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SUMMARY 
 

Severe congenital neutropenia (CN) is a pre-leukemia bone marrow failure syndrome with 

profoundly diminished terminal granulocytic differentiation of hematopoietic stem cells 

(HSCs). Life-long treatment with granulocyte-colony stimulating factor (G-CSF) increases 

the number of neutrophils. About 20 % of CN patients develop AML or MDS. The 

mechanism of leukemia transformation in CN patients is mostly unclear. Limited numbers of 

available primary HSC of pediatric CN patients and a lack of animal models hinder the 

research attempts on the CN and CN/AML pathophysiology. In my PhD Thesis, I aimed to 

overcome these obstacles by implementing advanced techniques, including patient-derived 

induced pluripotent cells (iPSCs) in combination with CRISPR/Cas9 gene-editing, for the 

establishment of the in vitro model of congenital neutropenia and of step-wise leukemia 

development. Using this model, I was able to (1) reproduce “maturation arrest” of 

granulopoiesis seen in the bone marrow of CN patients; (2) to generate sufficient numbers of 

hematopoietic stem and progenitor cells (HSPCs) for the analysis of myeloid differentiation, 

multi-omics analysis and functional validation of identified targets. The ultimate aim was to 

identify novel molecules that may be further explored for their therapeutic potential for 

CN/AML. 

Our group recently reported an extremely high frequency of cooperating acquired CSF3R 

(colony-stimulating factor 3 receptor) and RUNX1 (runt-related transcription factor 1) 

mutations in CN patients who developed acute myeloid leukemia (CN/AML). I established an 

in vitro model of stepwise leukemogenesis in CN/AML through CRISPR/Cas9 mediated 

gene-editing of iPSCs from two CN patients with acquired CSF3R and RUNX1 mutations and 

overt AML. Using this model, I identified BAALC (brain and acute leukemia, cytoplasmic) 

upregulation as a key leukemogenic event in CN. Importantly, CRISPR/Cas9-mediated 

knockout of BAALC in CN/AML-iPSCs derived hematopoietic cells of CN/AML patients 
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restored defective myeloid differentiation to the levels observed in healthy donor 

hematopoietic stem and progenitor cells (HSPCs). Using transcriptomics data analysis, I 

found that CMPD1, an inhibitor of p38-mediated MK2a phosphorylation, re-establishes gene 

expression signature similar to that of BAALC knockout. Intriguingly, in vitro treatment of 

primary blasts of CN/AML patients with CMPD1 resulted in a marked reduction of cell 

proliferation without affecting differentiation of healthy donor HSPCs. In summary, these 

observations suggest that targeting of BAALC in hematopoietic cells of CN patients may 

prevent leukemogenic transformation or eliminate AML blasts in CN/AML individuals. 
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ZUSAMMENFASSUNG  
 

Schwere kongenitale Neutropenie (CN) ist ein prä-leukämisches Knochenmarksinsuffizienz-

Syndrom mit stark verminderter Differenzierung von hämatopoetischen Stammzellen zu 

Granulozyten. Eine lebenslange Behandlung mit Granulozyten-Kolonie-stimulierendem 

Faktor (G-CSF) steigert die Anzahl an Neutrophilen deutlich. Ungefähr 20 % der Patienten 

mit kongenitaler Neutropenie entwickeln später eine akute myeloische Leukämie (AML) oder 

ein Myelodysplatisches Syndrom (MDS). Der Mechanismus der leukämischen 

Transformation in Patienten mit kongenitaler Neutropenie und das Fehlen von Tiermodellen 

limitieren die Erforschung der kongenitalen Neutropenie und der daraus resultierenden AML 

(CN/AML). Ziel meiner Doktorarbeit war es diese Probleme durch die Entwicklung eines 

patientenspezifischen induzierten-pluripotenten Stammzell (iPSZ) - Modells in Kombination 

mit CRISPR/Cas9 Genom-Editierung zu überwinden. Dieses Modell sollte kongenitale 

Neutropenie und den schrittweisen Prozess der Leukämie-Entstehung in vitro darstellen. 

Anhand dieses Modells konnte ich den Ausreifungsstop der Granulopoese darstellen und 

genügend Hämatopoetische Stammzellen (HSZ) generieren um die myeloische 

Differenzierung, Multi-omics Analysen und die funktionelle Validierung von identifizierten 

Zielproteinen durchzuführen. Das Ziel war es neue Faktoren zu identifizieren, die dann weiter 

auf ihre therapeutische Wirksamkeit für CN/AML untersucht werden können. 

Unsere Arbeitsgruppe hat kürzlich von einer hohen Frequenz von kooperierenden CSF3R 

(Kolonie-stimulierendem Faktor 3 Rezeptor) und RUNX1 (Runt-verwandtem 

Transkriptionsfaktor 1) Mutationen in CN/AML Patienten berichtet. Ich habe ein in vitro 

Modell der stufenweisen Leukämie-Entstehung in CN/AML durch CRISPR/Cas9 Genom-

Editierung von iPS-Zellen von zwei CN/AML Patienten mit CSF3R und RUNX1 Mutationen 

etabliert. Mithilfe dieses Modells habe ich die stark erhöhte Expression von BAALC (brain 

and acute leukemia, cytoplasmic) als Schüssel-Ereignis der Leukämie-Entstehung bei 
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kongenitaler Neutropenie identifiziert. Der Ausschalten des BAALC Gens durch 

CRISPR/Cas9 konnte die defekte myeloische Differenzierung in CN/AML-iPS-Zellen, 

vergleichbar zu der Differenzierung von gesunden HSZ, wiederherstellen. Mittels 

Transkriptom-Analyse, identifizierte ich das Molekül, CMPD1, ein Inhibitor der p38-

vermittelten MK2a Phosphorylierung, das die Genexpression zu einem ähnlichen Ausmaß wie 

der BAALC Knockout wiederherstellen konnte.  Die in vitro Anwendung von CMPD1  bei 

primären Blasten von CN/AML Patienten führte zu einer deutlichen Reduzierung der 

Proliferationsrate, ohne dabei die Differenzierung von gesunden HSZ zu beeinflussen. 

Zusammenfassend legen diese Beobachtungen nahe, dass die Inhibition von BAALC in 

hämatopoetischen Stamzellen von Patienten mit kongenitaler Neutropenie möglicherweise die 

Leukämie-Entstehung verhindern oder AML-Blasten in CN/AML Patienten eliminieren kann. 
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INTRODUCTION  
 

 

Pre-leukemia bone marrow failure syndromes and leukemia progression 

The group of pre-leukemic bone marrow failure syndromes (BMFS) describes inherited 

hematological disorders that can lead to the development of myelodysplastic syndrome 

(MDS) or acute myeloid leukemia (AML). They are characterized by an abnormal 

proliferation and differentiation of hematopoietic stem and progenitor cells (HSPC)
1-8

.  

To be able to treat or prevent AML it is important to understand the mechanisms of leukemia 

development first. By now, it is hypothesized that the regulation, the self-renewal as well as 

the proliferation and differentiation of HSPCs is disturbed due to inherited mutations 
1-6,8

. 

Chronic stress that is induced by intrinsic defects and extrinsic abnormalities in the HSPC 

niche could cause an elevated DNA-damage response or diminished DNA-damage repair that 

increases the possibility of acquisition of mutations in leukemia-related genes or karyotypical 

abnormalities  
3,9

. The expansion and evolution of mutant HSPC clones can be supported by a 

selective pressure induced by the background of an inherited disease
10

.  

 

Severe congenital neutropenia, ELANE mutations and deregulated intracellular 

signaling 

Severe congenital neutropenia (CN), a pre-leukemia BMFS, is predominantly caused by 

inherited heterozygous missense ELANE mutations encoding neutrophil elastase (NE)
11

. 

ELANE mutations are distributed throughout all five exons of the ELANE gene, but the 

majority of mutations can be found in exon 4 and exon 5
12

. Other inherited gene mutations 

leading to CN are detected in HAX1
13

 (HCLS-1 associated protein X-1), G6PC3
14

 (glucose 6 

phosphatase, catalytic, 3), JAGN1 (Jagunal Homolog 1) and other genes.  
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HSPCs of CN patients lack the ability to differentiate into mature neutrophils, but show no 

differentiation defects in other blood lineages. CN patients without treatment show severe 

infections due to maturation arrest at promyelocytic stage 
2,3,15,16

. Mechanisms for 

granulocytic differentiation defects are still not fully understood. Our group and others have 

shown that mutant NE activates unfolded protein response (UPR) and induces endoplasmatic 

reticulum (ER) stress by accumulation of misfolded NE protein within the ER
17-19

.  

Our laboratory also described several deregulated intracellular signaling pathways in 

hematopoietic cells of CN patients. Thus, we found severely diminished expression levels of 

transcription factors LEF-1 and C/EBP, adaptor protein HCLS1, and neutrophil elastase 

inhibitor SLPI
2,3

.
 
In parallel, chronic G-CSF therapy led to compensatory hyperactivation of 

phospho-STAT5a, NAMPT/SIRT1 pathway and C/EBPß transcription factor expression
2,3,20

. 

All these processes may contribute to the activation/deregulation of the intracellular stress 

response mechanisms that may ultimately lead to the leukemogenic transformation of 

hematopoietic stem cells and leukemia.
 

 

Leukemia progression in CN patients 

Approximately 20 % of CN patients develop MDS or AML later in life
3,21,22

. Treatment of 

CN patients with high doses of granulocyte colony-stimulating factor (G-CSF) can partially 

rescue neutrophilic maturation defect
3,16

. However, treatment with high doses of G-CSF also 

leads to a higher probability of developing MDS or AML
21,22

.  

Our research group recently reported a cooperativity of acquired CSF3R (encoding the G-CSF 

receptor) and RUNX1 (runt-related transcription factor 1) mutations in 31 CN/AML patients
23

. 

65 % of them had acquired RUNX1 mutations and 80 % co-acquired CSF3R mutations. Co-

acquisition of CSF3R and RUNX1 mutations led to enhanced proliferation and diminished 
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myeloid differentiation of healthy donor CD34
+
 cells in functional tests. Further, CN/AML 

patients with RUNX1 mutations showed a high frequency of trisomy 21 and monosomy 7
23

.  

By screening 307 CN patients with ELANE mutations from Severe Chronic Neutropenia 

International Registry (SCNIR) for up to 27 years, we identified in collaboration with other 

groups “hot-spot” ELANE mutations (e.g., p.C151R, p.C151Y, p.G214R) in CN patients who 

developed MDS or AML
12

. However, it is still unclear how CSF3R and RUNX1 mutations in 

cooperation with these ELANE mutations can induce leukemia in CN patients.  

 

CSF3R mutations and their effects on G-CSFR signaling 

To identify possible mechanisms of leukemogenesis it is important to know the effects of 

CSF3R and RUNX1 mutations on their downstream signaling pathways. Acquired CSF3R 

mutations mainly occur in the intracellular domain of G-CSFR. Mutations in this domain are 

stop codon mutations leading to a truncated G-CSFR with interrupted signaling. This part is 

responsible for the termination of STAT5 (signal transducer and activator of transcription 5) - 

dependent proliferative signals and STAT3 - dependent activation of differentiation. 

Consequences are increased proliferation and diminished differentiation ability of HSPCs 

carrying this mutation 
2,20,24-32

. G-CSFR mutations alone are not sufficient for leukemic 

transformation in CN. In many cases of myeloid leukemia, only 1 or 2 additional mutations 

are needed to induce leukemia.
33

 

 

Missense and nonsense RUNX1 mutations and their implications in leukemogenesis 

RUNX1 mutations predominantly occur in the Runt homology domain (RHD), which is 

responsible for DNA-binding, and in the transactivation domain (TAD), which is needed for 

protein-protein interaction
34

. RUNX1 point mutations were reported with a frequency of 6 - 33 

% in de novo AML
35-39

 and are highly associated with monosomy 7 and trisomy 21
38,40,41

.  
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Acquired or inherited RUNX1 mutations are found in several pre-leukemic diseases. Fanconi 

anemia patients that developed AML or MDS showed acquired mutations translocations or 

deletions in RUNX1
9
 and familial platelet disorder (FPD) patients with a predisposition to 

AML have inherited RUNX1 mutations 
42,43

.  

In CN/AML patients, missense and nonsense RUNX1 mutations have been described
23,44

. 

Several studies proposed possible mechanisms of leukemogenesis downstream of both 

missense and nonsense RUNX1 mutations
43,45,46

. RUNX1 mutations in the RHD might induce 

plenty of effects including loss of DNA and/or CBFβ-binding, disturbed heterodimerization, 

inefficient transactivation, protein mislocalization, appearance of dominant-negative alleles or 

haploinsufficiency
46-51

. Missense mutations in RUNX1 can result in dominant-negative protein 

isoforms with numerous outcomes: decreased CBFβ-binding, protein mislocalization and 

impaired DNA-binding 
46,48,50,51

.  

Missense RUNX1 mutations in the RHD can also alter the activity of other RUNX1-binding 

proteins and inhibit the transactivation of wild-type (WT) RUNX1 protein
43,48

. Moreover, the 

RUNX1 gene is located on chromosome 21 and most CN/AML patients with missense 

RUNX1 mutations have trisomy 21, indicating that the ratio of mutant to WT RUNX1 alleles 

might play a role in leukemogenic transformation in CN patients
23

. 

 

Human induced pluripotent stem cell (hiPSC) – a reliable model  to study 

leukemogenesis in CN 

Since there are no animal models to study CN and leukemogenesis in CN, establishment of an 

in vitro patient-specific iPSC-model is the only convenient alternative. Transgenic mice with 

knock-in of human ELANE mutation or ELANE KO mice did not show a neutropenia 

phenotype
18

. Patient-specific CN-iPSCs could already recapitulate the maturation arrest of 

granulopoiesis
52-54

. Moreover, iPSC-models were also used to study leukemogenesis of de 
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novo AML
55

 and for drug screening. By a combination of iPSC-reprogramming and 

CRISPR/Cas9 gene-editing, iPSC-models can be used to study stepwise leukemogenesis
56

.  

Such models could be also used to compare the effects of missense and nonsense mutations in 

endogenous genes on their functional outcomes. 
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OBJECTIVES OF THE STUDY  
 

1) To establish an in vitro experimental model of CN and stepwise leukemia 

development in CN using patients-derived iPSC and CRISPR/Cas9 gene-editing. 

2) To determine the functional relationship between RUNX1 and CSF3R mutations and 

their role in leukemia development in CN patients, by analyzing myeloid 

differentiation potential of patient-derived iPSCs at different stages of 

leukemogenesis. 

3) To identify intracellular signaling pathways responsible for leukemogenic 

transformation of HSPCs triggered by CSF3R and RUNX1 mutations and to identify 

small molecules that can correct “leukemogenic” defects caused by RUNX1 and 

CSF3R mutations.  
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RESULTS AND DISCUSSION 
 

Results and discussion parts covered in three per-reviewed publications ‘A-C’, including one 

book chapter and  in the manuscripts ‘D, E’ that are currently under revision.  

 

Establishment of an in vitro model of CN and CN/AML using EB-based myeloid 

differentiation of patient-derived hiPSCs (see publications A, B) 

We established a highly efficient and reproducible 3D spin-embryoid body (EB) based 

hiPSC-differentiation protocol that allows the production of high amounts of HSPCs 

(CD34
+
CD45

+
 cells) and mature granulocytes (more than 1x10^6 cells/10 EBs). This consists 

mainly of three phases. The first non-adherent phase until day four of iPSC-differentiation 

leads to mesoderm induction, the second phase until day 14 produces a high amount of 

HSPCs, and the third phase until day 28 leads to the maturation to granulocytes. Using this 

protocol, we could show a strong reduction of HSPC numbers at day 14 for CN/AML-iPSCs 

and highly reduced numbers of mature myeloid cells at day 28 of differentiation for CN iPSC 

and especially for CN/AML iPSC. Flow cytometry and Wright-Giemsa stainings of cytospin 

slides at day 28 also revealed significantly decreased percentages of PMNs for CN iPSCs, no 

PMNs for CN/AML-iPSC and highly increased percentage of monocytes for CN iPSCs that is 

in line with observations from CN patients which have increased peripheral blood monocyte 

counts
3,57

. Using our EB-based hiPSC differentiation model, we wanted to have a closer look 

at the variables that could influence and enforce leukemic transformation in CN, like 

increased UPR stress, DNA damage response and diminished apoptosis. 
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Increased ER stress and UPR response in CN- and CN/AML-derived HSPCs 

(CD34
+
CD45

+
 cells) (see publication A)  

We observed highly upregulated ELANE mRNA levels in CD34
+
CD45

+
 cells generated from 

CN/AML iPSCs, but unchanged ELANE mRNA levels for CN1 iPSCs and slightly increased 

levels for CN2 iPSCs compared to HD. NE protein levels were highly up-regulated, especially 

in CN/AML samples. ELANE expression is regulated by RUNX1
58

, which could explain the 

highly increased NE levels in CN/AML HSPCs. It is still unclear how RUNX1 mutations 

affect ELANE expression, but it has been shown that HSPCs of RUNX1
-/-

 mice have a weaker 

UPR response
59

. Based on our results, mutated RUNX1 may upregulate the expression of 

mutated NE in CN and amplify UPR response. To proof this hypothesis, we should analyze 

UPR response in CN/AML RUNX1 KO iPSC - derived HSPCs. 

 It has been reported that mutated neutrophil elastase (NE) induces elevated ER stress and 

UPR in HSPCs and granulocytes of CN patients17-19. Consistent with these data, CN- and 

CN/AML-iPSC derived CD34
+
CD45

+
cells both highly express UPR downstream regulator 

CHOP (DDIT3). The mRNA expression of genes involved in the other UPR pathways, like 

BiP, ATF4 and ATF6 was not commonly upregulated in HSPCs derived from all iPSC clones, 

but only from CN and CN/AML iPSCs. Thus, only CHOP, which is a downstream target of 

several UPR pathways, seems to be commonly upregulated in both CN and CN/AML. This 

observation was also confirmed on protein level: CHOP protein levels were upregulated to a 

similar extent in both CN- and CN/AML-derived myeloid cells at day 28 of iPSC 

differentiation. Increased expression of mutant NE protein, which is mainly inducing CHOP 

upregulation and thus increasing UPR stress, could be the reason for acquisition of further 

gene mutations like in CSF3R. Chronically elevated UPR in HSPCs of CN patients with 

inherited ELANE mutations might cause genotoxic stress which leads to an increased 

susceptibility of HSPCs to acquisition of secondary leukemia-initiating mutations. However, 
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the complete pathomechanism of leukemogenesis on the background of hyperactivated UPR 

is still unclear. 

 

Increased DNA damage response in CN-iPSC-derived HSPCs (see publication A) 

Next we tested the susceptibility of pre-leukemic CN-iPSC-derived HSPCs to DNA damage 

by five minutes treatment of cells with the cytostatic bleomycin. DNA damage repair ability 

was also tested after two hours of recovery time in cell culture. For both analysis of DNA 

damage and DNA damage repair, we performed a long-run real-time PCR-based DNA 

damage quantification (LORD-Q) of two nuclear DNA loci in GAPDH and TP53 and 

additionally of mitochondrial DNA (mt DNA) 
60

. Highly increased DNA damage was 

observed for mtDNA and TP53 loci in CN-iPSC-derived HSPCs compared to HD-iPSC-

derived cells. Also, DNA damage repair was diminished after recovery time for CN- 

compared to HD-derived HSPCs, especially for mtDNA. Taken together, these results suggest 

an increased susceptibility to DNA damage in CN-iPSC-derived HSPCs and a delayed DNA 

damage repair. 

 

Elevated DNA damage and diminished granulocytic differentiation of GADD45b 

deficient HSPCs and iPSCs (see publication C and manuscript E) 

We next aimed to evaluate whether elevated DNA damage and deregulated expression of the 

proteins related to the DNA damage response, might be involved in the diminished 

granulocytic differentiation of HSPCs in congenital neutropenia. We found that GADD45B 

(Growth Arrest And DNA Damage Inducible Beta) expression was upregulated in HSPCs of 

healthy donors upon G-CSF treatment, but not in CN patients. It seems that the proper cellular 

response to G-CSF requires activation of signaling pathways involved in the regulation of 

stress/DNA damage response, e.g., GADD45ß-triggered signaling. To test this hypothesis, we 
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performed CRISPR/Cas9 mediated knockout of GADD45B in iPSC derived from a healthy 

donor and generated pure GADD45ß knockout iPSC clones. Thus, our iPSC-based 

experimental model of hematopoiesis allows unique investigations of the role of candidate 

proteins in “clean settings”. Also, the effects of the gene dosage of the candidate proteins 

might be investigated using CRISPR/Cas9 gene-edited iPSC cells, by analyzing the 

heterozygous iPSC clones. Thus, using this model, we evaluated DNA damage response as 

well as the ability to differentiate into hematopoietic/myeloid cells of iPSCs in the absence of 

GADD45ß protein. We evaluated whether iPSCs remained pluripotent after GADD45B 

knockout and assessed the DNA damage response of GADD45ß deficient iPSCs and HSPCs 

exposed to UV irradiation. Indeed, we found that although GADD45B KO iPSCs retained 

pluripotency, they showed elevated DNA damage upon UV exposure. DNA damage was 

analysed using gH2AX staining by FACS as well as a long-run real-time PCR-based DNA-

damage quantification method for nuclear and mitochondrial genome analysis (LORD-Q
60

). 

To study the role of GADD45ß in granulocytic differentiation, we tested pure GADD45B KO 

iPSC clones. Indeed, we were able to recreate CN-specific “maturation arrest” of 

granulopoiesis: we found that no CFU-G colonies were generated from GADD45B
-/-

 iPSC-

derived CD34
+
 HSPCs, compared to healthy control iPSCs. Moreover, using the embryoid 

body (EB)-based hematopoietic differentiation, we observed increased amounts of immature 

cells and strongly diminished amounts of mature neutrophils in the culture of GADD45B-

deficient iPSCs compared to healthy control iPSCs. The data indicate an essential role of 

GADD45ß in granulopoiesis. 

 

p21 expression is upregulated in CN- and CN/AML-derived HSPCs (see publication A) 

Since it is known that p53-p21 pathway is activated upon DNA damage, we analyzed the 

mRNA expression of TP53, the p53 inhibitor MDM2 and the p53 downstream targets p21 and 
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GADD45a in iPSC-derived HSPCs. We observed no difference in p53 and GADD45a mRNA 

expression, but a three-fold increase of p21 mRNA expression for CN and six-fold increase 

for CN/AML compared to HD-derived cells. MDM2 mRNA was reduced in CN/AML cells. 

On protein level, we could also confirm increased p21 levels in CN cells that were even 

further increased in CN/AML cells. Increased p21 expression can be explained by either 

reduced MDM2 levels, since MDM2 is a negative regulator of p53, or by p53-independent 

p21 activation
61

. 

 p21 has anti-apoptocic functions in AML cells and high p21 levels can enforce chemo-

resistance in AML cells
62,63

. Since p21 expression is already increased at the CN stage in our 

model, it indicates that p21 anti-apoptotic function can play a role in both, leukemic 

transformation and severity of the overt AML phenotype. High p21 levels might rescue 

stressed and mutated CN-stage cells from apoptosis and thus support leukemic 

transformation. 

A possible connection between diminished GADD45ß expression and activation of the 

p53/p21 signaling in CN is interesting but unclear. GADD45 proteins are known targets of 

p53
64-66

 and are interaction partners of p21
67

. There are different scenarios for CN and 

CN/AML concerning p53/p21 and GADD45ß. First, GADD45ß regulation in CN HSPCs, or 

HSPCs in general are p53-independent, or p53, for some reason, failed to regulate GADD45ß. 

Next, downstream targets or cellular processes downstream of the p21:GADD45ß protein 

complex (e.g. cell cycle check point) are not properly regulated in CN, because GADD45ß is 

very low expressed, or GADD45ß is not interacting with p21 in HSPCs and myeloid cells. All 

these scenarios are worse to study in connection to leukemogenesis, but also tumorigenesis in 

general. 



 24 

Missense but not nonsense RUNX1 mutations are associated with trisomy 21 in 

CN/AML patients (see manuscript E)  

In CN/AML patients, three different types of RUNX1 mutations are observed: missense, 

nonsense and frame-shift mutations. By comparing cytogenetic abnormalities and the type of 

acquired RUNX1 mutations it was revealed that ~ 50 % of CN/AML patients with missense 

RUNX1 mutations also acquired trisomy 21, whereas no trisomy 21 was detected in ~ 90 % of 

CN/AML patients with nonsense or frame-shift RUNX1 mutations.  

Based on these observations, we hypothesized that nonsense/frameshift and missense RUNX1 

mutations may lead to different functional outcomes. We evaluated whether an additional 

copy of the mutated or WT RUNX1 is co-acquired with trisomy 21 in CN/AML patients. 

Digital PCR (dPCR) analysis showed two copies of mutated missense RUNX1 in three 

CN/AML patients with trisomy 21, revealing an essential role of the dosage of missense 

RUNX1 protein for leukemia initiation and progression. It seems that missense RUNX1 

mutations, but not nonsense or frameshift mutations, need the co-occurrence of trisomy 21 to 

enhance the leukemogenic effects of mutated RUNX1. 

 

In vitro patient-derived hiPSC model of stepwise leukemic transformation in ELANE-

mutant CN/AML (see manuscript E) 

To obtain deeper insight into the process of leukemic transformation in CN patients, we used 

our already described hiPSC- differentiation model. We reprogrammed iPSCs from PB MNCs 

of AML-stage of CN/AML patients harboring ELANE mutations p.C151Y and p.G214R. Our 

aim was to obtain iPSC for three different stages of leukemia progression in CN: firstly the 

CN stage with only an ELANE mutation, secondly the MDS-stage with an additional CSF3R 

mutation and thirdly the AML-stage with an additional RUNX1 mutation.   
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For CN/AML patient 1, we could receive CN and CN/AML iPSC clones after reprogramming 

of peripheral blood mononuclear cells (PBMNCs). The intermediate stage with only CSF3R 

mutation we had to produce by CRISPR/Cas9 gene-editing. For CN/AML patient 2, we 

obtained CN and CN2+CSF3R Q743X
+/-

 clones from reprogramming of bone marrow 

mononuclear cells (BMMNCs). CN/AML2 clone we had produced by adding an additional 

RUNX1 frameshift mutation to CN2+CSF3R Q743X
+/- 

clone using the CRISPR/Cas9 gene-

editing system. CN/AML1 iPSC clones with RUNX1 missense mutations had additional 

trisomy 21 which was confirmed in the Array-CGH. dPCR also confirmed, according to our 

observation in CN/AML patients, that the mutated RUNX1 to the WT RUNX1 ratio was 2 to 1 

in CN/AML iPSCs and iPSC-derived CD45
+ 

cells. 

Thus, by combining patient-specific iPSC-technology for various CN/AML patients, in the 

form of reprogramming of CN HSPCs and CN/AML blasts to iPSCs, with CRISPR/Cas9 

gene-editing, we provided the perfect platform to study step-wise leukemogenesis in CN. 

These iPSCs can be used then to study hematopoietic differentiation and to identify leukemia-

related gene-expression profiles and signaling pathways. 

 

Severely impaired myeloid differentiation and highly elevated proliferation rate of 

CN/AML-iPSC-derived HSPCs (see manuscript E) 

We differentiated all iPSC clones from both CN/AML patients with our already described 

EB-based iPSC differentiation protocol into HSPCs and mature myeloid cells. We found an 

increased proportion of CD45
+
CD34

+
 HSPCs for CN/AML clones and these cells also 

showed a ~3-fold increased proliferation rate compared to HD when cultured on SL/SL feeder 

cells with a cytokine mix supporting growth of HSPCs. Already HSCs derived from 

CN1+CSF3R Q741fs or CN2+CSF3R Q743X
+/- 

- iPSCs showed an increased proliferation 

rate, but the additional RUNX1 mutation led to a further significant increase in the 
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proliferation. Thus, we could confirm  that acquired CSF3R mutations lead to a truncated G-

CSFR resulting in a proliferative advantage of HSPCs, which predisposes to leukemia, but is 

not sufficient to induce it
3,28,31,68-71

 . Further, we showed that acquisition of an additional 

RUNX1 mutation has a multiplying effect on proliferation advantage of HSPCs, even in the 

absence of G-CSF, since our proliferation experiments on SL/SL feeder cells were performed 

without the addition of G-CSF. 

Differentiation to the later myeloid stages revealed that CN/AML iPSCs were able to produce 

only a severely reduced amount of granulocytes (CD45
+
CD15

+
CD11b

+
) and mature 

neutrophils (CD45
+
CD15

+
CD16

+
). Further, we showed a step-wise reduction in the 

percentage of granulocytes and mature neutrophils from HD to CN and to CN with mutated 

G-CSFR and to CN/AML by flow cytometry and Wright-Giemsa staining. By this, we proved 

the strong impact of the acquisition of CSF3R and additional RUNX1 mutations on leukemic 

progression in CN in vitro with increased phenotype severity in the form of highly decreased 

differentiation potential of mutated HSCs together with highly increased proliferation shown 

before. 

These observations were supported by CFU Assay results that revealed the highly diminished 

potential of CN/AML-derived HSCs to form any kind of CFU, especially CFU-G. The total 

number of CFU colonies was already very low in CN with mutated G-CSFR, but the number 

of CFU-G colonies was still further decreased in CN/AML cells. 

 

AML-related gene expression signature is present in CN/AML blasts and in CN/AML-

iPSC derived HSPCs (see manuscript E)   

Since we observed the upregulation of AML-related genes in a microarray study of AML 

blasts of CN/AML patient 1, we examined mRNA expression of the top four hematopoiesis-

related CN/AML-related genes from this microarray, CD34, BAALC, CD109 and HPGDS. 
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We studied primary blasts of five CN/AML patients and BMMNCs of three CN patients and 

found a strong upregulation of all four genes in all five CN/AML patients. Next, we wanted to 

evaluate whether these genes are also upregulated in CN/AML iPSC-derived HSPCs. In 

CN/AML patient 1, which was also used for the initial microarray experiments, mRNA of all 

four genes was highly upregulated in HSPCs from two CN/AML iPSC clones compared to 

CN-stage. In CN/AML patient 2, only BAALC mRNA was upregulated. BAALC protein 

levels were also highly upregulated in CN/AML iPSC-derived HSPCs of both CN/AML 

patients. 

Next we wanted to test if BAALC expression is dependent on RUNX1 mutations. 

Transduction of HD CD34
+
 cells with lentiviral constructs expressing either RUNX1 wt or the 

RUNX1 mut with the same RUNX1 mutations as in our CN/AML patients revealed that both 

RUNX1 mutations lead to an upregulation of BAALC mRNA expression, as compared to cells 

transduced with WT RUNX1.  

Since we previously showed the elevation of STAT5a
20,46,67,68

 levels in CN and CN/AML 

patients, we analyzed mRNA and protein expression of STAT5a, RUNX1 and G-CSFR in our 

iPSC-derived HSPCs. Indeed with observed upregulation of STAT5a and RUNX1 on mRNA 

and protein levels, especially in CN/AML iPSC-derived HSPCs and to a smaller extent at the 

CN-stage, whereas G-CSFR expression was mainly unchanged.  

Taken together, increased expression of CN/AML-related genes, increased proliferation rate 

and diminished differentiation ability represent major leukemic features. Thus, our iPSC-

model perfectly recapitulates step-wise leukemia development in CN and becomes even more 

important due to the fact that mouse models with the mutated ELANE do not show any 

neutropenia phenotype. 
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Elevated BAALC expression is a key feature of leukemogenic transformation in CN (see 

manuscript E) 

We generated BAALC, HPGDS, CD109 and RUNX1 iPSC knockout (KO) lines via 

CRISPR/Cas9 gene-editing using CN/AML1 iPSCs to determine which of these CN/AML-

related genes is responsible for leukemogenic transformation in CN. We differentiated each 

KO iPSCs using our EB-based differentiation protocol and compared their differentiation 

ability to CN/AML iPSCs w/o KO. Strikingly, BAALC KO could reverse AML phenotype 

and induce granulocytic differentiation in CN/AML iPSCs, even resulting in mature 

neutrophils. The percentage of granulocytes produced by CN/AML iPSC upon BAALC KO 

was comparable to HD-iPSC derived neutrophils. Further, BAALC KO reduced proliferation 

rate of CN/AML iPSC derived HSPCs by 3-fold and re-established the potential to form CFU. 

KO of HPGDS, CD109 or RUNX1 was not able to restore granulocytic differentiation in 

CN/AML iPSCs. We could also confirm the induction of granulocytic differentiation, 

decreased proliferation and increased CFU-potential for the CN/AML iPSCs of the second 

patient. Interestingly, BAALC KO could even induce granulocytic differentiation of CN-

iPSCs, indicating that inherited ELANE mutations influence BAALC expression levels. Thus, 

we identified BAALC as the key regulator of leukemogenic transformation in CN. 

 

Leukemic gene expression signature is present in CN/AML-iPSC-derived HSPCs (see 

manuscript E)   

To obtain deeper insight in the underlying gene expression profile changes and pathways of 

leukemic transformation in CN, we performed RNA-seq of CN and CN/AML iPSC-derived 

HSPCs. Differential gene expression analysis identified 132 up- and 570 down-regulated 

genes for CN/AML1 vs CN1. In CN/AML2 HSPCs, 579 genes were up- and 1422 down-

regulated, as compared to CN2 cells. 
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The most significantly upregulated pathways for CN/AML1 revealed by gene set enrichment 

analysis (GSEA) were “E2F targets”, “oxidative phosphorylation” genes and “MYC targets”, 

whereas “platelet-specific genes” (classical RUNX1 downstream targets) were downregulated. 

