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SUMMARY 

Over the past two decades, immunotherapy has become the fourth pillar in cancer treatment 

alongside surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade shows 

objective clinical success but only a fraction of patients benefit from tumor regression in response 

to immunotherapy. The number of immune-oncology-related clinical trials initiated each year is 

increasing. And yet, NY-ESO-1, is the most targeted antigen type (31 clinical trials), and 

melanoma the most targeted tumor type (33 clinical trials)1. Thus, studying underrepresented 

cancers and characterizing novel antigens is essential for the development of new treatment 

options. T cells are the main mediators of anti-tumor immune responses and they recognize 

human leukocyte antigen (HLA)-presented peptides. The entirety of HLA-presented peptides is 

termed the immunopeptidome. This work addresses three aspects of antigen discovery for T-cell 

based immuno-oncology approaches. 

The Results Part I section presents the HLA Ligand Atlas, a collection of benign HLA-I and -II 

immunopeptidomes covering 21 human subjects and 29 tissue types. We observe that 

immunopeptidomes are more similar within individuals as opposed to the expected tissue-based 

clustering reported for transcriptomes2,3 and proteomes4. Furthermore, cryptic HLA ligands have 

been previously reported only in tumors and cell lines. In this dataset, we identified 1,407 cryptic 

peptides, showing that they are not per se tumor exclusive. Based on a case study in three 

glioblastoma patients, we illustrate the applicability of the multi-tissue HLA Ligand Atlas dataset 

to prioritize tumor-associated antigens for downstream experimental validation.  

The Results Part II section describes the theoretical requirements for the use of mass 

spectrometers (LC-MS/MS) in immunopeptidomics experiments. In addition, a benchmark based 

on a serial dilution of a JY peptide eluate spiked with heavy-labeled peptides across five different 

LC-MS/MS systems reports performance differences and complementarity to the in house 

Orbitrap Fusion Lumos. These results showed that the timsTOF Pro from Bruker Daltonics and 

the q Exactive HF from Thermo Fisher Scientific could be suitable for immunopeptidomics 

experiments.  

The results Part III section focuses on mapping the immunopeptidomic landscape of breast 

cancer, paving the way for generating a warehouse of shared tumor-associated antigens for 

frequent HLA allotypes. The selection of warehouse peptides will be the basis for a future phase 

I/II clinical study testing safety and toxicity of peptide vaccination. This project is still ongoing, 

as data acquisition has not been finalized. Data reanalysis and a stronger focus towards the triple 

negative breast cancer subtype will reshape the outcome of this project. 

Thus, this work addresses three major steps related to the discovery of T cell-based antigens for 

cancer immunotherapy: i) an in-depth consideration of the mass spectrometric instrumentation 

required for immunopeptidomics studies, ii) the generation of a benign multi-tissue draft of the 

human immunopeptidome, which is required for the definition of tumor-association, and iii) 

mapping the breast cancer immunopeptidome and the definition of tumor-associated antigens. 



 

 

 

ZUSAMMENFASSUNG 

Die erfolgreiche klinische Anwendung der Immuncheckpoint-Inhibitoren stellt einen Meilenstein 

der Immunonkologie dar, der 2018 mit dem Nobelpreis für Medizin und Physiologie gekürt 

wurde. Die Anzahl an klinischen Studien im Bereich der Immunonkologie steigt stetig an, viele 

untersuchen bekannte Antigene wie NY-ESO1 (31 klinische Studien) in gut ansprechenden 

Tumoren wie das Melanom (33 klinische Studien)1. Dennoch, erfahren nicht alle Patienten eine 

Tumorregression als Antwort auf die Immuntherapie. Mittels Immuncheckpoint-Inhibitoren 

wird eine bereits vorhandene T-Zellantwort gestärkt, was die Untersuchung ihrer Antigene, der 

HLA-präsentierten Peptide, in den Fokus bringt. Die Gesamtheit aller HLA-präsentierter Peptide 

ist das Immunopeptidom. Diese Arbeit adressiert drei Bereiche, die essentiell für die Kartierung 

des Immunopeptidoms und somit für die Identifizierung neuer T-Zell-Antigene sind. 

Der erste Ergebnisteil beschreibt den HLA Ligand Atlas, eine Sammlung an benignen HLA-I und -

II Immunopeptidomen, welche 21 humane Spender und 29 Gewebetypen umfasst. Demnach 

wurde ersichtlich, dass das Immunopeptidom eines Spenders über unterschiedliche 

Gewebearten ähnlicher ist, als eine Gewebeart über mehrere Spender. Diese Erkenntnis steht im 

Gegensatz zur Gewebeähnlichkeit auf Transkriptom-2,3 und Proteomebene4. Zusätzlich wurden 

1,407 kryptische HLA-I Liganden identifiziert. Es wurde anhand von drei Glioblastompatienten 

gezeigt, dass der HLA Ligand Atlas Datensatz geeignet ist, um die Auswahl an tumorspezifischen 

Zielantigene für weitere Validierungsexperimente einzuschrenken. 

Der zweite Ergebnisteil fokussiert sich auf die Analyse des Immunopeptidoms mittels 

Massenspektrometrie und den damit verbundenen nötigen technischen Parametern und 

Schwierigkeiten. Anhand einer seriellen Verdünnungsreihe eines JY-isolierten Peptidextraktes, 

konnte ein experimenteller Vergleich zwischen fünf Geräten durchgeführt werden. Die 

Ergebnisse einer komparative Auswertung von ca. 114 Messungen, zeigten dass die timsTOF Pro 

von Bruker Daltonics und die q Exactive HF von Thermo Fisher Scientific geeigent für 

Immunopeptidomanalysen sind. Insgesamt schnitt, die auf die Proben optimierte, bereits 

vorhandene Orbitrap Fusion Lumos am besten ab. 

Der dritte Ergebnisteil beschreibt das Immunopeptidom im Mammakarzinom. Durch den 

Vergleich des Mammakarzinom-assoziierten und des benignen Immunopeptidoms, welches im 

HLA Ligand Atlas erfasst ist, wurden Tumor-assoziierte Antigene definiert. Die häufigsten, waren 

in den drei molekularen Subtypen repräsentiert. Diese Auswertung ist nicht vollständig, da die 

experimentelle Analyse der Proben nicht abgeschlossen ist.  

Somit umfasst diese Arbeit drei essentielle Schritte für die Definition von T-Zell-Antigenen: i) 

eine detaillierte theoretische und praktische Betrachtung der massenspektrometrischen 

Voraussetzungen für vollständige Immunopeptidomanalysen, ii) die Erstellung einer 

sogenannten negativen Datenbank, welche benigne Immunopeptidome von 21 Spendern und 29 

Gewebetypen charakterisiert, und iii) die Kartierung des Mammakarzinom-assoziierten 

Immunopeptidoms, welches durch den Vergleich mit dem benignen Datensatz, die Definition von 

T-Zell-Antigenen für neue Immuntherapien ermöglicht. 
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2 INTRODUCTION 

2.1 IMMUNOTHERAPY 

The four pillars of cancer treatment are surgery, chemotherapy, radiotherapy, and 

immunotherapy. Immunotherapy is the most recent addition to cancer therapy, despite the 

observation of a connection between cancer and the immune system dating back to ancient Egypt 

and Greece. The first observations of tumors spontaneously going into remission after a 

simultaneous infection with high fever can be dated as early as ancient Egypt, while the similarity 

between cancer and inflammation has been attributed to the ancient Greek physician Galen5,6. 

However, during the same period, it was impossible to reproduce these results and decipher their 

mechanistic background due to experimental limitations, which allowed them to be forgotten.  

William Bradley Coley is known today as the father of immunotherapy for making the similar 

observations of patients with various uncurable cancers that went into spontaneous remission 

after developing concomitant acute bacterial infections. In 1891 Coley developed different 

mixtures of live and heat-inactivated Streptococcus pyogenes and Serratia marcescens and gave 

them to patients with bone cancer and soft tissue sarcomas thereby achieving positive clinical 

results. Over the course of his career, he treated hundreds of patients and has thus developed the 

first immune-based treatment to cancer7. However, his results were met with skepticism due to the 

unknown underlying mechanisms of this therapeutic approach7.  

It was only after 1945 that interest in the immune system peaked. During the following years, 

interferon was discovered8, the first cancer vaccine consisting of tumor lysate showed 22% 

remission in treated patients9, the existence of T cells and their role in immunity had been 

discribed10, and bone marrow transplantation as a treatment for hematological cancers had been 

pioneered11. Although Paul Ehrlich predicted in 1909 that tumor cells form continuously, and 

immune cells scan and eradicate them, Thomas and Burnet enunciated the theory of 

immunosurveillance in cancer in 1957, proposing that lymphocytes scavenge cancerous cells 

transformed by somatic mutations12,13. Again, this theory was not further elaborated due to the lack 

of experimental evidence and mechanistical understanding, until 1974 when Stutman showed that 

mice with impaired immune systems developed cancer at a faster rate than wild type controls14. 

Mechanistic clarification came from Schreiber, Dunn and Old, who in 1998 and 2001 showed that 

T cells can provide tumor-specific immune surveillance and antitumor responses15,16. The concept 

of immunosurveillance was broadened to encompass the observation that immunosurveillance 

promotes the formation of tumors with reduced immunogenicity. The dynamic interplay between 

tumor development and immunosurveillance is summarized in the three phases of cancer 

immunoediting: elimination (cancer immunosurveillance), equilibrium, and escape17.  

1) Elimination represents the classical theory of immunosurveillance in which adaptive 

and innate immunity act as an extrinsic tumor suppressor that protect 

immunocompetent individuals (and animals) from the development of cancers by 

eradicating them. When elimination of nascent tumor cells fails, the relationship with 
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the immune system shapes the tumor phenotype in different ways including but not 

limited to forming an immunodeficient tumor microenvironment.  

2) Equilibrium represents a state of latency between the elimination and escape phase, in 

which the malignant disease can be clinically detected. While tumor growth is initially 

constrained by the immune system, it might reach a point of no return characterized by 

increased genomic instability that leads to an accumulation of mutations in tumor cells. 

The dynamic interplay between the two counterparts results in a heterogeneous tumor 

cell population that is selected to resist immune attack. However, the resulting tumor 

might progress to the next phase of immune escape, might be indefinitely maintained 

in the equilibrium phase, or might be eliminated by the immune system. 

3) Escape: tumor cells surviving the immunoediting and equilibrium phase are 

unrestrained by immune pressure and can grow and metastasize. 

Further key discoveries followed, such as the mechanism of immunoediting, evidence of tumor 

immune escape16, and the first identification of a target antigen (melanoma antigen MAGE), that is 

recognized by cytotoxic T cells18.  

These milestones of the past century have consolidated our understanding of the interplay between 

the immune system and cancer. These discoveries enabled harnessing intrinsic mechanisms of the 

immune system for targeted cancer treatment. Immunotherapeutic options nowadays are 

multifaceted and act on mobilization or blockade of different cell types or cellular pathways. The 

Food and Drug Administration (FDA) and the European Medical Agency (EMA) approved a variety 

of novel immuno-oncological agents. Appraisal from the scientific community towards the field of 

immunology culminated in 2018 with the Nobel Prize in physiology and medicine awarded to 

James P. Allison and Tasuku Honjo for the discovery and application of immune checkpoint 

inhibitors. The recent success and popularity of immunotherapy is however overshadowed by our 

still limited understanding of the complex mechanism of action, as evidenced by clinical success in 

only a subset of cancer patients, and tumor types. In addition, the tremendous costs and efforts of 

production are an impediment towards their wide application in both developed and less 

developed countries. 

Building on these discoveries, this work focuses on characterizing novel antigens for developing 

new T-cell based immunotherapies with an emphasis on peptide vaccination strategies. For this 

purpose, we have mapped the immunopeptidome in both health and disease. 

To understand modern immunotherapy approaches, we will briefly introduce the HLA antigen 

presentation pathway and T cell activation. A further description of current cellular 

immunotherapies, antibodies, and viral vector vaccines will outline the state-of-the-art treatment 

options in immuno-oncology. 
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2.2 ANTIGEN PRESENTATION BY HUMAN LEUKOCYTE ANTIGEN (HLA) MOLECULES 

The HLA is a large genetic region on chromosome 6 coding for class I (HLA-I) and class II (HLA-II) 

molecules as well as for other proteins related to the antigen presentation pathway. HLA genes are 

the most polymorphic in the human genome with a large number of allelic variants at each locus19. 

HLA-I molecules are composed of an α chain in a noncovalent complex with a nonpolymorphic 

invariant β2 microglobulin chain and the presented peptide. HLA-II molecules contain two 

polymorphic chains, the α and the β chain. The peptide binding cleft has α helical sides and an eight-

stranded antiparallel β-pleated sheet floor. The peptide binding cleft of the HLA-I molecule is 

comprised of the α1 and α2 segments and that of HLA-II molecules of the α1 and β1 segments of 

the two chains. The Ig-like domains of HLA-I and -II molecules contain the binding sites for the T 

cell coreceptors CD8 and CD4, respectively. CD8+ T cells recognize peptides presented on HLA-I, 

while CD4+ T cells recognize peptides presented on HLA-II molecules. T cells can distinguish 

between self and foreign peptides. Figure 1 illustrates the crystal structure of the binding cleft of 

HLA-I and -II molecules while accommodating a peptide20. 

HLA-I allotypes can be divided into -A, -B, and -C allotypes, while HLA-II molecules can be divided 

into -DR, DP, and -DQ molecules. Each HLA allotype has different binding preferences for certain 

peptide sequences that can be condensed into anchor residues at specific positions. These binding 

preferences were characterized and resulted in allotype-specific binding motifs. The HLA molecule 

has further polymorphic residues that strongly interact with the T-cell receptor.  

Briefly, HLA-I molecules present peptides of 8-12 aa originating from intracellular proteins21, while 

HLA-II molecules present 8-25 aa long peptides22, primarily originating from extracellular proteins. 

HLA-I molecules are presented on all nucleated cells, while HLA-II molecules are predominantly 

presented on professional antigen presenting cells (APCs), although some exceptions have been 

described23. The antigen processing pathways differ considerably between HLA-I and -II ligands.  

As part of the regular protein turnover, HLA-I ligands are produced by proteolytic degradation of 

cytosolic proteins by the proteasome, or the IFN-γ-induced immunoproteasome. These proteins 

Figure 1: Peptide presentation on HLA-I and -II molecules.  
The crystal structure illustrates the peptide-binding groove20. 
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might be self-proteins, or they might be of microbial or viral origin. Resulting peptides are 

transported to the endoplasmic reticulum (ER) by the transporter associated with antigen 

processing (TAP). At the ER-membrane, TAP mediates the ATP-dependent transfer of 8-16 amino 

acid long peptides with basic or hydrophobic C termini from the cytosol into the ER lumen. HLA-I 

molecules are synthesized and assembled in the ER with the help of two chaperones, calnexin and 

calreticulin. Within the ER, TAP associates with tapasin, which has a high affinity to newly 

synthesized HLA-I molecules. The aminopeptidase ERAAP trims the imported peptides to be able 

to bind to the HLA binding cleft. The complex of HLA-I molecules and the peptide has no affinity to 

tapasin anymore and can be transferred to the Golgi, from where it is transported via exocytic 

vesicles to the cell surface for presentation to CD8+ T cells. Furthermore, defective ribosomal 

products (DRIPs) resulting directly from ribosomal translation can also be presented on HLA-I 

molecules24.  

HLA-II molecules present peptides originating from extracellular proteins captured by APCs via i.e. 

phagocytosis. These antigens are proteolytically degraded by lysosomal proteases such as 

cathepsins in phagolysosomes. HLA-II molecules are synthesized and assembled in the ER, with the 

invariant chain occupying the peptide binding cleft. The HLA-II complex is subsequently 

transported to the endosome, where endosomal proteases degrade the invariant chain, leaving a 

remnant peptide the same length as a presented peptide, the class II-associated invariant chain 

peptide (CLIP). HLA-DM, which is a nonpolymorphic HLA molecule facilitates the exchange of CLIP 

with an endosomal peptide. Due to the open peptide-binding cleft, peptides of up to 25 amino acids 

can bind to the HLA molecule. These are trimmed by proteases to the appropriate size for T-cell 

recognition. HLA-II molecules are stabilized by the bound peptide and the peptide-HLA-complex is 

delivered to the surface of the APC, where it is displayed for recognition by CD4+ T cells. 

Some APCs are able to take up, process, and present extracellular antigens on HLA-I molecules to 

CD8+ T cells25. This process, termed cross presentation, permits the presentation of exogenously 

sampled antigens from e.g. apoptotic cells, on HLA-I molecules rather than HLA-II molecules, along 

the classical antigen presentation pathway, resulting in the stimulation of naïve cytotoxic CD8+ T 

cells into activated CD8+ T cells. Cross presentation is essential in developing an immunity against 

viruses and perhaps tumors, that do not readily infect APCs but are rather intracellular processes 

resulting in HLA-I presentation of abnormal antigens (i.e. viral or TAAs). 

2.2.1 T CELL ACTIVATION 

T CELLS ARE DEFINED BY THEIR TCR 

T cells are lymphocytes that develop in the thymus and have the distinctive feature of a T-cell 

receptor (TCR) on their surface. The TCR is responsible for recognizing peptides presented by HLA 

molecules on other cells. The TCR is composed of two glycoproteins, the TCR α and β chain linked 

by disulfide bonds. Both chains have a variable and a membrane proximal constant domain, 

followed by a transmembrane region and a cytoplasmic tail. The variable regions of both α and β 

chains form three hypervariable complementarity determining regions (CDRs)26. The CDR 

mediates recognition of antigenic peptides. The VJ and V(D)J somatic recombination during T cell 

development generate the high variability of the CDR α and β chains, respectively27. The high CDR 
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diversity translates into a TCR repertoire with high antigenic diversity, estimated at around 106 

different clonotypes28. The TCR is expressed on T cells in a non-covalently bound octameric 

complex with CD3εγ, a CD3εδ, and a TCRζζ homodimer. Both CD3εγ and CD3εδ have an 

intracellular immunoreceptor tyrosine-based activation motif (ITAM), while the ζ chains each 

contain three ITAM signaling domains29. Tyrosine phosphorylation within the ITAM motifs results 

in T cell activation after TCR binding to a peptide HLA complex30. 

Two major groups of αβ T cells can be differentiated, based on the expression of the CD4 or the CD8 

coreceptor. Cytotoxic T cells are CD8+ and recognize peptide antigens presented by HLA-I 

molecules, while T helper cells express the CD4 coreceptor and recognize peptides presented by 

HLA-II molecules.  

THYMIC SELECTION 

T cells originate from pluripotent hematopoietic stem cells in the bone marrow. Double positive 

thymocytes (CD4+/CD8+) migrate into the thymic cortex, where thymic cortical epithelial cells 

present self-antigens on HLA molecules. Only thymocytes that interact well with either HLA-I or 

HLA-II molecules receive a survival signal through this interaction. T cells then become single 

positive by downregulating the expression of the unstimulated CD4 or CD8 surface receptor. Thus, 

T cells that can interact with both the HLA molecule and the peptide are selected for further 

development, while the other thymocytes “die by neglect”31. 

During negative selection, T cells are confronted with self-peptides presented by medullary thymic 

epithelial cells (mTECs). The transcription factor AIRE enables the expression of all self-antigens 

in the human body by mTEC cells. A strong interaction between T cells and HLA presented self-

peptides results in an apoptotic signal induced in the T cells. Thus, potentially autoreactive T cells 

are eliminated. The remaining thymocytes exit the thymus as mature naïve T cells (reviewed 

here31). 

Negative selection dictates that only low affinity T cell responses can be elicited against non-

mutated tumor-associated peptides, as high-affinity TCRs had already been eliminated. 

T CELL ACTIVATION 

Mature naïve T cells exit the thymus and circulate through the blood towards lymphoid organs. In 

lymphoid organs, they might encounter antigen presenting cells (APCs) that present a foreign 

antigen. Three signals are required for the activation of naïve T cells. The first signal is the 

interaction between the TCR and the respective HLA-peptide complex. Only this signal leads to T 

cell anergy, as it indicates an autoreactive T cell32. The second signal is mediated by costimulatory 

molecules on APCs. Multiple activating and inhibitory signals have been described, with CD28 being 

the most prominent33 on T cells and interacting with CD80 and CD86 on APCs34. The co-stimulatory 

interaction induces IL-2 which promotes T cell proliferation35. Signal three is provided by DC-

secreted cytokines that induce T cell polarization towards a certain effector function36. All three 

signals are required for successful T cell activation. 
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2.3 CELLULAR THERAPIES 

The key to successful immunotherapy is the targeted activation of an anti-tumor T cell response. In 

this section, we will introduce different avenues in which this was achieved. Starting with 

hematopoietic stem cell transplantation, different modalities of modifying a patient’s T cells in vitro 

and reinfusing them have been developed. Their success and limitations are described in this 

chapter. 

2.3.1 HEMATOPOIETIC STEM CELL TRANSPLANTATION (HSCT) 

HSCT has pioneered the concepts of stem cell therapy and immunotherapy as a tool against cancer. 

During the last 50 years, HSCT has become the standard of care for multiple malignant and 

nonmalignant hematologic diseases37. First instances of HSCT were performed in 1957 by Thomas 

and colleagues, with all patients dying within 100 days after the procedure. The first reports of 

HLA-matched sibling donor transplants were published only in 197138. Further research regarding 

HLA-matched donors, the conditioning regimen prior to HSCT, and the origin and management of 

adverse events optimized the procedure to the current standard. Milestones on this path were 

awarded with the Nobel Prize, in 1980 for the discovery of MHC and in 1990 for HSCT and organ 

transplant. Overall, HSCT requires full or partial bone marrow ablation with chemotherapy (e.g. 

cyclophosphamid) to allow a stable engraftment of donor hematopoietic stem cells (HSCs). The 

donor and recipient must be matched in as many HLA loci as possible, as every HLA mismatch 

negatively affects the success of HSCT39. To overcome the HLA-induced barrier, cord blood and 

partially HLA-matched HSCTs have emerged as a viable option, as cord blood stem cells require 

less strict HLA matching due to an immunologically naïve donor T cell repertoire40. However, 

engraftment and immune reconstitution are both slower than after HSCT from adult donors. The 

major side effects of HSCT are acute or chronic graft versus host disease (GvHD) and the 

accompanying graft versus leukemia (GvL) effect, as well as susceptibility to opportunistic 

infections and graft rejection. GvHD and GvL frequently occur concomitantly. Initially considered 

to be mediated by donor T cells, GvL is currently considered multifactorial, with an interplay of 

cytotoxic T cells, natural killer (NK) cells, dendritic cells (DCs) and minor histocompatibility 

antigens (MiHAs) playing a role41. Related therapeutic strategies have evolved from HSCT and are 

summarized by the umbrella term T-cell receptor (TCR)-T-cell therapy. These approaches include 

adoptive cell therapy (ACT), ACT with genetically modified TCRs, and ACT with engineered 

chimeric antigen receptors (CAR). 

2.3.2 CHIMERIC ANTIGEN RECEPTOR (CAR)-T CELLS 

Autologous T cells are transduced with CARs and reinfused into the patient. The CAR is 

incorporated into autologous T cells via lentiviral-, mRNA- or transposon-based transduction42. 

CARs typically encode an extracellular domain that mediates tumor recognition linked to an 

intracellular domain that mediates signaling for T-cell activation43. The extracellular domain 

consists of a tumor antigen-specific single chain fragment variable (scFv) domain of an antibody 

linked to an intracellular TCR CD3-ζ signaling chain and optional costimulatory molecules43. First 
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generation CARs contain CD3-ζ alone, second generation CARs contain a costimulatory domain 

(CD3-ζ/4-1BB), while third generation CARs contain multiple costimulatory domains (reviewed 

in44). Antibody scFvs can recognize a wide array of intact antigens independently of the HLA 

processing and presentation pathway.  

In vivo immune responses mounted against tumor self-antigens are limited by central or peripheral 

tolerance mechanisms. During thymic selection, high-affinity TCRs with specificities towards self-

antigens are eliminated, and only low affinity TCRs are maintained that might be insufficient for 

inducing a strong anti-tumor immune response. Breaking self-tolerance is therefore possible with 

CARs due to engineering of high affinity scFv receptors. 

Indeed, clinical success was obtained in the form of durable remission in a pediatric patient with 

treatment-refractory chronic lymphocytic leukemia (CLL) in 201145. The patient received lentiviral 

transduced autologous T cells with a CAR, consisting of the B-cell antigen CD19 coupled to CD137 

(costimulatory molecule 4-1BB) and CD3-ζ45. Since then, the CAR T-cell technology has been 

rapidly evolving, with two FDA-approved anti-CD-19 CARs (KYMRIAH™ and YESCARTA™) for the 

treatment of relapsed/refractory B‐cell acute lymphoblastic leukemia and diffuse large B‐cell 

lymphoma.  

Unfortunately, CAR T cells elicit serious, sometimes life-threatening side effects, such as cytokine 

release syndrome or tumor lysis syndrome46. These side effects originate from expression of the 

tumor-associated antigen CD19 on healthy B cells, leading to their elimination as a side effect. A 

strategy to limit on-target/off-tumor toxicities is the inclusion of a suicide safety switch47. 

Nevertheless, further limitations of this technology include the time- and cost-intensive production 

of CAR T cells, acquired tumor resistance mechanisms such as antigen loss, and in some cases a 

high proportion of dysfunctional/exhausted T cells obtained from the patient which reduce the 

yield of functional CAR T cells for infusion.  

CAR T cell therapy and TCR-engineered T cell therapy are two sides of the same coin, both having 

advantages and disadvantages. While CAR T cells target tumor-associated antigens via an HLA-

independent mechanism, TCR-engineered T cells are dependent on HLA restriction and the HLA 

presentation pathway. Most proteins (~72%)48 are localized intracellularly and they are only 

targetable by TCR-engineered T cells. As a result, the repertoire of antigens recognizable by CARs 

is far more limited. Still, CARs can recognize a variety of antigens, including glycosylated targets, 

irrespective of the HLA restriction, and HLA copy number on target cells. Despite the higher 

sensitivity of TCRs compared to CARs49, TCRs mediate the release of less cytokines than CARs50, 

thereby having a potentially reduced risk of cytokine release syndrome. Overall, CAR-T cell therapy 

has shown significant clinical benefit in hematologic diseases, while TCR-engineered T cells have 

shown clinical efficacy in both solid tumors (metastatic melanoma) and hematologic malignancies. 

Overall, both are expensive and difficult to manufacture individually for each patient and carry 

serious side effects and manufacturing errors.  

On a similar note, dendritic cell (DC) vaccination with a tumor-associated antigen has also been 

implemented clinically. In 2010, Sipuleucel-T (Provenge®), the first DC vaccine was FDA approved 

for metastatic castration-resistant prostate cancer. Sipuleucel-T is an active cellular therapy 
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consisting of autologous peripheral blood mononuclear cells (PBMCs) that include DCs which have 

been activated with a recombinant fusion protein consisting of prostatic acid phosphatase (PAP) 

fused to granulocyte–macrophage colony-stimulating factor (GM-CSF). The clinical study showed 

a relative reduction of 22% in the risk of death as compared to the placebo group, which 

represented an increase of 4.1 months in the median overall survival51. 

2.3.3 ADOPTIVE CELL THERAPY (ACT) 

ACT was pioneered by Steven Rosenberg in 198852 and is a procedure in which a patient’s own T 

cells with anti-tumor activity are isolated, expanded in vitro and reinfused into the same patient. 

ACT-based strategies can be divided into two categories: i) isolation of naturally occurring tumor-

specific T cells from existing tumor mass i.e. tumor-infiltrating T lymphocytes (TILs) and ii) genetic 

modification of blood-derived T cells with an engineered TCR. The goal of both strategies is to allow 

specific recognition of the tumor and mounting a robust anti-tumor immune response (reviewed 

in53). This was improved with the implementation of a nonmyeloablative lymphodepletion regimen 

followed by subsequent high-dose IL-2 treatment54. The immunodepleting preparative regimen 

given before the adoptive transfer facilitates the clonal repopulation of patients with anti-tumor T 

cells55 and eliminates regulatory T cells and other lymphocytes that would compete for cytokines 

such as IL-7 and IL-1556. Infusion with autologous TILs grown from the resected tumor nodules of 

patients with metastatic melanoma has proved efficacy of ACT for solid tumors, mediating tumor 

regression in 50% of patients, and complete tumor regression in 10 – 25% of patients1,56. However, 

the high numbers of infused T cells (1011) in vivo are still problematic to manufacture.  

Recent developments focus on generating autologous T cells transduced with a tumor specific TCR. 

In the first proof of principle study, T cells from metastatic melanoma patients were transduced 

with a TCR directed against A*02:01/MART-1 peptide. Infused TCR-modified T cells were 

persistent for more than a year and a sustained response was observed in a minor subset of treated 

patients57. Other trials have subsequently tested TCR-modified T cells with specificities against NY-

ESO-1 (in melanoma, synovial sarcoma, multiple myeloma), MAGE-A3 (myeloma, melanoma), 

MAGE-A4 (esophageal cancer and colorectal carcinoma) (summarized in table 1 from53).  

2.4 IMMUNE CHECKPOINT INHIBITION 

A further clinically effective immuno-oncology product was provided through the blockade of the 

cytotoxic T-lymphocyte antigen 4 (CTLA-4). CTLA-4 was initially identified in 198758, but its 

function as a critical immune checkpoint molecule that down-regulates pathways of T-cell 

activation was described by Jim Allison’s group in 199559. This discovery translated into the 

clinically applicable drug Ipilimumab (Yervoy®) which is a fully humanized monoclonal IgG1 

antibody that blocks CTLA-4 to promote antitumor immunity60. In contrast to other approved 

therapeutic antibodies, Ipilimumab does not directly target tumor cells, but binds to inhibitory 

receptors on lymphocytes, thereby enhancing a pre-existing anti-tumor immune response61. The 

phase 3 clinical trial showing an overall survival advantage for patients treated with Ipilimumab 

over patients treated with a gp100 peptide vaccine was performed in 201062, and led to the FDA 

approval of Ipilimumab in 2011 in stage IV metastatic melanoma.  
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CTLA-4 is exclusively expressed on T lymphocytes and counteracts the costimulatory effects of 

CD28. Both CD28 and CTLA-4 receptors on T cells share the same ligand CD80 (B7.1) and CD86 

(B7.2) on antigen presenting cells (APCs). Nevertheless, CTLA-4 has a higher affinity towards CD80 

and CD86 and can thus outcompete CD28 for its ligand. Under physiological circumstances, CTLA-

4 is expressed on T cells only after antigen recognition and T cell activation. Thus, CTLA-4 can avoid 

overactivation of T cells under abnormally high concentrations of antigens. CTLA-4 is also 

expressed on regulatory T cells (Tregs) and supports their immunosuppressive role. Thus, 

inhibitory receptors are essential for modulating the magnitude of the immune response to avoid 

autoimmunity and maintain self-tolerance61. During tumor development, mechanisms evolve that 

dysregulate the balance of inhibitory and stimulatory TCRs, in favor of higher abundance of 

inhibitory molecules. Thus, an immune-suppressive microenvironment is established that does not 

hinder tumor growth.  

Despite severe immune-related toxicities, Ipilimumab is the standard therapy for late stage, heavily 

pretreated melanoma patients. Clinical trials are evaluating the efficacy of several additional 

checkpoint molecules such as PD1, PDL1, LAG3, and TIM3. The anti PD1 antibodies are the most 

advanced, with Pembrolizumab (Keytruda®) and Nivolumab (Opdivo®) having been approved as 

a second-line treatment in melanoma in 2014. 

While effective in a wide range of solid tumors, the main mechanism of action of immune 

checkpoint inhibitors is boosting of a pre-existing immune response largely mediated by TILs. 

Thus, tumors with a poor TIL infiltration and low immunogenicity are less responsive to immune 

checkpoint inhibition and could be potentially targeted with ACT. 

2.5 IMMUNOTHERAPEUTIC APPROACHES IN DEVELOPMENT 

Multiple vaccination strategies that aim to induce an anti-tumor immune response are being tested 

in clinical trials. Promising delivery platforms for tumor-associated antigens include RNA-based 

technologies frequently packaged in lipid nanoparticles (Curevac, BioNTech, Moderna), viral vector 

vaccines (Orf virus-based vaccine vector D1701-V63, KISIMA64, other platforms reviewed here65), 

or peptides administered together with adjuvants66,67. A prominent example of vaccine delivery via 

viral vectors is the second cancer vaccine that received FDA approval: talimogene laherparepvec 

(T-VEC) for the treatment of advanced melanoma. The oncolytic immunotherapy is administered 

intralesionally and comprises a genetically engineered attenuated herpes simplex virus type 1 

(HSV-1) encoding GM-CSF68.  

All these immunotherapeutic approaches share the challenge of finding actionable target antigens 

to direct an immune response against. Despite the wide repertoire of therapeutic agents and 

formulations, only a handful of tumor-associated antigens are targeted. Currently employed 

antigens are not ideal, as their expression profile is not restricted to the tumor, but oftentimes is 

abundant on further healthy tissues. Thus, severe side effects arise. New potential TAAs can be 

divided into two categories: HLA dependent and HLA independent. HLA independent targets are 

best suited to be recognized by antibodies and CAR-T cells and represent cell surface antigens (not 

further described here). 
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HLA-dependent targets can be natural HLA ligands stemming from self-proteins abnormally 

expressed in the tumor, or cancer-testis antigens (CTAs), that have an exclusive expression on 

gametogenic cells and tumors. Further classes of tumor-associated HLA-dependent peptide 

antigens are discussed in the following sections. Tumor-specific HLA ligands can be targeted by 

ACT, therapeutic peptide vaccination, RNA vaccines, viral vector vaccines, TCR mimic antibodies 

and many more. Our work mainly focuses on peptide vaccination with directly identified naturally 

presented TAAs, therefore, the remaining part of the introduction will focus on this subset of TAAs 

with emphasis and examples from peptide vaccination trials. 

