Wertigkeit der Ganzkörper-MRT bei chronisch rekurrierender multifokaler Osteomyelitis in der Verlaufskontrolle und zur Beurteilung des Therapieansprechens in Hinblick auf die Therapiesteuerung

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin
der Medizinischen Fakultät
der Eberhard Karls Universität
to Tübingen

vorgelegt von
Kieninger, Angelina
2020
Dekan: Professor Dr. B. Pichler

1. Berichterstatter: Professor Dr. J. Schäfer
2. Berichterstatter: Privatdozentin Dr. I. Brecht

Tag der Disputation: 29.09.2020
Inhaltsverzeichnis

Tabellenverzeichnis .. VII
Abbildungsverzeichnis ... VIII
Abkürzungsverzeichnis ... IX

1 Einleitung .. 1
 1.1 CRMO .. 1
 1.1.1 Definition .. 1
 1.1.2 Ätiologie ... 1
 1.1.3 Epidemiologie ... 2
 1.1.4 Diagnostisches Vorgehen .. 2
 1.1.4.1 Symptome .. 3
 1.1.4.2 Histologische Untersuchungen ... 4
 1.1.4.3 Laborchemische Befunde ... 5
 1.1.4.4 Bildgebung .. 5
 1.1.5 Diagnosekriterien nach Jansson et al. .. 10
 1.1.6 Differentialdiagnosen .. 10
 1.1.7 Therapie ... 12
 1.1.8 Prognose und Komplikationen .. 13
 1.2 GK-MRT .. 14
 1.2.1 Grundlagen MRT .. 14
 1.2.2 Indikationen im Kindes- und Jugendalter 15
 1.3 Zielsetzung .. 16

2 Material und Methoden ... 17
 2.1 Patientengut .. 17
 2.2 Zeitpunkt der Diagnosestellung .. 17
 2.3 Klinische, laborchemische und histologische Auswertung 18
 2.4 Radiologische Datenerhebung mittels der GK-MRT 18
 2.5 Radiologische Datenanalyse ... 19
 2.5.1 Erfassung und Charakterisierung der Knochenläsionen 19
2.5.2 Lokalisierung der radiologischen Läsionen .. 20
2.5.3 Beurteilung der Läsionen anhand von RECIBL 20
2.5.4 Bestimmung des Volumens ... 20
2.5.5 Bestimmung der Signalintensität-Ratio .. 21

2.6 Statistische Auswertung ... 21

3 Ergebnisse... 22

3.1 Ergebnisse ... 22
 3.1.1 Alter .. 22
 3.1.2 Geschlechterverteilung ... 22
 3.1.3 Familienanamnese .. 23
 3.1.4 Erkrankungsdauer zu GK-MRT ZP1 und ZP2 .. 23
 3.1.5 Diagnosestellung .. 23
 3.1.6 Histologische Untersuchungen .. 25
 3.1.7 Differentialdiagnosen .. 26
 3.1.8 Symptome im Verlauf .. 26
 3.1.9 Nebendiagnosen ... 28
 3.1.10 Laborchemische Untersuchungen ... 29
 3.1.11 Verteilung und Charakterisierung der Knochenläsionen 30
 3.1.11.1 Radiologische Befunde ... 30
 3.1.11.2 Klinisch manifeste Knochenläsionen ... 38
 3.1.12 Charakterisierung der Knochenläsionen anhand von RECIBL 41
 3.1.13 Anzahl der Läsionen im Verlauf .. 42
 3.1.13.1 Radiologisch aktive Läsionen ... 42
 3.1.13.2 Vergleich: radiologisch und klinisch aktive Läsionen im Verlauf 43
 3.1.14 Volumen im Verlauf ... 43
 3.1.15 SI-Ratio im Verlauf ... 44
 3.1.16 Kontrastmittel ... 45
 3.1.17 Therapie und Therapiesteuerung ... 45
3.1.18	Gruppenvergleich (klinische Remission vs. Non-Remission)	47
3.1.18.1	Alter	48
3.1.18.2	Erkrankungsdauer zu GK-MRT ZP1 und ZP 2	48
3.1.18.3	Zeitpunkt der Diagnosestellung	48
3.1.18.4	Symptomatische Lokalisationen im Verlauf	49
3.1.18.5	Herde anhand von RECIBL	50
3.1.18.6	Anzahl der radiologischen Läsionen im Verlauf	50
3.1.18.7	Volumen im Verlauf	51
3.1.18.8	SI-Ratio im Verlauf	52
3.1.18.9	Therapie und Therapiesteuerung	52

| 3.2 | Zusammenfassung der Ergebnisse | 59 |

<p>| 4 Diskussion | 61 |
| 4.1 | Patientengut | 61 |
| 4.2 | Diagnosestellung | 61 |
| 4.3 | Biopsie | 65 |
| 4.4 | Verteilung der Läsionen | 66 |
| 4.4.1 | Radiologische Befunde | 66 |
| 4.4.2 | Klinisch manifeste Knochenläsionen | 71 |
| 4.5 | Extraossäre Manifestationen | 72 |
| 4.6 | Anwendung von kontrastmittelverstärkten Sequenzen | 73 |
| 4.7 | Beurteilung des Therapieansprechens anhand der Verlaufskontrolle | 73 |
| 4.7.1 | Charakterisierung des klinischen Verlaufs | 73 |
| 4.7.2 | Charakterisierung des radiologischen Verlaufs anhand der GK-MRT | 75 |
| 4.7.3 | Korrelation zwischen klinisch und radiologisch aktiven Läsionen im Verlauf | 79 |
| 4.7.4 | Laborchemische Befunde im Verlauf | 80 |
| 4.7.5 | Short-term vs. Long-term-outcome | 81 |
| 4.7.6 | Komplikationen | 83 |</p>
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7.7</td>
<td>4.7.7 Therapie und Therapiesteuerung</td>
<td>84</td>
</tr>
<tr>
<td>4.8</td>
<td>4.8 Prognoseabschätzung anhand radiologischer und klinischer Parameter</td>
<td>85</td>
</tr>
<tr>
<td>4.9</td>
<td>4.9 Schlussfolgerung</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>5 Limitationen</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>6 Zusammenfassung</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>7 Literaturverzeichnis</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>8 Anhang: Lokalisierung der Knochenläsionen</td>
<td>100</td>
</tr>
<tr>
<td>8.1</td>
<td>8.1 Anatomische Einteilung</td>
<td>100</td>
</tr>
<tr>
<td>8.2</td>
<td>8.2 Lokalisation innerhalb der (Röhren-) knochen</td>
<td>101</td>
</tr>
<tr>
<td>8.3</td>
<td>8.3 Geographische Lokalisation</td>
<td>101</td>
</tr>
<tr>
<td>8.4</td>
<td>8.4 Zuordnung rechts/ links</td>
<td>101</td>
</tr>
<tr>
<td>9</td>
<td>9 Erklärung zum Eigenanteil der Dissertationsschrift</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Danksagung</td>
<td>103</td>
</tr>
<tr>
<td>Tabelle 1:</td>
<td>Angepasste Diagnosekriterien bei CRMO nach Jansson et al.</td>
<td>10</td>
</tr>
<tr>
<td>Tabelle 2:</td>
<td>Einfluss der GK-MRT bei CRMO auf den Zeitpunkt der Diagnosestellung</td>
<td>25</td>
</tr>
<tr>
<td>Tabelle 3:</td>
<td>Verteilung radiologisch aktiver Läsionen bei CRMO</td>
<td>34</td>
</tr>
<tr>
<td>Tabelle 4:</td>
<td>Verteilung klinisch manifester Läsionen bei CRMO</td>
<td>40</td>
</tr>
<tr>
<td>Tabelle 5:</td>
<td>Charakterisierung der Läsionen bei CRMO im Verlauf</td>
<td>54</td>
</tr>
<tr>
<td>Tabelle 6:</td>
<td>Gruppenvergleich (klinische Remission vs. Non-Remission): klinische und radiologische Charakteristika bei CRMO im Verlauf</td>
<td>56</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1: Geschlechterverhältnis bei CRMO ... 22
Abbildung 2: Ausgeprägte Wirbelsäulenbeteiligung in der Ganzkörper-MRT bei einer 11-jährigen Patientin (P7) mit CRMO. 32
Abbildung 3: Anatomische Verteilung der Knochenläsionen bei CRMO 33
Abbildung 4: Darstellung charakteristischer Muster bei CRMO anhand der Ganzkörper-MRT bei einer 11-jährigen Patientin (P9). 37
Abbildung 5: Verteilung klinisch manifester Läsionen bei CRMO 39
Abbildung 6: Verteilung der Knochenläsionen bei CRMO nach selbst vorgeschlagenen Responsekriterien (RECIBL) 42
Abbildung 7: Bildgebung mittels der Ganzkörper-MRT in der Verlaufskontrolle bei einem 11-jährigen Mädchen (P19) mit Mandibulabeteiligung bei CRMO ... 44
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>apparent diffusion coefficient</td>
</tr>
<tr>
<td>ANA</td>
<td>antinukleäre Antikörper</td>
</tr>
<tr>
<td>AP</td>
<td>alkalische Phosphatase</td>
</tr>
<tr>
<td>BOM</td>
<td>bakterielle Osteomyelitis</td>
</tr>
<tr>
<td>BSG</td>
<td>Blutsenkungsgeschwindigkeit</td>
</tr>
<tr>
<td>BWK</td>
<td>Brustwirbelkörper</td>
</tr>
<tr>
<td>CAL</td>
<td>clinically active lesions</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CED</td>
<td>chronisch-entzündliche Darmerkrankungen</td>
</tr>
<tr>
<td>CHAQ</td>
<td>Childhood Health Assessment Questionnaire</td>
</tr>
<tr>
<td>CK</td>
<td>Creatinkinase</td>
</tr>
<tr>
<td>CNO</td>
<td>chronisch nicht-bakterielle Osteomyelitis/Osteitis</td>
</tr>
<tr>
<td>CR</td>
<td>complete remission</td>
</tr>
<tr>
<td>CRMO</td>
<td>chronisch rekurrierende multifokale Osteomyelitis</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>CRS</td>
<td>chronische Rhinosinusitis</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>DD</td>
<td>Differentialdiagnose</td>
</tr>
<tr>
<td>DMARD</td>
<td>disease-modifying anti-rheumatic drug</td>
</tr>
<tr>
<td>DS</td>
<td>Diagnosestellung</td>
</tr>
<tr>
<td>DWI</td>
<td>diffusion weighted imaging</td>
</tr>
<tr>
<td>EM</td>
<td>Erstmanifestation</td>
</tr>
<tr>
<td>ERA</td>
<td>enthesitis-related arthritis</td>
</tr>
<tr>
<td>FDG-PET</td>
<td>Fluorodesoxyglukose-Positronen-Emissions-Tomographie</td>
</tr>
<tr>
<td>GK-MRT</td>
<td>Ganzkörper-Magnetresonanztomographie</td>
</tr>
<tr>
<td>HE-Färbung</td>
<td>Hämatoxylin-Eosin-Färbung</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>IL-1</td>
<td>interleukin-1</td>
</tr>
<tr>
<td>IL-10</td>
<td>interleukin-10</td>
</tr>
<tr>
<td>IL-1RN</td>
<td>interleukin-1 receptor antagonist</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>IQR</td>
<td>interquartile range</td>
</tr>
<tr>
<td>ISG</td>
<td>Iliosakralgelenk</td>
</tr>
<tr>
<td>JIA</td>
<td>juvenile idiopathische Arthritis</td>
</tr>
<tr>
<td>KM</td>
<td>Kontrastmittel</td>
</tr>
<tr>
<td>LDH</td>
<td>Laktatdehydrogenase</td>
</tr>
<tr>
<td>LPIN2</td>
<td>lipin 2</td>
</tr>
<tr>
<td>LWK</td>
<td>Lendenwirbelkörper</td>
</tr>
<tr>
<td>m</td>
<td>männlich</td>
</tr>
<tr>
<td>M</td>
<td>Median</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>NA</td>
<td>new apparence</td>
</tr>
<tr>
<td>NBO</td>
<td>nichtbakterielle Osteitis</td>
</tr>
<tr>
<td>NS</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>NSAID</td>
<td>non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>NSAR</td>
<td>nichtsteroidales Antirheumatikum</td>
</tr>
<tr>
<td>PACS</td>
<td>Picture Achieving and Communication System</td>
</tr>
<tr>
<td>PD</td>
<td>progressive disease</td>
</tr>
<tr>
<td>PE</td>
<td>Probeexzision</td>
</tr>
<tr>
<td>PPP</td>
<td>palmoplantare Pustulose</td>
</tr>
<tr>
<td>PR</td>
<td>partial remission</td>
</tr>
<tr>
<td>Ps</td>
<td>Psoriasis</td>
</tr>
<tr>
<td>PSTPIP2</td>
<td>proline-serine-threonine phosphatase-interacting protein 2</td>
</tr>
<tr>
<td>RAL</td>
<td>radiologically active lesions</td>
</tr>
<tr>
<td>RECIBL</td>
<td>Response Evaluation Criteria in Bone Lesions</td>
</tr>
<tr>
<td>RECIST</td>
<td>Response Evaluation Criteria in Solid Tumors</td>
</tr>
<tr>
<td>RF</td>
<td>Rheumafaktor</td>
</tr>
<tr>
<td>RINBO</td>
<td>radiological index for NBO</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>S</td>
<td>signifikant</td>
</tr>
<tr>
<td>SAPHO</td>
<td>Synovitis, Akne, Pustulose, Hyperostose und Osteitis</td>
</tr>
<tr>
<td>SD</td>
<td>stable disease</td>
</tr>
<tr>
<td>SI-Ratio</td>
<td>Signalintensität-Ratio</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>STIR</td>
<td>Short-Tau Inversion Recovery</td>
</tr>
<tr>
<td>Tbc</td>
<td>Tuberkulose</td>
</tr>
<tr>
<td>TIRM</td>
<td>Turbo-Inversion Recovery-Magnitude</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumornekrosefaktor-alpha</td>
</tr>
<tr>
<td>TSE</td>
<td>Turbospinechosequenz</td>
</tr>
<tr>
<td>T1W</td>
<td>T1-Wichtung</td>
</tr>
<tr>
<td>T2W</td>
<td>T2-Wichtung</td>
</tr>
<tr>
<td>UKT</td>
<td>Universitätsklinikum Tübingen</td>
</tr>
<tr>
<td>VAS</td>
<td>Visuelle Analogskala</td>
</tr>
<tr>
<td>w</td>
<td>weiblich</td>
</tr>
<tr>
<td>ZP1</td>
<td>Zeitpunkt 1</td>
</tr>
<tr>
<td>ZP2</td>
<td>Zeitpunkt 2</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 CRMO

1.1.1 Definition

1.1.2 Ätiologie

Die Ätiologie ist weitgehend unbekannt. Eine autoentzündliche Genese wird diskutiert bzw. angenommen. Im Mausmodell sowie in monogenetischen autoinflammatorischen Erkrankungen, welche die NBO teilweise beinhalten, wurden Veränderungen im PSTPIP2 (proline-serine-threonine phosphatase-interacting
Einleitung

protein 2) Gen auf Chromosom 18, im LPIN2 (lipin 2) Gen und im IL-1RN (interleukin-1 receptor antagonist) Gen nachgewiesen. So finden sich Veränderungen des LPIN2 Gens beim Majeed-Syndrom, einer seltenen autosomal-rezessiv vererbten Erkrankung, die durch eine Trias von CRMO, kongenitaler dyserythropoetischer Anämie und entzündlicher Dermatose gekennzeichnet ist. In Monozyten von CRMO-Patienten konnte des Weiteren eine verminderte Expression von IL-10 nachgewiesen werden. Zunehmend wird auch dem IL-1-Signalweg eine pathophysiologische Bedeutung beigemessen. Familiäre Häufungen bestärken die Annahme einer genetischen Komponente [1, 2, 7].

1.1.3 Epidemiologie

Da die CRMO eine Ausschlussdiagnose ist, ist die tatsächliche Prävalenz häufiger anzunehmen als die Erkrankung diagnostiziert wird [2, 8]. Einer jüngeren, prospektiven Studie von Grote et al. zufolge liegt die Prävalenz in Deutschland für NBO bei 0,45 von 100 000 [9]. Bei Jansson et al. [8] betrug die geschätzte jährliche Inzidenz für CNO bezogen auf Deutschland 0,4 von 100 000 mit einem Neuauftreten bei Kindern von mindestens 60 Fällen/ Jahr.

Mädchen sind häufiger betroffen. Das Geschlechterverhältnis wird zumeist mit ca. 2:1 beschrieben [7, 8, 12-16].

1.1.4 Diagnostisches Vorgehen

Die Diagnosestellung ergibt sich anhand von Anamnese, Laboruntersuchungen, klinischer Untersuchung und Bildgebung. Ggf. ist eine Knochenbiopsie zur histologischen und mikrobiologischen Aufarbeitung indiziert [1].
1.1.4.1 Symptome

Klinisch manifestiert sich die CRMO typischerweise in einem lokalen Knochen-
schmerz, welcher wie bei der BOM auch akut auftreten kann. Dieser tritt vor
allem in Ruhe auf. Die meisten Patienten stellen sich mit einer symptomati-
schen Lokalisation vor. Begleitend können fakultativ ausgeprägte Empfindlich-
keit, Schwellung und Wärme der entsprechenden Lokalisation auftreten. Nicht
selten findet sich eine Gelenkschwellung an Gelenken in der Nähe einer Kno-
chenläsion. Fieber sowie subfebrile Temperaturen können als Begleiterschei-
nung auftreten. Auch ein generelles Krankheitsgefühl wird beschrieben. Des
Weiteren kann es zu einem Gewichtsverlust kommen, was aber eher unge-
wöhnlich ist. Bei bis zu 25 % der Patienten mit CRMO ist eine extraossäre Be-
teiligung zu beobachten [2, 7, 17, 18].

