
rr

o
r

 = 0.05

10-1 100

Fraction of triplets (r)

0.15

0.2

0.25

0.3

T
ri
p
le

t
e
rr

o
r

 = 0.1

10-1 100

Fraction of triplets (r)

0.38

0.4

0.42

0.44

0.46

0.48

0.5
T

ri
p
le

t
e
rr

o
r

 = 0.5

TSTE

STE

MLDS

LOE

Figure A.5: The comparison of various ordinal embedding methods (LOE, STE,
t-STE) against the traditional methods in psychophysics (MLDS and NMDS) for a
two-dimensional perceptual function. The true perceptual function (y) is appeared at
the top left corner. one of embedding results (ŷ) for a fixed value of noise standard
deviation (σ) and triplet fraction (r) is shown on the top right corner. The second
row shows the average triplet error over 10 repetitions of the algorithms.

114

Bibliography
Agarwal, S., Wills, J., Cayton, L., Lanckriet, G., Kriegman, D., and Belongie, S.

(2007). Generalized non-metric multidimensional scaling. In International
Conference on Artificial Intelligence and Statistics (AISTATS).

Aguilar, G., Wichmann, F. A., and Maertens, M. (2017). Comparing sensitivity esti-
mates from MLDS and forced-choice methods in a slant-from-texture experiment.
Journal of Vision, 17(1), 37, 1–18.

Ailon, N. (2011). Active learning ranking from pairwise preferences with almost
optimal query complexity. In Advances in Neural Information Processing Systems
(NIPS).

Amid, E. and Ukkonen, A. (2015). Multiview triplet embedding: Learning attributes
in multiple maps. In International Conference on Machine Learning (ICML).

Arias-Castro, E. et al. (2017). Some theory for ordinal embedding.

Assouad, P. (1979). Étude dune dimension métrique liéea la possibilité de plonge-
ments dans rn. CR Acad. Sci. Paris Sér. AB, 288(15), A731–A734.

Balcan, M., Vitercik, E., and White, C. (2016). Learning combinatorial functions
from pairwise comparisons. In Conference on Learning Theory (COLT).

Barsalou, L. W. (2014). Cognitive psychology: An overview for cognitive scientists.
Psychology Press.

Bentley, J. (1975). Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9), 509–517.

Beygelzimer, A., Kakade, S., and Langford, J. (2006). Cover trees for nearest
neighbor. In International Conference on Machine Learning (ICML).

Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning
Research (JMLR), 13(4), 1063–1095.

Biau, G. and Scornet, E. (2016). A random forest guided tour. Journal of the
Spanish Society of Statistics and Operations Research (TEST), 25(2), 197–227.

115

Bibliography

Biau, G., Devroye, L., and Lugosi, G. (2008). Consistency of random forests and
other averaging classifiers. Journal of Machine Learning Research (JMLR), 9(9),
2015–2033.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Blackwell, H. R. (1952). Studies of psychophysical methods for measuring visual
thresholds. Journal of the Optical Society of America, 42, 606–616.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984). Classification and
regression trees. CRC press.

Chandler, J., Mueller, P. A., and Paolacci, G. (2014). Nonnaivete among amazon
mechanical turk workers: Consequences and solutions for behavioral researchers.
Behavior Research Methods, 46(1), 112–130.

Coombs, C. H., Dawes, R. M., and Tversky, A. (1970). Mathematical Psychology.
Prentice-Hall, New Jersey.

Cortez, P. and Morais, A. (2007). A Data Mining Approach to Predict Forest Fires
using Meteorological Data. In Portuguese Conference on Artificial Intelligence.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. (2009). Modeling wine
preferences by data mining from physicochemical properties. Decision Support
Systems, 47(4), 547–553.

Dallenbach, K. M. (1966). The staircase-method critically examined. The American
Journal of Psychology, 79(4), 654–656.

Dasgupta, S. and Freund, Y. (2008). Random projection trees and low dimensional
manifolds. In Symposium on the Theory of Computing (STOC), pages 537–546.

Dasgupta, S. and Sinha, K. (2015). Randomized partition trees for nearest neighbor
search. Algorithmica, 72(1), 237–263.

Davis, T. A. and Hu, Y. (2011). The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1), 1:1–1:25.

116

Bibliography

Demiralp, Ç., Bernstein, M. S., and Heer, J. (2014). Learning perceptual kernels for
visualization design. IEEE transactions on visualization and computer graphics,
20(12), 1933–1942.

Denil, M., Matheson, D., and Freitas, N. (2013). Consistency of online random
forests. In International Conference on Machine Learning (ICML).

Devroye, L., Györfi, L., and Lugosi, G. (1996). A probabilistic theory of pattern
recognition. Springer.