2.6 IMMUNOPEPTIDOMICS 

The study and characterization of HLA presented peptides (e.g. HLA ligands) is termed 

immunopeptidomics or HLA ligandomics. These two terms will be used interchangeably 

throughout this work. The first reasonably successful isolation of HLA-associated peptides was 

performed by proteolytic digestion with papain from large volumes of starting material in the 

1970s69,70. However, the large quantity of starting material dissuaded the wider implementation of 

this method. The subsequent successful method of directly identifying endogenously processed 

and presented HLA ligands by LC-MS/MS was pioneered in the 1990s by Hunt and colleagues71. At 

the same time, Rammensee and colleagues used HPLC and Edman degradation to sequence HLA 

ligands72,73. Three main techniques of biochemical extraction of HLA ligands were developed 

roughly concomitantly: (1) strong acid elution of HLA-I and -II ligands from whole cell lysate using 

trifluoroacetic acid74,75, (2) mild acid elution (MAE) of HLA-I ligands from the cell surface of 

suspension cell lines76, and (3) immunoaffinity purification (IP) of HLA-I and -II peptide complexes 

from solubilized cells followed by peptide isolation77.  

These early HLA ligand profiling studies identified only tens of endogenously processed and 

presented ligands, while current studies report thousands78,79 if not tens of thousands of HLA 

ligands80. The increasing identification depth of immunopeptidomes can be attributed to major 

improvements in mass spectrometry and chromatography instrumentation but also partially to 

computational tools capable of automizing spectral identification.  

Nevertheless, the experimental isolation of HLA ligands is still roughly the same as in the 1990s, 

meaning that the same experimental uncertainties are a reality today. A first unknown factor is the 

yield of the HLA ligand isolation procedure, particularly the amount of HLA ligands lost throughout 

the immunopurification procedure, elution, ultrafiltration, and C18 purification prior to LC-MS/MS 

analysis. Secondly, a qualitative bias originates from an improved sequence-dependent detection 

in LC-MS/MS analyses towards peptides with basic N and C terminal residues. Due to the nature of 

the HLA binding motif, allotypes such as HLA-A*11 and HLA-A*03 have improved detection rates, 

due to lysine and arginine residues at the C terminus. A third bias resides in the antibody selection 

used to precipitate HLA-peptide complexes. The specificity, selectivity, and cross-reactivity of the 

selected antibodies introduces oftentimes unknown biases towards the peptide repertoire 

identified from a certain tissue or cell line. Two possibilities are available: employing pan HLA-I or 

-II antibodies or employing HLA-allotype-specific antibodies. The most frequent pan HLA-I 

antibody used in most immunopeptidomics experiments is W6/3281. Alternatives encompass HLA 
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allotype-specific antibodies such as BB7.2 against A*0271,82; GAP-A3 against A*0383, ME1-1.2 

against B*0783,84 etc. After MS identification, peptides need to be associated with their respective 

HLA allotype. Allotype-specific antibodies have the advantage of rendering this step obsolete, 

provided they are specific to the HLA allotype of interest. However, only a hand-full of HLA allotype-

specific antibodies have well documented specificities and clean HLA allotype cross-reactivity 

profiles.  

In the meantime, the performance of HLA-I binding prediction algorithms has constantly improved, 

particularly since elution data has been included in training datasets. This allows for an 

increasingly confident deconvolution of multi-allelic peptide species to the HLA allotypes of the 

respective donors. Overall, for HLA-I immunopeptidomics experiments, binding prediction 

algorithms have a high accuracy and sensitivity that allow the convenient usage of the pan HLA-I 

antibody W6/32. 

The opposite is the case for HLA-II immunopeptidomics studies. Firstly, HLA-II molecules have an 

open peptide binding groove molded by both the α and β chains. As HLA alleles are inherited co-

dominantly, all permutations of α and β chains need to be computed and the resulting peptide-

binding specificities accounted for, when deconvoluting multi-allelic immunopeptidomes. To 

experimentally compensate for the increased complexity, the HLA-DR-specific antibody L24385 is 

being preferentially used to capture HLA-II peptide complexes. HLA-DR has a monomorphic α 

chain that facilitates a confident binding prediction as well. Pan HLA-II antibodies such as Tü3986 

are used by our group, but generally HLA-II ligand characterization has been mostly stagnant so 

far. Recently, multiple groups have been concomitantly working on improving HLA-II binding 

prediction algorithms resulting in four new tools published in October 2019: NetMHCIIpan4.087,88, 

MARIA89, neoMHC290, and MixMHC2pred91. With substantial improvements in HLA-II binding 

prediction algorithms, it appears easy to fathom a future in which both HLA-I and -II 

immunopeptidomes are equally assessed for precision medicine, particularly as anti-cancer 

immune responses require the interplay of CD4+ and CD8+ T cells92.  

2.7 THE ENDLESS SEARCH FOR TARGETS FOR IMMUNOTHERAPY 

Two common strategies of identifying tumor-specific HLA-ligands are employed, one based on 

reverse immunology, the other on direct identification of naturally presented HLA ligands. In 

reverse immunology, somatic mutations are identified by exome sequencing of tumor cells and 

PBMCs from blood. Resulting somatic mutations are translated to potential peptide sequences in 

silico and subjected to HLA-binding prediction tools to prioritize candidates that are most likely to 

be presented by the HLA allotypes of the respective subject. The major shortcoming of this 

approach is the enrichment of false positives, with reports estimating over 90% of neoantigens not 

being presented by HLA molecules, let alone eliciting T-cell dependent immune responses93. The 

underlying assumption that HLA-binding prediction algorithms account for all intermediate steps 

of the antigen processing pathway has proven faulty.  

To overcome this limitation, immunopeptidomics analyses can deliver direct evidence of HLA-

peptide presentation. Here, HLA-presented peptides are directly isolated and sequenced by LC-
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MS/MS from primary tumor samples. However, the Human Immuno-Peptidome Project 

Consortium (HIPP) has concisely summarized the challenges impairing the wide implementation 

of immunopeptidomics in research and clinical settings. Beside the non-trivial experimental 

procedure that requires a high amount of sample input, frequent challenges regarding MS 

technologies include the cost, sensitivity, reproducibility, and accessibility to large volumes of 

generated MS data94. Consequently, the field has been expanding slowly giving way to the faster 

and cost-effective method of reverse-immunology albeit with only limited clinical success. 

Proteogenomic approaches combining exome and RNA sequencing with HLA immunopeptidomics-

based validation of predicted neoantigens have gained in popularity80,95. Several lines of evidence 

suggest that actionable T-cell targets against cancer are not limited to mutated neoantigens67, but 

can be expanded to non-mutated78,96,97, post-translationally modified84,98, cryptic99–101, and 

proteasomally spliced102–105 HLA ligands. Characteristic features for all these types of tumor-

associated or tumor-specific antigens are listed below. 

2.7.1 NON-MUTATED SELF-ANTIGENS 

Non-mutated natural HLA ligands have been isolated and characterized for the past three decades, 

mainly in mice106,107, human tumors97,108–110, or tumor cell lines79,90,111,112. Early studies that describe 

binding motifs and anchor residues mediating specific binding of peptides to HLA allotypes foresaw 

the potential of HLA ligands in immuno-oncology75. Non-mutated natural HLA ligands are derived 

from canonical proteins, in their canonical reading frames, and can therefore be identified by 

performing database search of LC-MS/MS data either against the standard reference human 

proteome or against an individualized canonical proteome translated in silico from whole exome 

sequencing (WES) data.  

When defining non-mutated TAAs it is necessary to compare tumor HLA ligandomes with a benign 

counterpart to predict possible on-target/off tumor adverse events. On-target/off-tumor adverse 

events can lead to dramatic outcomes, even death, as has been observed after administration of an 

affinity-enhanced TCR directed to a HLA–A*01–restricted MAGE A3 antigen (EVDPIGHLY) for use 

in adoptive T cell therapy113,114. As benign human tissue is quite scarce, most studies rely on multi-

tissue transcriptomics data from public repositories such as GTEx2,3 for comparative analysis. The 

scientific community has widely accepted and repeatedly proven that evidence on transcript level 

correlates poorly with protein evidence4,115, let alone HLA ligand presentation106,116,117. 

Alternatively, whenever possible, histologically normal tissue adjacent to the tumor is being 

employed as a benign counterpart96,118,119. In these approaches, comparative ligandome profiling 

between tumor and benign within one tissue type is possible. Furthermore, label-free quantitative 

LC-MS/MS analysis between adjacent benign tissue and the tumor ligandome is possible, allowing 

the definition of over-expressed ligands in tumor as candidates for immunotherapy. However, 

adjacent benign tissue has been in proximity with the tumor, thus potentially sharing the same 

tumor microenvironment118. Overall, in an ideal world, multi-tissue reference libraries of benign 

immunopeptidomics data, covering as many HLA allotypes as possible enable a more reliable 

definition of non-mutated TAAs. The first step toward such a library has been achieved with the 

HLA Ligand Atlas project, described in the results section 4.1120. 
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The main advantage of defining non-mutated HLA ligands as TAAs is their potential to be shared 

among different individuals. Shared TAAs offer a major advantage in a clinical and pharmacological 

setting, as they allow manufacturing and quality control of the peptide vaccine prior to patient 

treatment, as described by the warehouse concept121. The warehouse concept encompasses semi-

individualized treatment options that can be readily administered after e.g. HLA typing of the 

patient. Warehousing is common in peptide vaccination strategies66 as a first line treatment, until 

the patient’s tumor can be analyzed and a fully individualized peptide vaccine can be designed66. 

In contradiction with the warehouse concept, we have shown that the immunopeptidome varies 

considerably across individuals, leading to clustering of donors rather than tissue types120. This 

highlights the main caveat of employing shared non-mutated TAAs for immunotherapy that were 

discovered in one patient cohort onto another one: a high possibility that the peptide in question 

is not presented and can therefore not elicit an immune response. T-cell responses against non-

mutated TAAs can be induced in vitro78,97,108,110, although in vivo T cell responses have not yet been 

translated into clinical advantage over non-treated patient groups. By being derived from self-

proteins, non-mutated TAAs must overcome central tolerance, potentially by being administered 

with the correct adjuvant122. 

2.7.2 NEOANTIGENS  

Neoantigens are generated by somatic mutations occurring during tumor development and are per 

definition tumor exclusive. Neoantigens might have an increased immunogenicity based on the lack 

of previously induced central tolerance. Several lines of evidence seem to point towards an 

essential role of neoantigens in antitumor immune responses. First, meta-analyses based on RNA-

sequencing data from thousands of tumor samples across 18 solid tumor types form The Cancer 

Genome Atlas (TCGA) show that the number of neoantigens per tumor type correlated positively 

with gene expression profiles of cytolytic T cells123. Consistently, a systematic analysis of whole-

exome sequencing of 619 colorectal cancers showed that a high neoantigen load is correlated with 

high TIL infiltration and improved survival124. Second, preexisting TILs with specificities against 

neoantigens mediate anti-tumor immune responses after immune checkpoint inhibition125 or 

adoptive T cell transfer126,127. Third, neoantigen-specific T cells can lyse autologous tumor cells that 

present mutated peptides109. First evidence of in-human tumor regression after adoptive transfer 

of neoepitope-specific CD4+ T cells was shown in a patient with cholangiocarcinoma128. 

Based on these findings and the ease of access to WES and RNA-sequencing, multiple clinical 

studies were conducted to test efficacy of neoantigen vaccination in eliciting an anti-tumor immune 

response66,67,129,130. Multi-epitope vaccination either as peptide pools66,67,130 or RNA formulation129 

were administered in a prime-boost approach in parallel to the standard of care and delivered 

reproducible results. All studies reported that patients immunized with neoantigen-based vaccines 

displayed CD4+ T-cell responses more frequently than CD8+ T cell responses. Mostly polyfunctional 

central or effector memory T cells with low PD1 expression were induced, indicating a possibility 

for combination therapy with immune checkpoint inhibitors. Furthermore, both CD4+ and CD8+ T 

cells could differentiate between the neoepitope and the wild type peptide. Overall, patients 
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immunized with neoantigen-based vaccines displayed expanded neoantigen-specific T-cells, and 

these studies confirmed safety, feasibility, and low toxicity. 

Nevertheless, tumors with low mutational burden lack the advantage of having a large repertoire 

of somatic mutations. Given that the identification of actionable neoantigens is fraught with a high 

false discovery rate, a large proportion might not be naturally presented on HLA molecules, thereby 

unable to elicit T cell responses. Thus, direct identification of naturally presented neoantigens can 

be achieved via proteogenomic approaches80. As extensively reviewed93, even if tens of thousands 

of mutations are called in published data, LC-MS/MS evidence is available only for a few of them, 

and even less are immunogenic. Furthermore, large quantities of tumor sample are required for 

immunopeptidomic analyses, and the mass spectrometric limit of detection might lead to missing 

values due to low copy numbers.  

2.7.3 MIHAS 

Minor histocompatibility antigens (MiHAs) are peptides presented on HLA-I and -II molecules, that 

contain germline-encoded non-synonymous single nucleotide polymorphisms (SNPs) that occur 

only in a fraction of the population74. To date, MiHAs are most reliably identified through 

proteogenomic approaches combining next-generation sequencing to identify patient-individual 

SNPs and LC-MS/MS based immunopeptidomics, to validate their presentation on HLA 

molecules131. Genomic data are still insufficient to discover MiHAs since only 0.5% of non-

synonymous SNPs result in MiHAs132. 

MiHAs can lead to both GvHD and GvL effects after allogenic HSCT despite matched HLA allotypes 

between donor and recipient. Single amino acid differences in presented peptides are detectable 

by T cells and can become immunoreactive. Indeed, HSCT is an efficient treatment option for 

various hematologic diseases, but GvHD toxicity occurs, since unselected allogeneic T cells react 

against a multitude of MiHAs found in all tissues. Targeting tumor-specific MiHAs directly has been 

shown to elicit GvL effect, without causing GvHD133.  

Both MiHAs and tumor-specific neoantigens are seen as non-self-epitopes by infused therapeutic 

T cells. Nevertheless, MiHAs have a series of advantages over neoantigen targets. First, germline 

polymorphisms that produce MiHAs are present in all cells and have not been subjected to negative 

selection, because only transplanted allogeneic T cells recognize MiHAs as non-self131. Second, in 

contrast to neoantigens, MiHAs are present in all cancer cells. Thus, intratumoral heterogeneity 

does not affect the uniform presentation of MiHAs, as opposed to sporadically presented 

neoantigens that originate from passenger mutations. Third, MiHAs are shared between many 

subjects, whereas neoantigens are currently patient-individual (reviewed in133,134). 

2.7.4 POST-TRANSLATIONALLY MODIFIED  

Proteins undergo post-translational modifications (PTMs) that modulate their function and cellular 

localization. Such PTMs include glycosylation, phosphorylation and a few hundred more, resulting 

in a large number of proteoforms that originate from the ~20,000 protein-coding genes135. 

Phosphorylation is a key modification that regulates protein function in almost all cellular 
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processes. The aggregated number of phosphorylation sites is steadily increasing, with ~200,000 

currently described136. Given that dysregulation of signaling pathways and metabolic dysfunction 

are hallmarks of cancer137, it stands to reason, that peptides harboring tumor-associated PTMs are 

presented on HLA molecules. Indeed, both HLA-I and -II presentation of phosphopeptides has been 

repeatedly described83,138,139.  

HLA-presented phosphopeptides have been described to be tumor-specific and immunogenic98. 

Furthermore, the same study showed that healthy individuals display immune responses with 

memory characteristics against phosphopeptides. Specific T cells produced IFNγ when stimulated 

with the phosphopeptide but not when stimulated with the unphosphorylated peptide or other 

phosphopeptides, indicating that T cell recognition was phosphate-dependent and peptide 

sequence-specific. Also, after HSCT, some AML patients developed responses against 

phosphopeptides of the same magnitude as against immunodominant CMV epitopes indicating that 

beside MiHAs, phosphopeptides might be targets for GvL98.  

In agreement with these observations, the same group recently published a clinical study that 

showed safety and immunogenicity of peptide vaccination with two phosphorylated HLA-I 

peptides pBCAR3126-134 (IMDR(pT)PEKL) and pIRS21097-1105 (RVA(pS)PTSGV) in 15 melanoma 

patients139. Thus, phosphorylated peptides represent a new source of tumor-associated antigens 

that can be added to the arsenal of antigens to target. 

2.7.5 CRYPTIC 

HLA ligands stemming from non-canonical transcripts have been termed differently in recent 

years: cryptic101, non-canonical100, nuORFs (novel unannotated open reading frames)99, or 

aberrantly expressed99. Generally, cryptic HLA ligands refer to a subset of peptides stemming from 

RNA transcripts from presumed non-coding regions that cover the 5’UTR, 3’UTR, off-frame 

translation events, intronic regions, lncRNAs, pseudogenes, and transposable elements 24,99,100. 

Their presentation on HLA molecules has been anecdotal until recently, but through ribosome 

profiling (RiboSeq), an orthogonal level of evidence has been achieved. Ribosome profiling assays 

mRNA translation by capturing and sequencing ribosome-protected mRNA fragments. Through 

this method a plethora of translated novel unannotated open reading frames were discovered99.  

The large-scale, confident identification of cryptic HLA ligands has been possible only recently, with 

the advent of proteogenomic approaches. Accounting for all possible translated genomic regions 

from which cryptic peptides can arise inflates the database search space enormously, leading to a 

higher than reasonable number of false annotations. Therefore, reducing the database size by 

employing personalized databases generated from RNA sequencing data100,101 or RiboSeq data140 

of the same sample have been used as an alternative strategy. Alternatively, de novo peptide 

sequencing of tandem mass spectra has been adopted to circumvent the database size limitation. 

Thus, different approaches and computational workflows have been recently proposed to 

confidently identify cryptic HLA ligands. Two recent algorithms include NewAnce100 and Peptide-

PRISM24. Other approaches focus on reducing the size of the database. 
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For example, Laumont and collegues101 focused their efforts on identifying actionable cryptic TAAs 

by performing RNA sequencing of both human tumors and HLA-IIhi mTECs as “normal control”. 

mTEC cells mediate T-cell selection to induce central tolerance to HLA peptides, mainly through 

expression of the autoimmune regulator protein (AIRE). They identified tumor-specific RNA reads 

that were three-frame translated in silico. They generated a canonical protein database that was 

concatenated with the cancer-specific proteome to create a global database individual for each 

sample.  

Ousepnskaia and colleagues140 generated RiboSeq profiles for 29 malignant and healthy samples 

and developed an analytical approach for hierarchical ORF prediction. Over all samples, they 

generated a high-confidence database containing 86,421 annotated and 237,427 novel 

unannotated ORFs. According to the authors, nuORFdb has 1.46-fold more candidate HLA-I 

compatible 9mers than the reference proteome, making it an adequate size for routine use in 

immunopeptidomics studies.  

In general cryptic peptides are thought to contribute between 3.3%99 and 10%95 to the HLA ligand 

pool. Cryptic peptides share the same physicochemical properties as canonical peptides100, and 

seem to be HLA-I allotype specific, with certain allotypes having a greater predisposition of 

presenting them24. Cryptic peptides can contain somatic mutations, expanding the potential 

neoantigenic pool99. However, one study screened over 500 cryptic antigens for T-cell responses in 

autologous TILs/PBMCs, an endeavor that lead to only one positive response100. It remains to be 

seen if cryptic peptides can elicit sustained immune responses in vitro and in vivo, apart from proof 

of principle studies95. 

2.7.6 PROTEASOMALLY SPLICED 

Splicing of peptides in the proteasome seems to be a byproduct of protein degradation141. Splicing 

involves a transpeptidation reaction based on the formation of an acyl-intermediate of a peptide 

fragment with the proteasome. The ester bond is not hydrolyzed, but the free amino group of a 

second peptide fragment drives a nucleophilic attack onto the acyl-enzyme intermediate resulting 

in a non-templated peptide sequence142. This model supports the observation that proteasomally 

spliced peptides can have different intervening sequences and fragments can originate from the 

same protein (cis splicing) or different proteins (trans splicing). The first described proteasomally-

spliced peptides have been identified by characterizing epitopes recognized by cytotoxic CD8+ T-

cell clones in melanoma143 and renal cell carcinoma144. 

In 2016, a study proposed a computational method aimed to identify proteasomally spliced 

peptides from LC-MS/MS-based immunopeptidomics data. The results led to the extraordinary 

claim that proteasomally-spliced peptides account for ~30% of HLA presented peptides102. These 

proteasomally-spliced HLA-eluted peptides had the same length distribution as canonical HLA 

ligands, but considerably lower binding affinities towards HLA-A and -B allotypes. At the time, the 

authors argued that the HLA binding algorithms were trained on canonical peptides and had a low 

predictive power for spliced peptides. It turned out that the identification of these proteasomally-

spliced peptides was fraught with an exceedingly high false discovery rate and spectra annotated 

to proteasomally-spliced peptides could be oftentimes explained by a PTM (data not shown) or 
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non-canonical reading frame24,104. Overall, the existence of proteasomally-spliced peptides has not 

been contested, but their abundance has been corrected to cover < 5% of the epitope space24,104,145. 

Additionally, proteasomally-spliced peptides have to share the same physicochemical properties 

as canonical peptides, and their identification must be supported by a robust FDR control103,104. 
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3 AIM OF THIS STUDY 

The advent of immunotherapy has marked a new avenue of efficient cancer treatment options. 

However, immune checkpoint inhibition, adoptive T cell therapies, and antibody-based therapies 

are clinically effective only in a subset of patients. Recent advances show that clinical efficacy is 

dependent on various factors such as tumor mutational burden (TMB)146, abundance of 

preferentially CD8+ TILs, and HLA allele divergence147. As CD8+ T cells and their interplay with CD4+ 

T cells are currently considered to be the main mediators of immune-induced responses to 

cancer92, the search for their HLA-peptide targets has captured the interest of the scientific 

community.  

In this context, the present work aims to characterize the immunopeptidomic landscape of both 

benign and malignant tissues. While numerous efforts have mapped the tumor, adjacent benign, 

and PBMC-associated immunopeptidome, there are so far no reference immunopeptidomes of 

benign tissues. This work presents the HLA Ligand Atlas, a first draft of a comprehensive multi-

tissue resource of benign human immunopeptidomes. Evaluating the presentation of TAAs on 

other tissues than the original tumor source enables prevention of potential on-target/off-tumor 

adverse events. On-target/off-tumor-mediated adverse events in immunotherapy settings can 

have lethal outcomes114,148. With the data encompassed in the HLA Ligand Atlas, potential TAAs 

with a broad HLA representation on benign tissues can be filtered out at an early stage of target 

discovery, a quality control step that can substantially improve future TAA safety profiles. 

Furthermore, shared cryptic HLA-presented peptides were identified from benign tissues, and the 

RAW LC-MS/MS data can be searched for post-translationally modified peptides, and other classes 

of HLA presented antigens. 

A further objective this work is to address a series of technical aspects with respect to the mass 

spectrometric instrumentation, an essential prerequisite for in-depth characterization of 

immunopeptidomes from low amounts of sample input. 

A third aim is to characterize the immunopeptidomic landscape of breast cancer. Breast cancer is 

the most frequent cancer in women and is a tumor type with a low mutational burden. Particularly 

the triple negative molecular subtype has a poor clinical prognosis and would benefit immensely 

from further therapeutic options. Therefore, we comparatively profiled the immunopeptidomes of 

breast cancer patients with the multi-tissue dataset encompassed in the HLA Ligand Atlas. We were 

able to define shared non-mutated TAAs, eligible for peptide vaccination. Following completion of 

the LC-MS/MS data acquisition and RNA and exome sequencing in 10 breast cancer patients, 

potential TAAs originating from other sources such as cryptic peptides or neoantigens, will be 

evaluated. All these HLA-based TAAs have a broad applicability for cellular therapies such as 

adoptive cell transfer, but more importantly for peptide vaccination purposes.  
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4 RESULTS 

The results section of this thesis is divided into three parts.  

Part I describes “The HLA Ligand Atlas – A resource of natural HLA ligands presented on 

benign tissues.” The HLA Ligand Atlas is the first collection of benign ligandomes isolated from 29 

tissues across 21 human subjects. The data is easily searchable via the online resource hla-ligand-

atlas.org. This project is finalized and in the process of publication. 

Part II describes a benchmark study between five different LC-MS/MS setups from three vendors 

with the purpose of evaluating complementary technologies suitable for immunopeptidomics 

experiments. For this purpose, samples comprising a serial dilution were distributed for LC-MS/MS 

analysis. Based on these results, two mass spectrometers were selected to complement the 

available Orbitrap Fusion Lumos, the q Exactive HF and the TIMS TOF Pro. This project is finalized, 

the instruments chosen, have been acquired. 

Part III focuses on defining tumor-associated antigens in breast cancer. The basis for this project 

is the benign immunopeptidome defined in part I. Comparative immunopeptidomic profiling 

reveals a set of antigens shared between three molecular subtypes and multiple subjects. This 

project is not finalized yet, LC-MS/MS measurements, as well as RNA- and exome sequencing data 

for 10 patients are being acquired. The final data analysis will be complemented with 

immunogenicity experiments.  
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4.1 PART I: THE HLA LIGAND ATLAS 
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4.1.1 ABSTRACT 

The human leukocyte antigen (HLA) complex controls adaptive immunity by presenting defined 

fractions of the intracellular and extracellular protein content to immune cells. Here, we describe 

the HLA Ligand Atlas, an extensive collection of mostly matched HLA-I and -II ligandomes from 225 

benign samples (29 tissues, 21 subjects). The initial release covers 51 HLA-I and 86 HLA-II 

allotypes presenting 89,853 HLA-I- and 140,861 HLA-II ligands. We observe that the 

immunopeptidomes differ considerably between tissues and individuals on both source protein 

and HLA-ligand level. 1,407 HLA-I ligands stem from non-canonical genomic regions. We highlight 

the importance of comparatively analyzing both benign and malignant tissues to inform tumor 

association, based on a case study in three glioblastoma patients. The resource provides insights 

into applied and basic immune-associated questions in the context of cancer immunotherapy, 

infection, transplantation, allergy, and autoimmunity. It is publicly available at www.hla-ligand-

atlas.org. 

4.1.2 INTRODUCTION 

In the past two decades, sequencing the human genome (genomics)149,150, transcriptome 

(transcriptomics)2,3, and proteome (proteomics)48,151,152 have been milestones that enable a multi-

dimensional understanding of biological processes. In the context of the immune system, a 

subsequent omics layer can be defined as the HLA ligandome or the immunopeptidome, comprising 

the entirety of HLA presented peptides. HLA molecules present peptides on the cell surface for 

recognition by T cells. These T cells can distinguish self from foreign73,153 peptides, a crucial 

mechanism in adaptive immunity. Despite HLA-I ligands originating primarily from intracellular 

proteins, the correlation with their precursors (mRNA transcripts and proteins) is poor97,116,117, 

limiting approaches based on in silico HLA-binding predictions in combination with 

transcriptomics and proteomics data alone154,155. 

The importance of investigating HLA ligandomes from human healthy and diseased tissues has 

been well recognized94,156,157 to improve HLA-binding prediction algorithms87,90,91,158, and 

immunogenicity prediction analysis159,160, but also, to inform precision medicine93,108,161. Direct 

evidence of naturally presented HLA ligands is required to prove visibility of target peptides to T 

cells. This is a challenge, for example, in the context of cancer immunotherapy approaches that aim 

to identify optimal tumor-specific HLA-presented antigens66,80,108. While their discovery has been 

made possible by proteogenomics approaches, a major impediment still resides in the lack of 

benign tissues as a reference for the definition of tumor specificity of target peptides97,100,101. Due 

to the scarce availability of benign human tissue ligandomes, common alternative strategies are 

based on transcriptomic datasets either from the same patient, or from multiple tissues extracted 

from publicly available repositories2,3. Frequently, morphologically normal tissue adjacent to the 

tumor (NATs, normal tissues adjacent to tumor) is used as a control in cancer research. However, 

NATs have been shown to pose unique challenges, since they may be affected by disease and have 

been suggested to represent a unique intermediate state between healthy and malignant tissues, 

with a pan-cancer-induced inflammatory response118. Additionally, for some malignancies e.g. of 

the brain, surgical resection of NATs is inadmissible. Even in cancers that allow for the extraction 
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of NATs, it is still necessary to investigate the presence of potential tumor-associated targets 

(TAAs) on other tissues to anticipate on-target/off-tumor, systemic adverse events when 

administering immunotherapies to patients114,148. 

In this study we thus employed tissues originating from research autopsies of subjects that have 

not been diagnosed with any malignancy and have deceased for other reasons, an approach 

previously described as a surrogate source of benign tissue118,162. Although these tissues were 

affected by a range of non-malignant diseases, we designate their tissues as benign to emphasize 

morphological normality and absence of malignancy. This definition of benign is in agreement with 

the definition used by the Genotype-Tissue Expression Consortium2,3, which provides RNA 

sequencing data of benign tissues originating from autopsy specimens. 

We performed a large-scale mass spectrometry (LC-MS/MS)-based characterization of both HLA-I 

and -II ligands providing data from benign human tissues obtained at autopsy. The HLA Ligand 

Atlas is a first draft of a pan-tissue immunopeptidomics reference library from benign tissues 

comprising for the first time 225 mostly paired HLA-I (198) and -II (217) ligandomes from 29 

different benign tissue types obtained from 21 human subjects. For the data analysis, we employed 

MHCquant163, the first open-source customized computational tool for immunopeptidomics assays 

that provides database search, false discovery rate (FDR) scoring, label-free quantification and 

binding affinity predictions. In addition, we implemented a user-friendly, web-based interface to 

query and access the data at https://hla-ligand-atlas.org. Despite its unprecedented 

comprehensiveness, the HLA Ligand Atlas currently contains only a limited number of tissues and 

individuals. However, it has been designed as an open and extensible community resource and we 

strongly encourage the submission of additional data for inclusion. Consistent quality control and 

data processing will ensure a high quality of the data. 
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4.1.3 MATERIALS AND METHODS 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Human tissue samples were obtained post-mortem during autopsy performed for medical 

reasons at the University Hospital Zürich. The study was approved by the Cantonal Ethics 

Committee Zürich (KEK) (BASEC-Nr. Req-2016-00604). For none of the included patients a 

refusal of post-mortem contribution to medical research was documented and study procedures 

are in accordance with applicable Swiss law for research on humans (Bundesgesetz über die 

Forschung am Menschen, Art. 38). In addition, the study protocol was reviewed by the ethics 

committee at the University of Tübingen and received a favorable assessment without any 

objections to the study conduct (Project Nr. 364/2017BO2). 

None of the subjects included in this study was diagnosed with any malignant disease. Tissue 

samples were collected during autopsy, which was performed within 72 hours after death. Tissue 

annotation was performed by a board-certified pathologist. Tissue samples were immediately 

snap-frozen in liquid nitrogen. 

Thymus samples were obtained from the University Children' s Hospital Zürich/ Switzerland. 

Thymus tissue was removed during heart surgery or for other medical reasons. Tissue samples 

from residual material not required for diagnostic or other medical purposes were obtained after 

informed consent from the parents of the respective children, in accordance with the principles 

of the Declaration of Helsinki. The study was approved by the Cantonal Ethics Committee Zürich 

(KEK) (EC-Nr. 2014-0699, PB_2017-00631) on February 27th 2015. 

Furthermore, two benign ovarian tissue samples were collected for the project (OVA-DN278 and 

OVA-DN281). Both patients were postmenopausal and had a bilateral ovarectomy for 

cystadenofibromas, which were diagnosed by histopathologic examination of the specimen. The 

samples were obtained from a normal part of the ovary. The study was approved by the ethical 

committee of the University of Tübingen (354/2011BO2). 

Finally, we included three primary glioblastoma tumor samples to illustrate a selection strategy 

for tumor associated antigens. The primary glioblastoma tumor was removed for patients 

GBM616 and GBM654, whereas, a recurrent tumor was analyzed for GBM753. The study was 

approved by the Cantonal Ethics Committee Zürich (KEK) (EC-Nr. 2014-0699, PB_2017-00631). 

HLA TYPING 

Multiple HLA typing approaches were performed for the different sources of patient material.  

Autopsy subject AUT-DN08, AUT-DN16, and two benign ovary samples (OVA-DN278 and OVA-

DN281) were typed at the Department of Transfusion Medicine of the University Hospital of 

Tübingen. High-resolution HLA typing was performed by next-generation sequencing on a GS 

Junior Sequencer using the GS GType HLA Primer Sets (both Roche, Basel, Switzerland). HLA 

typing was successful for HLA-A, -B, and -C alleles. However, HLA-II typing was only reliable for 

the HLA-DR locus, and incomplete for the HLA-DP and -DQ loci. 
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Therefore, we performed exome sequencing of lung tissue for remaining autopsy subjects. Exome 

sequencing data was processed and OptiType164 was employed to identify HLA-I and -II alleles.  

Finally, sequence-based typing was performed for the five thymus samples and the three 

glioblastoma samples, by sequencing exons 1-8 for HLA-I alleles and exons 2-6 for HLA-II alleles 

(Histogenetics, Ossining, NY). The subject characteristics are summarized in Supplemental Table 

S1 encompassing information on sex, age, the number of collected tissues and HLA-I and II alleles. 

HLA IMMUNOAFFINITY PURIFICATION 

HLA-I and -II molecules were isolated from snap-frozen tissue using standard immunoaffinity 

chromatography165. The antibodies employed were the pan-HLA-I-specific antibody W6/3281, 

and the HLA-DR-specific antibody L24385, produced in house (University of Tübingen, 

Department of Immunology) from HB-95, and HB-55 cells (ATCC, Manassas, VA) respectively. 