Hautmanifestationen

Manifestationen der Haut finden sich häufig. Als typische Erscheinung gilt bei
CNO die palmoplantare Pustulose (PPP), welche bei ca. 20 % der Patienten
auftritt [13, 17, 18] Als weitere Hauterscheinung findet sich in 5-6 % der Fälle
nach Jansson et al. eine Psoriasis [8, 18]. Des Weiteren assoziiert sind Akne
conglobata und fulminans, Pyoderma gangraenosum sowie die neutrophile
dermatose (Sweet-Syndrom) [3, 18]. Das Auftreten von Hautläsionen variiert in
der Literatur stark und wird mit ca. 20 bis 80 % angegeben [13, 19, 20]. Meist
treten die Haut- und Knochenläsionen nicht zeitgleich auf. Die Hautläsionen
können sich erst Jahre später zeigen. Es gibt aber auch Fälle, bei denen ein
anatomisch korrelierendes und/ oder zeitgleiches Auftreten beobachtet wird.
Zudem wurde beobachtet, dass Hautläsionen an Lokalisationen mit Trauma
oder über der Biopsie-Linie auftraten [3].

Jugendliche Spondylarthropathie

Nach Girschick et al. könnte die CNO mit der Enthesitis assoziierten Arthritis
(ERA oder auch jugendliche Spondylarthropathie) und Psoriasis-Arthritis ver-
wandt sein. Verschiedenen Studien zufolge weisen bei CNO bis zu 80 % der

Chronisch-entzündliche Darmerkrankungen

Eine Assoziation von CNO mit CED (chronisch-entzündlichen Darmerkrankungen) wird mit ca. 10 % angegeben [20].

Weitere assoziierte Erkrankungen bzw. extraossäre Manifestationen sind Autoimmunerkrankungen (u.a. Hashimoto-Thyreoiditis, Sarkoidose) sowie sterile, chronisch-entzündliche Lungeninfiltrate [2, 11, 18].

1.1.4.2 Histologische Untersuchungen

1.1.4.3 Laborchemische Befunde
Untersucht werden Blutbild mit Differentialblutbild, Entzündungsparameter (BSG, CRP), Blutkultur, Immunglobulin, Blutchemie, Urinstatus, ANA, RF, HLA-B27 und Enzyme (CK, LDH, AP). Ggf. wird ein Tuberkulin-Haut-Test bei monofokaler Manifestation bzw. bei einem Risikopatienten durchgeführt [1]. Das Labor liefert keine spezifischen Befunde: BSG und CRP können mäßig erhöht sein. In der Mehrheit der Fälle findet sich auch eine Erhöhung von TNF-α, welches jedoch nicht routinemäßig bestimmt wird [17].

1.1.4.4 Bildgebung
Einleitung

1.) Konventionelles Röntgen/ lokale MRT (T1/ STIR)
2.) Ganzkörper (GK)-MRT (T1/ STIR)
3.) Bei unifokaler Läsion: MRT, ggf. mit KM, evtl. offene PE (Probeexzision)
4.) Follow up:
 - konventionelles Röntgen (bei eindeutiger Diagnose und klinisch zufriedenstellendem Verlauf nach 2 Jahren)
 - jährliche MRT-Kontrollen bei Läsionen, die nur im MRT darstellbar sind, und weitgehender Beschwerdefreiheit
 - ggf. kurzfristige MRT-Kontrollen bei Wirbelkörperläsionen und klinisch fraglichem Ansprechen auf die Therapie

Radiologische Diagnosekriterien

Frühphase

Im Röntgenbild kann man die typischen Läsionen noch nicht erkennen, da noch keine knöchernen Veränderungen vorliegen. In der MRT kann ein Marködem ein wichtiger Hinweis auf eine CRMO sein. Läsionen können mittels der GK-MRT nach Jansson et al. 2 bis 3 Wochen früher erkannt werden als im Röntgenbild. In der Knochenszintigraphie der Frühphase kann man ggf. eine vermehrte Aufnahme von Technetium beobachten [7, 17, 18].
Aktive Phase

Reparative Phase

Exacerbations-Reparations-Zyklus

Durch repetitive Phasen von Aufflammen, Abheilen und Wiederaufflammen der Läsionen mit neuen lytischen Prozessen entwickelt sich im Laufe der Zeit ein
Bild aus einer progressiven Hyperostose und Sklerose in den Meta- und Diaphysen [24].

Manifestation in der Klavikula

Spinale Manifestation

Becken

Die Prädilektionsstellen sind hier die Metaphysen-Äquivalente (ischiopubische Synchondrose, Iliosakralgelenke), welche auch für die hämatogene Osteomyelitis anfällig sind. Die Läsionen sind möglicherweise subtil im Röntgenbild sichtbar. In der MRT zeigen sich aktive Läsionen i.S. eines Ödems mit umgebender Periostitis und Weichteilreaktion [2].

Mandibula

Läsionen der Mandibula präsentieren sich typischerweise mit einem lokalen Schmerz und ggf. mit Kieferschwellung. Die radiologischen Befunde sind vergleichbar mit denen an anderen Lokalisationen mit anfänglich osteolytischen Prozessen und variierender Sklerose. Häufig findet sich eine Weichteilbeteiligung. Im Verlauf kann es zur Hyperostose kommen [2].

Hände und Füße

Korrelation zwischen Röntgen und GK-MRT

Fritz et al. konnten keinen signifikanten Zusammenhang zwischen den beiden Verfahren zeigen (Korrelationskoefzient 0,13) [14]. Das Röntgen ist gegenüber der GK-MRT deutlich weniger sensitiv (18 %) [4]. Bei von Kalle et al. zeigten 50 % der Patienten symptomatische Lokalisationen, die kein Korrelat im Röntgenbild aufwiesen. Hingegen dazu zeigten alle symptomatischen Läsionen ein Korrelat in der MRT. Daher empfehlen von Kalle et al. die Durchführung eines Röntgenbildes, um Frakturen und Malignität auszuschließen, nicht aber zur Etablierung der Diagnose [11]. Nach Khanna et al. kann die MRT eine assozi-

1.1.5 Diagnosekriterien nach Jansson et al.

Jansson et al. schlagen folgende Kriterien vor, welche die Diagnosestellung der CNO erleichtern. Das Vorliegen von 2 Majorkriterien bzw. von 1 Majorkriterium und 3 Minorkriterien macht die Diagnose einer CNO sehr wahrscheinlich [25].

<table>
<thead>
<tr>
<th>Majorkriterien</th>
<th>Minorkriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Radiologisch nachgewiesene osteolytisch/-sklerotische Knochenläsion</td>
<td>A. Normales Blutbild und guter Allgemeinzustand</td>
</tr>
<tr>
<td>2. Multifokale Knochenläsion</td>
<td>B. CRP und BSG leicht bis mäßig erhöht</td>
</tr>
<tr>
<td>3. PPP oder Ps</td>
<td>C. Beobachtungszeitraum länger als 6 Monate</td>
</tr>
<tr>
<td>4. Sterile Knochenbiopsie mit Zeichen von Inflammation und/ oder Sklerose,</td>
<td>D. Hyperostose</td>
</tr>
<tr>
<td>Fibrose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Verwandte I. oder II. Grades mit autoimmuner</td>
</tr>
<tr>
<td></td>
<td>Erkrankung (PPP, Ps, Akne, CED), Autoinflammation</td>
</tr>
<tr>
<td></td>
<td>onserkrankung oder NBO</td>
</tr>
</tbody>
</table>

1.1.6 Differentialdiagnosen

Die wichtigsten Differentialdiagnosen sind einerseits infektbedingte Prozesse wie die subakute oder chronische bakterielle Osteomyelitis, welche nicht multi-
Einleitung

1.1.7 Therapie

- **Stufe I:**
 Therapie der Wahl sind NSAIDs (non-steroidal anti-inflammatory drugs; vorwiegend Naproxen, Ibuprofen, Indometacin). Die Ansprechrate beträgt bis zu 80%. In ca. 10% der Fälle kommt es unter Naproxen zu einer Pseudoporphyrie [20].

- **Stufe II:**
 Bei unzureichendem Ansprechen nach 8-wöchiger Behandlung oder bei Rezidiven auf die Gabe von 2 NSAIDs in Folge kann eine kurzfristige orale Steroidgabe über 5 bis 7 Tage erwogen werden, ggf. zusätzlich zur NSAID-Therapie. Ein Magenschutz sollte additiv verabreicht werden. Steroide sollten bei CNO nicht als Dauertherapie und/oder bei ossären Destruktionen eingesetzt werden.

- **Stufe III:**
 Bei Ineffizienz von NSAIDs und Prednisolon empfiehlt sich ein Therapiever such mit DMARDs (disease-modifying anti-rheumatic drugs) wie Sulfasalazin oder Methotrexat. Auch eine Kombination aus Sulfasalazin und NSAIDs scheint effektiv.

- **Stufe IV:**
 Da bereits bei ca. 30% der Patienten bei Erstmanifestation eine Wirbelkörperbeteiligung, welche zu ernsthaften Komplikationen führen kann, diagnostiziert wird, sollte bei ossären Strukturveränderungen eine primär intensive Therapie erfolgen. Eingesetzt werden Bisphosphonate (vor allem zyklische Gabe von Pamidronat i.v. über 12-18 Monate). Diese zeigen einen osteoklastenhemmenden, schmerzverändernden und antiinflammatorischen Effekt und scheinen sich sowohl auf den klinischen als auch den radiologi-
schen Verlauf sehr positiv auszuwirken. In den bisherigen Studien bei Kin-
dern und Jugendlichen mit CNO werden keine relevanten Nebenwirkungen wie Knochennekrosen beschrieben [12, 29, 30].

Stufe V:

In kleinen Patientenkollektiven wurde eine Wirksamkeit von TNF-α-Antagonisten beobachtet. Des Weiteren stellt eine Therapie mit IL-1-Inhibitoren einen individuellen Heilversuch dar.

Bei schweren Verläufen kann die klinische Wirksamkeit aller Medikamente je-

Bezüglich des Therapieansprechens sollten folgende Parameter berücksichtigt werden: klinisches Ansprechen (VAS 0-10), Entzündungsparameter (CRP, BSG) und MRT-Befund (Zahl, Größe, Intensität in TIRM/STIR). Als Therapie-
ansprechen sollte mindestens ein Rückgang von 75 % in allen 3 Bereichen
gefordert werden.

Bei klinischem sowie laborchemischem Ansprechen empfiehlt sich vor Aus-
schleichen der medikamentösen Therapie eine MRT-Kontrolle. Diese ist frühes-
tens nach einer 3-monatigen klinischen Beschwerdefreiheit durchzuführen, da die radiologische Remission teilweise mit einer erheblichen Verzögerung ein-
hergeht. Sinnvoll erscheint die Kontrolle nach 6 Monaten [1].

1.1.8 **Prognose und Komplikationen**

Die Dauer von Symptomen kann zwischen Tagen und mehreren Jahren variie-
ren [2]. Häufig ist ein chronischer Verlauf über mehrere Jahre [16, 24] zu be-
obachten, bei welchem die Symptome sowohl zu- als auch abnehmend sein
können und daher nur schwer vorhersagbar sind [7, 17, 24]. Generell wird von
einem prognostisch günstigen und selbstlimitierenden Verlauf ausgegangen [2, 24]. Dennoch zeigt sich in neueren Untersuchungen, dass die Krankheitsaktivi-
tät im Langzeitverlauf unterschätzt wird und Rezidive sowohl klinisch als auch
Einleitung

1.2 GK-MRT

1.2.1 Grundlagen MRT

1.2.2 Indikationen im Kindes- und Jugendalter

Eine mögliche Indikation besteht bei malignen Tumoren (Staging, Tumorausbreitung, Reststaging und Follow-up), Langerhans-Zell-Histiozytose (Ausbreitungsdiagnostik, unifokal vs. multifokal, Therapiemonitoring), avaskulärer Osteonekrose (Ausmaß und Schweregrad, Detektion von asymptomatischen Befunden), Fiebersyndromen (Fokus, Ausmaß der Veränderungen, Tumorausschluss), Syndromen bzw. genetischer Prädisposition mit erhöhtem Tumorrisiko (Ausmaß der Veränderungen, Tumor-Screening), Bathered-child-Syndromen (kein Standard, ergänzend zur Beurteilung von Verletzungen) sowie bei CRMO.

Bei letzterer eignet sich die GK-MRT insbesondere zur Detektion charakteristischer Muster (unifokal vs. multifokal) sowie zur Detektion klinisch stummer Läsionen. Zudem kann sie zum Therapiemonitoring eingesetzt werden. Daher stellt die GK-MRT in Bezug auf die bildgebende Diagnostik bei CRMO nach Schäfer und Kramer die Methode der Wahl dar [4, 11, 14, 15].

In der Beurteilung von Knochenmetastasen liefert die GK-MRT vergleichbare Ergebnisse zur FDG-PET (Fluordesoxyglukose-Positronen-Emissions-Tomographie) und weist eine höhere diagnostische Genauigkeit als die Skelettszintigraphie auf. Da mit der GK-MRT eine von osteoblastischer und osteoklastischer Aktivität unabhängige und direkte Visualisierung des Knochenmarks gelingt, ist diese zahlreichen Studien zufolge der Skelettszintigraphie auch in anderen das Knochenmark betreffenden Fragestellungen in Hinblick auf die Sensitivität signifikant überlegen [4]. Laut Guérin-Pfyffer et al. gibt es Hinweise, dass die GK-MRT sensitiver ist, Läsionen aufgrund einer Serositis, Myositis und Periostitis
zu erkennen, jedoch der Skelettszintigraphie in der Beurteilung von thorakalen Gelenken unterlegen ist [7].

1.3 Zielsetzung

Ziel dieser Arbeit war es zum einen das Therapieansprechen unter der medikamentösen Therapie bei CRMO im Kindes- und Jugendalter anhand klinischer und radiologischer Parameter mittels der GK-MRT zu beurteilen. Um eine gezielte und individuelle Therapiesteuerung zu fördern, wurde dabei die Wertigkeit der GK-MRT in der Verlaufskontrolle bestimmt.

Zum anderen wurden die erarbeiteten radiologischen Parameter in Bezug zum klinischen Verlauf gesetzt, um einen Zusammenhang zu prüfen und darauf basierend ggf. eine Prognoseabschätzung anhand radiologischer Kriterien formulieren zu können.

Des Weiteren wurde der Nutzen eines Einsatzes von Kontrastmittel zur Detektion zusätzlicher Knochenläsionen sowie die Notwendigkeit einer Biopsie zur Diagnosefindung überprüft.

Als zusätzliche Fragestellung wurde der Einfluss der GK-MRT auf den Zeitpunkt der Diagnosestellung untersucht.
2 Material und Methoden

2.1 Patientengut

2.2 Zeitpunkt der Diagnosestellung
Es erfolgte eine Gruppierung in frühe vs. verzögerte primäre GK-MRT, um einen Zusammenhang zwischen dem Zeitpunkt der Durchführung der primären GK-MRT und dem Zeitpunkt der Diagnosestellung zu prüfen.
2.3 Klinische, laborchemische und histologische Auswertung

Zu beiden Zeitpunkten (Zeitpunkt 1: Ausgangsbefund, Zeitpunkt 2: Verlaufskontrolle) wurden alle Patienten auf lokale Beschwerden im Sinne der 5 Kardinalsymptome der Entzündung untersucht: Dolor, Tumor, Calor, Rubor und Functio laesa. Zum einen wurden alle klinisch aktiven Lokalisationen dokumentiert, definiert als Läsionen, die keine Entsprechung im radiologischen Befund erfordern, zum anderen alle klinisch manifesten Läsionen, d.h. mit einem Korrelat im MRT-Befund. Des Weiteren wurden die Patienten auf Allgemeinsymptome, extraossäre Manifestationen, Nebendiagnosen und Komplikationen untersucht. Zusätzlich wurden laborchemische Parameter (CRP, BSG, HLA-B27, ANA) und histologische Befunde in die Auswertung miteinbezogen. Dabei wurde ein CRP > 0,5 mg/dl sowie eine BSG > 20 mm/h als positiv bewertet. Auch die medikamentöse Therapie wurde dokumentiert. Die Therapiesteuerung wurde lediglich zu Zeitpunkt 2 beurteilt.

2.4 Radiologische Datenerhebung mittels der GK-MRT

Material und Methoden

2.5 Radiologische Datenanalyse

Die primäre von dieser Arbeit unabhängige Beurteilung der Bilder anhand des „Picture Achieving and Communication Systems“ (PACS) erfolgte durch einen erfahrenen Kinderradiologen des UKTs. Teil dieser Arbeit ist die retrospektive, sekundäre Auswertung der einzelnen Läsionen. Diese lehnt sich zwar an die primäre Auswertung an, charakterisiert die Läsionen jedoch detaillierter. Dies soll im Folgenden dargestellt werden:

2.5.1 Erfassung und Charakterisierung der Knochenläsionen

Es erfolgte eine Charakterisierung der Knochenläsionen anhand der Lokalisationsanhand von standardisierten Kriterien, die eine Modifikation nach RECIST (Response Evaluation Criteria in Solid Tumors) darstellt: im Weiteren als RECIBL (Response Evaluation Criteria in Bone Lesions) bezeichnet.

Die radiologisch erfassten Läsionen wurden zudem zu beiden Zeitpunkten auf Anzahl, Volumen sowie Signalintensität überprüft. Dabei bleibt zu beachten, dass nur bei den Läsionen, die zu beiden Zeitpunkten vorhanden waren, Volumen und Signalintensität bestimmt wurden. Des Weiteren wurde auf ein symmetrisches Auftreten geachtet. Eine Knochenläsion wurde ab einer minimalen Grundfläche von 10 mm² in die Auswertung miteinbezogen. Bei mehreren Läsionen innerhalb einer Lokalisation wurde die größte als stellvertretende gewählt. Da nicht bei allen Patienten Kontrastmittel verwendet wurde und darüber hinaus in der Literatur die Etablierung der Diagnose und Beurteilung des Krankheitsverlaufs zumeist anhand der STIR/ TIRM erfolgt, wurde die ausführliche Charakterisierung der Knochenläsionen ausschließlich anhand der nativen Sequen-
zen durchgeführt. Zudem erfolgte die sekundäre Befundung ausschließlich in den koronaren Sequenzen.

2.5.2 Lokalisierung der radiologischen Läsionen

1.) Läsionen wurden einer anatomischen Lokalisation zugeteilt: s. 8.1
2.) Läsionen wurden innerhalb der (Röhren-)knochen lokalisiert: s. 8.2
3.) Läsionen wurden geographisch lokalisiert: s. 8.3
4.) Läsionen wurden einer Körperseite zugeordnet: s. 8.4

2.5.3 Beurteilung der Läsionen anhand von RECIBL

Die Einteilung anhand von RECIBL erfolgte, um das Verhalten der Knochenläsionen im Verlauf besser charakterisieren zu können.