Ekman, G. (1954). Dimensions of color vision. The Journal of Psychology, 38(2),
467–474.

Ellis, D. P., Whitman, B., Berenzweig, A., and Lawrence, S. (2002). The quest for
ground truth in musical artist similarity. In Third International Conference on
Music Information Retrieval.

Fechner, G. T. (1860). Elemente der Psychophysik. Breitkopf und Hrtel, Leipzig.

Fernandes, K., Vinagre, P., and Cortez, P. (2015). A proactive intelligent decision
support system for predicting the popularity of online news. In Portuguese
Conference on Artificial Intelligence.

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014). Do we
need hundreds of classifiers to solve real world classification problems? Journal
of Machine Learning Research (JMLR), 15(1), 3133–3181.

Geisler, W. S. (1987). Ideal observer analysis of visual discrimination. In Frontiers
of Visual Science: Proceedings of the 1985 Symposium, pages 17–31. National
Academy Press, Washington, DC.

Gescheider, G. A. (1988). Psychophysical scaling. Annual review of psychology,
39(1), 169–200.

Goyal, N., Lifshits, Y., and Schütze, H. (2008). Disorder inequality: a combinatorial
approach to nearest neighbor search. In International Conference on Web Search
and Data Mining (WSDM).

Gupta, A., Krauthgamer, R., and Lee, J. R. (2003). Bounded geometries, fractals,
and low-distortion embeddings. In 44th Annual IEEE Symposium on Foundations
of Computer Science, 2003. Proceedings., pages 534–543.

Haghiri, S., Ghoshdastidar, D., and von Luxburg, U. (2017). Comparison-based
nearest neighbor search. In International Conference on Artificial Intelligence
and Statistics (AISTATS).

117

Bibliography

Haghiri, S., Garreau, D., and Luxburg, U. (2018). Comparison-based random
forests. In International Conference on Machine Learning (ICML).

Henrich, J., Heine, S. J., and Norenzayan, A. (2010). The weirdest people in the
world? Behavioral and Brain Sciences, 33, 61–135.

Hofmann, T., Schölkopf, B., and Smola, A. J. (2008). Kernel methods in machine
learning. The annals of statistics, pages 1171–1220.

Houle, M. and Nett, M. (2015). Rank-based similarity search: Reducing the
dimensional dependence. IEEE transactions on pattern analysis and machine
intelligence (PAMI), 37(1), 136–150.

Houtsma, A. J. M. (1995). Pitch perception. Hearing, 6, 262.

Ishwaran, H. and Kogalur, U. B. (2010). Consistency of random survival forests.
Statistics & probability letters, 80(13), 1056–1064.

Jain, L., Jamieson, K. G., and Nowak, R. (2016). Finite sample prediction and
recovery bounds for ordinal embedding. In Advances in Neural Information
Processing Systems (NIPS).

Jäkel, F. and Wichmann, F. A. (2006). Spatial four-alternative forced-choice method
is the preferred psychophysical method for naive observers. Journal of Vision,
6(11), 1307–1322.

Jamieson, K. G. and Nowak, R. D. (2011). Low-dimensional embedding using adap-
tively selected ordinal data. In Annual Allerton Conference on Communication,
Control, and Computing.

Kaneshiro, B., Perreau Guimaraes, M., Kim, H.-S., Norcia, A. M., and Suppes,
P. (2015). A Representational Similarity Analysis of the Dynamics of Object
Processing Using Single-Trial EEG Classification. PLoS One, 10(8), e0135697.

Karger, D. R. and Ruhl, M. (2002). Finding nearest neighbors in growth-restricted
metrics. In Symposium on the Theory of Computing (STOC), pages 741–750.

Kayaert, G., Biederman, I., Op de Beeck, H. P., and Vogels, R. (2005). Tuning
for shape dimensions in macaque inferior temporal cortex. European Journal of
Neuroscience, 22(1), 212–224.

Kleindessner, M. and Luxburg, U. (2015). Dimensionality estimation without
distances. In International Conference on Artificial Intelligence and Statistics
(AISTATS).

118

Bibliography

Kleindessner, M. and von Luxburg, U. (2014). Uniqueness of ordinal embedding.
In Conference on Learning Theory (COLT).

Kleindessner, M. and von Luxburg, U. (2017). Kernel functions based on triplet
comparisons. In Advances in Neural Information Processing Systems (NIPS).

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., and Broussard, C.
(2007). Whats new in Psychtoolbox-3. Perception, 36(14), 1.

Knoblauch, K. and Maloney, L. T. (2010). MLDS: Maximum likelihood difference
scaling in R. Journal of Statistical Software, 25, 1–26.