Furthermore, the pan-HLA-II-specific antibody Tü39 was employed and produced in house from 

a hybridoma clone as previously described86. The antibodies were cross-linked to CNBr-activated 

sepharose (Sigma-Aldrich, St. Louis, MO) at a ratio of 40 mg sepharose to 1 mg antibody for 1 g 

tissue with 0.5 M NaCl, 0.1 M NaHCO3 at pH 8.3. Free activated CNBr reaction sites were blocked 

with 0.2 M glycine. 

For the purification of HLA-peptide complexes, tissue was minced with a scalpel and further 

homogenized with the Potter-Elvehjem instrument (VWR, Darmstadt, Germany). The amount of 

tissue employed for each purification is documented in Supplemental Table S1. This information 

is not available for seven tissues, annotated as n.d. in said table. Tissue homogenization was 

performed in lysis buffer consisting of CHAPS (Panreac AppliChem, Darmstadt, Germany), and 

one cOmpleteTM protease inhibitor cocktail tablet (Roche) in PBS. Thereafter, the lysate was 

sonicated and cleared by centrifugation for 45 min at 4,000 rpm, interspaced by 1 h incubation 

periods on a shaker at 4°C. Lysates were further cleared by sterile filtration employing a 5 µm 

filter unit (Merck Millipore, Darmstadt, Germany). The first column contained 1 mg of W6/32 

antibody coupled to sepharose, whereas the second column contained equal amounts of Tü39 

and L243 antibody coupled to sepharose. Finally, the lysates were passed through two columns 

cyclically overnight at 4°C. Affinity columns were then washed for 30 minutes with PBS and for 1 

h with water. Elution of peptides was achieved by incubating four times successively with 100 – 

200 µl 0.2% TFA on a shaker. All eluted fractions were subsequently pooled. Peptides were 

separated from the HLA molecule remnants by ultrafiltration employing 3 kDa and 10 kDa 

Amicon filter units (Merck Millipore) for HLA-I and HLA-II, respectively. The eluate volume was 

then reduced to approximately 50 µl by lyophilization or vacuum centrifugation. Finally, the 

reduced peptide solution was purified five times using ZipTip Pipette Tips with C18 resin and 0.6 

µl bed volume (Merck,) and eluted in 32.5% ACN/0.2% TFA. The purified peptide solution was 

concentrated by vacuum centrifugation and supplemented with 1% ACN/0.05% TFA and stored 

at -80°C until LC-MS/MS analysis. 
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TIME SERIES EXPERIMENTS 

We performed time series experiments to assess the suitability of tissues obtained from 

autopsies as a source of human tissues for the characterization of the benign immunopeptidome. 

We evaluated the degradation profile of the immunopeptidome, when tissues were stored at 4°C 

for up to 72 h after tissue removal, to mimic the conditions at autopsy. The time series experiment 

was repeated in three benign tissues from different individuals: one benign liver obtained at 

autopsy (AUT-DN16 Liver), and two benign ovaries removed surgically (OVA-DN278 and OVA-

DN281). The tissues were extracted and incubated at 4°C until a certain time point and flash-

frozen in liquid nitrogen until HLA ligand extraction. As more tissue was available form AUT-

DN16 Liver, tissue samples were frozen after 8 h, 16 h, 24 h, 48 h, and 72 h. Due to the limited 

sample amount obtained from OVA-DN278 and OVA-DN281, only three time points could be 

accounted for: 0 h, 24 h, and 72 h. The HLA immunoaffinity purification was performed as 

mentioned, with the exception that mass to volume ratio in ovary samples was adjusted to the 

lowest mass across all time points before loading onto sepharose columns. 

MASS SPECTROMETRIC DATA ACQUISITION 

HLA ligand characterization was performed on an Orbitrap Fusion Lumos mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA) equipped with a Nanospray FlexTM Ion Source (Thermo 

Fisher Scientific) coupled to an Ultimate 3000 RSLC Nano UHPLC System (Thermo Fisher 

Scientific). Peptide samples were loaded with 1% ACN/ 0.05% TFA on a 75 µm x 2 cm Acclaim™ 

PepMap™ 100 C18 Nanotrap column (Thermo Fisher Scientific) at a flow rate of 4 µl/min for 10 

minutes. Separation was performed on a 50 µm x 25 cm PepMap RSLC C18 (Thermo Fisher 

Scientific) column, with a particle size of 2 µm. Samples were eluted with a linear gradient from 

3% to 40% solvent B (80% / 0.15% FA in water) at a flow rate of 0.3 µl/min over 90 minutes. 

The column was subsequently washed by increasing to 95% B within 1 minute, and maintaining 

the gradient for 5 minutes, followed by reduction to 3% B and equilibration for 23 minutes. 

Data acquisition was performed as technical triplicates in data-dependent mode, with 

customized top speed (3 s) methods for HLA-I- and HLA-II-eluted peptides. HLA-I peptides have 

a length of 8 - 12 amino acids21,22 therefore, the scan range was restricted to 400 - 650 m/z and 

charge states of 2 - 3. MS1 and MS2 spectra were detected in the Orbitrap with a resolution of 

120,000 and 30,000 respectively. Furthermore, we set the automatic gain control (AGC) targets 

to 1.5*105 and 7.0*104 and the maximum injection time to 50 ms and 150 ms for MS1 and MS2, 

respectively. The dynamic exclusion was set to 7 s. Peptides were fragmented with collision-

induced dissociation (CID) while the collision energy was set to 35%. 

HLA-II peptides have a length of 8 - 25 amino acids22,166, thus the scan range was set to 400 -1,000 

m/z and the charge states were restricted to 2 - 5. Readout for both MS1 and MS2 were performed 

in the Orbitrap with the same resolution and maximum injection times as for HLA-I peptides. The 

dynamic exclusion was set to 10 s and AGC values employed were 5.0*105 and 7.0*104 for MS1 

and MS2, respectively. Higher-energy collisional dissociation (HCD) fragmentation with 30% 

collision energy was employed for HLA-II peptides. 
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DATABASE SEARCH WITH MHCQUANT 

MS data obtained from HLA ligand extracts was analyzed using the nf-core167 containerized, 

computational pipeline MHCquant163 (release 1.5.1 - https://www.openms.de/mhcquant/) with 

default settings. The workflow comprises tools to analyze LC-MS/MS data of the open-source 

software library OpenMS (2.5)168. Identification and post-scoring were performed using the 

OpenMS adapters to Comet 2016.01 rev. 3169 and Percolator 3.4170 at a local peptide-level false 

discovery rate (FDR) threshold of 1% among the technical replicates per sample. Subsequently, 

we estimated the global peptide-level FDR by dividing the sum of expected false positive 

identifications from each sample (1% peptide level FDR) by the total number of identified 

peptides in the entire dataset (HLA-I: 4.5% FDR, HLA-II: 3.9% FDR)171,172. The human reference 

proteome (Swiss-Prot, Proteome ID UP000005640, 20,365 protein sequences) was used as a 

database reference. Database search was performed without enzymatic restriction, with 

methionine oxidation as the only variable modification. MHCquant settings for high-resolution 

instruments involving a precursor mass tolerance of 5 ppm and a fragment bin tolerance of 0.02 

Da were applied. The peptide length restriction, digest mass and charge state range were set to 

8-12 amino acids, 800-2500 Da and 2-3 for HLA-I and 8-25 amino acids, 800-5000 Da and 2-5 for 

HLA-II, respectively. 

HLA BINDING PREDICTION 

Peptide binding predictions were computed based on the subject's HLA alleles. For HLA-I ligand 

extracts, we employed SYFPEITHI173 and NetMHCpan-4.0174 in ligand mode (default). The 

SYFPEITHI score 𝑠SYF was computed by dividing the sum of amino acid-specific values for each 

position in the tested peptide by the maximally attainable score for the respective HLA 

allotype175. HLA-II ligand extracts were annotated with NetMHCIIpan-4.087 and MixMHC2pred91 

using the default settings. 

Peptides were categorized as strong binders against a given HLA allotype if either netMHCpan-

4.0, netMHCIIpan-4.0 or MixMHC2pred reported a percentile rank score 𝑠rank ≤ 0.5. Peptides 

were reported as weak binders if any of the tools reported 𝑠rank ≤ 2.0 or in case of SYFPEITHI 

𝑠SYF ≥ 0.5. All peptide-HLA allotype associations within these limits were included in the dataset, 

i.e., a single peptide sequence can be reported as a binder against multiple allotypes of the same 

donor. Unless allele associations are specified, all peptides including classified non-binders 

against any subject’s allotype were included in the analysis. 

BINDING PREDICTION AND LENGTH DISTRIBUTION-BASED QUALITY CONTROL 

We defined the fraction of predicted binders of a sample as the ratio of predicted binders divided 

by the total number of peptide identifications. Technical replicates with a fraction of predicted 

binders lower than 50% for HLA-I and lower than 10% for HLA-II ligand extracts were excluded 

from the dataset. Furthermore, individual replicates were removed from the dataset if the mode 

of the length distribution differed from 9 amino acids for HLA-I and was not in the interval [12, 

18] for HLA-II (see Figure S1). 
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QUANTITATIVE TIME SERIES ANALYSIS 

Database search of LC-MS/MS data from the three time series experiments was performed with 

MHCquant 1.5.1 as previously described163. Identifications were matched between runs176 based 

on retention time alignment and targeted feature extraction177 to integrate respective MS1 areas 

for all time points and technical replicates. MS1 areas x were normalized to z-scores (standard 

scores) z per MS run by subtracting the mean and dividing by the standard deviation:  

𝑧 =  
(𝑥 − 𝜇)

𝜎
 

The trajectory of scaled MS1 areas was clustered by k-means unsupervised clustering with 6 

seeds using the tslearn (v.0.3.1) python package. All trajectories are related to the first time point 

by subtracting its median z-score from all other timepoints in the respective analysis. 

COMPARISON OF THE HLA-LIGAND-ATLAS DATA BASE WITH IEDB AND SYSTEMHC 

All peptides contained in the HLA Ligand Atlas database were compared with peptides listed in 

the IEDB and SysteMHC databases for HLA-I and HLA-II ligands separately. The list of peptides 

stored in the IEDB was obtained by downloading the file “epitope_full_v3.zip” from the “Database 

Export” page. The obtained table was subsequently filtered for positive MS assays, linear peptides 

and human origin. Peptides with modifications were removed. Peptides stored in the SysteMHC 

database were obtained by downloading the file “180409_master_final.tgz" from 

“Builds_for_download” page. The obtained table was subsequently filtered for human as 

organism. 

GENE ONTOLOGY (GO)-TERM ENRICHMENT 

GO term enrichment analyses were performed with the Panther 15.0 database (Released 2020-

02-21) with the integrated “statistical overrepresentation test” (Release 2019-07-11). Gene 

identifiers of source proteins presented exclusively by either HLA-I or -II allotypes were queried 

against the “GO cellular component complete” database using the default “Homo sapiens genes” 

reference list. GO terms were sorted by Fisher’s exact raw p-value, and top 10 scoring terms 

reported as overrepresented and their corresponding p-values were selected for illustration.  

Tissue-specific source proteins were defined as HLA-I or -II source proteins identified exclusively 

in one tissue across all subjects (Table S5). Gene identifiers of tissue-specific HLA-I and -II source 

proteins were queried against the “GO biological process complete” database, with the only 

difference that only the top 5 scoring terms reported as overrepresented were selected for 

illustration. 

TISSUE-SPECIFIC GENE SET ENRICHMENT 

Analogously to the GO-term enrichment, tissue-specific HLA-I and -II source proteins were 

separately queried against the GTEx database for gene set enrichment analysis. Gene sets with 

upregulated gene expression profiles per tissue 

“GTEx_Tissue_Sample_Gene_Expression_Profiles_up” were retrieved using the gseapy 
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implementation (v.0.9.15, 2019-08-07) through the enrichr API. All tissues covered in the HLA 

Ligand Atlas were matched and compared against all tissues in the GTEx database that co-occur 

in the HLA Ligand Atlas. Fisher’s exact raw p-values for the enrichment were computed for each 

pairwise comparison. 

HLA-I AND II PEPTIDE YIELD CORRELATION TO EXPRESSION OF IMMUNE-RELATED GENES 

We computed a linear model to compare the median HLA-I peptide yields per tissue with gene 

expression values (RPKM) of the following genes involved in the HLA-I presentation pathway: 

HLA-A, HLA-B, HLA-C, immunoproteasome, constitutive proteasome, TAP1, and TAP2. Median 

HLA-II peptide yields per tissue were correlated to genes involved in the HLA-II presentation 

pathway: HLA-DRB1, HLA-DRA, HLA-DQB1, HLA-DQA1, HLA-DPB1, HLA-DPA1. The 

corresponding gene expression values were taken from a previously published study178. 

An ordinary least squares linear model correlating gene expression and log10 median HLA-I and 

-II peptide yields was computed using R (v.3.5) and the corresponding stats (v.3.5) package 

reporting R2, F-statistic p-value, and spearman rho. The cross correlation between all immune 

related genes and their individual linear models (Figure 3, Figure S5) was computed using R 

(v.3.5) and the corresponding packages corrplot (v. 0.84) and ggplot2 (v.3.2.1). As the expression 

levels of the investigated genes are highly covariant (Figure S5A, S5C), the regression would be 

overfitting when correlating peptide yields to multiple genes involved in the antigen presentation 

pathway, thus the analysis was limited to a single gene at a time. 

COMPUTATION OF JACCARD COEFFICIENTS BETWEEN SAMPLES 

We investigated the similarity of immunopeptidomes between tissues and subjects by pairwise 

comparison of all samples in the HLA Ligand Atlas. Comparisons were performed both on HLA-I 

and -II level as well as on peptide and source protein level. The Jaccard index was calculated by 

dividing the set intersection by the set union for all pairwise comparisons: 

𝑗 =
𝐴 ∩  𝐵

𝐴 ∪  𝐵
 

IDENTIFICATION OF CRYPTIC PEPTIDES WITH PEPTIDE-PRISM 

Identification of cryptic HLA-I peptides from HLA-I LC-MS/MS data was performed as recently 

described in detail24. Briefly, de novo peptide sequencing was performed with PEAKS Studio X 
179,180 (Bioinformatics Solutions Inc., Canada). Top10 sequence candidates were exported for each 

fragment ion spectrum. Database matching of all sequence candidates and stratified FDR-filtering 

was performed with Peptide-PRISM using the 6-frame translation of the human genome (HG38) 

and the 3-frame translation of the human transcriptome (Ensembl 90). Matched peptides were 

filtered to 10% FDR and peptides were predicted as binder to the corresponding HLA alleles by 

NetMHCpan-4.0174. 
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RETENTION TIME MODEL FOR CRYPTIC PEPTIDE VALIDATION 

Retention time predictions were carried out using the OpenMS (2.5.0) RTModel based on oligo-

kernel ν-support vector regression (ν=0.5, p=0.1, c=1, degree=1, border_length=22, 

kmer_length=1, Σ=5)181. The model was trained on all peptide identifications of canonical 

peptides identified with MHCquant and applied to all cryptic peptide identifications resulting 

from Peptide-PRISM. Predictions were evaluated by applying a linear least square fit to compute 

the 99% prediction interval around the predicted versus measured retention times using the 

statsmodels (v.0.11) function wls_prediction_std. 

SYNTHESIS OF ISOTOPE-LABELED PEPTIDES 

Peptides were synthesized using the Liberty Blue Automated Peptide Synthesizer (CEM) 

following the standard 9-fluorenylmethyl-oxycarbonyl/tert-butyl strategy. After removal from 

the resin by treatment with trifluoroacetic acid/triisopropylsilane/water (95/2.5/2.5 by vol.) for 

1 h, peptides were precipitated from diethyl ether, washed three times with diethyl ether and 

resuspended in water prior to lyophilization. Purity and identity of the synthesis products were 

determined by C18-HPLC (Thermo Fisher Scientific, Darmstadt, Germany) and LTQ Orbitrap XL 

mass spectrometer (Thermo Fisher Scientific), respectively.  

SPECTRUM VALIDATION 

We selected 36 cryptic peptides, identified with 1% FDR for spectral validation with isotope-

labeled synthetic peptides. Selected peptides were strong binders to the corresponding HLA 

alleles of the respective subject, with a netMHCpan-4.0 binding rank <0.5. 

Isotope-labeled synthetic peptides were spiked into a sample matrix of native HLA eluted 

peptides from a JY cell line at a concentration of 20 fmol/µl, with the purpose of showing 

spectrum identity between the native and synthetic peptides.  

The spectral similarity 𝜆 was computed analogous to the normalized spectral contrast angle182 

between eluted peptide spectra and synthetic isotope labeled peptide spectra: 

𝜆(𝑆1, 𝑆2) = 1 −  
2 cos−1(𝑆1 ∙ S2)

𝜋
, 

where the spectra were encoded as intensity vectors (𝑆1 and 𝑆2) based on their theoretical b and 

y fragment ions by using the mzR (v2.16.2), msdata (v0.20.0) and protViz (v0.4) R packages. 

Intensities of matching y- and b-ion pairs as encoded in the intensity vectors were compared, 

thereby avoiding the necessity to correct for the mass shift caused by the isotope label. Peaks 

present in at least one of the spectra were considered for the cross product (𝑆1 ∙ 𝑆2). 

Intensities of missing peaks in the one spectrum compared to the other were set to zero. 

DATA STORAGE WEB INTERFACE 

Data was stored and managed using the biomedical data-management platform qPortal183. HLA-

I and -II peptides were complemented with their tissue and HLA allotype association and stored 
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in an SQL database. A public web server was implemented that allows users to formulate queries 

against the database, visualize results and allows data export for further analysis. The web front-

end was implemented in HTML, CSS and JavaScript based on the front-end framework Bootstrap 

4. The table plugin DataTables was used to provide rapid browsing and filtering for tabular data. 

Interactive plots were designed using Bokeh and ApexCharts.  

DATA AVAILABILITY 

The LC-MS/MS immunopeptidomics data comprised in the HLA Ligand Atlas has been deposited 

to the ProteomeXchange Consortium via the PRIDE 184 partner repository with the dataset 

identifier PXD019643 and the project DOI 10.6019/PXD019643. LC-MS/MS runs and sample not 

adhering to the implemented quality control thresholds are deposited as well. 

The LC-MS/MS immunopeptiodmics data from the three glioblastoma patients can be accessed 

with the PXD020186, and the project DOI 10.6019/PXD020186. 
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4.1.4 RESULTS  

THE HLA LIGAND ATLAS: CONTENT AND SCOPE OF THE DATA RESOURCE 

We describe the HLA Ligand Atlas, a dataset of matched HLA-I and -II ligandomes of benign 

tissues. HLA-I and -II ligands were isolated via immunoaffinity purification and identified by LC-

MS/MS. HLA-binding prediction algorithms and an assessment of peptide length distributions 

were used to identify high-quality samples and only these were integrated into the dataset 

(Figure S1 describes the QC steps employed). Our online resource https://hla-ligand-atlas.org 

provides access to the dataset comprising HLA-I and –II ligands (1% local peptide-level FDR), 

their source proteins, tissue and subject of origin, as well as all corresponding HLA allotypes 

classified as strong or weak binders through several user friendly views ( Figure 1A, Figure S1). 

We have acquired HLA ligandome data from 29 distinct tissues obtained from 21 individuals, 

surmounting to 1,262 LC-MS/MS runs from 225 mostly paired HLA-I (198) and -II (217) samples 

(Figure 1C, Figure S1, Table S1). The majority of samples was obtained from 14 subjects after 

autopsy, while 7 additional subjects contributed 5 thymus and 2 ovary samples after surgery. We 

performed a time series experiment on three benign samples, two ovaries and one liver (Figure 

S2) and observed no qualitative or quantitative degradation of the immunopeptidome for up to 

72 h after tissue removal, supporting the feasibility of employing autopsy tissue as input material 

for immunopeptidomics assays (Figure S2). Overall, we identified 89,853 HLA-I and 140,861 

HLA-II peptides with a local peptide-level FDR of 1% and estimated global peptide-level FDRs of 

4.5% and 3.9% for HLA-I and -II peptides, respectively. Identified peptides could be attributed to 

51 HLA-I and 81 HLA-II allotypes. Ultimately, this dataset increases the total number of registered 

HLA ligands from 413,205 to 445,535 for HLA-I and from 77,769 to 195,507 for HLA-II, as 

currently encompassed in SysteMHC185 and IEDB186 (Figure 1B). Moreover, we sought to 

approximate the worldwide HLA allele frequency of subjects included in the HLA Ligand Atlas. 

For this purpose, we computed population coverages using the IEDB Analysis Resources 

(http://tools.iedb.org/population/42) (Table S2). When considering at least one HLA allele 

match per individual, we observe an allele frequency of 95.1%, 73.6%, 93.0%, for HLA-A (n=16), 

-B (n=21), and -C (n=14) alleles, respectively. Within the same constraints we observe allele 

frequencies of 78.8%, 99.5%, 98.2%, 92.3% for HLA-DPB1 (n=9), -DQA1 (n=11), -DQB1 (n=12), 

and DRB1 (n=19) alleles, respectively (Table S2).  

 

Figure 1: The HLA Ligand Atlas: content and scope of the data resource. 
(A) The high-throughput experimental and computational workflow steps used to analyze thousands of HLA-I and -II peptides isolated from benign 
tissues. The resulting HLA-I and -II immunopeptidomes are comprised in the searchable web resource: hla-ligand-atlas.org. See Figure S1 for details of 
the quality control workflow. See Figure S2 for proof of principle using autopsy tissues. 
(B) HLA-I and -II peptides expand the know immunopeptidome as curated in the public repositories SysteMHC and IEDB. 
(C) Sample matrix: HLA-I (blue triangles) and –II samples (orange triangles) included in the HLA Ligand Atlas cover 29 different tissues obtained from 
21 human subjects. See Table S1 for patient characteristics. 
(D) Position-wise coverage (%) of identified source proteins by HLA ligands binned into four groups: (1) exclusively covered by HLA-I peptides, (2) 
exclusively covered by HLA-II peptides and (3-4) covered by both and separated into higher position-wise coverage by either HLA-I or -II peptides. 
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SOURCE PROTEINS AND HLA ALLOTYPE COVERAGE CHARACTERISTICS OF HLA LIGANDS 

The HLA Ligands in the dataset were identified based on 15,244 of the 20,365 proteins in Swiss-

Prot, hereinafter referred to as source proteins. About half of these source proteins yield both 

HLA-I and -II ligand identifications, 40% yield only HLA-I ligands and 8% only HLA-II ligands 

(Figure 1D). We performed a gene ontology enrichment analysis of HLA-I and -II exclusive source 

proteins, which corroborates the expected cellular compartments associated with the class-

specific antigen presentation pathways, with HLA-I presenting primarily intracellular- and HLA-

II extracellular proteins (Figure 2F).  

When looking at single amino acid residues across all source proteins (position-wise), 10% of the 

single residue positions are covered by HLA ligands, a parameter that ranges from 0.02% to 1.9% 

for individual HLA allotypes (Figure S3). The mode of the overall peptide length distribution 

depicts the highest abundance of 9mers (60%) for HLA-I and of 15mers (18%) for HLA-II ligands 

(Figure 2A). While 81% of the HLA-I ligands are predicted to bind a subject’s HLA allotype, this 

holds true for only 53% of the HLA-II ligands. A major shortcoming of HLA-II binding prediction 

models appears to be a negative bias towards the tails of the observed peptide length 

distribution, in particular towards short peptides (Figure 2A). The number of identified peptides 

that are predicted to bind against specific allotypes varies strongly between allotypes, with HLA-

A*02:01, -B*15:01, -B*35:01, -C*04:01 and most HLA-DRB1 allotypes being among the highly 

represented ones (Figure 2B, C). 

THE INTER-INDIVIDUAL HETEROGENEITY OUTWEIGHS SIMILARITIES BETWEEN TISSUE TYPES 

An unaddressed question, relevant for the discovery and administration of shared TAAs, is if the 

similarity between tissue types outweighs that of individuals. We interrogated the HLA Ligand 

Atlas and assessed the similarity of the immunopeptidome on both source protein (Figure 2D, E) 

and HLA-ligand level (Figure S4C, D) between samples, as defined by subject-tissue 

combinations. For this purpose, we computed pairwise similarities between all samples as 

measured by the Jaccard similarity index and clustered the samples based on their similarity. We 

observe that the sample similarity, even on source protein-level, is dominated by the underlying 

HLA alleles governing peptide presentation in each subject, resulting in clusters largely reflecting 

the subjects rather than the tissues. Contrary to our expectations, the five thymus specimens 

show the same pattern of subject individuality without an increase in source protein overlap with 

 

Figure 2: Source proteins and HLA allotype coverage characteristics of HLA ligands. 
(A) Length distribution of identified HLA-I and -II peptides from all samples was analyzed. HLA-II peptide lengths are mirrored on the negative side of 
the x-axis.  
(B, C) Global overview of HLA-I predicted binders distributed across HLA molecules. HLA binding prediction was performed with NetMHCpan 4.0 (% 
binding rank <2) and SYFPEITHI (Score >50%), while multiple HLA allotypes per peptide were allowed as long as their scores met the aforementioned 
thresholds. HLA binding prediction for HLA-II ligands was performed with NetMHCIIpan 4.0 and MixMHCPred (% binding rank 0.2 for both) See Figure 
S3 
(D) Pairwise hierarchical clustering of samples based on the Jaccard similarity between HLA-I (blue) and HLA-II (orange) source proteins. The 
dendrogram illustrates the nearest neighbor based on the similarity between tissues and subjects. See Figure S4 C. 
(E) Violin plots illustrate the distribution of the Jaccard similarity index for each pairwise comparison between the same subject - different tissues; 
different subjects - the same tissue, and different subject - different tissues. 
(F) Gene ontology (GO) term enrichment of cellular components was performed for HLA-I and -II source proteins. Top10 enriched genes with respect 
to their log10 p-value (Fisher’s exact test) differentiate between intracellular and extracellular antigen processing pathways.  
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other tissue types. The high subject individuality as indicated by the clustering of subjects rather 

than tissues holds true irrespective of the data level on which the analysis is based on.  

 

 

Figure 3: Tissues exhibit a gradual separation based on the immunopeptidome yield.  
(A) The number of identified HLA-I and -II peptides per sample (subject and tissue combinations) was sorted and plotted by median immunopeptidome 
yield per tissue. Boxes span the inner two quantiles of the distribution and whiskers extend by the same length outside the box. Remaining outlier 
samples are indicated as black diamonds. The number of subjects contributing to each tissue is illustrated on the y-axis in parenthesis. 
(B) A linear model was used to correlate the log transformed HLA-I and -II median peptide yields with log transformed median gene expression counts 
(RPKM) of the immunoproteasome and HLA-DRB1 per tissue. Corresponding R2, p-value (F-statistic) and spearman rho are indicated in the bottom 
right box. See Figure S5 
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THE IMMUNOPEPTIDOME YIELD VARIES CONSISTENTLY ACROSS TISSUES 

We further investigated the immunopeptidome diversity and variance across all samples for both 

HLA-I and -II alleles. Overall, we observe a strong variance in the immunopeptidome yield, 

defined as the number of identified peptides per sample, across all tissues (Figure 3A) and 

subjects (Figure S4A, B). Despite the inter-individual (i.e., inter-allotype) variance, we can 

consistently differentiate between high-yielding and low-yielding tissues with respect to both 

HLA-I and -II peptides (Figure 3, Figure S4A, B). The separation of tissues based on the 

immunopeptidome yield is not abrupt, but gradual. Low-yielding tissues include skin, aorta, 

brain, and the gallbladder with a low number of both HLA-I and -II presented peptides across all 

subjects. On the other hand, high-yielding tissues include thymus, lung, spleen, bone marrow, and 

kidney (Figure 3A). These tissues have well-characterized immune-related functions or are 

central components of the lymphatic system. 

We employed a linear model to systematically evaluate the correlation between the median HLA-

I/-II immunopeptidome yield with RNA expression values (RPKM) of immune-related genes 

identified by targeted RNA sequencing from an external dataset178 (Figure 3B and Figure S5). We 

observe a significant correlation between expression values of immune-related genes and HLA-I 

and -II immunopeptidome yields (Figure S 5A-D). Among these, genes of the immunoproteasome 

correlate well with the number of HLA-I ligand identifications per tissue (R2=0.371, rho=0.669, 

p=0.002, Figure 3B). Independent studies mapping the healthy human proteome confirm 

expression of the immunoproteasome in a wide range of tissues, including tissues for which no 

primary immunological function would be expected151,152. 

HLA-II peptide yields correlate well with the expression of HLA-DRB1 genes (R2=0.206, 

rho=0.38, p=0.0297, Figure 3B). HLA-DR is well characterized due to the invariant α chain, and 

thus reduced complexity in the peptide binding groove. Through the high specificity of the L243 

antibody for HLA-DR, and the presumably varying specificity of the second antibody Tü39 for 

different HLA-II allotypes, we cannot exclude a skewed identification in favor of HLA-DRB 

allotypes. However, higher expression values for HLA-DRB1 compared to other HLA-II allotypes 

have been described for example in earlier studies on gastric epithelium187. 
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Figure 4: Small subsets of source proteins are tissue exclusive. See Table S5. 
(A, B) Gene set enrichment (left) was tested for each tissue by correlating unique HLA-I and –II source proteins per tissue with upregulated genes as 
annotated in GTEx. Heatmaps depict log10 p-values (Fisher’s exact test) for each pairwise comparison. The number of tissue-specific HLA-I and –II 
source proteins is depicted by the bar plot for each tissue at the right-hand side of the heatmaps. In addition, GO term enrichment (right) of biological 
processes was performed using the panther DB webservice for selected tissues with the same set of HLA-I and -II tissue-specific source proteins. Top 5 
enriched terms with respect to their log10 p-value (Fisher’s exact test) were selected. 
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SMALL SUBSETS OF SOURCE PROTEINS ARE TISSUE-EXCLUSIVE 

Previous studies characterizing the human transcriptome and proteome across tissues have 

shown varying degrees of tissue-specificity for transcripts and proteins4,115. In this context, we 

analyzed source proteins of the benign immunopeptidome as a whole and grouped all samples 

by tissue of origin. We observe a particularly small number of HLA-I (ranging from 5 in mamma 

to 680 in thymus), and HLA-II (ranging from 8 in ovary to 567 in thymus) source proteins 

identified exclusively in one tissue (Figure 4A, B, Table S5). Concordantly, only small numbers of 

tissue-exclusive protein identifications have been observed in human tissue-wide proteomics 

studies188. Only recently, the systematic, quantitative analysis of the human proteome and 

transcriptome in multiple tissues has revealed that differences between tissues are rather 

quantitative than defined by the presence or absence of certain proteins4,115. 

Next, we sought to determine whether tissue-specific biology is conserved between the 

transcriptome and immunopeptidome. For this purpose, we compared tissue-enriched gene sets 

from the GTEx repository with tissue-exclusive HLA-I and -II source proteins (Figure 4A, B, left). 

We observe that tissue-specific biology is represented by HLA-I and -II source proteins through 

an enrichment with upregulated transcripts in the respective tissue. Gene set enrichment 

analysis further reflects functional proximity between tissues such as tongue, heart and muscle 

or brain and cerebellum.  

We additionally observed that tissue-specific traits are recapitulated by gene ontology (GO) term 

enrichment of biological processes (Figure 4A and B, right). Enriched GO terms reveal tissue-

specific biological functions such as ‘adaptive immune response’ in the thymus or ‘behavior’ in 

the brain. However, clear associations between enriched gene sets and HLA-I and -II source 

proteins are less evident in tissues such as spleen or testis, despite the disparity of tissue-

exclusive HLA-I source protein identifications, accounting for only 23 in testis while spleen yields 

309. 

Overall, tissue-specific traits are more evident for HLA-I than for HLA-II source proteins, as 

supported by a higher significance, when assessing the correlation between tissue-exclusive 

source proteins with GTEx-enriched transcripts and function-specific GO terms. HLA-II source 

proteins are represented by more general GO terms, which still reflect distinct biological 

processes characteristic for the respective tissue. 
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Figure 5: Cryptic peptides are part of the benign immunopeptidomes. See Table S3, Figure S6. 
(A) Spectra were searched with Peptide-PRISM to identify peptides of cryptic origin. Briefly, de novo sequencing was performed, and top 10 sequences 
per spectra were queried against a database consisting of the 3-frame translated transcriptome (Ensemble 90). Target-Decoy search was performed per 
database stratum, separately for canonical and cryptic peptides. 
(B) The HLA-allotype distribution of cryptic peptides was plotted in relation to cryptic and canonical peptides predicted to bind to the respective HLA 
allotype across all subjects and tissues.  
(C) Distribution of identified cryptic peptides categorized into multiple non-coding genomic regions.  
(D) Linear model correlating measured retention times (RT) of cryptic peptides with their predicted RTs trained on canonical peptide RTs. 
Corresponding R2, pi (width of the prediction interval – red dashed lines), and frac (the number of peptides falling into the prediction interval) are 
indicated in the bottom right. 
(E) 36 cryptic peptides were selected for spectral validation with synthetic peptides. The similarity between the synthetic and experimental spectrum 
was computed by correlation scores. F) Exemplary spectral comparison of the cryptic peptide SVASPVTLGK and its synthesized heavy isotope-labeled 
counterpart (P+6). Matching b (red) and y ions (blue) are indicated as well as the isotope mass shifted ions (orange stars) of the synthesized peptide. 
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CRYPTIC PEPTIDES ARE PART OF THE BENIGN IMMUNOPEPTIDOME 

Recently, cryptic HLA peptides come into focus as a new potential source of tumor-associated 

antigens (TAAs). Cryptic peptides originate from non-coding regions, i.e. 5’- and 3’-UTR, non-

coding RNAs (ncRNA), intronic and intergenic regions, or from shifted reading frames in 

annotated protein coding regions (off-frame). Ribosome profiling and immunopeptidomics 

studies confirm their translation and presentation on HLA-I molecules99–101. So far, cryptic 

peptides have predominantly been characterized in tumors, while their presentation in benign 

tissues remains poorly charted. We analyzed the HLA-I-restricted LC-MS/MS data of the HLA 

Ligand Atlas with Peptide-PRISM24 (Figure 5A) and identified 1,407 cryptic peptides, including 

the peptide SVASPVTLGK that was classified as a TAA in lung cancer tissue in a previously 

published study (Figure 5, Table S3)101. This peptide was identified in the HLA Ligand Atlas in 

five different subjects in lung and liver tissues. We find that 47% of cryptic peptides were 

identified in more than one subject (Table S3). Both cryptic and conventional peptides share 

similar physicochemical properties. Their predicted chromatographic retention time correlates 

with their experimentally observed retention time equally well as for conventional peptides 

(Figure 5D)99,100,103,104. The identified cryptic HLA-I ligands can be classified into following 

genomic categories with decreasing frequency: 5’-UTR (51%), followed by Off-Frame (33%), 

ncRNAs (13%), 3’-UTR (2%), intergenic (1%), and intronic regions (0.5%) (Figure 5C). The 

predominance of cryptic peptides from the 5’-UTR is in accordance with previous studies24,99. 