Als Kriterium für eine Veränderung des Volumens einer Läsion wurden 10 % festgelegt. Die Kriterien sind Folgende:

1.) CR: complete remission = Läsion nicht mehr sichtbar
2.) PR: partial remission = Volumenreduktion ≥ 10 %, Läsion noch sichtbar
3.) SD: stable disease = Volumenänderung < 10 %, Läsion noch sichtbar
4.) PD: progressive disease = Volumenerhöhung ≥ 10 %, Läsion noch sichtbar
5.) NA: new appearance = Läsion erstmals zu Zeitpunkt 2 aufgetreten

2.5.4 Bestimmung des Volumens

Die 3-dimensionale Berechnung des Volumens erfolgte anhand der Summe der betroffenen Flächenausdehnungen der Läsion in mm² multipliziert mit der jeweiligen Schichtdicke. Hierzu wurde in jeder Schicht eine ROI (region of interest) gelegt, welche die Läsion exakt erfasst. Zudem erfolgte eine Umrechnung von mm³ in ml.
2.5.5 **Bestimmung der Signalintensität-Ratio**

2.6 **Statistische Auswertung**

3 Ergebnisse

3.1 Ergebnisse

3.1.1 Alter
Die Patienten waren beim Auftreten der ersten Symptome im Alter zwischen 5 und 14 Jahren. Der Mittelwert lag bei 10,3 Jahren, der Median bei 10,5 Jahren (IQR: 3 Monate).

3.1.2 Geschlechterverteilung

Abbildung 1: Geschlechterverhältnis bei CRMO
Legende m= männlich, w= weiblich;
3.1.3 Familienanamnese

Bezüglich der Familienanamnese ergaben sich bei 4 Patientinnen positive Befunde für den rheumatologischen bzw. autoinflammatorischen Formenkreis. Ausschließlich Mädchen hatten eine positive Familienanamnese. 2 davon bildeten ein in die Studie eingeschlossenes Geschwisterpaar (P4, P6). Bei den anderen 2 war jeweils die Mutter an einer Psoriasis erkrankt (P11, P18). 8 Patienten hatten eine negative Familienanamnese. Zu den übrigen 8 Patienten konnten aufgrund fehlender Daten retrospektiv keine Aussagen getroffen werden.

3.1.4 Erkrankungsdauer zu GK-MRT ZP1 und ZP2

Im Mittel betrug die Krankheitsdauer zu Zeitpunkt 1 14,9 Monate (1-44 Monate; Median: 8 Monate; IQR: 23,8 Monate) und zu Zeitpunkt 2 28 Monate (5-61 Monate; Median: 23,5 Monate; IQR: 28,5 Monate). Dabei lag der Abstand der durchgeführten GK-MRTs zwischen 3 und 37 Monaten (Mittelwert: 13,1 Monate; Median: 11,5 Monate; IQR: 12,3 Monate).

3.1.5 Diagnosestellung

Es zeigte sich ein positiver Zusammenhang zwischen dem Zeitpunkt der Durchführung der 1. GK-MRT und der Diagnosestellung.

Die Diagnose CRMO wurde im Mittel nach 3,2 Monaten (Median: 3 Monate; IQR: 4,3 Monate) bei früher GK-MRT (10/10 innerhalb von 6 Monaten) und nach 18,1 Monaten (Median: 18 Monate; IQR: 18,8 Monate) bei verzögerter GK-MRT (2/10 innerhalb der ersten 6 Monate) gestellt (Wilcoxon-Rangsummentest: p=0,0055). Des Weiteren zeigte sich, dass die Gruppe mit früher GK-MRT bei Erstmanifestation signifikant älter war als die Gruppe mit verzögerter GK-MRT (Wilcoxon-Rangsummentest: p= 0,0210). Bei der frühen Gruppe lag das durchschnittliche Alter zu Krankheitsbeginn bei 11,4 Jahren (Median: 12 Jahre; IQR: 1,8 Jahre), bei der späten Gruppe bei 9,2 Jahren (Median: 9 Jahre; IQR: 1,5 Jahre). Das Alter zum Zeitpunkt der Diagnosesicherung hingegen unterschied sich nicht signifikant. Auch alle übrigen Patientencharakteristika zeigten keine signifikanten Unterschiede (s. Tabelle 2).

Bei insgesamt 14 Patienten (P2, P3, P7, P8, P9, P10, P11, P12, P14, P15, P16, P18, P19, P20) wurde die Diagnose CRMO in Zusammenschau mit den Befunden der primären GK-MRT gestellt.
Tabelle 2: Einfluss der GK-MRT bei CRMO auf den Zeitpunkt der Diagnosestellung

Legende

DS = Diagnosestellung, EM = Erstmanifestation, GK-MRT = Ganzkörper-Magnetresonanztomographie, m = männlich, M = Median, MW = Mittelwert, NS = nicht signifikant, S = signifikant, w = weiblich;

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>GK-MRT ≤ 6 Monate (10 P.)</th>
<th>GK-MRT > 6 Monate (10 P.)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitpunkt DS</td>
<td>MW: 3,2 Monate</td>
<td>MW: 18,1 Monate</td>
<td>S (p=0,0055)</td>
</tr>
<tr>
<td>Anzahl Patienten DS ≤ 6 Monate</td>
<td>10/10</td>
<td>2/10</td>
<td></td>
</tr>
<tr>
<td>Alter EM</td>
<td>MW: 11,4 Jahre</td>
<td>MW: 9,2 Jahre</td>
<td>S (p= 0,0210)</td>
</tr>
<tr>
<td>Alter DS</td>
<td>MW: 11,8 Jahre</td>
<td>MW: 10,5 Jahre</td>
<td>NS</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>8w, 2m</td>
<td>8w, 2m</td>
<td></td>
</tr>
<tr>
<td>Anzahl klinisch aktive Läsionen bei DS</td>
<td>MW: 4,1 M: 3</td>
<td>MW: 3,9 M: 3</td>
<td>NS</td>
</tr>
<tr>
<td>Anzahl klinisch aktive Läsionen zu GK-MRT 1</td>
<td>MW: 4,3 M: 3</td>
<td>MW: 3,7 M: 3,5</td>
<td>NS</td>
</tr>
<tr>
<td>Anzahl klinisch aktive Läsionen zu GK-MRT 2</td>
<td>MW: 1,3 M: 0,5</td>
<td>MW: 1 M: 0,5</td>
<td>NS</td>
</tr>
</tbody>
</table>

3.1.6 Histologische Untersuchungen

Bei 14 Patienten (70 %) wurde eine Biopsie durchgeführt. Bei 8 Patienten (P1, P3, P7, P12, P13, P14, P15, P16) entsprach der Zeitpunkt der Diagnosestellung dem Zeitpunkt der Biopsie. Von diesen Patienten zeigten 7 (P1, P3, P12, P13, P14, P15, P16) einen zur CRMO passenden Befund (s. unter 1.1.4.2). Bei 3 Patientinnen (P5, P19, 20) wurde die Biopsie erst nach Diagnosestellung im Verlauf durchgeführt. 2 (P19, P20) davon zeigten einen der CRMO entsprechenden Befund. Bei 3 Patienten (P2, P10, P17) erfolgte die Diagnosestellung nach dem Zeitpunkt der Biopsie. Bei diesen Patienten fanden sich keine Hinweise auf eine CRMO im Biopsat. Insgesamt zeigten 9/14 (64,3 %) Patienten einen zur CRMO passenden Befund.

Bei 4 Patienten (P5, P12, P13, P20), d.h. 20% aller Patienten, bleibt die Indikation zur Durchführung einer Biopsie retrospektiv betrachtet fraglich, da sich keine eindeutigen Auffälligkeiten entsprechend den in der Einleitung beschriebenen Indikationen für eine Knochenbiopsie fanden. In diesen Fällen erfolgte die Biopsie vor allem zur Diagnoseverifizierung.

3.1.7 Differentialdiagnosen

Folgende Differentialdiagnosen wurden durch die GK-MRT alleine oder zusammen mit Biopsie ausgeschlossen: eosinophiles Granulom/ LCH (P2, P7, P16), bakterielle Osteomyelitis (P10, P14), Malignität (P2, P16: Ewing-Sarkom, P16: angiomatóser Tumor), JIA (P9, P18), Tuberkulose (P12) sowie fibröse Dysplasie (P19).

3.1.8 Symptome im Verlauf

Klinisch aktive Lokalisationen im Verlauf

Zu Zeitpunkt 1 gab es insgesamt 80 Lokalisationen bei 18 Patienten (90 %), die mindestens ein Kardinalsymptom der Entzündung aufwiesen, zu Zeitpunkt 2 waren es noch 23 bei 10 Patienten (50 %). Pro Patient lag damit die Anzahl an klinisch aktiven Läsionen zu Zeitpunkt 1 im Median bei 3 (Mittelwert: 4; IQR: 3), zu Zeitpunkt 2 bei 0,5 (Mittelwert: 1,2; IQR: 2). Damit zeigte sich (patientenbezogen) eine signifikante Abnahme an klinisch aktiven Läsionen im Verlauf (Vorzeichentest: p=0,0010, s. Tabelle 5).

14 Patienten zeigten zu Zeitpunkt 2 weniger klinisch aktive Läsionen als zu Zeitpunkt 1. 3 Patienten (P12, P13, P18) zeigten zu beiden Zeitpunkten gleich viele klinisch aktive Läsionen. Lediglich bei P16 trat zu Zeitpunkt 2 1 symptomatische Lokalisation mehr auf.

2 Patienten (P17, P6) zeigten weder zu Zeitpunkt 1 noch zu Zeitpunkt 2 klinische Beschwerden. An dieser Stelle bleibt zu berücksichtigen, dass Zeitpunkt 1 teilweise nicht dem Zeitpunkt der Erstmanifestation entsprach, weswegen bei 10 von 20 Patienten zu Zeitpunkt 1 bereits eine medikamentöse Therapie erfolgte.

Allgemeinsymptome im Verlauf

3.1.9 Nebendiagnosen

Hautmanifestationen

4 Patienten (P2, P11, P17, P18) entsprechend 20 % waren an einer Neurodermitis erkrankt. Andere Hautmanifestationen, insbesondere wie sie bei der CRMO typischerweise auftreten (PPP, Ps, Akne, Pyoderma gangraenosum, neutrophile Dermatose/ Sweet-Syndrom) wurden nicht beobachtet.

Vorangehende Infektionen

Zöliakie

P14 litt unter einer Zöliakie und einem IgA-Mangel.

Sinusitis

Bei 11 von 20 Patienten (P4, P5, P6, P11, P12, P13, P14, P16, P17, P18, P20) entsprechend 55 % wurde nebenbefundlich mittels der GK-MRT eine chronische Rhinosinusitis (CRS) diagnostiziert.

Allergien/ Asthma

Orthopädischer Formenkreis

Psychosomatische Diagnosen

Weitere Nebendiagnosen

Andere Erkrankungen, die im untersuchten Patientengut erfasst wurden, sind folgende: Ulrich-Turner-Syndrom (P5), Entwicklungsretardierung mit proportionalen Kleinwuchs (P14), Trikuspidalinsuffizienz I° (P7), chemisch-toxische Gastritis (P14), Anämie (P16), Adipositas (P17, P19), Myopie (P18), Verrucae vulgares plantar und am Handrücken (P18), Migräne (P18), Untergewicht (P18), erhöhter Augeninnendruck bei Verdacht auf Glaukom (P19), Verdacht auf Pilzbefall der linken Achsel (P19).

3.1.10 Laborchemische Untersuchungen

Bezüglich der Entzündungswerte besteht aufgrund fehlender Daten nur eine eingeschränkte Aussagekraft.

Zu Zeitpunkt 1 hatten 11 (P2, P3, P4, P5, P6, P7, P8, P13, P14, P16, P19) von 19 Patienten ein leicht erhöhtes CRP (maximal bis 3,83 mg/dl) entsprechend
57,9 % der Patienten. Zu Zeitpunkt 2 hatten 3 (P2, P6, P16) von 13 Patienten (23,1 %) weiterhin ein leicht erhöhtes CRP (maximal bis 1,82 mg/dl).

Die BSG war zu Zeitpunkt 1 bei 7 (P3, P5, P11, P14, P16, P19, P20) von 18 Patienten (38,9 %) bis maximal 58 mm/h erhöht. Zu Zeitpunkt 2 zeigte noch 1 (P16) von 14 Patienten (7,1 %) eine mit 22 mm/h leicht erhöhte BSG.

Bei 4 (P11, P14, P16, P18) von 17 Patienten (23,5 %) zeigte sich ein positiver HLA-B27-Befund. Bei 3 (P4, P12, P18) von 15 Patienten (20 %) zeigte sich ein positiver Befund für ANA (P12 hochpositiv). P18 wies sowohl positive Werte für HLA-B27 als auch für ANA auf.

3.1.11 Verteilung und Charakterisierung der Knochenläsionen

Bezüglich der Verteilung an Läsionen wurde nicht zwischen den beiden Zeitpunkten unterschieden. Jede Läsion, die mindestens zu einem Zeitpunkt auftrat, wurde gewertet.

3.1.11.1 Radiologische Befunde

Anatomische Verteilung der Knochenläsionen

Die meisten Knochenläsionen traten mit einem Anteil von 53,4 % (119 von 223 Läsionen) im Bereich der unteren Extremität auf. Am zweithäufigsten betroffen war der Stamm mit 75 Läsionen entsprechend 33,6 %. An der oberen Extremität gab es 22 Läsionen (9,9 %) und im Kopfbereich 7 Läsionen (3,1 %). Im Kopfbereich war ausschließlich die Mandibula betroffen (s. Abbildung 3).

Innerhalb der unteren Extremität fanden sich die meisten Läsionen in der proximalen Tibia (29 Läsionen entsprechend 13 % aller Läsionen), im distalen Femur und in der distalen Tibia (je 26 Läsionen entsprechend 11,7 %).

Im Bereich des Stamms war sowohl das Becken mit 34 Läsionen (15,2 %) als auch die Wirbelsäule mit 28 Läsionen (12,6 %) häufig betroffen (s. Tabelle 3).
Spinale Manifestation

Insgesamt traten 14 Läsionen (50 % der Läsionen) im Os sacrum (8 rechts, 4 links, 2 mittig) auf. Am zweithäufigsten war die Brustwirbelsäule mit 10 Läsionen (35,7 %) betroffen. In der Lendenwirbelsäule fanden sich 4 Läsionen (14,3 %).

Manifestationen im Iliosakralgelenk

Bei 6 Patienten (P1, P3, P10, P11, P16, P17) entsprechend 30 % war zu mindestens einem Zeitpunkt ein Iliosakralgelenk betroffen. Bei 2 Patienten trat eine beidseitige Beteiligung auf, bei 3 Patienten war das rechte ISG, bei 1 Patient das linke betroffen.

Manifestationen im Becken

Insgesamt zeigten 14 Patienten entsprechend 70 % (P2, P5, P6, P7, P8, P10, P11, P12, P14, P15, P16, P17, P18, P20) Läsionen in mindestens 1 Beckenknochen (Os pubis, Os ilium, Os ischiadicum). Bei P17 trat eine Symphysitis mit einer intraossären Ganglionzyste links auf.
Manifestationen in der Mandibula

Bei 3 Patientinnen (P3, P19, P20) entsprechend 15 % fand sich eine Beteiligung der Mandibula mit insgesamt 7 Läsionen (1-5/ Patientin). Bei P19 fand sich eine Deformität des Temporomandibulargelenks sowie des rechten Ramus mandibularis mit einer Auftreibung und verstärkten Sklerosierung von Collum und Caput.

Manifestationen in der Klavikula

Insgesamt traten 4 Läsionen bei 3 Patientinnen (P1, P11, P13) in der Klavikula auf.

Abbildung 3: Anatomische Verteilung der Knochenläsionen bei CRMO

Legende: KOP= Kopfbereich, OE= obere Extremität, STA= Stamm, UE= untere Extremität;
Geographische Einteilung der Knochenläsionen

Insgesamt gab es 119 Knochenläsionen, bei denen eine geographische Einteilung in Meta-, Epi-, Dia- oder Apophyse möglich war. Am häufigsten war die Metaphyse mit 56 Läsionen (47,1 %) betroffen. 48 Läsionen (40,3 %) traten in der Epiphyse auf, 8 (6,7 %) in der Apophyse (Trochanter Minor und Major) und 7 (5,9 %) in der Diaphyse.
Multifokalität

Da Multifokalität ein Einschlusskriterium war, zeigten alle Patienten radiologisch multiple Knochenläsionen (zwischen 3 und 40).

Symmetrie

104 von 223 Läsionen traten symmetrisch auf, d.h. 46,6 % aller Knochenläsionen. Insgesamt zeigten 65 % der Patienten mindestens 1 symmetrische Läsion.

Knochenläsionen im Bereich der Biopsie

Bei 3 Patienten (15 %) zeigte sich ein Auftreten einer Knochenläsion direkt an der Lokalisation der Knochenbiopsie (P2: Os sacrum; P12: rechte Tibia; P15: rechtes Tibia-Plateau: proximaler Defekt mit Randsklerosierung).

Frakturen

Insgesamt 4 Patienten (20 %) wiesen Frakturen auf. Betroffen waren vor allem die Wirbelkörper mit 5 von 6 Frakturen (P7: BWK4, BWK2; P9: Os sacrum; P14: BWK 7 und LWK 1). Bei Patient 2 zeigte sich 1 Fraktur im Os pubis.