For CN/AML patient 2, major enriched gene sets were “GM2 checkpoint”, “E2F targets” and 

“TGFβ signaling”, whereas the Gene Ontology of the “Structural Constituent of Ribosomes” 

(classical RUNX1 downstream targets) was regulated in the opposite way. 

Using the Transcription Factor enrichment analysis, we predicted transcription factors (TF) 

that control differentially expressed genes in both CN/AML patients. Among these, motifs of 

the RUNX1 binding partners GATA1 and GATA2 as well as of the AML-associated gene 

SUZ12 were most significantly enriched. Motifs specifically presented in only one CN/AML 

patient were TRIM28 and TP53 for CN/AML1 and CEBPB, NANOG and KLF4 for 

CN/AML2.  

Using Kinase Enrichment Analysis (KEA), we predicted kinases that phosphorylate proteins 

of prioritized transcription factors networks. HIPK2, MAPK3/1/14, CSNK2A1, ERK1 and 

AKT1 were shared between both patients, whereas several unique enriched kinases like 

CDK1, JNK1 and ERK2 were detected in CN/AML patient 2 only.  

Taken together, RNA-Seq analysis of iPSC-derived HSPCs revealed a substantial difference 

in the gene expression signature between CN and CN/AML stages. Many signaling pathways, 

especially MAPK/ERK pathways, including various MAP kinases and transcription factors 

that can be downstream effectors in theses pathways like GATA1 and GATA2, were affected 

by both RUNX1 missense and frameshift mutations. However,  RUNX1 frameshift mutations 

leading to truncated RUNX1 protein affected many more additional pathways. These 

observations might help to understand the mechanisms of leukemogenesis downstream of 

different types of RUNX1 mutations. 

It would be interesting to investigate whether reduced GADD45ß expression, in combination 

with RUNX1 and/or CSF3R mutations, has an impact on the leukemogenic transformation of 
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HSPCs. It is known that in hematopoietic cells, GADD45β plays a role in JNK pathway 

inactivation by interaction with MKK4
72

. Reduced GADD45ß in CN hematopoietic cells may 

lead to the JNK activation. To this end, we may introduce RUNX1, CSF3R and ELANE 

mutations in the GADD45ß
-/-

 or GADD45ß
+/-

 iPSCs of healthy donors and study 

hematopoietic proliferation and differentiation of HSPCs derived from these iPSC clones. 

Studying intracellular pathways in HSPCs from gene-edited GADD45ß KO iPSC clones 

might shed light on a better understanding of the leukemia progression and the role of 

GADD45ß in this process. 

 

 

BAALC-dependent leukemogenic signaling pathways in CN/AML (see manuscript E) 

To examine BAALC-dependent AML-related gene expression, we performed RNA-seq of 

CN/AML-iPSC derived HSPCs before and after BAALC KO for both CN/AML patients. 

RNA-seq revealed 165 up- and 254 down-regulated genes for CN/AML1 BAALC KO, as well 

as 185 up- and 381 down-regulated genes for CN/AML2 BAALC KO. Venn Diagrams 

comparing differentially expressed genes of CN/AML vs CN/AML BAALC KO group with 

CN/AML vs CN group, showed 170 overlapping genes for CN/AML1 and 380 overlapping 

genes for CN/AML2, indicating that gene expression of many genes during leukemic 

transformation is BAALC-dependent. Additionally, GSEA showed an overlap with pathways 

already detected in CN vs CN/AML analysis, especially for CN/AML2. For CN/AML patient 

1, oxidative phosphorylation and p53 signaling were enriched, platelet-specific genes and 

TCA cycle were inhibited in CN/AML cells. For CN/AML patient 2, E2F targets, G2M 

checkpoint-associated genes, TGFβ signaling and MYC- targets were enriched in CN/AML 

cells. GSEA results suggested that elevated BAALC exerts its leukemogenic effects affecting 

different signaling pathways including Myc- or p53- downstream signaling. Moreover, 
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BAALC also seems to have an impact on the cell cycle regulation and transcriptional 

regulation. It would be essential to evaluate a connection between elevated BAALC and 

diminished GADD45ß expression in CN leukemogenesis, since both proteins seem to be 

connected to p53 and MAPK/JNK signaling. 

Transcription factor enrichment analysis (TFEA) using the list of differentially expressed  

genes revealed that RUNX1, GATA1/2 and SUZ12 TF binding motifs were BAALC-

dependent. AR, TCF3, RAD21 and NANOG TF motifs were specific for CN/AML1. EGR1, 

STAT3 and ZC3H11a were specific for CN/AML2. TFEA results indicated that BAALC also 

exerts its leukemogenic effects by deregulating the expression of major hematopoietic 

transcription factors like RUNX1 and GATA1/2 as well as tumor suppressor genes like SUZ12. 

KEA showed also BAALC-dependency of kinase, which were detected to be upregulated in 

CN/AML vs CN, namely CSNK2A1, HIPK2 and MAPK1 and MAPK14. CN/AML patient 2 

showed patient-specific enrichment of JNK1 and ERK2 kinases again. KEA highlighted a 

strong impact of BAALC on various kinases of the MAPK/ERK pathway signaling, which is 

involved in cancerogenesis. 

We also found that four key transcription factor motifs (RUNX1, GATA1/2, SUZ12 and 

SMAD4) as well as seven kinases (e.g. MAPK14, MAPK1, ERK1 and AKT1) were enriched 

in CN/AML-iPSC-derived HSPCs compared to either CN/AML BAALC KO or CN stage, 

thus indicating that BAALC KO in CN/AML HSPCs partially reproduces a CN-stage-like 

phenotype. BAALC KO induced a strong gene expression shift in CN/AML HSPCs of both 

patients independent of missense or frameshift RUNX1 mutations. MAPK/ERK signaling 

pathways, which we already showed in the RNA-seq of CN vs CN/AML analysis to play a 

major role in leukemogenesis, seem to be strongly dependent on BAALC. However, there are 

also some pathways, like TCF3-, TP63- and STAT3-dependent signaling, which seem to be 

not essential for leukemic progression in CN. Taken together, it becomes clear that BAALC is 

exerting its leukemogenic effects in multiple ways by deregulating various signaling 
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pathways, expression of hematopoietic transcription factors and activation of kinases. Some 

of these deregulated pathways, transcription factors and kinases also seem to be dependent on 

the type of RUNX1 mutation. 

 

The selective p38 MAPK inhibitor CMPD1 suppresses proliferation of CN/AML cells 

(see manuscript E) 

Since there are no BAALC inhibitors available and no crystal structure of the BAALC protein 

is known yet, we performed Connectivity Map (CMAP) analysis of RNA-Seq data comparing 

CN/AML vs CN/AML-BAALC KO samples, in order to find small molecules that could 

reproduce the effect of BAALC KO or inhibit pathways that are affected by hyperactivated 

BAALC. CMAP analysis revealed CMPD1 as the best small molecule capable of mimicking 

BAALC KO phenotype in CN/AML cells. CMPD1 is a selective p38 MAPK (MAPK14) 

inhibitor. To find an effective concentration of CMPD1, we first treated BAALC
high

 AML cell 

line Kasumi-1 with three concentrations of CMPD1 or the MEK1/2 inhibitor AZD-6244. The 

MEK1/2 inhibitor UO126, in combination with KLF4 activation, was reported to reduce the 

growth of BAALC-high de novo AML cells
73

, but showed no effect on cell proliferation in 

our model. Therefore we chose the more specific MEK1/2 inhibitor AZD-6244. In Kasumi-1 

cells, CMPD1 was sufficient in reducing cell proliferation rate at 1, 2 and 5 µM 

concentrations. AZD-6244 had no effect at all concentrations, 1, 2 and 5 µM.  

Application of these small molecules for CN/AML iPSC-derived HSPCs also showed high 

effectiveness of CMPD1 for both CN/AML patients. It led to a reduction of proliferation rate 

down to 20 % without affecting proliferation of HD iPSC-derived HSPCs. AZD-6244 also 

reduced proliferation of CN/AML derived HSPCs, but to a smaller extent. Next, we tested 

1µM CMPD1 and 1 µM AZD-6244 for primary CN/AML blasts with high BAALC 

expression and could confirm an excellent efficiency of CMPD1 to reduce proliferation rate 
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of CN/AML blats down to 10 %, whereas AZD-6244 could reduce proliferation rate down to 

60 % only. Importantly, proliferation of HD CD34
+
 cells was not affected or only slightly 

inhibited after treatment with 1 µM or 2 µM of drugs. Finally, we applied these drugs for 

BAALC
high 

de novo AML blasts in 1 µM and concentrations. Both drugs were effective to 

inhibit proliferation rate down to 60 %. The strong inhibition of proliferation of CN/AML-

iPSC-derived HSPCs, as well as of primary CN/AML blasts and de novo AML blasts 

highlighted that the p38-MAPK pathway is a major downstream signaling pathway of 

hyperactivated BAALC in leukemogenesis.  
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OUTLOOK 
 

Our iPSC-based experimental in vitro model of CN and CN/AML is a perfect system to study 

step-wise leukemogenesis in pre-leukemic bone marrow failure syndromes. Using this model, 

we were able to recreate a “maturation arrest” of granulopoiesis in vitro, which is similar to 

what we see in CN patients` bone marrow. Thus, this is a first experimental model that might 

be broadly used to study congenital neutropenia, since there are no mouse models and very 

low amounts of primary patients` hematopoietic cells are available for scientific projects. 

Using this model, we identified elevated DNA damage and connected downregulation of 

GADD45b as one of the key mechanisms of defective granulopoiesis. 

We also could show that both, RUNX1 missense mutations with additional trisomy 21 or 

RUNX1 frameshift mutations, lead to a similar leukemia phenotype with increased 

proliferation rate and decreased differentiation potential of HSPCs in CN. This was in line 

with the similar leukemogenic gene expression profiles and affected signaling pathways in 

CN/AML-iPSC derived HSPCs of patients carrying either missense or truncated RUNX1 

mutations. Only a minor number of affected pathways was dependent on the RUNX1 mutation 

type. 

We identified BAALC upregulation as a key leukemogenic event sufficient to induce 

leukemia, downstream of acquired RUNX1 and CSF3R mutations. Ultimately, BAALC 

inhibition in CN HSPCs or treatment with CMPD1 or other p38 MAPK inhibitors might be a 

possible treatment strategy for RUNX1-mutated CN/AML and de novo AML patients. 

Because we demonstrated that BAALC is a key deregulating protein with leukemogenic 

activity, it would be highly favorable to identify a specific BAALC inhibitor. This may be 

achieved either by small molecule drug screening or designing a specific BAALC inhibitor 

after solving a crystal structure of BAALC protein. 



 35 

The process of stepwise leukemogenesis in CN, the role of BAALC upregulation and possible 

treatment strategies for CN/AML are summarized in Figure 1.  
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Figure 1: Scheme of the mechanism of leukemia development in CN and possible treatment 

strategies for CN/AML. 
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We describe the establishment of an embryoid-body-based protocol for hematopoi-

etic/myeloid differentiation of human induced pluripotent stem cells that allows the

generation of CD34+ cells or mature myeloid cells in vitro. Using this model, we

were able to recapitulate the defective granulocytic differentiation in patients with

severe congenital neutropenia (CN), an inherited preleukemia bone marrow failure

syndrome. Importantly, in vitro maturation arrest of granulopoiesis was associated

with an elevated unfolded protein response (UPR) and enhanced expression of the

cell cycle inhibitor p21. Consistent with this, we found that CD34+ cells of CN

patients were highly susceptible to DNA damage and showed diminished DNA

repair. These observations suggest that targeting the UPR pathway or inhibiting

DNA damage might protect hematopoietic cells of CN patients from leukemogenic

transformation, at least to some extent. © 2019 ISEH – Society for Hematology and

Stem Cells. Published by Elsevier Inc. All rights reserved.

Severe congenital neutropenia (CN) is a monolineage

preleukemia bone marrow failure syndrome character-

ized by early onset of neutropenia and severe infec-

tions due to promyelocytic maturational arrest in the

bone marrow [1,2]. CN is a heterogeneous disease

caused by mutations in a number of genes, including

ELANE [3] (the most common [1]), HAX1 [4], CSF3R

[5,6], JAGN1 [7], G6PC3 [8], TCIRG1 [9], and others.

In most cases, ELANE mutations are missense muta-

tions that are distributed throughout all five exons of

the ELANE gene, although a majority of mutations are

found in exons 4 and 5 [10]. Hematopoietic stem and

progenitor cells (HSPCs) of CN patients (CN-HSPCs)

fail to differentiate into neutrophilic granulocytes, but

show no severe maturation defects in other blood

lineages [1,2,11,12]. Exposure of CN-HSPCs to high

concentrations of granulocyte colony-stimulating factor

(G-CSF) partially reverses granulocytic maturation

defects [1,12], but approximately 10% of CN patients

do not respond to G-CSF doses up to 50 mg/kg/d. The

mechanism underlying the granulocytic differentiation

defects in bone marrow HSPCs of CN patients has only

been partially elucidated. Among the relevant factors, we

have identified deregulated levels of LEF-1 [13,14], C/

EBPa [13], and PU.1 [15,16] transcription factors; hyperac-

tivated JAK2 [17] and phospho-STAT5a [18]; elevated

NAMPT/SIRT1 signaling [19]; abrogated expression of the

anti-apoptotic genes Bcl2 and Bcl-xl [20], and markedly

diminished expression of the natural inhibitor of neutrophil

proteases SLPI (secretory leukocyte protease inhibitor) [21].

In addition, we and others have shown that mutant neutro-

phil elastase (NE) triggers activation of the unfolded protein

response (UPR) and induction of endoplasmic reticulum

(ER) stress caused by accumulation of altered (incompletely
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folded or misfolded) NE protein within the ER or by dis-

turbed intracellular trafficking of NE [22−24].

Despite these insights, we are still far from a clear

understanding of the ultimate origin of the defective

granulopoiesis and leukemic transformation in CN.

There are no animal models of CN, except for rare

neutropenia cases caused by inherited mutations in

GFI1 (growth factor independent 1). Elane−/− and

Hax1−/− mice, as well as transgenic mice with a

knock-in of a human ELANE mutation [23], exhibit

normal hematopoietic phenotypes and are not neutrope-

nic. Reprogramming somatic cells of CN patients into

induced pluripotent stem cells (iPSCs), followed by

hematopoietic differentiation of iPSCs, provides a

means for establishing an in vitro model of neutropenia

and leukemic transformation in CN. iPSC hematopoi-

etic differentiation models have limitations and cannot

fully replace in vivo mouse disease models, but they

represent an excellent source of immature hematopoi-

etic cells and mature myeloid cells for further experi-

mentation. Generation of CN-patient-specific iPSCs

that recapitulate the maturation arrest of granulopoiesis

has been described previously [25−28].

In the present study, we describe the establishment

of an experimental in vitro model for studying CN

using patient-derived iPSCs. Using this model, we

were able to identify upregulation of key components

of the UPR pathway and enhanced DNA damage and

increased p21 protein levels in CD34+ cells and CD45+

cells of CN patients.

Methods

iPSC cell culture

iPSCs were maintained on mitomycin-C-treated SNL-feeder

cells (Public Health England, GB) in iPSC medium consist-

ing of DMEM F12 (Sigma-Aldrich, Germany) supplemented

with 20% Knockout Serum Replacement (Invitrogen, USA),

30 ng/mL basic fibroblast growth factor (bFGF; Peprotech,

USA), 1% nonessential amino acid solution (Invitrogen,

USA), 100 mmol/L 2-mercapto-ethanol, and 2 mmol/L L-glu-

tamine. iPSC medium was replaced every day. hiPSCs were

subcultured by manual colony picking on new SNL feeder

cells every 10 days.

Reprogramming of peripheral blood mononuclear cells

A total of 1.5£ 106 peripheral blood mononuclear cells were

cultured after thawing for 6 days in CD34+ cell expansion

medium (Stemline II Medium, Sigma-Aldrich, Germany) sup-

plemented with 10% fetal calf serum, 1% penicillin/strepto-

mycin, 1% glutamine, and the following cytokines:

interleukin-3 (IL-3; 20 ng/mL), IL-6 (20 ng/mL), thrombo-

poietin (20 ng/mL), stem cell factor (SCF; 50 ng/mL), and

FLT3L (50 ng/mL). All cytokines were purchased from R&D

Systems (USA). After 1 week, cells were added to Retronec-

tin (Clontech, USA)-coated 12-well plates together with

OSKM lentiviral supernatant (pRRL.PPT.SF.hOct34.hKlf4.

hSox2.i2dTomato.pre.FRT, provided by A. Schambach) with

multiplicity of infection of 2. Four days later, cells were

transferred to SNL feeders and cultured in an 1:1 mixture of

iPSC medium and CD34+ cell expansion medium supple-

mented with 2 mmol/L valproic acid and 50 mg/mL vitamin

C. Medium was gradually changed to iPSC medium only.

The first iPSC colonies appeared approximately 3 weeks after

initiation of reprogramming.

Quantitative reverse transcription polymerase chain reaction

For quantitative reverse transcription polymerase chain reac-

tion (qRT-PCR), RNA was isolated using RNeasy Micro Kit

(Qiagen, Germany). cDNA was prepared from 1 mg of total

RNA using the Omniscript RT Kit (Qiagen, Germany). qRT-

PCR was performed using SYBR Green qPCR Master Mix

(Roche, Switzerland) on Light Cycler 480 (Roche). Data

were analyzed using the ddCT method. Target genes were

normalized to GAPDH and ACTB as housekeeper genes.

qRT-PCR primer sequences are listed in Supplementary

Table E1 (online only, available at www.exphem.org).

Western blotting

A total of 1£ 106 cells were lysed in 200 mL of 3£ Laemmli

buffer. Protein was denaturated for 10 min at 95˚C. Then,

5 mL of cell lysate in Laemmli buffer was loaded per lane.

Proteins were separated on a 12% polyacrylamide gel and

transferred on a nitrocellulose membrane (GE Healthcare,

USA) for 1 hour at 100 V and 4˚C. Membrane was blocked

for 1 hour in 5% bovine serum albumin (BSA)/Tris-buffered

saline + Tween 20 and incubated in primary antibody over-

night at 4˚C. The following primary antibodies were used:

anti-p21 (Cell Signaling Technology, #2947S), anti-CHOP

(Cell Signaling Technology, #2895S), and anti-NE (Santa

Cruz Biotechnology, sc-55549) and anti-b-actin (Cell Signal-

ing Technology, #13E5). Next, membranes were washed and

incubated with secondary horseradish peroxidase-coupled

(Santa Cruz Biotechnology) antibody for 1 hour at room tem-

perature. Enhanced chemoluminescence solution (Thermo

Fisher Scientific, USA) and Amersham Hyperfilm were used

to detect chemiluminescence signal of proteins.

Embryoid-body-based hematopoietic differentiation of iPSCs

iPSCs were dissociated from SNL feeders or Matrigel (Corn-

ing, USA)-coated plates using phosphate-buffered saline

(PBS)/ethylenediaminetetraacetic acid (0.02%) for 5 min.

Embryoid body (EB) generation was done via centrifugation

of 20,000 cells per EB in 96-well plates using APEL serum-

free differentiation medium (StemCell Technologies, Canada)

supplemented with bFGF (20 ng/mL) and Rho kinase

(ROCK) inhibitor (10 mmol/L) (R&D Systems). The next

day, bone morphogenetic protein 4 (BMP4; 20 ng/mL) was

added to the culture to induce mesodermal differentiation.

On day four, EBs were plated on Matrigel-coated six-well

plates (10 EBs/well) in APEL medium supplemented with

vascular endothelial growth factor (VEGF; 40 ng/mL), SCF

(50 ng/mL), and IL-3 (50 ng/mL). For neutrophilic differentia-

tion, medium was changed 3 days later to fresh APEL medium

supplemented with IL-3 (50 ng/mL) and G-CSF (50 ng/mL). The

first hematopoietic suspension cells appeared on day 12 to day 14.
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Suspension cells were harvested every 3−4 days and analyzed

starting from day 14 to day 32. All cytokines were purchased

from R&D Systems if not otherwise indicated.

Flow cytometry

A total of 30,000 suspension cells collected from an EB-

based hematopoietic differentiation system were used for

flow cytometry. For cell surface staining, cells were prepared

in PBS/1% BSA containing 0.05% sodium azide and stained

with the mouse monoclonal antihuman antibody. For detec-

tion of mature myeloid cells, a multicolor fluorescence-acti-

vated cell-sorting (FACS) antibody panel for “late-stage”

hematopoietic differentiation using the following antibodies

was applied: CD15-PE, CD16-FITC, CD14-APC-H7, CD45-

BV510, CD33-BV421, CD11b-PE-Cy7, and 7-AAD. Samples

were analyzed using a FACSCanto II (BD Biosciences, Ger-

many) and FlowJo version 10 software. Antibodies for flow

cytometry were purchased from BD Biosciences if not other-

wise indicated.

Morphological analysis

Wright−Giemsa-stained cytospin slides were prepared using

Hema-Tek slide stainer (LabX, Canada). Hematopoietic cells

were classified into four groups according to the differentiation

state: myeloblast and promyelocyte (MB/ProM), myelocyte and

metamyelocyte (Myelo/Meta), band and segmented neutrophils

(Band/Seg), and monocytes/macrophages (Mo/MF).

DNA damage quantification

A total of 2.5£ 104 iPSC-derived CD34+/CD45+ cells were

resuspended in PBS and treated with the indicated concentra-

tions of bleomycin for 5 min at room temperature. Genomic

DNA was isolated using the QIAamp DNA Mini Kit (Qiagen,

Germany). Long-run real-time PCR-based DNA-damage

quantification (LORD-Q) was performed and analyzed

according to Lehle et al. [29].

Statistical analysis

Differences in mean values between groups were analyzed

using two-sided, unpaired Student t tests using the SPSS

(IBM, USA) version 9.0 statistical package.

Results

In vitro EB-based iPSC differentiation model reveals

severely impaired myelopoiesis of CN and CN/acute

myeloid leukemia patient-derived iPSCs

We generated iPSCs from two ELANE-CN patients, one

patient with p.C151Y (CN1), and another patient with p.

G214R (CN2) ELANE mutations. From one CN patient,

we were able to generate iPSC clones harboring either

an ELANE p.C151Y mutation only (CN-iPSC clone) or

additional CSF3R and RUNX1 mutations and trisomy 21

(CN/acute myeloid leukemia [AML]-iPSC clone). All

iPSC lines expressed elevated protein and mRNA levels

of pluripotent stem-cell-specific factors and showed

inactivation of the lentiviral plasmid used for reprog-

ramming.

To evaluate myeloid differentiation of ELANE-CN

patients iPSCs, we slightly modified an in vitro EB-based

iPSC differentiation method developed by Lachmann

et al. [30] that allows generation of hematopoietic cells

and mature myeloid cells for more than 30 days. EB for-

mation was performed by first centrifuging dissociated

iPSCs (20,000 cells/EB) in 96-well conical-bottomed

plates in APEL serum-free differentiation medium con-

taining bFGF and ROCK inhibitors, followed by induc-

tion of mesodermal differentiation by the addition of

BMP4 on day 1 of culture. To induce hematopoietic dif-

ferentiation, we plated EBs on Matrigel-coated six-well

plates (10 EBs/well) in APEL medium supplemented

with VEGF, SCF, and IL-3 on day 4 of culture. Neutro-

philic differentiation was initiated 3 days later by replace-

ment of cytokines with IL-3 and G-CSF (Figure 1A). In

EBs cultured from healthy donor (HD)-derived iPSCs,

hematopoietic cells appeared in the supernatants on day

14 and the number of cells was markedly increased at

day 28 of culture (Figure 1B). In contrast, the number of

hematopoietic cells in culture supernatants of EBs from

CN patient-derived iPSCs was markedly diminished and

almost no myeloid cells were produced from cultured

CN/AML iPSCs (Figure 1B). Consistent with these obser-

vations, granulocytic differentiation into mature polymor-

phonuclear neutrophils (CD15+CD16+CD45+ cell

population) was markedly reduced in iPSC lines of both

ELANE-CN patients compared with HD-derived iPSCs

and was abolished in CN/AML-iPSCs (Figure 1C). How-

ever, the number of monocytes (CD14+ CD11b+CD45+

cells) produced by CN patient-derived iPSCs was strongly

increased compared with that produced by HD-derived

iPSCs (Figure 1C). This pattern recapitulates the situation

in CN patients, in whom monocyte numbers in the

peripheral blood are elevated [31]. Morphological exami-

nations of Giemsa-stained cytospin slides confirmed these

results (Figure 1D). Therefore these observations demon-

strate the successful establishment of an in vitro model to

evaluate mechanisms of diminished granulocytic differen-

tiation of hematopoietic cells in CN patients.

Elevated ER stress and UPR in CD34+ and CD45+

cells from CN patient- and CN1/AML patient-derived

iPSCs

We next investigated whether intracellular signaling path-

ways operating during induction of the UPR, which is

known to be hyperactivated in primary HSPCs and granu-

locytes of CN patients [21−24], are also affected in iPSC-

derived hematopoietic cells. We found that ELANE mRNA

and NE protein levels were highly upregulated in

CD34+ cells generated from CN1/AML-iPSCs compared

with those generated from CN-iPSCs and HD-iPSCs

(Figures 2A and 2C). We detected deregulation of mRNA

expression of the UPR downstream targets in CN1 and

CN2 iPSC-derived CD34+ cells. Therefore DDIT3 (DNA-
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damage inducible transcript 3, also called CHOP) was

increased in CD34+ cells generated from CN1-iPSCs, CN2-

iPSCs, and CN1/AML-iPSCs compared with those from

HD-iPSCs (Figure 2B). In contrast, expression of mRNA

for BiP (binding immunoglobulin protein) was upregulated

in CN2, but not CN1-iPSC- or CN1/AML-iPSC-derived

CD34+ cells. ATF6 (activating transcription factor 6)

mRNA was highly expressed in CD34+ cells derived from

CN1-iPSCs, but not in CN2-iPSC- or CN1/AML-iPSC-

derived cells. In contrast, maximum ATF4 (activating tran-

scription factor 4) mRNA expression was detected in

CD34+ cells from CN2-iPSCs and CN1/AML-iPSCs, but

Figure 1. In vitro model of CN and CN/AML using EB-based myeloid differentiation method of patients iPSCs. (A) Scheme of the protocol for

EB-based hematopoietic and neutrophilic differentiation of iPSCs. (B) Production of hematopoietic cells from iPSCs over time in the EB-based

differentiation system. Hematopoietic cells were harvested from EB culture supernatants starting from day 14 to day 28 and counted using trypan

blue dye exclusion. Data represent means § SD from two independent experiments. Two-sided, unpaired Student t test p values to HD are

shown. *p < 0.05. (C) Flow cytometry analysis of suspension cells harvested from EBs culture on day 28 of differentiation. Data represent

means § SD from two independent experiments. *p < 0.05. (D) Morphological analysis of suspension cells harvested from iPSCs at day 28 of

differentiation (Wright-Giemsa Stain). Representative cytospin slide pictures are shown. HD, healthy donor.
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Figure 2. Analysis of ER stress and unfolded protein response (UPR) in CD34+ and CD45+ cells derived from CN- and CN/AML-iPSCs. (A) qRT-PCR

analysis of ELANE mRNA expression in CD45+CD34+ cells at day 14 of iPSC differentiation. Data represent means § SD from two independent experi-

ments. *p < 0.05, **p < 0.001. (B) qRT-PCR analysis of mRNA expression of UPR-related genes in CD45+CD34+ cells at day 14 of iPSC differentiation,

as indicated. Data represent means § SD from two independent experiments. *p < 0.05, **p <0.01, ***p < 0.001. (C) Representative Western blot images

of NE and CHOP protein expression in CD45+ cells at day 28 of iPSC differentiation, as indicated. Numbers below Western blot images indicate protein

expression levels normalized to b-Actin.
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not in those from CN1-iPSCs or HD-iPSCs (Figure 2B).

CHOP protein levels were also elevated in CD45+ cells

derived on day 28 of EB differentiation of CN and CN/

AML iPSCs (Figure 2C).

DNA damage and DNA-repair responses in CD34+

cells from CN-iPSCs

We further assessed whether elevated ER stress result-

ing from UPR sensitizes CN-iPSC-derived CD34+ cells

to DNA damage. DNA damage was induced by treating

cells with bleomycin for 5 min, after which bleomycin

was removed and DNA damage and DNA repair were

assessed immediately and after 2 hours of incubation

(Figure 3A). Long-run, real-time PCR-based DNA-

damage quantification (LORD-Q [29]) of genomic

DNA loci (GAPDH and TP53) and mitochondrial DNA

(mtDNA) revealed a robust increase in mtDNA and

nuclear DNA lesions in CN-iPSC-derived CD34+ cells

compared with HD-iPSC-derived cells (Figure 3B).

Damaged mtDNA and GAPDH DNA loci, but not

TP53 DNA loci, were also more frequent in CD34+

cells from CN-iPSCs 2 hours after bleomycin treatment

compared with that in HD-iPSC-derived CD34+ cells.

These data suggest delayed DNA repair and increased

susceptibility to DNA damage in CD34+ cells from

CN-iPSC lines (Figure 3C).

p21 upregulation in CD34+ and CD45+ cells from

CN-iPSCs and CN/AML-iPSCs

We next sought to determine whether DNA damage

pathways are differentially regulated in CD34+ and

CD45+ cells generated from iPSCs of CN or CN/AML

patients compared with HD-generated cells. Our assess-

ment of the role of the p53-p21 pathway, which is typi-

cally activated upon DNA damage, showed no

differences in TP53 mRNA expression, but revealed an

approximately threefold increase in p21 mRNA expres-

sion in CN-iPSC-derived blood cells compared with

those derived from HD cells and a fivefold to sixfold

increase in CN/AML-iPSC-derived cells (Figure 3D).

p21 protein levels were also elevated in CN/AML cells

(Figure 3E). The expression of MDM2 mRNA was

markedly diminished in CN/AML cells, and GADD45a

mRNA expression was slightly induced in both CN-

iPSC- and CN/AML-iPSC-derived cells compared with

those derived from HD-iPSCs (Figure 3D). Interest-

ingly, p21 mRNA expression was also upregulated in

primary bone marrow CD33+ cells of CN patients com-

pared with those of G-CSF-treated healthy individuals,

in which p21 levels were even suppressed by G-CSF

(data not shown).

Discussion

In the present study, we established an in vitro model

of CN using patient-derived iPSCs. We also

successfully reprogrammed AML blasts from one CN/

AML patient and were able to compare hematopoietic

and myeloid differentiation of iPSCs derived from CN/

AML cells, CN patients, and a healthy donor. Our data

provide strong evidence that, despite some limitations,

iPSCs represent a valuable resource for disease model-

ing, especially for investigations on inherited bone

marrow failure syndromes. Primary bone marrow mate-

rial from pediatric patients with bone marrow failure is

extremely limited and mouse models are not available

for many of these syndromes. In this latter context,

elane
−/− mice, hax1−/− mice, and transgenic mice car-

rying mutated elane do not exhibit neutropenia. In

addition, transgenic mice carrying a truncated G-CSF

receptor (csf3r) mutant never develop leukemia. These

acquired CSF3R mutations are observed in leukemic

blasts of more than 80% of CN patients with overt

AML or MDS [32].

Using our iPSC model, we were able to recapitulate

the hematopoietic and myeloid differentiation defects of

HSPCs observed in CN patients in vivo. Specifically,

we detected diminished granulocytic differentiation of

CN-iPSCs, an observation consistent with the induction

of UPR. iPSC lines from two CN patients showed dif-

ferent behavior during first 2 weeks of hematopoietic

differentiation, when differentiation of EBs into CD34+

CD45+ cells occurs, but both CN patients’ iPSC lines

demonstrated similar markedly diminished granulocytic

differentiation at later stages. These early differentiation

stage differences may be explained by the varying

effects of the mutated NE protein on blood cell forma-

tion, which is dependent on the mutated amino acid res-

idues. Interestingly, different ELANE mutations resulted

in abolished granulocytic differentiation of CN patient-

derived iPSCs, an observation consistent with insights

gained from CN patients [1]. Monocytic differentiation

was elevated in CN-iPSC lines, an observation that par-

allels the common finding of peripheral blood monocy-

tosis in CN patients [1,31]. One possible explanation for

this monocytosis is a compensatory reaction of the bone

marrow to diminished neutrophil counts and function

that serves to induce an immune response to bacterial

pathogens. An alternative explanation is deregulated

expression of lineage-specific (granulocyte-specific vs.

monocyte-specific) transcription factors in myeloid pro-

genitor cells of CN patients. Deregulated expression of

relevant transcription factors (e.g., diminished expres-

sion of LEF-1 and C/EBPa, but elevated PU.1 expres-

sion) has been described by us previously [15]. Elevated

monocytic maturation of CN patients’ iPSC lines in

vitro further supports the theory that deregulation of a

transcriptional program in HSPCs is a cause of neutro-

penia and monocytosis.

UPR hyperactivation in primary HSPCs of CN patients

has been described previously [22−24]. It is presumed that
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Figure 3. Quantification of DNA damage and p21 expression in CD34+ and CD45+ cells derived from patient-specific iPSCs. (A) Scheme for

DNA damage measurements in HD- and CN-iPSCs derived CD34+CD45+ cells. (B,C) Measurement of DNA damage loci for mitochondrial

DNA (mtDNA) and DNA of TP53 or GAPDH gene loci of CN-iPSC-derived CD45+CD34+ cells upon 5-min treatment with 0.1 and 1 mmol/L

bleomycin. DNA lesions were assessed directly 5 min (DNA damage (B)) and 2 hours (DNA repair (C)) after bleomycin treatment. Data are

shown as means § SD from two independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001. (D) qRT-PCR analysis of selected genes in

CD45+CD34+ cells generated from different iPSCs clones on day 14 of iPSC differentiation. mRNA expression of target genes was normalized

to b-actin and shown relative to HD. Data represent means § SD from two independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001. (E)

Representative Western blot images of p21 protein and -actin expression in CD45+ cells at day 28 of iPSC differentiation. Numbers below the

Western blot images indicate protein expression levels normalized to b-actin.
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proper folding and intracellular localization of mutated NE

is severely affected in myeloid cells of ELANE-CN

patients. These defects ultimately lead to activation of the

UPR and ER stress. We detected no activation of ATF6

and BiP in CN/AML cells compared with CN cells. These

differences may be attributable to a dosage effect of

mutated NE or additional coregulation of ATF4, but not

ATF6, by mutated RUNX1 and trisomy 21. Interestingly,

elevated expression of ATF4 is associated with resistance

to current chemotherapeutic drugs [33] and we detected

hyperactivation of ATF4 in CN/AML cells. We have

recently reported activation of different UPR pathways

depending on the type of ELANE mutation [22]. Consistent

with this, we demonstrate here that ELANE mutant p.