Overall, HLA allotypes show different presentation propensities of cryptic peptides, when related 

to cryptic and canonical peptides, with HLA-A*03:01 covering the largest fraction of all identified 

cryptic peptides, followed by -B*07:02 and -A*68:01, as previously observed (Figure 5B)24. 

We selected 36 top-ranking (1% FDR) cryptic peptides, shared among subjects for spectral 

validation by experimental comparison with the corresponding heavy isotopically labeled 

synthetic peptide (Table S3). We computed a similarity score between the spectra obtained from 

the experimental vs. synthetic peptides (Figure 5E, Table S3). A size-matched set of randomly 

selected comparisons was employed to create a reference negative distribution of the spectral 

similarity score. We were able to confirm the correct identification of selected cryptic HLA-I 

ligands, not only based on the computed similarity score, but also through individual inspection 

(Figure S6). Therefore, we can show that cryptic peptides are not per-se tumor-specific, albeit 

their frequency might be reduced in benign tissues24.
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Figure 6: HLA Ligand Atlas data enables prioritization of tumor-associated antigens (TAAs). 
(A, B) The size-proportional Venn diagram illustrates the overlap between the pooled glioblastoma (GBM) and benign HLA-I and -II immunopeptidomes, 
respectively. The waterfall plots show the number of glioblastoma-associated HLA-I ligands and their frequency among the three glioblastoma (GBM) 
patients analyzed. See Table S4. 
(C, D) Published CTAs are presented as HLA-I or -II ligands on benign tissues, including testis but also in glioblastoma tumors. The number of identified 
samples either from the HLA Ligand Atlas or the glioblastoma dataset is depicted on the x-axis, provided that each CTA has been identified with at least 
two different HLA ligands. The CTA KIA1210 was identified exclusively on HLA-I source proteins in testis and is marked with an asterisk. See Table S4. 
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HLA LIGAND ATLAS DATA ENABLES PRIORITIZATION OF TUMOR-ASSOCIATED ANTIGENS (TAAS) 

A general lack of multi-tissue immunopeptidomics reference libraries from benign tissues has 

been mentioned in previous studies aiming to identify TAAs100,131. Here, we propose the 

implementation of the HLA Ligand Atlas as a reference library of benign multi-tissue 

immunopeptidomes for comparative profiling with tumor immunopeptidomes for the discovery 

of actionable TAAs. As a case study, we selected three glioblastoma tumor samples from different 

individuals and analyzed their immunopeptidomes. We comparatively profiled the HLA-I and -II 

ligands of the glioblastoma samples against the benign dataset encompassed in the HLA Ligand 

Atlas (Figure 6A and B). The majority of HLA ligands is shared between both tumor and benign 

tissues, with 5,185 HLA-I TAAs and 3,246 HLA-II TAAs being unique to glioblastoma (Table S4). 

When assessing their presentation frequency, 691 HLA-I TAAs are found on two glioblastoma 

samples, while 4,495 are patient-individual. In the case of HLA-II TAAs, 43 are shared between 

two glioblastoma patients, and 3,203 are patient-individual. No identified HLA-I or –II ligands 

were common to all three glioblastoma patients.  

Moreover, we investigated the presentation of cancer testis antigens (CTAs) by HLA-I and -II 

molecules on benign tissues. CTAs are immunogenic proteins preferentially expressed in normal 

gametogenic tissues and different types of tumors189,190. We compiled a list of 422 published CTAs 

from the curated CT database189 and a recent publication aiming to identify CTAs from 

transcriptomics datasets190. Of 422 published CTAs, 40 CTAs were presented on either HLA-I or 

-II molecules and 10 CTAs on both HLA-I and -II molecules in the HLA Ligand Atlas, provided that 

respective source proteins were identified with at least two HLA ligands (Figure 6B, C, Table S3). 

CTAs, such as IMP-3, KIA0100, and CBLN1 were presented in numerous benign samples with 

HLA-I and II ligands (Figure 6C and D, Table S4). Furthermore, the CTA KIA1210 was only 

identified in the benign dataset on testis in accordance to its CTA status. Similarly, we queried all 

glioblastoma source proteins against the selected 422 CTAs and found three CTAs (two HLA-I 

and one HLA-II) exclusively presented in glioblastoma and not in our benign dataset, indicating 

promising targets against this tumor entity. 
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HLA LIGANDS FORM HOTSPOTS IN SOURCE PROTEINS 

When looking at the position-wise coverage profiles of individual source proteins across all HLA 

allotypes, we observe that HLA ligands seem to emerge from spatially clustered hotspot regions 

while other areas of the source protein do not contribute any HLA ligands at all (Figure 7, left). It 

has been shown previously that this clustering effect cannot be explained by the occurrence of 

HLA binding motifs as incorporated in epitope prediction tools191. The hotspot locations often 

coincide between HLA-I and -II ligands, however, we did not perform a large-scale statistical 

analysis to validate this class linkage effect. In the case of HLA-II, the clustering effect has to be 

distinguished from the co-occurrence of HLA-II ligand length variants, which leads to a large 

number of distinct peptides covering the same source protein position due to the nature of HLA-

II antigen processing and binding192. Many of the observed clusters span ranges of distinct, non-

overlapping HLA-II ligands (Figure 7, right). Position-wise coverage plots for all source proteins 

are available online at hla-ligand-atlas.org. 

THE HLA LIGAND ATLAS WEB INTERFACE 

The HLA Ligand Atlas web interface was designed to allow users to conveniently access the data 

we collected. Users can formulate queries in the form of filters based on peptide sequences, 

peptide sequence patterns, HLA allotypes, tissues and proteins of origin, or combinations thereof. 

Additionally, users can submit files with peptides or uniport IDs, either as plain lists or as a FASTA 

files. The peptide list is then queried against the database and the resulting hits can again be 

freely combined with the aforementioned filters. Query results are shown as a list of peptides 

with plots of the corresponding HLA allotype and tissue distributions. Additionally, detailed 

 

Figure 7: HLA ligands form hotspots in source proteins. 
The position-wise HLA ligand coverage profiles as available in the HLA Ligand Atlas web interface for two exemplary proteins (left), the fibrinogen alpha 
chain (Uniprot ID P02671, length 866 aa, top) and the basement membrane-specific heparan sulfate proteoglycan core protein (Uniprot ID P98160, 
length 4,391 aa, bottom) are shown, illustrating the spatial clustering of HLA ligands into hotspots. For P02671 a close-up of such a cluster is shown in 
form of a multiple sequence alignment of the identified peptides (right). 
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views for single peptides and for coverage of proteins are available. Apart from the query 

interface, the web front-end also displays various aggregate views of the data stored in the 

database. 

4.1.5 DISCUSSION 

In this study, we create a novel data resource termed the HLA Ligand Atlas which is publicly 

available and easily searchable at hla-ligand-atlas.org (Figure 1C). It provides for the first time a 

comprehensive collection of benign human HLA-I and -II immunopeptidomes. The large number 

of different HLA allotypes will help to considerably improve HLA-binding prediction algorithms, 

particularly for infrequent HLA alleles. HLA-II immunopeptidomes paired with high-resolution 

HLA-II typing are still scarcely available and therefore represent a valuable resource for 

improving HLA-II prediction models. 

We find that HLA allotypes display varying presentation propensities towards certain peptide 

populations, with HLA-B*15:01 and HLA-DRB1*01:01 presenting the highest number of 

canonical self-peptides, and HLA-A*03:01 and B*07:02 presenting the highest proportion of 

cryptic peptides in our subject cohort and a previously published study24. The increased number 

of peptides presented on a subset of HLA alleles can be attributed to their frequency among the 

analyzed individuals or to their potentially high copy number on cells. Further technical biases 

can influence the immunopeptidome yield, such as antibody preferences towards certain HLA 

allotypes, ionization and fragmentation characteristics of eluted HLA ligands, but also binding 

prediction algorithms that perform better for frequent, well studied HLA allotypes. However, 

HLA allotypes have evolved to present different peptide subsets to T cells193, examples ranging 

from HLA-B*40 being able to stabilize the negative charge of phosphorylated peptides194, and 

HLA-B*57 conferring a survival advantage in HIV infections157,195. Moreover, we observed 

multiple HLA allele matches per peptide, which is indicative of binding similarities between HLA 

allotypes, or promiscuous HLA alleles that allow binding of a large repertoire of different 

peptides193.  

One fundamental and so far unanswered question concerns the similarity of immunopeptidomes 

across individuals. Our evaluation of the Jaccard similarity index across samples in the HLA 

Ligand Atlas provides evidence that differences between individuals exceed differences between 

tissue types in the same individual for both the immunopeptidome and their source proteins. On 

a proteome level, however, samples were previously separated by tissue type, rather than 

individuals4. Nonetheless, HLA-allotype-dependent selection and editing throughout the antigen 

presentation pathway shape the immunopeptidome, complicating its prediction from genomic, 

transcriptomic, and proteomic data sources. While we analyzed 21 human subjects in this study, 

a larger number would be required to answer this question unequivocally. 

The high degree of individuality between immunopeptidomes, even when subjects share a subset 

of HLA allotypes, has major repercussions for clinical applications in emerging fields such as 

immuno-oncology. Our findings indicate that the immunopeptidome adds an additional layer of 

complexity to the well-described genomic and transcriptomic tumor-heterogeneity. Successful 
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induction of T cell responses after peptide vaccination with neoantigens67,129 indicate that 

precision medicine will evolve to an increasingly individualized field, where treatment options 

will be tailored to the immunopeptidomic landscape of the tumor. Mapping the tumor HLA 

ligandome of an individual patient therefore needs to be paralleled by a broad and in-depth 

knowledge of its benign counterpart – the HLA Ligand Atlas is a first step in this direction. When 

dissecting the HLA Ligand Atlas tissue-wise, we observe a paired immunopeptidome yield 

between HLA-I and -II ligands that could be indicative of an increased infiltration of immune cells 

in high-yielding tissues. Alternatively, expression of HLA-II molecules on cells other than APCs 

could explain this observation. By analyzing bulk tissue, a definite statement whether peptide 

presentation occurred on tissue or tissue-infiltrating immune cells cannot be made. The 

immunopeptidome yields per tissue correlate positively with RNA expression profiles of genes 

related to antigen processing and presentation. Yet, the identified source proteins appear to be 

barely specific for the tissue of origin. The weak correlation between immunopeptidome yield 

and RNA expression values has been observed previously97,117. Although abundant HLA ligands 

stem from highly expressed transcripts, most HLA ligands span a wider dynamic range of gene 

expression115. Furthermore, it was recently shown that the immunopeptidome is better captured 

by the translatome as identified by ribosome profiling than by the transcriptome99,100.  

Low-yielding samples barely display any tissue-specific proteins. However, tissue-specific source 

proteins often reflect tissue-specific traits when correlated to enriched gene sets of GTEx 

transcriptomes from the respective tissues. Therefore, tissue-specific function is represented in 

the immunopeptidome, but differences between tissues cannot be imputed from the 

immunopeptidome alone. Studies mapping the whole proteome in multiple human tissues report 

few proteins with tissue-specific expression115,152 and suggest that differences between tissues 

might be quantitative, and less dominated by the presence or absence of protein species4,115. 

Recent studies have focused on HLA-presented peptides derived from non-coding regions. 

Ribosome profiling, RNA sequencing, and immunopeptidomics studies have confirmed that 

cryptic HLA-I peptides expand the known HLA-I immunopeptidome by up to 15%24, up to 3.3%99, 

and about 10%101. These studies have mainly focused on tumors and tumor cell lines, PBMCs and 

mTEC cell lines, in most cases treated and expanded in vitro. We employed Peptide-PRISM and 

identified 1,407 cryptic HLA-I ligands from benign, primary, human samples. Corroborating other 

studies, we find that a large proportion (41%) are also shared between multiple subjects99,100. An 

essential application of the HLA Ligand Atlas is the selection of candidates for immunotherapy 

approaches. We propose a workflow to prioritize the large candidate pool of non-mutated tumor-

associated targets by comparatively profiling immunopeptidomes of primary tumors and benign 

tissues, as comprised in the HLA Ligand Atlas. This approach would complement current 

strategies based on transcriptomes of benign tissues as comprised in GTEx. The HLA Ligand Atlas 

represents a first draft of a tissue-wide immunopeptidomics map covering both HLA-I and -II 

canonical peptides, but also HLA-I non-canonical peptides, that can be employed as an orthogonal 

level of quality control when defining TAAs. Furthermore, anecdotal observations of position-

wise coverage of source proteins confirm a previously stated hypothesis, that 

immunopeptidomes cluster into hotspots of antigen presentation78,191. We envision that different 
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types of TAAs such as mutated, non-mutated, post-translationally modified, of cryptic or 

proteasomally spliced origin might cluster as well within these hotspots. Future studies that aim 

to enhance our understanding of such mechanistic patterns of peptide presentation will benefit 

greatly from the data the HLA Ligand Atlas comprises.  

A series of systematic technical limitations in LC-MS/MS-based studies influences the 

identification depth in each sample. Such aspects include the still limited sensitivity and dynamic 

range of detection, the insufficient coverage of amino acids in peptide mass spectra, but also 

shortcomings in peptide identification algorithms. Advances in LC-MS/MS technology, data 

acquisition methods and computational tools are constantly improving the depth of investigation 

in immunopeptidomics experiments. Therefore, we encourage the reanalysis of the raw LC-

MS/MS dataset with novel hypotheses and upcoming computational methods that will lead to 

additional insight. Overall, we anticipate that the number of charted human immunopeptidomes 

will increase, similarly as the human genome and transcriptome were mapped across multiple 

individuals. By generating larger datasets from many human individuals, population-wide 

conclusions can be drawn, and immunopeptidome-wide studies will provide insight into disease-

associated HLA alleles and peptides157. The HLA Ligand Atlas strives to advance our 

understanding of fundamental aspects of immunology relating to autoimmunity, infection, 

transplantation, cancer immunotherapy and might provide a foundation for vaccine design. We 

hope that together with the scientific community we can expand the benign immunopeptidome 

to encompass more human subjects, tissues, and HLA alleles. 
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4.2 PART II: BENCHMARKING MASS SPECTROMETERS 
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4.2.1 ABSTRACT 

Success of immunopeptidomics experiments is highly dependent on the LC-MS/MS 

instrumentation. Technical limitations define the meaningfulness of our experiments, 

manifesting as missing values, low technical reproducibility, a limited dynamic range that cannot 

capture both highly and low-abundant peptides, and many more. Therefore, appropriate 

instrumentation that can be optimized to address challenges specific to immunopeptidomics 

must be chosen. The suitability for immunopeptidomics experiments was assessed both 

theoretically and experimentally between five different LC-MS/MS systems: the Orbitrap Fusion 

Lumos, the Orbitrap Fusion and the q Exactive HF from Thermo Fisher Scientific, the Triple 

TOF6600 from AB Sciex, and the timsTOF Pro from Bruker Daltonics. The main distinctive feature 

between the instruments is the detector. The Thermo Fisher Scientific instruments have an 

Orbitrap detector, while both the Triple TOF6600 and the timsTOF Pro have a time of flight (TOF) 

detector. Overall, 114 LC-MS/MS measurements were acquired across all systems. The analyzed 

samples consisted of a serial dilution series spiked with heavy isotope-labeled synthetic peptides. 

All instruments were compared to the in house Orbitrap Fusion Lumos with regard to sensitivity, 

dynamic range, mass accuracy, lower limit of detection, purity of identified HLA ligands, and 

complementarity. The resulting ranking revealed that the Orbitrap Fusion Lumos and the 

Orbitrap Fusion showed the highest sensitivity, purity of identified HLA ligands, reliably detected 

a constant number of RT peptides, and showed a concentration-dependent linear decrease in the 

cumulative area of RT peptides. Second ranked were the timsTOF Pro and the q Exactive HF. 

Furthermore, the timsTOF Pro revealed a lower detection limit than the Orbitrap instruments 

and revealed a complementary set of peptides. The Triple TOF 6600 performed poorly. In 

conclusion, the Tribrid instruments had the highest performance, owing to both intrinsic 

instrument parameters but also due to extensive optimization to immunopeptidomics samples. 

Thus, it stands to reason, that the timsTOF Pro and the q Exactive HF could be optimized similarly.  
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4.2.2 INTRODUCTION 

LIQUID CHROMATOGRAPHY COUPLED TO TANDEM MASS SPECTROMETRY (LC-MS/MS) INSTRUMENTATION 

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is an analytical 

method that combines the separation of analytes based on high-performance liquid 

chromatography (HPLC) and the mass analysis capabilities of mass spectrometry (MS). A 

complex peptide mixture can be separated based on the physicochemical properties of individual 

peptides, such as hydrophobicity, hydrophilicity, size, ion affinity, bioaffinity and many more. 

Once separated, peptides are ionized and transferred to the MS for mass detection of the 

unfragmented precursor ion (MS1) followed by fragmentation and detection of the fragments 

originating from the same precursor ion (MS2). The information obtained for each peptide is the 

chromatographic retention time (RT) and the mass spectrum containing a relative intensity and 

the mass to charge (m/z) ratio of the precursors or the fragmented ions. Ideally, each peptide 

could be chromatographically separated, ionized, and subsequently analyzed in the MS. However, 

this is not the case, as different biases and technical trade-offs must be considered throughout 

the analytical pathway. 

Over the past years, significant improvements in HPLC systems with more reproducible nanoliter 

flows and increased column resolution help to considerably reduce sample complexity prior to 

MS analysis. Faster MS acquisition rates together with increased resolution and sensitivity have 

enabled recording of high accuracy mass spectra. A wider repertoire of fragmentation techniques 

such as CID, HCD, ETD, EThCD, UVPD and many more, allow adjustment of the fragmentation to 

the analyte at hand. Through increased detector acquisition speed, a multitude of peptides can 

be sequenced that roughly have the same RT. Furthermore, the development of the Orbitrap 

technology by Makarov196 and colleagues represents a significant breakthrough in mass 

spectrometry, that has had a monumental impact on our understanding of proteomics today, but  

ULTRA-HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY (UHPLC) 

Chromatography is a technique in analytical chemistry used to separate, identify, and quantify 

components in a sample mixture. In principle, samples are loaded onto columns containing an 

adsorbent material, the stationary phase. Each component in the sample interacts differently 

with the stationary phase. A pressurized solvent mixture is passed through the column, called the 

mobile phase, allowing an interaction with analytes. If the interaction with the mobile phase 

predominates, analytes are eluted from the column at certain retention times (RT) and 

transported to the detector. By changing the composition of the mobile phase, ideally, all analytes 

can be transferred from the column to the mobile phase. Overall, analytes interact slightly 

differently with both the mobile and stationary phase, which results in a separation based on 

different RTs. Various physicochemical properties can be exploited for chromatographic 

separation, such as differences in analyte size (size exclusion chromatography), affinity towards 

a polar stationary surface (normal phase chromatography), hydrophobicity (reverse phase 

chromatography), and many more.  
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In this work, (U)HPLC was coupled to LC-MS/MS, and the separation method employed was 

reversed phase (RP) chromatography. Peptides have varying degrees of hydrophobicity, and by 

linearly increasing the concentration of the organic solvent, peptides are eluted with increasing 

hydrophobicity. The solid phase is generally based on silica or synthetic organic polymers and 

contain covalently bound alkyl chains of different lengths such as C4, C8, C12 or C18 residues197. 

C18 columns are frequently used for separation, desalting and concentration of peptides and 

proteins mainly because the sample is concentrated in a small volume of volatile solvent198. The 

volatile solvent is also advantageous to online coupling to a mass spectrometer.  

RELATIONSHIP BETWEEN DIFFERENT HPLC PARAMETERS 

The resolution, describes the distance between two chromatographic peaks at baseline, 

according to equation 1199.  

𝑅 =
1

4
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𝑘2

1 + 𝑘2
∙

𝛼 − 1

𝛼
 

1 

where R = resolution, N = plate number, α = separation or selectivity factor, k = retention factor199. 

The peak capacity is the number of peaks that can be separated in a given time window, with a 

sufficiently good resolution. The resolution can be improved by increasing efficiency, selectivity 

(α), and retention (k)199.  

The efficiency of a column is generally reported as the number of theoretical plates, N as reported 

in equation 2199.  

𝑁 =
𝐿

𝐻
=

16 ∙ 𝑡𝑅
2
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2 

where N = plate number, L = length of the column, H = height of a theoretical plate, 𝑡𝑅  = retention 

time measured from the injection, and w = width of the peak at its base. The concept of theoretical 

plates is a model that supposes that the column contains a large number of separate layers 

allowing interactions with the solid phase200.The plate number is defined for isocratic separation 

and under the assumption that the peak follows a Gaussian curve. Excellent chromatograms have 

late appearing peaks (large 𝑡𝑅) that are narrow (small 𝑤) thereby producing large plate numbers 

(N). The column efficiency is dependent on the column dimensions, such as diameter, length, and 

particle size:  

1. Reducing the diameter of a column results in improved sensitivity through increased 

peak height, lower flow rates required to achieve optimal linear velocity, and reduces 

solvent waste201.  

2. The plate number increases with longer HPLC columns, which translates into better 

resolution198. 

3. Columns containing smaller particle sizes have better resolution, because the diffusion 

paths are shorter allowing analytes to transfer in and out of the particle more quickly202. 

Columns in modern HPLC systems are packed with 2µm or > 3-µm particles203. 
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Another option to increase the resolution is by increasing the gradient time, which results in 

slower flow rates and higher the peak capacity204. Optimal flow rates are inversely proportional 

to particle size, however, use of higher flow rates is possible if the system-pressure limit allows 

it205.  

DATABASE SEARCH 

In proteomics and immunopeptidomics, LC-MS/MS-based studies generate a high number of 

fragment spectra that contain sequence information for peptides and other analytes from the 

sample. Due to the high acquisition rate of modern instruments, the number of MS2 spectra has 

increased to tens of thousands per LC-MS/MS run, rendering their manual interpretation 

impossible. As a result, three main strategies have been developed to computationally identify 

peptides from MS2 spectra206: i) database searching, where the experimental spectra are 

searched against a reference database of protein (or peptide) sequences, ii) de novo sequencing, 

where amino acid sequences are directly inferred from the spectra, and iii) spectral library 

searching, where experimental spectra are searched against a library of spectra from known 

peptides. 

The most common computational approach is database search. Over the years, more than 30207 

different search algorithms were developed starting with SEQUEST208,209 and Mascot210, while 

Andromeda211 and Comet212 are more recent additions. Each implementation has different 

properties that have been reviewed here207.  

In principle, experimentally obtained MS2 spectra are queried against a target sequence 

database, such as the reviewed human proteome as encompassed in UniProt. The experimental 

MS2 spectra oftentimes undergo preprocessing, whereby low-intensity peaks are filtered out. 

The target database is digested in silico into peptides of a desired length, followed by 

fragmentation to generate theoretical spectra. The in-silico digestion mimics the experimental 

enzyme cleavage and fragmentation of sample proteins, and provides theoretical MS2 spectra 

that can be matched against experimental MS2 spectra207. A set of search parameters can tune 

the specificities of the comparison. Resulting peptide spectrum matches (PSMs) are then 

reported with a computed quality control score.  

The choice of the sequence database impacts the results of the search. Ideally, the search database 

should cover only proteins that are likely to be present in the samples, without inflating the 

database unnecessarily. Expanding the search space negatively impacts sensitivity, leading to 

multiple peptide annotations per precursor, as well as increasing the false discovery rate (FDR). 

Verheggen et al. illustrate this effect in Figure 4, whereby enlarging the search space with 

additional PTMs, isoforms and many more parameters results in an increased number of peptides 

matched to a single precursor and inflates the false discovery rate (FDR)207. Therefore, all the 

search space should be tailored to the hypothesis underlying the experiment.  

The key quality control step in database search is estimating the number of falsely annotated 

peptide sequences. For this purpose, the database search is performed against the target dataset 
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concatenated to a decoy database. Thus, it is possible to estimate the number of false 

positves171,213,214.  

KEY DIFFERENCES BETWEEN PROTEOMICS AND IMMUNOPEPTIDOMICS EXPERIMENTS 

Key differences between proteomics and immunopeptidomics experiments relate to i) the search 

space, ii) peptide lengths, and iii) analyte concentration prior to LC-MS/MS analysis. 

In proteomics experiments, proteins are isolated and digested with certain enzymes, whereby 

Trypsin, LysC, and many more have been described. Trypsin is a popular enzyme, as it cleaves 

proteins after an Arginine (R) or Lysine (K). This leads to peptide fragments with C-terminal R or 

K215 and results in a substantially reduced theoretical search space yielding confident peptide 

and protein identifications. In immunopeptidomics, HLA molecules of the respective human 

subjects and donors determine which peptides are presented. Indeed, HLA molecules have 

preferred binding motifs, that can be frequently summarized by anchor amino acid residues at 

position 2 and the C-terminus. When accounting for all C-terminal anchor amino residues, no 

informed constraints can be imposed upon the search space.  

Second, peptides eluted from HLA molecules have predetermined lengths, with a mode of 9 aa 

for HLA-I ligands and 15 aa for HLA-II ligands, as illustrated in Results Part I, Figure S1. The short 

HLA-I ligands are more difficult to discriminate between multiple theoretical sequences during 

database search. Longer peptides, such as tryptic peptides, or HLA-II ligands can be annotated to 

a theoretical spectrum with a higher confidence. Due to their predetermined length, all HLA-I 

ligands cluster in a narrow m/z window (400 - 650 m/z), necessitating a wide dynamic range to 

allow detection of both high- and low-abundance peptides.  

Third, the analyte concentration is routinely determined in proteomics experiments, but 

seldomly in immunopeptidomics experiments. The limited sample input in biological 

experiments, together with the isolation of only HLA-presented peptides through 

immunoprecipitation results in very low concentrated peptide samples. In these situations, 

concentration estimation with i.e. the Bradford assay would require a large proportion of the 

sample. Furthermore, the final peptide concentration is dependent on the HLA expression in the 

sample of interest. Tissues or tumors with a high expression of HLA molecules yield higher 

numbers of peptide identifications. HLA expression can be analyzed in cell suspensions or 

hematologic malignancies78, but is difficult to estimate in solid tissue samples. 

All these particularities can be compensated by performing peptide sequencing on an instrument 

with a high resolving power, mass accuracy, sensitivity, and dynamic range. Typically, Orbitrap 

instruments are well suited to cover these requirements. These aspects also hamper the 

discovery of PTMs in immunopeptidomics. Considerable efforts were required to confidently 

identify PTMs. Nevertheless, novel technologies, such as IMS promise to facilitate the 

identification of PTMS and distinction between positional isomers. 

DEFINITIONS IN MASS SPECTROMETRY 
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Mass analyzers record m/z-valued of molecules, such as peptides and their fragments, based on 

different physical methods. Widely employed mass analyzers are the Orbitrap, linear ion trap 

(IT), and time of flight (TOF) detectors. Relevant performance metrics that define efficacy of mass 

spectrometers are the resolving power, mass accuracy, sensitivity, dynamic range, and speed. 

These parameters differ with instrument and detector type, and unfortunately, no ideal 

instrument has been developed yet, that combines only favorable parameters for these 

performance criteria. 

The mass resolving power, or resolution R has been defined as the ability to distinguish ions 

differing in the m/z ratio by a small increment216 or 1 Da217.  

𝑅 =
𝑚

∆𝑚 
 (3) 

The resolution is calculated as illustrated in equation 3, where 𝑚 designates the mass (m/z) and 

∆𝑚 the peak width necessary for separation defined by the full width at half maximum (FWHM). 

An exemplary calculation is illustrated in Figure 1. 

The accuracy of a mass measurement refers to the degree of deviation from the true mass of the 

analyte. Mass accuracy is defined as the ratio of the m/z measurement error and the true m/z 

value of the analyte and is usually measured in ppm. High mass accuracy is required in particular 

when mixtures with similar m/z are analyzed. To separate similar peptide species, a high 

resolving power and chromatographic separation are necessary, while high mass accuracy alone 

is insufficient218.  

The sensitivity of a mass spectrometer is generally defined as “the slope of the calibration curve” 

relating signal intensity to absolute quantity or concentration219. The sensitivity is dependent on 

the resolving power of the instrument220. The relative detection limit depicts the smallest amount 

of material detectable in a matrix relative to the amount of material analyzed and is given in 

atomic, mole or weight fractions220. The terms “mass sensitivity” and “concentration sensitivity” 

are a source of misconceptions and need to be specified clearly219. NanoESI-MS operates at low 

flow rates and exhibits a high mass sensitivity, which is advantageous when working with low 

concentration, volume-limited samples219. 

 

Figure 1: Exemplary calculation of the resolution 
 

𝑅 =
𝑚

∆𝑚
=

500 𝑚/𝑧

0.1 𝐹𝑊𝐻𝑀
= 5000 
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The dynamic range refers to the ratio of a high intensity MS1 peak which is more intense than 

95% of the peaks, to a low intensity MS1 peak which in turn is less intense than 95% of the peaks. 

The dynamic range only refers to MS1 spectra that have triggered an MS2 spectrum matched to 

a peptide, during the RT span where most of the peptides are eluting. Furthermore, the linear 

dynamic range is the range over which the ion signal increases linearly with analyte 

concentration.  

The scan rate refers to the number of recorded mass spectra per second and is measured in Hz. 

It is an essential parameter, as it must be adjusted to the chromatographic elution profile of a 

certain peptide. The scan rate positively influences the resolving power in ion trap and Orbitrap 

instruments, meaning that higher resolution scans require a longer dwell time in the respective 

trap.  

Orbitrap detectors have a high resolution, with a customary upper bound of 240,000, which is 

now extendable to 1,000,000. The high resolving power characteristic for Orbitrap instruments 

is dependent on the scan rate and m/z. However, only a limited number of ions can be analyzed 

in the Orbitrap in one scan due to space charge effects. Ion trap and Orbitrap instruments confine 

many ions in a small volume which results in mutual repulsion of particles with the same charge 

(ions and electrons) that influence the current in a charged particle beam. Ions deviate from the 

expected trajectories caused by external fields due to space charge effects220. 

The main advantage of TOF detectors is their immense scan rate, which can amount to 100 Hz 

(100 MS2 spectra per second) independently of the m/z and amount of analyzed ions. However, 

their resolution is significantly lower when compared to Orbitrap detectors ranging between 

30,000 and 50,000 (Table 4-1). 
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Table 4-1: Instrumentation Comparison. The qExactive HF has been excluded, as it has been 
discontinued by Thermo Fisher. The Orbitral Eclipse and Orbitrap Exploris 480 have been 
inaugurated at ASMS 2019, which was too late for decision making. The Orbitrap Exploris 
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ION MOBILITY SEPARATION IN LC-MS/MS SETUPS 

Recent advances have enabled the implementation of ion mobility separation (IMS) into mass 

spectrometers. The original limitation resided in the large size of drift tubes, which hindered their 

incorporation in mass spectrometers221. In IMS, ions are separated by their size, charge, and 

shape, more precisely summarized as the collisional cross section (CCS). In timsTOF data, the CCS 

is described through the Mason Schamp equation 4222: 

𝐶𝐶𝑆 =
3𝑧𝑒

16

1

𝑘0
√

2𝜋

𝜇𝑘𝑏𝑇
 

(4) 

Mobility values (k or k0) can be measured and used akin to chromatographic RTs. Positioned 

between the HPLC and MS, IMS offers an orthogonal dimension of separation increasing the 

sensitivity and selectivity, particularly in highly complex sample mixtures. In 

immunopeptidomics this further separation step could ideally improve the signal to noise ratio, 

and deconvolute isobaric peptides prior to mass analysis. In general terms, ion mobility 

techniques can be separated into three concepts: temporally-dispersive, spatially-dispersive, and 

ion confinement (trapping) with selective release221. IMS applications from all three categories 

have been implemented in LC-IMS-MS settings by different vendors, as illustrated in Table 4-2 

and reviewed221.  

Table 4-2: Applications of IMS and corresponding LC-IMS-MS instruments with high interest to 
immunopeptidomics221. 

IMS Technology Instrument Vendor 
Temporally 
Dispersive 

Drift tube IMS    
Travelling wave IMS Synapt G2Si Waters 

Spatially Dispersive Field asymmetric 
(FAIMS) 

Linear: SelexION® AB Sciex 
Cyclical: FAIMS Pro™ Thermo Fisher Scientific 

Differential mobility IMS   
Confinement and 
selective release 

Trapped IMS timsTOF Pro Bruker 

Temporally dispersive ion mobility methods lead ions along the same path, with different arrival 

times at the mass analyzer. Spatially dispersive ion mobility methods separate ions along 

different drift paths according to their ion mobility but does not influence the arriving time. Ion 

confinement and selective release methods trap ions at a certain voltage and sequentially eject 

them with modulation of the electric field221. 