Lymphadenopathie

Bei 11 von 20 Patienten (55 %) zeigte sich in der GK-MRT ein auffälliges Lymphgewebe: 2 Patientinnen (P1, P3) wiesen eine inguinale Lymphknotenmanifestation auf, P11 eine paravertebrale. 3 Patienten hatten eine zervikale Lymphadenopathie (P12, 17, P20). Bei P13 mit Beteiligung der Klavikula fanden sich zusätzlich zu einer zervikalen Lymphadenopathie vermehrte Lymphknoten rechts supraklavikulär. 2 Patienten (P14, P15) zeigten eine zervikale sowie eine mesenteriale Lymphadenopathie. P16 wies auffälliges Lymphgewebe links infrahilär auf. P19 hatte vermehrte zervikale und mediastinale Lymphknoten.
Pulmonale Rundherde

3 Patientinnen (15 %) zeigten pulmonale Rundherde in der GK-MRT, 2 davon (P10, P17) intrapulmonal. Bei P12 trat 1 zentraler Rundherd in der linken Lingu-
la auf.
Abbildung 4: Darstellung charakteristischer Muster bei CRMO anhand der Ganzkörper-MRT bei einer 11-jährigen Patientin (P9).

(a) Nachweis multifokaler, teilweise symmetrischer, hyperintenser Knochenläsionen mittels der koronaren T2-gewichteten Turbo-Inversion Recovery-Magnitude Sequenz (b) Befall des linken Os sacrum angrenzend an die hypersklerosierten Grenzflächen einer bekannten Fraktur sowie Befall des Trochanter majors beidseits (c)-(e) hyperintense Knochenmarksveränderungen im Bereich der Scapula (c), in der distalen Tibia epiphysär und im Talus beidseits (d) sowie im Bereich einzelner Rippenansätze paravertebral (e).
3.1.11.2 Klinisch manifeste Knochenläsionen

Von insgesamt 223 Knochenläsionen wurden 80 (35,9 %) bei 18 von 20 Patienten im Verlauf in mindestens 1 der 4 Kategorien (Dolor, Tumor, Calor, Functio laesa) symptomatisch.

Bezogen auf alle klinisch manifesten Knochenläsionen fanden sich 47,5 % im Bereich der unteren Extremität, 42,5 % im Bereich des Stamms, 6,3 % im Bereich des Kopfs und 3,8 % im Bereich der oberen Extremität (s. Abbildung 5 und Tabelle 4).

Prozentual traten die meisten symptomatischen Knochenläsionen im Bereich der Mandibula mit 5 von 7 Läsionen (71,4 %) bei 1 von 3 Patientinnen (33,3 %) auf. 34 von 75 Läsionen (45,3 %) wurden im Bereich des Stamms bei 13 von 18 Patienten (72,2 %) symptomatisch, insbesondere Läsionen der Wirbelsäule (67,9 %) und des Sternums (66,7 %). Im Bereich der unteren Extremität konnten 38 von 119 Läsionen (31,9 %) bei 10 von 18 Patienten (55,6 %) klinisch detektiert werden, vor allem Läsionen der Fußknochen zeigten eine Neigung, klinisch auffällig zu werden (60 %). Die geringste Anzahl an klinisch manifesten Läsionen befand sich mit 3 von 22 (13,6 %) in der oberen Extremität bei 2 von 7 Patienten (28,6 %).

Wirbelsäule

Bei 9 (P1, P3, P7, P8, P9, P10, P11, P12, P16) von 13 Patienten (69,2 %) mit radiologisch nachweisbaren Knochenläsionen in der Wirbelsäule traten mindestens zu einem Zeitpunkt lokale Symptome (Schmerzen, Funktionseinschränkung, Schwellung) im Bereich der Wirbelsäule auf.

Hingegen dazu zeigten lediglich 2 (P3, P7) von 7 Patienten mit Wirbelsäulenverformung (28,6 %) klinische Auffälligkeiten i. S. von lokalen Schmerzen und/oder einer Funktionseinschränkung. Insbesondere P14 zeigte trotz massivem Wirbelsäulenbefund (s. unter 3.1.11.1) unter der Therapie mit Bisphosphonaten bis auf ein auffälliges Gangbild keine klinischen Beschwerden.

Iliosakralgelenk

5 von 6 Patienten (P1, P3, P10, P11, P16, P17) entsprechend 83,3 % mit einer radiologischen Beteiligung des ISGs klagten über Schmerzen. Lediglich P17 gab keine Beschwerden an.

Abbildung 5: Verteilung klinisch manifester Läsionen bei CRMO

Legende: KOP= Kopf, OE= obere Extremität, STA= Stamm, UE= untere Extremität;
Tabelle 4: Verteilung klinisch manifester Läsionen bei CRMO

Legende:

BWK = Brustwirbelkörper, FWK = Fußwurzelknochen, LWK = Lendenwirbelkörper, UE = untere Extremität, STA = Stamm, OE = obere Extremität, KOP = Kopfbereich;

<table>
<thead>
<tr>
<th>Anzahl und % von allen klinisch maniferten Läsionen</th>
<th>Genaue Lokalisation</th>
<th>Anzahl und % von allen klinisch maniferten Läsionen</th>
<th>% von allen Knochenläsionen dieser Lokalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE 38 47,5 %</td>
<td>Proximaler Femur</td>
<td>8</td>
<td>10,0 %</td>
</tr>
<tr>
<td></td>
<td>Mittlerer Femur</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distaler Femur</td>
<td>6</td>
<td>7,5 %</td>
</tr>
<tr>
<td></td>
<td>Proximale Tibia</td>
<td>3</td>
<td>3,8 %</td>
</tr>
<tr>
<td></td>
<td>Mittlere Tibia</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distale Tibia</td>
<td>11</td>
<td>13,8 %</td>
</tr>
<tr>
<td></td>
<td>Distale Fibula</td>
<td>4</td>
<td>5,0 %</td>
</tr>
<tr>
<td></td>
<td>FWK (Talus, Kalkaneus)</td>
<td>2</td>
<td>2,5 %</td>
</tr>
<tr>
<td></td>
<td>Metatarsalknochen</td>
<td>2</td>
<td>2,5 %</td>
</tr>
<tr>
<td></td>
<td>Phalangen</td>
<td>2</td>
<td>2,5 %</td>
</tr>
<tr>
<td></td>
<td>Insgesamt UE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STA 34 42,5 %</td>
<td>Vertebrä (BWK, LWK, Os sacrum)</td>
<td>19</td>
<td>23,8 %</td>
</tr>
<tr>
<td></td>
<td>Pelvis</td>
<td>10</td>
<td>12,5 %</td>
</tr>
<tr>
<td></td>
<td>Costae</td>
<td>3</td>
<td>3,8 %</td>
</tr>
<tr>
<td></td>
<td>Sternum</td>
<td>2</td>
<td>2,5 %</td>
</tr>
<tr>
<td></td>
<td>Insgesamt STA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OE 3 3,8 %</td>
<td>Skapula</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klavikula</td>
<td>1</td>
<td>1,3 %</td>
</tr>
<tr>
<td></td>
<td>Proximaler Humerus</td>
<td>2</td>
<td>2,5 %</td>
</tr>
<tr>
<td></td>
<td>Distaler Humerus</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proximaler Radius</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insgesamt OE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOP 5 6,3 %</td>
<td>Mandibula</td>
<td>5</td>
<td>6,3 %</td>
</tr>
<tr>
<td></td>
<td>Insgesamt KOP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1.12 Charakterisierung der Knochenläsionen anhand von RECIBL

Insgesamt ergab sich eine Anzahl von 223 Läsionen. Die Gesamtzahl beinhaltet sowohl Läsionen, die nur zu einem Zeitpunkt auftraten, als auch Läsionen, die zu beiden Zeitpunkten vorhanden waren.

Für das gesamte Patientengu lt ergaben sich 102 Läsionen (45,7 %) mit kompletter Remission (CR), welche per Definition nur zu Zeitpunkt 1 nachgewiesen wurden. Der Median pro Patient lag bei 3,5 Läsionen (Mittelwert: 5,1; IQR: 6,3). Neu aufgetretene Läsionen (NA), d.h. nur zu Zeitpunkt 2 vorhandene Läsionen waren es 17 (7,6 %). Der Median pro Person lag damit bei 0 (Mittelwert: 0,9; IQR: 1). Alle anderen Läsionen traten zu beiden Zeitpunkten auf. Es gab 7 (3,1 %) stabile Läsionen (SD), pro Patient im Median 0 (Mittelwert: 0,4; IQR: 0). 74 Läsionen (33,2 %) waren partiell remittiert (PR), pro Patient also 3 (Mittelwert: 3,7; IQR: 5,8). 23 Läsionen (10,3 %) waren progredient (PD), pro Patient 0,5 (Mittelwert: 1,2; IQR: 2; s. Abbildung 6 und Tabelle 6).

2 Patientinnen (P5, P7) zeigten eine komplette radiologische Remission zu Zeitpunkt 2, d.h. ausschließlich Läsionen mit CR. P7 zeigte jedoch noch klinisch aktive Lokalisationen.
Abbildung 6: Verteilung der Knochenläsionen bei CRMO nach selbst vorgeschlagenen Responsekriterien (RECIBL)

Legende
CR = complete remission, NA = new appearance, PD = progressive disease, PR = partial remission, SD = stable disease, RECIBL = Response Evaluation Criteria In Bone Lesions;

3.1.13 Anzahl der Läsionen im Verlauf

3.1.13.1 Radiologisch aktive Läsionen

Zu Zeitpunkt 1 wurden 206 Knochenläsionen gezählt, entsprechend 8 Läsionen/ Patient im Median (Mittelwert: 10,3; zwischen 2 und 40 Läsionen; IQR: 10,5). Zu Zeitpunkt 2 waren es 121 Läsionen, entsprechend 4 Läsionen/ Patient (Mittelwert: 6,1; zwischen 0 und 24 Läsionen; IQR: 8,5). Damit zeigte sich ein signifikanter Rückgang an Knochenläsionen (Vorzeichentest: patientenbezogen: p=0,0023, s. Tabelle 5). Bei 15 Patienten (75 %) traten zu Zeitpunkt 2 weniger Läsionen auf. Bei 3 Patientinnen (P1, P4, P8) war die Anzahl gleichbleibend und bei 2 Patienten (P16, P20) traten sogar mehr Läsionen auf als zu Zeitpunkt 1. 2 Patientinnen (P5, P7) hatten zu Zeitpunkt 2 keine nachweisbaren Knochenläsionen mehr.
3.1.13.2 Vergleich: radiologisch und klinisch aktive Läsionen im Verlauf

Zu Zeitpunkt 1 gab es 74 schmerzhafte Lokalisationen bei 18 Patienten. 71 davon zeigten ein Korrelat in der GK-MRT i. S. einer radiologisch aktiven Läsion (95,9 %). Alle Lokalisationen mit Schwellung (29 bei 8 Patienten), Überwärmung (10 bei 3 Patienten) und Funktionseinschränkung (17 bei 6 Patienten) zeigten ebenfalls ein Korrelat in der Bildgebung.

Von den 17 schmerzhaften Lokalisationen zu Zeitpunkt 2 bei 8 Patienten zeigten 13 (76,5 %) ein Korrelat in der GK-MRT. Alle Lokalisationen mit Schwellung (1 Läsion) und Funktionseinschränkung (6 Läsionen bei 2 Patienten) konnten nachgewiesen werden. Lokalisationen mit Überwärmung traten nicht mehr auf. Läsionen mit Rötung kamen zu keinem Zeitpunkt vor.

Insgesamt gab es zu Zeitpunkt 1 80 Lokalisationen, die mindestens ein Kardinalsymptom der Entzündung aufwiesen, davon zeigten 77 (96,3 %) ein Korrelat in der GK-MRT. Von 206 Knochenläsionen konnten demzufolge 77 klinisch detektiert werden (37,4 %). 129 Knochenläsionen konnten klinisch nicht detektiert werden (62,6 %). Zu Zeitpunkt 2 gab es insgesamt 23 symptomatische Lokalisationen, 19 mit einem radiologischen Korrelat (82,6 %). Anhand der klinischen Parameter konnten damit nur 19 von 121 Knochenläsionen entsprechend 15,7 % detektiert werden, 102 Knochenläsionen (84,3 %) blieben klinisch unerkannt.

3.1.14 Volumen im Verlauf

Das Gesamtvolumen der berechneten Läsionen (PR, SD, PD; insgesamt 104 Knochenläsionen) bei 18 Patienten zu Zeitpunkt 1 betrug 492,7 ml und zu Zeitpunkt 2 349,4 ml, was einer signifikanten Abnahme von 29,1 % entspricht. Das durchschnittliche Volumen pro Patient betrug anfänglich im Median 28,4 ml (Mittelwert: 27,4 ml; IQR: 32,1 ml) und in der Verlaufskontrolle 12,5 ml (Mittelwert: 19,4 ml, IQR: 18,8 ml; Wilcoxon-Vorzeichen-Rang-Test: p=0,0104). Das durchschnittliche Volumen pro Läsion lag erst bei 2,7 ml (Mittelwert: 4,7 ml; 0,1-46,7 ml; IQR: 3,5 ml), im Verlauf bei 1,5 ml (Mittelwert: 3,4 ml; 0,1-73,3 ml; IQR: 2,3 ml).
13 Patienten zeigten eine Abnahme des Volumens, 3 eine Zunahme und 2 einen annähernd unveränderten Wert. Bei 2 Patientinnen (P5, P7) mit kompletter Remission erfolgte keine Bestimmung des Volumens (s. Tabelle 5).

3.1.15 SI-Ratio im Verlauf

Bezüglich der Signalintensität zeigte sich kein Unterschied im Verlauf (Wilcoxon-Vorzeichen-Rang-Test). Zu Zeitpunkt 1 lag die SI-Ratio im Vergleich zum benachbarten Muskel im Median bei 5,9 (Mittelwert: 6,8; 2,2-25,5; IQR: 3,5), zu Zeitpunkt 2 bei 6,5 (Mittelwert: 6,8; 2,8-20,5; IQR: 3,1; s. Tabelle 5).

Abbildung 7: Bildgebung mittels der Ganzkörper-MRT in der Verlaufskontrolle bei einem 11-jährigen Mädchen (P19) mit Mandibulabeteiligung bei CRMO. (a) Deutliche Signalanhebungen (koronare, T2-gewichtete Turbo-Inversion Recovery-Magnitude Sequenz; Ausschnitt) im Bereich der Basis der Mandibula sowie massive Auftreibung besonders des Collum und Caput mandibulae mit Deformierung des rechten Temporomandibulargelenkes. (b) Verlaufskontrolle nach 3 Jahren: Im Verlauf weiteres Remodelling des Unterkiefers mit zunehmender Normalisierung des Knochenmarksignals, lediglich zentral im Corpus mandibulae noch diskrete residuelle Signalerhöhung.
3.1.16 Kontrastmittel

Die Sequenzen mit Kontrastmittelaufnahme bei 18 Patienten zu Zeitpunkt 1 und bei 17 Patienten zu Zeitpunkt 2 detektierten keine zusätzlichen Läsionen.

3.1.17 Therapie und Therapiesteuerung

Medikamentöse Therapie

Antibiose

9 (P2, P3, P10, P12, P14, P16, P17, P19, P20) von 17 Patienten (52,9 %) erhielten zu Beginn der Erkrankung eine antibiotische Therapie mit Flucloxacinilin, Clindamycin, Clarithromycin, Cefuroxim oder Penicillin. Zu 3 Patienten konnte aufgrund fehlender Daten retrospektiv keine Aussage getroffen werden.

Den angepassten Diagnosekriterien von Jansson et al. [25] zufolge wäre die Diagnose CNO/ CRMO bei 3 (P3, P14, P20) von 9 Patienten, die eine antibiotische Therapie erhielten, sehr wahrscheinlich gewesen. Bei P19 wurde bei Mandibula-Beteiligung zwar ein Erreger im Hautabstrich (Wundabstrich Kiefer: Staphylococcus warneri und Corynebacterium species) nachgewiesen, die Knochenbiopsie zeigte jedoch einen abakteriellen der CRMO entsprechenden

Therapiesteuerung zu Zeitpunkt 2

Insgesamt wurden unter Therapie 45 % der Patienten (P1, P3, P4, P5, P6, P11, P14, P17, P19) beschwerdefrei. Zudem zeigte P10 ohne medikamentöse Therapie keine Symptome. 15 Patienten (P2, P3, P5, P6, P7, P9, P10, P11, P12, P13, P14, P15, P17, P18, P19) entsprechend 75 % wiesen weniger radiologisch aktive Läsionen auf. Bei 3 Patienten (P1, P4, P8) war die Anzahl gleichbleibend und bei 2 Patienten (P16, P20) traten sogar mehr Knochenläsionen als zu Zeitpunkt 1 auf (s. Tabelle 6).

3.1.18 Gruppenvergleich (klinische Remission vs. Non-Remission)

Bezüglich des Krankheitsverlaufs erfolgte eine Unterteilung in 2 Gruppen. Die Patienten, die nach durchschnittlich 28 Monaten keinerlei symptomatische Lokalisation mehr aufwiesen, wurden der Gruppe Remission zugeordnet. Zu dieser Gruppe zählten 10 Patienten (P1, P3, P4, P5, P6, P10, P11, P14, P17, P19). Die anderen 10 Patienten, welche noch mindestens 1 symptomatische Lokalisation aufwiesen, wurden der Gruppe Non-Remission (P2, P7, P8, P9, P12, P13, P15, P16, P18, P20) zugeordnet. In Gruppe Remission hatten zu Zeitpunkt 1 8 Patienten (80 %) mindestens 1 symptomatische Läsion, in Gruppe Non-Remission alle (100 %).
3.1.18.1 Alter

- **Gruppe Remission:**
 Das durchschnittliche Alter bei Erstmanifestation lag bei 10,3 Jahren (Median: 10,5 Jahre; 5-14 Jahre, IQR: 3,5 Jahre).

- **Gruppe Non-Remission:**
 Das durchschnittliche Alter bei Erstmanifestation lag bei 10,3 Jahren (Median: 10,5 Jahre; 8-12 Jahre; IQR: 3 Jahre).

- **Gruppenvergleich:**
 Damit zeigte sich kein signifikanter Unterschied zwischen den Gruppen (Wilcoxon-Rangsummentest, siehe Tabelle 6).

3.1.18.2 Erkrankungsdauer zu GK-MRT ZP1 und ZP 2

- **Gruppe Remission:**
 Die Krankheitsdauer zu Zeitpunkt 1 lag im Mittel bei 15,6 Monaten (Median: 6 Monate; IQR: 27,8 Monate), zu Zeitpunkt 2 bei durchschnittlich 30,4 Monaten (Median: 23,5 Monate; IQR: 43 Monate).