C151Y induces expression of ATF4, ATF6, and CHOP,

but not BiP. At the same time, p.G214R ELANE mutation

caused upregulation of BiP, ATF4, and CHOP, but not

ATF6. The impact of inherited CN-associated mutations

(e.g., in ELANE) and UPR activation on leukemic pro-

gression is still unclear. It has been shown that induction

of ER stress protects gastric cancer cells against apopto-

sis [34]. It is also known that activation of the UPR

remodels the sensitivity of tumor cells to chemotherapeu-

tic agents, making them more sensitive in some cases

and more resistant in others [35]. Interestingly, upon ER

stress, ATF4 is activated in mouse HSPCs, but not in

more committed progenitors, leading to apoptosis of

HSPCs [36]. Elevated levels of mutated NE, which we

detected in CD45+ cells derived from CN-iPSCs and CN/

AML-iPSCs, may further amplify the UPR, and addi-

tional signaling pathways (e.g., hyperactivated STAT5a

[18] or mutated RUNX1 [37]) may protect these cells

from apoptosis, resulting in leukemogenic transformation

of these cells. Because ELANE expression is regulated by

RUNX1 [38], it will be interesting to determine how mis-

sense RUNX1 mutations affect ELANE expression. Cai et

al. demonstrated an attenuated UPR in HSPCs from

Runx1−/− mice [39] and another study showed induction

of UPR by trisomy 21 in immortalized lymphocytes and

fibroblasts of Down syndrome patients [40]. The induc-

tion of UPR and ER stress in HSPCs of these patients

has not yet been studied, but it is known that individuals

with Down syndrome often develop AML.

We identified an increased susceptibility of CN

CD34+ CD45+ cells to DNA damage, a finding consis-

tent with the observed prolongation in DNA repair.

Interestingly, ER stress suppresses DNA double-strand

break repair in tumor cells [41]. Moreover, Nagelkerle

et al. demonstrated that the UPR increases the resistance

of tumor cells to therapeutic agents by regulating the

DNA damage response [42]. In CN patients with inher-

ited ELANE mutations, a permanent stress response

caused by a chronically elevated UPR may cause geno-

toxic stress, increasing the susceptibility of HSPCs to

secondary leukemia-causing events, although the

complete pathomechanism remains to be investigated.

An evaluation of the expression levels of the main play-

ers in p53 signaling, a classical DNA damage response

pathway, revealed strong upregulation of p21 mRNA

levels, but not p53 mRNA expression, in CN and CN/

AML CD34+ cells. p21 protein expression was also ele-

vated in CD45+ cells of CN/AML patients compared

with CN and HD-derived cells. The mechanism of p21

upregulation in CN and CN/AML cells remains to be

investigated, but may be explained by increased p53

protein stability or diminished levels of the p53 ubiqui-

tin E3 ligase MDM2. Another possibility is p53-inde-

pendent activation of p21 expression. In this context,

Galanos et al. reported p53-independent upregulation of

p21 selectively in more aggressive tumor cells, which

featured increased genomic instability, aggressiveness,

and chemoresistance [43]. Unaffected expression of

GADD45a, another p53 target, also argues for possibly

inactive p53 and thus a p53-independent mechanism of

p21 activation in CD34+ cells of CN patients. Less is

known about UPR-mediated regulation of p21 expres-

sion. One study described inhibition of p21 expression

by CHOP [44], but we found that both CHOP and p21

levels were elevated in CN and CN/AML CD34+ and

CD45+ cells. It is known that accumulated cytoplasmic

p21 exerts anti-apoptotic functions in AML cells

[45,46] and high p21 levels are associated with chemo-

resistance in AML [47]. Elevated expression of p21 in

preleukemic cells of CN patients may make these cells

resistant to apoptosis, leading to an increase in their

survival and an increased probability of their leukemo-

genic transformation. AML blasts of CN patients are

resistant to conventional chemotherapy, so bone mar-

row transplantation is the only treatment option in

these patients [1].

Taken together, our findings demonstrate that the iPSC-

based model established here is a reliable in vitro model

for studying defective signaling systems underlying

impaired hematopoietic differentiation in patients with

bone marrow failure syndromes (in our case, CN). This

model may also be used for drug development or genera-

tion of isogenic iPSC lines using CRISPR/Cas9-mediated

correction of inherited disease-causing mutations.
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Chapter 27

CRISPR/Cas9 Genome Editing of Human-Induced
Pluripotent Stem Cells Followed by Granulocytic
Differentiation

Benjamin Dannenmann, Masoud Nasri, Karl Welte, and Julia Skokowa

Abstract

Research on patient-derived induced pluripotent stem cells (iPSCs) could immensely benefit from the
implementation of CRISPR/Cas9 genome editing of iPSCs, creating unique opportunities such as the
establishment of isogenic iPSC lines for disease modeling or personalized patient-specific drug screenings.
Here we describe a stepwise protocol of safe, efficient, and selection-free CRISPR/Cas9-mediated gene
correction or knockout in human iPSCs followed by 3D spin-embryoid body (EB)-based hematopoietic/
neutrophilic iPSC-differentiation.

Key words CRISPR/Cas9, Human-induced pluripotent stem cells, Genome editing, Ribonucleo-
protein, iPSC differentiation, Hematopoietic, and neutrophilic differentiation of iPSCs

1 Introduction

iPSC technology is a powerful tool for disease modeling, patient-
specific drug screening, and paving the way for personalized medi-
cine [1, 2]. Patient-derived iPSC cells can be used as an excellent
tool to model the disease and reveal the key driving pathomechan-
isms behind it. An important challenge of iPSC technology is the
high degree of variability between individual iPSC lines that are
mainly due to differences in genetic background and reprogram-
ming history [3]. Therefore, to have an optimal comparison in
studies using iPSC, especially disease modeling, the role of the
isogenic iPSC lines is indispensable. Combination of CRISPR/
Cas9-based gene correction or knockout in human iPSCs (hiPSCs)
derived from patients suffering from inherited or acquired hema-
topoietic disease with subsequent EB-based in vitro hematopoietic
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differentiation is a valuable tool to delineate the role of the gene of
interest or gene mutations on hematopoietic differentiation in a
fast, efficient, and reproducible manner [4–6].

In this chapter, we first explain in detail our CRISPR/Cas9
gene-editing strategy of iPSCs which is safe, as no viral vectors or
plasmids are used, efficient, and selection free. We next describe our
3D spin-embryoid body (EB)-based iPSCs-differentiation proto-
col, which has many advantages over standard 2D iPSCs-
differentiation protocols. The main advantage is the high amounts
of HSPCs and mature granulocytes derived from iPSCs (more than
1 � 106 cells/10 EBs) and improved functionality of mature cells
[4]. Another advantage is that the present protocol is based on the
use of STEMdiff APEL medium, a fully defined, serum-free, and
animal component free-differentiation medium which is highly
versatile and allows the differentiation of cells to multiple hemato-
poietic lineages [7, 8]. By adapting variable cytokine combinations,
our strategy allows efficient generation of not only a high number
of CD34+/CD45+ cells and mature granulocytes but also mono-
cytes or megakaryocytes. Furthermore, the current protocol dis-
plays high reproducibility between different experiments.

2 Materials

The reagents describing below have been successfully used by our
group, but there are other commercially available alternatives that
can be used and optimized.

2.1 Transfection

and Electroporation

of iPSCs with Cas9

Ribonucleoprotein

(RNP)

1. Guide RNAs for target sequence ordered as lyophilized single-
guide RNA with or without 20-O-methyl 30phosphorothioate
(Integrated DNA Technologies).

2. Alt-R S.p Cas9 Nuclease V3 or Alt-R S.p HiFi Cas9 Nuclease
V3 (Integrated DNA Technologies).

3. Ultramer DNA oligos, 4 nm synthesis scale, and standard
desalting as purification method (Integrated DNA
Technologies).

4. TransIT-X2 transfection reagent (Mirus, Madison, USA).

5. Amaxa 4D-Nucleofector system and P3 primary Cell
4D-Nucleofector Kit (Lonza).

2.2 iPSCs

Maintenance

and EB-Based Myeloid

Differentiation

1. StemFlex medium, RevitaCell supplement, and Geltrex LDEV-
Free reduced growth factor basement membrane matrix (Ther-
moFisher Scientific).

2. STEMdiff APEL 2 Medium (Stem Cell Technologies).

3. ROCK inhibitor, FGF2, BMP4, VEGF, SCF, IL3, and G-CSF.
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3 Methods

3.1 Design, Testing,

and Validation

of Guide RNA

1. Design guide RNAs using guide RNA designing web tools
(e.g., CCTOP, Centre for Organismal Studies Heidelberg):

(a) For gene-correction purpose, select 4–6 guide RNAs in a
window of 40 nt distance from the desired mutation site
with good off-target activity (see Note 1).

The optimal window is 10 nt distance. Rank the guide
RNAs based on the off-target activity profile.

(b) For gene knockout purpose, select 4–6 guide RNAs in the
coding sequence of the first or second exon of the gene of
choice. Consider all possible transcripts and isoforms for a
successful knockout.

2. Cross check the guide RNAs list in the second guide RNA
designing website (e.g., DESKGEN).

3. Order the list of guide RNAs as crRNA or sgRNA via provider
of choice (e.g., Integrated DNA Technologies, Coralville,
USA).

4. Upon receiving the guide RNAs, spin them down briefly and
resuspend to the final concentration of 100 μM.

5. For validation of guide RNAs, seed 105 HEK 293T cells 1 day
before transfection in 12-well plate.

6. On the day of transfection, assemble 0.24 μL from each single-
guide RNA (100 μM Stock, 24 nM final concentration) with
0.2 μL Cas9 protein (62 μM Stock, 12 nM final concentration)
in a sterile tube.

7. Add 100 μL of OptiMEM I Reduced Serum Medium to each
tube and mix gently.

8. Add 2 μL TransIT-X2 transfection reagent (seeNote 2) to each
tube, mix gently, and incubate at room temperature for 20min.

9. Add the TransIT-X2: RNP complexes dropwise to the different
areas of the well. Gently rock the plate forth and back and
incubate at 37 �C for 48 h.

10. Harvest cells for isolation of genomic DNA and amplify the
target genomic area by PCR. Upon successful PCR, send PCR
products for Sanger sequencing.

11. Quantify the on-target efficiency of guide RNAs by Tideor ICE
web tools [9, 10] and re-rank the guide RNA list based on
highest on-target and lowest off-target activity.

12. For gene correction purpose, design the repair template as
single-stranded oligonucleotide (ssODN) with homology
arms of 50–90 nt surrounding the mutation site. Introduce a
silent mutation at the PAM site to protect edited sequence
from re-cutting by Cas9 after gene correction. Synthesize or
order ssODN as 4 nmol Ultramer DNA oligonucleotide.
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3.2 Electroporation

of iPSCs with Cas9

Ribonucleoprotein

(RNP)

Scheme of CRISPR/Cas9-based genome editing of human iPSCs
is shown in Fig. 1.

1. Use the nucleofection protocol for the Amaxa 4D Nucleofec-
tion system with P3 Primary Cell 4D-Nucleofector X Kit.

2. For the electroporation of 106 cells, assemble 3.3 μL sgRNA
and 15 μg Cas9 protein at room temperature for 30 min.

3. For detaching iPSCs, remove the medium and add Accutase,
and then incubate until the cells start to detach (for approxi-
mately 3–5 min). Keep the number of pipetting to a minimum.

4. Wash cells two times with PBS prior to nucleofection to
remove all traces of nucleases present in the culture medium.
Centrifuge the cells at 300 � g for 5 min.

5. Remove the supernatant after centrifugation. For successful
electroporation, it is important to completely remove the
supernatant.

6. Prepare the nucleofection buffer according to the instructions
of the P3 Primary Cell 4D-Nucleofector X Kit. Add ssODN
and RNP mix to the nucleofection buffer.

7. Resuspend the cell pellet in the nucleofection buffer-RNP mix
and transfer iPSCs suspension to the electroporation cuvette.
Try to avoid any air bubble formation.

8. Place the cuvette in the Amaxa 4D Nucleofector and choose
the CA-137 program.

9. After electroporation, incubate the cells in the cuvette for
10 min at room temperature.

10. Take up the cells gently in pre-warmed StemFlex medium
supplemented with RevitaCell and transfer them to the
Geltrex-coated 6-well plate.

3.3 Clonal Isolation

and 96-Well Plate

Culture of iPSCs

1. About 48 h post-electroporation, remove the medium, wash
two times with PBS, and add 2 mL Accutase; incubate until the
cells start to detach. It is important to have single cells at this
step. Transfer the cells in 15 mL tube, centrifuge down at

Fig. 1 Scheme of CRISPR/Cas9-based genome editing of human iPSCs
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300 � g for 5 min, discard the supernatant, and resuspend cells
in Stemflex medium supplemented with RevitaCell.

2. Count cells.

3. Transfer 5000 iPSCs (see Note 3) to 10 mL Stemflex medium
supplemented with RevitaCell, mix with 10 mL pipette few
times, and transfer to the Geltrex-coated 10 cm dish. Rock
forth and back. Put the dish back into the incubator.

4. Incubate the 10 cm dish for 7 days. Change the medium every
24 h with Stemflex medium without RevitaCell.

5. Coat the flat bottom 96-well plate with 100 μL Geltrex for at
least 2 h at room temperature. Remove the Geltrex from the
wells using a multichannel pump and add 100 μL Stemflex
medium supplemented with RevitaCell to each well using a
multichannel pipette.

6. After 7 days (seeNote 4), wash the 10 cm dish gently with PBS.
Add 10 mL PBS to the dish and incubate at room temperature
for 5 min.

7. Put the 10 cm dish under the microscope (see Note 5) and
using a 100 μL pipette that adjusted to 20 μL, gently scratch,
pick, and transfer single iPS clone to a well of 96-well plate.
Pipette few times to dissociate the clone. Pick 96 clones (see
Note 6).

8. Put the 96-well plate containing 96 single iPSC clones to the
incubator for three to four for days.

9. Coat at least 2 96-well plates (use flat bottom plates) with
Geltrex (see Note 7) before use, remove the coating, and add
100 μL StemFlex Media supplemented with RevitaCell.

10. After 3–4 days, remove the media from 96-well plate using a
multichannel pump (see Note 8), add 40 μL Accutase diluted
1:3 with PBS to each well, and incubate at 37 �C for 30 min (see
Note 9) until the iPSCs start to dissociate.

11. Prepare a sterile reservoir filled with StemFlex Media supple-
mented with RevitaCell. Using a multichannel pipette, add
60 μL media to each well, pipette 4–5 times, and transfer
60 μL iPSCs containing media to the exact same position in a
new Geltrex-coated 96-well plate. This plate will be used later
for genomic DNA isolation (gDNA plate). Using the same
tips, transfer the remaining 35 μL iPSCs containing media to
the exact same position in the second Geltrex-coated 96-well
plate. This plate will be stored in the incubator (maintenance
plate).
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3.4 Screening

for Gene-Corrected

iPSC Clones

and Validation of Gene

Correction

1. Using a multichannel pump, remove the media from all wells of
the gDNA plate and wash each well two times with PBS.

2. Add 30 μL of QuickExtract DNA Extraction solution.

3. Heat the 96-well plate at 65 �C for 6 min and 98 �C for 2 min.
The 96-well plate can be directly used as a template DNA in
PCR reaction or stored at �20 �C.

4. To amplify the target region, prepare a PCR master mix,
pipette it to PCR-specific 96-well plate, and add 2 μL of
gDNA prepared in step 11 of Subheading 3.3.

5. Perform the PCR reaction.

6. For gene correction purpose, use restriction endonucleases
enzyme that produces a different pattern of digestion after
gene correction (e.g., http://insilico.ehu.es) and perform
restriction enzyme digestion of each clone.

7. For gene knockout purpose, instead of endonuclease restric-
tion enzyme digestion, perform in vitro Cas9 cleavage using
the same sgRNA that has been used for the knockout as
following:

(a) Prepare sgRNA at a concentration of 10 μM in a sterile
microtube by diluting the sgRNA in nuclease-free buffer.

(b) Prepare 1 μM RNP complex by adding 1.6 μL Cas9
enzyme (62 μM stock) and 88.4 μL PBS to the microtube
containing 10 μM sgRNA.

(c) Incubate at room temperature for 15 min.

(d) Perform the in vitro digestion reaction by adding 1 μL of
1 μMCas9 RNP, 1 μL IDT nuclease-free buffer, and 3 μL
of unpurified PCR reaction from step 5 of Subheading
3.4.

(e) Incubate the reaction at 37 �C for 1 h.
PCR product of knockout candidate iPSC clones

should not be digested by Cas9 RNP as the target
sequence is already modified.

8. Run the reaction from steps 6 or 7 on 1% agarose gel and
perform Sanger sequencing of the PCR products with a pre-
ferred pattern in order to validate gene correction or knock out
in the selected iPSC clones.

3.5 Hematopoietic

and Neutrophilic

Differentiation

of iPSCs Via Spin-EBs

The scheme of EB-based neutrophilic differentiation is shown in
Fig. 2. A list of cytokines used for EB-differentiation is shown in
Table 1.

1. Two days before EB formation, seed 4 � 105 mitotically inac-
tivated SNL feeder cells on a 3.5 cm2cell culture dish.
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2. One day before EB formation, seed approximately 50–70%
confluent feeder-free iPSCs from one well of a 6-well plate to
a 3.5 cm dish with SNL feeder cells in iPSCs maintenance
medium supplemented with 20 ng/mL bFGF and 10 nM
ROCK inhibitor (see Note 10).

3. On the day of EB formation (day 1), precool centrifuge to
4 �C, as it will increase efficiency of compact EB formation.

4. Prepare APEL medium for EB formation. From one 3.5 cm2

dish, you can produce up to 30 EBs. For 30 EBs, 3 mL of
APEL medium supplemented with ROCK (10 nM) and bFGF
(20 ng/mL) are needed.

Day:    1          2                  4                              7                                      28         32 

Growth 

factors: FGF2
FGF2,

BMP4 VEGF, SCF, IL3 IL3, GCSF

500 µM

500 µM
500 µM

Fig. 2 Scheme of EB-based neutrophilic differentiation of human iPSCs

Table 1

List of cytokines used for EB-based hematopoietic iPSCs differentiation

Cytokine

Stock

concentration

Final

concentration Function Company

BMP4 20 μg/mL 20 ng/mL Mesoderm
induction

R&D

bFGF (FGF2) 100 μg/mL 20 ng/mL Mesoderm
differentiation

Peprotech

VEGF 40 μg/mL 40 ng/mL Angiogenesis R&D

SCF 100 μg/mL 50 ng/mL Stem cell factor Peprotech

IL-3 50 μg/mL 50 ng/mL Myeloid
differentiation

Peprotech

ROCK inhibitor
(Y-27632dihydrochloride)

10 mM 10 nM Inhibition of
rho-kinase

Tocris

G-CSF 100 μg/mL 50 ng/mL Granulocytic
differentiation

Neupogen
(Filgrastim)
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5. Remove iPSCs maintenance medium from iPSCs and wash
once with 1 mL PBS.

6. Add 1 mL PBS/0.02% EDTA to the 3.5 cm2 dish with iPSCs
for 7 min, remove PBS/EDTA solution, and detach iPSCs in
prepared APEL medium.

7. Collect iPSCs in a falcon tube and distribute100 μL per well of
iPSCs suspension to a 96-well plate with conical bottom.

8. Centrifuge plate for 5 min at 435 � g and 4 �C.

9. Incubate the plate for 24 h at 37 �C.

10. On day 2, add BMP4 in 10 μL APEL medium per well for a
final concentration of 20 ng/mL.

11. On day 3, prepare Geltrex-coated 6-well plates.

12. On day 4, plate EBs on Geltrex-coated wells (10 EBs/well) in
2 mL per well of APEL medium supplemented with VEGF
(40 ng/mL), SCF (50 ng/mL), and IL-3 (50 ng/mL).

13. On day 7, change medium to APEL medium supplemented
with IL-3 (50 ng/mL) and G-CSF (50 ng/mL). Hematopoie-
tic cells start to appear on day 8.

14. On day 10, add 2 mL of APEL medium supplemented with
IL-3 (50 ng/mL) and G-CSF (50 ng/mL).

15. On day 14, take floating cells for further analysis and exchange
medium to the fresh APEL medium containing G-CSF
(50 ng/mL) and IL-3 (50 ng/mL), 2 mL per well. At this
stage, floating cells are mainly CD34+ hematopoietic stem and
progenitor cells that can be used for various downstream ana-
lyses such as colony-forming unit (CFU) assay, morphological
analysis, or flow cytometry analysis of early hematopoietic
markers of hematopoietic stem and progenitor cells (HSPCs)
(see Subheading 3.6).

16. From day 14, flow cytometry analysis for hematopoietic stem
cells (see Subheading 3.6) and mature myeloid cells (see Sub-
heading 3.7) as well as cell counts of floating cells should be
performed every 3–4 days to follow the myeloid maturation
process. Floating cells mature stepwise from CD34+ cells on
day 14 to mature CD15+CD16+ neutrophils on day 28–32.
The culture medium from day 14 to day 32 consists of APEL
medium supplemented with IL-3 (50 ng/mL) and G-CSF
(50 ng/mL), 2 mL medium per well.

17. On day 28 and day 32, mature neutrophils are analyzed using
multicolor flow cytometry panel for mature myeloid cells (see
Subheading 3.7 and Note 11).
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3.6 Multicolor Flow

Cytometry Analysis

of the Early Stages

of Hematopoietic

Differentiation

of iPSCs

Multicolor flow cytometry analysis for the evaluation of HSPCs in
suspension cell fraction of EBs-based hematopoietic differentiation
culture of iPSCs is performed on day 14 of culture.

1. Harvest 6 � 104 cells in 1 mL of ice-cold PBS and centrifuge
for 5 min at 1200 � g. Usually, 3 � 104 cells are used for
staining with specific antibody and 3 � 104 cells for unstained
control.

2. Resuspend cells in 150 μL ice-cold FACS buffer.

3. Add 75 μL of cell suspension into each FACS tube on ice.

4. Add antibody as described in Table 2.

5. Incubate for 15 min on ice and protected from light.

6. Add 500 μL ice-cold FACS buffer to wash stained cells.

7. Centrifuge 5 min at 435 � g and + 4 �C, and then discard
supernatant.

8. Resuspend cell pellet in 100 μL ice-cold FACS buffer.

9. Evaluate stained cells on BD FACS Canto II. Representative
images of flow cytometry are shown in Fig. 3.

3.7 Multicolor Flow

Cytometry Analysis

of the Late Stages

of Myeloid

Differentiation

of iPSCs

Multicolor flow cytometry analysis of floating cells derived from
EBs-based iPSCs culture in order to evaluate surface expression of
myeloid markers is performed on day 28–32.

1. Harvest 6 � 104 cells in 1 mL of ice-cold PBS and centrifuge
for 5 min at 12,000 � g. In addition, 3 � 104 cells are used for
staining with specific antibody and 3 � 104 cells for unstained
control.

2. Resuspend cells in 150 μL ice-cold FACS buffer.

Table 2

A list of antibodies used for the early panel FACS analysis

Antibody Conjugation Company Volume in μL

CD33 BV421 BioLegend 2

CD45 BV510 BioLegend 2

KDR AF647 BioLegend 2

CD41a FITC BD 0.5

CD235 FITC BD 0.5

CD34 PE-Cy7 BD 5

CD43 PE BD 5

7AAD BD 2
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3. Add 75 μL of cell suspension into each FACS tube to a final
volume of 100 μL.

4. Add FACS antibodies as described in Table 3.

5. Incubate for 15 min on ice and protect from light.

C
D

3
4

KDR CD 43

Early hematopoietic 

precursors

Myeloid 

progenitors

C
D

 4
1

a
 C

D
 2

3
5

a

CD 45

C
D

3
4

Erythroid/Megaka-

ryocyte progenitors
Hematopoietic Stem 

Cells (HSCs)

Fig. 3 Representative images of flow cytometry analysis of early stages of EB-based hematopoietic differen-

tiation of healthy donor-derived iPSCs
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6. Add 500 μL of ice-cold FACS buffer to wash stained cells.

7. Centrifuge 5 min at 435 � g and + 4 �C, and then discard
supernatant.

8. Resuspend cell pellet in 100 μL of ice-cold FACS buffer.

9. Measure stained cells on BD FACS Canto II. Representative
images of flow cytometry are shown in Fig. 4.

4 Notes

1. Most of the existing off-target prediction methods calculate
scores based on the positions of the mismatches to the guide
sequence [11]; a good off-target profile is a probability of

Table 3

A list of antibodies used for the late panel FACS analysis

Antibody Conjugation Company Volume in μL

CD33 BV421 BioLegend 2

CD45 BV510 BioLegend 2

CD15 PE BD 5

CD16 FITC BD 5

CD11b PE-Cy7 BioLegend 2

CD14 APC-H7 BD 2

CD177 APC BioLegend 0.5

7AAD BD 2

CD16 CD11b

C
D

1
4

C
D

1
5

Mature 

Neutrophils Granulocytes Monocytes

Fig. 4 Representative images of flow cytometry analysis of late stages of myeloid EB-based differentiation of

healthy donor-derived iPSCs
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having no unintended cut with up to twomismatches (0:0, 1:0,
2:0). Sanger Institute webtool (https://www.sanger.ac.uk/
htgt/wge/) can be used to assess the off-target profiles of
selected sgRNAs.

2. Any RNP-compatible transfection reagent can be used at
this step.

3. Cell number should be optimized between 5000 and 50,000
cells for each iPSC line.

4. The incubation time could be up to 14 days due to variations in
different iPSC lines.

5. Keep the condition sterile and use a face mask. The probability
of cell contamination at this step is high.

6. The number of colonies for picking can be adjusted based on
the estimation of the gene modification efficiency in the total
cell population.

7. The Geltrex-coated 96-well plates can be stored at 4 �C for up
to 7 days.

8. Wash the tips in PBS after each use, to minimize the possibility
of clonal cross-contamination.

9. This step could take up to 1 h in case of the high density of
iPSC clones. Because diluted Accutase is used at this step, there
will be no harm if longer incubation time is needed, but pipet-
ting iPSC clones to accelerate the detachment could kill the
cells.

10. To start EB formation, iPSCs should be more than 80% con-
fluent. In this case, no feeder depletion is needed.

11. After day 32 of culture, the number of floating cells drops
heavily.
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Key Points

• Fluorescent labeling of

CRISPR/Cas9–gRNA

RNP enables sorting of

edited HSPCs and

iPSCs for further

applications.

•GADD45B plays a cru-

cial role in UV stress-

induced response of

HSPCs and iPSCs.

CRISPR/Cas9-mediated gene editing of stem cells and primary cell types has several

limitations for clinical applications. The direct delivery of ribonucleoprotein (RNP)

complexes consisting of Cas9 nuclease and guide RNA (gRNA) has improved DNA- and virus-

free gene modifications, but it does not enable the essential enrichment of the gene-edited

cells. Here, we established a protocol for the fluorescent labeling and delivery of CRISPR/

Cas9–gRNA RNP in primary human hematopoietic stem and progenitor cells (HSPCs) and

induced pluripotent stem cells (iPSCs). As a proof of principle for genes with low-abundance

transcripts and context-dependent inducible expression, we successfully deleted growth

arrest and DNA-damage-inducible b (GADD45B). We found that GADD45B is indispensable

for DNA damage protection and survival in stem cells. Thus, we describe an easy and

efficient protocol of DNA-free gene editing of hard-to-target transcripts and enrichment of

gene-modified cells that are generally difficult to transfect.

Introduction

CRISPR/Cas9-mediated gene editing1,2 has a tremendous potential for clinical applications, such as
gene therapy of inherited disorders or boosting of immune cells for cancer immunotherapies.3-9

Several monogenic disorders, including life-threatening bone marrow failure syndromes, might
be treated by CRISPR/Cas9-mediated gene correction in autologous hematopoietic stem and
progenitor cells (HSPCs) ex vivo. This procedure could then be followed by transplantation of
the corrected HSPCs without exposing the patient to harsh immunosuppression regimens (ie,
chemotherapy, irradiation).

Two groups recently published successful gene therapy approaches to cure sickle cell disease, a
common inherited blood disorder. They generated deletions in the b-globin gene locus using CRISPR/
Cas9 technology to mimic the hereditary persistence of fetal hemoglobin mutations.10,11 First attempts
at gene editing using CRISPR/Cas9 for cancer therapy have also been launched recently. CRISPR/
Cas9-generated chimeric antigen receptor–modified T cells targeting the checkpoint receptor
programmed cell death 1 have been injected in a patient with metastatic non-small cell lung
cancer.12,13 In addition to HSPCs, CRISPR/Cas9-mediated gene editing was successfully applied in
neurons, hepatocytes, and cardiomyocytes.14-20

To further advance clinical applications of the CRISPR/Cas9 technology, unspecific integrations of viral
or plasmid CRISPR/Cas9 DNA in the host genome and undesirable immune responses must be
prevented. This may be achieved by transient virus- and DNA-free delivery approaches using CRISPR/
Cas9–guide RNA (gRNA) ribonucleoprotein (RNP) complexes. Compared with DNA-based approaches, the
direct delivery of CRISPR/Cas9–gRNA RNP complexes might have several advantages. Due to the
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cellular degradation of the RNP complex, exposure of cells to Cas9
is generally only transient and restricted, thereby limiting potential
off-target effects of endonuclease overexpression.

Gundry et al recently described the efficient delivery of CRISPR/
Cas9–gRNA RNP in HSPCs21; however, the method used in that
study did not allow the enrichment of gene-edited cells. Purification
of gene-edited HSPCs early in the manufacturing process is
desirable, especially for clinical applications, because HSPCs
differentiate and progressively lose their long-term repopulating
capacity during culture. This is especially true for genes with
low-abundance messenger RNA (mRNA) transcripts or inducible
mRNA expression. These genes may be difficult to target, also due
to epigenetic modifications, leading to tightly packed chromatin at
the time of gRNA delivery. In these cases, the selection of gene-
edited cells is indispensable. Nonmodified cells may retain a
proliferative advantage over gene-edited cells, especially in mixed
populations.

Introduction of a fluorescent tag to the CRISPR/Cas9-gRNA RNP
enables enrichment of gene-edited cells for further experimental
and clinical applications. Tagging of Cas9 protein could be achieved
by fusion of Cas9 with fluorescent proteins or by chemical labeling
of the CRISPR/Cas9–gRNA RNP with a fluorescent dye. However,
Cas9–GFP fusion proteins might affect the intracellular localiza-
tion, activity, or on- and off-target specificity of the endonucle-
ase. Therefore, in the present study, we established a safe, simple,
and efficient method for CRISPR/Cas9 gene knockout using
transfection of stem cells with fluorescently labeled CRISPR/
Cas9–gRNA RNP complexes.

Materials and methods

Cell culture

Human embryonic kidney 293FT (HEK293FT) and Jurkat cells were
cultured under standard conditions (37°C, 5% CO2) using
Dulbecco’s modified Eagle medium high glucose (HEK293FT cells)
or RPMI 1640 GlutaMAX (Jurkat cells) medium supplemented with
10% fetal calf serum (Sigma-Aldrich) and 1% penicillin/streptomy-
cin (Biochrome). HEK293FT cells were detached using 0.05%
Trypsin-EDTA (Gibco) and seeded at a density of 1 3 105 cells
per milliliter of medium. Jurkat cells were seeded at a density of 1 to
2 3 105 cells per milliliter of medium.

Human CD341 HSPCs were isolated from the bone marrow or
leukapheresis mononuclear cell fraction by magnetic bead separation
(Human CD34 Progenitor Cell Isolation kit; Miltenyi Biotech). CD341

cells were cultured in a density of 2 3 105 cells/mL of Stemline II
medium (Sigma Aldrich) supplemented with 10% fetal calf serum, 1%
penicillin/streptomycin, 1% L-glutamine, and a cytokine cocktail con-
sisting of 20 ng/mL IL-3, 20 ng/mL IL-6, 20 ng/mL thrombopoietin,
50 ng/mL SCF, and 50 ng/mL Flt-3L. Human induced pluripotent stem
cells (iPSCs) were cultured on plates coated with Geltrex lactate
dehydrogenase elevating virus–free reduced growth factor basement
membrane matrix (cat. no. A1413201; Thermo Fisher Scientific) at a
density of 2 3 105 cells/mL in StemFlex medium (cat. no. A3349401;
Thermo Fisher Scientific) supplementedwith 1%penicillin/streptomycin.

Generation and testing of the GADD45B gRNA

Specific CRISPR RNA (crRNA) for the first exon of the GADD45B

gene (GCTCGTGGCGTGCGACAACGCGG, cut site: chr19

[12,476,389: 22,476,389], NM_015675.3 Exon 1, 31bp;
NP_056490.2 position N11) was designed using an online tool
from the University of Heidelberg (http://crispr.cos.uni-heidelberg.de).
The crRNA for GADD45B was first tested in transfected HEK293FT
cells showing a gene modification efficiency of 67% in the total
population of transfected cells.