MECHANISM OF ACTION OF THE TIMSTOF PRO IN PASEF MODUS  

IMS was at the time of this benchmark, January 2019, a technology that had promise to be equally 

appropriate for immunopeptidomics samples, as the Orbitrap technology turned out to be. The 

timsTOF Pro was the only instrument with trapped ion mobility spectrometry (TIMS) capabilities 

included in this study and is therefore briefly explained. 

Trapped ion mobility spectrometry (TIMS) implemented into Bruker Daltonic’s timsTOF Pro 

belongs to the confinement and selective release category that traps ions within a pressurized 

region and selectively releases them based on different ion mobilities221. In the TIMS device, ions 
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are brought to rest at different positions in the ion tunnel by being balanced in an electrical field 

against a constant counteracting nitrogen stream. After a sufficient number of ions have been 

trapped and separated, the electrical potential is lowered and time-resolved ions are ejected into 

the downstream quadrupole and TOF mass analyzer223,224.  

As described by Meier et al.222, an ingenious modality of operation termed parallel accumulation 

serial fragmentation (PASEF) was implemented. In PASEF mode, the precursor selection is 

synchronized with the TIMS separation. The TIMS funnel is “electronically” divided into two 

segments: i) the accumulation trap, that stores all ions entering the mass spectrometer ii) the 

second part performs the TIMS separation. As soon as the second part has finished, all ions from 

the first part are transferred into the second where they are separated. Thus, ions are not lost 

during the TIMS separation if the accumulation and separation have equal durations. In both 

TIMS regions ions experience a drag from incoming gas flow and a repulsion from the electrical 

field. Depending on their CCS, ions with high mobility accumulate at the entrance of the tunnel 

and ions with low ion mobility accumulate at the exit. The TIMS precursor selection algorithm 

considers the quadrupole switching and measuring time and estimates how many precursors can 

be selected and fragmented in one PASEF frame. The PASEF acquisition scheme is illustrated in 

Figure 2225. 

Briefly, an MS1 heatmap generated in PASEF mode has a duration of 100 ms and describes the 

m/z and 1/k0 of the ions contained. Based on this heatmap, the precursor selection algorithm 

can define a polygon that describes the most efficient order of precursor selection for 

fragmentation taking into consideration the ion intensities and quadrupole switching and 

measurement time. If an intense ion is not selected for fragmentation due to the quadrupole 

switching time, it will be prioritized in the next PASEF frame. If certain ions have a low intensity 

(below a set threshold), they can be selected again for fragmentation. In a postprocessing setting 

all these MS2 spectra can be added to obtain a better signal to noise ratio and increased spectral 

quality.  

 

 

 

Figure 2: PASEF acquisition scheme  
 Acquisition of an MS1 heatmap 100 ms 

 Precursor isolation algorithm selects appropriate 
precursors for fragmentation considering their intensity 
and the quadrupole switching and acquisition time 

 12 different precursors are fragmented and scanned => 
TIMS elution voltage is synchronized with the quadrupole 
selection. 

 The cycle is repeated. 
 
TOF analysis time: 10 µs.  
(https://www.bruker.com/products/mass-spectrometry-and-
separations/lc-ms/o-tof/timstof-pro.html) 
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AIM OF THE ANALYSIS 

With these considerations in mind, we set out to determine performance differences regarding 

immunopeptidomic samples between five different instruments. Therefore, we contacted all 

vendors mentioned in Table 4-2 for a closer description of their technology, as well as for 

measurements of a serial dilution series, the Demobox samples, described in the material and 

methods section. The Synpat G2Si instrument was disqualified due to the low-resolution mass 

accuracy, slow response times and long waiting times (> 3 months, and additionally 4-8 weeks to 

obtain the results). AB Sciex recommended the TripleTOF 6600 instead of the SelexION 

technology, as the ion mobility functionality could only be used for separating previously known 

isobaric compounds and was not suitable for constant usage. Thermo Fisher Scientific had 

difficulties providing the necessary EU-licenses, for FAIMS sale, and failed to provide the results 

to the Demobox measurements in the communicated time frame. As a result, the timsTOF pro 

was the only instrument with IMS capabilities included in our benchmark. 
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4.2.3 MATERIALS AND METHODS 

JY CULTURING CONDITIONS 

The JY cell line (ECACC 94022533, IHW9287) is an Epstein–Barr virus-immortalized B cell 

lymphoblastoid line, with the advantageous property of being homozygous for all HLA-I loci 

(HLA-A*02:01, HLA-B*07:02, and HLA-C*07:02). JY has been established from a homozygous 

male individual in the Indiana Amish population226. Furthermore, it expresses between 200,000 

– 1,000,000 HLA copies on its cell surface (personal communication Daniel Kowalewski), thereby 

allowing the isolation of large numbers of peptides from a limited number of cells. Due to the 

unpretentious culturing conditions and well-studied HLA allotypes, we employ the 

immunopeptidome of the JY cell line for standard suitability testing (SST) to regularly monitor 

and evaluate the performance of the mass spectrometers. 

A frozen 1 ml JY cell suspension containing 3 × 106 cells in freezing medium consisting of 10% 

dimethyl sulfoxide (DMSO, WAK Chemie) in fetal calf serum (FCS, Capricorn Scientific) was 

thawed by dilution with RPMI 1640 medium (Thermo Fisher Scientific) supplemented with 1% 

sodium pryruvate (100 mM) (Thermo Fisher Scientific ), 1% MEM non-essential amino acids 

(100x) (Thermo Fisher Scientific), 1% Penicillin (103 x U/ml)/Streptomycin (10 g/ml) (Sigma-

Aldrich), and 10% FCS. Cells were cultured in humidified incubators at 37°C and 7.5% CO2. Cells 

were split every two to three days at a ratio of 1:2, 1:3 or 1:5, depending on cell proliferation and 

medium discoloration. For harvesting, culture medium was removed by centrifugation (1500 

rpm, 15 min, room temperature, with break), and cells were washed twice with Dulbecco's 

Phosphate-Buffered Saline (Thermo Fisher Scientific) to remove residual medium. Pellets were 

pooled to obtain an approximate 5 ml pellet containing about 3 − 4 × 109 cells and were frozen 

and stored at -80°C until immunopurification of HLA ligands was performed.  

ISOLATION OF HLA LIGANDS FROM THE JY CELL LINE  

JY19#1 HLA-I ligandome was isolated by Jens Bauer, using the protocol described in Results I 

under the Methods section “HLA immunoaffinity purification”. Deviations from the standard 

procedure were motivated by the large number of cells used. Briefly, a 7 ml cell pellet, 

approximately containing 4 x 109 cells was employed as input material. The cell pellet was lysed 

in 30 ml 2x lysis buffer, and 10 ml 1x lysis buffer. Subsequently, the cell lysate was cleared by two 

consecutive centrifugation steps at maximum speed, and 4°C for 45 minutes. The cleared lysate 

was loaded onto BioRad Econo Columns with 5 cm diameter, containing 20 ml antibody-bead 

conjugates (1 mg/ml) and was run cyclically over-night. Peptides were eluted into 5 ml low-bind 

Eppendorf tubes, the first elution being performed with 100 µl 10% TFA and 600 µl 0.2% TFA 

(followed by three subsequent elution steps with 600 µl 0.2% TFA). Both HLA-I and -II ligands 

were further purified by ultrafiltration employing a 10 kD filter unit suitable for a 15 ml Falcon 

tube. Peptide solutions from the JY19#1 experiment were lyophilized to complete dryness and 

resuspended in 3 ml Aload.  
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DEMOBOX SAMPLE PREPARATION: SERIAL DILUTION AND RT-PEPTIDE SPIKE-IN 

The purified peptide solution was spiked with a cocktail of 10 heavy labeled synthetic peptides 

selected, weighed, and diluted by Lena Katharina Freudenmann to a stock solution of 10 fmol/µl. 

The RT-peptides spiked into JY19#1 No.1 sample are described in detail in Table 4-3. Ten 

different tryptic peptides covering the retention time range of HLA ligands were selected and 

synthesized with an L+7 heavy isotopic modification to allow easy distinction between native and 

spike-in peptides. The RT-peptide mix, having a stock concentration of 10 fmol/µl, was diluted in 

JY 19#1 to 0.2 fmol for each RT-peptide. 

Table 4-3: Heavy isotope-labeled peptides that were spiked into sample No.1 consisting of the 
JY19#1 HLA ligand solution. The final concentration per RT-peptide in sample No.1 was 0.2 
fmol/µl. 

Peptide Modification (L+7) Spike-in concentration (No.1) 

ISLGEHEGGGK IS[L(13C6; 15N)]GEHEGGGK 0.2 fmol/µl 

VGASTGYSGLK VGASTGYSG[L(13C6; 15N)]K 0.2 fmol/µl 

TLIAYDDSSTK T[L(13C6; 15N)]IAYDDSSTK 0.2 fmol/µl 

FLASSEGGFTK F[L(13C6; 15N)]ASSEGGFTK 0.2 fmol/µl 

GFLDYESTGAK GF[L(13C6; 15N)]DYESTGAK 0.2 fmol/µl 

ALFSSITDSEK A[L(13C6; 15N)]FSSITDSEK 0.2 fmol/µl 

HFALFSTDVTK HFA[L(13C6; 15N)]FSTDVTK 0.2 fmol/µl 

VYAETLSGFIK VYAET[L(13C6; 15N)]SGFIK 0.2 fmol/µl 

GASDFLSFAVK GASDF[L(13C6; 15N)]SFAVK 0.2 fmol/µl 

FFLTGTSIFVK FF[L(13C6; 15N)]TGTSIFVK 0.2 fmol/µl 

Table 4-4 describes the dilution of the JY19#1 HLA-I ligand sample with the isotopically labeled 

RT-peptide solution. Sample No.1 was spiked with RT-peptides. Subsequently, sample No.1 was 

diluted 1:2 with Aload resulting in sample No.2, which in turn was diluted 1:2 with Aload to 

obtain sample No.3, until sample No.5. The demobox samples thus contain a serial dilution series 

from the stock solution, that allow monitoring of MS parameters across different LC-MS/MS 

instruments.  
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Table 4-4: The five samples used to examine the comparability with other LC-MS/MS setups with 
the Orbitrap Fusion Lumos. The HLA ligand solution JY19#1 isolated from the JY cell line was 
spiked with RT-peptides resulting in sample No.1, which was subsequently serially diluted up to 
sample No.5. 

Dilution 

factor 

Sample Dilution Final concentration per RT-peptide 

1  No.1 1:50 dilution of HLA-I JY19#1 ligands 

with 10 fmol/µl RT-peptide 

0.2 fmol/µl  

1:2  No.2 500 µl Aload + 500 µl Dilution No.1 0.1 fmol/µl  

1:4  No.3 500 µl Aload + 500 µl Dilution No.2 0.05 fmol/µl  

1:8  No.4 500 µl Aload + 500 µl Dilution No.3 0.025 fmol/µl  

1:16  No.5 500 µl Aload + 500 µl Dilution No.4 0.0125 fmol/µl  

The resulting five dilutions were aliquoted and stored at -80°C until LC-MS/MS analysis. We 

subsequently distributed the serial dilution series across five locations with instructions 

regarding the settings for both the HPLC and mass spectrometry system, as listed in the Results 

Part I, Section 4.1.3 Materials and Methods, subheading: Mass Spectrometric Data Acquisition. 

Furthermore, we strongly recommended the implementation of the same chromatographic 

conditions with respect to the separating column, solution composition, gradient and pick-up 

volume from the chromatographic vial. Thus, we aimed to transfer the extensive parameter 

optimization of our instrumentation to the other Demo-labs, to allow an informed decision 

regarding which instruments have a comparable performance and might be implemented either 

as a complementary or capacity-expanding instrument. 

4.2.4 RESULTS AND DISCUSSION 

GENERATION OF THE DEMOBOX SAMPLES 

We analyzed the serial dilution series on the in house Orbitrap Fusion Lumos to evaluate the 

baseline parameters we intended to use for the benchmark. The first measurements show a linear 

dilution profile in regard to both the immunopeptidome yield and the cumulative MS1 peak area 

of identified peptides (Figure 2A), but also considering the cumulative area of spiked-in heavy-

isotope-labeled RT peptides (Figure 2B). In addition, all ten RT-peptides could be identified 

confidently at a lower-bound concentration of 25 amol/µl, while peptides ISLGEHEGGGK and 

GFLDYESTGAK could not be fragmented and identified at 12.5 amol/µl. Thus, the demobox 

samples show a linear serial dilution profile and highlight the lower limit of detection of the 

Orbitrap Fusion Lumos, making the samples ideal for LC-MS/MS system comparisons. 
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Figure 2: Serial dilution series of JY 19#1 Demobox. 
(A) HLA ligands isolated from the JY cell line were spiked with 0.2 fmol/µl for each of the 10 isotope-labeled synthetic peptides (Sample No.1). A serial 
1:2 dilution was performed. The number of identified HLA ligands per dilution is depicted on the right y-axis in red. The cumulative area of all MS1 
precursors identified in the respective dilution is visible in black and associated to the left y-axis. 
(B) The cumulative area of all MS1 precursors identified per dilution is depicted in black. The cumulative area of the spiked-in RT-peptides is illustrated 
in red. 
(C) Concentration-dependent detection of isotype-labeled spiked-in RT-peptides. Not all peptides could be identified in all concentrations with the 
standard quality thresholds (5% PSM-level FDR). 
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INITIATING A SYSTEM-WIDE BENCHMARK 

For the acquisition of new mass spectrometers, we evaluated the performance of six LC-MS/MS 

systems from three different vendors by comparatively evaluating LC-MS/MS runs of the five 

Demobox samples. The instrument Synpat G2Si the LC-MS/MS accessoir FAIMS could not be 

included in this comparison, as response times from Waters and Thermo Fisher Scientific 

exceeded the available time (> 3 months). Measurements on the Orbitrap Fusion were performed 

at Immatics Biotechnologies GmbH with the help of Daniel Kowalewski, on two different 

equivalent instruments. Furthermore, Marisa Schmidt from the Proteome Center Tübingen 

performed measurements on the q Exactive HF and q Exactive HFx (data not shown, as 

instrument was discontinued). Across all systems, 114 LC-MS/MS runs were acquired, as 

summarized in Table 4-5. Labs were instructed to implement the optimized solutions and 

instrument settings of our LC-MS/MS setup. However, further instrument-specific parameters 

were varied to adjust different technologies to the specificities of HLA ligandomics samples. 

Parameters that were varied frequently included the chromatographic gradient length and MS1 

and MS2 resolution. As timsTOF data could at the time only be analyzed with PEAKS DB, we 

processed all runs with PEAKS DB to allow for a reproducible data analysis.  

Table 4-5: The five Demobox JY19#1 samples were analyzed on six different LC-MS/MS 
instruments from three vendors. Details regarding the chromatographic gradient in minutes, the 
date of LC-MS/MS analysis, and optimization parameters (resolution: 20 K, 60 K) are listed. 

 
Orbitrap 

Fusion Lumos 
Orbitrap Fusion q Exactive HF 

LTQ 

Orbitrap XL 

timsTOF 

Pro mit 

PASEF 

TripleTOF 

6600 

Vendor Thermo Fisher Thermo Fisher Thermo Fisher 
Thermo 

Fisher 

Bruker 

Daltonics 
AB Sciex 

MS 

Analysis 

Immunopepti-

domics Core 

Facility 

immatics 
Proteom Center 

Tübingen 

Immunopepti

-domics Core 

Facility 

Bruker AB Sciex 

No.1 
90 min 

/190303 

70 min /N190321 

70 min /N190315 
90 min /190409 

90 min 

/190329 

60 K 30 min 

60 K 60 min 

20 K 100 min 

90 min 

No.2 
90 min 

/190303 

70 min /N190321 

70 min /N190315 
90 min /190409 

90 min 

/190329 

60 K 30 min 

60 K 60 min 

20 K 100 min 

90 min 

No.3 
90 min 

/190303 

70 min /N190321 

70 min /N190315 
90 min /190409 

90 min 

/190329 

60 K 30 min 

60 K 60 min 

20 K 100 min 

90 min 

No.4 
90 min 

/190303 

70 min /N190321 

70 min /N190315 
90 min /190409 

90 min 

/190329 

60 K 30 min 

60 K 60 min 

20 K 100 min 

90 min 

No.5 
90 min 

/190303 

70 min/N190321 

70 min /N190315 
90 min /190409 

90 min 

/190329 

60 K 30 min 

60 K 60 min 

20 K 100 min 

90 min 
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DETECTION LIMIT ESTIMATION AND QUALITY OF PEPTIDE IDENTIFICATIONS 

A prerequisite for a new instrument is a high sensitivity, allowing for the detection of a high 

number of peptides from limited sample amounts. The Thermo Fisher Scientific instruments 

Orbitrap Fusion Lumos and Orbitrap Fusion together with their associated chromatography are 

highly similar technologies and have been optimized for immunopeptidomics samples in the 

respective laboratories. Therefore, it is not surprising that they show very similar performance 

patterns when looking at the immunopeptidome yield (Figure 3A). The q Exactive HF, distributed 

by Thermo Fisher Scientific, has a similar architecture and the same Orbitrap as the Tribrid 

instruments. Thus, similar numbers of identified peptides can be detected at high concentrations, 

but the performance between the two classes of instruments diverge at lower concentrations, 

owing in part to measurements performed on a non-optimized system. Three measurements, 

with different gradient times were performed on the timsTOF Pro. All three measurements 

clustered together, highlighting the possibility of drastically reducing the acquisition time to 30 

minutes per run, without loss in sensitivity. The TripleTOF 6600 showed a reduced performance 

compared to the aforementioned instruments. Furthermore, the MS1 area could not be 

determined, with the software distributed by AB Sciex, Protein Pilot, but also using other 

algorithms such as SEQUEST embedded in the Proteome Discoverer 1.4, or PEAKS. Lastly, the 

LTQ Orbitrap XL, showed a similar performance profile as Sciex’s TripleTOF 6600, despite being 

an outdated instrument. The linear dilution pattern of the Demobox samples was evident 

irrespective of the LC-MS/MS instruments tested (Figure 3). 

Furthermore, the immunopeptidome purity was similarly high for all instruments. The 30-

minute gradient run on Bruker’s timsTOF Pro represents an outlier at ~75% purity irrespective 

of the concentration analyzed (Figure 3B). The number of identified RT-peptides was relatively 

constant for the reference instrument, the Orbitrap Fusion Lumos, with a steep decline at the 

lowest concentration (Figure 3C). Surprisingly, all 10 RT-peptides could be detected and 

identified only with the 60-minute gradient run on the timsTOF Pro. Even at the lowest 

concentration, it surpassed the lower bound detection limit of the Tribrid instruments. The worst 

performance was achieved with the q Exactive HF.  

Taken together, the timsTOF Pro shows a comparable performance to the Tribrid instruments, 

with the advantage of a low detection limit, which can account for sensitivity, and faster 

fragmentation without loss of fragmentation information or intensity. The reduced gradient 

length is a desirable attribute as well. 

DYNAMIC RANGE 

The cumulative MS1 area under the curve (AUC) for RT-peptides and all identified peptides in 

the respective runs shows a linear gradient and a reliable quantification of low-abundant 

peptides (Figure 3D). This result indicates that the Thermo instruments and the timsTOF Pro 

show a high dynamic range which is highly advantageous for immunopeptidomic experiments.  



Results 

71 

 

 

 

Figure 3: Qualitative benchmark between five LC-MS/MS systems. 
(A) Instrument-dependent immunopeptidome yield varies for different concentrations. (B) The immunopeptidome purity determined as the ratio of 
predicted binders (netMHCpan4.0) and total number of identifications of each sample. (C) The number of detected RT-peptides varies with each 
instrument. Figures in A, B and C share the same legend. TimsTOF runs have been abbreviated by their gradient length, but according resolution settings 
are depicted in Table 3-4. 
(D) The cumulative area of all MS1 precursors identified per dilution is illustrated by filled symbols connected by straight lines, while spiked-in RT-
peptides are symbolized by hollow symbols connected by dotted lines. 
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To mimic high-yielding and low-yielding immunopeptidomic experiments, we investigated 

dilutions No.1 and No.4 due to their resemblance to standard samples (Figure 4A and B). The 

log10 -transformed AUC for each RT-peptide is depicted in Figure 4. As briefly mentioned 

previously, it was not possible to determine the MS1 intensities from measurements performed 

on the Sciex’ TripleTOF 6600. Additionally, at 25 amol/µl, the area could not be determined for 

multiple peptides and LC-MS/MS instrumentations, despite an identification obtained from MS2 

spectra. Overall, the Orbitrap instruments show the same order of magnitude of AUCs in sample 

No.1. The TimsTOF Pro shows reduced albeit highly reproducible areas at both concentrations. 

Areas obtained from the q Exactive HF measurements are on par with the Tribrid instruments 

Orbitrap Fusion and Orbitrap Fusion Lumos for sample No.1. For sample No.4, only one RT 

peptide was identified with the q Exactive HF, and the MS1 area could not be picked. 

A further quality criterium is represented by the allotype distribution of identified HLA ligands 

and the accumulation of predicted non-binders. The purity of the sample and the allotype 

distribution correlate with each other (Figure 5). The Tribrid instruments show a reproducible 

purity of the sample, although with decreasing sample concentration less peptides match the 

binding motif of the respective allotype. Interestingly, a drastically reduced purity is visible with 

the 30-minute gradient acquired on the TimsTOF Pro. The 60-minute gradient shows varying 

percentages of non-binders, that do not necessarily correlate with the concentration of the 

sample. The TripleTOF6600 however, shows an increasing fraction of non-binders with 

decreasing concentration. Aside from varying proportions of non-binders, peptides were 

distributed across HLA-A, -B and -C allotypes as expected, with most peptides being presented 

by HLA-A, followed by -B and barely any peptides being presented by HLA-C.  

 
Figure 4: Concentration-dependent detection limit of different LC-MS/MS setups. 
(A) log10-transformed AUCs of RT-peptides at the highest tested concentration: 0.2 fmol/µl per peptide. For peptides, that were identified via an MS2 

spectrum, but no area could be picked from the corresponding MS1 spectrum, a default intensity of 1 was set. 

(B) log10-transformed AUCs of RT-peptides at 25 amol/µl. 
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Figure 5: HLA Allotype Distribution. 
Identified peptides were separated to be binders of A*02:01, B*07:02, C*07:02 or not bind any HLA allotype of the JY cell line. The allotype distribution 

was calculated in percent, but the absolute numbers of each category are added as data labels. HLA binding prediction was performed with netMHCpan 

4.0174, employing a binding rank threshold < 2%. 
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COMPLEMENTARITY 

Our work focuses on expanding and mapping the known immunopeptidome in various primary 

tissue types. Therefore, an ideal instrument would be complementary to the in-house available 

Orbitrap Fusion Lumos and thereby unveil a different repertoire of HLA-presented peptides. To 

qualitatively assess complementarity of the benchmarked LC-MS/MS systems with the in-house 

available Orbitrap Fusion Lumos we performed proportional Venn Diagrams (Figure 6A-D) for 

the representative dilutions No.1 and No.4. In all pairwise comparisons, the number of unique 

HLA ligands is highest when analyzed with the Orbitrap Fusion Lumos in all comparisons. Yet, 

approximately 50% of peptides are uniquely identified with the timsTOF Pro. The Sciex 

TripleTOF 6600 only marginally increased the identifiable immunopeptidome. Taken together, 

the Bruker timsTOF Pro with PASEF represents a new type of technology that is complementary 

to Orbitrap instruments. The overall performance is still lagging behind the in house Orbitrap 

Fusion Lumos, an instrument which has been previously optimized. It may be expected that the 

performance of the remaining instruments can be massively improved by adjusting and 

optimizing the data acquisition parameters to best capture immunopeptidomes. 

 

  

 

Figure 6: Size-proportional Venn diagrams illustrate complementarity between the available instrumentation 
(Orbitrap Fusion Lumos) and benchmarked LC-MS/MS systems. Samples No.1 and 4 resemble the range of naturally 
presented HLA ligands and have therefore been chosen to represent standard samples. 



Results 

75 

 

 

4.3 PART III: IMMUNOPEPTIDOMIC LANDSCAPE OF BREAST CANCER 
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AM performed the experimental isolation and LC-MS/MS-based identification of HLA ligands 

from tumor, adjacent benign, and benign mamma samples. AM performed the comparative 

analysis of HLA ligands identified in this results section and in Results Part I section and 

generated all plots. MG generated the prediction algorithm to define the HLA allotype of one 

sample based on its immunopeptidome. TE, SM and PW provided the samples, obtained patient 

informed consent, and managed the clinical patient metadata. SS, HGR and PW supervised this 

study.  
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4.3.1 ABSTRACT 

Significant recent advances in cancer immunotherapies have led to long-term remission in 

patients with melanoma and non-small cell lung carcinoma. These therapies are currently tested 

in other cancer entities and it becomes evident that cancer immunotherapy is not beneficial for 

every patient. By knowing the antigenic repertoire presented by HLA molecules on breast cancer 

cells, patient-individualized immunotherapies can be tailored to target antigens exclusively 

presented on cancer cells. 

In this study we employed LC-MS/MS-based characterization of the immunopeptidome of 31 

primary breast cancer tissues (MaCa), 23 adjacent benign tissues (MaCa adj. ben.), and 6 healthy 

mamma (MaN) tissues. By comparatively profiling tumor and benign immunopeptidomes we 

were able to define a set of TAAs in breast cancer patients, which can be targeted by therapeutic 

peptide vaccination. Thereby, we identified 42,376 naturally eluted HLA-I ligands originating 

from 10,977 source proteins and 46,939 HLA-II ligands isolated from 5,289 source proteins. 

Overall, we have identified 44 HLA-I ligands (> 5/31 MaCa samples), 62 HLA-I source proteins 

(> 3/31 MaCa samples,), 46 HLA-II ligands (> 6/30), and 75 HLA-II source proteins (> 2/30 MaCa 

samples) identified exclusively on MaCa tissue. These frequently shared TAAs are shared by 

multiple molecular subtypes. Furthermore, they have been identified on other tumor types.  

To further refine the set of naturally presented TAAs, we will expand the number of breast cancer 

specimens analyzed, perform exome and RNA sequencing from blood, tumor, and adjacent 

benign tissues for ten patients and generate a warehouse of immunogenic peptides for a potential 

clinical study. These warehouse peptides can then be confirmed in a validation dataset 

comprising tumor samples of the Triple Negative molecular subtype, the molecular subtype with 

the poorest prognosis and potentially the highest benefit in a clinical setting. 
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4.3.2 INTRODUCTION 

BREAST CANCER PREVALENCE  

Breast cancer is the most frequent type of cancer in women worldwide and is curable in ~70 - 

80% of patients with early-stage, non-metastatic disease227. According to the GLOBOCAN report, 

approximately 2.1 million women were newly diagnosed with breast cancer and 626,679 women 

have died of breast cancer in 2018 worldwide228. Approximately 10% of breast cancers are 

inherited and are associated with a family history229. However, a family history of breast cancer 

is only loosely associated with an individual risk. Mutations in two high-penetrance tumor 

suppressor genes BRCA1 (17q21) and BRCA2 (13q13) are associated with an average cumulative 

risk of developing breast cancer in women by the age of 80 of 72% and 69%, respectively230, 

while a relative risk of BRCA2 mutations surmounts to 6% in men. BRCA1 and BRCA2 mutations 

are inherited in an autosomal-dominant manner and are tumor suppressor genes involved in 

double-stranded DNA break repair.  

BREAST CANCER CLASSIFICATION BASED ON HISTOLOGY 

Breast cancers can be divided into two main overarching groups: the carcinomas and the 

sarcomas. Carcinomas are cancers that arise from epithelial cells, while sarcomas arise from the 

stromal component of the tissue, mainly blood vessels and myofibroblasts. Sarcomas make up to 

1% of breast cancers. Furthermore, breast cancers can be broadly categorized into in situ and 

invasive (infiltrating) carcinomas. The histopathological classification of breast cancer tumors is 

updated regularly by the WHO, incorporating molecular and genetic data to the originally 

morphological classification231,232. The most common type of breast cancer was previously 

known as invasive ductal carcinoma and is currently known as invasive breast carcinoma of no 

special type (NST). The most common premalignant lesions include the ductal carcinoma in situ 

(DCIS) and lobular carcinoma in situ (LCIS), but intraductal proliferative lesions and papillary 

lesions can also lead to malignant development. Table 4-6 illustrates the classification of frequent 

invasive breast cancer types.  
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Table 4-6: WHO classification of invasive breast carcinomas with the exception of the rare 

types231,232. 

Type 
Invasive carcinoma of no special type (NST) 

Pleomorphic carcinoma 
Carcinoma with osteoclast-like stromal giant cells 
Carcinoma with choriocarcinomatous features 
Carcinoma with melanotic features 

Invasive lobular carcinoma 
Classic lobular carcinoma 

Solid lobular carcinoma 
Alveolar lobular carcinoma 
Pleomorphic lobular carcinoma 
Tubulolobular carcinoma 
Mixed lobular carcinoma 

Tubular carcinoma 
Cribriform carcinoma 
Mucinous carcinoma 
Carcinoma with medullary features 

Medullary carcinoma 
Atypical medullary carcinoma 
Invasive carcinoma NST with medullary features 

Carcinoma with apocrine differentiation 
Carcinoma with signet-ring-cell differentiation 
Invasive micropapillary carcinoma 
Metaplastic carcinoma of no special type 

Low-grade adenosquamous carcinoma 
Fibromatosis-like metaplastic carcinoma 
Squamous cell carcinoma 
Spindle cell carcinoma 
Metaplastic carcinoma with mesenchymal differentiation 

Chondroid differentiation 
Osseous differentiation 
Other types of mesenchymal differentiation 

Mixed metaplastic carcinoma 
Myoepithelial carcinoma 

Epithelial-myoepithelial tumors 
Adenomyoepithelioma with carcinoma 
Adenoid cystic carcinoma 

BREAST CANCER TUMOR GRADING 

The American Joint Committee on Cancer (AJCC) TNM staging system is the classification 

universally used for a variety of cancer types, including breast cancer233. The pathologic 

prognostic stage groups are applicable to all patients for which the first treatment option is 

complete surgical excision, whereby a pathological report, grade, and the biomarkers ER, PR; and 

Her2 are included. The anatomic stage groups incorporate the tumor size (T), proximal lymph 

node metastasis (N), and distant metastasis (M) and are listed in table 4-7234. The updated and 

detailed classification table, that takes into account all biomarkers is available at233. 
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Table 4-7: AJCC definition of primary Tumor (T), clinical Lymph Node (cN) infiltration, and 
Metastasis (M) anatomical staging (adapted from234). 

T category T criteria 
T0 No evidence of primary tumor 
Tis (DCIS) Ductal carcinoma in situ (DCIS) 
T1 Tumor ≤ 20 mm in greatest dimension 
T2 Tumor > 20 mm but ≤ 50 mm in greatest dimension 
T3 Tumor > 50 mm in greatest dimension 
T4 Tumor of any size with direct extension to the chest wall and/or to the skin 
  
cN0 No regional lymph node metastases 
cN1 Metastases to movable ipsilateral level I and II axillary lymph node(s) 
cN2 Metastases in ipsilateral level I and II axillary lymph nodes that are clinically 

fixed or matted 
cN3 Metastases in ipsilateral infraclavicular (level III axillary) lymph node(s) 

with or without level I and II axillary lymph node involvement; 
or in ipsilateral internal mammary lymph node(s) with level I and II axillary 
lymph node metastases; 
or metastases in ipsilateral supraclavicular lymph node(s) with or without 
axillary or internal mammary lymph node involvement 

  
M0 No clinical or radiographic evidence of distant metastases 
M1 Distant metastases detected by clinical and radiographic means (cM) and/or 

histologically proven metastases larger than 0.2 mm (pM) 

Based on TNM staging, tumor grading from 1 – 4 can be determined as listed in Table 4-8. 

Table 4-8: Anatomical Breast cancer staging as defined by the AJCC (N1mi: micrometastases, 
approximately 200 cells, > 0.2 mm, but ≤ 2.0 mm). Adapted from234 

Grading Stage T N M 
G1 1A/ 

1B/1B 
T1/ 
T0/T1 

N0/ 
N1mi/N1mi 

M0/ 
M0/M0 

G2 2A/2A/2A/ 
2B/2B 

T0/T1/T2/ 
T2/T3 

N1/N1/N0/ 
N1/N0 

M0/M0/M0/ 
M0/M0 

G3 3A/3A/3A/3A/ 
3B/3B/3B/3C 

T1/T2/T3/T3/ 
T4/T4/T4/Any T 

N2/N2/N1/N2/ 
N0/N1/N2/N3 

M0/M0/M0/M0/ 
M0/M0/M0/M0 

G4 4 Any T Any N M1 

BREAST CANCER CLASSIFICATION BASED ON MOLECULAR FEATURES 

Human breast cancer is diverse in its physiology and responsiveness to treatment. 

Transcriptional variation among breast cancer tumors was originally assessed by 

complementary DNA microarrays235 and showed that gene expression patterns in two tumors of 

the same patient almost always were more similar than tumors between patients. However, 

variation in mRNA could be related to features of physiological variation. As sequencing-based 

approaches were at the time and continue to be impractical in routine clinical settings, a 

classification of breast cancer subtypes based on pervasive differences in gene expression 

patterns was proposed235. Based on the same cDNA microarray data of 65 tissue samples, a 
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separation between two subtypes clinically described as hormone receptor positive (HR+) and 

hormone receptor negative (HR-) was dominant. The dendrogram further showed a separation 

of the HR- cluster into basal-like and Her2+ subtypes, while the HR+ branch separated into 

“normal breast-like” and “epithelial/ER+” subtypes. These four subtypes have been termed 

intrinsic subtypes, while surrogate intrinsic subtypes represent the clinically relevant, 

histologically determined breast cancer types. The four surrogate intrinsic subtypes have been 

increasingly characterized over the past 20 years236,237 and their definition is condensed into four 

biomarkers: estrogen receptor (ER), progesterone receptor (PR), human epidermal growth 

factor receptor (Her2), and by the proliferative grading, commonly assessed by Ki-67. The four 

tumor biological subtypes are Luminal A-like, Luminal B-like, Her2-like, and Basal-like or Triple 

Negative breast cancer (TNBC). These four subtypes cover > 90% of breast cancer cases, with 

Luminal A-like being the most frequent, followed by Luminal B-like, Her2-like, and TNBC238. This 

classification is summarized in Table 4-9 and is essential for therapy decisions as optimal 

therapies and responses vary across these subtypes. 