Knoblauch, K., Charrier, C., Cherifi, H., Yang, J., and Maloney, L. (1998). Differ-
ence scaling of image quality in compression-degraded images. Perception ECVP
abstract, 27.

Koenderink, J., Valsecchi, M., van Doorn, A., Wagemans, J., and Gegenfurtner, K.
(2017). Eidolons: Novel stimuli for vision research. Journal of Vision, 17(2), 7.

Krantz, D. H., Luce, R. D., Suppes, P., and Tversky, A. (2007). Foundations of mea-
surement: Geometrical, threshold, and probabilistic representations, volume 1.
Courier Corporation.

Krauthgamer, R. and Lee, J. (2004). Navigating nets: simple algorithms for
proximity search. In ACM-SIAM Symposium on Discrete Algorithms (SODA).

Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, 29(1), 1–27.

Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method.
Psychometrika, 29(2), 115–129.

Lawrence, J. (2013). A catalog of special plane curves. Courier Corporation.

Lecun, Y. and Cortes, C. (1998). The MNIST database of handwritten digits.

Li, L., Malave, V. L., Song, A., and Yu, A. (2016). Extracting human face similarity
judgments: Pairs or triplets? In CogSci.

Liberti, L., Lavor, C., Maculan, N., and Mucherino, A. (2014). Euclidean distance
geometry and applications. Siam Review, 56(1), 3–69.

Lichman, M. (2013). UCI machine learning repository.

119

Bibliography

Lifshits, Y. and Zhang, S. (2009). Combinatorial algorithms for nearest neighbors,
near-duplicates and small-world design. In ACM-SIAM Symposium on Discrete
Algorithms (SODA).

Lin, C. H., Mausam, and Weld, D. S. (2014). To Re(label), or not to Re(label). In
Conference on Human Computation and Crowdsourcing (HCOMP).

Liu, T., Moore, A., Yang, K., and Gray, A. (2004). An investigation of practical
approximate nearest neighbor algorithms. In Advances in Neural Information
Processing Systems (NIPS).

Luce, R. D. and Edwards, W. (1958). The derivation of subjective scales from just
noticeable differences. Psychological review, 65(4), 222.

Luukkainen, J. and Saksman, E. (1998). Every complete doubling metric space
carries a doubling measure. Proceedings of the American Mathematical Society,
126(2), 531–534.

Machado, J., Mata, M., and Lopes, A. (2015). Fractional State Space Analysis of
Economic Systems. Entropy, 17(8), 5402–5421.

Maloney, L. T. and Yang, J. N. (2003). Maximum likelihood difference scaling.
Journal of Vision, 3(8), 5.

Marder, J. and Fritz, M. (2015). The internet’s hidden science factory. PBS
NewsHour.

Marks, L. E. and Gescheider, G. A. (2002). Psychophysical scaling. Stevens’
handbook of experimental psychology.

McNames, J. (2001). A fast nearest-neighbor algorithm based on a principal axis
search tree. IEEE transactions on pattern analysis and machine intelligence
(PAMI), 23(9), 964–976.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological review, 63(2), 81.

Norris, W. F. and Oliver, C. A. (1898). System of Diseases of the Eye, volume 3. JB
Lippincott.

Op de Beeck, H., Wagemans, J., and Vogels, R. (2001). Inferotemporal neurons
represent low-dimensional configurations of parameterized shapes. Nature neuro-
science, 4(12), 1244.

120

Bibliography

Ram, P. and Gray, A. (2013). Which space partitioning tree to use for search? In
Advances in Neural Information Processing Systems (NIPS).

Reed, S. K. (1972). Pattern recognition and categorization. Cognitive psychology,
3(3), 382–407.

Scholkopf, B. and Smola, A. J. (2001). Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press.

Schultz, M. and Joachims, T. (2003). Learning a distance metric from relative
comparisons. In Advances in Neural Information Processing Systems (NIPS).

Scornet, E. (2016). On the asymptotics of random forests. Journal of Multivariate
Analysis, 146, 72–83.

Scornet, E., Biau, G., and Vert, J.-P. (2015). Consistency of random forests. The
Annals of Statistics, 43(4), 1716–1741.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning:
From theory to algorithms. Cambridge university press.

Shepard, R. N. (1962). The analysis of proximities: multidimensional scaling with
an unknown distance function. I. Psychometrika, 27(2), 125–140.

Shepard, R. N. (1981). Psychological relations and psychophysical scales: On the
status of direct psychophysical measurement. Journal of Mathematical Psychol-
ogy, 24(1), 21–57.

Shepard, R. N. (1982). Geometrical approximations to the structure of musical
pitch. Psychological review, 89(4), 305.