- **Gruppe Non-Remission:**
 Die Krankheitsdauer zu Zeitpunkt 1 lag im Mittel bei 14,2 Monaten (Median: 10 Monate; IQR: 19,8 Monate), zu Zeitpunkt 2 bei 25,6 Monaten (Median: 24 Monate; IQR: 27 Monate).

- **Gruppenvergleich:**
 Damit zeigte sich weder zu Zeitpunkt 1 noch zu Zeitpunkt 2 ein signifikanter Unterschied zwischen den Gruppen (Wilcoxon-Rangsummentest, s. Tabelle 6).

3.1.18.3 Zeitpunkt der Diagnosestellung

- **Gruppe Remission:**
 Die Diagnose wurde durchschnittlich 8,9 Monate (Median: 4,5 Monate; IQR: 13 Monate) nach dem 1. Arztkontakt gestellt.
Gruppe Non-Remission:
Die Diagnose wurde durchschnittlich 12,4 Monate (Median: 5,5 Monate; IQR: 23,8 Monate) nach dem 1. Arztkontakt gestellt.

Gruppenvergleich:
Darin zeigte sich kein signifikanter Unterschied bezüglich des Zeitpunktes der Diagnosestellung zwischen den Gruppen (Wilcoxon-Rangsummentest, s. Tabelle 6).

3.1.18.4 Symptomatische Lokalisationen im Verlauf
Per definitionem zeigte sich ein signifikanter Unterschied in Bezug auf die Anzahl an klinisch aktiven Läsionen zu Zeitpunkt 2. Während die Gruppe Remission keine symptomatischen Lokalisationen mehr aufwies, fanden sich bei der Gruppe Non-Remission insgesamt 23 Lokalisationen, die mindestens 1 Kardinalsymptom der Entzündung zeigten (Wilcoxon-Rangsummentest: p<0,0001). Pro Patient traten im Median 2 klinisch aktive Läsionen auf (Mittelwert: 2,3; IQR: 2). Betrachtet man die Kategorien gesondert, zeigte sich lediglich in Bezug auf lokale Schmerzen ein signifikanter Unterschied (Wilcoxon-Rangsummentest: p=0,0006). Zu Zeitpunkt 1 zeigte sich kein signifikanter Unterschied bezüglich der Anzahl an klinisch aktiven Läsionen: Gruppe Remission wies im Median 3 Läsionen (Mittelwert: 3,6; IQR: 3,5) auf, Gruppe Non-Remission 3,5 (Mittelwert: 4,4; IQR: 2,8). Des Weiteren zeigte sich in keiner Kategorie ein signifikanter Unterschied zwischen den Gruppen in Bezug auf die Abnahme der Anzahl an symptomatischen Läsionen (Wilcoxon-Rangsummentest, s. Tabelle 6). In beiden Gruppen konnte ein signifikanter Rückgang an schmerzhaften Läsionen (Vorzeichenrest: Gr. 1: p=0,0078; t-Test: Gr. 2: p=0,0094) festgestellt worden. Ein signifikanter Rückgang an allen klinisch aktiven Läsionen wurde nur in Gruppe Remission festgestellt (Vorzeichenrest: Gr. 1: p=0,0078; t-Test: Gr. 2: NS; s. Tabelle 5).
3.1.18.5 Herde anhand von RECIBL

- **Gruppe Remission:**
 Insgesamt gab es 115 Läsionen, davon 44 CR, 45 PR, 5 SD, 11 PD und 10 NA. Pro Patient zeigten sich im Median 3,5 Läsionen mit CR (Mittelwert: 4,4; IQR: 3,5), 4 mit PR (Mittelwert: 4,5; IQR: 6,5), 0 mit SD (Mittelwert: 0,5; IQR: 1), 0 mit PD (Mittelwert: 1,1; IQR: 1,5) sowie 0 mit NA (Mittelwert: 1; IQR: 1,8).

- **Gruppe Non-Remission:**
 Hier ergab sich eine Gesamtzahl von 108 Läsionen, davon 58 CR, 29 PR, 2 SD, 12 PD und 7 NA. Pro Patient zeigten sich im Median damit 3,5 mit CR (Mittelwert: 5,8; IQR: 8,8), 2,5 mit PR (Mittelwert: 2,9; IQR: 6), 0 mit SD (Mittelwert: 0,2; IQR: 0), 1 mit PD (Mittelwert: 1,2; IQR: 2) und 0 mit NA (Mittelwert: 0,7; IQR: 1,3).

- **Gruppenvergleich:**
 In der Testung nach Wilcoxon zeigte sich anhand von RECIBL in keiner Kategorie ein signifikanter Unterschied (s. Tabelle 6).

3.1.18.6 Anzahl der radiologischen Läsionen im Verlauf

- **Gruppe Remission:**
 Zu Zeitpunkt 1 wurden 105 radiologisch aktive Läsionen (115-NA) gezählt, d.h. 6/ Patient im Median (Mittelwert: 10,5; IQR: 11,3). Zu Zeitpunkt 2 waren es 71 (115-CR), damit 4/ Patient im Median (Mittelwert: 7,1; IQR: 11,8).

- **Gruppe Non-Remission:**
 Radiologisch aktive Läsionen gab es zu Zeitpunkt 1 101 (108-NA), d.h. 9,5/ Patient im Median (Mittelwert: 10,1; IQR: 9,5). Zu Zeitpunkt 2 waren es noch 50 (108-CR), im Median 4,5/ Patient (Mittelwert: 5; IQR: 8,3).

- **Gruppenvergleich:**
 Im Wilcoxon-Rangsummentest zeigte sich weder ein signifikanter Unterschied bezüglich der Anzahl an Knochenläsionen/ Patient zu Zeitpunkt 1
Ergebnisse

und 2 noch in Bezug auf die Abnahme der Anzahl an Knochenläsionen/ Patient (s. Tabelle 6).

In beiden Gruppen konnte ein signifikanter Rückgang an radiologisch aktiven Läsionen/ Patient nachgewiesen werden (Vorzeichentest: Gruppe 1: p=0,0078; t-Test: Gruppe 2: p=0,0288; siehe Tabelle 5). Beide Patienten, die eine Zunahme an Läsionen verzeichneten, befanden sich in Gruppe Non-Remission (P16, P20).

3.1.18.7 Volumen im Verlauf

- **Gruppe Remission:**
 Das berechnete Volumen (von 9 Patienten) zu Zeitpunkt 1 betrug 246,7 ml, zu Zeitpunkt 2 109,2 ml, was einer Abnahme von 55,7 % entspricht. Damit war patientenbezogen eine signifikante Volumenabnahme zu verzeichnen (t-Test: p=0,0040, s. Tabelle 5). Das durchschnittliche Volumen pro Patient lag zu Zeitpunkt 1 bei 27,4 ml (Median: 29,8 ml; IQR: 34,4 ml), zu Zeitpunkt 2 bei 12,1 ml (Median: 11,9 ml; IQR: 15,3 ml; s. Tabelle 5 und 6). Das mittlere Volumen der Knochenläsionen betrug zu Zeitpunkt 1 4,0 ml (Median: 2,0 ml; IQR: 3 ml) und zu Zeitpunkt 2 1,8 ml (Median: 1,2 ml; IQR: 1,7 ml).

- **Gruppe Non-Remission:**
 Das berechnete Gesamtvolumen (von 9 Patienten) lag zu Zeitpunkt 1 bei 246,0 ml, zu Zeitpunkt 2 bei 240,2 ml. Damit wurde lediglich eine Abnahme von 2,4 % verzeichnet (Wilcoxon-Vorzeichen-Rang-Test/ patientenbezogen: NS; s. Tabelle 5). Das Volumen pro Patient betrug in der ersten Messung
durchschnittlich 27,3 ml (Median: 27 ml; IQR: 33,5 ml), im Verlauf 26,7 ml (Median: 18,8 ml; IQR: 45,6 ml; s. Tabelle 5 und 6). Das durchschnittliche Volumen der Knochenläsionen lag zu Zeitpunkt 1 bei 5,7 ml (Median: 3,1 ml; IQR: 5,4 ml) und zu Zeitpunkt 2 bei 5,6 ml (Median: 1,8 ml; IQR: 3,5 ml).

- **Gruppenvergleich:**
Bezüglich des Volumens zeigte sich weder zu Zeitpunkt 1 noch zu Zeitpunkt 2 ein signifikanter Unterschied. Allerdings zeigte die Gruppe Remission einen signifikant stärkeren Rückgang des Volumens (Differenz V1-V2)/Patient (p=0,0305, Wilcoxon-Rangsummentest, s. Tabelle 6).

3.1.18.8 SI-Ratio im Verlauf

- **Gruppe Remission:**
Bei Gruppe Remission lag die SI-Ratio der Knochenläsionen im Vergleich zum benachbarten Muskelgewebe zu Zeitpunkt 1 im Mittel bei 6,0 (Median: 5,6; IQR: 2,9), zu Zeitpunkt 2 bei 6,3 (Median: 5,8; IQR: 3,1).

- **Gruppe Non-Remission:**
Gruppe Non-Remission zeigte erst eine SI-Ratio von 7,9 (Median: 6,1; IQR: 5,3) und im Verlauf von 7,7 (Median: 7,2; IQR: 3,3).

- **Gruppenvergleich:**
Damit zeigte sich ein signifikanter Unterschied zwischen den Gruppen sowohl zu Zeitpunkt 1 (p=0,0473) als auch zu Zeitpunkt 2 (p=0,0046, Wilcoxon-Rangsummentest; s. Tabelle 6). In keiner Gruppe zeigte sich eine signifikante Änderung der Signalintensität im Verlauf (Wilcoxon-Vorzeichen-Rang-Test; s. Tabelle 5).

3.1.18.9 Therapie und Therapiesteuerung

- **Gruppe Remission:**
3 Patientinnen (P1, P3, P4) wurden im beobachteten Zeitraum gemäß der Stufe I behandelt. P10 erhielt keine CRMO-spezifische Therapie aufgrund einer weitgehenden klinischen und radiologischen Remission. 4 Patienten
Ergebnisse

Bei P3, P4, P5, P6, P10, P11 und P14 erfolgte die Therapiesteuerung anhand radiologischer und klinischer Parameter, d.h. bei 9 Patienten hatte die GK-MRT einen direkten Einfluss auf die Therapiesteuerung. Aufgrund fehlender Daten konnte P19 nicht beurteilt werden.

Gruppe Non-Remission:

8 Patienten erhielten eine Therapie entsprechend Stufe I (P2, P9, P12, P13, P15, P18, P16, P20). Die 2 anderen Patientinnen (P7, P8) wurden gemäß Stufe III mit Naproxen und Sulfasalazin behandelt.

Bei P7 erfolgte die Therapiesteuerung ausschließlich anhand der Klinik (s. unter 3.1.17): Bei anhaltenden Beschwerden trotz vollständiger Remission in der GK-MRT und negativen Entzündungswerten wurde die Therapie mit Naproxen und Sulfasalazin beibehalten. Bei allen anderen Patienten erfolgte die Therapiesteuerung anhand klinischer und radiologischer Parameter.

Tabelle 5: Charakterisierung der Läsionen bei CRMO im Verlauf

<table>
<thead>
<tr>
<th>Legende</th>
<th>KL= Knochenläsion, MW= Mittelwert, M= Median, NS= nicht signifikant, R= Remission, NR= Non-Remission, S= signifikant, SI-Ratio= Signalintensität-Ratio;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl KL alle</td>
<td>206</td>
</tr>
<tr>
<td>Anzahl KL alle/ Patient</td>
<td>M: 8</td>
</tr>
<tr>
<td></td>
<td>MW: 10,3</td>
</tr>
<tr>
<td>Anzahl KL Gruppe R</td>
<td>105</td>
</tr>
<tr>
<td>Anzahl KL Gruppe R/ Patient</td>
<td>M: 6</td>
</tr>
<tr>
<td></td>
<td>MW: 10,5</td>
</tr>
<tr>
<td>Anzahl KL Gruppe NR</td>
<td>101</td>
</tr>
<tr>
<td>Anzahl KL Gruppe NR/ Patient</td>
<td>M: 9,5</td>
</tr>
<tr>
<td></td>
<td>MW: 10,1</td>
</tr>
<tr>
<td>Gesamtvolumen alle</td>
<td>492,7 ml</td>
</tr>
<tr>
<td>Volumen alle/ Patient</td>
<td>M: 28,4 ml</td>
</tr>
<tr>
<td></td>
<td>MW: 27,4 ml</td>
</tr>
<tr>
<td>Gesamtvolumen Gruppe R</td>
<td>246,7 ml</td>
</tr>
<tr>
<td>Volumen/ Patient Gruppe R</td>
<td>M: 29,8 ml</td>
</tr>
<tr>
<td></td>
<td>MW: 27,4 ml</td>
</tr>
<tr>
<td>Gesamtvolumen Gruppe NR</td>
<td>246,0 ml</td>
</tr>
<tr>
<td>Volumen/ Patient Gruppe NR</td>
<td>M: 27,0 ml</td>
</tr>
<tr>
<td></td>
<td>MW: 27,3 ml</td>
</tr>
<tr>
<td>SI-Ratio alle</td>
<td>5,9</td>
</tr>
<tr>
<td>SI-Ratio Gruppe R</td>
<td>M: 5,6</td>
</tr>
<tr>
<td></td>
<td>MW: 6,0</td>
</tr>
<tr>
<td>SI-Ratio Gruppe NR</td>
<td>M: 6,1</td>
</tr>
<tr>
<td></td>
<td>MW: 7,9</td>
</tr>
<tr>
<td></td>
<td>Zeitpunkt 1 (ZP1)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Symptomatische Läs. alle</td>
<td></td>
</tr>
<tr>
<td>Symptomatische Läs. alle/</td>
<td>80</td>
</tr>
<tr>
<td>Patient</td>
<td>M: 3</td>
</tr>
<tr>
<td></td>
<td>MW: 4</td>
</tr>
<tr>
<td>Dolor alle</td>
<td>74</td>
</tr>
<tr>
<td>Tumor alle</td>
<td>29</td>
</tr>
<tr>
<td>Calor alle</td>
<td>10</td>
</tr>
<tr>
<td>F. laesa alle</td>
<td>17</td>
</tr>
<tr>
<td>Sympt. Läs. Gruppe R</td>
<td></td>
</tr>
<tr>
<td>Sympt. Läs. Gruppe R/</td>
<td>36</td>
</tr>
<tr>
<td>Patient</td>
<td>M: 3</td>
</tr>
<tr>
<td></td>
<td>MW: 3,6</td>
</tr>
<tr>
<td>Dolor Gruppe R</td>
<td>34</td>
</tr>
<tr>
<td>Tumor Gruppe R</td>
<td>19</td>
</tr>
<tr>
<td>Calor Gruppe R</td>
<td>8</td>
</tr>
<tr>
<td>F. laesa Gruppe R</td>
<td>8</td>
</tr>
<tr>
<td>Sympt. Läs. Gruppe NR</td>
<td></td>
</tr>
<tr>
<td>Sympt. Läs. Gruppe NR/</td>
<td>44</td>
</tr>
<tr>
<td>Patient</td>
<td>M: 3,5</td>
</tr>
<tr>
<td></td>
<td>MW: 4,4</td>
</tr>
<tr>
<td>Dolor Gruppe NR</td>
<td>40</td>
</tr>
<tr>
<td>Tumor Gruppe NR</td>
<td>10</td>
</tr>
<tr>
<td>Calor Gruppe NR</td>
<td>2</td>
</tr>
<tr>
<td>F. laesa Gruppe NR</td>
<td>9</td>
</tr>
</tbody>
</table>
Tabelle 6: Gruppenvergleich (klinische Remission vs. Non-Remission): klinische und radiologische Charakteristika bei CRMO im Verlauf

Legende:
a= Jahr, CR= complete remission, DMARD= disease-modifying anti-rheumatic drug, DS= Diagnosestellung, EM= Erstmanifestation, KL= Knochenläsion, m= Monat, mä= männlich, M= Median, MW= Mittelwert, NA= new appearance, NR= Non-Remission, NS= nicht signifikant, NSAID= non-steroidal anti-inflammatory drug, P= Patient, PD= progressive disease, PR= partial remission, R= Remission, RECIBL= Response Evaluation Criteria in Bone Lesions, S= signifikant, SD= stable disease, V= Volumen, w= weiblich, ZP= Zeitpunkt; Therapie: Stufenschema bei CNO nach Jansson et al. [1];