Table 4-9: Classification of surrogate intrinsic breast cancer subtypes236 and their frequency, 
common histological type and prognosis227.  

 Luminal A-like 
Luminal B-like 

Her2- 
Luminal B-
Like Her2+ 

Her2-like TNBC 

Hormone 
receptor 

status 

ER+PR+ 
ER+PR− 
ER−PR+ 

ER+PR+ 
ER+PR− 
ER−PR+ 

ER+PR+ 
ER+PR− 
ER−PR+ 

ER−PR− ER−PR− 

Grading 
G1 
G2 

G1 
G2 
G3 

G1 
G2 
G3 

G1 
G2 
G3 

G1 
G2 
G3 

Her2  Her2− Her2− Her2− Her2+ Her2− 
Proliferation Ki-67 ≤15 % Ki-67: >15 % Ki-67: >15 % high Ki-67 high Ki-67 

 Further Parameters 
Frequency 60-70% 10-20% 13-15% 10-15% 

Histology 
NST, tubular 

cribriform, and 
classic lobular 

NST, 
micropapillary and 

lobular 
pleiomorphic 

NST and 
pleiomorphic 

NST 

NST, special type 
(metaplastic, adenoid 
cystic, medullary-like, 

and secretory) 
Prognosis Good Intermediate Intermediate Intermediate Poor  

 

Clinically, immune-histochemistry (IHC) is used to determine ER and PR status, Her2 expression 

is reported by IHC or in situ hybridization assays, while Ki-67 is assessed by immunostaining237. 

The Luminal A-like subtype is characterized by the presence of hormone receptors, either ER+ or 

PR+ or both. Furthermore, it is Her2 negative, has a low proliferation status and only includes 

tumors of G1 and G2 grading. The distinguishing parameter between the Luminal A-like and Her2 

negative Luminal B-like subtypes is an increased Ki-67 cut-off > 15% and the inclusion of G3 

grade tumors. However, this differentiation is problematic, due to the lack of a clinical standard 

operating procedure for the assessment of Ki-67, resulting in a low interlaboratory and 

interstudy comparability239. However, the clinical differentiation persists, but needs to be 

considered cautiously. The Her2 like subtype is characterized by the expression of Her2, while 

no further cut-off is applied to all remaining parameters. The TNBC subtype is characterized by 

the absence of hormone receptors and Her2, as well as any grading and any Ki-67. 
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THERAPY OPTIONS 

Therapy options for breast cancer are a combination of surgical resection, radiation therapy, 

systemic therapy, and targeted therapy. Surgery of the primary tumor and affected lymph nodes 

is the main pillar of curative breast cancer treatment. Based on the tumor burden and its 

molecular expression profile, patients are given postoperative radiation therapy and/or systemic 

therapies comprising endocrine therapy, chemotherapy, targeted therapy, and bone-modifying 

agents. Tumor down-sizing with systemic therapies prior to surgery is encouraged for large 

tumors, if it is the same systemic therapy that is recommended post-surgery227.  

Radiation therapy following surgery has been shown to improve disease-free overall survival for 

patients with early breast cancer with lymph node involvement, but is also given to patients in 

breast-conserving therapy as it eliminates residual tumor cells240 or induces an abscopal effect241. 

The proportional reduction of ipsilateral tumor recurrence with radiation therapy after surgery 

is for most indications ~75%242. As breast cancer is an ‘immunologically cold’ tumor, the 

microenvironment might be primed to stimulate an immune response through radiation 

therapy243.  

Chemotherapy can be given before (neoadjuvant) or after (adjuvant) surgery with equivalent 

outcomes244. Adjuvant endocrine therapy and adjuvant chemotherapy can decrease breast 

cancer mortality by approximately one third, independently of each other245,246. 

In luminal early breast cancer (Luminal A-like and Luminal B-like), adjuvant endocrine therapy 

is standard for at least 5 years after surgery. Tamoxifen is a common endocrine agent that binds 

to and inhibits ER and is standard therapy in premenopausal patients. High-risk premenopausal 

patients receive adjuvant chemotherapy and tamoxifen, while the addition of an ovarian 

suppressor such as a gonadotropin-releasing (GnRH) hormone analogue that inhibits estradiol 

production, has been shown to improve disease free survival (DFS) and overall survival 

compared to tamoxifen alone247. In postmenopausal women with early breast cancer, endocrine 

therapy and an aromatase inhibitor are standard, either as monotherapies or in sequence. 

Aromatase inhibitors block the aromatase enzyme that catalyzes the conversion of the enone ring 

of androgen precursors to a phenol, thereby completing the synthesis of estrogen. The choice of 

the endocrine agent depends on the relapse risk, tolerability, bone health, and patient preference.  

CDK4/6 inhibitors together with endocrine therapy, have become the preferred treatment option 

in Luminal B-like (hormone receptor positive, Her2-negative) metastatic breast cancer227. 

Currently, four large clinical trials are evaluating the addition of a CDK4/6 inhibitor to endocrine 

therapy for 2-3 years in patients with Luminal B-like high-risk early breast cancer: PALLAS 

(NCT02513394), monarchE (NCT03155997), NATALEE (NCT03701334) and ADApPTcycle 

(EudraCT 2018-003749-40). Adjuvant chemotherapy in addition to endocrine therapy is added 

in Luminal B-like cancers depending on the individual risk of recurrence. Standard chemotherapy 

is based on anthracycline-taxane regimens, given preferentially in sequence to reduce excessive 

toxicity248.  
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In Her2+ early breast cancer (Luminal B-like and Her2-like), neoadjuvant chemotherapy together 

with dual Her2 blockade with trastuzumab and pertuzumab improves rates of pathological 

complete response (pCR) and is considered standard249. Trastuzumab and pertuzumab are 

humanized monoclonal antibodies that bind to different domains of the Her2 molecule, inhibiting 

its dimerization. Both antibodies induce antibody-dependent cell-mediated toxicity. Therapy in 

Luminal B-like and Her2-like breast cancer tumors consists of chemotherapy either an 

anthracycline-taxane sequence or a combination of docetaxel and carboplatin together with anti-

Her2 therapy for 1 year. Addition of neratinib, a tyrosine kinase inhibitor of Her2 and EGFR, leads 

to improved DFS. The standard for patients without pCR has shifted towards T-DM1, a 

trastuzumab–emtansine conjugate that combines HER2-blockade with the cytotoxic agent 

DM1249.  

In Triple-Negative breast cancer, neoadjuvant chemotherapy typically consisting of 

anthracycline-taxane or docetaxel-cyclophosphamide regimens.  

Additionally, bone-modifying agents such as bisphosphonates or the RANK-L antibody 

Denosumab have been shown to have multiple positive effects: they improve bone mineral 

density and decrease treatment-related bone loss. Denosumab has been shown to be effective in 

lowering fracture rates in postmenopausal patients receiving aromatase inhibitors250, and its use 

may also improve DFS in these patients, but not in a more general breast cancer population250. 
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IMMUNOTHERAPY IN BREAST CANCER 

Antibody-based therapies targeting antigens overexpressed in breast cancer such as Her2 or 

TROP-2 have been FDA approved and are already being used in a routine clinical setting. A brief 

overview of these is listed in Table 4-10.  

Table 4-10: FDA-approved immunotherapeutic drugs that are part of the current standard of 
care, accessible at https://www.fda.gov/. 

Immunotherapeutic drug Indication 

Pertuzumab 

Perjeta® 

a monoclonal antibody that targets the Her2 pathway; 

approved for patients with Her2-positive breast cancer 

Sacituzumab govitecan-hziy 

Trodelvy™ 

an antibody-drug conjugate that targets the TROP-2 and is 

conjugated to SN-38 via a cleavable linker; approved for 

patients with refractory TNBC, who received at least two prior 

therapies for metastatic disease 

Trastuzumab 

Herceptin® 

a monoclonal antibody that targets the Her2 pathway; 

approved for Her2-positive breast cancer 

Trastuzumab deruxtecan 

Enhertu™ 

an antibody-drug conjugate composed of an anti-Her2 

antibody, a cleavable linker, and a cytotoxic topoisomerase I 

inhibitor; approved for unresectable or metastatic Her2-

positive breast cancer after two or more prior anti-Her2-

based regimens in the metastatic setting. 

Trastuzumab emtansine 

Kadcyla® 

an antibody-drug conjugate, consisting of an anti-Her2 

antibody covalently linked to the cytotoxic agent DM1; 

approved for subsets of patients with Her2-positive breast 

cancer 

Atezolizumab 

Tecentriq® 

a checkpoint inhibitor that targets the PD-1/PD-L1 pathway; 

approved in combination with the chemotherapy Abraxane® 

(nab-paclitaxel) for subsets of patients with advanced TNBC 

Immunogenicity and T cell infiltration in breast cancer varies across molecular subtypes but is 

highest in TNBC and Her2+ tumors251. TILs from TNBC and Her2+ tumors are largely composed 

of CD8+ T cells and CD4+ T cells and to a smaller portion of B- and NK cells252. Also, TIL infiltration 

of the tumor or detection in the peripheral blood is a prognostic marker for improved survival253. 

Therefore, during the 2019 St. Gallen/Vienna consensus meeting, 66% of the panelists 

recommended routine characterization and reporting TILs254. Considerable efforts are being 

currently invested into expanding the anti-tumor T cell repertoire in a therapeutic setting, 

through adoptive T cell transfer strategies. A few ongoing phase I clinical studies have been 

initiated and are ongoing:  

1. Phase I clinical study (NCT02792114) evaluating safety and tolerability of mesothelin-

specific CAR T therapy in metastatic breast cancer patients. 
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2. Phase I clinical study evaluating feasibility, safety, and preliminary efficacy of CAR-T 

therapy with autologous T cells that express MET chimeric antigen receptors in TNBC and 

melanoma patients (NCT03060356). 

3. Phase I clinical study (NCT02070406) evaluating toxicity, feasibility, and antitumor 

activity of ipilimumab + NY-ESO-1-specific T cells. 

The involvement of T cells in the tumor microenvironment suggests that breast cancer could be 

an immunologically responsive tumor type. Beside adoptive T cell therapies, therapeutic peptide 

vaccination could boost preexisting T cell responses as observed in the GAPVAC study66. The 

difficulty still resides in defining actionable T cell targets. Therefore, we performed HLA 

ligandome analysis on a selection of 31 primary breast cancer tumor samples spanning different 

molecular subtypes, 23 adjacent benign samples from the same patients, and 6 healthy mamma 

tissue samples from primarily breast reduction surgeries. Comparative profiling of breast cancer-

related immunopeptidomes with benign mamma tissue and the multi-tissue dataset detailed in 

Results Part I will reveal a set of TAAs that will be further validated. 
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4.3.3 MATERIALS AND METHODS 

DEVIATIONS FROM THE HLA LIGAND ISOLATION AND DATA ACQUISITION PROTOCOLS 

HLA ligands were isolated via HLA immunoaffinity purification and sequenced by LC-MS/MS. 

Details of the experimental procedure and data acquisition are described in the Results Part I, 

Materials and Methods, subheading: “HLA immunoaffinity purification” and “Mass Spectrometric 

Data Acquisition”. Further patient characteristics, such as age, tumor grading, subtype and 

sample mass used as input material for the isolation of HLA ligands are described in Table 10-1. 

Overall, three technical replicates in DDA mode were acquired for each sample. The resulting 

technical LC-MS/MS runs were bundled per sample and database search was performed sample-

wise using SEQUEST HT embedded in the Thermo Proteome Discoverer Version 1.4.0.288. A 

sample-wise PSM-level FDR of 5% was employed for HLA-I immunopeptidomes for both peptides 

and source proteins. We employed a sample-wise PSM-level FDR of 1% for HLA-II 

immunopeptidomes. As HLA-I ligands undergo further downstream quality control through their 

annotation to a corresponding HLA allotype, we estimate that false positive annotations would 

accumulate in peptides predicted as non-binders, as these peptides were not included in 

downstream analyses, allowing for the relaxed FDR threshold. 

HLA TYPING AND BINDING PREDICTION 

HLA typing has not been performed by the time of this analysis for 21 out of 37 samples (31 MaCa, 

6 MaN), we predicted the HLA-I allotypes of the respective samples using an in-house tool. This 

tool has been designed by Michael Ghosh and is based on HLA-I allotype-specific peptides, that 

have been identified only on samples with a certain HLA allotype, and never on samples negative 

for the respective HLA allotype. A threshold of at least two allotype-specific peptides is indicative 

of a positive in silico typing. The output was a two-digit typing, and the four-digit typing was 

derived from the highest-frequent HLA allele in the German population (according to the German 

pop 8 (39,689) cohort at allelefrequencies.net downloaded on 21.07.2020).  

HLA binding prediction was performed with netMHCpan4.0 and SYFPEITHI for HLA-I ligands. As 

the HLA-II typing has not been performed at the time of analysis, no HLA-II binding prediction 

was performed.  

4.3.4 RESULTS AND DISCUSSION 

PATIENT COHORT CHARACTERIZATION 

In this study, we analyzed 38 mamma carcinoma (MaCa) samples, 9 (24%) patients were 

premenopausal with a mean age of 47 years (range: 43 years – 50 years), 29 (76%) patients were 

postmenopausal with a mean age of 71 years (range: 54 years - 88 years). The most common type 

of grading was G2 in premenopausal (n = 7, 78%) and G3 in postmenopausal (n = 11, 38%) 

women. The histological type for all tumors in this patient cohort is invasive ductal carcinoma of 

non-special type. Furthermore, 15 (48%) of tumors were Luminal A-like, 11 (35%) Luminal B-
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like Her2 negative, 1 (3%) Her2-like, and 4 (13%) TNBC. Further 7 MaCa patients and 4 benign 

mamma samples were collected, but not included in this work, due to the time limitation for LC-

MS/MS analysis. This resulted in 26 MaCa samples for comparative immunopeptidome profiling. 

The comparative ligandome profiling was performed for all subtypes together, surmounting to 

31 different tumor samples. A further separation and immunohistochemical (IHC) classification 

of the tumor types and their frequency in this patient cohort is summarized in Table 4-11.  

Table 4-11: IHC classification of breast cancer subtypes in the analyzed patient cohort. 

Parameter 
Premenopausal 

(n=9, 24%) 

Postmenopausal 

(n=29, 76%) 

Total 

(n= 38) 

Estrogen receptor, n (%) 

Positive 8 (89%) 24 (83%) 32 (84%) 

Negative 1 (11%) 5 (11%) 6 (16%) 

Progesterone receptor, n (%) 

Positive 7 (77%) 23 (79%) 30 (79%) 

Negative 2 (23%) 6 (20%) 8 (21%) 

Progesterone receptor, n (%) 

ER+PR+ 7 (78%) 22 (76%) 29 (76%) 

ER+PR- 1 (11%) 2 (7%) 3 (8%) 

ER-PR+ 0 (0) 1 (3%) 1 (3%) 

ER-PR- 1 (11%) 4 (14%) 5 (13%) 

Grading, n (%) 

G1 0 (0%) 0 (0%) 0 (0%) 

G2 7 (78%) 11 (38) 18 (47%) 

G3 2 (22) 18 (62) 20 (52%) 

Her2 status, n (%) 

Positive 1 (11%) 2 (7%) 3 (8%) 

Negative 8 (89%) 27 (93%) 35 (92%) 

Ki-67 categories (%), n (%) 

0-15 5 (56%) 11 (38%) 16 (42%) 

16-25 1 (11%) 3 (10%) 4 (11%) 

26-35 1 (11%) 4 (14%) 5 (13%) 

36-45 0 (0%) 2 (7%) 2 (5%) 

>45 2 (22%) 9 (31%) 11 (29%) 
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Figure 1: HLA-I and -II peptide and source protein yields.  
(A) Bar plots indicate the number of identified HLA-I ligands, and the number of source proteins they can be mapped back to. The red dots represent 
the purity of each sample and are associated with the bottom x-axis. The purity is described by the ratio of predicted HLA binders divided by the total 
number of identified peptides. Binding prediction was performed with netMHCpan 4.0 integrated into the in-house tool “Ligandomat”. 
(B) Bar plots indicate the number of identified HLA-II peptides (black) and their corresponding source proteins (grey). 
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CHARACTERISTICS OF THE MACA HLA-I AND -II IMMUNOPEPTIDOME 

In this work, we identified 42,376 HLA-I ligands which could be ascribed to 10,977 source 

proteins. The median HLA-I immunopeptidome yield per sample was 1811 (range: 37 - 7567). 

The median purity of each MaCa sample, as defined by the ratio between assigned HLA binders 

and all identified peptides amounted to 93% (range 18% - 99%). Overall, 46,939 HLA-II eluted 

peptides were identified that can be attributed to 5,289 source proteins, with a median HLA-II 

immunopeptidome yield per sample of 1285 (range 13 - 9363). Figure 1A and B illustrates the 

distribution of HLA-I and -II immunopeptidomes and the corresponding source proteins across 

all samples. Our patient cohort covers 39 HLA-I and 18 HLA-II allotypes. Nevertheless, typing had 

not been performed for all samples at the time of this analysis. The HLA-I allotypes were 

predicted with allotypic peptides as defined by Michael Ghosh for 20 samples. For these 20 

samples, no information regarding the HLA-II allotypes is available, typing prediction is not 

possible, but allotypes must be experimentally determined.  

HLA-I AND -II IMMUNOPEPTIDOME YIELDS DO NOT CORRELATE WITH SAMPLE MASS 

HLA ligands are characterized by a class-specific length distribution that is slightly overlapping. 

The majority of HLA-I ligands are 9mers (Figure 2A), while most HLA-II ligands are 15mers and 

16mers (Figure 2B). Frequently, the amount of starting material that can be used to isolate HLA 

ligands is limited, and it is oftentimes unclear, if increasing the input material would result in an 

increased immunopeptidome yield. In this study, most MaCa samples had a mass between 1 and 

2 g (mean: 1.4 g, range: 0.15 g - 7.5 g) (Figure 2C and D, Table S1). However, the number of 

identified HLA-I and -II ligands are dispersed across different sample amounts used for their 

isolation. The largest input mass in this study is 7.5 g, yielding 2,905 HLA-I and 2,093 HLA-II 

ligands, both being in the upper part of the distribution but far from the highest number of 

identified ligands. Considering the tissue type, we observe that tumor samples yield higher 

numbers of isolated HLA ligands, while benign and adjacent benign samples resulted in moderate 

to low immunopeptidome yields. Indeed, the reduced numbers of identified HLA-II ligands per 

sample strongly correlate with tissue type, with lowest numbers for benign and adjacent benign 

samples. This effect might be ascribed to the cellular composition of the different tissue types. 

While tumor samples contain a variety of different cells, benign mamma samples were largely 

obtained from breast reduction surgery, and therefore consist primarily of fatty tissue and 

adipocytes. Furthermore, tumor tissue was less fatty in nature and might have an increased 

immune cell infiltration, leading to higher numbers of identified HLA-II ligands. The lower 

immunopeptidome yield from benign and adjacent benign tissues might be explained by the 

presumably lower HLA expression on adipocytes. Furthermore, fatty tissue reduces the efficacy 
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of tissue homogenization lysis and subsequent immunoprecipitation, and might lead to an 

increased loss of HLA ligands throughout the experimental workflow.  

 

Figure 2: HLA-I and -II immunopeptidomics characteristics.  
(A) – (B) Line plot illustrating the length distribution of HLA-I (blue) and -II (orange) eluted ligands, respectively. HLA-I ligands are binders according 
to SYFPEITHI and netMHCpan 4.0. HLA-II ligands have not been associated to their respective HLA allotypes, indicating the raw length distribution, as 
identified via LC-MS/MS.  
(C) – (D) The scatter plot illustrates the relationship between the sample mass used for the HLA immunoaffinity chromatography and the number of 
identified HLA-I and -II ligands, respectively. The dots illustrate different samples, while the color coding highlights the dignity of each sample: tumor, 
adjacent benign and benign. 
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DEFINITION OF MACA-ASSOCIATED HLA-I LIGANDS AND SOURCE PROTEINS 

We set out to determine TAAs in mamma carcinoma by comparatively profiling the 

immunopeptidomes of 31 MaCa samples with the immunopeptidomes of their corresponding 

adjacent benign tissues and a carefully curated benign dataset of HLA-I ligands. The benign 

sample cohort comprises the multi-tissue ligandome from the HLA Ligand Atlas (Results Part I) 

without testis, the set of 6 benign MaN samples, and the in house hematologic benign dataset 

(n = 98 samples, 54,613 HLA-I ligands) curated by Annika Nelde, version 190425. We found 

11,622 tumor-associated HLA-I ligands that are presented on at least one donor (Figure 3 A and 

B). In fact, 80% of TAAs were uniquely presented on one MaCa sample, while 44 HLA-I TAAs 

showed representation frequencies > 15% (5 out of 31 MaCa samples). These 44 HLA-I TAAs are 

listed in Table 10-2, together with the samples they were found on, the corresponding gene name, 

HLA allotype, the number of further positive malignant samples, and the corresponding 

molecular subtypes of the primary tumor. 

Furthermore, the absolute numbers that overlap between the three cohorts MaCa, adjacent 

benign and benign on HLA-I ligand level are illustrated by the size proportional Venn diagram 

(Figure 3B). HLA-I ligands eluted from adjacent benign tissues are shared to a large degree with 

the MaCa cohort, but to an even higher extent (when related to the immunopeptidome of adjacent 

benign tissue) with the benign dataset. Overall, these similarities can be based on the proximity 

of the tissues and HLA allotypes in vivo (tumor & adjacent benign), as well as the possibility of an 

overarching tumor microenvironment in histologically benign tissues.  

To further prioritize the 11,622 TAAs, we queried them against our in-house database of 

malignant immunopeptidomes (version 190425). The malignant database encompasses HLA-I 

immunopeptidomes from 38 different solid and hematologic malignancies, that are covered by 

950 samples and 287,978 HLA-I ligands. We observe that about 1,000 TAAs are unique to MaCa, 

while others are prevalent in other malignancies. 
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Similarly, comparative immunopeptidome profiling can be performed based on the source 

proteins of HLA-I ligands, to circumvent the high heterogeneity between samples based on HLA 

allotype mismatches (Figure 4). Multi-accession annotations may originate from conserved 

regions, such as certain protein domains, or could be false annotations. In this approach, we 

 
Figure 3: Comparative immunopeptidome profiling based on HLA-I ligands.  
(A) Waterfall plot depicting the frequency of individual HLA-I ligands in their respective patient cohorts. A total of 137,957 HLA-I ligands are plotted on 

the x-axis, while their frequency in the respective population is illustrated on the y-axis. The frequency of these ligands in the 31 tumor samples is 

illustrated in blue, their frequency in the adjacent benign cohort (n=23) in dark green, while their frequency on benign tissues (n=326) is illustrated in 

light green. The data was sorted according to the decreasing frequency in tumor, adjacent benign and benign cohorts. 

(B) The size-proportional Venn diagram offers an overview of the sample overlap in the three patient cohorts. Overall, 11,622 HLA-I ligands (blue color-

coding) have been identified solely on MaCa. 

(C) TAAs described in panel A and B have been queried against the in-house dataset of malignant immunopeptidomes, consisting of 950 samples, from 

38 malignant entities and 287,978 HLA-I ligands. The y-axis shows the number of MaCa-TAAs, while the x-axis shows their prevalence on further 

malignant samples. For example, 1500 HLA-I TAAs have been found on one other malignant sample from the in-house dataset.  
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allowed multi-accession annotations and performed a manual curation of the top scoring MaCa-

associated source proteins to verify if they originate from the same protein groups. Overall, 747 

HLA-I source proteins have been identified exclusively on MaCa (Figure 4A and B). Of these, 288 

peptide sequences could be attributed to only one gene name, the majority, were multi-accession 

annotations. 

  

 
Figure 4: Comparative immunopeptidome profiling based on HLA-I source proteins 
(A) Waterfall plot depicting the frequency of individual HLA-I source proteins in their respective patient cohorts. A total of 19,131 HLA-I source proteins 

are plotted on the x-axis, while their frequency in the respective population is illustrated on the y-axis. The frequency of these source proteins in the 31 

tumor samples is illustrated in blue, their frequency in the adjacent benign cohort (n=23) in dark green, while their frequency on benign tissues (n=326) 

is illustrated in light green. The data was sorted according to the decreasing frequency in tumor, adjacent benign and benign cohorts. 

(B) The Venn diagram offers an overview of the sample overlap in the three patient cohorts. Overall, 747 HLA-I source proteins (blue color-coding) have 

been identified solely on MaCa. 

(C) The word cloud illustrates the MaCa source proteins identified on more than 3 samples. Their size is proportional to the number of positive MaCa 

samples. 

(D) TAAs described in panel A and B have been queried against the in-house dataset of malignant immunopeptidomes, consisting of 950 samples, from 

38 malignant entities. The y-axis shows the number of MaCa-TAAs, while the x-axis shows their prevalence on further malignant samples. For example, 

16 source proteins have been found on one other malignant sample from the in-house dataset.  
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In line with the immunopeptide profiling performed on HLA-I ligand level, source proteins show 

a high similarity between MaCa adjacent benign and tumor samples (Figure 4B). Of the 747 MaCa-

associated source proteins, 62 were shared between more than 3 MaCa samples, with SMAD9, 

SMAD9L being presented by 8 samples, followed by RASGEF1B, RASGEF1C (Figure 1C). Further 

details, such as the associated peptide/peptides, the corresponding HLA allotype, as well as their 

frequency on other malignancies are listed in Table 10-3. These 62 frequent TAAs have been 

identified on a multitude of further malignant samples (Figure 4D). Interestingly, these 62 top 

MaCa-associated source proteins and their ligands were not exclusively presented on one 

molecular breast cancer subgroup, but rather by multiple, if not all subgroups (Luminal A-like, 

Luminal B-like, TNBC).  

DEFINITION OF MACA-ASSOCIATED HLA-II LIGANDS AND SOURCE PROTEINS  

Equivalently, a systemic immune response against any antigen requires both a CD4+ and a CD8+ 

T cell response92. First hints indicate that after peptide vaccination CD4+ T cell responses were 

frequently elicited first, while vaccine-induced CD8+ T cell responses appeared later255. Other 

peptide vaccination studies similarly showed predominantly CD4+ T cell responses in 

tumor66,67,130. Nevertheless, HLA-II ligands are less well characterized, as they pose a series of 

technical challenges: 1) the HLA-II binding groove is open and can accommodate different length 

variants, with the same core sequence; 2) the α and β chains of HLA-DP and HLA-DQ are inherited 

codominantly and their gene products both shape the antigen binding groove; 3) pan HLA-II 

antibody specificities used for IP might be skewed in favor of certain HLA-II allotypes. The main 

consequence of these complicating features is a poor HLA-II binding prediction. Only recently, 

HLA-II ligandomes identified by LC-MS/MS from monoallelic cells covering 40 HLA-II allotypes 

have been published90. Indeed this dataset considerably improved the pan HLA-II binding 

prediction algorithm NetMHCIIpan-4.087.  

Due to the indubitable relevance of HLA-II ligands in a coordinated immune response, we 

comparatively analyzed HLA-II immunopeptidomes in MaCa, adjacent benign, and benign tissues 

on both HLA-II ligand (Figure 5) and source protein (Figure 6) level following the same workflow 

as for HLA-I. By the time of this analysis 20 MaCa and MaN samples have not been typed yet and 

the remaining samples have a poor-resolution serological typing with only HLA-DRB and HLA-

DQB having been experimentally determined. Therefore, we looked at all eluted peptides and 

their source proteins together, without an additional filtering for HLA binding, as performed for 

HLA-I ligands and their source proteins.  

In result, we observe 17,460 MaCa-associated HLA-II ligands, with 14,814 being unique to one 

individual. The number of HLA-II TAAs that is patient-individual is high when related to the 

presumably lower stringency of HLA-II allotypes towards peptide motifs Nevertheless, a large 

fraction of HLA-II ligands form clusters of length variants (Results Part I Figure7 and191,192). In 

accordance with these observations, the 14,814 patient-individual HLA-II TAAs originate from 

3960 source proteins, with a median of 3.8 peptides per protein (range 1- 196). Of these 14,814 

TAAs, 1944 were associated to only one protein identification. 
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The three tissue cohorts overlap to a smaller degree than HLA-I ligands (Figure 5A and B). In 

addition, the representation frequency between MaCa-associated HLA-II peptides on other tumor 

samples is similar to that of HLA-I ligands with most peptides being unique to the MaCa samples 

or shared with a few other malignant samples. Table 10-4 illustrates the top 46 frequently shared 

(> 6/30 MaCa samples) tumor-specific HLA-II ligands.  

 
Figure 5: Comparative immunopeptidome profiling based on HLA-II eluted peptides.  
(A) Waterfall plot depicting the frequency of individual HLA-II peptides in their respective patient cohorts. A total of 178,700 HLA-II peptides are 

plotted on the x-axis, while their frequency in the respective population is illustrated on the y-axis. The frequency of these ligands in the 30 tumor 

samples is illustrated in blue, their frequency in the adjacent benign cohort (n=21) in dark green, while their frequency on benign tissues (n=324) is 

illustrated in light green. The data was sorted according to the decreasing frequency in tumor, adjacent benign and benign cohorts. 

(B) The Venn diagram offers an overview of the sample overlap in the three patient cohorts. Overall, 17,460 HLA-II peptides (blue color-coding) have 

been identified solely on MaCa. 

(C) The prevalence of the TAAs described in panel A and B has been queried against the in-house dataset of malignant immunopeptidomes, consisting 

of 663 samples, from 29 malignant entities and 273,765 HLA-II ligands.  
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Subsequently, comparative immunopeptidome profiling on HLA-II source protein level (without 

multi-accession annotations) revealed 572 MaCa-associated antigens. Of these, 75 were shared 

between at least 2 samples. These are listed and described in Table 10-5.  

Their prevalence on further tumors is similar to that of HLA-I source proteins.  

  

 
Figure 6: Comparative immunopeptidome profiling based on HLA-II source proteins.  
(A) Waterfall plot depicting the frequency of individual HLA-II source proteins in their respective patient cohorts. A total of 9,834 HLA-II source 

proteins are plotted on the x-axis, while their frequency in the respective population is illustrated on the y-axis.  

(B) The Venn diagram offers an overview of the sample overlap in the three patient cohorts. Overall, 575 HLA-II source proteins (blue color-coding) 

have been identified solely on MaCa. 

(C) Word cloud illustrating the frequency of the MaCa-associated HLA-II source proteins, when identified in more than 2 samples. 

(D) The prevalence of the TAAs described in panel A and B has been queried against the in-house dataset of malignant immunopeptidomes, consisting 

of 663 samples, from 29 malignant entities.  
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4.3.5 CONCLUSION 

We comparatively profiled the HLA-I and -II immunopeptidomes from MaCa, adjacent benign and 

benign samples, with the purpose of defining targets for peptide vaccination in breast cancer. 

These MaCa associated targets could be tested in a follow-up clinical study. In this case, the type 

of clinical study should be defined before extensively validating potential vaccine candidates. 

Peptide vaccination has been tested based on the 1) one for all concept with the peptide cocktail 

IMA901 against renal clear cell carcinoma tailored for HLA-A*02 positive patients256,257, 2) the 

warehouse concept via the APVAC1 arm in the GAPVAC clinical study66, and 3) based on a fully 

individualized selection of candidate peptides, as in the APVAC2 arm in the GAPVAC study66, or 

other peptide vaccination studies67,130. Designing a clinical study based on the warehouse concept 

is highly advantageous, as it enables premanufacturing of the drug product, which in this case 

corresponds to a set of target peptide antigens for frequent HLA allotypes121. Relevant 

premanufactured peptides are selected for each patient based on the HLA allotype, presentation 

of warehouse peptides on patient tumors, and perhaps immunogenic responses against 

warehouse peptides. For each patient, the choice of warehouse peptides and the resulting multi-

peptide vaccine is individual. Nevertheless, a fully individualized peptide cocktail tailored to the 

immunopeptidomic landscape of the tumor, should elicit a specific T-cell response with the best 

safety profile. Particularly, when considering the highly individual immunopeptidomes across 

tissues described in Results Part I, it stands to reason that a better selection of actionable targets 

can be made individually. 

As the ultimate proof of concept, a clinical study would be suitable to test whether peptide 

vaccination is beneficial for breast cancer patients. For this purpose, the target peptide selection 

must be adjusted to the specificities of the clinical study design that would ensue. The most 

interesting clinical subtype with currently the poorest prognosis and highest immunogenicity is 

TNBC. In this study, four patients who had not received neoadjuvant chemotherapy were 

recruited. Neoadjuvant chemotherapy is the standard of care in TNBC, and it leads to shrinkage 

and necrosis of the tumor. Unfortunately, necrotic tissue might impair the quality of the identified 

HLA ligandome. Following up on this study, we intend to adapt our analytic pipeline to test the 

similarity of the HLA ligandome prior and post chemotherapy, to evaluate if detection of 

warehouse peptides is possible, and perhaps if HLA loss has occurred. Oftentimes, only biopsies 

can be obtained from TNBC patients after neoadjuvant chemotherapy, and the lower bound of 

detection limit and sample mass will be determined with these experiments.  

Interestingly, the preliminary results presented in this thesis show that top shared MaCa-

associated source proteins and peptides are not restricted to one molecular subtype. If indeed, 

MaCa antigens discovered in the Luminal A-like subtype are confirmed in a validation dataset 

consisting of predominantly TNBC tumors, the warehouse peptide selection must not be filtered 

by tumor molecular subtype.  