Shervashidze, N., Schweitzer, P., Leeuwen, E., Mehlhorn, K., and Borgwardt, K.
(2011). Weisfeiler-lehman graph kernels. Journal of Machine Learning Research,
12, 2539–2561.

Smith, C. A. and Ellsworth, P. C. (1985). Patterns of cognitive appraisal in emotion.
Journal of personality and social psychology, 48(4), 813.

Stevens, S. S. (1957). On the psychophysical law. Psychological review, 64(3),
153.

Stewart, N., Brown, G. D., and Chater, N. (2005). Absolute identification by relative
judgment. Psychological review, 112(4), 881.

121

Bibliography

Tamuz, O., Liu, C., Belongie, S., Shamir, O., and Kalai, A. (2011). Adaptively
learning the crowd kernel. In International Conference on Machine Learning
(ICML).

Terada, Y. and Luxburg, U. (2014). Local ordinal embedding. In International
Conference on Machine Learning (ICML).

Thurstone, L. L. (1927). A law of comparative judgment. Psychological review,
34(4), 273.

Torgerson, W. S. (1958). Theory and Methods of Scaling. John Wiley and Sons,
New York.

Tschopp, D., Diggavi, S., Delgosha, P., and Mohajer, S. (2011). Randomized
algorithms for comparison-based search. In Advances in Neural Information
Processing Systems (NIPS).

Uhlmann, J. (1991). Satisfying general proximity/similarity queries with metric
trees. Information processing letters, 40(4), 175–179.

Ukkonen, A., Derakhshan, B., and Heikinheimo, H. (2015). Crowdsourced non-
parametric density estimation using relative distances. In Conference on Human
Computation and Crowdsourcing (HCOMP).

van der Maaten, L. and Weinberger, K. (2012). Stochastic triplet embedding. In
International Workshop on Machine Learning for Signal Processing (MLSP).

Wilber, M. J., Kwak, I. S., and Belongie, S. J. (2014). Cost-effective HITs for
relative similarity comparisons. In Conference on Human Computation and
Crowdsourcing (HCOMP).

122

	1 Introduction
	1.1 An example of a machine learning task in the comparison-based setting
	1.2 When is the comparison-based setting helpful?
	1.3 Sampling triplet comparisons
	1.4 Existing approaches for comparison-based machine learning
	1.4.1 Ordinal embedding
	1.4.2 Kernels based on triplet comparisons

	1.5 Datasets
	1.6 Overview of the contributions

	2 Comparison-based nearest neighbor search
	2.1 Comparison-tree
	2.2 Theoretical analysis
	2.2.1 Expansion conditions
	2.2.2 Main results

	2.3 Experiments
	2.3.1 Euclidean setting
	2.3.2 Comparison-based setting
	2.3.3 Expansion rate approximation

	2.4 Conclusion

	3 Comparison-based random forests
	3.1 Comparison-Based random forests
	3.2 Theoretical analysis
	3.2.1 Continuous comparison-tree
	3.2.2 Consistency
	3.2.3 Proof of consistency
	3.2.4 Auxiliary results
	3.2.5 Technical results

	3.3 Experiments
	3.3.1 Euclidean setting
	3.3.2 Metric, non-Euclidean setting
	3.3.3 Comparison-based setting

	3.4 Conclusion and future work

	4 Estimation of perceptual scales using ordinal embedding
	4.1 Psychophysical scaling
	4.1.1 Scaling and the method of triads

	4.2 Embedding methods
	4.2.1 Non-metric multi-dimensional scaling (NMDS)
	4.2.2 Maximum likelihood difference scaling (MLDS)
	4.2.3 Ordinal embedding
	4.2.4 Summary of embedding methods

	4.3 Simulations
	4.3.1 Simulation setup
	4.3.2 One-dimensional perceptual space
	4.3.3 Multi-dimensional perceptual space

	4.4 Experiments
	4.5 How to apply ordinal embedding methods in psychophysics
	4.5.1 How to make the subset of triplets?
	4.5.2 How many triplets?
	4.5.3 How to evaluate the quality of embedding?
	4.5.4 How to choose the embedding dimension?
	4.5.5 Which algorithm, which implementation?

	4.6 Discussion
	4.6.1 Open issues

	5 Psychophysical scaling using crowd-sourcing platforms
	5.1 Introduction
	5.2 Triplet subsampling strategies
	5.3 Simulations
	5.3.1 Simulation setup
	5.3.2 Result

	5.4 The eidolon experiment: Lab and MTurk
	5.4.1 Lab experiment setup
	5.4.2 MTurk setup
	5.4.3 Results

	A Supplementary Material
	A.1 Extended simulation results of Chapter 4

	Bibliography