Labeling of gRNA and plasmid DNA

Trans-activating CRISPR RNA (tracrRNA) and crRNA, obtained from
IDT, were annealed at a ratio of 1:1 by incubating for 15 minutes
at room temperature to generate gRNA. gRNA was fluorescently
labeled using LabelIT CX-Rhodamine (cat. no. MIR7022; Mirus) or
LabelIT Fluorescein (cat. no. MIR7025; Mirus) kits according to the
manufacturer’s instructions. Labeling reagent and nucleic acid ratio
were used at a ratio of 1:1 leading to 1 label per 20 to 60 bases,
which is suitable for most applications.

Generation of crRNA-tracrRNA duplexes (gRNA) was conducted
by adding 800 pmol of GADD45B-targeting crRNA and 800 pmol
tracrRNA into 40 mL nuclease-free duplex buffer (IDT) at room
temperature for 15 minutes. Labeling of the gRNA was performed
by mixing gRNA, DNase- and RNase-free water, 103 labeling buffer
A and 1:10 of LabelIT Reagent (CX-rhodamine or fluorescein). The
reaction was incubated at 37°C for 1 hour while centrifuging briefly
after 30 minutes to minimize evaporation and maintain the appropriate
concentration of the reaction components.

Purification of labeled gRNA was conducted using the ethanol
precipitation method. To this end, 5 M sodium chloride (0.1 volume)
and ice-cold ethanol (2.5 volume) were added to the reaction, mixed
well, and placed at 220°C for 30 minutes. Afterwards, the sample
was centrifuged at 14 000g at 4°C for 30 minutes to pellet the
labeled gRNA. Once pelleted, the supernatant was discarded
gently without disturbing the pellet. The pellet was washed using
70% ethanol at room temperature and centrifuged at 14 000g
for 30 minutes. After centrifugation, the pellet was air dried for
5 minutes and resolved in IDT nuclease-free duplex buffer. The
labeled gRNA stock was stored at 220°C for up to 2 months.

Labeling of the pMAX GFP plasmid (Lonza) was carried out using
LabelIT Tracker Intracellular Nucleic Acid Localization Kit (cat. no.
MIR7022; Mirus) following the manufacturer’s protocol.

Assessment of the RNA integrity using

Agilent Bioanalyzer

Labeled and unlabeled gRNA were analyzed using the Agilent RNA
6000 Pico Kit according to the manufacturer’s instructions on the
Agilent 2100 Bioanalyzer using the total RNA program.

Transfection of cells with CRISPR/Cas9-gRNA

RNP complexes

Transfection was carried out either using TransIT-X2 (cat. no.
MIR6003; Mirus) dynamic delivery system or the Amaxa nucleofec-
tion system (P3 primary kit, cat. no. V4XP-3024) according to the
manufacturers’ instructions. For 0.5 3 105 HEK293FT cells, 100
pmol of labeled duplexed gRNA was mixed with 100 pmol of Cas9
protein (Alt-R S.p. Cas9 Nuclease 3NLS, cat. no. 1074182; IDT) in
IDT nuclease-free duplex buffer and assembled for 30 minutes at
room temperature. Afterwards, the CRISPR/Cas9-gRNA RNP was
mixed with either Opti-MEM I reduced-serummedium and TransIT-X2
transfection reagent (HEK293FT) or with electroporation mix for the
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Amaxa nucleofection system according to the manufacturer’s
protocol (Jurkat, and human iPSCs and CD341 HSPCs, respec-
tively). Jurkat cells (1.0 3 106) were electroporated with 300 pmol
labeled duplexed gRNA mixed with 300 pmol Cas9 protein. Human
iPSCs and CD341 HSPCs (1.0 3 106) were electroporated with
400 pmol labeled duplexed gRNA and 400 pmol Cas9 protein.
Transfection of HEK293FT cells with CX-rhodamine–labeled pMAX
GFP plasmid was performed using TransIT-LT1 transfection reagent
(cat. no. MIR2304; Mirus).

Genomic DNA isolation, PCR, Sanger sequencing and

TIDE assay

Genomic DNA (gDNA) was isolated using the QIAamp DNA Mini Kit
(cat. no. 51306; Qiagen) according to the manufacturer’s instructions.
Polymerase chain reaction (PCR) with isolated gDNA andGADD45B-
specific primers (forward: 59-GACTACCGTTGGTTTCCGCAAC-39,
reverse: 59-ATACATCAGGATACGGCAGCCC-39) was carried out
using the GoTaq Hot Start Polymerase Kit (cat. no. M5006; Promega)
using 50 ng of gDNA template for each PCR reaction. PCR product
purification was conducted with ExoSAP (ratio 3:1), a master mix of
1 part Exonuclease I 20 U/mL (cat. no. EN0581; Thermo Fisher
Scientific) and 2 parts of FastAP thermosensitive alkaline phosphatase
1U/mL (cat. no. EF0651; Thermo Fisher Scientific). Sanger sequenc-
ing of purified PCR product was performed by Eurofins Genomics and
analyzed using the TIDE (Tracking of Indels by Decomposition) webtool
developed by Brinkman et al.22

Establishment of gene-edited cell lines and human

iPSCs from single-cell clones using limiting dilution

Cells were serially diluted to 0.5 cells per 100 mL by adding of 60
cells in 12 mL Dulbecco’s modified Eagle medium or RPMI medium
and pipetting of 100 mL of cell suspension per well of the 96-well
plate. The 96-well plate was incubated for 2 to 3 weeks until
appearance of growing cells.

Human iPSCs (15 000) were plated on a Geltrex-coated 10-cm
dish in StemFlex medium (cat. no. A3349401; Thermo Fisher
Scientific) and RevitaCell supplement (cat. no. A2644501; Thermo
Fisher Scientific). Medium was changed every 24 hours without
RevitaCell supplement. After 9 to 12 days, each colony was picked
and transferred on the Geltrex-coated 96-well plate.

Cloning of the PCR products for the evaluation of the

gene modification mode in GADD45B-edited clones

gDNAwas isolated from gene-editedGADD45B1/2 andGADD45B2/2

iPSCs. The Cas9 RNP-targeted region of the GADD45B gene was
amplified from gDNA using PCR with followed primers: forward
59-GACTACCGTTGGTTTCCGCAAC-39, reverse 59-ATACATCAGGA
TACGGCAGCCC-39. PCR product was purified from the agarose
gel using QIAquick Gel Extraction kit (cat no./ID: 28706; Qiagen) and
cloned into the linearized pMiniT 2.0 vector using the NEB PCR Cloning
Kit (cat. no. E1202S; New England Biolabs) followed by transformation
of competent Escherichia coli and subsequent colony PCR of E coli

colonies, according to the manufacturer’s instructions (cat. no. M5006;
Promega). PCR products were analyzed using Sanger sequencing.

UV exposure and cell viability assay

Cells were irradiated with UV light (7 mJ/cm2) for 5 minutes and
subsequently incubated for 2 hours under standard culture condi-
tions before measuring the percentage of live GADD45B-targeting

CRISPR/Cas9-gRNA RNP-transfected cells by quantitation of
CX-rhodamine– or fluorescein-positive cells using a BD FACS-
Canto II flow cytometer.

Intracellular staining and fluorescence-activated cell

sorter analysis of gH2AX (pSer139) protein

Intracellular gH2AX (pSer139) protein levels were measured in UV-
irradiated cells. Briefly, cells werewashedwith phosphate-buffered saline
and stained using the IntraSure kit (cat. no. 641778; BD) according
to the manufacturer’s instructions and incubated with Alexa-Fluor 488
mouse anti-H2AX pSer139 antibody (1:100; cat. no. 560445; BD) for
15 minutes at room temperature, washed twice, fixed with 0.5%
paraformaldehyde and analyzed using a FACSCanto II flow cytometer.

LORD-Q–DNA damage quantification

gDNA was isolated using a QIAamp DNA Mini Kit according to
the manufacturer’s instructions. Long-run real-time PCR-based
DNA-damage quantification (LORD-Q) was performed and ana-
lyzed according to the protocol of Lehle et al.23

Results

Design of the CRISPR/Cas9–gRNA RNP

fluorescent labeling

We generated gRNA by annealing crRNA with tracrRNA. gRNA
was covalently labeled with CX-rhodamine or fluorescein and
incubated with recombinant Cas9 protein to generate CRISPR/
Cas9–gRNA RNP complexes (Figure 1A). To assess the efficiency
of fluorescent labeling, we transfected HEK293FT cells with a CX-
rhodamine–labeled plasmid encoding GFP protein. GFP signals
were colocalized with CX-rhodamine signals, thus proving efficient
labeling of the GFP plasmid with CX-rhodamine (supplemental
Figure 1A). An Agilent Bioanalyzer was used to further confirm that
fluorescent labeling does not affect gRNA integrity (Figure 1B).

Specific knockout of GADD45B using labeled

CRISPR/Cas9–gRNA RNP

To functionally validate the knockout of weakly expressed genes
with inducible mRNA expression using labeled CRISPR/Cas9–
gRNA RNP, we chose to disrupt the human growth arrest and DNA-
damage-inducible 45 b (GADD45B) gene.24 We designed crRNA
for exon 1 ofGADD45B (Figure 1C), generated labeledGADD45B

CRISPR/Cas9–gRNA RNP, and transfected HEK293FT cells,
the Jurkat T-ALL cell line, bone marrow CD341 HSPCs, and
iPSCs. We detected CX-rhodamine or fluorescein signals 6 hours
(HEK293FT cells) or 12 hours (Jurkat cells, CD341 HSPCs, and
iPSCs) after transfection. Transfection efficiency varied between
40% and 80%, depending on the cell type (Figure 2A-B). The
intracellular fluorescent signal disappeared ;48 hours after trans-
fection. Labeling did not affect the gene-editing efficiency of
CRISPR/Cas9–gRNA RNP, as assessed by Sanger sequencing
and tracking of indels by decomposition (TIDE) assay analysis of
HEK293FT cells, Jurkat cells, CD341 HSPCs, and human iPSCs
transfected with labeled or unlabeled GADD45B-targeting CRISPR/
Cas9–gRNA RNP (Figure 2C). Using fluorescein or rhodamine signals
of labeled CRISPR/Cas9–gRNA RNP, we sorted and enriched gene-
edited fluorescent cells by flow cytometry. Gene-modification efficiency
in sorted cells was approximately 40% in iPSCs, 60% in HSPCs, and
70% in Jurkat cells (Figure 2D).
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Transfection of cells with a nontargeting RNP, consisting of
tracrRNA and Casp9 alone, did not affect genome integrity
(supplemental Figure 1B). We also compared fluorescent labeling
of crRNA with the expression of Cas9–EGFP fusion protein. We
detected much lower editing efficiency of the fused Cas9-EGFP
protein assembled with GADD45B-targeting gRNA compared with
CRISPR/Cas9–gRNA RNP (supplemental Figure 2A).

Cloning of the PCR products from genomic DNA of single-cell clones
of the gene-edited Jurkat cells and iPSCs revealed compound
heterozygous GADD45B frameshift mutations in Jurkat cells (sup-
plemental Figure 3A), and heterozygous, as well as homozygous,
GADD45B deletions in iPSC clones (supplemental Figure 3B). We
found no off-target activities of the GADD45B-specific crRNA, with
the possibility of 3 bp mismatches. We also detected only a small
number of potential off-target sites in other genes that could be
targeted (,3 mismatches) with low probability (0.2%-0.9%) by the
GADD45B-specific crRNA (supplemental Table 1). However, we did
not detect any mutations in the selected gene regions in the edited
cell types used in our study (supplemental Figure 4A).

GADD45B is essential for the induction of DNA damage

response in human hematopoietic cells and iPSCs

We further performed functional studies of the effect of GADD45B

knockout on cell growth and sensitivity to UV-induced DNA

damage. Remarkably, we detected a strongly diminished viability

of GADD45B-deficient HEK293FT cells, Jurkat cells, iPSCs,

and CD341 HSPCs compared with control transfected cells

(Figure 3A). We also found markedly elevated susceptibility of

GADD45B-deficient Jurkat cells and CD341 HSPCs to UV-

induced DNA damage, as documented by increased expression

of the DNA damage marker gH2AX (phospho-Ser139). Basal levels

of gH2AX (phospho-Ser139) were also elevated in GADD45B-

modified HSPCs and Jurkat cells (Figure 3B-C). In addition, we

detected an accumulation of DNA lesions in GADD45B-deficient

cells compared with wild-type Jurkat cells (Figure 3D). As revealed

by LORD-Q DNA damage–quantification analysis,23 GADD45B-

deficient cells exhibited increased DNA damage rates in the

mitochondrial DNA (mtDNA), as well as in 2 analyzed genomic loci
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Figure 1. Scheme of CRISPR/Cas9–gRNA RNP labeling and cell transfection. (A) crRNA and tracrRNA were annealed at room temperature for 10 minutes. The

resulting gRNA was labeled with fluorescein- or CX-rhodamine–coupled Label IT Tracker labeling reagent. The fluorescent GADD45B-targeting gRNA was assembled with

recombinant Cas9 protein prior to transfection to assemble an active CRISPR/Cas9–gRNA RNP complex targeting human GADD45B. Cells were transfected with TransIT-X2

Transfection Reagent or by using the Amaxa Nucleofector System and were incubated for 24 hours before sorting the CX-rhodamine1 or fluorescein1 cells using a BD

FACSAria II. After sorting, some of the cells were used for a single-cell culture, and the rest were used for DNA isolation or cell-based assays. (B) Virtual gel of an Agilent

Bioanalyzer analysis revealing no difference in the size or quality of labeled gRNA compared with unlabeled gRNA. (C) GADD45B was targeted using gRNA (highlighted in

red), which inserts a double-strand break at NM_015675.3 exon 1, 31 bp after ATG; NP_056490.2, p.N11.
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of nuclear DNA. Based on these observations, we conclude that
GADD45B knockout in cells transfected with labeled GADD45B-
targeting CRISPR/Cas9–gRNA RNP led to increased susceptibility
to DNA damage.

GADD45B protects iPSCs from UV stress in a

dose-dependent manner

Interestingly, GADD45B1/2 and GADD45B2/2 iPSCs retained
pluripotency (Figure 4A), but we detected markedly elevated

phospho-Ser139 gH2AX levels in GADD45B-haploinsufficient
and GADD45B-homozygous–knockout iPSCs. Elevated DNA
damage was observed under steady-state conditions and, more
profoundly, upon genotoxic UV exposure compared with wild-
type iPSCs (Figure 4B). In line with upregulated gH2AX
(phospho-Ser139) levels, we measured elevated DNA damage
in GADD45B1/2 and GADD45B2/2 iPSCs, as determined by
the LORD-Q DNA damage–quantification assay (Figure 4C-D).
These data are in accordance with our observations in
GADD45B-deficient Jurkat cells and HSPCs.
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Figure 3. GADD45B knockout leads to reduced cell viability and increased UV-induced cellular stress. (A) Cell viability of HEK293FT cells, Jurkat cells, iPSCs, and

CD341 HSPCs, transfected with labeled tracr-Cas9 RNP (nontarget RNP) or with labeled GADD45B-targeting CRISPR/Cas9–gRNA RNP, was measured after exposing the

cells to UV for 5 minutes, followed by 2 hours of additional incubation. Relative viability of nonirradiated control cells was set as 1.0. (B) CD341 HSPCs were transfected with

fluorescein-labeled GADD45B-targeting CRISPR/Cas9–gRNA RNP. After 48 hours, the cells were exposed to UV irradiation for 5 minutes. Following 2 hours of further

incubation, intracellular gH2AX (phospho-Ser139) levels were measured by flow cytometry. (C) Jurkat cells were transfected with CX-rhodamine–labeled GADD45B-targeting

CRISPR/Cas9–gRNA RNP. After 48 hours, the total population was exposed to UV irradiation for 5 minutes, followed by 2 hours of incubation before performing intracellular

staining and FACS analysis for the DNA damage marker gH2AX (phospho-Ser139). (D) mtDNA damage (left panel) and nuclear DNA damage in the GAPDH locus (middle

panel) and TP53 locus (right panel) were quantified in Jurkat control cells and a GADD45B2/2 Jurkat clone using the LORD-Q method. Data are mean 6 standard deviation

from 3 (A-B) or 2 (C-D) independent experiments, each performed in duplicates. *P # .05, **P # .01, Student t test.

Figure 2. Transfection- and genome-editing efficiency in different cell types using CX-rhodamine–labeled CRISPR/Cas9–gRNA RNP targeting GADD45B.

(A) HEK293FT cells were transfected with CX-rhodamine–labeled GADD45B-targeting CRISPR/Cas9–gRNA RNP. Fluorescence signal could be detected for up to 72 hours

posttransfection. Representative images of 3 experiments are shown. (B) HEK293FT cells, Jurkat cells, human iPSCs, and CD341 cells were transfected with labeled

GADD45B-targeting CRISPR/Cas9–gRNA RNP. At 24 hours posttransfection, cells were harvested and measured for transfection efficiency using a BD FACSCanto II flow

cytometer. Representative line graphs of 3 independent experiments are shown. (C) HEK293FT cells, Jurkat cells, human iPSCs, and CD341 HSPCs were transfected with

unlabeled or labeled GADD45B-targeting CRISPR/Cas9–gRNA RNP and analyzed for gene-modification efficiency using a TIDE assay. (D) Jurkat cells, human iPSCs, and

CD341 HSPCs were transfected with CX-rhodamine–labeled GADD45B-targeting CRISPR/Cas9–gRNA RNP and sorted 24 hours posttransfection using a flow cytometer.

Genomic DNA was isolated 48 hours posttransfection from the total population of transfected cells and from sorted CX-rhodamine1 or fluorescein1 cells. TIDE assay analysis

showed significantly higher gene modification efficiency in CX-rhodamine1 cells. Data in panels C and D are mean 6 standard deviations derived from 3 (HEK293FT cells,

Jurkat cells, CD341 HSPCs) or 4 (iPSCs) independent experiments. *P # .05, **P # .01, Student t test. ns, not significant.
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Discussion

In the present study, we have developed a new method of CRISPR/
Cas9-mediated gene editing in primary HSPCs and iPSCs using

fluorescent labeling of CRISPR/Cas9–gRNA RNP complexes.

Using fluorescein or CX-rhodamine signals from labeled CRISPR/

Cas9–gRNA RNP, we were able to enrich gene-edited cells by

fluorescent cell sorting. For clinical settings, it is essential to select

and enrich gene-edited HSPCs because of the limited capacity of

these cells to divide, to retain their engraftment capability, and to

generate unlimited numbers of progeny cells. Sorting of the labeled

cells also allows removal of untargeted HSPCs that may compete

with gene-edited cells. In addition, application of CRISPR/Cas9

RNP decreases the probability and frequency of off-target effects,

because CRISPR/Cas9 RNP activity is preserved in cells for only

;48 hours.

Dever et al recently reported the CRISPR/Cas9 RNP–based
modification and enrichment of human HSPCs by introduction of

a repair template targeting the human b-globin gene through a

GFP-expressing adeno-associated virus–based vector.3 Although

considered safer than retroviral constructs, adeno-associated virus–

based expression constructs may induce antiviral host immune

responses and may integrate into the host genome nonspecifically.

Because RNP-mediated gene knockout allows the efficient virus- and

DNA-free transfection and selection of edited cells, future studies

should further investigate our method of fluorescent labeling of

CRISPR/Cas9 RNP in a gene-correction approach mediated by
homology-directed repair, which additionally requires a donor template
DNA. Again, the short exposure of cells to CRISPR/Cas9 RNP activity
makes it superior to virus-based delivery techniques.

We also tested EGFP-conjugated CRISPR Cas9 RNP but found
that EGFP tagging resulted in reduced editing efficiency compared
with unlabeled CRISPR Cas9 RNP. At the same time, labeling of
CRIPSR/Cas9 RNP using our method described here does not
affect editing.

Although we studied gene editing in primary hematopoietic stem
cells and iPSCs, the method described here may be extended to
other primary cell types. Gene-modification efficiency is dependent on
the cell type, cell cycle stage, activation of DNA-repair pathways,
chromatin dynamics at the gRNA-targeted gene locus, and the delivery

method.25-27 Delivery and editing protocols may be further improved

(eg, by synchronizing of the targeted cells), which could increase

nuclear uptake of the RNP components and chromatin relaxation.

For a proof of principle, we chose to target theGADD45B gene and
found that homo- and even heterozygous deficiency in GADD45B

led to increased susceptibility to DNA damage. GADD45B belongs

to a family of evolutionarily conserved GADD45 proteins28 that

functions as stress sensors regulating cell cycle, survival, and

apoptosis in response to various stress stimuli.29With some degree

of redundancy, GADD45 proteins exhibit specific functions,

depending on the stimulus and cell type. Gadd45b-knockout mice
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Figure 4. Heterozygous and homozygous GADD45B knockout in human iPSCs results in high levels of DNA damage. (A) Pluripotency state of GADD45B1/2

and GADD45B2/2 iPSCs was assessed by real-time quantitative PCR and compared with validated healthy donor–derived human iPSCs expressing wild-type GADD45B. (B)

GADD45B wild-type, GADD45B1/2, and GADD45B2/2 iPSCs were irradiated with UV light for 5 minutes, incubated under cell culture conditions for 2 hours, and stained for

intracellular gH2AX (phospho-Ser139). DNA damage in GADD45B wild-type and GADD45B heterozygous-knockout (C) or homozygous-knockout (D) iPSCs was quantified

by the LORD-Q method. Cells were analyzed for mtDNA damage and nuclear DNA damage in the GAPDH and TP53 gene loci. All data are mean 6 standard deviation

derived from 3 independent experiments. *P # .05, **P # .01, ***P # .001, Student t test.
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are viable, but Gadd45b2/2 primary mouse embryonic fibroblasts

proliferate slowly and accumulate increased levels of DNA damage

and features of premature senescence.30-33 It has also been shown

that myeloid differentiation is compromised in Gadd45b2/2 mice.33

Nothing was known about GADD45b functions in the DNA damage

response of human HSPCs and iPSCs. Our study demonstrates an

essential role for GADD45B in the survival and protection from DNA

damage in human leukemia cells and CD341 HSPCs that are not

compensated for by other GADD45 proteins.

Our study is the first report describing transfection of iPSCs with
labeled CRISPR/Cas9–gRNA RNP with high transfection and

knockout efficiency. In future studies, gene correction using labeled

RNP complexes for ex vivo gene therapy and transplantation could be

tested in CD341 cells. There are also reports describing in vivo gene

correction in neurons, hepatocytes, and cardiomyocytes.3,14-20Currently,

there are many challenges associated with using CRISPR/Cas9

approaches. Efficient gene editing is reliant on the successful

delivery of the Cas9 nuclease and the gRNA, which is especially

cumbersome in primary cell types resistant to DNA transfection.

Moreover, plasmid and viral delivery lead to persistent over-

expression of Cas9, which can potentially result in off-targets. In

contrast, direct delivery of RNP complexes, which are gradually

cleared by intracellular degradation over time, does not result in

Cas9 persistence and, therefore, reduces potential off-target

effects. Furthermore, we did not detect toxic or inhibitory effects
of the labeling on the gene-editing efficiency or on cell growth.
As a result of their short exposure, it is also unlikely that the
fluorochrome dyes used in our study are immunogenic in vivo.
However, further optimizations are required for the in vivo application
of our method. For instance, different dyes should be tested for
their immunogenicity.

Taken together, chemical labeling of the gRNA and the direct
transfection of RNP complexes provide a simple, safe, and efficient
method that could considerably expand future therapeutic avenues
for CRISPR/Cas9-mediated gene editing.
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Abstract  

In severe congenital neutropenia (CN) patients, elevated DNA damage in 

hematopoietic stem and progenitor cells (HSPCs) induces maturation arrest of granulopoiesis 

in the bone marrow. Here, we explored the mechanisms underlying the hypersensitivity of CN 

HSPCs to stress conditions. We detected markedly reduced expression of growth arrest and 

DNA-damage-inducible 45, beta (GADD45ß) in myeloid progenitors of G-CSF-treated CN 

patients compared to G-CSF-treated healthy individuals. Rescue of GADD45ß expression in 

CN HSPCs induced granulocytic differentiation. At the same time, CRISPR/Cas9-mediated 

GADD45ß knockout in HSPCs and iPSCs from healthy individuals, as well as in zebrafish 

embryos led to diminished granulocytic differentiation. GADD45ß is known to regulate active 

DNA demethylation, and we found that GADD45ß-dependent hypomethylation is essential 

for granulopoiesis and regulation of neutrophil functions via activation of retinoic acid 

signaling. Importantly, the treatment of CN HSPCs with retinoic acid receptor agonist, all-

trans-retinoic acid (ATRA) restored diminished G-CSF-triggered granulocytic differentiation. 

Therefore, ATRA may be used for the treatment of patients with CN.  
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Introduction 

Inherited mutations in ELANE (which encodes neutrophil elastase) or HAX1 (which 

encodes HCLS1-associated protein X-1) cause intracellular stress responses in hematopoietic 

stem and progenitor cells (HSPCs) of patients with severe congenital neutropenia (CN)1. 

Inappropriate activation and regulation of intrinsic stress due to inherited mutations may be a 

cause of the defective granulocytic differentiation of HSPCs in CN patients. Granulocyte 

colony-stimulating factor (G-CSF) normally induces granulocytic differentiation of HSPCs by 

triggering G-CSFR to activate intracellular signal transduction pathways. In CN patients, G-

CSF fails to activate granulopoiesis at physiological concentrations; such patients require life-

long daily treatment with very high pharmacological doses of G-CSF to maintain neutrophil 

numbers at a level sufficient to prevent severe infections1. We have reported various 

deregulated G-CSFR signaling pathways in the HSPCs of CN patients, and propose that they 

may cause maturation arrest of granulopoiesis in the bone marrow2-12. These alterations 

include the almost complete loss of LEF-1 and C/EBPa expression, diminished levels of 

HCLS1 and SLPI, and constitutive activation of phospho-STAT5A2,5,11,13. Conversely, the G-

CSF-induced activation of NAMPT/SIRT1-mediated granulopoiesis may be involved in the 

granulocytic maturation of CN HSPCs10. These observations suggest that the HSPCs of CN 

patients are continuously exposed to endo- and exogenous stress stimuli. The endogenous 

stress is caused by the inherited mutations and underlying signal transduction defects 

mentioned above, while the exogenous stress is due to life-long treatment with non-

physiological doses of G-CSF. HSPCs of CN patients exhibit elevated endoplasmic reticulum 

(ER) stress and unfolded protein response (UPR), dysregulation of the inner mitochondrial 

membrane potential, and/or increased sensitivity to apoptosis due to inherited mutations in 

ELANE or HAX16,11,14-19. UPR and ER stress may induce DNA damage and genetic instability 

in HSPCs. It is known that HSPCs react to the abnormal stress activation by shifting of the 

differentiation program. For example, exposure of HSPCs to γ-irradiation is associated with 
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induction of lymphoid differentiation and inhibition of myeloid differentiation20. Moreover, 

UPR governs the integrity of the HSC pool by depleting HSCs but not progenitors upon 

stress21,22. An abnormal response of CN HSPCs to stress conditions, such as the persistent 

activation of DNA damage response pathways12, may block granulocytic differentiation. One 

potential explanation for the abnormal response of CN HSPCs to stress and G-CSF is 

defective regulation of stress-induced factors.  

Growth arrest and DNA damage-inducible 45, beta (GADD45b), also called myeloid 

differentiation primary response 118 (MyD118), functions as a stress sensor in regulating the 

cell cycle, cell survival, and apoptosis in response to ER stress or DNA damage23-27. 

GADD45b belongs to the evolutionarily conserved and highly homologous GADD45 protein 

family, along with GADD45α and GADD45γ28-31. The GADD45 proteins show some degree 

of redundancy, but also exhibit specific functions depending on the stimulus and cell type32,33. 

Gadd45β-deficient primary mouse embryonic fibroblasts (MEFs) proliferate slowly, 

accumulate increased levels of DNA damage, and exhibit signs of premature senescence27,34. 

Gadd45b is essential for stress-induced murine hematopoiesis, and myeloid differentiation is 

severely compromised in Gadd45b knockout mice27,34. Upon TNFα activation, GADD45b 

expression is induced via NFκB35. GADD45b protects hematopoietic cells from UV-induced 

apoptosis by suppressing JNK signaling27. We recently demonstrated that CRISPR/Cas9-

mediated GADD45B knockout (KO) elevated the DNA damage induced by UV exposure of 

human HSPCs and iPSCs36. GADD45 proteins have been shown to coordinate active DNA 

demethylation by recruiting deaminases and glycosylases to the promoter regions of target 

genes37-40. GADD45 proteins bind to a methylated promoter region proximal to an acetylated 

histone to recruit deaminases, which convert 5-methylcytosine to thymine to create a T:G 

mismatch. After that, a GADD45-recruited DNA glycosylase removes thymine from the T:G 

mismatch, and the thymine is replaced by an unmethylated cytosine41. Very little is known 

about the transcriptional programs that are regulated by the G-CSF-induced DNA 
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demethylation of HSPCs and during the granulocytic differentiation of HSPCs. Moreover, the 

regulation of hematopoiesis and granulopoiesis by GADD45b-mediated active DNA 

demethylation has not yet been explored in detail. 

In the present study, we examined the HSPC pool of CN patients and how stress-

response regulation by GADD45b-mediated active DNA demethylation contributes to the G-

CSF-triggered granulocytic differentiation. We found that retinoic acid signaling is regulated 

by GADD45b and stimulation of HSPCs with all-trans-retinoic acid (ATRA) restores 

defective granulocytic differentiation in CN patients. 
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Material and methods  

Patients 

Twenty-nine severe congenital neutropenia patients (19 ELANE-CN and 13 HAX1-CN 

patients) were used in the study. All studied CN patients were on G-CSF therapy and received 

G-CSF (daily dose ranged between 1.4 and 9.4 µg/kg/day) within the last 3-5 days before 

sampling. Bone marrow samples from patients were collected in association with an annual 

follow-up recommended by the Severe Chronic Neutropenia International Registry. Healthy 

control cells were obtained from healthy bone marrow donors. Study approval was obtained 

from the Ethical Review Board of the Medical Faculty, University of Tübingen. Informed 

written consent was obtained from all participants of this study. 

CRISPR/Cas9-gRNA ribonucleoprotein (RNP) mediated GADD45B knockout  

150 pmol of GADD45B CRISPR/Cas9 RNP (crRNA: 

GCTCGTGGCGTGCGACAACGCGG, cut site: chr19 [+2,476,389: -2,476,389], 

NM_015675.3:r.266, NP_056490.2:p.N11) was used for the nucleofection of 1 x 106 CD34+ 

cells or iPSCs. Nucleofection was performed with the Lonza 4D Nucleofector X using the P3 

Primary Cell 4D-Nucleofector X kit (Lonza, #V4XP-3012) and program CA-137, according 

to the manufacturer’s instructions. After nucleofection, cells were resuspended in pre-warmed 

culture medium. Tracking of Indels by Decomposition (TIDE) webtool42 and ICE webtool 

(Synthego) were used to estimate CRISPR/Cas9 editing efficiency.  

Liquid culture differentiation of CD34+ cells 

CD34+ cells (2 x 105 cells/ml) were incubated for 7 days in RPMI 1640 GlutaMAX 

supplemented with 10 % FBS, 1 % penicillin/streptomycin, 5 ng/ml SCF, 5 ng/ml IL-3, 

5 ng/ml GM-CSF and 10 or 1 ng/ml G-CSF as previously described in Skokowa et al.10. 

Medium was exchanged every second day. On day 7, medium was changed to RPMI 1640 

GlutaMAX supplemented with 10 % FBS, 1 % penicillin/streptomycin and 10 ng/ml or 1 

ng/ml G-CSF. Medium was exchanged every second day until day 14. On day 14, cells were 
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analyzed by flow cytometry using following antibodies: mouse anti-human CD45 (Biolegend, 

#304036), mouse anti-human CD11b (BD, #557754), mouse anti-human CD15 (BD, 

#555402), mouse anti-human CD16 (BD, #561248) on FACSCanto II. ATRA was added to 

the differentiation medium in a concentration of 1 µM and was refreshed during the medium 

exchange every second day. 

Statistics 

Statistical analysis was performed using a two-sided unpaired Student’s t-test for the 

analysis of differences in mean values between groups. Statistical analysis of patient groups 

was performed using an unpaired nonparametric t-test (Mann-Whitney U). 
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Results 

Elevated DNA damage levels and lymphopoiesis-biased hematopoietic differentiation of 

CN HSPCs  

We first evaluated intrinsic stress levels in primary bone marrow hematopoietic cells 

of CN patients. We found that CD49f+ HSCs21 obtained from eight ELANE-CN and seven 

HAX1-CN patients exhibited elevated DNA damage, as assessed by gH2AX protein staining 

(Figure 1A). gH2AX may also mark proliferating cells, but since CN patients hematopoietic 

cells have cell cycle arrest at the G0-G1 stage, we assume, that using gH2AX staining, we 

measured DNA damage response. 