<table>
<thead>
<tr>
<th></th>
<th>Alle</th>
<th>Gruppe R</th>
<th>Gruppe NR</th>
<th>p-Wert (R vs. NR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter EM</td>
<td>MW: 10,3 a</td>
<td>MW: 10,3 a</td>
<td>MW: 10,3 a</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>M: 10,5 a</td>
<td>M: 10,5 a</td>
<td>w: 10,5 a</td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>w: 16, mä: 4</td>
<td>w: 9, mä: 1</td>
<td>w: 7, mä: 3</td>
<td></td>
</tr>
<tr>
<td>Entzündungswerte ZP2</td>
<td>3 pos., 10 neg.</td>
<td>1 pos., 6 neg.</td>
<td>2 pos., 4 neg.</td>
<td></td>
</tr>
<tr>
<td>Klavikulabeteiligung</td>
<td>3 P</td>
<td>2 P</td>
<td>1 P</td>
<td></td>
</tr>
<tr>
<td>Erkrankungsdauer ZP1</td>
<td>MW: 14,9 m</td>
<td>MW: 15,6 m</td>
<td>MW: 14,2 m</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>M: 8 m</td>
<td>M: 6 m</td>
<td>M: 10 m</td>
<td></td>
</tr>
<tr>
<td>Erkrankungsdauer ZP2</td>
<td>MW: 28 m</td>
<td>MW: 30,4 m</td>
<td>MW: 25,6 m</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>M: 23,5 m</td>
<td>M: 23,5 m</td>
<td>M: 24 m</td>
<td></td>
</tr>
<tr>
<td>Zeitpunkt der DS</td>
<td>MW: 10,7 m</td>
<td>MW: 8,9 m</td>
<td>MW: 12,4 m</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>M: 5,5 m</td>
<td>M: 4,5 m</td>
<td>M: 5,5 m</td>
<td></td>
</tr>
<tr>
<td>RECIBL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>102</td>
<td>44</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,5/P (M)</td>
<td>3,5/P (M)</td>
<td>3,5/P (M)</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>74</td>
<td>45</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/P (M)</td>
<td>4/P (M)</td>
<td>2,5/P (M)</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/P (M)</td>
<td>0/P (M)</td>
<td>0/P (M)</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>23</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,5/P (M)</td>
<td>0/P (M)</td>
<td>1/P (M)</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>17</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/P (M)</td>
<td>0/P (M)</td>
<td>0/P (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alle</td>
<td>Gruppe R</td>
<td>Gruppe NR</td>
<td>p-Wert (R vs. NR)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Anzahl KL ZP1</td>
<td>206</td>
<td>105</td>
<td>101</td>
<td>NS</td>
</tr>
<tr>
<td>Anzahl KL ZP2</td>
<td>121</td>
<td>71</td>
<td>50</td>
<td>NS</td>
</tr>
<tr>
<td>Gesamtvolumen ZP1</td>
<td>492,7 ml</td>
<td>246,7 ml</td>
<td>246,0 ml</td>
<td>S(p=0,0305)</td>
</tr>
<tr>
<td>Gesamtvolumen ZP2</td>
<td>349,4 ml</td>
<td>109,2 ml</td>
<td>240,2 ml</td>
<td></td>
</tr>
<tr>
<td>Differenz V1-V2/ Patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumen/ Patient ZP1</td>
<td>MW: 27,4 ml</td>
<td>MW: 27,4 ml</td>
<td>MW: 27,3 ml</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>M: 28,4 ml</td>
<td>M: 29,8 ml</td>
<td>M: 27,0 ml</td>
<td></td>
</tr>
<tr>
<td>Volumen/ Patient ZP2</td>
<td>MW: 19,4 ml</td>
<td>MW: 12,1 ml</td>
<td>MW: 26,7 ml</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>M: 12,5 ml</td>
<td>M: 11,9 ml</td>
<td>M: 18,8 ml</td>
<td></td>
</tr>
<tr>
<td>SI-Ratio ZP1</td>
<td>MW: 6,8</td>
<td>MW: 6,0</td>
<td>MW: 7,9</td>
<td>S(p=0,0473)</td>
</tr>
<tr>
<td></td>
<td>M: 5,9</td>
<td>M: 5,6</td>
<td>M: 6,1</td>
<td></td>
</tr>
<tr>
<td>SI-Ratio ZP2</td>
<td>MW: 6,8</td>
<td>MW: 6,3</td>
<td>MW: 7,7</td>
<td>S(p=0,0046)</td>
</tr>
<tr>
<td></td>
<td>M: 6,5</td>
<td>M: 5,8</td>
<td>M: 7,2</td>
<td></td>
</tr>
<tr>
<td>Differenz S1-S2</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Symptome ZP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolor ZP1</td>
<td>74</td>
<td>34</td>
<td>40</td>
<td>NS</td>
</tr>
<tr>
<td>Tumor ZP1</td>
<td>29</td>
<td>19</td>
<td>10</td>
<td>NS</td>
</tr>
<tr>
<td>Calor ZP1</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>NS</td>
</tr>
<tr>
<td>F. laesa ZP1</td>
<td>17</td>
<td>8</td>
<td>9</td>
<td>NS</td>
</tr>
<tr>
<td>Alle ZP1</td>
<td>80</td>
<td>36</td>
<td>44</td>
<td>NS</td>
</tr>
<tr>
<td>Symptome ZP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolor ZP2</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>S(p=0,0006)</td>
</tr>
<tr>
<td>Tumor ZP2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>NS</td>
</tr>
<tr>
<td>Calor ZP2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Alle</td>
<td>Gruppe R</td>
<td>Gruppe NR</td>
<td>p-Wert (R vs. NR)</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>F. laesa ZP2</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>NS</td>
</tr>
<tr>
<td>Alle ZP2</td>
<td>23</td>
<td>0</td>
<td>23</td>
<td>S(p<0,0001)</td>
</tr>
<tr>
<td>Differenz:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alle ZP1-Alle ZP2</td>
<td>57</td>
<td>36</td>
<td>21</td>
<td>NS</td>
</tr>
</tbody>
</table>

Therapie

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Alle</th>
<th>Gruppe R</th>
<th>Gruppe NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe I: NSAIDs</td>
<td>11</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Stufe II: Steroide</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stufe III: DMARDs</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Stufe IV: Pamidronat</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Stufe V: TNF-α-Inhibitoren</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Therapieänderung

<table>
<thead>
<tr>
<th>Änderung</th>
<th>Alle</th>
<th>Gruppe R</th>
<th>Gruppe NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhöhung</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Keine Änderung</td>
<td>9</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Reduktion</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Absetzen</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Keine Therapie</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
3.2 Zusammenfassung der Ergebnisse

Nahezu alle klinisch aktiven Läsionen besaßen zu beiden Zeitpunkten (1 als Ausgangsuntersuchung und 2 als Verlaufskontrolle) ein Korrelat in der GK-MRT. Aber nur 37,4 % waren in der Ausgangsuntersuchung und 15,7 % in der Verlaufskontrolle symptomatisch bzw. klinisch erkennbar. Bildgebend traten die häufigsten Knochenläsionen in der unteren Extremität (53,4 %), gefolgt von Stamm (33,6 %) und oberer Extremität (9,9 %), auf. Im Kopfbereich fanden sich mit 3,2 % nur wenige Läsionen. Diese traten ausschließlich im Bereich der Mandibula auf und zeigten eine besonders hohe Tendenz symptomatisch zu werden (zu 71,4 %). Auch Knochenläsionen im Bereich des Stammes zeigten mit 45,3 % eine hohe klinische Manifestationsrate. Ein symmetrisches Auftreten der Knochenläsionen wurde zu 46,6 % beobachtet.

Methodisch konnte durch die Anwendung von kontrastmittelverstärkenden Sequenzen kein zusätzlicher Nutzen gefunden werden. So wurden keine zusätzlichen Knochenläsionen durch die Gabe von Kontrastmittel detektiert.

Im klinischen Verlauf präsentierte sich die CRMO vor allem in lokalen Knochenschmerzen. Zu Zeitpunkt 1 klagten 18 Patienten über schmerzhafte Lokalisatio- nen, zu Zeitpunkt 2 hingegen nur noch 10 (50 % aller Patienten). 70 % der Patienten hatten zu Zeitpunkt 2 weniger klinisch aktive Läsionen als zu Zeitpunkt 1. Damit verzeichnete sich bezogen auf das gesamte Patientengut ein signifikanter Rückgang an schmerzhaften Läsionen unter der medikamentösen The-
Ergebnisse

In der GK-MRT zeigte sich ebenfalls ein signifikanter Rückgang der Knochenläsionen im Verlauf sowohl in Bezug auf die Anzahl als auch auf die Ausdehnung. So zeigten anhand der Einteilung nach den selbst vorgeschlagenen Responsekriterien (RECIBL) fast die Hälfte der Läsionen (45,7 %) eine vollständige Remission (CR) und ein Drittel eine Größenabnahme (PR). Die übrigen Läsionen waren entweder progradent (PD: 10,3 %), neu aufgetreten (NA: 7,6 %) oder unverändert (SD: 3,1 %). Auch bezüglich der Anzahl an Läsionen pro Patient und des Volumens zeigte sich ein signifikanter Rückgang. Hinsichtlich Signalveränderungen (SI-Ratio) zwischen Zeitpunkt 1 und Zeitpunkt 2 konnten keine signifikanten Unterschiede nachgewiesen werden.

Bei Gruppierung in klinische Remission und Non-Remission verzeichnete die Gruppe Remission wie zu erwarten eine signifikant stärkere Volumenabnahme/Patient bei annähernd gleichem Volumen zu Zeitpunkt 1. Zudem zeigte die Gruppe Remission bereits zu Zeitpunkt 1 eine signifikant niedrigere SI-Ratio als die Gruppe Non-Remission. Einschränkend gilt es zu berücksichtigen, dass zum Zeitpunkt der 1. GK-MRT bereits teilweise eine medikamentöse Therapie erfolgte.

Die Therapiesteuerung erfolgte bei 16 Patienten anhand klinischer Parameter, aber auch aufgrund der Ergebnisse der GK-MRT. Bei 1 Patientin wurde die Therapieentscheidung ausschließlich aufgrund der Klinik getroffen, bei 2 weiteren Patienten ausschließlich aufgrund eines positiven MRT-Befundes bei Beschwerdefreiheit.
4 Diskussion

Diese Arbeit untermauert die Wichtigkeit der Ganzkörper-MRT bezüglich Diagnosestellung, Staging und Verlaufskontrolle der CRMO. Dabei zeigte sich deutlich, dass die radiologischen Befunde einen wesentlichen Einfluss auf die Therapiesteuerung nehmen.

4.1 Patientengut

4.2 Diagnosestellung

Wie mehrere Studien untermauert auch diese Arbeit die Wichtigkeit einer frühzeitigen Bildgebung mittels der GK-MRT. 40 % der Patienten (8/20) hätten dadurch möglicherweise von einer vorzeitigen Diagnosestellung (<= 6 Monate) profitieren können. Die Patienten, bei denen innerhalb von 6 Monaten nach
Diskussion

dem 1. Arztkontakt eine GK-MRT durchgeführt wurde, erhielten durchschnittlich nach 3,2 Monaten die Diagnose CRMO. Zudem wurden alle Patienten dieser Gruppe innerhalb der ersten 6 Monate diagnostiziert. Im Gegensatz dazu erfolgte die Diagnosestellung bei den Patienten, die zu einem späteren Zeitpunkt (> 6 Monate) ihre 1. GK-MRT-Untersuchung hatten, erst nach 18,1 Monaten, d.h. die Diagnosestellung dauerte bei der späten Gruppe durchschnittlich 5,7-mal länger als bei der frühen Gruppe. Damit zeigte sich ein signifikanter Unterschied zwischen den Gruppen.

Zeitspanne lag bei 17,3 Monaten. Hier wird deutlich, dass die CRMO weiterhin eine gering erkannte Erkrankung ist [23]. Ein standardisiertes Vorgehen bezüglich Diagnostik und Verlaufskontrolle scheint daher umso dringlicher.

In einer Umfrage der Mitglieder der „Childhood Arthritis and Rheumatology Research Alliance“ von 2017 konnten Zhao et al. eine große Varianz bei 121 Ärzten bezüglich des diagnostischen Vorgehens sowie des Monitorings bei CNO nachweisen. 89 % gaben als initialen Schritt die Durchführung eines konventionellen Röntgenbildes an. Anschließend führten 78 % eine lokale MRT durch, 43 % wendeten die Knochenszintigraphie an und lediglich 36 % nutzten die GK-MRT [37]. Bei Etablierung eines standardisierten Diagnose-Algorithmus (einschließlich der GK-MRT) und wachsender Kenntnis ist tendenziell von einem zeitlich abnehmenden Trend bis zur Diagnosefindung auszugehen.

ligung, d.h. mit radiologisch nachweisbaren Knochenläsionen in der Wirbelsäule, lediglich 9 (69,2%) symptomatische Läsionen im Bereich der Wirbelsäule.

Wertigkeit der GK-MRT in Bezug auf Differentialdiagnosen

Insgesamt erfolgte die Diagnosestellung in unserem Patientengut bei 14 Patienten entsprechend 70% in Zusammenschau mit der 1. GK-MRT-Untersuchung. Bei 1 Patientin mit klinischem Verdacht auf eine CRMO konnte die Diagnose ausgeschlossen werden. Diese Patientin wurde nicht in die weitere Auswertung miteinbezogen.

Fehldiagnosen wiederum können zu unnötigen Knochenbiopsien (s. unter 4.3) und Antibiotikagaben führen. Auch in unserer Arbeit bleibt die Antibiotikagabe bei 5 von 9 Patienten (55%) bei Eindeutigkeit der Diagnose CRMO fraglich.
Laut Silier et al. bestehen in einer jüngeren Umfrage von 105 Patienten mit CNO bezüglich der Diagnosestellung und adäquatem Behandlungsplan weiterhin Unsicherheiten in der Ärztenschaft. So wurde die antibiotische Therapie bei 27 % trotz der richtigen Diagnosestellung weitergegeben [34].

4.3 Biopsie

Bei 4 Patienten (P5, P12, P13, P20), d.h. 20 % aller Patienten, bleibt die Indikation retrospektiv betrachtet fraglich, da sich hier keine eindeutigen Auffälligkeiten entsprechend den in der Einleitung beschriebenen Indikationen für eine Knochenbiopsie fanden. In diesen Fällen erfolgte die Biopsie vor allem zur Diagnoseverifizierung.
Bei Wipff et al. zeigte sich vereinbar mit unseren Ergebnissen, dass bei 25 % der Patienten, auf die der klinische Score nach Jansson et al. anwendbar war, eine Biopsie vermieden hätte werden können [23].

Insgesamt zeigten 9 von 14 Patienten (64,3 %), bei denen im Verlauf eine Biopsie durchgeführt wurde, einen zur CRMO passenden Befund. Bei 8 Patienten entsprach der Zeitpunkt der Diagnosestellung dem Zeitpunkt der Durchführung der Biopsie. Bei 7 von 8 Patienten fand sich im Biopsat ein mit CRMO vereinbarer Befund. Damit war die Biopsie in 7 von 14 Fällen (50 %) hilfreich zur Diagnoseverifizierung.

4.4 Verteilung der Läsionen

4.4.1 Radiologische Befunde

Anatomische Einteilung der Knochenläsionen

Wie in der Literatur beschrieben fanden sich auch in unserer Arbeit mit 53,4 % die meisten Läsionen innerhalb der unteren Extremität mit einer häufigen Beteiligung von Tibia und Femur [2, 7, 10, 11, 14, 15, 38]. Des Weiteren zeigte sich bei uns eine häufige Beteiligung der Wirbelsäule mit 12,6 % aller Läsionen. Besonders betroffen war hier das Os sacrum mit 6,3 % aller Läsionen. Vergleichbar damit machten bei von Kalle et al. sakrale Läsionen 7 % aller Läsionen aus. Auch die in der Literatur beschriebene recht häufige Beteiligung des Beckens [7, 10, 15, 38] bestätigte sich in unserer Arbeit. Mit 34 Knochenläsionen traten
Hyperintensitäten bleibt eine große Herausforderung in der radiologischen Befunderhebung der GK-MRT.

Spinale Manifestation

In der vorliegenden Arbeit zeigte sich mit 65 % aller Patienten ein häufiger Befall der Wirbelsäule. Verschiedenen Studien zufolge liegt die Wirbelsäulenbeteiligung bei ca. 20 bis 30 % [10-12, 23, 25]. Bei uns wurden Knochenläsionen im Os sacrum zur Wirbelsäule gezählt. Teilweise werden diese aber auch dem Becken zugeordnet, was ein Grund für die sehr hohe Wirbelsäulenbeteiligung sein könnte. Bei 10 Patienten (50 %) war ausschließlich das Os sacrum betroffen. Bei 3 Patientinnen (15 %) fanden sich Läsionen in der Brust- und Wirbelsäule, bei einer Patientin ausschließlich in BWS und LWS.

Im Gegensatz zu Hospach et al. traten die meisten spinalen Läsionen bei uns nicht in der Brustwirbelsäule sondern zu 50 % im Os sacrum auf. Die Brustwirbelsäule war mit 35,7 % am zweithäufigsten betroffen. In der Lendenwirbelsäule fanden sich lediglich 4 Läsionen (14,3 %). Bei Hospach et al. zeigten sich 60 % der Läsionen thorakal, 19 % sakral, 13 % cervikal und 8 % lumbal [12].

Manifestationen im Iliosakralgelenk und Becken

Bei 6 Patienten (30 %) war zu mindestens einem Zeitpunkt ein Iliosakralgelenk befallen. Bei 2 Patienten trat eine beidseitige Beteiligung auf, bei 3 Patienten war das rechte ISG, bei einer das linke betroffen. Bei den anderen 6 Patienten, die eine Beteiligung des Os sacrum zeigten, traten die Läsionen unabhängig vom Iliosakralgelenk auf. Auch bei von Kalle et al. grenzten 50 % der sakralen Läsionen ans Iliosakralgelenk an [11]. Des Weiteren trat bei 1 Patienten (P17) eine Symphysitis auf. Insgesamt zeigten 14 Patienten (70 %) Läsionen in mindestens einem Beckenknochen (Os pubis, Os ischiadicum, Os ilium). Khanna et al. weisen auf ein erhöhtes Risiko für Spondylarthropathien, eine unilaterale Sakroiliitis sowie eine Enthesitis bei einer Krankheitsgeschichte mit CRMO und HLA-B27 negativem Befund hin [2, 13]. Bei uns hingegen zeigten 2 von 4 Pati-
Diskussion

Es wurde vorgeschlagen, dass das Auftreten von Arthritiden bei CRMO bei Krankheitsbeginn unterbewertet sein könnte. So fand sich bei Girschick et al. nach 5 Jahren bei 80 % der Patienten eine Arthritis [13]. Bei Beck et al. waren es 38 % bei Krankheitsbeginn [38].

Geographische Lokalisation der Knochenläsionen

Geographische Läsionen fanden sich wie in der Literatur beschrieben vor allem in der Metaphyse. Die Beteiligung der Metaphyse wird mit bis zu 85 % angegeben [2, 10, 14, 15]. Bei uns war die Metaphyse zu 47,1 % betroffen. Beinahe so häufig wie in der Metaphyse traten Läsionen in der Epiphyse (40,3 %) auf. Diese Ergebnisse entsprechen wie das geringe Auftreten in Apo- und Diaphyse der bisherigen Literatur [2, 11, 14, 15].

Khanna et al. beschreiben einen Zusammenhang mit der offenen Wachstumsfuge, die zur Manifestation in der Metaphyse wie bei hämatogener Osteomyelitis prädisponiert [2]. In Übereinstimmung mit dieser Vermutung zeigten sich bei Beck et al. vor allem in der Metaphyse nahe der Wachstumsfuge Knochenläsionen [38]. Das charakteristische Auftreten der Knochenläsionen angrenzend an die Wachstumsfuge wird auch bei von Kalle et al. (87 % der Läsionen) und Fritz et al. (89 % der Läsionen) beschrieben [11, 14]. Dementsprechend zeigten sich auch bei uns mehrere Knochenläsionen, die in Bezug zur Wachstumsfuge (angrenzend oder übergehend) auftraten. Die ausführliche Bearbeitung dieser Fragestellung war jedoch nicht Gegenstand dieser Arbeit.