The completion of the warehouse is dependent on performing the remaining LC-MS/MS analyses, 

obtaining a high-resolution typing from all patient samples for reliable binding prediction, and 

selection of a set of frequent HLA-I and -II peptides for the warehouse. In addition, exome 

sequencing of blood and tumor tissue as well as RNA sequencing of tumor and adjacent benign 
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tissues is being performed for 10 patients. The proteogenomic investigation of breast cancer can 

enable the identification of neoantigens, cryptic peptides, and differentially expressed genes, 

thereby potentially expanding the available repertoire of target peptides for vaccination. Finally, 

carefully selected warehouse peptides must be tested for immunogenicity. Unfortunately, blood 

was not collected from the MaCa patients to allow isolation of patient-PBMCs. Thus, we will not 

be able to verify if patients had previously mounted an immune response against antigens 

presented on their tumor. Nevertheless, we can test if PBMCs from healthy volunteers can be 

activated to mount an immune response against relevant peptides.  

 

  



Discussion and Outlook 

98 

 

5 DISCUSSION AND OUTLOOK 

Immunotherapy has benefited from considerable advances over the past three decades which 

paved the way for numerous implementations into clinical routine. Immune checkpoint 

inhibitors, antibody therapy, and cellular therapies such as HSCT, CAR-T cell therapy, ACT, and 

peptide vaccines have each shown remarkable clinical success in a subset of patients. 

Nevertheless, all these therapeutic options depend on the choice of the target antigen. These must 

be carefully selected to be as specific to the tumor as possible, with a low expression profile on 

healthy tissues. Thus, on-target/off-tumor adverse events can be minimized. 

Generally, HLA-dependent and HLA-independent T cell targets can be defined. Given that most 

proteins are expressed intracellularly (72%48), HLA-dependent tumor-associated or tumor-

specific antigens are a highly sought after resource. For this reason, this work focuses on the 

discovery of tumor-associated and tumor-exclusive HLA-presented antigens. For the first time, 

we characterized the first draft of the ground-state, benign immunopeptidome in multiple tissues 

and human subjects, the HLA Ligand Atlas. 

Immunopeptidomes of tumor and adjacent benign samples from the same subject have a high 

degree of similarity. Beside the HLA match in all 6 HLA-I loci, tissues are surgically removed from 

the same organ, with tumor and adjacent benign tissues being in proximity in vivo as well. The 

influence of the tumor microenvironment on the histologically benign tissue has been described 

on transcriptome level118 which motivated the generation of the HLA Ligand Atlas.  

Based on the HLA Ligand Atlas data, we observed that immunopeptidomes are largely patient-

individual across tissues. Even when filtering for HLA-matched comparisons, a hierarchical 

clustering based on the Jaccard similarity index revealed that different tissue types within one 

subject clustered together, rather than the same tissue type across different human subjects. 

Nevertheless, only 13 human subjects were included in this study, for which immunopeptidomes 

covering multiple organs were available, and not all organs were represented in all subjects. 

Therefore, a higher number of human subjects would help to address the question with a higher 

statistical power. However, this observation poses relevant questions whether shared HLA-

dependent TAAs are frequent and effective.  

The Results Part III section, covering the immunopeptidome in breast cancer, adjacent benign 

tissues and benign mamma tissues from independent donors paints the same picture. Here most 

peptides identified in the adjacent benign patient cohort are shared with the mamma carcinoma 

cohort. A previous hypothesis stated that the high similarity between tumor and adjacent benign 

tissues is based on a tissue-specific effect, which has been described on the transcriptome2,3, and 

on the proteome4. However, other proteomic studies did not see tissue-specific proteins48,151 and 

observed that differences between organs are not dictated by the presence or absence of 

individual proteins, but rather by their abundance115. The scarcity of tissue-specific HLA ligands 

and source proteins was confirmed by a thorough search in the HLA Ligand Atlas data as well. 

Thus, the similarity between tumor and adjacent benign tissues on HLA ligand and source 
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protein-level can be rather attributed to an HLA-, and probably subject-based effect, rather than 

a tissue-dominated phenomenon.  

Interestingly, the definition of TAAs in breast cancer patients revealed that top scoring peptides 

and source proteins which were highly abundant across multiple subjects were not restricted to 

a certain molecular subtype. Peptide YVYQNNIYL for example was identified in tumor samples 

from all three molecular subtypes covered in this dataset (Luminal-A like, Luminal-B like and 

TNBC). The focus regarding the molecular subtype that should be targeted in a putative clinical 

trial shifted at the end of this study from the Luminal A-like and Luminal B-like Her2 negative 

subtypes towards the TNBC subtype. Initially, the definition of TAAs was motivated by the high 

incidence of Luminal A-like and Luminal B-like cancers, and the long-term administration of the 

treatment. Nevertheless, TNBC is poorly treatable as no targeted therapies can be applied236 and 

it is the most immunogenic subtype251. In this study four patients without neoadjuvant 

chemotherapy were included, all tumor samples resulting in a high immunopeptidome yield. 

Furthermore, a previous study by Ternette et al.119 characterized the immunopeptidomic 

landscape of 15 HLA-A*02:01 TNBC tumors. They were able to characterize a subset of shared 

non-mutated TAAs but performed only a comparison to adjacent benign tissues.  

Unfortunately, the data acquisition could not be finalized during this work. LC-MS/MS data 

acquisition for both benign mamma tissues and breast cancer – adjacent benign tissue pairs is 

still ongoing. Exome and RNA sequencing will enable the description of other classes of HLA-

dependent TAAs, such as neoantigens, cryptic peptides, MiHAs and differentially expressed 

antigens. Thus, a thorough and in-depth characterization of the breast cancer immunopeptidome 

will ensue. Furthermore, the presence of these TAAs will be evaluated in a test dataset consisting 

of additional TNBCs. Further immunogenicity testing in PBMCs of healthy volunteers or breast 

cancer patients will confirm their suitability for inclusion in a warehouse of shared TAAs for 

frequent HLA allotypes. 

All cellular immunotherapies and immune checkpoint inhibitors rely on a preexisting or de novo-

induced (hopefully) tumor-specific T-cell mediated cytotoxic effect. Therefore, these warehouse 

peptides can be clinically tested in different formulations, such as therapeutic peptide 

vaccination, viral vector vaccination, engineered TCR-transduced T cells and many more. 

Our efforts concentrate on designing therapeutic peptide vaccinations that can be administered 

together with the standard of care in the form of a subcutaneous administration of peptides in 

Montanide™ ISA51 and XS-15 as adjuvant255. The in-house GMP production facility has the 

approbation for mixing up to 10 different peptides per cocktail. This approach is currently being 

tested in several clinical studies (e.g. NCT02802943). Previous studies targeting non-mutated 

self-antigens showed a good induction of immunogenicity after peptide vaccination in 

glioblastoma, an immunologically cold tumor66. Generating a peptide cocktail for vaccination has 

the particular advantage, that tumor heterogeneity might rather be addressed with multi-epitope 

vaccines than with a single TAA. However, when using non-mutated self-peptides, the self-

tolerance barrier needs to be overcome to induce a T cell response. Self-tolerance is theoretically 

not a problem when immunizing with neoantigens or further tumor-specific antigens. Studies 
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employing HLA ligands that cover somatic mutations have shown a neoantigen-specific T cell 

induction in clinical studies employing peptide vaccination67,130. Peptide-specific immune 

responses have been induced in vivo against non-mutated self-antigens66, neoantigens67,130, and 

phosphopeptides139 as measured by antigen-specific T cell responses (ELISpot and tetramer 

staining) and have resulted in prolonged survival. 

However, vaccine formulations can be improved regarding four key components: tumor antigens, 

formulations, immune adjuvants and delivery vehicles as (reviewed in258). Despite the increasing 

number of tumor antigens, their dose, route of delivery, number of administrations, interaction 

with other drugs concomitantly given must be optimized in humans. Comparative data on 

different approaches and different adjuvants are scarce. Recent vaccine strategies have shown 

that they can successfully increase the frequency and activity of tumor-specific T cells, but it is 

uncertain if these T cells infiltrate the tumor and exert their function within the tumor. 

Inadvertently, vaccination strategies have shed a light on the immune-suppressive and immune 

escape mechanisms that are active in cancer. Thus, a synergistic effect between cancer 

vaccination studies and immune checkpoint inhibitors might be expected to reverse the immune 

suppressive tumor microenvironment. Furthermore, therapeutic must address tumor immune 

evasion mechanisms (reviewed here259). 

Overall, we strongly believe that peptide vaccination with personalized target antigens could be 

optimized to induce a long-lasting anti-tumor immune response. In this context, it is essential to 

expand our knowledge about the immunopeptidome in different cancers and benign tissues. 

Given that tumor classification evolved from a histologic perspective to a transcriptomic and 

molecular point of view, we envision a more immunologic-based distinction between tumor 

types. Thus, immuno-oncology could be optimized to address the particularities regarding tumor 

microenvironment, T cell infiltration but also the HLA immunopeptidomic landscape.  

It is a challenging task to better capture the immunopeptidomic landscape on a population level, 

given the tremendous allelic polymorphism of HLA molecules, and the time and cost intensive 

analytical endeavor. Nevertheless, LC-MS/MS instrumentation is constantly improving, with an 

emphasis on speed and sensitivity, and new methods, both computational and experimental 

enable a constant improvement of our knowledge in each tumor. 
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6 ABBREVIATIONS 

ACT Adoptive cell transfer 
APC Professional antigen 

presenting cells 
ATC Adoptive T cell transfer 
AUC Area under the curve 
CAR Chimeric antigen receptor 
CD Cluster of differentiation 
CID Collision-induced dissociation 
CLIP Class II-associated invariant 

chain peptide 
cN Lymph node, clinical 

assessment 
CTLA-4 Cytotoxic T-lymphocyte 

antigen 4 
cT Tumor, clinical assessment 
DCs Dendritic cell 
DDA Data dependent acquisition 
DFS Disease-free survival 
DIA Data independent acquisition 
EGFR Epidermal growth factor 

receptor 
EMA European Medical Agency 
ER Endoplasmic reticulum 
ETD Electron transfer dissociation 
FAIMS High-field asymmetric 

waveform ion mobility 
spectrometry 

FCS Fetal calf serum 
FDR False discovery rate 
FDA Food and Drug Administration 
FWHM Full width half maximum 
GM-CSF Granulocyte–macrophage 

colony-stimulating factor 
GvHD Graft vs. host disease 
GvL Graft vs. leukemia 
HCD Higher energy collisional 

dissociation 
HLA Human leukocyte antigen 
HLA-I Human leukocyte antigen 

class I 
HLA-II Human leukocyte antigen 

class II 
HPLC High-performance liquid 

chromatography 
HSCT Hematopoietic stem cell 

transplantation 
Hz Hertz 
IFN-γ Interferon gamma 
Ig Immunoglobulin 
IL Interleukin 
IMS Ion mobility separation 
IP Immunoaffinity purification 

IRM Ion routing multipole 
IT Ion trap 
LC-MS/MS Liquid chromatography 

coupled to tandem mass 
spectrometry 

M Metastasis 
m/z Mass to charge ratio 
MiHAs Minor histocompatibility 

antigens 
mTEC Medullary thymic epithelial 

cells 
NK cells Natural killer cells 
OT Orbitrap 
PASEF Parallel accumulation serial 

fragmentation 
PBMC Peripheral blood mononuclear 

cell 
pCR Pathological complete 

response 
PD1 Programmed cell death 

protein 1 
PDL1 Programmed death-ligand 1 
ppm Parts per million 
PRM Parallel reaction monitoring 
Quad Quadrupole 
R Resolving power, resolution 
RiboSeq Ribosome sequencing 
RP Reverse phase 
RT Retention time 
scFv Single chain fragment variable 
SST Standard suitability test 
TAAs Tumor-associated antigen 
TAP Transporter associated with 

antigen processing 
TCR T cell receptor 
TFA Trifluoroacetic acid 
TILs Tumor-infiltrating 

lymphocytes 
TIMS Trapped ion mobility 

spectrometry 
TMB Tumor mutational burden 
TNBC Triple negative breast cancer 
TOF Time of flight 
UVPD Ultraviolet photodissociation 
VEGF Vascular endothelial growth 

factor 
WES Whole exome sequencing 
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Supplemental Figure S1: Computational workflow and quality control thresholds (related to Figure 1). 
(A) Data from three LC-MS/MS runs (technical replicates) per sample (one tissue from one subject) were processed with MHCquant with a local peptide-
level FDR of 1%. Identified peptides were categorized into peptides predicted as strong, weak, or non-binders. HLA-I peptides were predicted by 

SYFPEITHI and NetMHCpan 4.0, employing a cut-off threshold of 𝑠SYF ≥ 0.5 and 𝑠rank ≤ 2.0, respectively. HLA-II peptides were predicted with 
MixMHCPred, NetMHCIIpan 4.0 and SYFPEITHI with equal thresholds. Samples with less than 50% and 10% predicted binders per technical replicate 
for HLA-I and HLA-II immunopeptidomes were excluded from further analysis and are not included in the HLA Ligand Atlas database release. Finally, 
we employed a stringent cut-off concerning the mode of the peptide length distribution for HLA-I (mode equal to 9) and -II (mode between 12 to18) 
immunopeptidomes. 
(B) LC-MS/MS runs not pertaining to the aforementioned QC thresholds (dashed red lines) concerning the percentage of predicted HLA-binders and the 
peptide length distribution were not included in the HLA Ligand Atlas database release: Violin plots (left) depict the percentage of peptides predicted to 
be HLA-binders per LC-MS/MS run and the quality control cut-off for LC-MS/MS runs employed for HLA-I and -II immunopeptidomes. Dot plots (center) 
depict the mode of the peptide length distribution encountered per LC-MS/MS run and the quality control cut-off employed for HLA-I and -II. The number 
of LC-MS/MS runs (HLA-I - blue and HLA-II orange) failing the QC thresholds is indicated by red dots. The final number of LC-MS/MS runs and samples 
selected for inclusion into the HLA Ligand Atlas database release and data analysis are indicated on the right and differ for HLA-I and –II experiments. 
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Supplemental Figure S2: Time-Series Experiment (related to Figure 1). 
The time series experiment was carried out on three biological samples from three subjects (A: AUT-DN16 Liver, B: OVA-DN278, C: OVA-DN281). 
A-C: Bar plots (left hand side) indicate the number of identified HLA-I predicted binders (blue) and predicted non-binders (grey) across technical 
replicates and timepoints for each timeseries.  
Time series (right hand side) indicate individual clusters (K-Means using four seeds) of trajectories of quantified MS1 intensity across technical 
replicates and timepoints. Intermediate trend lines for each cluster are indicated in blue and the percentage of trajectories populating a given cluster is 
annotated at the top edge of each plot. The trajectories of all timepoints were set in relation to the initial timepoint. The analysis reveals that the number 
of identified peptides and their percentage of predicted HLA-binders is constant and that most trajectories do not vary much across time points. 
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Supplemental Figure S3: Position-wise proteome coverage (related to Figure 2). 
(A, B) Analysis of the different propensities of HLA-I (blue) and –II (orange), allotypes concerning the presentation of peptides. In turn different 
percentages of the source proteome are position-wise covered. For example, HLA-B*15:01 ligands cover over 1% of the HLA-I source proteome.  
(C) Global analysis of the position-wise coverage of all proteins presented on either HLA-I (blue), HLA-II (orange), or both independent of specific 
allotypes. 
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Supplemental Figure S4: Distribution of peptide identifications and yields across tissues and subjects and peptide-
based hierarchical sample clustering (related to Figure 2D, E, and Figure 4A). 
(A, B) HLA-I peptide yields per tissue and subject are illustrated in a heatmap for HLA-I and –II. The color range is in accordance with the number of 
peptides identified in each sample as indicated in the legend on the right (HLA-I – blue, HLA-II – orange). 
(C) Pairwise hierarchical clustering of samples based on the Jaccard similarity between HLA-I (blue) and HLA-II (orange) peptides. The dendrogram 
illustrates the nearest neighbor based on the similarity between tissues and subjects. See Figure 2D. 
(D) Violin plots illustrate the distribution of the peptide Jaccard similarity index for each pairwise comparison between the same subject - different 
tissues; different subjects - the same tissue, and different subject - different tissues. Results confirmed for HLA-I and -II source proteins Figure 2D and 
E, respectively. 
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Supplemental Figure 5: Linear models of gene expression across tissues (related to Figure 3). 
The correlation of HLA-I and -II peptide yields across tissues was assessed with respect to the expression levels (RPKM) of multiple immune related 
genes of the HLA-I and -II antigen presentation pathway. (RNA expression values were taken from a different publication 178 
A, C) Symmetrical cross-correlation matrices were generated, illustrating the spearman correlation coefficients (rho) of the number of identified HLA-I 
and -II ligands with expression levels (RPKM) of relevant genes in the HLA-I and -II antigen presentation pathways and among each other. The color-
coded dots and their size represent the degree (Spearman rho) of positive (blue) or negative correlation (red).  
B, D) In addition, linear models illustrate HLA-I and -II immunopeptidome yields correlated to log scaled gene expression values (RPKM) of genes 
involved in the HLA-I and -II antigen processing pathway, respectively. The R2 correlation coefficient is depicted in the top left corner for each 
comparison. 
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Supplemental Figure 6: Manual validation of cryptic peptide identifications with isotope labeled synthetic peptides 
(related to Figure 6). 
A-F) Six exemplary spectral comparisons depict cryptic peptides identified in diverse tissues and subjects (upper spectrum) related to their synthetic 
isotope labeled counterpart (lower spectrum). The isotope labeled amino acid is highlighted in red and its corresponding label and mass are annotated. 
Matching b- (red), y-ions (blue) and neutral losses (green) and their corresponding fragment masses are annotated to each peak in the spectra. The 
spectral similarity score of the given comparison is annotated in the top right.  
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10 SUPPLEMENTAL DATA: MAMMA CARCINOMA 

Table 10-1: Overview of available MaCa Samples and their preparation status. 

Subject Dignity Mass IP [g] 
Remainig 
mass [g] 

MS Tumor Subclass Typing 

MaCa 100 Tumor 1.03 0.53 Yes Luminal A SBT & Luminex 
MaCa 101 Tumor 1.10 5.40 Yes Luminal A SBT & Luminex 
MaCa 102 Tumor 1.40 1.30 Yes Luminal A SBT & Luminex 

MaCa 104 
Tumor 0.88 0.03 Yes 

Luminal B, Her2- SBT & Luminex 
Adj. benign 1.30 0.49 Yes 

MaCa 105 
Tumor 2.60 2.75 Yes 

Luminal A SBT & Luminex 
Adj. benign 1.90 1.20 Yes 

MaCa 107 
Tumor 1.50 0.30 Yes 

Luminal B, Her2- SBT & Luminex 
Adj. benign 1.50 0.87 Yes 

MaCa 108 
Tumor 0.59 0.04 Yes 

Luminal B, Her2- Ghosh 
Adj. benign 0.83 0.12 Yes 

MaCa 109 Tumor 2.70 2.90 Yes Luminal B, Her2- SBT & Luminex 

MaCa 110 
Tumor 1.30 1.07 Yes 

Luminal B, Her2- SBT & Luminex 
Adj. benign 1.20 0.18 Yes 

MaCa 111 
Tumor 0.20 0.05 Yes 

Luminal A SBT & Luminex 
Adj. benign 1.50 3.50 Yes 

MaCa 113 
Tumor 1.90 0.94 Yes 

Luminal A Ghosh 
Adj. benign 1.50 3.50 Yes 

MaCa 114 
Tumor 0.40 0.10 Yes 

Luminal B, Her2- SBT & Luminex 
Adj. benign 0.93 0.08 Yes 

MaN 115 Benign 2.19 2.11 Yes  SBT & Luminex 

MaCa 116 
Tumor 0.40 0.10 Yes 

Luminal B, Her2- Ghosh 
Adj. benign 0.93 0.80 Yes 

MaCa 121 
Tumor 0.51 - Yes 

Her2 + Ghosh 
Adj. benign 0.79 - Yes 

MaN 122 Benign 7.50 26.51 Yes  SBT & Luminex 

MaCa 123 
Tumor 1.20 - Yes 

Luminal A SBT & Luminex 
Adj. benign 3.50 - Yes 

MaCa 125 
Tumor 0.15 - Yes 

Luminal A Ghosh 
Adj. benign 0.72 - Yes 

MaCa 127 Tumor 1.66 3.14 Yes TNBC SBT & Luminex 
MaN 128 Benign 3.36 - Yes  SBT & Luminex 
MaCa 129 Tumor 3.01 - Yes TNBC SBT & Luminex 

MaCa 135 
Tumor 0.46 - Yes 

Luminal B, Her2- Ghosh 
Adj. benign 0.16 - Yes 

MaCa 138 
Tumor 1.13 - Yes 

Luminal B, Her2- Ghosh 
Adj. benign 1.18 - Yes 

MaCa 144 
Tumor 0.65 - Yes 

Luminal A Ghosh 
Adj. benign 1.62 - Yes 

MaCa 145 
Tumor 2.45  Yes 

Luminal B, Her2- Ghosh 
Adj. benign 2.11 1.81 Yes 

MaCa 149 
Tumor 1.17 - Yes 

Luminal A Ghosh 
Adj. benign 1.38 - Yes 

MaCa 151 
Tumor 1.26 - Yes 

Luminal A Ghosh 
Adj. benign 1.33 - Yes 

MaCa 152 
Tumor 1.05 - Yes 

Luminal B, Her2- Ghosh 
Adj. benign 1.58 - Yes 

MaCa 154  
Tumor 0.55 - Yes 

TNBC Ghosh 
Adj. benign 0.47 - Yes 

MaCa 156 (TN) 
Tumor 1.80 - Yes 

TNBC Ghosh 
Adj. benign 0.87 - Yes 

MaCa158 
Tumor 0.39 - Yes 

Luminal A Ghosh 
Adj. benign 0.76 - Yes 

MaCa159 
Tumor 0.39 - Yes 

Luminal A Ghosh 
Adj. benign 0.71 - Yes 

MaN160 Benign 4.10 21.00 Yes  Ghosh 
MaN161 Benign 2.78 2.00 Yes  Ghosh 
MaCa162 Tumor 0.95 - Yes Luminal A Ghosh 
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Subject Dignity Mass IP [g] 
Remainig 
mass [g] 

MS Tumor Subclass Typing 

Adj. benign 2.16 - Yes 

MaCa163 
Tumor 0.36 - Yes 

Luminal A Ghosh 
Adj. benign 1.13 - Yes 
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Table 10-2: MaCa associated HLA-I ligands  

Nr. Peptide 
Gene 
Name 

# MaCa 
samples 

# other 
Tumors 

HLA Positive Samples 
Molecular 

Subtype 

1 YVYQNNIYL FAP 12 24 

A*02:01; 
C*02:02; 
C*03:04; 
C*07:02; 

C*14:02; C*16:01 

MaCa149; MaCa138; MaCa159; 
MaCa102; MaCa113; MaCa145; 
MaCa109; MaCa114; MaCa107; 
MaCa152; MaCa154; MaCa156 

5xLuminal A; 
5xLuminal B Her2-; 

2xTNBC 

2 FLIDSSEGV COL6A3 9 18 A*02:01 
MaCa100; MaCa102; MaCa107; 
MaCa114; MaCa145; MaCa149; 
MaCa152; MaCa156; MaCa159 

5xLuminal A; 
3xLuminal B Her2-; 

1xTNBC 

3 
SLLQATDFMS

L 
THY1 8 12 A*02:01 

MaCa102; MaCa109; MaCa138; 
MaCa145; MaCa149; MaCa152; 

MaCa154; MaCa156 

2xLuminal A; 
4xLuminal B Her2-; 

2xTNBC 

4 ATEGVEVFY GGT5 7 17 A*01:01 
MaCa104; Maca110; MaCa114; 
MaCa123; MaCa145; MaCa151; 

MaCa162 

2xLuminal A; 
5xLuminal B Her2- 

5 ILIRYEPQL LAMB1 7 24 A*02:01 
MaCa100; MaCa102; MaCa105; 
MaCa107; MaCa109; MaCa152; 

MaCa156 

4xLuminal A; 
2xLuminal B Her2-; 

1xTNBC 

6 LLDFADVTY DSE 7 8 A*01:01 
MaCa101; MaCa104; Maca110; 
MaCa123; MaCa144; MaCa151; 

MaCa162 

4xLuminal A; 
3xLuminal B Her2- 

7 VTEFEDIKSGY SET 7 13 A*01:01 
MaCa101; MaCa104; MaCa129; 
MaCa135; MaCa144; MaCa151; 

MaCa154 

3xLuminal A; 
2xLuminal B Her2-; 

2xTNBC 

8 IALLPLLQA NDUFA13 6 11 

A*02:01; 
B*51:01; 
C*03:04; 

C*12:03; C*16:01 

MaCa149MaCa105MaCa109Ma
Ca100MaCa107MaCa145 

4x Luminal A; 
3xLuminal B Her2-; 

9 YTAEQLVYL RNF213 6 16 

A*02:01; 
C*02:02; 
C*03:04; 

C*05:01; C*16:01 

MaCa149MaCa152MaCa114Ma
Ca107MaCa138MaCa154 

2x Luminal A; 3x 
4xLuminal B Her2-; 

1xTNBC 

10 KAYEQALQY FOXA1 6 15 
A*03:01; 
B*15:01; 

B*15:17; C*12:03 

MaCa105MaCa144MaCa151Ma
Ca101MaCa129MaCa163 

5x Luminal A; 
1xTNBC 

11 SVGDTFLYL GLB1L 6 8 
C*03:04; 
C*05:01; 

C*07:02; C*16:01 

MaCa149MaCa104MaCa145Ma
Ca102MaCa152MaCa109 

2x Luminal A; 
4xLuminal B Her2- 

12 TATTSQPVL ABR 6 27 
C*03:03; 

C*03:04; C*16:01 
MaCa149MaCa129MaCa100Ma

Ca101MaCa114MaCa151 

4x Luminal A; 
1xLuminal B Her2-; 

1xTNBC 

13 IAQGSYIAL 
NOMO1; 
NOMO2; 
NOMO3 

6 21 C*03:03; C*03:04 
MaCa100MaCa101MaCa109Ma

Ca114MaCa129MaCa151 

3x Luminal A; 2x 
Luminal B Her2-; 1x 

TNBC 

14 AILETAPKEV RRBP1 6 26 A*02:01 
MaCa102; MaCa109; MaCa138; 
MaCa145; MaCa152; MaCa154 

1x Luminal A; 
4xLuminal B Her2-; 

1xTNBC 

15 
DSELQREGVS

HY 
PIGT 6 15 A*01:01 

MaCa101; Maca110; MaCa114; 
MaCa135; MaCa144; MaCa154 

2x Luminal A; 
3xLuminal B Her2-; 

1x TNBC 

16 FLLSLRGAGA 
HLA-
DPA1 

6 15 A*02:01 
MaCa102; MaCa105; MaCa107; 
MaCa109; MaCa138; MaCa156 

3x Luminal A; 
2xLuminal B Her2-; 

1x TNBC 

17 GLGELAGLTV STRN 6 26 A*02:01 
MaCa107; MaCa109; MaCa138; 
MaCa145; MaCa149; MaCa152 

2x Luminal A; 
4xLuminal B Her2- 

18 
GLWEDGRSTL

L 
CREB3L1 6 22 A*02:01 

MaCa100; MaCa102; MaCa104; 
MaCa107; MaCa109; MaCa149 

4x Luminal A; 2x 
Luminal B Her2- 

19 TTDIIEKY DDX60L 6 25 A*01:01 
MaCa101; Maca110; MaCa144; 
MaCa151; MaCa154; MaCa162 

3x Luminal A; 
2xLuminal B Her2-; 

1x TNBC 

20 VTDESIPSY AKAP9 6 16 A*01:01 
MaCa101; Maca110; MaCa123; 
MaCa144; MaCa145; MaCa151 

4x Luminal A; 
2xLuminal B Her2- 

21 IFYLKLEDL 
NR4A1; 
NR4A2; 
NR4A3 

5 23 

B*08:01; 
C*07:01; 
C*07:02; 

C*12:03; C*14:02 

MaCa154; MaCa156; MaCa159; 
MaCa105; MaCa107 

3x Luminal A; 2x 
TNBC 

22 
AETEARFGAQ

L 
KRT19 5 21 

B*40:01; 
B*40:02; B*44:02 

MaCa100; MaCa101; MaCa114; 
MaCa107; MaCa149 

4x Luminal A; 
1xLuminal B Her2- 

23 LSFVDTRTL COL1A2 5 29 
B*57:01; 

C*03:04; C*15:02 
MaCa104; MaCa123; MaCa145; 

MaCa101; MaCa111 
3x Luminal A; 2x 
Luminal B Her2-;  

24 VVDKTLLLV C11orf24 5 16 
A*01:01; 

C*04:01; C*05:01 
MaCa145; MaCa113; MaCa149; 

MaCa102; MaCa152 
3x Luminal A; 2x 
Luminal B Her2-;  
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Nr. Peptide 
Gene 
Name 

# MaCa 
samples 

# other 
Tumors 

HLA Positive Samples 
Molecular 

Subtype 

25 ALPPPPPEL RAPH1 5 5 A*02:01; C*04:01 
MaCa100; MaCa109; MaCa138; 

MaCa145; MaCa113 
2x Luminal A; 

3xLuminal B Her2- 

26 FLLDGSINF COL6A3 5 9 A*02:01; C*02:02 
MaCa104; MaCa105; MaCa109; 

MaCa145; MaCa107 
2x Luminal A; 3x 
Luminal B Her2-;  

27 ASEASRLAHY 
H2BC1; 

H2BC13; 
H2BU1 

5 35 A*01:01 
MaCa101; MaCa129; MaCa135; 

MaCa145; MaCa162 

1x Luminal A; 3x 
Luminal B Her2-; 1x 

TNBC;  

28 ATEEEILVY PSAP 5 4 A*01:01 
MaCa101; MaCa123; MaCa144; 

MaCa14; 5MaCa154 

3x Luminal A; 1x 
1xLuminal B Her2-; 

1x TNBC; 

29 FLDALDHAGY DDX58 5 7 A*01:01 
MaCa101; Maca110; MaCa123; 

MaCa144; MaCa162 
3x Luminal A; 2x 
Luminal B Her2- 

30 FLLDGSEGV COL6A3 5 7 A*02:01 
MaCa100; MaCa145; MaCa149; 

MaCa152; MaCa156 

2x Luminal A; 2x 
Luminal B Her2-; 

1xTNBC; 

31 FQDQLHQLY STAT2 5 8 A*01:01 
MaCa101; MaCa123; MaCa129; 

MaCa151; MaCa162 

3x Luminal A; 1x 
Luminal B Her2-; 1x 

TNBC 

32 
GLLDQDTGLV

L 
MACF1 5 16 A*02:01 

MaCa107; MaCa109; MaCa113; 
MaCa138; MaCa145 

2x Luminal A; 3x 
Luminal B Her2- 

33 
GLLGAGGTVS

V 
TIMM50 5 20 A*02:01 

MaCa102; MaCa107; MaCa109; 
MaCa145; MaCa152 

2x Luminal A; 3x 
Luminal B Her2-; 

34 GLTDNIHLV MXRA5 5 9 A*02:01 
MaCa100; MaCa102; MaCa152; 

MaCa156; MaCa159 

3x Luminal A; 1x 
Luminal B Her2-; 1x 

TNBC 

35 
HSDQITASSQ

Y 
NRP1 5 7 A*01:01 

MaCa101; MaCa123; MaCa129; 
MaCa145; MaCa162 

2x Luminal A; 2x 
Luminal B Her2-; 1x 

TNBC 

36 LLAGQTYHV COL6A3 5 7 A*02:01 
MaCa102; MaCa107; MaCa109; 

MaCa145; MaCa152 
2x Luminal A; 3x 
Luminal B Her2-; 

37 LLFNDVQTL PLEC 5 14 A*02:01 
MaCa102; MaCa107; MaCa109; 

MaCa138; MaCa152 
2x Luminal A; 3x 
Luminal B Her2- 

38 LLQEEVTKV POSTN 5 5 A*02:01 
MaCa102; MaCa109; MaCa138; 

MaCa149; MaCa152 
2x Luminal A; 3x 
Luminal B Her2- 

39 NSDGYGGNY 
DDX3X; 
DDX3Y 

5 29 A*01:01 
MaCa101; MaCa129; MaCa144; 

MaCa145; MaCa162 

2x Luminal A; 
2xLuminal B Her2-; 

1x TNBC 

40 SLIEDLILL SMYD3 5 13 A*02:01 
MaCa105; MaCa107; MaCa109; 

MaCa152; MaCa154 

2x Luminal A; 2x 
Luminal B Her2-; 1x 

TNBC; 

41 SLLEHFNTV TRPS1 5 5 A*02:01 
MaCa102; MaCa107; MaCa109; 

MaCa138; MaCa152 
2x Luminal A; 

3xLuminal B Her2- 

42 SLLTEPALV TBC1D9 5 12 A*02:01 
MaCa102; MaCa138; MaCa145; 

MaCa149; MaCa152 

2x Luminal A; 3x 
Luminal B Her2-; 1x 

TNBC 

43 
YSDVAKGILQ

Y 
SPATA20 5 15 A*01:01 

MaCa101; MaCa114; MaCa135; 
MaCa151; MaCa154 

2x Luminal A; 2x 
Luminal B Her2-; 1x 

TNBC; 

44 
YSEETLRARF

Y 
IMMT 5 10 A*01:01 

MaCa104; MaCa110; MaCa123; 
MaCa135; MaCa162 

1x Luminal A; 4x 
Luminal B Her2-; 
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Table 10-3: HLA-I MaCa associated HLA-I source proteins 