Intrinsic stress and DNA damage may affect the hematopoietic differentiation of 

HSPCs, and failure of the control mechanisms may change the fate of HSPCs (e.g., via 

inappropriately biased differentiation)20,21. We further compared the composition of bone 

marrow HSPCs obtained from G-CSF-treated CN patients (ELANE-CN n = 12, HAX1-CN n = 

10) and healthy individuals treated (n = 5) or not (n = 7) with G-CSF. As expected, treatment 

of healthy individuals with G-CSF resulted in a shift towards myeloid differentiation; we 

observed a 5-fold increase of common myeloid progenitors (CMPs), a 3-fold increase of 

granulocyte-monocyte progenitors (GMPs), and a 10-fold decrease of multi-lymphoid 

progenitors (MLPs). In contrast, the hematopoietic differentiation of CN patients was 

substantially shifted from myeloid (5- and 10-fold decreases of CMPs for ELANE-CN and 

HAX1-CN, respectively) to lymphoid (more than 100-fold increases of MLPs for ELANE-CN 

and HAX1-CN) differentiation, and we detected reductions in the numbers of GMPs (3-fold 

for both ELANE-CN and HAX1-CN) (Figure 1B). These data suggest that the integrity 

control of HSPCs from CN patients has defects that may alter the response to G-CSF and 

ultimately lead to severe neutropenia. 
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Markedly diminished expression of the stress response protein, GADD45b, in myeloid 

progenitor cells of CN patients 

The DNA damage and stress response protein, Gadd45b, is known to regulate stress-

induced granulopoiesis in mice43. GADD45b is also expressed in human HSPCs with 

increasing levels during myeloid commitment and maximum expression in mature 

neutrophilic granulocytes, as judged by Bloodspot database44 (Supplemental Figure 1A). We 

compared GADD45b mRNA expression levels in bone marrow promyelocytes obtained from 

G-CSF-treated CN patients (n = 7), healthy controls treated (n = 2) or not (n = 3) with G-CSF 

for 3 days, and patients with metabolic neutropenia (n = 3) chronically treated with G-CSF. 

Interestingly, we found that G-CSF induced GADD45b mRNA expression in CD33+ cells of 

healthy controls and patients with metabolic neutropenia, but not in those of CN patients 

(Figure 1C). Moreover, a DUOLINK assay revealed that nuclear GADD45b protein was 

highly expressed in CD33+ cells of G-CSF-treated healthy controls, but it was almost entirely 

absent from the nuclei of promyelocytes from CN patients (Figure 1D). We did not detect 

any correlation between GADD45β expression levels and response to G-CSF therapy in CN 

patients (data not shown). 

 

Ectopic expression of GADD45b in CD34+ cells of ELANE-CN patients restores 

diminished granulocytic differentiation 

We tested whether restoration of the diminished GADD45b expression in primary 

CD34+ HSPCs of CN patients would affect their granulocytic differentiation in vitro. We used 

a Venus+-lentiviral vector to overexpress the GADD45b cDNA in CD34+ HSPCs obtained 

from two ELANE-CN patients, and differentiated the transduced cells towards neutrophils in 

liquid culture (Figure 2A). Transduction efficiency of control virus was around 60 % and of 

GADD45β cDNA-containing virus around 10 %. Indeed, we detected dramatically elevated 
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amounts of CD11b+CD15+, CD11b+CD16+, and CD15+CD16+ cells within the Venus+CD45+ 

cell population of GADD45b-transduced ELANE-CN CD34+ HSPCs, compared to control 

samples (Figure 2B). These data suggest that GADD45β induces and supports granulocytic 

differentiation in CN CD34+ cells.  

 

Gadd45b promotes differentiation of mouse LT-HSCs  

To evaluate the effects of GADD45b overexpression on the in vitro myeloid 

differentiation of primary HSPCs, we transduced mouse long-term repopulating HSCs (LT-

HSCs) with ectopic Gadd45b and differentiated the cells into myeloid lineage in liquid 

culture in vitro and analyzed differentiated cells at different time points by FACS. We found 

that HSCs transduced with Gadd45b displayed accelerated and enhanced myeloid 

differentiation, as assessed by FACS: percentage of immature HSPCs rapidly decreased, 

while the number of granulocyte-monocyte progenitors (GMPs) and mature myeloid cells 

increased over time, as compared to control transduced cells (Figure 2C,D). Colony forming 

unit (CFU) assay and CFU re-plating assay revealed that HSCs expressing ectopic Gadd45β 

have myeloid-biased colony forming potential and generate more mature cells with lower re-

plating capacity in comparison to control virus expressing cells (Figure 2E). 

 

GADD45b KO inhibits the granulocytic differentiation of human hematopoietic cells  

To study the impact of GADD45b deficiency on the granulocytic differentiation of 

human HSPCs, we knocked out GADD45b in human iPSCs and CD34+ HSPCs of healthy 

individuals using GADD45b-specific CRISPR/Cas9-gRNA RNPs, and differentiated the 

gene-edited cells towards neutrophils in vitro. The editing efficiency of gene-modified CD34+ 

HSPCs was around 44-85% (Supplemental Figure 2A-C and data not shown). We found 

that GADD45b knockout abrogated granulocytic differentiation in liquid culture, as assessed 
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by diminished percentages of CD11b+CD15+, CD11b+CD16+, and CD15+CD16+ cells in the 

CD45+ cell populations of GADD45β-KO cells compared to wild type control cells (Figure 

3A).  

To study the role of complete GADD45b knockout on granulocytic differentiation of 

human HSPCs in vitro, we tested granulocytic differentiation of pure GADD45b knockout 

iPSC clones36. In line with the observations from primary HSPCs, no CFU-G colonies were 

generated from GADD45b-/- iPSC-derived CD34+ HSPCs, compared to healthy control iPSCs 

(Figure 3B). Moreover, during embryoid body (EB)-based hematopoietic differentiation, we 

observed increased amounts of immature cells on day 14 in culture and strongly diminished 

amounts of mature neutrophils on day 28 in culture for GADD45b-/- iPSCs compared to 

healthy control iPSCs (Figure 3C, Supplemental Figure 3A). This was confirmed by 

morphological analysis of Wright-Giemsa-stained cytospin preparations of differentiated cells 

collected on days 21 and 28 of culture. We detected dramatically increased amounts of 

immature hematopoietic cells and far fewer mature neutrophils in the GADD45b-deficient 

samples compared to healthy control iPSCs (Figure 3D, E and Supplemental Figure 

3B).The presented data suggest an essential role for GADD45b in granulopoiesis. 

 

Zebrafish gadd45bb is required for neutrophil development 

We next examined whether GADD45b is required for in vivo granulopoiesis. We used 

zebrafish as an in vivo model system, because the mechanisms underlying hematopoiesis are 

evolutionarily conserved in vertebrates45,46. Two orthologs of human GADD45b, gadd45ba 

and gadd45bb, are present in the genome of zebrafish, but only the gadd45bb paralog is 

expressed in the embryonic hematopoietic site at 1 day post-fertilization (dpf, data not 

shown)47. To test whether gadd45bb is required for granulopoiesis, we performed transient 

CRISPR/Cas9 targeting of the gadd45bb gene in the transgenic line, Tg(mpo:gfp), in which 
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expression of green fluorescent protein (GFP) is driven by the neutrophil-specific 

myeloperoxidase (mpo) promoter48. Compared with non-injected siblings, gadd45bb crispants 

showed significantly fewer GFP+ cells in the caudal hematopoietic tissue (akin to the 

mammalian fetal liver) at 3 dpf (Figure 4A). In another set of experiment, injection of Cas9 

alone did not change the neutrophil count in embryos (Supplemental Figure 4A). We next 

asked whether the reduced number of neutrophils caused by mutation of gadd45bb could be 

rescued by csf3a mis-expression. To test this, we used a heat-inducible system49 to ectopically 

express csf3a in zebrafish embryos at 1 dpf. Consistent with a previous report50, we found that 

ectopic expression of csf3a increased the number of mpo-expressing cells at the hematopoietic 

site of wild-type embryos (Figure 4B). When csf3a was induced in gadd45bb crispants, the 

number of mpo-expressing cells increased to a level comparable with that seen in the 

uninjected group (Figure 4B). Together, these results suggest that gadd45bb plays a crucial 

role in zebrafish granulopoiesis and csf3a is compensates for the lack of gadd45bb in this 

process.  

 

GADD45b expression is directly regulated by C/EBPa  

To investigate the mechanism underlying the G-CSF-mediated activation of 

GADD45b expression, we performed in silico analysis of the GADD45b gene promoter using 

Genomatix software. This analysis identified four putative binding sites for C/EBP 

transcription factors (Figure 4C). We previously reported that C/EBPa levels were markedly 

reduced in myeloid progenitor cells of CN patients2,7-9. Therefore, we tested for possible 

C/EBPa-mediated regulation of GADD45b expression that might be abolished in C/EBPa-

deficient CN progenitors. We performed ChIP assays with an anti-C/EBPa antibody in 

lysates of THP1 cells expressing both C/EBPa and GADD45b, and identified three C/EBPa 

binding sites on the GADD45b gene promoter, located -655 bp, -214 bp, and -77 bp from the 
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ATG (Figure 4C and Supplemental Figure 5A). We further generated a reporter gene 

construct by cloning a GADD45b promoter fragment (1.2 kb from the ATG) into the 

pGL4.10 [luc2] vector, and performed dual luciferase reporter gene assays in HEK293T cells 

co-transfected with the C/EBPA cDNA and a GADD45b reporter construct. Indeed, we found 

that C/EBPa specifically and dose-dependently activated the GADD45b promoter (Figure 

4D).  

 

In HSPCs, GADD45b regulates mRNA expression programs that are essential for 

granulopoiesis and responsible for neutrophil activation 

To identify intracellular signaling pathways regulated by GADD45b in G-CSF treated 

human primary bone marrow HSPCs, we cultured WT or GADD45b-KO CD34+ HSPCs 

obtained from three healthy donors for 72 hours with or without 50 ng/ml G-CSF, and 

performed RNA sequencing (Figure 5A). For GADD45b KO, we electroporated cells with 

GADD45b-specific CRISPR/Cas9-gRNA RNP complexes. The efficiency of GADD45b KO 

was up to 84%, as assessed by Sanger sequencing and ICE assay (Supplemental Figure 2A-

C). We found that 94 genes were differentially expressed between G-CSF-treated control and 

G-CSF-treated GADD45b-KO cells (adjusted p-value < 0.05) (Figure 5B, Supplemental 

Table 1). Strikingly, most of the differentially expressed genes regulate myeloid 

differentiation (e.g., RXRA, FGR, TFPI, HK3, and NLRP12), are induced by DNA damage in 

G-CSF-treated cells (e.g., BATF), or are essential players in neutrophil adhesion, migration 

(ITGAM, SIGLEC5, CX3CR1, CXCR1, FPR1, FPR2, and CORO1A), and activation (NCF2, 

MYL6, and NLRP12). Previously published microarray data2 indicate that GADD45b-

regulated genes were also up-regulated in bone marrow CD33+ myeloid progenitor cells of G-

CSF-treated healthy individuals, but not in the same cell population of CN patients 

chronically treated with G-CSF (Figure 5C).  
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 Using Genomatix pathway analysis of significantly upregulated genes in GADD45b-

WT and GADD45b-KO groups treated with G-CSF, we identified response to cytokines, 

response to stress, regulation of intracellular signal transduction, regulation of ERK1/2 

signaling, neutrophil activation, degranulation, and migration as being among the top 

significant biological processes differentially regulated by G-CSF via GADD45b (Figure 

5D). Analysis of associated signaling pathways revealed that integrin-, inflammatory-, 

CXCR1-, FPR1-, and SRC kinase signaling were upregulated by G-CSF via GADD45b 

(Figure 5E). We also identified associations with various disease phenotypes, including 

leukocyte disorders, leukopenia, agranulocytosis, neutropenia, phagocyte bactericidal 

dysfunctions, and (importantly) AML/MDS (Figure 5F).   

iRegulon analysis of the significantly enriched transcription factor binding motifs 

within significantly upregulated genes51,52 revealed that genes with hematopoietic- or 

myeloid-specific transcription factor binding motifs were strongly enriched in G-CSF-treated 

control CD34+ HSPCs compared to GADD45b-deficient G-CSF-exposed samples. In 

particular, we identified enrichment of the binding motifs for RXRA/RARA, SPI1, and 

C/EBPβ in G-CSF-treated control cells but not in the corresponding GADD45b-KO samples 

(Figure 5G, Supplemental Figure 6A).  

 Together, these data clearly demonstrate that GADD45b plays important roles in G-

CSF-triggered granulocytic differentiation and the regulation of neutrophil functions. 

 

GADD45b-dependent active gene demethylation during G-CSF-triggered granulocytic 

differentiation of HSPCs 

GADD45 proteins, including GADD45b, regulate active DNA demethylation by 

promoting the coupling of deamination, glycosylation, and the recruitment of the DNA 

demethylation machinery to specific genomic loci37-40,53. We therefore investigated whether 
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the G-CSF-triggered granulocytic differentiation of HSPCs requires active gene 

demethylation mediated by GADD45β. We assessed methylation changes in control and 

GADD45b-KO CD34+ HSPCs treated or not with G-CSF, using an Infinium 

MethylationEPIC array (Illumina, Inc.) and subsequent data analysis with the R packages, 

minfi, limma, and DMRcate54-57.  

G-CSF treatment of control CD34+ HSPCs triggered robust changes of DNA 

methylation: we detected 13.516 hypomethylated and 6.236 hypermethylated CpGs (adjusted 

p-value < 0.05) (Figure 6A, left part, Supplemental Table 2). In contrast, GADD45b KO 

markedly attenuated the G-CSF-induced demethylation: we detected only 8.440 

hypomethylated and 4.674 hypermethylated CpGs (χ2 test: p = 0.0001, Figure 6A, right 

part). We found that 5.704 CpGs and 628 were hypomethylated in G-CSF-treated WT and 

GADD45b-KO cells, respectively (Figure 6B). In contrast, hypermethylation was seen for 

2.878 sites in WT cells and 1.316 sites in GADD45b-KO cells upon G-CSF treatment (Figure 

6B). The highest number of differentially methylated CpGs among the studied groups can be 

assigned to open sea regions (χ2 test: p < 0.05, Figure 6C, left). Gene-specific annotations of 

CpGs show that 5’UTR and 3’UTR are the preferential places for differentially methylated 

CpGs (χ2 test: p < 0.05, Figure 6C, right).   

Consistent with the gene expression changes discussed above, Genomatix analysis of 

methylation data revealed that GADD45b and G-CSF significantly regulated various 

biological processes, including myeloid leukocyte differentiation, neutrophil activation, cell 

migration, and chemotaxis (Supplemental Figure 7A). G-CSF-dependent signaling pathways 

regulated by GADD45b-mediated hypomethylation were identified, including hematopoietic 

cell kinase, SRC, CXCR1, G-CSFR, and RARA signaling (Supplemental Figure 7B). Again, 

diseases associated with defective G-CSF-triggered hypomethylation upon GADD45b KO 
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were immune system diseases, AML, leukocyte disorders, leukopenia, pre-leukemia, and 

neutropenia (Figure 6D). 

The top genes with differentially methylated regions (DMRs) were RXRA, MEFV, 

FPR2, CSF3R, and several genes encoding neutrophil granule proteins (e.g., ELANE, MPO, 

AZU1, and CTPSG) (Figure 6E and Supplemental Figure 8A). 

Genomic locus overlap enrichment analysis58 showed that the DMRs were associated 

with top-ranked datasets representing regions occupied by H3K9K14ac in ATRA-treated NB4 

cells, the RARA binding sites in the PML-RARα zinc-inducible cell line, UPR9, and SPI-

associated regions (Supplemental Table 3). 

 

Activation of the retinoic acid signaling by ATRA rescued defective granulocytic 

differentiation of CN HSPCs  

We further evaluated whether the GADD45b-mediated regulation of active DNA 

demethylation correlated with the mRNA expression differences that we observed between 

control and GADD45b-KO cells treated with G-CSF. We selected genes that exhibited 

significantly reduced mRNA expression in G-CSF-treated GADD45b-KO cells but not in G-

CSF-exposed control samples, and assessed their association with differentially methylated 

CpGs. We found that G-CSF regulates the methylation and expression of genes essential for 

myeloid differentiation or neutrophil activation (e.g., RXRA, MEFV, CXCR1, FPR2, and 

SERPINA1) via GADD45β (Figure 7A). Hypomethylated CpGs in these genes were located 

in regions with regulatory activity, such as the transcriptional start sites (TSS), first exon, and 

untranslated regions (UTRs). Genomatix analysis revealed that GADD45b-deficient G-CSF-

treated HSPCs exhibited dysregulation of biological processes and signal transduction 

cascades that regulate granulopoiesis and neutrophil functions, as well as those associated 

with disease entities, such as phagocyte bactericidal dysfunctions, neutropenia, leukocyte 

disorders, and myeloid leukemia (Figure 7B,C, Supplemental Figure 9A).  



 17 

We identified the retinoic acid pathway as one of the top hits regulated by GADD45b 

during G-CSF-triggered in vitro granulopoiesis (Figures 4 and 5). We, therefore, assumed 

that in the absence of GADD45ß activation in CN patients HSPCs, the retinoic acid pathway 

could not be induced leading to diminished granulocytic differentiation. We evaluated 

whether activation of the retinoic acid signaling by ATRA will bypass missing activation of 

GADD45β downstream of G-CSF. We treated CN HSPCs with ATRA or DMSO during the 

in vitro liquid culture granulocytic differentiation. Strikingly, in all treated CN patient`s 

HSPCs, (five CN patients: ELANE-CN n = 3 and HAX1-CN n = 2), we observed markedly 

improved granulocytic differentiation, as assessed by a drastic reduction of 

myeloblasts/promyelocytes and increase of neutrophils on cytospin slides of cells assessed on 

day 14 of culture (Figure 7D, E). 

These data strongly argue that both granulocytic differentiation and neutrophil 

functions are regulated by GADD45b-mediated DNA demethylation upon G-CSF treatment 

of CD34+ cells via activation of retinoic acid signaling. Moreover, the treatment of CN 

HSPCs with ATRA rescued the GADD45β deficiency and induced granulopoiesis. 
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Discussion  

 Granulopoiesis is a highly complex and coordinated process of differentiation of 

HSPCs into mature neutrophils. It is controlled by a network of regulatory mechanisms and 

factors, including transcription factors, epigenetic modifiers, receptors, cytokines, and protein 

kinases. In the present study, we demonstrated that GADD45b plays an essential role in the 

G-CSF-triggered granulopoiesis. We were able to link diminished GADD45b expression in 

HSPCs to CN, which is an inherited bone marrow failure syndrome with severe neutrophil 

differentiation defects. Rescue experiments in CN HSPCs confirmed that GADD45b plays an 

important role in G-CSF-mediated granulopoiesis. Moreover, ectopic expression of Gadd45β 

in murine HSPCs resulted in the elevated myelopoiesis. These data are in line with previous 

observations that neutrophils exhibit defects in their numbers and functions in Gadd45β-/- 

mice under stress conditions27,34,43,59. We herein observed elevated DNA damage in bone 

marrow HSPCs of G-CSF treated CN patients. We and others previously demonstrated that 

inherited CN-associated mutations deregulate intracellular signaling cascades1-11,60. This may 

lead to replicative stress, DNA damage, and ultimately deregulated commitment of HSPCs 

resulting in defective granulopoiesis. GADD45b expression is activated upon stress (e.g. 

DNA damage or cytokine exposure27,34,43), regulating gene expression programs specific for 

granulopoiesis and neutrophil functions. In CN patients, in contrast, GADD45b expression is 

not activated, and granulopoiesis is therefore not initiated.  

Severe defects in the expression levels of the transcription factors, LEF-1 and 

C/EBPa, were previously described by our group in myeloid cells of CN patients harboring 

either ELANE or HAX1 mutations and were suggested to explain the defective granulopoiesis 

seen in this disorder2. LEF-1 binds to and activates the C/EBPA gene promoter under normal 

circumstances2. We herein show that C/EBPa binds to and activates GADD45B promoter. 

Therefore, we hypothesized that GADD45b is not activated in CN HSPCs due to the 
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downregulation of LEF-1 and C/EBPa. Since both investigated CN patient groups (with 

ELANE or HAX1 mutations) showed defective GADD45b expression upon G-CSF treatment, 

we assume that this results from common dysfunctional pathways downstream of the 

inherited mutations. The mechanism of GADD45b deregulation in CN HSPCs downstream of 

e.g. UPR triggered by mutated ELANE or mitochondrial dysfunctions triggered by HAX1 

mutations remains to be investigated. We previously described compensatory G-

CSF/NAMPT/SIRT1-mediated activation of C/EBPβ-triggered granulopoiesis in CN patients 

in the absence of LEF-1 and C/EBPa10. Based on these observations, we assume that G-CSF - 

C/EBPb - GADD45β axis is not active in CN, and G-CSF induces granulopoiesis via 

NAMPT/SIRT1/C/EBPb pathway, that is GADD45β independent. Future work will be 

needed to examine why C/EBPβ cannot induce GADD45b expression in CN HSPCs. 

The GADD45 protein family consists of three members that have similar structures 

and partially redundant functions61. The expression levels of the other GADD45 proteins are 

not affected in CN (data not shown), but the presence of these proteins does not appear to 

compensate for the abrogation of GADD45b. This might reflect that GADD45b has tissue-

specific functions and/or a specific affinity for particular stimuli, such as G-CSFR signaling. 

Gadd45b-/- mice also have a neutropenic phenotype with markedly diminished stress-induced 

neutrophil functions27,34,43,59. The role of GADD45b in G-CSF triggered granulopoiesis 

appears to be evolutionarily important, given our observation that gadd45bb-deficient 

zebrafish also exhibit markedly reduced neutrophil numbers. Since Elane- or Hax1-KO mice 

do not develop neutropenia, we suggest that gadd45bb-KO zebrafish could be used as an 

experimental model to investigate neutropenia associated with these mutations. 

The signal transduction pathways that are specifically regulated by GADD45b in 

human HSCs have not yet been fully elucidated. NFkB, p38, and MKK7 signaling have been 

described to be regulated by GADD45b in mice27,34,43,59,62. Our RNA-seq analysis 
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demonstrated that G-CSF induces e.g. RXRA, ITGAM (CD11b), FPR1/2, MEFV, BATF, and 

FGR in a GADD45b dependent manner. Intriguingly, these factors were also upregulated in 

bone marrow myeloid progenitor cells from G-CSF-treated healthy donors, but not in those 

from CN patients. All these genes are key hematopoietic- and myeloid-lineage factors. For 

example, endogenous retinoic acid (RA) receptors are upregulated in mouse HSPCs upon G-

CSF treatment63 and RARA/RXRA signaling plays an important role during 

granulopoiesis64,65. Vitamin A and D both require RARA/RXRA for proper intracellular 

signal transduction and, interestingly, our RNA seq and methylation analyses identified 

disease entities associated with neutropenia and other immunological bone marrow failure 

syndromes, as well as vitamin A or D deficiency among the diseases significantly correlated 

with GADD45b deficiency.  

GADD45b regulates active DNA demethylation that involves the base excision 

repair38,66,67. The GADD45 proteins remove 5-hydroxymethylcytosine (5HMC) and 5-

methylcytosine (5MC) and act as a scaffold for recruited cytidine deaminases or DNA 

glycosylases39,40,68-70. GADD45 proteins are also essential for targeting promoters for 

5HMC/5MC removal through direct interactions with nuclear hormone receptors71 or 

hyperacetylated nucleosomes25. We found here, that in GADD45b-KO cells treated with G-

CSF, the number of hypomethylated CpGs was markedly reduced, whereas much less 

alteration was seen for hypermethylated CpGs. Consistent with the profiles of differentially 

expressed genes, our analysis of DNA hypomethylated sites revealed an association with 

defects in myeloid cell differentiation, hematopoiesis, neutrophil activation, regulation of cell 

adhesion, chemotaxis, and phagocytosis in these cells. The G-CSFR, RARA/RXRA, vitamin 

D, and FPR1 signaling pathways were among top regulated pathways, and neutropenia was 

among the significant disease entities correlated with GADD45b-dependent methylation 

changes in G-CSF-stimulated HSPCs. By comparing our RNA seq data with the observed 

DNA methylation changes, we were able to identify candidate factors whose expression 
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levels are regulated by GADD45b-mediated active demethylation. These factors included 

RXRA, MEFV, FPR2, CSF3R and genes encoding the neutrophil granule proteins, NE, AZU1, 

MPO, and CTSG.  

In addition, genomic locus overlap enrichment analysis showed that DMRs were 

associated with the top-ranked regions occupied by H3K9K14ac in ATRA-treated NB4 cells, 

RARA binding sites in the PML-RARα zinc-inducible cell line, UPR9, and SPI1/PU.1 

binding sites. H3K9K14ac marks active inducible gene regulatory elements establishing a 

chromatin conformation that is compatible with transcription72. Martens et al.73 demonstrated 

that ATRA treatment of acute promyelocytic leukemia (APL) cells strongly increases 

H3K9K14ac at PML-RARA/RXR target sites. The increased methylation observed in most 

DMRs upon GADD45b KO might affect the induction of local DNA histone modifications, 

perhaps accounting for the deregulation of the myeloid differentiation program in GADD45b-

KO HSPCs.  

Strikingly, to functionally validate our observations from the RNA-seq and 

methylation array analyses, we activated retinoic acid signaling in GADD45β-deficient 

HSPCs of CN patients. Indeed, we could circumvent the induction of GADD45β by treating 

CN HSPCs with ATRA to trigger granulopoiesis by activating retinoic acid signaling. ATRA 

is an FDA-approved drug for the treatment of human promyelocytic leukemia74 and 

myelodysplastic syndrome75 and could offer a potential therapy option for CN patients.  

Gene expression and methylation changes detected in our patients were associated 

with pre-leukemia, MDS, and AML. Since CN is a pre-leukemic bone marrow syndrome, it 

would be interesting to investigate the role of diminished GADD45b expression in leukemia 

development in CN. There is some controversy regarding the role of GADD45b in 

tumorigenesis and leukemogenesis, with GADD45 proteins reportedly acting as tumor 

suppressors in some tumors (e.g., breast and prostate cancer), but as tumor-promoting factors 

in others (e.g., colorectal cancer)76-87. In leukemia, GADD45b was reported to induce 
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apoptosis in AML30, and GADD45b deficiency was shown to accelerate BCR-ABL-driven 

chronic myeloid leukemia88.  

 In summary, we herein show that GADD45b plays essential roles in G-CSF-triggered 

granulopoiesis by regulating the active demethylation and expression of genes essential for 

these processes, including components of the retinoic acid signaling (Figure 7E). G-CSF 

activates GADD45b expression via C/EBPa and since the myeloid cells of CN patients are 

deficient for C/EBPa, GADD45b and downstream retinoic acid signaling are not activated 

leading to severe diminished granulocytic differentiation (Figure 7E). Strikingly, ATRA 

treatment rescues defective granulocytic differentiation of CN HSPCs. These data clearly 

demonstrate how investigations combining basic and translational science may lead to the 

identification of novel therapeutic opportunities. In our case, patients with severe congenital 

neutropenia, especially patients who do not respond to the standard G-CSF therapy may 

benefit from this scientific approach. 
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Figure legends 

Figure 1. Diminished GADD45β expression in line with elevated gH2AX levels in HSCs 

of CN patients may lead to “decision shift” from myeloid to lymphoid progenitors 

A, Bone marrow mononuclear cells were stained for surface markers to detect human stem 

and progenitor cell subsets, gH2AX was included into the panel (healthy controls treated with 

G-CSF n = 4, ELANE-CN n = 8, HAX1-CN n = 7). The cell populations are as followed: 

multipotent progenitors (MPP), common myeloid progenitors (CMP), granulocyte-

macrophage progenitors (GMP), multi-lymphoid progenitors (MLP) and B- and NK-cell 

progenitors (B/NK). Data represent means ± SEM; analyzed using unpaired nonparametric t-

test (Mann-Whitney U): *, p < 0.05. B, The composition of HSPCs was assessed by 

multicolor FACS panels (healthy controls (n = 7), healthy control + G-CSF (n = 5,) ELANE-

CN (n = 12), HAX1-CN (n = 10). Data represent means ± SEM; analyzed using unpaired 

nonparametric t-test (Mann-Whitney U): *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not 

significant. C, GADD45β expression was measured by qRT-PCR in CD33+ progenitors of 

healthy individuals (n = 3), healthy individuals treated with G-CSF (n = 2), patient with 

metabolic neutropenia (MN, n = 3) and congenital neutropenia patients (CN, n = 7). Data 

represent means ± SEM from duplicates. D, GADD45β protein expression was investigated 

by DUOLINK proximity ligation assay in healthy donor CD33+ cells treated with G-CSF and 

ELANE-CN patients CD33+ cells. Representative images are depicted. 

 

Figure 2. Ectopic expression of GADD45β rescues neutrophilic differentiation of CD34+ 

HSPCs of CN patients and accelerates granulopoiesis in mice 

A, Schematic of the experimental procedure: CD34+ HSPCs of two ELANE-CN patients were 

expanded in vitro, transduced with lentivirus containing GADD45β construct or a control 

virus with the fluorescent marker Venus and differentiated in liquid culture for 14 days. B, 

Neutrophilic surface marker expression was measured by FACS. Only Venus+CD45+ cell 
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fraction was considered for analysis. In both patients the ectopic GADD45β expression led to 

the increased percentage of CD11b+CD15+, CD11b+CD16+ and CD15+CD16+ cells 

significantly. Data represent means ± S.D.; *, p < 0.05; **, p < 0.01; ***, p <0.001. C,D, 

Murine LT-HSCs were transduced with Gadd45b, differentiated for 8 days in liquid culture. 

C, Surface marker expression was evaluated at different time points of culture by FACS, as 

described in material and methods. Transduced cells were gated for immature HSPCs, GMP-

like cells, mature neutrophils and macrophages, means ± S.D. of 3 independent experiments; 

*, p < 0.05; **, p < 0.01. Representative FACS images of cells on day 8 of differentiation 

stained for granulocyte/monocyte surface markers CD11b and CD16/32 are depicted in D. E, 

CFU assay of mouse LT-HSCs transduced with either control or Gadd45b virus under 

permissive cytokine conditions, as described in material and methods. Colonies generated 

from transduced cells were counted, data represent means ± S.D. of 3 independent 

experiments (left image). 2 x 104 cells isolated from CFUs were re-plated in the secondary 

CFUs, as described in material and methods (n = 1, right image).  

 

Figure 3. Diminished in vitro granulocytic differentiation of HSPCs and iPSCs upon 

GADD45β knockout  

A, Bone marrow CD34+ HSPCs were nucleofected with GADD45B-specific CRISPR/Cas9-

gRNA RNP. Granulocytic differentiation was evaluated in liquid culture differentiation for 14 

days. Neutrophilic surface marker expression was assessed by FACS. B-E, Evaluation of 

granulocytic differentiation of GADD45β-deficient iPSCs; B, CFU assay; C, EB-based 

myeloid differentiation; D,E, morphological assessment of differentiated iPSCs on day 28 of 

culture was conducted on Wright-Giemsa stained cytospin preparations (MB/ProM: 

Myeloblasts/Promyelocytes; Myelo/Meta: Myelocytes/Metamyelocytes; Band/Seg: Band/ 

Segmented cells; MF: Macrophages); representative cytospin images (60 X magnification) of 
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three experiments are depicted in E. A-E show data from 3 experiments. Data represent 

means ± S.D.; *, p < 0.05; **, p < 0.01; ***, p < 0.001. 

 

Figure 4. Knockout of gadd45bb in zebrafish resulted in drastically low neutrophil 

numbers 

A, Quantification of GFP+ neutrophils in uninjected controls and gadd45bb sgRNAs injected 

Tg(mpo:gfp) zebrafish embryos at 3 dpf. Each dot represents an individual embryo at 3 dpf 

(N). Data are mean ± S.D., ****, p <0.0001. Representative images are shown in the right 

panel. B, Number of mpo-expressing cells in the hematopoietic site of embryos in different 

experimental setups at 1 dpf is indicated. Each dot represents an individual embryo at 1 dpf 

(N). Data are mean ± S.D., ****p <0.0001, **p <0.001, n.s., not significant. Representative 

images are shown in the right panel. C, In silico promoter analysis of GADD45B promoter 

region by Genomatix with four predicted binding sites for C/EBP transcription factors. 

C/EBPα binding sites on GADD45β promoter were analyzed by chromatin 

immunoprecipitation. C/EBPα binding was confirmed for binding site 1, 3 and 4. D, Binding 

of C/EBPα to promoter region (1.2 kb) of GADD45β was assessed by dual luciferase reporter 

gene assay with different concentrations of C/EBPα-expressing construct, representative data 

from 3 experiments. Data represent means of 3 experiments ± S.D.; *, p < 0.05; **, p < 0.01; 

***, p < 0.001; ****, p < 0.0001. 

 

Figure 5. CRISPR/Cas9-mediated knockout of GADD45β in CD34+ HSPCs repressed G-

CSF-triggered granulocytic differentiation program 

A, Schematic of the experimental approach. B, Comparison between wild-type and 

GADD45β-KO CD34+ HSPCs both treated with G-CSF revealed 94 significantly 

differentially expressed genes (adjusted p-value < 0.05), most of them having roles in myeloid 

differentiation (indicated with *). C, candidate genes of which the expression was regulated 
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similarly in current RNA seq data and in microarray experiments conducted and published 

previously on healthy individual and CN patient promyelocytes treated with G-CSF. D-F, 

Genomatix-based gene ontology analysis using a list of significantly upregulated genes in G-

CSF treated GADD45β WT HSPCs, in comparison to GADD45β-KO HSPCs revealed top 

significantly enriched biological processes (D), signal transduction pathways (E) and disease 

entities (F) that are GADD45β dependent. G, iRegulon transcription factor motif enrichment 

analysis using a list of significantly upregulated genes in G-CSF treated GADD45β WT 

HSPCs, in comparison to GADD45β-KO HSPCs, revealed enrichment of genes (Normalized 

Enrichment Score (NES) > 3.0 and Area Under the cumulative Recovery Curve 

(AUC) > 0.03) with myeloid-specific transcription motifs in control but not in knockout cells.  