Multifokalität

Da Multifokalität ein Einschlusskriterium der vorliegenden Arbeit war, zeigten alle Patienten radiologisch aktive multifokale Läsionen zu Zeitpunkt 1. Dennoch kann es sinnvoll sein, unifokale Läsionen miteinzubeziehen, da sich im Krankheitsverlauf häufig herausstellt, dass weitere Knochenläsionen auftreten, was auch die Einteilung von Jansson et al. unterstützt, nach welcher die CRMO eine

Symmetrie

Weichteilbeteiligung und Periostreaktion

4.4.2 Klinisch manifastente Knochenläsionen

Zahlenmäßig fanden sich die meisten klinisch manifesten Läsionen mit 47,5 % in der unteren Extremität, vor allem im proximalen Femur (10 %) und in der distalen Tibia (13,8 %). 42,5 % der Läsionen fanden sich im Stamm. Hier traten vorwiegend Läsionen in der Wirbelsäule (23,8 %) sowie im Becken (12,5 %) auf. 6,3 % der Läsionen waren in der Mandibula und lediglich 3,8 % in der oberen Extremität lokalisiert.

Damit neigten vor allem Knochenläsionen der Mandibula dazu, symptomatisch zu werden (zu 71,4 %). Des Weiteren anfällig waren Wirbelsäule (zu 67,9 % symptomatisch), Sternum (zu 66,7 % symptomatisch) und Fußknochen (zu 60 % symptomatisch). Die Knochenläsionen der oberen Extremität zeigten sich weniger anfällig für klinische Beschwerden (zu 13,6 % symptomatisch; s. Tabelle 4).

Diese Ergebnisse entsprechen weitgehend der aktuellen Literatur mit einem gehäuften Auftreten von klinisch manifesten Läsionen in der unteren Extremität, der Brustwirbelsäule, im Becken und im Bereich des Brustkorbs [15, 23, 38].

Ferner gaben bei uns 83,3 % (5/6) aller Patienten mit radiologisch nachweisbaren Läsionen im Bereich der Iliosakralkelenke klinische Beschwerden an. Ver einbar damit verzeichneten Fritz et al. eine hohe Manifestationsrate von sakralen Läsionen angrenzend an das Iliosakralkelenke [14].

Auch bei uns hatte lediglich 1 von 2 Patientinnen mit deformierten Wirbelkörperrn (Vertebra plana, Keilwirbel) klinische Beschwerden. 2 von 3 Patientinnen mit Wirbelkörper-Frakturen klagten über Symptome. Ähnliche Ergebnisse ergaben sich bei von Kalle et al., welche darauf hinwiesen, dass bei ausschließlichiger Anwendung einer lokalen MRT klinisch stumme Läsionen übersehen werden könnten [11].

4.5 Extraossäre Manifestationen

4 Patienten (20 %) waren an einer Neurodermitis erkrankt. Laut S2k-Leitlinie beträgt die kumulative Inzidenz je nach Alter und Region zwischen 11 und 21 % in Nordeuropa. In Deutschland werden Punktprävalenzen von 10-15 % beschrieben [40]. Damit zeigte sich kein vermehrtes Auftreten von Neurodermitis gegenüber der Gesamtbevölkerung im untersuchten Patientengut. Andere Hautmanifestationen, insbesondere wie sie bei der CRMO typischerweise auftreten (PPP, Ps, Akne, Pyoderma gangraenosum, neutrophile Dermatose/Sweet-Syndrom), wurden nicht beobachtet.

4.6 Anwendung von kontrastmittelverstärkten Sequenzen

4.7 Beurteilung des Therapieansprechens anhand der Verlaufs kontrolle

Das Ansprechen auf die medikamentöse Therapie (s. unter 3.1.17) wurde anhand klinischer und radiologischer Parameter in einem Zeitraum von durchschnittlich 13 Monaten beurteilt. Dabei betrug die mittlere Erkrankungsdauer zu Zeitpunkt 1 knapp 15 Monate (Median: 8 Monate) und zu Zeitpunkt 2 28 Monate (Median: 23 Monate). 50 % der Patienten erhielten zu Zeitpunkt 1 bereits eine medikamentöse Therapie. In der vorliegenden Arbeit erfolgte keine Differenzierung des Therapieansprechens auf unterschiedliche Therapien.

4.7.1 Charakterisierung des klinischen Verlaufs

Wie in der Literatur beschrieben, zeigte sich auch in der vorliegenden Arbeit ein lokaler Knochenschmerz als führendes Symptom [10, 12, 38]. Ferner fanden sich vergleichbar Beck et al. Lokalisationen mit lokaler Schwellung, Überwär mung und Funktionseinschränkung [38]. Zu Zeitpunkt 1 klagten 4 Patienten (20 %) über Allgemeinsymptome (Fieber, Abgeschlagenheit, Infekt), 18 Patienten (90 %) zeigten mindestens eine symptomatische Läsion. Im Median traten pro Patient 3 klinisch aktive Läsionen (Mittelwert: 4) auf. Vergleichbar mit die-
sen Ergebnissen wiesen bei Arnoldi et al. 75 % der Patienten mit CNO klinisch aktive Läsionen (CAL) auf, durchschnittlich 2,1/ Patient [15]. Bei Beck et al. präsentierten sich 74 % der Patienten mit einem lokalen Schmerz. Zu Beginn der Erkrankung traten 2,1 klinische Foki pro Patient auf, insgesamt 79 bei 37 Patienten mit CNO [38]. In unserer Arbeit nahm die Anzahl an klinisch aktiven Läsionen (patientenbezogen) in einem Zeitraum von durchschnittlich 13 Monaten unter der spezifischen medikamentösen Therapie signifikant ab (s. Tabelle 5). Es zeigte sich ein absoluter Rückgang von 80 auf 23 Läsionen entsprechend 71,3 %. Zu Zeitpunkt 2 traten pro Patient noch 0,5 Läsionen im Median (Mittelwert: 1,2) auf. Lediglich 1 Patient (P16) verzeichnete eine Zunahme von 2 auf 3 klinisch aktive Läsionen. Fieber oder Abgeschlagenheit waren nicht mehr zu beobachten. Somit zeigte sich ein tendenziell gutes klinisches Outcome. Ein gutes Therapieansprechen, insbesondere auf NSAIDs, wird in der Literatur mehrfach beschrieben [1, 22, 38]. Auch bei Beck et al. zeigten sich nach 12 Monaten unter der Therapie mit vorwiegend NSAIDs lediglich 19 klinische Foki bei 37 Patienten, pro Patient 0,5, was einer signifikanten Abnahme entspricht. 32 % der Patienten waren nach 3 Monaten unter der alleinigen Therapie mit Naproxen beschwerdefrei. Nach 6 Monaten waren es 43 % und nach 12 Monaten 51 %. Insgesamt kamen 62 % der Patienten in eine klinische Remission [38]. Die Studie von Beck et al. lässt sich jedoch nicht direkt mit unserer Arbeit vergleichen, da ein jeweils anderer Zeitraum in Bezug auf den Krankheitsverlauf beobachtet wurde und die medikamentöse Therapie bei uns nicht einheitlich war. Zusätzlich betrachten Beck et al. im Gegensatz zu uns das gesamte Spektrum an CNO und nicht nur multifokale Verläufe.

Trotz einem signifikanten Rückgang von 71,3 % bezogen auf die Anzahl an klinisch aktiven Läsionen muss das gute klinische Ansprechen in unserer Studie relativiert werden, da 50 % der Patienten trotz medikamentöser Therapie über anhaltende Beschwerden klagten.
4.7.2 Charakterisierung des radiologischen Verlaufs anhand der GK-MRT

Es erfolgte eine ausführliche 2-zeitige Charakterisierung der Knochenläsionen anhand der GK-MRT. Als Parameter berücksichtigt wurden Anzahl, Volumen, Signalintensität sowie RECIBL.

Anzahl

Insgesamt zeigte sich ein signifikanter Rückgang der radiologisch erfassten Knochenläsionen von 206 auf 121 (s. Tabelle 5). Pro Patient konnten zu Zeitpunkt 1 im Median 8 Läsionen (Mittelwert: 10,3) nachgewiesen werden, zu Zeitpunkt 2 waren es noch 4 (Mittelwert: 6,1).

RECI BL

Anhand von RECI BL zeigte sich in unserer Arbeit eindeutig eine radiologische Remission: 78,9 % der Läsionen zeigten entweder eine partielle oder eine complete Remission (CR: 45,7 %; PR: 33,2 %). Pro Patient traten im Median 3,5 Läsionen mit CR (Mittelwert: 5,1) und 3 mit PR (Mittelwert 3,7) auf. Da diese Charakterisierung neu ist, sind die Ergebnisse nicht direkt mit der Literatur vergleichbar. Jedoch scheint eine detaillierte Charakterisierung des radiologischen Verlaufs anhand von RECI BL möglich und sinnvoll: Während wir durch die alleinige Bestimmung der Anzahl an Knochenläsionen lediglich Auskunft darüber erhielten, dass zu Zeitpunkt 2 41,3 % weniger Läsionen als zu Zeitpunkt 1 vorhanden waren, gewannen wir durch die Bestimmung der Läsionen anhand von RECI BL die zusätzliche Information, dass 78,9 % aller Knochenläsionen zu Zeitpunkt 2 eine geringere Ausdehnung als zu Zeitpunkt 1 zeigten. Dadurch wird deutlich, dass eine alleinige Betrachtung der Anzahl an Knochenläsionen zu einer Unterbewertung einer radiologischen Remission führen kann, da sie eine partielle Remission nicht berücksichtigt. Dennoch bleibt zu berücksichtigen, dass selbst bei einer partiellen Remission noch ein deutlicher Restbefund vorliegen kann.

Volumen

Bezüglich des Volumens gibt es bislang keine Studien. Die hier erstmals genutzte Volumetrie ermöglicht einen rein quantitativen Ansatz zur Responseeinschätzung. Das Volumen der berechneten Läsionen nahm innerhalb von durchschnittlich 13,1 Monaten um 29,1 % von 492,7 ml auf 349,4 ml signifikant ab. Da lediglich Knochenläsionen, die zu beiden Zeitpunkten vorhanden waren, ausgewertet wurden, bezieht sich der Volumenverlauf auf Läsionen mit PR, PD und SD. Zusammengefasst lässt sich der radiologische Verlauf damit wie folgt beschreiben: Insgesamt traten zu Zeitpunkt 2 41,3 % weniger Läsionen als zu Zeitpunkt 1 auf. Bei den verbleibenden 58,7 % nahm das Volumen um 29,1 % ab. Es ist davon auszugehen, dass das Volumen den radiologischen Verlauf am genauesten beschreibt und damit als geeigneter quantitativer Parameter zur Beurteilung des Therapieansprechens dienen könnte. Da in der vorliegenden
Arbeit jedoch nur das Volumen von Knochenläsionen mit PR, PD und SD bestimmt wurde, lässt sich keine endgültige Aussage über das Verhalten des Volumens aller Läsionen (inklusive CR und NA) treffen.

Eine sehr detaillierte Charakterisierung der Knochenläsionen ist auch durch den von Arnoldi et al. vorgeschlagenen RINBO möglich (s. unter 4.4.1) [15].

Signalintensität

Alle Läsionen wiesen eine erhöhte Signalintensität in den TIRM Sequenzen im Vergleich zum benachbarten Muskelgewebe auf und waren damit radiologisch aktiv. Die SI-Ratio betrug im Mittel 6,8 zu beiden Zeitpunkten und zeigte damit keine Veränderung der radiologischen Aktivität. Allerdings zeigte sich in der Gruppe mit klinischer Remission sowohl zu Zeitpunkt 1 als auch zu Zeitpunkt 2 eine signifikant niedrige SI-Ratio als bei der Gruppe, die nicht in eine klinische Remission kam (s. unter 4.8). Ob die Signalintensität als prognostischer Parameter miteinbezogen werden kann, lässt sich nur durch eine weitere Überprüfung anhand größerer Patientenkollektive ausreichend beurteilen.

In Übereinstimmung mit unseren Ergebnissen zeigten sich auch bei von Kalle et al. vorwiegend hyperintense Läsionen (510 von 513 bei 53 Patienten mit CNO) im Vergleich zu normalem Knochenmark. 49 % der Läsionen zeigten eine höhere Signalintensität als normales Knochenmark und eine geringere Signalintensität als Flüssigkeit. Die SI-Ratios lagen bei 1,3-3,5 im Vergleich zu Knochenmark und bei 0,3-0,7 im Vergleich zu Flüssigkeit. 51,3 % der Läsionen wiesen inhomogene Anteile (1,7-5,2 bzw. 0,8-1,3) auf [11]. Auch bei uns zeigte sich eine starke Streuung: Die SI-Ratios variierten deutlich von 2,2-25,5 zu Zeitpunkt 1 und von 2,8-20,5 zu Zeitpunkt 2.
4.7.3 Korrelation zwischen klinisch und radiologisch aktiven Läsionen im Verlauf

Seltener tritt der Fall ein, dass die klinische Symptomatik kein radiologisches Korrelat aufweist. So zeigte in unserer Studie 1 Patientin (P7) trotz kompletter Remission in der MRT zu Zeitpunkt 2 persistierende Schmerzen. Auch bei Arnoldi et al. gab es 3 von 40 Patienten, die CAL, nicht jedoch RAL (radiologisch aktive Läsionen) aufwiesen. Hier könnte z.B. ein Schmerzverstärkungssyndrom ursächlich sein [15].

Die Anzahl an radiologisch aktiven Läsionen, die klinisch detektiert werden konnten, nahm bei uns im Verlauf von 37,4 % auf 15,7 % ab. Passend dazu wird in der Literatur beschrieben, dass eine Verbesserung der MRT-Befunde im Vergleich zu einer klinischen Remission teils mit einer erheblichen Verzögerung auftreten kann [1].
4.7.4 Laborchemische Befunde im Verlauf

Die Anzahl an Patienten, die erhöhte Entzündungswerte zeigten, nahm im Verlauf ab. Aufgrund fehlender Daten ist jedoch nur eine eingeschränkte Aussage möglich. Das CRP war zu Zeitpunkt 1 bei 57,9 % der Patienten leicht erhöht, zu Zeitpunkt 2 bei 23,1 %. Eine erhöhte BSG zeigten zu Zeitpunkt 1 38,9 %, zu Zeitpunkt 2 lediglich 1 Patient (7,1 %). Die Anzahl an Patienten mit erhöhten Entzündungswerten liegt etwas niedriger als in der Literatur beschrieben, was sich dadurch erklärt, dass Zeitpunkt 1 nicht dem Krankheitsbeginn entspricht und 10 von 20 Patienten bereits eine medikamentöse Therapie erhielten. Bei Catalano-Pons et al. fand sich bei Krankheitsbeginn eine Erhöhung der Entzündungswerte in 68 % der Fälle (Durchschnittswerte: BSG: 26 mm/h; CRP: 0,5 mg/dl) [10]. Neuere Studien konnten einen Zusammenhang zwischen erhöhten Entzündungswerten und der Anzahl an aktiven Läsionen (klinisch und radiologisch) nachweisen. So konnten Arnoldi et al. zeigen, dass Patienten mit klinisch aktiven Läsionen signifikant häufiger eine pathologische BSG aufwiesen (p<0,03) [15]. Wipff et al. stellten dar, dass ein anfänglich multifokales Muster mit einer signifikant höheren CRP-Konzentration (p=0,0002) einhergeht [23]. Beck et al. konnten des Weiteren einen signifikanten Zusammenhang zwischen der initialen Anzahl an Knochenläsionen und der Höhe der BSG nachweisen (p<0,0009) [38].

In unserer Studie zeigte sich bei 4 von 17 Patienten ein positiver HLA-B27-Befund entsprechend 23,5 %. 3 von 4 Patienten mit positivem HLA-B27-Befund wiesen eine Gelenkbeteiligung (Iliosakral- und Hüftgelenk) auf. Bei Girschick et al. zeigten sich ähnlich unseren Ergebnissen bei 21 % der Patienten mit NBO positive HLA-B27 Befunde, was mit der Allgemeinbevölkerung (9 %) differiert (p=0,043) [13]. Unsere Ergebnisse müssen bei kleiner Kohorte und fehlenden Angaben jedoch kritisch betrachtet werden. Das Gleiche gilt für antinukleären Antikörper: 3 von 15 Patienten (20 %) zeigten positive Befunde. Eine Erhöhung gegenüber der gesunden Vergleichsgruppe bleibt fraglich (bis zu 10 % positive Befunde). Verschiedenen anderen Studien zufolge konnte bei Patienten mit CNO kein Unterschied in Bezug auf die Prävalenz von ANA und HLA-B27 zur gesunden Vergleichsgruppe nachgewiesen werden [25, 38].
4.7.5 Short-term vs. Long-term-outcome

Zhao et al. 2017 zeigte sich ein weitgehend einheitliches Vorgehen bezüglich der 1st-line-Therapie bei 121 Ärzten: 95 % gaben initial NSAIDs. Das Vorgehen in Hinblick auf die 2nd-line-Therapie war weniger übereinstimmend: 67 % verabreichten MTX, 65 % TNF-alpha-Blocker und 46 % Bisphosphonate, vor allem bei spinalen Läsionen [37]. Auch Wipff et al. zufolge zeigte sich eine große Uneinheitlichkeit bezüglich der 2nd-line-Therapie bei CRMO. Eine Standardisierung unter Einschluss der GK-MRT erscheint notwendig [23].