 

Figure 6. GADD45β is essential for active DNA demethylation in response to G-CSF 

A-F, DNA methylation of G-CSF-treated control or GADD45β-KO cells was evaluated using 

methylation EPIC array and was analyzed using R packages minfi and limma. A, G-CSF 

treatment induced the hypomethylation of 13.516 CpGs and hypermethylation of 6.236 CpGs 

in control cells (left). In GADD45B-KO cells (right), G-CSF induced hypomethylation of 

8.440 and hypermethylation of 4.674 CpGs. B, Venn diagram of hypo- or hypermethylated 

CpGs in indicated groups. C, Evaluation of the numbers of differentially methylated CpGs 

per gene region (left) revealed that top significant differentially methylated CpGs (adjusted p-

value < 0.05) were located mainly in open sea and island regions of genes. N: upstream and S: 

downstream of CpG island, shore: 0-2 kb from island, shelf: 2-4 kb from island. Gene-

oriented annotation of CpGs (CpG feature, right) revealed that the most significant 

differences preferentially located in intragenic regions, 5’UTR and 3’UTR. Significance was 

calculated with the χ2 test: p < 0.05. D, Genomatix-based gene ontology analysis using a list 

of significantly differentially hypomethylated CpGs in G-CSF treated GADD45β-WT 

HSPCs, in comparison to GADD45β-KO HSPCs revealed top significantly enriched disease 
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entities that are GADD45β dependent. E, Differentially methylated regions (DMRs) in top 

genes that are hypomethylated upon G-CSF but not in GADD45β-KO cells are shown (minfdr 

<10-6).  

 

Figure 7.  Regulation of G-CSF-triggered granulopoiesis by GADD45β-mediated gene 

demethylation  

A, List of significant genes differentially expressed and methylated (adjusted p-value < 0.05) 

with differentially hypomethylated CpGs (adjusted p-value < 0.05) upon G-CSF treatment of 

healthy control HSPCs, as compared to GADD45b-KO cells. For all genes, CpGs are located 

in essential gene regulatory regions. B,C, Genomatix-based gene ontology analysis using the 

list of genes from A revealed top significantly enriched biological processes (B) and diseases 

entities (C) that are GADD45β dependent. D, E, Five CN patient HSPCs (HAX1-CN n  =2 

and ELANE-CN n = 3) were treated with either DMSO or ATRA during in vitro liquid culture 

granulocytic differentiation. Bar chart of the morphological analysis (D) and representative 

cytospin images (E) of the cytospin slides of cells derived on day 14 of culture are presented, 

MB/ProM: Myeloblasts/Promyelocytes; Band/Seg: Band/ Segmented cells, 60 X 

magnification. Data represent percentages of respective populations from five CN patients ± 

S.D.;  **, p < 0.01. F, Mechanism of “maturation arrest” of G-CSF-triggered granulopoiesis 

in CN patients via diminished GADD45β-mediated regulation of granulopoiesis-activating 

genes, including components of the RA signaling. Treatment of cells with ATRA restored 

granulopoiesis in CN. 
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Supplemental information 

 

Supplemental material and methods 

 

Cell culture 

The human embryonic kidney 293T (HEK293T) cell line was cultured under standard 

conditions (37 °C, 5 % CO2, 20 % O2) using DMEM high glucose  for HEK293T cells 

(Gibco, #41966-052).  

Human CD34+ hematopoietic stem and progenitor cells (HSPCs) and CD33+ myeloid 

progenitor cells were isolated from bone marrow- or peripheral blood mononuclear cell 

fraction by magnetic bead separation using Human CD34 Progenitor Cell Isolation kit, (#130-

046-703) and Human CD33 Myeloid Progenitor Cell Isolation kit (#130-045-501) (Miltenyi 

Biotech, Germany). CD34+ cells were cultured in a density of 2 x 105 cells/ml in Stemline II 

Hematopoietic Stem Cell Expansion medium (Sigma Aldrich, #50192) supplemented with 

10 % FBS, 1 % penicillin/streptomycin, 1 % L-glutamine and a cytokine cocktail consisting 

of 20 ng/ml IL-3, 20 ng/ml IL-6, 20 ng/ml TPO, 50 ng/ml SCF and 50 ng/ml FLT-3L.  

Human induced pluripotent stem cells (iPSCs) were cultured on Geltrex LDEV-free 

reduced growth factor basement membrane matrix (Thermo Fisher Scientific, #A1413201) 

coated plates in a density of 2 x 105 cells/ml in StemFlex medium (Thermo Fisher Scientific, 

#A3349401) supplemented with 1 % penicillin/streptomycin. 

FACS analysis of HSPCs composition 

105 CD34+ HSPCs or 106 bone marrow mononuclear cells were washed with PBS and 

stained with corresponding surface marker antibodies in PBS containing 2% FBS and 0.02% 

sodium azide. For HSPC surface marker analysis (panel adapted from van Galen et al.1), 

following antibodies were used: mouse anti-human CD38 (BD, #563964), mouse anti-human 

CD34 (BD, #348811), rat anti-human CD49f (BD, #563271), mouse anti-human CD90 (BD, 

#562685), mouse anti-human CD45RA (BD, #560673), mouse anti-human CD10 (BD, 

#563734), mouse anti-human CD135 (BD, #564708). For the analysis of nuclear H2AX 
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protein, cells were subsequently permeabilized and fixed using IntraSure kit (BD #641776) 

followed by incubation with mouse anti-human gamma H2AX (BD, #560447 or #560445) 

antibody. 

Pure knockout clone isolation and embryoid body (EB)-based iPSC differentiation 

Human healthy donor iPSCs were nucleofected with CRISPR/Cas9-gRNA RNP 

complexes against GADD45B (150 pmol per 106 cells, program CA-137) and afterwards 

plated on a Geltrex-coated 10-cm dish (15 x 103 cells/dish) in StemFlex medium 

(Thermofisher, #A3349401) with RevitaCell supplement (Thermo Fisher Scientific, 

#A2644501). Media was changed every 24 hours without RevitaCell supplement. After 9 to 

12 days, iPSC colonies were picked and transferred on a Geltrex-coated 96 well plate. 

Knockout was assessed for each clone by Cas9 in vitro digestion and confirmed by Sanger 

sequencing. The knockout clone was expanded and cultured on feeder cells. The expanded 

iPSC clones were dissociated from SNL-feeders or Geltrex LDEV-free reduced growth factor 

basement membrane matrix (Thermo Fisher Scientific, #A1413201) coated plates using 

PBS/EDTA (0.02%) for 5 min. As described in Dannenmann et al.2 EB induction was done 

via spin EBs (2 x 104 cells/EB) in 96-well plates using APEL serum-free differentiation 

medium (Stemcell Technologies, #5270) supplemented with bFGF (20 ng/ml) and ROCK 

inhibitor (Y-27632 dihydrochloride, R&D Systems, #1254). On day 1, BMP4 (40 ng/ml) was 

added to induce mesodermal differentiation. On day 4, EBs were plated on Geltrex coated 

6-well-plates (10 EBs/well) in APEL medium supplemented with VEGF (40 ng/ml), SCF 

(50 ng/ml) and IL-3 (50 ng/ml). For neutrophilic differentiation, the medium was changed 3 

days later to APEL supplemented with IL-3 (50 ng/ml) and G-CSF (50 ng/ml). First 

hematopoietic floating cells appeared on day 12 – 14. Floating cells were harvested starting 

from day 14 to day 32 every 3 - 4 days and used for FACS analysis and Wright-Giemsa 

staining for morphologic discrimination.  
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Colony forming unit (CFU) assay 

As described previously3, CD34+ cells were resuspended in Iscove's MDM with 2 % 

FBS (Stemcell Technologies, #07700) and enriched Methocult (Stemcell Technologies, 

#H4435). Cell suspension was plated on 3.5 cm dishes (1 x 103 cells/dish) followed by colony 

counting at day 14.  

Murine Gadd45b expression vector 

The open reading frame (ORF) of a fluorescent reporter protein (either VENUS-

hImportin subunit α1 (AA2-67) or tdTOMATO-hImportin subunit α1 (AA2-67)) was cloned 

into the third generation self-inactivating lentiviral vector 

pRRL.PPT.SFFV.IRES.eGFP.wPRE by replacing the ORF of green fluorescent protein4. A 

multiple cloning site (MCS) was inserted after the SFFV promoter. The ORF of murine 

Gadd45b was amplified by RT-PCR (forward 5´-

TTGGCCGGCCTGCATCATGACCCTGGAAGAG-3´, reverse 5´- 

TTACTAGTCACGGGTAGGGTAGCCTTTGA-3´) and then cloned into the MCS. 

Lentivirus production and transduction  

Human GADD45β cDNA expressing and empty control lentiviruses were produced in 

HEK293T cells5. For this, HEK293T were transfected with lentiviral envelope plasmid 

pMD2.G, the lentiviral packaging plasmid psPAX2 and donor plasmid using TransIT-LT1 

transfection reagent (Mirus, #MIR2300) according to the manufacturer’s protocol. Two days 

after transfection, the supernatant containing the virus was harvested and concentrated using 

Lenti-X Concentrator (Takara Clontech, #631232). Viral titers were determined by 

transduction of HEK293T cells with different concentrations of virus supernatant and FACS. 

Vesicular Stomatitis Virus-G (VSVG)-pseudotyped lentiviral particles containing 

murine Gadd45b cDNA were produced in a split genome approach by calcium-phosphate-

mediated transient transfection of human embryonic kidney 293T producer cells5. After 48 

hours, supernatant was collected, filtered (45µm), and enriched by ultracentrifugation 
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(50.000 g, 2 hours). Viral titers were determined by transduction of NIH3T3 cells with 

different concentrations of virus supernatant and FACS. 

CD34+ cells were transduced with a multiplicity of infection (MOI) of 6 to 10 using 

5 µg/ml polybrene by spinoculation at 500 x g at 4 °C for 10 minutes. Cells were re-

transduced after 24 hours. One day after re-transduction medium was exchanged and cells 

were incubated for two more days before differentiation experiments were started. 

GADD45β shRNA and control shRNA were produced in HEK293T cells and 

concentrated with Lenti-X Concentrator as described above. NB4 cells were transduced with  

MOI 5 using 5µg/ml polybrene. Medium was exchanged after 24 hours. NB4 cells were 

differentiated using 1 µM ATRA for 14 days. 

In vitro differentiation of murine LT-HSCs 

Mouse BM cells from femurs, tibias, coxae and sternum of 12-16 week old C57BL/6 mice 

were isolated by crushing the bones and LT-HSCs were sorted with a FACS Aria (BD) after 

staining with antibodies against CD117, Sca1, CD150, CD48, CD34, CD16/32, and 

Streptavidin. Details are explained elsewhere28. 100 murine LT-HSCs were lentivirally 

transduced (MOI 100) and cultured in SFEM (Stemcell Technologies) supplemented with 100 

ng/ml SCF and TPO (Peprotech). Cells were analyzed by FACS (antibodies against CD48, 

CD117, CD16/32, CD11b) at indicated time points28. To read out colony-formation, LT-

HSCs were lentivirally transduced (MOI 100), seeded 24 hours later in M3434 medium 

(Stemcell Technologies) and scored microscopically after 9 to 12 days for transduction and 

colony formation. After counting the cells, defined cell numbers after primary colony 

formation were replated to fresh M3434 medium and scored for secondary colony formation 

after 9 to 12 days.  

Genomic DNA isolation and GADD45B Sanger sequencing 

Genomic DNA was isolated using the QIAamp DNA Mini Kit (Qiagen, #51306) 

according to the manufacturer’s instructions. PCR to amplify CRISPR/Cas9 sgRNA RNP-
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edited region of GADD45B was conducted using GoTaq Hot Start Polymerase Kit (Promega, 

#M5006). PCR products were purified using the QIAquick PCR Purification Kit (Qiagen, 

#28106), and Sanger sequencing was performed at Eurofins Genomics. 

qRT-PCR 

RNA was isolated using the RNeasy Mini Kit (Qiagen, #74106) according to the 

manufacturer’s instructions. Reverse transcription was conducted with the Omniscript RT kit 

(Qiagen, #205113) according to the protocol using a mix of random hexamers (Thermo Fisher 

Scientific, #S0142) and oligo-dT (Thermo Fisher Scientific, #S0132) primers. The mRNA 

expression of mRNA was measured with the SYBR Green quantitative PCR kit (Roche, 

#04887352001) and primers against GADD45B mRNA (forward 5’-

TGCTGTGACAACGACATCAAC-3’ and reverse 5’-GTGAGGGTTCGTGACCAGG-3’). 

GADD45B mRNA expression was normalized to GAPDH and is presented as 2-dCp values.  

Duolink in situ proximity ligation assay 

Proximity ligation assay was described in detail elsewhere3,6. Cytospin slides (1 × 104 

cells per slide) were fixed in ice-cold methanol for 5 min, washed with PBS twice, 

permeabilized using 0.5% Triton X-100 for 10 min, washed with PBS twice and stained using 

primary anti-GADD45β antibody followed by Duolink® in situ PLA probes and Duolink® in 

situ Detection Reagents Orange (Olink Bioscience) following the manufacturer’s protocol 

(Olink Bioscience, Uppsala, Sweden). After staining, samples were air-dried, mounted with 

Duolink® In Situ Mounting Medium with DAPI (Olink Bioscience) and examined using an 

Axio Observer.Z1 fluorescence microscope (ZEISS, Oberkochen, Germany). 

Dual luciferase reporter gene assay 

GADD45B promoter (1.2 kb upstream of ATG) predicted to contain four C/EBP 

binding sites was cloned into the pGL4.10 [luc2] firefly luciferase reporter vector (Promega, 

#E6651). HEK293T cells were transfected with the GADD45B firefly luciferase reporter 

vector, Renilla vector and C/EBPA plasmid in different concentrations using TransIT-LT1 
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transfection reagent (Mirus, #MIR2300). Lysates were harvested 60 hours post transfection 

and activity of both firefly and Renilla luciferase was measured using a GloMax Multi 

Detection System (Promega).  

Chromatin immunoprecipitation assay 

THP1 cells (15 x 106) were fixed using 1 % formaldehyde for 5 min at room 

temperature, fixation reaction was stopped by adding 0.125 M glycine. Cells were rinsed 

twice with ice-cold PBS and resuspended in 1 mL Farnham lab (FL) buffer (5 mM PIPES pH 

8, 85 mM KCl, 0.5% Igepal CA-630) containing protease inhibitors. Covaris M220 focused 

ultrasonicator was used to isolate nuclei (peak power 75 W, duty factor 15 % and 200 

cycles/burst at 4 °C). Nuclei were centrifuged at 1000 xg for 5 min at 4 °C and washed once 

in FL buffer. To shear the chromatin nuclei were taken up in resuspension buffer D3 (1 mM 

EDTA, 10 mM Tris-HCl pH 7.6, 0.1 % SDS) containing protease inhibitors and sonicated for 

25 min, at peak power 75 W, duty factor 15 % and 200 cycles/burst. Sheared chromatin was 

pre-cleaned with mixed Dynabeads (protein A and G, Thermo Fisher Scientific, #10001D and 

#10003D) and precipitated using either C/EBPα monoclonal antibody (sc-166258) or input 

control antibody (sc-2025). After several washing steps immunoprecipitated protein-DNA 

crosslinked complexes were eluted, the cross-links were reversed over night by incubation 

with 0.2 M NaCl and 20 µg RNAse A (Macherey Nagel, #740505) at 65 °C and de-

proteinated with 40 µg proteinase K (Qiagen, #19131). We detected C/EBPα bound fraction 

of DNA was measured by qRT-PCR. The protocol was adapted from Arrigoni et al.7. 

Zebrafish experiments 

All zebrafish experiments described in the present study were conducted on embryos 

younger than 5 days post-fertilization under the guidelines of the European Commission, 

Directive 2010/63/EU. Zebrafish husbandry was performed in accordance with European 

Union animal welfare guidelines8 and under the supervision of the local representative of the 

animal welfare agency (permit 35/9185.46/Uni TÜ). The zebrafish strain used in this study 



 7 

was Danio rerio wild type TE. The stable transgenic line Tg(mpo:gfp) was described 

previously9.  

sgRNA target site selection 

sgRNAs for zebrafish gadd45bb were designed with CCTop as described in Stemmer 

et al.10. Four sgRNAs were used (PAM in brackets): CGAGACAGTGTCGCTGCAAG 

(AGG), CTGTGCCAGACGCCTCATGC(CGG), AGACCAAAGGAGCATCTGGG(TGG) 

and CTACGCTTTGCACTCCACGT(GGG). Cloning of sgRNA templates and in vitro 

transcription was performed as detailed in Stemmer et al.10. 

Whole-mount in situ hybridization 

RNA in situ hybridization of zebrafish embryos was performed as described 

previously11 using digoxigenin-labeled RNA antisense probe for gadd45bb (accession number 

NM001012386, nucleotides 484-968) and myeloperoxidase, mpo (accession number 

BC056287, nucleotides 225-938). 

In vitro transcription of mRNA 

The pCS2+Cas9 plasmid was linearized using NotI and the mRNA was transcribed in 

vitro using the mMessage_mMachine SP6 Kit (ThermoFisher Scientific, AM1340).  

Microinjection and heat treatment of zebrafish embryos 

Zebrafish zygotes were co-injected with 15 ng/µl of the sgRNAs and 150 ng/µl of 

Cas9 mRNA. As negative control, 150 ng/µl of Cas9 mRNA without sgRNAs was injected 

into wild type embryos. Embryos were kept at 28°C in E3 medium with 200 µM 1-phenyl 2-

thiourea (PTU) to prevent pigmentation. To ectopically express csf3a, full-length cDNA of 

zebrafish csf3a was cloned in a plasmid containing a bi-directional heat-inducible promoter12 

and Tol2 binding sites. The resulting plasmid, HSE:csf3a, was then co-injected at 20 ng/µl 

with 10 ng/µl of mRNA of Tol2 transposase. Embryos were then heat treated for 1 hour at 

39 °C after one day. GFP-positive embryos were selected for whole-mount in situ 

hybridization analysis and genotyping. 
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Genotyping of gadd45bb crispants  

To genotype gadd45bb crispants, genomic DNA was extracted from individual 

embryos after whole-mount in situ hybridization analysis using the QuickExtractTM DNA 

extraction solution (Epicentre, USA) according to the manufacturer’s protocol. PCR with 

specific forward (5’-TTGCAAGATTTCACTGCGGC-3’) and reverse (5’-

ACGAAAGGTAAACATGTGCAA A-3’) primers was used for subsequent sequence 

analysis. The investigators were blinded to allocation during experiments and outcome 

assessment.  

RNA sequencing  

RNA was isolated using the RNeasy Mini kit (Qiagen, #74106). The RNA 

concentration was determined by Qubit RNA High Sensitivity kit (Thermo Fisher Scientific, 

#Q32855). Library preparation and RNA sequencing on a HiSeq 4000 (single-read 50bp) 

were performed at the DKFZ Genomics and Proteomics Core Facility. RNA seq data analysis 

was performed on an input matrix of raw read counts loaded in R package DESeq213. The 

counts from technical replicates were combined using the collapseReplicates function of 

DESeq2. Differences in gene expression between groups were quantified while controlling for 

individuals effects. The identified list of differently expressed genes was further characterized 

by performing analysis in Genomatix (Intrexon Bioinformatics, Germany), iRegulon14,15 and 

Heatmapper16.  

Methylation analysis  

DNA was isolated using QIAamp DNA Mini kit (Qiagen, #51306). The DNA 

concentration was determined by Qubit dsDNA High Sensitivity kit (Thermo Fisher 

Scientific, #Q32854). Methylation analysis using the Infinium Human MethylationEPIC 

beadchip, which covers 866.895 genome-wide CpGs, was performed at the DKFZ Genomics 

and Proteomics Core Facility. The analysis of methylation data was conducted using R 

packages minfi 17,18 and limma 19. Next, R packages DMRcate and limma were applied for the 
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identification of differentially methylated regions between groups20. Genomatix and iRegulon 

analysis were performed to gain an insight into biological processes and gene pathways that 

differentially methylated CpGs might be involved in. 
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Supplemental figure legends 

 

Supplemental Figure 1. GADD45β expression is increased during granulopoiesis with 

highest levels in granulocytes. A, Analysis of GADD45β expression using the public 

database Bloodspot21 revealed that early progenitors do not express much GADD45β and 

during granulopoiesis it is increased with an expression peak in granulocytes (PMN). 

 

Supplemental Figure 2. Gene modification efficiency of CRISPR/Cas9-mediated 

GADD45β knockout in CD34+ HSPCs from three healthy donors that were used for 

RNA seq and EPIC methylation array 

A-C, Gene modification efficiency of GADD45B-targeting CRISPR/Cas9 RNP was 

determined by Sanger sequencing (left) and indel percentage was determined by ICE webtool, 

Synthego (right). Representative chromatograms are depicted. 

 

Supplemental Figure 3. EB-based myeloid differentiation of GADD45β-/- iPSCs revealed 

an increased amount of immature and decreased amount of mature cells compared to 

control iPSCs 

A, EB-based myeloid differentiation of GADD45β-deficient iPSCs was performed and 

floating cells generated on day 14 of culture were analysed by FACS. B, Morphological 

evaluation using Wright-Giemsa stained cytospin preparations of differentiated iPSCs on day 

21 of culture. A, B Data from 3 independent experiments are depicted, means ± SD; *, p < 

0.05; **, p < 0.01; ***, p < 0.001. 

 

Supplemental Figure 4. Injection of Cas9 mRNA alone does not affect neutrophil 

numbers. A, Cas9 mRNA was injected into wild-type embryos. After one day, the numbers 

of neutrophils were determined by whole-mount in situ hybridization using a mpo antisense 
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probe. The number of mpo-expressing cells in the trunk region was then compared to 

uninjected embryos. N indicates number of embryos. Data are means ± SD. 

 

Supplemental Figure 5. GADD45β promoter has four putative C/EBP binding sites 

A, 654 bp sequence of the GADD45β gene till ATG start codon with four predicted C/EBP 

binding sites (b.s.1-4, indicated in red) is depicted.  

 

Supplemental Figure 6. iRegulon motif enrichment analysis of genes upregulated after 

G-CSF treatment of healthy control HSPCs, but not GADD45β-KO cells 

A, List of significantly enriched motifs and transcription factors binding to these motifs are 

presented. 

 

Supplemental Figure 7. Gene ontology and motif enrichment analysis of differentially 

hypomethylated CpGs upon GADD45β KO 

A,B, Genomatix gene ontology analysis of biological processes (A) and signal transduction 

pathways (B) related to GADD45β-dependent DNA demethylation. C, Significantly enriched 

motifs of hypomethylated genes were identified using iRegulon motif enrichment analysis. 

 

Supplemental Figure 8. Differentially methylated regions (DMRs) related to myeloid-

specific genes are hypomethylated upon G-CSF treatment of control but not GADD45β-

KO cells. Presented are DMRs of HDAC5, AZU1, MPO, CTSG, SLPI, CXCR2, GFI1, PRTN3 

and IL1R2. The number of DMPs in each DMR is indicated in parenthesis. 

 

Supplemental Figure 9. Gene ontology analysis of genes that are differentially expressed 

and methylated in G-CSF-treated HSPCs upon GADD45β knockout 
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A, Gene ontology analysis was performed using Genomatix software. Selected significant 

signal transduction pathways are presented. 
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Supplemental tables 

Supplemental table 1. Differentially expressed genes between G-CSF treated control and 

GADD45β-KO group 

Supplemental table 2. Differentially methylated sites (DMPs) between G-CSF treated 

and untreated control cells 

Supplemental table 3. Genomic locus enrichment analysis of differentially methylated 

regions between G-CSF treated control and GADD45β-KO groups 
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CCTTCCCGGTGCAGCCCCTCCACCCCCAGCAGAACTTGGGAAAGGCGCG

GTCCGGGACTCTCCGCGGATCGGGAGGGGATTCCAGGCCCCCCCGAAA

GTCCGGGCCGCCTCGCGCGCTGGAAATCCCGCGCGCGCCCCGAACCGC

GGCTCGGCTGCCGGGAAATCAGGAGAAAAAAACTTCTGCTTTTTTTTCTTT

TCTGGCATTCGCGGTCACCTACCCGGCCCCCGCGCGCCCTCCTCCCGGT

TCTCGCCCCCACGTGGGGCGCCCCCGCACGCCGCTCCTCCCCCTCCCC

TCCGTCGGCCAACCGCAGAGCTAGCTGCACTCGCCCTTGTCTTTCCACC

AATAGGAGGGGCGAATGACTCCACTGAGGCCACGCCCAATGTTCAAGTC

TATAAAAGTCGGTGCCGGAGGCTCCCAGCTCAGATCGCCGAAGCGTCGG

ACTACCGTTGGTTTCCGCAACTTCCTGGATTATCCTCGCCAAGGACTTTG

CAATATATTTTTCCGCCTTTTCTGGAAGGATTTCGCTGCTTCCCGAAGGTC

TTGGACGAGCGCTCTAGCTCTGTGGGAAGGTTTTGGGCTCTCTGGCTCG

GATTTTGCAATTTCTCCCTGGGGACTGCCGTGGAGCCGCATCCACTGTGG

ATTATAATTGCAACATG
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Summary  

 

We reported an extremely high frequency of cooperating acquired CSF3R (colony-

stimulating factor 3 receptor) and RUNX1 (runt-related transcription factor 1) mutations in 

patients with pre-leukemic bone marrow failure syndrome, severe congenital neutropenia 

(CN), who developed acute myeloid leukemia (CN/AML). We established an in vitro model 

of stepwise leukemogenesis in CN/AML through CRISPR/Cas9-mediated gene-editing of 

induced pluripotent stem cells (iPSCs) from CN/AML patients. We identified BAALC (brain 

and acute leukemia, cytoplasmic) upregulation as a key leukemogenic event: BAALC 

knockout restored myeloid differentiation and inhibited proliferation of CN/AML-iPSCs 

derived hematopoietic stem cells. We detected a selective inhibitor of p38α-mediated MK2a 

phosphorylation, CMPD1, which selectively inhibits the growth of CN/AML cells. Strikingly, 

the treatment of primary blasts of CN/AML patients with CMPD1 resulted in a marked 

reduction of cell proliferation without affecting the growth of healthy donor hematopoietic 

stem cells. Thus, targeting of BAALC may prevent leukemogenic transformation or may 

eliminate AML blasts in CN/AML. 

Keywords  

Severe congenital neutropenia, pre-leukemic bone marrow failure syndrome, AML, acquired 

CSF3R mutations, RUNX1 mutations, iPSCs, CRISPR/Cas9 gene-editing, BAALC. 
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Highlights  

 iPSC model recapitulates step-wise leukemia development in CN 

 BAALC knockout restores differentiation and inhibits proliferation of CN/AML cells 

 CMPD1 selectively inhibits the growth of CN/AML cells 

eTOC Blurb  

Dannenmann et al. generated iPSCs (induced pluripotent stem cells) from patients with pre-

leukemia bone marrow failure syndrome, severe congenital neutropenia (CN) who overt acute 

myeloid leukemia (AML). Using CRISPR/Cas9 gene editing and aided by RNA-Seq data 

from CN/AML patients blasts, they created an in vitro experimental model that recapitulated 

leukemia development in CN. Using this model, they identified BAALC as an essential 

leukemogenic protein: BAALC knockout completely reverses the defective hematopoiesis of 

CN/AML-iPSCs. Furthermore, they identified a selective inhibitor of p38α-mediated MK2a 

phosphorylation, CMPD1, as a potential drug capable of killing CN/AML cells. 
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Introduction  

Pre-leukemia bone marrow failure syndromes comprise a group of inborn 

hematological disorders, characterized by abnormal differentiation and functions of 

hematopoietic stem and progenitor cells (HSPCs). They frequently culminate in the 

development of myelodysplastic syndrome (MDS) or leukemia, usually acute myeloid 

leukemia (AML)
1-8

. Understanding the molecular mechanisms underlying leukemia 

development in inborn blood disorders would aid in the development of therapeutic tools for 

preventing or treating leukemia and provide insight into the pathomechanisms of de novo 

MDS and AML. The prevailing hypothesis of leukemia development in inborn pre-leukemic 

syndromes postulates that homeostasis, self-renewal, proliferation or differentiation of HSPCs 

is disturbed owing to inherited mutations
1-4,6-8

. These “unfit” HSPCs are exposed to constant 

stress because of intrinsic defects and extrinsic abnormalities of the HSPC niche, which 

together may cause an elevated DNA-damage response or diminished DNA repair, leading to 

the acquisition of mutations and/or chromosomal abnormalities in leukemia-associated 

genes
8,9

. The background of an inherited disease can create selective pressure that supports 

the outgrowth and evolution of mutant HSPCs clones
10

. Severe congenital neutropenia (CN) 

is a pre-leukemia syndrome that, in the majority of patients, is caused by heterogeneous 

ELANE mutations encoding neutrophil elastase (NE)
11

. The HSPCs of CN patients fail to 

differentiate into neutrophilic granulocytes, without any severe maturation defects in other 

blood lineages
7,8,12,13

. The cumulative incidence of MDS or AML in CN patients is 

approximately 20% after 20 years
8,14,15

. Exposure of CN-HSPCs to high concentrations of 

granulocyte colony-stimulating factor (G-CSF) partially reverses granulocytic maturation 

defects
8,13

. However, there is a clear correlation between susceptibility to G-CSF therapy and 

frequency of leukemia, such that patients who require more than 8 g/kg/d of G-CSF have a 

higher probability of developing MDS or AML
14,15

. We recently reported a high frequency of 

acquired cooperative mutations in CSF3R (encoding the G-CSF receptor) and RUNX1 (runt-
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related transcription factor 1) in 55 % of CN/AML patients (31 patients were studied)
16

. In a 

majority of cases, the appearance of HSPCs clones carrying a CSF3R mutation preceded the 

co-acquisition of RUNX1 mutations in the same cells
16

. In another multicenter study of 

genotype-phenotype correlations in ELANE-associated CN patients, we identified “hot-spot” 

ELANE mutations (e.g., p.C151R, p.C151Y, p.G214R) in CN patients who developed MDS 

or AML
17

. The mechanism of leukemogenic transformation of HSPCs downstream of 

acquired CSF3R and RUNX1 mutations on an ELANE-mutated background is unclear. CSF3R 

mutations are stop-codon mutations that are localized in the intracellular domain of the G-

CSF receptor, which is responsible for the termination of SOCS3 (suppressor of cytokine 

signaling 3)-triggered, STAT5 (signal transducer and activator of transcription 5)-mediated 

proliferative signals and STAT3-dependent activation of differentiation
7,18-27

. RUNX1 

mutations are mostly located in the DNA-binding Runt homology domain (RHD) and a 

transactivation domain (TAD)
28

. Point mutations in RUNX1 have been described in de novo 

AML or AML secondary to MDS, radiation exposure, or chemotherapy at frequencies of 6% 

to 33%
29-33

. A high incidence of RUNX1 mutations has been associated with monosomy 7, 

trisomy 21, and trisomy 13
32,34,35

. Acquired translocations, deletions, or mutations in RUNX1 

have been found in Fanconi anemia patients who developed AML or MDS
9
. RUNX1 germline 

mutations have also been described in a familial platelet disorder (FPD) with a predisposition 

to AML
36,37

. Both missense and nonsense RUNX1 mutations have been detected in CN/AML 

patients
16,38

. Numerous studies have reported a diversity of mechanisms underlying the 

pathogenesis of missense and nonsense RUNX1 mutations
37,39,40

. RUNX1 mutations in the 

RHD may result in loss of DNA and/or CBFβ binding, protein mislocalization, disturbed 

heterodimerization, inefficient transactivation, haploinsufficiency, or appearance of dominant-

negative alleles
40-45

. Missense RUNX1 mutations may create dominant-negative protein 

isoforms that exhibit severely impaired DNA binding, protein mislocalization, and slightly or 

moderately decreased CBFβ binding
40,42,44,45

. Moreover, RUNX1 protein with a missense 
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Runt mutation may sequester or alter the activity of other RUNX1-binding proteins that are 

present in the cell in limiting amounts, thereby exerting inhibitory effects on transactivation 

mediated by wild-type (WT) RUNX1 protein
37,42

. Interestingly, RUNX1 maps to chromosome 

21, and a majority of leukemic blasts from CN/AML patients harbor trisomy 21
16

. This 

suggests that both, trisomy 21 and the ratio of mutant to WT RUNX1 alleles may contribute to 

leukemogenesis.  

There are no animal models of CN; neither transgenic mice with a knock-in of the 

human ELANE mutation
46

 nor Elane- and Hax1-knockout (KO) mice exhibit a neutropenia 

phenotype in a steady-state condition. Thus, the establishment of the viable experimental 

model would be essential for studying multistep leukemogenesis in CN. Despite some 

limitations, patient-specific induced pluripotent stem cells (iPSCs) are an excellent alternative 

to animal models. Generation of CN-patient-specific iPSCs that recapitulate the maturation 

arrest of granulopoiesis has been previously described
47-49

. iPSCs have also been used to 

study leukemogenesis of de novo AML samples
50

 and to screen compounds that may target 

AML cells. Using CRISPR/Cas9 gene-editing, it is possible to introduce distinct mutations in 

iPSCs that allow the study of stepwise, stage-specific leukemia progression
51

. With this 

approach, it is possible to develop experimental leukemia models with distinct endogenous 

genetic abnormalities that otherwise cannot be generated, as for example, to compare 

functional outcomes of different types of mutations (e.g., missense versus nonsense) in 

endogenously expressed proteins (e.g., RUNX1).  

In the present study, we established an in vitro model of the leukemia evolution in CN 

using patients-derived iPSCs and CRISPR/Cas9-mediated introduction of gene mutations. 

Using this model, we identified the upregulation of BAALC (brain and acute leukemia, 

cytoplasmic) as a key leukemogenic event. We identified a small molecule inhibitor that kills 

CN/AML iPSC-derived and primary CN/AML blasts without affecting healthy donor HSPCs. 

This strategy could be applied to treat or prevent leukemia in patients with RUNX1 mutations. 
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Results 

Missense RUNX1 mutations are associated with trisomy 21 in CN/AML patients  

A comparison of cytogenetic abnormalities and type of acquired RUNX1 mutations in 

23 CN/AML patients revealed that 14 patients had missense, 5 patients truncated, and 4 

patients compound heterozygous RUNX1 mutations (missense, nonsense, and intronic) (Table 

S1). 7 of 14 CN/AML patients with missense RUNX1 mutations co-acquired trisomy 21. In 

contrast, trisomy 21 was detected in 4 of 5 CN/AML patients with nonsense RUNX1 

mutations. A digital PCR (dPCR) analysis revealed the presence of two copies of mutated 

missense RUNX1 in three CN/AML patients with trisomy 21 (Figure 1A, Figure S1A), 

suggesting a crucial role of the dosage of missense RUNX1 for leukemia initiation.  

In vitro iPSC model of stepwise leukemogenic transformation in CN/AML  

We established iPSC based model of stepwise leukemia development in CN. We 

generated iPSCs from two CN/AML patients harboring ELANE mutations, p.C151Y and 

p.G214R. Using PBMNCs from CN patient 1 at overt AML, we generated iPSC clones with 

ELANE p.C151Y mutation only (CN1, derived from non-leukemic PBMNCs) or acquired 

nonsense CSF3R p.Q741X in combination with missense RUNX1 p.R139G mutation and 

trisomy 21 (CN/AML1.1 and 1.2). iPSC clones of second CN patient without- and with 

nonsense CSF3R p.Q743X mutation (CN2 and CN2+CSF3R Q743X+/-, respectively) were 

generated from BMMNCs isolated at the AML stage (Figure 1B, Figure S2A).  

Array-CGH (comparative genomic hybridization) revealed no chromosomal 

abnormalities in CN1-iPSC clone, trisomy 21 in CN/AML-iPSC clone 1.2, and the additional 

gain of part of chromosome 12 in the second CN/AML-iPSCs clone 1.1 (Figure S2B). The 

gain of chromosome 12 is a frequent finding during iPSC maintenance and reflects the high 

proliferation rate of these cells
52

. No chromosomal abnormalities were detected in iPSC 

clones derived from the CN patient 2 (Figure S2B). 
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All iPSC lines expressed pluripotent stem cell markers (Figure S3A, B, C) displayed 

alkaline phosphatase activity (Figure S3D, E), differentiated into three germ layers (data not 

shown) and had inactivated lentiviral plasmid used for reprogramming (Figure S3A-B). 

CN/AML1 iPSCs had trisomy 21 and dPCR showed one copy of WT and two copies 

of mutated RUNX1 in iPSCs as well as in iPSC-derived CD45
+
 cells (Figure 1C). 

We next introduced frame-shift CSF3R mutations in CN1 iPSC clone using 

CRISPR/Cas9 gene-editing (Table S2). We generated two iPSC lines, one with the 

heterozygous CSF3R mutation p.(Arg734SerfsX35) (CN1+CSF3R R734fs) another with the 

compound heterozygous CSF3R mutations, p.(Gln741AsnfsX59) and p.(Ser742PhefsX29) 

(CN1+CSF3R Q741fs) (Figure 1B, Figure S4A, B). Heterozygous frame-shift RUNX1 

mutation, p.(Glu175SerfsX7) was introduced into CN2+CSF3R Q743X+/- iPSC clone using 

CRISPR/Cas9 (CN/AML2 iPSC clone) (Figure 1B and Figure S4C). No off-target effects 

were observed in the CRISPR/Cas9 gene-edited iPSCs (Table S3). 

Impaired myeloid differentiation and elevated proliferation of CN/AML-iPSC derived 

HSPCs  

We performed an in vitro embryoid body (EB)-based iPSC differentiation into 

hematopoietic stem and mature myeloid cells
53

 (Figure S5A). The proportion of 

CD45
+
CD34

+
 cells was markedly higher in iPSC lines generated from CN/AML1 patient, as 

compared to the healthy donor (HD) derived iPSCs. For CN/AML2 patient, the proportion of 

CD45
+
CD34

+
 cells was unchanged (Figure 2B), but CD34

+
CD43

+
 and CD45

-
CD41a

+
CD235

+ 

cell populations were increased (Figure S5B, C). We observed dramatically increased 

proliferation of CN/AML iPSC-derived HSPCs from both patients, that were collected at day 

14 of EB differentiation and further cultured on the FLT3-L-secreting feeder cells, as 

compared to HD- or CN - iPSC derived HSPCs (Figure 2C, D). The proliferation of HSPCs 

expressing mutated CSF3R was higher than that of CN cells, but much lower, as of CN/AML 
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cells (Figure 2C, D). Differentiation into CD45
+
CD15

+
CD16

+
 and CD45

+
CD15

+
CD11b

+
 

granulocytes was markedly reduced in CN-iPSCs and was almost completely abolished in 

CN/AML-iPSCs compared with HD-iPSCs (Figure 2E, F). CSF3R mutations in CN-iPSCs 

also led to reduced granulocytic maturation (Figure 2E, F). Morphological analysis of 

cytospin preparations revealed almost no mature myeloid cells in CN/AML samples (Figure 

2G, H). Additionally, CD34
+
 cells derived from CN-iPSC lines produced reduced numbers of 

CFU-Gs and CFU-GMs compared with HD cells. These numbers were further decreased in 

CSF3R-mutated and CN/AML cells (Figure 2I, J).  

AML-like gene expression signature in CN/AML-derived HSPCs  

We next examined whether genes that are upregulated in primary CN/AML blasts also 

elevated in the CN/AML iPSCs-derived HSPCs. We found that genes specific for the early 

HSPCs, such as BAALC (brain and acute leukemia, cytoplasmic), HPGDS (hematopoietic 

prostaglandin D synthase), CD34 and CD109 were increased in primary CN/AML blasts of 

five CN/AML patients, compared with BM CD34
+
CD33

+
 cells isolated from three CN 

patients prior to leukemia development (Figure 3A, Table S1). An increase in BAALC, 

CD34, HPGDS and CD109 expression was also observed in CD34
+
 cells derived from 

CN/AML1 iPSC lines compared with CD34
+
 cells from CN1 iPSCs (Figure 3B). In HSPCs 

of CN/AML patient 2, we measured elevated levels of BAALC mRNA, as compared to CN-

iPSC-derived HSPCs (Figure 3C). BAALC protein levels were increased in CN/AML-

derived HSPCs of both patients (Figure 3D). 

We further tested whether elevated BAALC levels are dependent on the presence of 

RUNX1 mutations. Indeed, transduction of CD34
+
 cells of healthy individuals with lentivirus-

based constructs with mutated RUNX1 (p.R139G and p.R174L) led to markedly increased 

BAALC mRNA, as compared to WT RUNX1 transduced cells (Figure 3E). 

We previously detected elevated levels of STAT5a in HSPCs of CN patients and 

primary blasts of CN/AML patients
54

. Upregulated mRNA and protein levels of STAT5a 
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were detected in CN/AML-iPSC-derived HSPCs for both CN/AML patients. Interestingly, 

RUNX1 mRNA and protein expression was markedly increased in CN/AML patient 1 cells 

with missense RUNX1 mutation and trisomy 21, but in CN/AML patient 2 who harbors 

truncated RUNX1 mutation, RUNX1 mRNA only was elevated. G-CSFR expression was also 

enhanced in CN/AML patient 1, but not in CN/AML patient 2 (Figure 3F-I).  

Elevated BAALC expression is essential for leukemogenic transformation in CN  

To determine which of the candidate leukemia-associated genes, BAALC, HPGDS, 

CD109 or RUNX1, is responsible for the leukemogenic transformation in CN, we generated 

knockout iPSC lines of CN/AML patient 1 for each of the selected genes (Figure 4A). For 

this, we created sgRNAs specific for the nucleotide sequence of the first exon of each gene, 

cloned them into a pSpCas9(BB)-2A-GFP (PX458) construct
55

 and transfected CN/AML-

iPSC lines (Tables S2). Transfected CN/AML-iPSC cells were sorted based on GFP signal, 

and single-cell clones with homozygous (RUNX1, BAALC), or compound heterozygous 

(CD109, HPDGS), mutations were selected for further analysis (Figure S4D-G). Pluripotency 

of selected iPSC clones was unaffected, and there was no evidence of off-target activity of 

CRISPR-Cas9 used for gene knockout (Tables S3 and data not shown). 

Interestingly, BAALC knockout resulted in a dramatic induction of granulocytic 

differentiation and markedly reduced proliferation of CN/AML-iPSCs derived CD34
+ 

cells 

(Figure 4B-E). Almost no differences were observed in the stem cell composition between 

gene-edited groups (Figure S6A). A knockout of CD109, RUNX1 or HPGDS did not restore 

granulocytic differentiation of CN/AML-iPSCs (Figure 4B-E, Figure S6A). 

Since BAALC mRNA and protein levels were also upregulated in CN/AML iPSC-

derived hematopoietic cells of patient 2 (Figure 3C, D), we tested the effects of BAALC 

knockout on the proliferation and granulocytic differentiation in CN/AML patient 2 as well. 

Indeed, similar to CN/AML patient 1, we found an increase in granulocytic differentiation and 

markedly reduced proliferation of HSPCs derived from CN/AML2 iPSCs (Figure 4F-I) but 
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an increased proportion of CD45
+
CD34

+
 cells upon BAALC knockout (Figure S6B). These 

data strongly support the essential role of BAALC in the CN/AML leukemogenesis. 

Of note, BAALC KO in healthy donor iPSCs (Figure S6C) did not strongly affect 

granulocytic differentiation (Figure 4J). At the same time, BAALC KO induced granulocytic 

differentiation of CN1 patient-derived iPSCs (Figure 4J). 

Leukemia-specific gene expression signature in CN/AML-iPSCs derived HSPCs  

Differential gene expression analyses of RNA-Seq of iPSC-derived HSPCs using 

DESeq2 R package
56

 identified 132 up- and 570 down-regulated, as well as 579 up- and 1422 

down-regulated genes between CN/AML and CN stages for CN patient 1 and CN patient 2, 

respectively (log2FC > 1 or < -1, adj. P-value < 0.05; Figure 5A-D, Table S4, S5). To the top 

significant pathways in the gene set enrichment analysis (GSEA) belonged the E2F targets, 

the oxidative phosphorylation, an enrichment of the MYC targets and the reduction of the 

platelet - specific genes in CN/AML1, as compared to CN1 samples (Figure 5C). In 

CN/AML patient 2, we detected enrichment of the gene sets for the G2M checkpoint, the E2F 

targets as well as TGF signaling, whereas gene set “GO:Structural Constituent of 

Ribosomes” was enriched in CN2 (Figure 5D).  

To predict transcription factors that control differentially expressed genes in both 

CN/AML patients, in comparison to the CN stage, we performed eXpression2Kinases 

analysis
57

. Among the transcription factor binding motifs significantly enriched in CN/AML 

cells (P-value < 0.05), we detected motifs for RUNX1; for “classical” RUNX1 binding 

partners as GATA1, GATA2; as well as for AML-associated genes such as SUZ12 and EZH2 

(Figure 5E). Patient-specific motives were TRIM28 and TP53 for CN/AML1 as well as 

CEBPB, NANOG, KLF4 for CN/AML2 (Figure 5E). 

Using kinase enrichment analysis (KEA)
57

, we predicted kinases that phosphorylate 

proteins regulated by the subnetwork of prioritized transcription factors. The vast majority of 

enriched kinases including, the HIPK2, MAPK1/3/14, CSNK2A1, ERK1 and AKT1, were 
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shared between both patients at the selected threshold (P-value <10
-8

), (Figure 5F). Unique 

enriched kinases (e.g., CDK1, JNK1, ERK2) were detected in patient 2 only (Figure 5F). 

BAALC-dependent leukemogenic signaling pathways in CN/AML 

We further examined the BAALC-dependent leukemia-associated gene expression. 

We compared CN/AML cells before- and after BAALC KO. We identified 165 up- and 254 

down-regulated, as well as 185 up- and 381 down-regulated genes (log2FC > 1 or < -1, adj. P-

value < 0.05) in CN/AML versus CN/AML BAALC KO comparisons for patient 1 and patient 

2, respectively (Figure 6A, B, Table S6, S7). BAALC knockout in CN/AML-derived HSPCs 

led to a dramatic shift in the gene expression signature in both patients (Figure 6C, D). GSEA 

revealed enrichment of the oxidative phosphorylation, tricarboxylic acid cycle (TCA), p53 

signaling and inhibition of platelet-specific genes in CN/AML1 samples, as compared to the 

CN/AML1 BAALC KO sample (Figure 6E). In CN/AML patient 2, E2F targets, G2M 

checkpoint-associated genes, TGF signaling, MYC targets were enriched in CN/AML cells, 

as compared to BAALC KO cells (Figure 6F).   

The TFEA using the list of differentially expressed genes (log2FC > 1 or < -1, adj. P-

value < 0.05) from CN/AML versus CN/AML BAALC KO comparisons for patient 1 and 

patient 2 revealed that RUNX1, GATA1/2, SUZ12 transcription factor binding motifs are 

BAALC dependent. AR, TCF3, RAD21, NANOG motifs were specific for CN/AML patient 1 

and EGR1, STAT3 and ZC3H11a were CN/AML patient 2 specific (Figure 6G).  

CSNK2A1, CDK1, GSK3B, HIPK2, MAPK14 were among the top significant kinases 

in CN/AML vs CN/AML BAALC KO comparisons in both patients (Figure 6H). Again, 

CN/AML patient 2, but not CN/AML patient 1 showed patient-specific enrichment of kinases, 

such as MAPK3/8, JNK1, ERK2 (Figure 6H). 

Notably, the key transcription factors motifs such as RUNX1, GATA1/2, SUZ12, 

SMAD4 as well as 7 out of 12 kinases (e.g. MAPK14, MAPK1, ERK1, AKT1) were enriched 

in CN/AML cells, compared to either CN or CN/AML BAALC KO stages in both patients 
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(Figure 6I, J). These data clearly indicate that BAALC KO at least partially reproduces CN 

phenotype in CN/AML cells.  

A selective inhibitor of p38α-mediated MK2a phosphorylation, CMPD-1, suppresses the 

growth of CN/AML cells   

 Using Connectivity Map (CMAP) analysis
58

 of RNA-Seq data generated from the 

CN/AML versus CN/AML- BAALC KO comparisons, we evaluated the drug candidates that 

will induce gene expression signature similar to that shown in CN/AML cells after BAALC 

KO. A selective inhibitor of p38α-mediated MK2a phosphorylation, CMPD-1, was the first 

hit with the effects similar to the BAALC KO seen in CN/AML cells (Figure 7A). We treated 

BAALC
high

 AML cell line Kasumi-1 with CMPD-1 and found markedly reduced cell 

proliferation, as compared to DMSO treated cells (Figure 7B). Moreover, CMPD1 treatment 

of CN/AML iPSCs derived HSPCs from both patients markedly reduced cell growth without 

any effect on the proliferation of HD- and CN- iPSC derived cells (Figure 7C), as compared 

to DMSO groups. Also, exposure of primary AML blasts of three BAALC
high

 CN/AML 

patients to CMPD1 led to the dramatic suppression of cell growth (Figure 7D, E, Table S1). 

The less prominent effect of CMPD1 was seen in de novo BAALC
high

 AML samples (Figure 

7F, G). The proliferation of healthy donors` CD34
+
 cells was not affected by CMPD1 (Figure 

7E, G).  

It has been reported that MEK1/2 inhibitor U0126, in combination with KLF4 

activation, reduced the growth of BAALC- expressed de novo AML cells
59

. We compared the 

effects of CMPD1 with that of two selective MEK inhibitors, U0126 and AZD-6244, on the 

proliferation of CN/AML and de novo AML cells. U0126 had no effects on cell proliferation 

(Figure S7A), whereas AZD-6244 had a moderate effect (Figure 7B, C, E, and G). KLF-4 

activator, in combination with AZD-6244 was either not effective in a dose of KLF4 10 nM, 

or was toxic at the 100 nM and 1000 nM KLF4 concentrations (data not shown).  
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Discussion  

We present here an in vitro modeling of stepwise leukemia development in pre-

leukemia bone marrow failure syndromes, exemplified by CN. By generating iPSCs from 

non-leukemic and leukemia cells of two CN patients, we were able to compare hematopoietic 

differentiation and gene expression differences between these two conditions. This led to the 

description of high BAALC expression, as an ultimate leukemia-causing event in CN/AML 

and the identification of CMPD1 as a potential drug for CN/AML and BAALC-expressing de 

novo AML patients.  

Using CRISPR/Cas9 gene-editing, we introduced various gene alterations associated 

with pre-leukemia and leukemia conditions in iPSC lines carrying CN-causing inherited 

ELANE mutations. Thus, we created homo- and heterozygous CN-iPSC clones containing 

truncated G-CSF receptor that lacked three tyrosines, a finding frequently reported in CN 

patients
22,26,60-62

. The acquisition of truncated CSF3R mutations results in a proliferative 

advantage of HSPCs and clonal selection of CSF3R-mutated cell clones upon G-CSF 

treatment, which predisposes to leukemia but does not induce it
8,23,26,61-64

. In line with this, we 

observed elevated proliferation and reduced granulocytic differentiation of HSPCs generated 

from CSF3R-mutated CN-iPSC clones compared with CN-iPSCs expressing WT G-CSFR. 

Disturbed signal transduction downstream of a mutated CSF3R, in combination with inherited 

CN-causing mutations and life-long treatment with supra-physiological doses of G-CSF, 

induces genotoxic stress
65

 and increases the susceptibility of HSPCs to the acquisition of 

additional leukemia-associated mutations, e.g. in RUNX1. Acquisition of RUNX1 mutations is 

known to enhance the sensitivity of HSPCs to G-CSF
66

.  

Different types of RUNX1 mutations were detected in CN/AML patients (missense, 

nonsense, frame-shift)
16

. In the present study, we provided evidence for dose-dependent 

outcomes of missense mutations versus RUNX1 haploinsufficiency. We observed a 

correlation between the type of RUNX1 mutations and trisomy 21: missense RUNX1 
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mutations, but not non-sense or frame-shift mutation in RHD, require trisomy 21 to amplify 

the leukemogenic effect of the mutated RUNX1. CRISPR/Cas9 gene-editing in iPSCs gave as 

a unique opportunity to modify endogenous RUNX1 without overexpression of mutated 

RUNX1 cDNA. We generated iPSC lines carrying ELANE, CSF3R and, additionally, 

mutations and chromosomal abnormalities mimicking CN/AML phenotype: (1) missense 

RUNX1 mutation and trisomy 21 with two copies of mutated RUNX1 (CN/AML patient 1), or 

(2) RUNX1 haploinsufficiency without trisomy 21 (CN/AML patient 2). We observed almost 

completely abrogated myeloid differentiation and elevated proliferation of CN/AML-iPSCs 

compared with control HD-, or CN- iPSCs. The elevated levels of CN/AML-associated genes 

(e.g. BAALC, STAT5
20,46,67,68

) in HSPCs derived from CN/AML-iPSCs as well as their 

increased proliferation and diminished differentiation argues for their leukemic features. 

Therefore, our in vitro model recapitulates step-wise leukemia development in CN. Given the 

absence of animal models of CN - transgenic mice carrying mutated Elane and Hax1-KO 

mice show no signs of neutropenia - in vitro modeling of CN and leukemia using 

CRISPR/Cas9 gene-editing of patient-derived iPSCs will expand our understanding of pre-

leukemia bone marrow failure syndromes.  

The impact of inherited CN-associated mutations (e.g., in ELANE) on leukemia 

progression is unclear. We have reported activation of UPR in ELANE mutated HSPCs
67

. 

ELANE expression is regulated by RUNX1
68

. It would be interesting to determine how 

missense RUNX1 mutations and trisomy 21 affect UPR triggered by mutated ELANE. 

Induction of UPR by trisomy 21 in immortalized lymphocytes and fibroblasts of Down 

syndrome patients has been described
69

. These patients often develop acute megakaryoblastic 

leukemia (AMKL), and the role of UPR in this process has not been studied yet.  

We applied CRISPR/Cas9-mediated gene knockout, to evaluate the leukemogenic role 

of candidate genes found to be elevated in CN/AML cells. The most noticeable effect had 

BAALC KO, which demonstrated an inhibitory effect on cell proliferation and simultaneously 
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induced myeloid differentiation of CN/AML cells. BAALC is upregulated in RUNX1-mutated 

de novo AML
70,71

, and high BAALC expression in AML patients is associated with poor 

prognosis
72

. The ultimate mechanism of BAALC increase by mutated RUNX1 is unclear. We 

found that the transduction of healthy donor HSPCs with mutated RUNX1 induced BAALC 

expression.  

BAALC KO also improved granulocytic differentiation of CN iPSCs. Most probably, 

BAALC expression levels are already affected by the inherited ELANE mutations, and co-

acquisition of CSF3R and RUNX1 mutations further amplify these effects culminating in the 

extremely high BAALC levels in CN/AML blasts.  

We found a dramatic difference in the gene expression signature between CN- and 

CN/AML-iPSCs derived HSPCs. We also identified signaling pathways deregulated by both 

missense and frame-shift RUNX1 mutations, or affected explicitly by each mutation. The vast 

majority of crucial signaling leukemia-causing pathways were overlapped in HSPCs carrying 

missense or truncated RUNX1 mutations. Thus, we found the activation of the E2F pathway, 

an enrichment of RUNX1, GATA1/2, SUZ12, SOX2, SMAD4 targets and of the MAPK1/3/14, 

HIPK2, AKT1, ERK1 kinases in both CN/AML patients. Some transcription factors and 

kinases were regulated on the RUNX1 mutation type-specific manner: missense p.R139G 

RUNX1 regulated MYC targets and oxidative phosphorylation, while truncated RUNX1 

changed the constituents of ribosomes, G2M checkpoint genes, and TGF signaling genes. 

Some transcription factors and kinases were deregulated by truncated, but not missense 

RUNX1. These data might help to better understand the mechanistic outcomes of different 

types of the endogenously expressed mutated RUNX1 proteins in leukemogenesis. 

BAALC KO led to a marked gene expression shift in CN/AML cells of both patients 

independent of the RUNX1 mutation type. We detected oxidative phosphorylation, MYC-, 

TGF-, E2F- and G2M checkpoint- controlling pathways to be BAALC-dependent. Moreover, 

RUNX1, SUZ12, SOX2, GATA1/2, SMAD4, and SALL4 transcription factors as well as 
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MAPK14, GSK3B, CSNK2A1, CDK1/2 kinases were found to be downstream of BAALC in 

both CN/AML patients. At the same time, BAALC KO does not affect TCF3-, TP63-, and 

STAT3- dependent signaling in CN/AML. These pathways are most probably not essential in 

the leukemic evolution in CN, since BAALC KO reverses the phenotype of CN/AML cells. 

These findings clearly demonstrate the fundamental role of BAALC in the leukemia 

development in CN and will contribute to a better understanding of the BAALC role in AML. 

We found that the selective p38 MAPK (MAPK14) inhibitor, CMPD-1, effectively 

reduces the proliferation of iPSC-derived and primary CN/AML blasts without affecting the 

proliferation of healthy donor HSPCs. CMPD-1, or other p38 MAPK (MAPK14) inhibitors 

might be implemented in the treatment of CN/AML and BAALC
high

 AML. Morita et al. 

demonstrated that MEK inhibition in combination with KLF4 (Kruppel-like factor 4) 

induction reduces the proliferation of the BAALC-high AML cell line, Kasumi-1
59

. In our 

experiments, KLF4-activator and MEK inhibitors were less effective, as CMPD-1. 

In summary, our findings obtained using CN as an example, demonstrate that this in 

vitro model is a reliable system for studying step-wise leukemogenesis in pre-leukemic bone 

marrow failure syndromes. Using this model, we identified BAALC upregulation as a key 

leukemogenic event downstream of RUNX1 and CSF3R mutations. Inhibition of BAALC in 

hematopoietic cells of CN patients or treatment with MAPK14 inhibitors might eliminate 

RUNX1-mutated AML blasts (Figure 7H).  
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Material and Methods  

iPSCs culture 

iPSCs were maintained on mitomycin-C treated SNL-feeder cells (Public Health England) in 

iPSC-medium consisting of DMEM F12 (Sigma) supplemented with 20 Knockout Serum 

Replacement (Invitrogen), 30 ng/ml bFGF (Peprotech), 1 % non-essential amino acids 

solution (Invitrogen), 100 µM 2-Mercapto-Ethanol and 2 mM L-Glutamine. iPSC-medium 

was replaced every day. For CRISP/Cas9 gene-editing experiments and expansion of single 

cell derived clones, iPSC lines were cultered on Geltrex (Life Technologies). 

CRISPR/Cas9 gene-editing of HD, CN, and CN/AML iPSC lines 

Corresponding sgRNAs (Table S2) were cloned into all-in one pSpCas9(BB)-2A-

GFP(PX458) plasmid which was a gift from Feng Zhang (Addgene plasmid # 48138). CN- or 

CN/AML iPSC lines were transfected with 1-5 µg PX458-sgRNA construct using P3 Primary 

Cell 4D-Nucleofector™ X Kit L and 4D Nucleofector (Lonza) or reverse transfection with 

LT-Transfection Reagent (Mirus). GFP
+
 cells were sorted 48 hours post-transfection, cultured 

on the Geltrex and single-cell clones were analyzed by Sanger sequencing of the gene-edited 

target regions. BAALC KO in HD iPSCs was introduced by transfection with cytosine base 

editor plasmid pCMV-BE3 which was a gift from the David Liu lab (Addgene plasmid # 

73021). Off-target sites were predicted using http://crispor.org
73

. The top 3 sites with the 

highest off-target scores and/or exon localization were selected for Sanger sequencing. 

EB-based hematopoietic differentiation of iPSCs 

iPSCs were dissociated from SNL-feeders or matrigel- (Corning) coated plates using 

PBS/EDTA (0.02%) for 5 min. EB generation was done via centrifugation of 20.000 cells per 

EB in 96-well plates using APEL serum-free differentiation medium (Stemcell Technologies) 

supplemented with bFGF (20 ng/µl) and ROCK Inhibitor (R&D). Next day, BMP4 (40 ng/ml) 

was added to the culture induce mesodermal differentiation. On day four, EBs were plated on 

Matrigel-coated 6-well plates (10 EBs/well) in APEL medium supplemented with VEGF (40 
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ng/ml), SCF (50 ng/ml) and IL-3 (50 ng/ml). For neutrophilic differentiation, medium was 

changed 3 days later to fresh APEL medium supplemented with IL3 (50 ng/ml) and GCSF (50 

ng/ml). First hematopoietic suspension cells appeared on day 12 – 14. Suspension cells were 

harvested every 3-4 days and analyzed starting from day 14 to day 32. All cytokines were 

purchased from R&D Systems, if nothing else is indicated. 

Culture of iPSC-derived CD45
+
CD34

+ 
cells, de novo CN/AML cells and AML cells on 

SL/SL feeder cells and drug treatment 

1-3 x 10
5
 iPSC-derived CD45

+
CD34

+
 cells, primary CN/AML blasts, or de novo AML blasts 

were cultured on the SL/SL feeder cells producing FLT3L (kindly provided by C. Eaves, 

Vancouver, Canada) in HLTM/Myelocult H5100 medium (Stemcell Technologies) 

supplemented with 10
-6

M Hydrocortisone, IL-3 (20 ng/ml), Il-6 (20 ng/ml), TPO (20 ng/ml), 

SCF (50 ng/ml) and FLT3L (50 ng/ml) for 7 days with medium change every 3 - 4 days. For 

drug treatment, 1µM AZD-6244, 1 µM CMPD1 or DMSO was added to culture medium and 

incubated for 7 days with medium change and addition of fresh drugs every 3 days. After 7 

days, cell viability was assessed by Trypan blue staining and counting using Neubauer cell 

counting chambers. 
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Figure Legends  

Figure 1. Elevated allele frequency of missense RUNX1 mutations in CN/AML with 

trisomy 21. Generation of stage-specific CN-, pre-leukemia, and leukemia iPSC lines. 

 (A) Allele frequency (AF) of wild type and corresponding mutant RUNX1 allele in CN 

samples before (CN) and at the overt AML (CN/AML) measured by digital PCR (dPCR) is 

shown. Each bar represents a percentage of mutant RUNX1 and wild type RUNX1 AF 

quantified by dPCR. Data were analyzed using QuantStudio 3D Analysis Suite (Thermo 

Scientific, USA). In the CN phase the genotyping of BM or PB cells didn’t reveal presence of 

mutant RUNX1 allele. However, at the overt AML leukemia cells acquired RUNX1 mutations 

and trisomy 21. Accordingly, percentage of mutant RUNX1 allele changed to 59-68% 

indicating that the AML cells gained second mutant RUNX1 allele. 

(B) Establishment of the in vitro model of leukemia development in congenital neutropenia 

using generation of patient-specific iPSCs and CRISPR/Cas9 gene editing. Time scale of 

leukemic transformation of CN/AML patient and iPSCs generation for various time points 

during disease progression is presented. For CN/AML patient 1, CN1-iPS clone harbors 

ELANE p.C151Y mutation only (CN1), another two clones harbor additional CSF3R 

heterozygous p.R734fs or compound heterozygous p.Q741fs mutation leading to truncated G-

CSF-receptor (CN+CSF3R p.R734fs and CN+CSF3R p.Q741Xfs), CN/AML iPSCs clones 

C1.1 and C1.2 both harbor ELANE p.C151Y, CSF3R p.Q741X and RUNX1 p.R139G 

mutations and trisomy 21 (CN/AML1.1 and CN/AML1.2). For CN/AML patient 2, CN2 

clones harbors ELANE p.G214R mutation only, CN2 CSF3R mut clone harbors additional 

CSF3R p.Q743X
+/-

 mutation and CN/AML2 clone harbors additional CSF3R p.Q743X
+/-

 

mutation and RUNX1 p.Glu175SerfsX7 mutation. 

(C) RUNX1 p.R139G and RUNX1 wild type alle frequencies measured by dPCR in CN1-

iPSCs, CN/AML1.2-iPSCs and CN/AML1.2-iPSC derived CD45
+
 cells. dPCR detected 100% 
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of wild type RUNX1 allele in CN1-iPSCs, or 33 % and 66 % of wild type and mutant RUNX1 

allele in CN/AML1.2-iPSCs and CN/AML1.2-iPSC derived CD45
+
 cells, respectively. 

Figure 2. Hematopoietic differentiation of the stage-specific iPSC lines derived from two 

CN/AML patients 

(A, B)  Flow cytometry analysis of suspension cells harvested from EBs culture on day 14 of 

differentiation for CN/AML patient 1 (A) and 2 (B). Data represent means ± SD from two 

independent experiments. *P < 0.05, **P < 0.01. 

(C, D)  Proliferation rate of iPSC-derived CD34
+
CD45

+
 cells of CN/AML patient 1 (C) and 

CN/AML patient 2 (D) expanded on SL/SL feeder cells for 7 days. Proliferation of CN/AML 

cells is normalized to HD. Data represent means ± SD from two independent experiments. *P 

< 0.05, **P < 0.01. 

(E, F) Flow cytometry analysis of suspension cells harvested from EBs culture on day 32 of 

differentiation of CN/AML patient 1 (G) and 2 (H) iPSCs. Data represent means ± SD from 

two independent experiments. *P < 0.05, **P < 0.01. 

(G, H) Morphological analysis of suspension iPSC-derived hematopoietic cells harvested at 

day 32 of differentiation (Wright-Giemsa Stain) for CN/AML patient 1 (I) and 2 (J). 

Representative cytospin slide pictures are shown. 

(I, J) CFU-assay of CD45
+
CD34

+
 cells isolated from EBs culture on day 14. Total CFU 

counts are shown for CN/AML patient 1 (E) and 2 (F). Data represent means ± SD from two 

independent experiments. 

Figure 3. Up-regulation of the AML-associated genes in primary CN/AML blasts and 

CN/AML iPSC-derived CD34
+
 cells 

(A) Expression of genes upregulated in AML with mutant RUNX1 in BM MNCs of five 

CN/AML patients measured by qPT-PCR. Target gene mRNA expression is normalized to β-

actin and shown relative to CN BM MNC or CD33
+
. Data represent means ± SD from two 

independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001.  
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(B, C) qRT-PCR analysis of genes upregulated in AML with mutant RUNX1 in CD34
+
 cells 

generated from CN/AML-iPSCs of CN/AML patient 1 (B) and 2 (C). Target gene mRNA 

expression is normalized to β-actin and shown relative to CN CD34
+
. Data represent means ± 

SD from two independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001.  

(D) Representative Western Blot images of BAALC protein expression in CD45
+
CD34

+
 cells 

generated from different iPSC clones of CN/AML patient 1 and 2. Numbers below Western 

Blot images indicate protein expression levels relative to HD and normalized to β-actin. 

(E) BAALC mRNA expression in CD34
+
 cells of healthy individuals (n = 2) transduced with 

control GFP, wild type RUNX1 or mutant RUNX1 (p.R139G and p.R174L) lentiviral 

constructs was measured by qRT-PCR and normalized to β-actin. Data represent means ± SD 

from two independent experiments. *P < 0.05. 

(F, G) qRT-PCR analysis of CN-related hematopoietic factors in CD45
+
CD34

+
 cells 

generated from iPSCs clones of CN/AML patient 1 (F) and 2 (G) on day 14 of culture. Target 

gene mRNA expression is normalized to β-actin and shown relative to HD group. Data 

represent means ± SD from two independent experiments. *P < 0.05, **P < 0.01, ***P < 

0.001. 