4.7.6 Komplikationen

Deformitäten und Frakturen zeigten sich in unserer Arbeit bei 45 % der Patienten (9/20) fast ausschließlich im Bereich der Wirbelsäule. So wurde bei 35 % der Patienten (7/20) eine Skoliose und/ oder Kyphose diagnostiziert. 20 % der Patienten (4/20) wiesen 1 oder mehrere Frakturen auf. Neben Deformitäten und Frakturen der Wirbelsäule fand sich bei P19 eine Deformität des Temporomandibulargelenks sowie bei P21 Fraktur im Os pubis. In der Literatur variiert die Komplikationsrate deutlich und wird von gering bis sehr häufig angegeben. Wipff et al. gaben eine Komplikationsrate bis zu 50 % an [33]. Schultz et al. zufolge lag die Komplikationsrate hingegen bei 7 % [45]. Bei Catalano-Pons et al., in deren Studie 20 % der Patienten unter Folgeschäden litten, konnte gezeigt werden, dass nicht nur körperliche Beeinträchtigungen wie Wachstumsstörungen, vertebraler Kompressionsfrakturen und Hyperostose auftreten können, sondern auch psychische Einschränkungen keine Seltenheit sind. So kam es bei einer von 40 Patienten zu einer Depression. 2 weitere Patienten hatten aufgrund der Erkrankung keinen Schulabschluss gemacht [10].

Mit einer Häufigkeit von 35 % differierte das Auftreten einer Skoliose/ Kyphose bei uns deutlich im Vergleich zur Allgemeinbevölkerung in Deutschland. Das Deutsche Skoliose Netzwerk gibt eine Häufigkeit von 3-5 % an [46]. Weltweit wird die Prävalenz einer Skoliose mit einem Cobbwinkel > 20° auf 0,5 %, mit einem Winkel > 10° auf 1,1 % geschätzt [47]. Dies könnte ein Hinweis auf einen positiven Zusammenhang zwischen dem Auftreten von CRMO und Skoliose sein. Aufgrund der häufigen Wirbelsäulenbeteiligung bei CRMO sind damit

4.7.7 Therapie und Therapiesteuerung

Bei 18 Patienten wurde die Bildgebung mittels der GK-MRT in die Therapiesteuerung (zu Zeitpunkt 2) miteinbezogen. Bei 2 Patienten erfolgte die Therapiemodifizierung sogar ausschließlich aufgrund des positiven MRT-Befundes bei klinischer Beschwerdefreiheit und negativen Entzündungsparametern. Bei P1 erfolgte eine Erhöhung von Naproxen auf Naproxen in Kombination mit Sul-
fasalazin, bei P17 wurde die bisherige Behandlung mit Naproxen und Sulfasalazin beibehalten.

Zu P19 konnte aufgrund von fehlenden Angaben keine Aussage zur Therapiesteuerung getroffen werden.

Anhand obiger Ergebnisse wird deutlich, dass die Bildgebung anhand der GK-MRT im Follow-up und in Bezug auf die optimale Therapiesteuerung einen wertvollen Beitrag leistet, da selbst bei klinischer Remission noch eine deutliche Krankheitsaktivität der CRMO vorliegen kann, was sich in einem positiven MRT-Befund widerspiegelt.

4.8 Prognoseabschätzung anhand radiologischer und klinischer Parameter

Um eine Aussage treffen zu können, ob eine klinische Remission auch mit einem radiologisch besseren Outcome einhergeht, erfolgte die Einteilung in 2 Gruppen (Remission vs. Non-Remission). Tatsächlich zeigte die klinisch bessere Gruppe eine signifikant höhere Volumenabnahme/ Patient als die Gruppe, die nicht in Remission kam. In Bezug auf die Signalintensität zeigte sich bei der klinisch besseren Gruppe zu beiden Zeitpunkten eine signifikant geringere SI-

Bezüglich der Anzahl an radiologisch aktiven Läsionen und anhand der Charakterisierung nach RECIBL zeigte sich in unserer Arbeit zu keinem Zeitpunkt ein signifikanter Unterschied zwischen den Gruppen. Auch die Anzahl an klinisch aktiven Läsionen unterschied sich zu Zeitpunkt 1 zwischen den Gruppen nicht. Gruppe Remission zeigte im Median 3 (Mittelwert: 3,6) symptomatische Lokalisationen pro Patient und Gruppe Non-Remission 3,5 (Mittelwert: 4,4). Zu Zeit-
punkt 2 zeigte die Gruppe, die nicht in eine klinische Remission kam, im Median 2 (Mittelwert: 2,3) klinisch aktive Läsionen. Bezüglich der Anzahl an schmerzhaften Lokalisationen und radiologisch nachweisbaren Knochenläsionen verzeichneten beide Gruppen einen signifikanten Rückgang. Anhand der Ergebnisse wird deutlich, dass in beiden Gruppen unter der medikamentösen Therapie eine klinische sowie radiologische Verbesserung zu beobachten war.

Als prognostisch günstig wird in der Literatur auch eine bei Krankheitsbeginn geringe Anzahl an radiologisch aktiven Läsionen beschrieben. Catalano-Pons et al. konnten ein signifikant besseres Therapieansprechen auf NSAIDs bei einer geringeren Anzahl an radiologisch aktiven Läsionen bei Krankheitsbeginn nachweisen. Zudem konnte ein signifikanter Zusammenhang zwischen anfänglicher Anzahl an Lokalisationen und Krankheitsdauer nachgewiesen werden [10]. Eine anfänglich geringe Anzahl an Läsionen bedeutet demnach eine bessere Prognose. Vergleichbar damit zeigten bei Beck et al. alle Patienten mit einer initial höheren Anzahl an klinischen (p<0,0098) und radiologischen (p<0,000004) Läsionen höhere Werte im CHAQ-Score (Childhood Health Assessment Questionnaire) und damit eine stärkere Beeinträchtigung im Alltag [38]. Auch Wipff et al. konnten nachweisen, dass die Prognose bei unifokalem Muster (klinisch und radiologisch) besser ist als bei multifokalem [23]. Da in unserer Arbeit die Durchführung der 1. GK-MRT teilweise nicht dem Zeitpunkt der Manifestation entspricht und nur multifokale Patienten eingeschlossen waren, war diese Fragestellung nicht Gegenstand unserer Untersuchung.

Im Weiteren stellt sich die Frage nach zusätzlichen Faktoren, die mit einer günstigeren Prognose vergesellschaftet sein könnten. In der vorliegenden Arbeit wurde diese Fragestellung nur am Rande untersucht. Dennoch gibt es Hinweise für Unterschiede zwischen den Gruppen Remission und Non-Remission. So waren in der klinisch schlechteren Gruppe 3 von 10 Patienten männlich. In der klinisch besseren Gruppe befand sich hingegen nur 1 Junge. Bei Wipff et al. zeigte sich in einer umfassenden Studie von 178 Patienten (Geschlechterverhältnis: 2:1) die Tendenz, dass mehr männliche Patienten nicht in Remission (Definition anhand von Klinik, Bildgebung und laborchemischen Be-
funden) kamen (38 % versus 24 %; p=0,06). Bei Arnoldi et al. hingegen gab es keine Korrelation zwischen RINBO Score und Geschlecht [15]. Darüber hinaus lieferten Wipff et al. den Nachweis, dass eine fehlende Remission mit einer verlängerten Zeitspanne von Manifestation bis zur Diagnosestellung einhergeht (22,2 vs. 11,7 Monate; p=0,003) [23]. In unserem kleinen Patientengut wurde dieser Unterschied nicht nachgewiesen. Auch bezüglich der Erkrankungsdauer zu Zeitpunkt 2 zeigte sich kein signifikanter Unterschied. Tendenziell zeigte die Gruppe mit klinischer Remission mit durchschnittlich 30,4 Monaten jedoch einen längeren Krankheitsverlauf als die Gruppe Non-Remission mit durchschnittlich 25,6 Monaten. Dies könnte ein Hinweis darauf sein, dass der natürliche Krankheitsverlauf bei zunehmender Erkrankungsdauer mit einer Abnahme an klinischen und radiologischen Läsionen vergesellschaftet sein könnte. Verschiedene Studien sprechen jedoch gegen diesen Trend und zeigen auf, dass der Langzeitverlauf klinisch wie radiologisch aktuell unterbewertet wird [16, 23, 31]. Das Alter betreffend zeigte sich bei uns kein signifikanter Unterschied zwischen den Gruppen. Im Gegensatz dazu konnten Catalano-Pons et al. als prädiktiven Faktor für einen verlängerten Verlauf ein junges Alter feststellen [10]. Arnoldi et al. konnten eine negative Korrelation zwischen RINBO und Alter nachweisen (p=0,02) und damit ein junges Alter ebenfalls als Risikofaktor identifizieren [15]. Jansson et al. zufolge könnte eine Assoziation mit der palmoplantaren Pustulose auf einen schweren Verlauf hindeuten [18]. Bei uns trat in keiner Gruppe eine palmoplantare Pustulose auf, jedoch befanden sich 3 von 4 Patienten mit pathologischen Frakturen in der Gruppe, die nicht in eine klinische Remission kam. Bezüglich der Entzündungswerte zeigten zu Zeitpunkt 2 in Gruppe Remission 6 Patienten einen negativen Befund und 1 Patientin (14,3 %) einen positiven mit einem CRP von 0,51 mg/dl. In Gruppe Non-Remission hingegen zeigten 2 von 6 Patienten (33,3 %) positive Werte mit einem CRP von 1,82 mg/dl und 0,75 mg/dl. 1 Patient hatte zusätzlich eine mit 22 mm/h erhöhte BSG. Zu den anderen Patienten konnte aufgrund fehlender Angaben keine Aussage getroffen werden.

Wipff et al. gelang des Weiteren eine Stadieneinteilung in 3 Gruppen, die der Prognoseabschätzung dienen („severe“, „intermediate“, „mild“ form). Neben uni-
fokalem Befall, selten erhöhten Entzündungswerten und weiblichem Geschlecht zeigte sich in der Gruppe mit der milden Verlaufsform häufig eine Klavikulabeteiligung. In unserer Studie wurden nur Patienten mit multifokalem Muster bewertet, d.h. ein Patientenkollektiv, das nach obiger Einteilung einen moderaten oder schweren Verlauf aufweist. Dazu passt das seltene Auftreten von Knochenläsionen in der Klavikula (1,8 % aller Läsionen) nur bei Mädchen. 3 Läsionen traten bei 2 Patientinnen mit klinischer Remission auf und nur 1 Läsion bei 1 Patientin ohne klinische Remission.

Der nachgewiesene positive Zusammenhang zwischen radiologischen und klinischen Parametern unterstützt die Etablierung eines radiologischen Index wie des RINBOs, da dadurch eine genauere Einteilung der Krankheitsaktivität sowie eine prognostische Einschätzung anhand radiologischer Kriterien möglich werden, was ferner eine Verbesserung für therapeutische Entscheidungen bedeutet kann.
4.9 Schlussfolgerung

5 Limitationen

Eine alleinige Auswertung der Knochenläsionen anhand der koronaren T2-gewichteten TIRM-Sequenzen in der sekundären Befundung sowie eine willkürliche Festlegung einer minimalen Grundfläche von 10 mm² für eine Knochenläsion könnte zu einer Unterbewertung der Anzahl an Läsionen, vor allem im Bereich der Fußknochen, geführt haben. Des Weiteren erfolgte die Bestimmung des Volumens und der Signalintensität nur anhand von Läsionen mit PR, PD und SD. Aufgrund von fehlenden Daten war eine retrospektive Auswertung teilweise nur eingeschränkt möglich (Familienanamnese, laborchemische Befunde, Therapie).

Bei kleiner Fallzahl sind die Ergebnisse kritisch zu betrachten und Studien anhand von größeren Kohorten sind zwingend erforderlich.
6 Zusammenfassung

Einleitung/ Zielsetzung

Methodik

Bei 20 Patienten (Durchschnittsalter: 10,3 Jahre) mit gesicherter Diagnose CRMO wurde zu 2 Zeitpunkten (Ausgangsbefund: durchschnittlich 14,9 Monate nach Krankheitsbeginn; Verlaufskontrolle: durchschnittlich 28 Monate nach Krankheitsbeginn) eine Bildgebung mittels der GK-MRT am 1,5 Tesla Magnetom Avanto unter Verwendung der Ganzkörper-Spulen nach dem Tübinger Standardprotokoll (T2-gewichtete TIRM Sequenzen in koronarer Schichtführung, bei den meisten Patienten ergänzt durch koronare T1-gewichtete TSE Sequenzen nach Gabe von Kontrastmittel) durchgeführt. Dabei wurden die Knochenläsionen exakt lokalisiert. Anhand selbst vorgeschlagener standardisierter radiologischer Responsekriterien (RECIBL) sowie Anzahl, Volumen und SI-Ratio er-

Ergebnisse

Klinisch präsentierte sich die CRMO vor allem in lokalen Knochenschmerzen. Dabei waren die Patienten meist in gutem Allgemeinzustand und zeigten keine oder nur leicht erhöhte Entzündungswerte. Nahezu alle klinisch aktiven Läsionen besaßen zu beiden Zeitpunkten ein Korrelat in der GK-MRT. Aber nur 37,4 % waren in der Ausgangsuntersuchung und 15,7 % in der Verlaufskontrolle symptomatisch bzw. klinisch erkennbar. Bildgebend traten die häufigsten Knochenläsionen in der unteren Extremität (53,4 %) gefolgt von Stamm (33,6 %) und oberer Extremität (9,9 %), auf. Im Kopfbereich fanden sich nur wenige Läsionen (3,2 %), ausschließlich in der Mandibula. Ein symmetrisches Auftreten wurde zu 46,6 % beobachtet. Durch die Gabe von Kontrastmittel konnten keine zusätzlichen Knochenläsionen detektiert werden.
In der Verlaufskontrolle zeigte sich in unserer Arbeit sowohl anhand von klinischen als auch von radiologischen Parametern ein gutes Therapieansprechen. Hierbei fand sich ein signifikanter Rückgang an klinisch aktiven Lokalisationen von Zeitpunkt 1 zu Zeitpunkt 2 (71,3 %). Dennoch hatten 50 % der Patienten nach durchschnittlich 28 Monaten weiterhin lokale Beschwerden. In der GK-MRT zeigte sich ebenfalls ein signifikanter Rückgang der Läsionen sowohl in Bezug auf die Anzahl als auch auf die Ausdehnung. So nahm die Anzahl an radiologisch aktiven Knochenläsionen um 41,3 % ab.

Die Einteilung nach RECIBL hingegen ergab eine partielle (PR) oder komplette Remission (CR) von insgesamt 78,9 %. Das Volumen der sich nur partiell in Remission befindlichen Herde nahm unter Therapie um 29,1 % ab. Die bereits in früheren Studien durchgeführte Erfassung der Signalintensität ergab bei der Untersuchung zwischen Ausgangs- und Verlaufsbe fund keinen Unterschied.

Schlussfolgerung

Die vorliegenden Ergebnisse verdeutlichen, dass die Bildgebung mittels der GK-MRT eine wertvolle Methode hinsichtlich Diagnosesicherung, Einschätzung der Krankheitsaktivität und Therapiemonitoring bei CRMO darstellt. Während charakteristische Muster die Diagnosestellung erleichtern, steht in der Verlaufs kontrolle die Einschätzung der Krankheitsaktivität im Vordergrund. Diese kann durch spezifische radiologische Parameter deutlich zuverlässiger beurteilt werden als durch die klinische Untersuchung allein. Insbesondere klinisch stumme, aber unter Umständen komplikative Knochenläsionen können durch die GK-MRT detektiert werden. Zur Responseinschätzung eignet sich neben der Bestimmung der Anzahl an Knochenläsionen die von uns erstmals genutzte Vo-
Zusammenfassung

Ferner liefern unsere Untersuchungen Hinweise für einen gleichsinnigen Zusammenhang zwischen radiologischem und klinischem Outcome. So zeigte sich, dass eine klinische Remission mit einer geringeren SI-Ratio sowie mit einer stärkeren Volumenabnahme einherging. Diese mögliche prognostische Bedeutung sollte weiter untersucht werden.
7 Literaturverzeichnis

8 Anhang: Lokalisierung der Knochenläsionen

8.1 Anatomische Einteilung

Obere Extremität (OE)
- Skapula: SKA
- Humerus: HUM
- Radius: RAD
- Klavikula: KLA

Untere Extremität (UE)
- Femur: FEM
- Tibia: TIB
- Fibula: FIB
- Talus: TAL
- Kalkaneus: KAL
- Metatarsalknochen: MET
- Phalangen: PHA

Stamm (STA)
- Sternum: STE
- Rippen: RIP
- Brustwirbelsäule: BWK
- Lendenwirbelsäule: LWK
- Os sacrum: SAC
- Os pubis: PUB
- Os ischiadicum: ISC
- Os ilium: ILI

Kopf (KOP)
- Mandibula: MAN
8.2 Lokalisation innerhalb der (Röhren-) Knochen

- d: distal
- p: proximal
- m: mittig (bei paarigen Röhrenknochen wird das m nach der anatomischen Lokalisation genannt)
- Co: Corpus mandibulae
- Ca: Caput mandibulae

8.3 Geographische Lokalisation

- E: epiphysär
- M: metaphysär
- D: diaphysär
- A: apophysär: A1 und A2

8.4 Zuordnung rechts/ links

- rechts: r
- links: l
- mittig: m (bei SAC, PUB und MAN wird das m vor der anatomischen Läsion genannt)
9 Erklärung zum Eigenanteil der Dissertationsschrift

Die Arbeit wurde am Universitätsklinikum Tübingen/ Abteilung für pädiatrische Radiologie unter der Betreuung von Herrn Prof. Dr. med. J. Schäfer durchgeführt.

Die Konzeption erfolgte in Zusammenarbeit mit Herrn Prof. Dr. med. J. Schäfer und Frau Dr. med. M. Moll (Kinderrheumatologin, zu Beginn der Dissertation am UKT tätig).

Die retrospektive Datenerhebung, sämtliche Messungen und Berechnungen der radiologischen Parameter sowie die anschließende statistische Auswertung wurden eigenständig von mir nach Anleitung durch Herrn Prof. Dr. med. J. Schäfer durchgeführt.

Ich versichere, das Manuskript selbstständig verfasst zu haben und keine weiteren als die von mir angegebenen Quellen verwendet zu haben.

Tübingen, den
Danksagung

An erster Stelle möchte ich mich bei Herrn Prof. Dr. med. J. Schäfer bedanken, da er mir in allen Phasen der Dissertation wertvolle Hilfestellungen und konstruktive Antworten auf meine Fragen geben konnte, die das Gelingen meiner Doktorarbeit ermöglichten.

Ganz besonderen Dank möchte ich auch meiner Familie, meinem Partner, meinen Freunden und Kollegen aussprechen, da sie mich entweder fachlich oder emotional in schwierigen Phasen geduldig unterstützt haben.