(H, I) Representative Western Blot images of CN-related hematopoietic proteins and ß-actin 

in CD45
+
CD34

+
 cells generated from different iPSCs clones of CN/AML patient 1 (H) and 2 

(I) on day 14 of culture. Numbers below Western Blot images indicate protein expression 

levels relative to HD and normalized to β-actin. 

Figure 4. BAALC upregulation is essential for the leukemogenic transformation seen in 

CN/AML patients 

(A) Workflow-scheme of the CRISPR/Cas9-mediated gene knockout performed in 

CN/AML1.2 iPSC line for the genes upregulated in AML with mutant RUNX1. EB-based 

hematopoietic differentiation was compared between gene-edited CN/AML- and HD-derived 

iPSCs.  



 28

(B) Proliferation rates of CD34
+
CD45

+
 cells derived from CN/AML1 and CN/AML1 BAALC 

KO iPSC lines cultured on SL/SL feeder cells for 7 days, normalized to HD. Data represent 

means ± SD from two independent experiments. **P < 0.01. 

(C) Flow cytometry analysis of suspension cells harvested from EBs culture on day 32 of 

CN/AML1.2 KO iPSC differentiation. Data represent means ± SD from two independent 

experiments. *P < 0.05. 

(D) Morphological analysis of hematopoietic cells differentiated from iPSCs at day 32 of 

CN/AML1.2 and CN/AML1.2 BAALC KO iPSC differentiation (Wright-Giemsa Stain). 

Representative images of cytospin slides are shown. 

(E) CFU-Assay of CD45
+
CD34

+
 cells generated from CN/AML1.2 KO iPSC lines. Total 

CFU counts are shown. Data represent means ± SD from two independent experiments. *P < 

0.05, **P < 0.01. 

(F) Cell proliferation rates of iPSC-derived CD34
+
CD45

+
 cells generated from CN/AML and 

CN/AML BAALC KO iPSC lines of patient 2 and cultured on SL/SL feeder cells for 7 days, 

normalized to HD. Data represent means ± SD from two independent experiments. **P < 

0.01. 

(G) Flow cytometry analysis of suspension cells harvested from EBs culture on day 32 of HD, 

CN/AML2, and CN/AML2 BAALC KO iPSC differentiation. Data represent means ± SD 

from two independent experiments. *P < 0.05. 

(H) Morphological analysis of hematopoietic cells differentiated from iPSCs at day 32 of 

CN/AML and CN/AML2 BAALC KO iPSC differentiation (Wright-Giemsa Stain). 

Representative images of cytospin slides are shown. 

 (I) CFU-Assay of CD45
+
CD34

+
 cells generated from HD, CN/AML2, and CN/AML2 

BAALC KO iPSC lines. Total CFU counts are shown. Data represent means ± SD from two 

independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001. 



 29

(J) Flow cytometry analysis of suspension cells harvested from EBs culture on day 32 of 

differentiation of HD, CN1, CN2.1 and corresponding BAALC KO clones. Data represent 

means ± SD from two independent experiments. *P < 0.05, **P < 0.01. 

Figure 5. Gene expression analysis of CD45
+
CD34

+
 HSPCs derived from CN/AML and 

CN iPSCs 

(A) Supervised average linkage clustering of 702 genes differentially expressed (log2FC > 1 

or < -1, adj. P-value < 0.05) between HSPCs derived from CN/AML1 or CN1 iPSCs. RNA-

seq samples were obtained from 3 independent EB-based hematopoietic differentiation 

experiments performed with CN1, CN/AML1.1, or CN/AML1.2 iPSC clones. Expression 

heatmap was created using variance stabilizing transformed read counts as an input.  

(B) Supervised average linkage clustering of 1992 genes differentially expressed (log2FC > 1 

or < -1, adj. P-value < 0.05) HSPCs derived from CN/AML2 or CN2 iPSCs. RNA-seq 

samples were obtained from 3 independent EB-based hematopoietic differentiation 

experiments performed with CN2, or CN/AML2 iPSC clones. Gene expression heatmap was 

created using as an input variance stabilizing transformed read count data. 

(C) Gene set enrichment analysis (GSEA) of datasets of HSPCs derived from CN/AML1 

iPSCs compared to CN1 iPSC. Normalized read counts were analyzed using GSEA 4.0.3. 

(D) Gene set enrichment analysis (GSEA) of datasets of HSPCs derived from CN/AML2 

iPSCs compared to CN2 iPSC. Normalized read counts were analyzed using GSEA 4.0.3.  

(E) Transcription factors predicted by the TFEA of the differentially expressed genes (log2FC 

> 1 or log2FC < -1, adjusted P-value < 0.05) from CN/AML1 versus CN1 and CN/AML2 

versus CN2 group comparisons. Transcription factors (P-value < 0.05) which are common for 

both comparisons are plotted on the same graph. Data on the graphs are displayed as the 

negative log10 transformed P-values. 

(F) Kinase enrichment analysis (KEA) with differentially expressed genes (log2FC > 1 or < -

1, adjusted P-value < 0.05) from CN/AML1 versus CN1 and CN/AML2 versus CN2 group 
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comparisons. Kinases (P-value < 10
-8

) which are common for both comparisons are plotted on 

the same graph. Data on the graphs are displayed as negative log10 transformed P-values. 

Figure 6. Gene expression analysis of CD45
+
CD34

+
 HSPCs derived from CN/AML 

iPSCs and CN/AML BAALC KO iPSCs  

(A) Supervised average linkage clustering of 419 genes differentially expressed (log2FC > 1 

or < -1, adjusted P-value < 0.05) between CN/AML1 iPSC versus CN1 BAALC KO iPSC 

datasets. RNA-seq samples were obtained from 3 independent EB-based hematopoietic 

differentiation experiments performed with CN/AML1.2 and and CN/AML1.2 BAALC KO 

iPSC clones. Gene expression heatmap was created using variance stabilizing transformed 

read counts as an input. 

(B) Supervised average linkage clustering of 566 genes differentially expressed (log2FC > 1 

or log2FC < -1, adjusted P-value < 0.05) between CN/AML2 iPSC versus CN2 BAALC KO 

iPSC datasets. RNA-seq samples were obtained from 3 independent EB-based hematopoietic 

differentiation experiments performed with CN/AML2 and and CN/AML2 BAALC KO iPSC 

clones. Gene expression heatmap was created using variance stabilizing transformed read 

counts as an input. 

(C) Venn diagram showing overlaps of genes differentially expressed (log2FC > 1 or < -1, 

adjusted P-value < 0.05) between CN/AML1 versus CN/AML1 BAALC KO and CN/AML1 

versus CN1 comparisons. 

(D) Venn diagram showing overlaps of genes differentially expressed (log2FC > 1 or log2FC 

< -1, adjusted P-value < 0.05) between CN/AML2 versus CN/AML2 BAALC KO and 

CN/AML2 versus CN2 comparisons. 

(E) GSEA of CN/AML1 iPSC compared to CN/AML1 BAALC KO iPSC datasets.  

Normalized read counts were analyzed using GSEA 4.0.3.  

(F) GSEA of CN/AML iPSC patient 2 versus CN/AML BAALC KO iPSC patient 2 datasets.  

Normalized read counts were analyzed using GSEA 4.0.3.  
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(G) Transcription factors predicted by the TFEA of the differentially expressed genes 

(log2FC > 1 or log2FC < -1, adjusted P-value < 0.05) from CN/AML1 versus CN/AML1 

BAALC KO and CN/AML2 versus CN/AML2 BAALC KO group comparisons. Transcription 

factors (P-value < 0.05) which are common for both comparisons are plotted on the same 

graph. Data on the graphs are displayed as negative log10 transformed P-values. 

(H) Results of KEA of differentially expressed genes (log2FC > 1 or < -1, adjusted P-value < 

0.05) from CN/AML1 versus CN/AML1 BAALC KO and CN/AML2 versus CN/AML2 

BAALC KO group comparisons. Kinases (P-value < 10
-8

) which are common for both 

comparisons are plotted on the same graph. Data on the graphs are displayed as negative 

log10 transformed P-values. 

(I) Venn diagram showing common transcription factors that overlap between CN/AML 

versus CN/AML BAALC KO and CN/AML versus CN groups. 

(J) Venn diagram showing common kinases that overlap between CN/AML versus CN/AML 

BAALC KO and CN/AML versus CN groups.  

Figure 7. Treatment with p38-MAPK inhibitor CMPD1 reduces cell proliferation in 

Kasumi-1, CN/AML-iPSC-derived CD34
+
CD45

+
 cells and de novo CN/AML or AML 

blasts 

(A) Connectivity MAP analysis of RNA-seq data of CN/AML and CN/AML BAALC KO 

iPSC-derived CD45
+
CD34

+
 cells. pc_selection is the percent of total perturbagens, querying 

the column sample against selected rows, that exceed the given thresholds. 

 (B) Treatment of Kasumi-1 WT cells with 1, 2 and 5 µM AZD-6244 or 1, 2 and 5 µM 

CMPD1 for 7 days. Data represent means ± SD from two independent experiments. *P < 

0.05, ****P < 0.0001. 

(C) Treatment of CN/AML-iPSC derived CD34
+
CD45

+
 cells with 1µM AZD-6244 or 1 µM 

CMPD1 for 7 days. Data represent means ± SD from two independent experiments. 
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(D) qRT-PCR analysis of BAALC mRNA expression in patient CN/AML blasts. mRNA 

expression is shown relative to HD CD34
+
 cells and normalized to β-actin. Data represent 

means ± SD from two independent experiments **P < 0.01. 

(E) Treatment of primary CN/AML-cells with 1µM AZD-6244 or 1 µM CMPD1 for 7 days. 

Data represent means ± SD from two independent experiments. **P < 0.01, ***P < 0.001. 

(F) qRT-PCR analysis of BAALC mRNA expression in de novo AML blasts. mRNA 

expression is shown relative to HD CD34
+
 cells and normalized to β-actin. Data represent 

means ± SD from two independent experiments. ***P < 0.001. 

(G) Treatment of de novo AML blasts with 1µM and 2µM AZD-6244 or 1 µM and 2µM 

CMPD1 for 7 days. Data represent means ± SD from two independent experiments. **P < 

0.01, ***P < 0.001. 

(H) Schematic of the leukemia development in CN patients and the role of BAALC 

upregulation in this process. Prolonged exposure of the genetically “unfit” HSPCs of CN 

patients with inherited CN-associated mutations (e.g., ELANE) to the high dose of G-CSF led 

to the clonal selection of HSPCs (pre-leukemia HSPCs) with acquired CSF3R mutations that 

generate truncated G-CSF receptors. These cells exhibit elevated proliferation and reduced 

differentiation upon G-CSF treatment. Co-acquisition of missense RUNX1 mutations in the 

Runt domain and trisomy 21 or RUNX1 haploinsufficiency lead to elevated BAALC 

expression and leukemogenic transformation. BAALC KO in CN/AML cells restores normal 

hematopoietic differentiation. A selective p38-MAPK inhibitor, CMPD1, efficiently blocks 

the proliferation of CN/AML cells. 
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Supplemental Information 

Supplementary Methods 

Reprogramming of PBMNCs 

1.5x10
6
 PBMNCs were cultured after thawing for 6 days in CD34

+
 cells expansion medium 

(StemlineII medium, Sigma-Aldrich) supplemented with 10 % FCS, 1 % Pen/Strep, 1 % 

Glutamine and cytokines: IL-3 (20 ng/ml), Il-6 (20 ng/ml), TPO (20 ng/ml), SCF (50 ng/ml) 

and FLT3L (50 ng/ml)). All cytokines were purchased from R&D Systems. After 1 week, 

cells were added to Retronectin (Clontech)-coated 12-well plates together with OSKM 

lentiviral supernatant (pRRL.PPT.SF.hOct34.hKlf4.hSox2.i2dTomato.pre.FRT, provided by 

A. Schambach) with multiplicity of infection (MOI) of 2. Four days later, cells were 

transferred to SNL-feeders and cultured in the mixture of ½ iPSCs-medium and ½ CD34
+
 

cells expansion medium supplemented with 2 mM valproic acid and 50 µg/ml Vitamin C. 

Medium was gradually changed to iPSCs medium only. First iPSCs colonies appeared 

approximately three weeks after initiation of reprogramming. 

Sequencing of iPSCs 

Genomic DNA of iPSCs was isolated using Nucleo-Spin Tissue Kit (Machery-Nagel) and 

DNA regions for sequencing were amplified using the following primers: RUNX1-F 5’-

ACATCCCTGATGTCTGCATTTGTCC-3’, RUNX1-R 5’-TGTGGGTTTGTTGCCA 

TGAAACGTG-3’, ELANE-F 5’-CGCCCTGAGCCTTGGTGACG-3’, ELANE-R 5’-

AGCCACGGTGCCTGTTGCTG-3’, CSF3R-F 5’-ATGGCATGTGTCAGGCATGT-3’, 

CSF3R-R 5’-AGTCACAGCGGAGATAGTGC-3’. Sanger Sequencing was performed by 

GATC Biotech. 

Transduction of CD34
+
 cells with RUNX1 constructs 

We transduced CD34
+
 cells from healthy donors (2 × 10

5
/well) with lentiviral supernatants 

containing control plasmid, or cDNA with WT RUNX1 or two RUNX1 mutants (p.R139G 

and p.R174L) expressed in pRRL.PPT.SFFV.i2RFP vector with a multiplicity of infection 



(MOI) of 5. Re-transduction was performed next day. After 72 hours post-transduction, GFP-

positive cells were sorted and analyzed for RUNX1 and BAALC mRNA expression by qRT-

PCR. Vector and primer information is available upon request. 

Quantitative RT-PCR 

RNA was isolated using RNeasy Micro Kit (Qiagen). cDNA was prepared from 0.2-1 µg of 

total RNA using Omniscript RT Kit (Qiagen). qPCR was performed using SYBR Green 

qPCR master mix (Roche) on Light Cycler 480 (Roche). Data w ere analyzed using ddCT-

method. Target genes were normalized to GAPDH and/or β-Actin as housekeeper genes. 

qPCR Primer sequences are available upon request. 

Western blotting 

1x10
6
 cells were lysed in 200 µl of 3x Lämmli buffer. Protein was denaturated for 10 min at 

95 °C. 5 µl of cell lysate in Lämmli buffer were loaded per lane. Proteins were separated on a 

12% polyacrylamide gel and transferred on a nitrocellulose membrane (GE Healthcare) (1 

hour, 100V, 4°C). Membrane was blocked for 1 hour in 5 % BSA/TBST and incubated in 

primary antibody overnight (at 4°C). The following primary antibody were used: anti-

RUNX1/AML1 (Cell Signaling, #4334, 1:500), anti-STAT5a (Cell Signaling, #4807, 1:500) 

anti-G-CSFR (Santa Cruz, #74026, 1:500), and β-Actin (Cell Signaling, #13E5, 1:1000). 

After that, membranes were washed and incubated with secondary HRP-coupled antibody 

(Cell Signaling, #7076 or #7074, 1:2000) for 1 hour at room temperature. Pierce ECL solution 

(Thermo Fisher) and Amersham Hyperfilm were used to detect chemiluminescence signal of 

proteins. 

Alkaline Phosphatase Assay 

iPSCs colonies on SNL-feeders at day 10 of culture were washed with PBS, fixed in 4 % PFA 

/10 % Sucrose in water and stained with NBT/BCIP staining dye (Sigma) for 20 min at RT.  

Array-CGH 



Array-CGH was performed using the Agilent Human Genome Microarray Kits 2x400K 

(Agilent Technologies, Santa Clara, CA, USA). Labelling and hybridization of genomic DNA 

was performed according to the protocol provided by Agilent. Microarray slides were scanned 

using an Agilent microarray scanner G2505B at a resolution of 2µm. For image analysis, 

default CGH settings of Feature Extraction Software (Agilent Technologies) were applied. 

Output files from Feature Extraction were subsequently imported into Agilent’s CGH data 

analysis software, Genomic-Workbench. The Aberration Algorithm ADM2 was applied and 

Aberration Filters were set to: threshold 7.0, at least 4 probes with mean log2 ratio of +/-0.3 

leading to a resolution of approx. 20 kb. 

Flow Cytometry 

30.000 of suspension cells collected from EB-based hematopoietic differentiation system 

were used for flow cytometry. For cell surface staining, cells were prepared in PBS/1% BSA 

containing 0.05 % sodium azide and stained with the mouse monoclonal anti-human antibody. 

For detection of hematopoietic progenitor cells, a multicolor FACS antibody panel for ‘early-

stage’ hematopoietic differentiation using the following antibody was applied: CD33-BV421 

(BioLegend, BL), CD34-PeCy7, KDR-AF647 (BL), CD43-PE, CD41a-FITC, CD235a-FITC, 

CD45-BV510 (BL), 7-AAD. For detection of mature myeloid cells, a multicolor FACS 

antibody panel for ‘late-stage’ hematopoietic differentiation using the following antibody was 

applied: CD15-PE, CD16-FITC, CD14-APC-H7, CD45-BV510 (BL), CD33, BV-421 (BL), 

7-AAD. For iPSCs characterization, the stem cell surface markers TRA1-60-PE (eBioscience) 

and SSEA4-FITC were analyzed. TRA1-85-APC (R&D) was used as a human iPSCs marker. 

Anti-mouse IgGk beads (BD Biosciences) were used for compensation. Samples were 

analyzed using FACSCanto II (BD) and FlowJo V10 (FlowJo LLC). Antibodies for flow 

cytometry were purchased from BD Biosciences, if nothing else is indicated. 

Morphological analysis 



Wright-Giemsa-stained cytospin slides were prepared using Hema-Tek slide stainer (Ames). 

Hematopoietic cells were ordered into 4 groups according to the differentiation state: 

myeloblast and promyelocyte (MB/ProM), myelocyte and metamyelocyte (Myelo/Meta), 

band and segmented neutrophils (Band/Seg) and monocytes/macrophages (Mo/MΦ). 

Colony Forming Unit (CFU) Assay 

10.000 suspension cells from EB-based iPSC hematopoietic differentiation at day 14 were 

used for CFU-Assay using Methocult H4435 enriched medium (Stemcell Technologies). 

Colonies were counted after 10-14 days. 

Digital PCR (dPCR) 

Digital PCR was used for absolute endpoint quantification of gene copy numbers using 

TaqMan SNP genotyping Assay and Quant Studio 3D Digital PCR System (Thermo Fisher). 

dPCR was performed according to QuantStudio 3D Digital PCR protocol using genomic 

DNA. Data were processed using QuantStudio 3D Digital PCR Analysis Suite Software 

(Thermo Fisher). 

RNA sequencing (RNA-seq)  

mRNA was isolated from CD34
+
CD45

+
 cells differentiated from iPSCs using RNeasy Mini- 

or Micro Kit (Qiagen). RNA quality was assessed using an Agilent 2100 Bioanalyzer. 

Samples with high RNA integrity number (RIN > 8) were selected for library construction. 

Using the TruSeq RNA Sample Prep Kit (Illumina) and 100 ng of total RNA for each 

sequencing library, poly (A) selected single-read sequencing libraries (75 bp read length) 

were generated according to the manufacturer’s instructions. All libraries were sequenced on 

an Illumina NextSeq500 platform at a depth of 20–30 million reads each. Read quality of 

RNA-seq data in fastq files was assessed using FastQC (v0.11.4). Reads were aligned using 

STAR (v2.4.2a) allowing gapped alignments to account for splicing against a custom-built 

genome composed of the Ensembl Homo Sapiens genome v90 and Alignment quality was 

analyzed using samtools (v1.1) and visually inspected in the Integrative Genome Viewer 



(v2.3.67). Transcripts covered with less than 50 reads were excluded from the analysis 

leaving >12.000 genes for determining differential expression between the experimental 

groups. Normalized read counts for the genes were obtained in DESeq2 package
1
 (v1.8.2) and 

used for GSEA to find significant differences between groups
2
. Differential expression 

analysis was performed in DESeq2 package. Differentially expressed genes with log2FC > 1 

or log2FC < -1, adjusted P-value < 0.05 were selected for downstream analysis. Heat maps 

were produced in Heatmapper
3
. Venn diagrams were made in Venny 2.1 

(https://bioinfogp.cnb.csic.es/tools/venny/index.html). For identification upstream 

transcription factors that regulate differently expressed genes and kinase enrichment assay, we 

utilized eXpression2Kinases algorithm
4
.  

Connectivity map (CMAP) analysis 

CLUE platform (https://clue.io/cmap) was used for CMAP analysis to evaluate the gene 

expression profiles of CN/AML and CN/AML BAALC KO RNA-seq data sets for 

connectivity to known perturbagens
5
. 

 

Supplementary Figure Legends 

 

Figure S1. Representative images of digital PCR data plots for quantification of RUNX1 

allele ratio in CN and CN/AML samples.  

(A) The signals from the FAM reporter dye are plotted on the Y-axis against the signal from 

the VIC reporter dye on the X-axis. Blue dots represent FAM-labeled mutant RUNX1 PCR 

product, red dots represent VIC-labeled wild type RUNX1 PCR product, green dots represent 

droplets containing both mutant and wild type DNA, and yellow dots are droplets with no 

DNA incorporated. Ratio of mutant and wild type RUNX1 allele was calculated based on 

number of FAM and VIC positive signals on the chips. For example, DNA isolated from BM 

sample of Pat.#1 in CN-phase and DNA extracted from single cell derived CFU clone 



(CN/AML phase) was amplified using TaqMan assay probe set against wild type RUNX1 and 

RUNX1 p.R139G allele. The presence of RUNX1 p.R139G mutation was detected in 360 

droplets representing an allelic fraction of 66.8 %. Correspondingly, the ratio of mutant to 

wild type allele is 2.04. 

Figure S2. Genetic analysis of iPSCs clones derived from CN/AML patients. 

(A) Representative Sanger Sequencing diagrams of DNA isolated from the indicated iPSCs 

clones demonstrating ELANE p.C151R, CSF3R p.Q741X and RUNX1 p.R139G heterozygous 

mutations for CN/AML patient 1. ELANE p.G214R and CSF3R p.Q743X heterozygous 

mutations for CN/AML patient 2 are also shown. 

(B) Representative images of array CGH of the indicated iPSCs clones. Whole genome view 

is shown. 

Figure S3. Characterization of HD-, CN- and CN/AML-iPSCs clones 

(A, B) qRT-PCR analysis of mRNA expression of pluripotency-specific genes using mRNA 

isolated from indicated iPSCs clones of CN/AML patient 1 (A) and 2 (B). Target gene mRNA 

expression is normalized to GAPDH and shown relative to CD34
+
 cells. PRE indicates 

exogenous mRNA – expression from lentiviral vector. Data represent means ± SD from two 

independent experiments. 

(C) Flow cytometry analysis of pluripotency-specific surface markers Tra1-60 and SSEA4 in 

indicated iPSCs clones of CN/AML patient 1 and 2. 

(D, E) Representative images of the Alkaline Phosphatase activity analysis in iPSC colonies 

of CN/AML patient 1 (D) and 2 (E), indicated by purple staining. 

Figure S4. Assessment of CRISPR/Cas9 gene-edited iPSC lines  

(A-J) DNA isolated from single-cell derived iPSC clones was amplified by PCR and analyzed 

using TIDE (Tracking of Indels by DEcomposition). Graphs show the estimated composition 

of the inserted/deleted (in/del) nucleotide bases in iPSC lines calculated by TIDE. 

Additionally, genetic changes introduced by CRISPR/Cas9 have been annotated on protein 



level in order to predict the consequence of in/del introduced by genome editing on the amino 

acid sequences of modified genes. 

Figure S5. Analysis of hematopoietic differentiation of CN and CN/AML iPSC-derived 

HSCs by flow cytometry 

(A) Schematic of the protocol for EB-based hematopoietic/neutrophilic differentiation of 

iPSCs. 

(B, C) Flow cytometry analysis of suspension cells harvested from EBs culture on day 14 of 

differentiation for CN/AML patient 1 (B) and 2 (C). Data represent means ± SD from two 

independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001. 

Figure S6. Analysis of hematopoietic differentiation in CN/AML iPSC knockout lines  

(A) Flow cytometry analysis of suspension cells harvested from EBs culture on day 14 of 

differentiation of CN/AML iPSC knockout lines of patient 1. Data represent means ± SD 

from two independent experiments. *P < 0.05. 

(B) Flow cytometry analysis of suspension cells harvested from EBs culture on day 14 of 

differentiation of HD, CN/AML2 and CN/AML2 BAALC KO iPSC lines. Data represent 

means ± SD from two independent experiments. **P < 0.01, ***P < 0.001. 

(C) Alignment of Sanger sequencing traces from parent control iPSC line (upper panel) and 

base edited HD BAALC KO (lower panel) confirms the introduction of BAALC knockout in a 

single cell derived iPSC clone. Positions of based edited nucleotides are depicted with black 

arrows, PAM sequence of guide RNA is marked above the alignment by red line. 

Figure S7. Treatment of Kasumi-1 cells with MEK inhibitor UO126 

(A) Kasumi-1 cells were treated with 1, 5 and 10 µM UO126 for 7 days. Data represent 

means ± SD from two independent experiments.  
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Supplementary Tables 

Table S1. Genetic characterization of CN/AML patient group. 

Table S2. Guide RNA used for CRISPR/Cas9 gene editing. 

Table S3. List of off-targets sites inspected in CRISPR/Ca9-edited iPSC lines by means 

of Sanger sequencing. 

Table S4. List of DE genes between HSPCs derived from CN AML and CN iPSCs of 

patient 1. 

Table S5. List of DE genes between HSPCs derived from CN AML and CN iPSCs of 

patient 2. 

Table S6. List of DE genes between HSPCs derived from CN AML and CN AML 

BAALC KO iPSCs of patient 1. 

Table S7. List of DE genes between HSPCs derived from CN AML and CN AML 

BAALC KO iPSCs of patient 2. 

  



 

Table S1. Genetic characterization of CN/AML patient group. 

 

Patient 

number 
AML subtype Karyotype Inherited mutation Acquired RUNX1 mutation 

Acquired 

CSF3R 

mutation 

1 AML M1  
45,XY,-7[9];46,XY[11] (2010)47,XY 
+21[13];46,XY[2] (2011)  

ELANE (C151Y)  R139G Q718X  

2 AML M4  46,XY  ELANE (G214R)  R139Q Q720X  

3 
RAEBT/AML 

FAB NA  
47,XY, +21 [14] /46, XY [4]  ELANE (G174R)  D171N  

Q718X, 

Q726X  

4 AML M2  47,XX,+21  GPT1  K83Q  Q720X  

5 AML/B-ALL  46,XY,add(21q)  ELANE (A57V)  R174L  neg  

6 AML M2  47,XY,+21  
ELANE (A233P, 
V235TfsX)  

D171N Q741X 

7 AML M1  46,XY-7, +21  ELANE (C151S)  R135K Q731X 

8 AML M5  45,XX,-7  ELANE (L152P)  R80S  Q726X  

9 AML FAB NA  46, XY, t(9;11)  ELANE (N113K)  R64P  Q718X  

10 AML FAB NA  45,XY,-7  WAS (L270P)  R80S  Y729X  

11 MDS  46,XY  HAX1 (V44X)  I22K  neg  

12 MDS  46,XX  HAX1 (V44X)  L29S, R64P  Y729X  

13 AML M1  46,XY  
ELANE 

(IVS4+1G>T)  
K83Q  Q718X  

14 MDS RAEB-2  46,XX,dup(21)(q22.1q22.3)[19]  Neg  S114P, Y380G394delinsC  Q726X  

15 pre-B ALL  48,XX,del(5)(q21q34),þ21,þ 22(16)/46,XX[8]  ELANE (G185R)  A160T, S114X  Q702X  

16 AML M1  t(p1;q3)  ELANE (C151Y)  R139X  Q731X  

17 MDS RAEB  46,XX,add(2)(q37),add(7)(q22)  WAS  Q370X  Y729X  

18 AML M2  47,XX +mar[8], 47, idem, del(10)(q32)  
ELANE (G214R) 

GFI1  
R174X, L294QfsX6  Q739X  

19 AML M0  45,XX,-7[12];46,XX[11]  WAS (S478I)  
Intron 4, c.415_427dup6 
Intron 4, c.421_427dup7  

Q707L  

20 MDS/ AML M1  46,XY-7, +21  ELANE (S126L)  R135K  Q726P  

21 MDS RAEB  45,XY −7 [10], 46XY [5]  HAX1 (V44X)  
F13TrpfsX14, 

R139ProfsX47  
Q726P  

22 AML FAB NA  46,XX  
ELANE 

(A79VfsX9)  
R139X, V137D  neg  

23 B-ALL/AML  
49,XXdel(5)(q13q33),+21,+21,+22[7] /47,XX,-
7,+21,mar1/46,XX[3]  

ELANE (V101M)  R139fs Q754X 

 

  



Table S2. Guide RNA used for CRISPR/Cas9 gene editing. 

 

sgRNA name  sgRNA sequence 

On-

target 

score
1
 

Specificity 

score
2
 

Out of 

frame 

score
3
 

Number of off-targets for 0-1-2-3-

4 mismatches, total number of 

mismatches 

BAALC p.14 GTCCAGCTCTCGTAGTAGCG 70 99 67 0 - 0 - 0 - 0 - 13, 13 off-targets 

RUNX1 p.20 CATCTTGCCTGGGCTCAGCG 69 68 62 0 - 0 - 3 - 36 - 234, 273 off-targets 

RUNX1 p.R174 CACTTACTTCGAGGTTCTCG 61 47 68 0 - 0 - 0 - 2- 33, 35 off-targets 

CSF3R p.Q741 CTGGTGCCAGACTGGGATTG 50.7 66 64 0 - 0 - 2 - 26 - 229, 257 off-targets 

CSF3R p.R734 GCTGGGTGGAAACTGCTCTT 33.2 77 71 0 - 0 - 1 - 14 - 142, 157 off-targets 

CD109 p.14 GCGCGGCGGTGCACACGCAG 62 86 65 0 - 0 - 0 - 9 - 49, 58 off-targets 

HPGDS p.2 AGTGAGTTTGTAGTTTGGCA 60.3 67 65 0 - 0 - 0 - 23 - 200, 223 off-targets 

 
1
Doench, Fusi, et al., 2016. Score is from 0-100. Higher is better. 

2
Hsu et al., 2013. Score is from 0-100. Higher is better. 

3
Bae et al., 2014. Score is from 0-100. Higher is better. 

  



Table S3. List of off-targets sites inspected in CRISPR/Ca9-edited iPSC lines by means of 

Sanger sequencing. 

sgRNA 

name 

iPSC lines 

tested for off-

targets 

Off-target sites selected 

for inspection by 

Sanger sequencing 

Off-target site sequence 

Positions of 

the 

mismatches 

on the off-

target site 

Off-target 

site 

sequencing 

results 

BAALC 

p.14 

HD BAALC 

KO, 

CN1 BAALC 

KO, 

CN/AML1.2 

BAALC KO, 

CN/AML2 

BAALC KO C1, 

CN/AML2 

BAALC KO C2 

4:intergenic:RP11-

672A2.1-RP11-21L23.4 
CTCCAGCCCTCACAGTAGCGAGG *......*...**....... negative 

4:intergenic:RNA5SP35

8-RNA5SP359 
GGCCAGCTCTAGTGGCAGCGCGG .*........*..*.*.... negative 

4:intron:ERC2 TTCCTGCTCTCTTAGTAGCTAGG *...*......*.......* negative 

RUNX1 

p.20 

CN/AML1.2 

RUNX1 KO 

2:intergenic:AFF2-IT1-

AFF2 
CATCCTGCCTGGGCTCAGCTGGG ....*..............* negative 

3:intergenic:RP11-

282I1.2-GPR26 
CATTTTGCCAAGGCTCAGCGTGG ...*.....**......... negative 

3:intron:SORCS2 GATCTTGTCTGGGCTCAGCTGGG *......*...........* negative 

RUNX1 

p.R174 
CN/AML2 

4:exon:RP11-244N9.4 TATTTACTCTGAGGTTCTCGCGG *.*.....**.......... negative 

4:exon:MAP4K4 CACTTACTATGTAGTTCTCGTGG ........**.**....... negative 

4:exon:RUNX2 TACTTACTTCTGGGTTCCCGAGG *.........**.....*.. negative 

CSF3R 

p.Q741 

CN1+CSF3R 

Q741fs 

2:intron:C8B CAGTTGCCAGACTGGGATTGAGG .*.*................ negative 

3:intron:LOXHD1 CTGGCGCCTGACTAGGATTGAGG ....*...*....*...... negative 

3:intron:GRHL2 CAGGTGAAAGACTGGGATTGAAG .*....**............ negative 

CSF3R  

p.R734 

CN1+CSF3R 

R7341fs 

3:intron:IL15 GCTGGGTGTAAGCTGCCCTTAGG ........*..*....*... negative 

2:intron:PDE4D GCTGGGAGGAAACTGCTCATGGA ......*...........*. negative 

3:exon:MRGPRF GATGGCTGGAAACTGCTCCTGGG .*...*............*. negative 

CD109  

p.14 

CN/AML1.2 

CD109 KO 

3:exon:CRIM1 CTGCGGGGTTGCACACGCAGCGG **....*.*........... negative 

4:intergenic:NKX2-5-

Y_RNA 
AGGAGGCAGTGCACACGCAGAGG **.*...*............ negative 

3:intergenic:EFNA2-

RPS15P9 
GCGGGGCGGGGCACACACAGGGG ...*.....*......*... negative 

HPGDS  

p.2 

CN/AML1.2 

HPGDS KO 

4:intron:BLMH AGTAAGCCTGTAGTTAGGCATGG ...*..**.......*.... negative 

3:intron:SERPINI1 AGTGAGTATTTAGTTTGGCTGGG .......*.*.........* negative 

3: intron:NUMBL TGTGTGTTTGTGGTTTGGCAGGG *...*......*........ negative 
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