Nr. Gene Name Peptide 
# MaCa 
sample

s 

# other 
Tumor

s 
HLA Positive Samples 

Molecular 
Subtypes 

1 
SMAD9; 
SMAD9L 

ISDTLGQVY 8 24 A*01:01 
MaCa101; MaCa110; MaCa114; 
Maca123; MaCa135; MaCa145; 

MaCa151; MaCa162 

3x Luminal A; 5x 
Luminal B Her2- 

2 
RASGEF1B; 
RASGEF1C 

LLIKDIYFL 7 30 A*02:01 
MaCa109; MaCa138; MaCa145; 
MaCa149; MaCa152; MaCa154; 

MaCa156 

1x Luminal A; 4x 
Luminal B Her2-; 2x 

TNBC 

3 
GAL3ST1; 
GAL3ST3; 
GAL3ST4 

KAYEQALQY 6 17 
A*03:01; 
B*15:01; 

B*15:17; C*12:03 

MaCa101; MaCa105; MaCa129; 
MaCa144; MaCa151; MaCa163 

4x Luminal A; 1x 
TNBC 

4 
PLSCR1; 
PLSCR2 

ILIHQQIEL 6 28 A0201 
MaCa102; MaCa107; MaCa109; 
MaCa114; MaCa138; MaCa145 

2x Luminal A; 4x 
Luminal B Her2- 

5 
KCNJ3; 
KCNJ5 

YLSDLFTTL 6 1 C*02:02; A*02:01 
MaCa107; MaCa109; MaCa138; 
MaCa145; MaCa149; MaCa156 

2x Luminal A; 3x 
Luminal B Her2-; 1x 

TNBC 

6 KAT5; KAT7 LSDLGLLSY 6 20 A*01:01 
Maca123; MaCa129; MaCa135; 
MaCa144; MaCa145; MaCa154 

2x Luminal A; 2x 
Luminal B Her2-; 2x 

TNBC 

7 FOXA1 YFDESLVLL 6 20 C*04:01; C*05:01 
MaCa113; MaCa116; MaCa125; 
MaCa127; MaCa144; MaCa149 

4x Luminal A; 1x 
Luminal B Her2-; 1x 

TNBC 

8 
CTSD; CTSE; 
PGA3; PGA4; 

PGA5; PGC 
VVDKTLLLV 5 22 

A*01:01; 
C*04:01; C*05:01 

MaCa102; MaCa113; MaCa145; 
MaCa149; MaCa152 

2x Luminal A; 2x 
Luminal B Her2- 

9 
NR4A1; 
NR4A2; 
NR4A3 

EEVDVPIKLY; 
EEVDVPIKL 

5 23 B*44:02; B*44:03 
MaCa101; MaCa110; MaCa149; 

MaCa152; MaCa156 

2x Luminal A; 2x 
Luminal B Her2-; 1 

TNBC 

10 
EPHB1; 
EPHB2 

YRPLTVLTF 5 41 C*07:01; C*07:02 
MaCa102; MaCa109; MaCa145; 

MaCa156; MaCa163 

2x Luminal A; 1x 
Luminal B Her2-; 2x 

TNBC 

11 
TMTC3; 
TMTC4 

IFYLKLEDL 5 21 

B*08:01; 
C*07:01; 
C*07:02; 

C*12:03; C*14:02 

MaCa105; MaCa107; MaCa154; 
MaCa156; MaCa159 

3x Luminal A; 2x 
TNBC 

12 C11orf24 AIVDTGTSL 5 11 C*03:03; C*03:04 
MaCa100; MaCa101; MaCa109; 

MaCa129; MaCa151 

3x Luminal A; 1x 
Luminal B Her2-; 1x 

TNBC 

13 AQP5 

AIAGAGILYGV; 
FYLLFPNSL; 
LSLSERVAI; 
SALPTILQI 

4 9 C*16:01 
MaCa110; MaCa127; MaCa138; 

MaCa154 
2x Luminal B 

Her2neg; 2x TNBC 

14 CD276 GEGEGSKTAL 4 26 B*40:01; B*40:02 
MaCa100; MaCa101; MaCa107; 

MaCa114 
3x Luminal A; 1x 

Luminal B Her2neg 

15 PODNL1 
FYLLFPNSL; 
LSLSERVAI; 
SALPTILQI 

4 8 B*35:02; B*35:02 
MaCa127; MaCa129; MaCa145; 

MaCa149 

1x Luminal A; 1x 
Luminal B Her2-; 2 

TNBC 

16 OR13C3 LDKLISLFY 4 61 A*01:01 
MaCa101; MaCa110; MaCa114; 

Maca123 
2x Luminal A; 2x 
Luminal B Her2- 

17 DCLK3 
EPDAALMIMD
L; SEILIIQSL; 
SPRNPTQEL 

4 16 C*05:01 
MaCa109; MaCa144; MaCa145; 

MaCa154 

1x Luminal A; 2x 
Luminal B Her2-; 1 

TNBC 

18 
KIF26A; 
KIF26B 

YEIDDVERL 4 12 B*40:01; B*40:02 
MaCa100; MaCa101; MaCa107; 

MaCa114 
1x Luminal A; 3x 
Luminal B Her2- 

19 
COL1A1; 
COL1A2; 
COL2A1 

AEGNSRFTY 4 8 B*44:02; B*44:03 
MaCa102; MaCa110; MaCa149; 

MaCa152 
2x Luminal A; 2x 
Luminal B Her2- 

20 

TUBB2A; 
TUBB2B; 
TUBB4A; 
TUBB4B; 
TUBB6; 
TUBB8 

LQLERINVY; 
QLERINVYY 

4 37 B*15:01 
MaCa151; MaCa129; MaCa114; 

MaCa109 

1x Luminal A; 2x 
Luminal B Her2neg; 

1xTNBC 

21 

CBWD1; 
CBWD2; 
CBWD3; 
CBWD5; 
CBWD6 

IYLDGIITI; 
NEATRQVAL 

4 19 B*14:01; B*14:02 MaCa110; Maca123; MaCa127 
1x Luminal A; 1x 

Luminal B Her2-; 1x 
TNBC 

22 MATN3 
AFQDKVSSY; 
EPLEEHVFY 

3 22 C*14:02 MaCa111; MaCa116; MaCa138 
1x Luminal A; 2x 

Luminal B He2neg 

23 COMP 
TESQVRLLW; 
RELQETNAAL 

3 59 B*44:02 MaCa100; MaCa101; MaCa152 
2x Luminal A; 1x 
Luminal B Her2- 
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Nr. Gene Name Peptide 
# MaCa 
sample

s 

# other 
Tumor

s 
HLA Positive Samples 

Molecular 
Subtypes 

24 LY6E 
AADGGLRASV

TL; LLLSLLPAL 
3 35 A*02:01 MaCa107; MaCa109; MaCa152 

1x Luminal A; 2x 
Luminal B Her2- 

25 ARL6IP4 VEALPGPSL 3 19 B*40:01 MaCa100; MaCa101; MaCa114 
2x Luminal A; 1x 
Luminal B Her2- 

26 SLC39A4 SLYEDDITF 3 14 B*15:01 MaCa109; MaCa129; MaCa151 
1x Luminal A; 1x 

Luminal B Her2-; 1x 
TNBC 

27 TMEM219 
HEGLVLTKL; 
SHEGLVLTKL 

3 12 B*40:01 MaCa101; MaCa114; MaCa144 
2x Luminal A; 1x 

Luminal B her2neg 

28 SMPDL3B 
YYVYNSVSY; 
IYNQIAELW 

3 14 A*33:01 MaCa110; MaCa127; MaCa162 
2x Luminal B Her2-; 

1x TNBC 

29 CTHRC1 
EVVDLYNGM; 
SPQRLRGLL; 
VLFSGSLRL 

3 11 A*26:01 MaCa105; MaCa109; MaCa145 
1x Luminal A; 2x 
Luminal B Her2- 

30 MS4A6E LSLMLVSTV 3 16 
A*02:01; 

B*51:01; C*05:01 
MaCa138; MaCa152; MaCa154 

2x Luminal B Her2-; 
1x TNBC 

31 CMTM3 
AESGLSFITF; 

ISITAIAKY 
3 6 B*44:02 MaCa101; MaCa109; MaCa152 

1x Luminal A; 2x 
Luminal B Her2- 

32 C1QTNF6 NQKEAVILY 3 8 B*15:01 MaCa109; MaCa129; MaCa151 
1x Luminal A; 1x 

Luminal B Her2-; 1 
TNBC 

33 CHIA LLTGLVLIL 3 6 A*02:01 MaCa102; MaCa109; MaCa159 
2x Luminal A; 1x 
Luminal B Her2- 

34 MANBAL 
RYGLFLGAIF; 
SPPEVPEPTF 

3 13 B*07:02; B3502 MaCa113; MaCa127; MaCa129 
1x Luminal A; 2x 

TNBC 

35 ZNF358 
KAFGQASSL; 
KAFGQSSAL 

3 16 C*03:04, C0701 MaCa100; MaCa101; MaCa135 
2x Luminal A; 1x 
Luminal B Her2- 

36 TBC1D7 
QYLDVLHAL; 
SVYYEKVGF 

3 17 B1501 MaCa127; MaCa129; MaCa162 
1x Luminal B Her2-; 

2x TNBC 

37 LZTS1 SPESASHQL 3 22 
B*07:02; 

B*35:02; B*35:01 
MaCa113; MaCa127; MaCa129 

1x Luminal A; 2x 
TNBC 

38 LOX L2 FGFPGERTY 3 26 C*12:03 MaCa105; MaCa144; MaCa151 3x Luminal A 

40 
TBL1X; 
TBL1Y 

TSDEVNFLVY 3 172 A*01:01 MaCa129; MaCa144; MaCa154 
1x Luminal A; 2x 

TNBC 

41 
LYPLA1; 
LYPLA2 

FSQGGALSL 3 7 C*03:04 MaCa100; MaCa101; MaCa109 
1x Luminal A; 2x 
Luminal B Her2- 

42 
ABCA1; 
ABCA2 

GRSVVLTSH; 
TVEEHIWFY 

3 3 A*01:01 MaCa162; MaCa144; MaCa101 
2x Luminal A, 1x 
Luminal B Her2- 

43 AK1; AK5 FLIDGYPREV 3 16 A*02:01 MaCa102; MaCa104; MaCa152 
1x Luminal A; 2x 
Luminal B Her2- 

44 C1QB; C1QC FTCKVPGLYY 3 10 A*01:01 MaCa101; MaCa110; MaCa162 
1x Luminal A; 2x 
Luminal B Her2- 

45 
HSPA1A; 
HSPA1B 

TRIPKVQKL 3 117 C*06:02 Maca123; MaCa138; MaCa145 
1x Luminal A; 2x 
Luminal B Her2- 

46 FPR2; FPR3 LPTSLERAL 3 5 
B*07:02; 

B*35:01; B*35:01 
MaCa113; MaCa127; MaCa129 

1x Luminal A; 2x 
TNBC 

47 
KDM5A; 
KDM5C 

MPVLEQSVL 3 29 B*35:02; B*35:01 MaCa127; MaCa129; MaCa149 
1x Luminal A; 2x 

TNBC 

48 PRCP; DPP7 ALADFAELI 3 19 A*02:01 MaCa100; MaCa149; MaCa159 3x Luminal A 

49 
KRT17; 
KRT19 

AADDFRTKF; 
RLAADDFRTK

F 
3 86 C*05:01 MaCa152; MaCa144; MaCa102 

1x Luminal A; 1x 
LuminalB Her2-; 1x 

TNBC 

50 
HERC3; 
HERC6 

SLEGIPLAQV 3 16 A*02:01 MaCa114; MaCa138; MaCa152 3x Luminal B Her2- 

51 
IFI16; 
NOC3L 

MSKLISEM 3 37 C*12:03 MaCa105; MaCa144; MaCa151 3x Luminal A 

52 ITCH; WWP2 VTEENKEEY 3 13 A*01:01 MaCa101; MaCa145; MaCa162 
1x Luminal A; 2x 
Luminal B Her2- 

53 
ABCA2; 
ABCA1 

TVEEHLWFY 3 11 A*01:01 MaCa110; MaCa135; MaCa145 3x Luminal A 

54 
PARVB; 
PARVA 

VLLDWINDV 3 10 A*02:01 MaCa100; MaCa107; MaCa109 
2x Luminal A; 1x 
Luminal B Her2- 

55 
SLC23A1; 
SLC23A2 

SRNLFVLGF; 
TLFGMITAV 

3 21 A*02:01 MaCa162; MaCa154; MaCa145 
2x Luminal B Her2-; 

1x TNBC 

56 
CADPS; 
CADPS2 

TLDHRLNDSY 3 19 A*01:01 MaCa101; MaCa135; MaCa145 
1x Luminal A; 2x 
Luminal B Her2- 

57 
VAMP1; 
VAMP2; 
VAMP3 

SELDDRADAL 3 14 B*40:01 MaCa100; MaCa101; MaCa114 
2x Luminal A; 1x 
Luminal B Her2- 
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Nr. Gene Name Peptide 
# MaCa 
sample

s 

# other 
Tumor

s 
HLA Positive Samples 

Molecular 
Subtypes 

58 
SRSF4; 
SRSF5; 
SRSF6 

DADDAVYEL 3 8 B*35:02 MaCa113; MaCa127; MaCa129 
1x Luminal A; 

2xTNBC 

59 
GBP4; GBP7; 

GBP6 
FFPDFIWTV 3 8 C*06:02 MaCa105; MaCa107; MaCa129 2x Luminal A; 1 TNBC 

60 

IGKV1-17; 
IGKV1D-16; 
IGKV1-17; 
IGKV1-39 

LQSGVPSRF 3 10 B*38:01 MaCa109; MaCa144; MaCa151 
2x Luminal A; 1x 
Luminal B Her2- 

61 

MLH1; 
MLH3; 
PMS1; 

SLC25A42 

YGFRGEAL 3 8 B*08:01 MaCa101; MaCa109; MaCa114 
1x Luminal A; 2x 
Luminal B Her2- 

62 

TBXT; 
EOMES; 
TBR1; 

TBX19; 
TBX21 

TQFIAVTAY 3 11 B*15:01 MaCa109; MaCa129; MaCa151 
1x Luminal A; 1x 

Luminal B Her2-; 1x 
TNBC 

 

Table 10-4: MaCa-associated HLA-II Ligands 

Nr. Peptide 
Gene 
Name 

# MaCa 
sample

s 

# other 
Tumor

s 
Positive Samples 

Molecular 
Subtypes 

1 GNWKIIRSENFEEL CRABP2 12 28 

MaCa100; MaCa101; MaCa102; 
MaCa104; MaCa107; MaCa109; 
MaCa110; MaCa114; MaCa123; 
MaCa127; MaCa159; MaCa163; 

7x Luminal A; 4x 
Luminal B, Her2-; 1x 

TNBC 

2 DTHAYNVADFESL COL12A1 9 24 

MaCa100; MaCa101; MaCa102; 
MaCa104; MaCa107; MaCa109; 
MaCa110; MaCa114; MaCa121; 
MaCa123; MaCa127; MaCa156; 

MaCa159; 

6x Luminal A; 4x 
Luminal B, Her2-; 1x 

Her2+; 2x TNBC 

3 KPSRLPFLDIAPLDIGG COL1A2 9 23 
MaCa101; MaCa108; MaCa109; 
MaCa121; MaCa123; MaCa129; 
MaCa138; MaCa151; MaCa162; 

3x Luminal A; 4x 
Luminal B, 1x Her2-; 

Her2+ 

4 RHVFIVDDFESFEK COL12A1 9 28 
MaCa100; MaCa101; MaCa102; 
MaCa104; MaCa107; MaCa109; 
MaCa123; MaCa145; MaCa156; 

5x Luminal A; 3x 
Luminal B, Her2-; 1x 

TNBC 

5 RLPIIDLAPVDVGGTD COL5A2 9 28 
MaCa101; MaCa109; MaCa111; 
MaCa121; MaCa129; MaCa138; 
MaCa151; MaCa158; MaCa162; 

4x Luminal A; 3x 
Luminal B, Her2-; 1x 

Her2+ 

6 APAVVHIELFRKLPFSKRE HTRA1 8 15 
MaCa105; MaCa110; MaCa111; 
MaCa121; MaCa125; MaCa138; 

MaCa144; MaCa151; 

5x Luminal A; 2x 
Luminal B, Her2-; 1x 

Her2+ 

7 DQPRSAPSLRPKDYEVDATLKSLNN COL1A2 8 26 
MaCa100; MaCa107; MaCa109; 
MaCa113; MaCa129; MaCa145; 

MaCa151; MaCa162; 

4x Luminal A; 3x 
Luminal B, Her2-; 1x 

TNBC 

8 DTHAYNVADFESLSR COL12A1 8 23 
MaCa100; MaCa101; MaCa102; 
MaCa104; MaCa107; MaCa113; 

MaCa135; MaCa156; 

5x Luminal A; 2x 
Luminal B, Her2-; 1x 

TNBC 

9 GNWKIIRSENFEELLK CRABP2 8 19 
MaCa100; MaCa101; MaCa104; 
MaCa109; MaCa110; MaCa123; 

MaCa159; MaCa163; 

5x Luminal A; 3x 
Luminal B, Her2- 

10 KPSRLPFLDIAPLDIGGADQ COL1A2 8 33 
MaCa101; MaCa109; MaCa121; 
MaCa129; MaCa138; MaCa151; 

MaCa158; MaCa162; 

3x Luminal A; 3x 
Luminal B, Her2-; 1x 

Her2+; 1x TNBC 

11 LPIIDLAPVDVGGT COL5A2 8 25 
MaCa101; MaCa109; MaCa121; 
MaCa129; MaCa138; MaCa151; 

MaCa158; MaCa162; 

3x Luminal A; 3x 
Luminal B, Her2-; 1x 

Her2+; 1x TNBC 

12 LPIIDLAPVDVGGTD COL5A2 8 36 
MaCa101; MaCa111; MaCa121; 
MaCa129; MaCa138; MaCa151; 

MaCa158; MaCa162; 

4x Luminal A; 2x 
Luminal B, Her2-; 1x 

Her2+; 1x TNBC 

13 PGVPAYRFVRFDYIPPV THBS2 8 27 
MaCa100; MaCa101; MaCa104; 
MaCa107; MaCa109; MaCa110; 

MaCa121; MaCa156; 

3x Luminal A; 3x 
Luminal B, Her2-; 1x 

Her2+; 1x TNBC 

14 SRLPIIDVAPLDVGAPDQE COL1A1 8 51 
MaCa101; MaCa109; MaCa111; 
MaCa129; MaCa138; MaCa151; 

MaCa158; MaCa162; 

4x Luminal A; 3x 
Luminal B, Her2-; 1x 

TNBC 



Supplemental Data: Mamma Carcinoma 

135 

 

Nr. Peptide 
Gene 
Name 

# MaCa 
sample

s 

# other 
Tumor

s 
Positive Samples 

Molecular 
Subtypes 

15 ARLPIIDLAPVDVGGTD COL5A2 6 23 
MaCa101; MaCa109; MaCa111; 
MaCa121; MaCa138; MaCa158; 

3x Luminal A; 2x 
Luminal B, Her2-; 1x 

Her2+ 

16 DGNPRVRSLVQDTRIHLVPSLNPDG AEBP1 6 11 
MaCa100; MaCa104; MaCa114; 
MaCa154; MaCa156; MaCa162; 

1x Luminal A; 3x 
Luminal B, Her2-; 2x 

TNBC 

17 DPDDTHAYNVADFESLSRIV COL12A1 6 13 
MaCa100; MaCa101; MaCa104; 
MaCa107; MaCa109; MaCa110; 

3x Luminal A; 3x 
Luminal B, Her2- 

18 DQPRSAPSLRPKDYEVDATLKS COL1A2 6 22 
MaCa107; MaCa109; MaCa116; 
MaCa129; MaCa151; MaCa162; 

2x Luminal A; 3x 
Luminal B, Her2-; 1x 

TNBC 

19 DRDLEVDTTLKSLS COL1A1 6 19 
MaCa101; MaCa109; MaCa111; 
MaCa129; MaCa145; MaCa162; 

2x Luminal A; 3x 
Luminal B, Her2-; 1x 

TNBC 

20 EITYINRDTKIILETK SFRP2 6 16 
MaCa100; MaCa104; MaCa114; 
MaCa154; MaCa156; MaCa162; 

1x Luminal A; 3x 
Luminal B, Her2-; 2x 

TNBC 

21 ENDVIISINGQSVVS HTRA1 6 18 
MaCa105; MaCa108; MaCa116; 
MaCa123; MaCa127; MaCa135; 

2x Luminal A; 3x 
Luminal B, 1x TNBC 

22 EQHLYYQDQLLPVSR 
TPSAB1, 
TPSD1 

6 14 
MaCa100; MaCa113; MaCa114; 
MaCa116; MaCa135; MaCa159; 

3x Luminal A; 3x 
Luminal B, Her2- 

23 FPSYSAYRIQKNAFVNQPT COL12A1 6 6 
MaCa105; MaCa114; MaCa116; 
MaCa135; MaCa138; MaCa156; 

1x Luminal A; 4x 
Luminal B, 1x TNBC 

24 GAIHIFREIIKPAEKSLH POSTN 6 8 
MaCa102; MaCa107; MaCa116; 
MaCa125; MaCa149; MaCa151; 

5x Luminal A; 1x 
Luminal B, Her2- 

25 GDGRTIVDLEGTPVVSPD FNDC1 6 12 
MaCa104; MaCa105; MaCa116; 
MaCa123; MaCa127; MaCa135; 

2x Luminal A; 3x 
Luminal B, Her2-; 1x 

TNBC 

26 IAVGYVDDTQFVR 
HLA-A, 
HLA-B, 
HLA-C 

6 19 
MaCa100; MaCa107; MaCa110; 
MaCa111; MaCa151; MaCa162; 

4x Luminal A; 2x 
Luminal B, Her2- 

27 IDENTVHMSWAKPVDPI COL12A1 6 26 
MaCa102; MaCa123; MaCa145; 
MaCa149; MaCa151; MaCa158; 

5x Luminal A; 1x 
Luminal B, Her2- 

28 IEYKTTKTSRLPII COL1A1 6 28 
MaCa121; MaCa123; MaCa138; 
MaCa145; MaCa151; MaCa158; 

3x Luminal A; 2x 
Luminal B, Her2-; 1x 

Her2+ 

29 ITYINRDTKIIL SFRP2 6 15 
MaCa100; MaCa104; MaCa114; 
MaCa154; MaCa156; MaCa162; 

1x Luminal A; 2x 
Luminal B, Her2-; 2x 

TNBC 

30 KADIALIKIDHQGKLP HTRA1 6 15 
MaCa101; MaCa111; MaCa121; 
MaCa138; MaCa151; MaCa158; 

4x Luminal A; 1x 
Luminal B, Her2-; 1x 

Her2+ 

31 KPLVIIAEDVDGEAL HSPD1 6 19 
MaCa101; MaCa109; MaCa121; 
MaCa129; MaCa151; MaCa162; 

2x Luminal A; 2x 
Luminal B, Her2-; 1x 

Her2+; 1x TNBC 

32 KTTKTSRLPIIDVAPLDVGAPD COL1A1 6 29 
MaCa101; MaCa111; MaCa121; 
MaCa129; MaCa138; MaCa158; 

3x Luminal A; 1x 
Luminal B, Her2-; 1x 

Her2+; 1x TNBC 

33 LPDETEVVEETVAEVTE SPARC 6 19 
MaCa100; MaCa123; MaCa127; 
MaCa138; MaCa151; MaCa162; 

3x Luminal A; 2x 
Luminal B, Her2-; 1x 

TNBC 

34 LPFLDIAPLDIGG COL1A2 6 7 
MaCa101; MaCa109; MaCa121; 
MaCa138; MaCa151; MaCa162; 

2x Luminal A; 3x 
Luminal B, Her2-; 1x 

Her2+ 

35 LPIIDVAPLD COL1A1 6 29 
MaCa101; MaCa121; MaCa138; 
MaCa151; MaCa158; MaCa162; 

3x Luminal A; 2x 
Luminal B, Her2-; 1x 

Her2+ 

36 PIIDVAPLDVGAPDQE COL1A1 6 28 
MaCa101; MaCa121; MaCa138; 
MaCa151; MaCa158; MaCa162; 

3x Luminal A; 2x 
Luminal B, Her2-; 1x 

Her2+ 

37 SSPVVIDASTAIDAPS FN1 6 36 
MaCa100; MaCa101; MaCa105; 
MaCa107; MaCa114; MaCa162; 

4x Luminal A; 2x 
Luminal B, Her2- 

38 TGSMSIIFFLPLK SERPINF1 6 53 
MaCa101; MaCa104; MaCa110; 
MaCa135; MaCa144; MaCa156; 

2x Luminal A; 3x 
Luminal B, Her2-; 1x 

TNBC 

39 TKTSRLPIIDVAPLDVGAPD COL1A1 6 21 
MaCa101; MaCa111; MaCa121; 
MaCa129; MaCa151; MaCa158; 

4x Luminal A; 3x 
Luminal B, Her2-; 1x 

Her2+; 1x TNBC 

40 TNKPSRLPFLDIAPLDIGGADQ COL1A2 6 30 
MaCa101; MaCa109; MaCa121; 
MaCa129; MaCa151; MaCa162; 

2x Luminal A; 2x 
Luminal B, Her2-; 1x 

Her2+; 1x TNBC 

41 TTKTSRLPIIDVAPLDVGAPD COL1A1 6 32 
MaCa101; MaCa109; MaCa138; 

MaCa151; MaCa162; 
2x Luminal A; 3x 
Luminal B, Her2- 
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42 VKEYILSYAPALKPF FNDC1 6 10 
MaCa100; MaCa107; MaCa114; 
MaCa135; MaCa156; MaCa159; 

3x Luminal A; 2x 
Luminal B, Her2-; 1x 

TNBC 

43 VPISDTIIPAVPPP FN1 6 23 
MaCa100; MaCa101; MaCa107; 
MaCa113; MaCa114; MaCa127; 

4x Luminal A; 1x 
Luminal B, Her2-; 1x 

TNBC 

44 VPLDPKGTTQIDPNWVIR THBS2 6 15 
MaCa100; MaCa104; MaCa105; 
MaCa107; MaCa110; MaCa114; 

3x Luminal A; 3x 
Luminal B, Her2- 

45 VRDRDLEVDTTLKSLSQQ COL1A1 6 28 
MaCa100; MaCa101; MaCa104; 
MaCa129; MaCa145; MaCa162; 

2x Luminal A; 3x 
Luminal B, Her2-; 1x 

TNBC 

46 VVNVYSVVEDEYSEPL COL12A1 6 24 
MaCa108; MaCa109; MaCa129; 
MaCa138; MaCa145; MaCa162; 

5x Luminal B, Her2-; 
1x TNBC 

 

Table 10-5: Frequent MaCa-associated HLA-II Source Proteins 

Nr. 
Gene 
Name 

Peptide 
# MaCa 
sample

s 

# other 
Tumor

s 
Positive Samples Molecular Subtype 

1 COL11A1 

DIQQFLITGDPKAAY; 
DIQQFLITGDPKAAYD; 

EKTVIEINTPKIDQ; 
QQFLITGDPKAAYDY 

8 59 

MaCa100; MaCa101; 
MaCa104; MaCa109; 
MaCa111; MaCa129; 
MaCa145; MaCa162 

3x Luminal A; 4x Luminal B; 
Her2-; 1x Triple-e 

2 FAP 

AEYFRNVDYLLIH; AEYFRNVDYLLIHG; 
AEYFRNVDYLLIHGT; 

SKLAYVYQNNIYLKQRPG; 
VRIFIIDTTYPAYVGP; 

8 27 

MaCa100; MaCa101; 
MaCa104; MaCa109; 
MaCa110; MaCa114; 
MaCa135; MaCa156 

2x Luminal A; 5x Luminal B; 
Her2-; 1x Triple-e; 

3 ADAMTS7 
DYFIEPLDSAPARPG; 

LAPGFVSETRRRGGLG; 
SKLAYVYQNNIYLKQRPG 

5 21 
MaCa100; MaCa101; 
MaCa107; MaCa110; 

MaCa138 

3x Luminal A; 2xLuminal B; 
Her2-; 

4 POU3F3 AAAAAAAAHLPSMAGGQQPPPQSLL 4 11 
MaCa113; MaCa116; 
MaCa145; MaCa149 

2x Luminal A; 2x Luminal B; 
Her2- 

5 MYO3B 
GDPPLFDMHPVKTLFKIPRNPPP; 

QKKLSDFRLPEEKPPR 
4 8 

MaCa121; MaCa123; 
MaCa138; MaCa151 

2x Luminal A; 1x Luminal B; 
Her2-; 1x Her2+; 

6 SCUBE2 

DKKLIKALFDVLAHP; 
DKKLIKALFDVLAHPQ; 

KKLIKALFDVLAHP; 
NHQEILKDKKLIKALF 

4 18 
MaCa100; MaCa101; 
MaCa108; MaCa135 

2x Luminal A; 2x Luminal B; 
Her2- 

7 GPR34 DRYIKINRSIQQRK; DRYIKINRSIQQR 4 21 
MaCa100; MaCa107; 
MaCa110; MaCa113 

3x Luminal A; 1x Luminal B; 
Her2- 

8 GRP LREYIRWEEAARNL 3 7 
MaCa135; MaCa145; 

MaCa149 
1x Luminal A; Luminal B; 

Her2- 

9 TGFB3 
IKKKRVEAIRGQILSK; 

IRGQILSKLRLTSPP 
3 3 

MaCa123; MaCa127; 
MaCa151 

2x Luminal A; 1x TNBC 

10 HTR3A SGERVSFKITLLL 3 9 
MaCa104; MaCa156; 

MaCa162 
2x Luminal B; Her2-; 1x TNBC 

11 UBE2D1 
RIQKELSDLQRDPP; 
RIQKELSDLQRDPPA 

3 16 
MaCa114; MaCa123; 

MaCa151 
1x Luminal A; 2x Luminal B; 

Her2- 

12 TNFAIP2 
LAEIIRLQDPSAIK; 

LPPRQIRLLEATFLSSE; 
TVEELKAALERGQLE; 

3 12 
MaCa101; MaCa127; 

MaCa162 
1x Luminal A; 1x Luminal B; 

Her2-; 1x TNBC 

13 SKIV2L 
AGKTVVAEYAIALAQK; 
SPVGDFYRLIPQPAFQ 

3 17 
MaCa123; MaCa127; 

MaCa135 
1x Luminal A; 1x Luminal B; 

Her2-; 1x TNBC; 

14 PKN1 
AKNVLRLLSAAKAPDR; 

LERRLGELPADHPK 
3 18 

MaCa123; MaCa127; 
MaCa135 

1x Luminal A; 1x Luminal B; 
Her2-; 1x TNBC 

15 RIMS1 
APPSAPPDRSKGAEPSQQALGPEQ; 

KILEPKWNQTFVYSHVHRRDFRERM; 
KVETMLRNDSLSSDQSESVRPSP; 

3 9 
MaCa101; MaCa108; 

MaCa127 
1x Luminal A; 1x Luminal B; 

Her2-; 1x TNBC 

16 SPATA2L TGGRAWEPPAEELPQ 3 15 
MaCa101; MaCa129; 

MaCa135 
1x Luminal A; 1x Luminal B; 

Her2-; 1x TNBC 

17 PCP2 PVGSKDGAQKRAGTLSPQ 3 27 
MaCa107; MaCa145; 

MaCa162 
1x Luminal A; 2x Luminal B; 

Her2- 

18 LILRA2 
FPIPSITWEHAGRYH; 

ITGQFYDRPSLSVQPVP; 
SNPYLLSLPSDPLE; 

3 13 
MaCa113; MaCa135; 

MaCa138 
1x Luminal A; 2x Luminal B; 

Her2- 

19 SHROOM3 
AHAAREDSLPEESSAPD; 
QPDASMMQISQGMIGPP 

3 9 
MaCa107; MaCa135; 

MaCa162 
1x Luminal A; 2x Luminal B; 

Her2- 

20 LMLN GLRASATSTPVSLGSSP 3 21 
MaCa108; MaCa114; 

MaCa129 
2x Luminal B; Her2-; 1x TNBC 

21 HAUS8 HGTAPPDLDLSAINDKSI 3 9 
MaCa109; MaCa145; 

MaCa162 
3x Luminal B; Her2- 
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22 RPAP3 
KKVIIEETGNLIQT; 

KPLKKVIIEETGNLIQT; 
TEGERKQIEAQQNKQ; 

3 9 
MaCa101; MaCa123; 

MaCa127 
2x Luminal A; 1x TNBC 

23 WDR26 
EDHKVYIWHKRSELPI; 

SDEDVIRLIGQHLNG 
3 19 

MaCa105; MaCa123; 
MaCa127 

2x Luminal A 

24 OSGIN2 YNSNIPVIHVFRRRVTDP 3 16 
MaCa100; MaCa110; 

MaCa113 
1x Luminal A; 1x Luminal B; 

Her2- 

25 SBNO1 
AADLIDAEQRMKKSMWGQFWSAH; 

EIVMKSIVNLDSPMVSPP 
2 11 MaCa114; MaCa127 1x Luminal B; Her2-; 1x TNBC 

26 SFI1 YYEQRLLRKVFEEWKEEWWVFQHEW 2 28 MaCa100; MaCa107 2x Luminal A 

27 MAPKBP1 QLPVSSLFQGPENLQPPPPEKTPNP 2 12 MaCa104; MaCa158 
1x Luminal A; 1x Luminal B; 

Her2- 

28 SRPX2 GEHVIRYTAYDR; IDRDRYMEPVTPEE 2 8 MaCa101; MaCa114 
1x Luminal A; 1x Luminal B; 

Her2- 

29 NOS1AP 
RRIRYEFKAKNIKKKK; 
VAQVHLLKDQLAAE; 

2 5 MaCa101; MaCa138 
1x Luminal A; 1x Luminal B; 

Her2- 
30 STC2 CPAIREMVSQLQRE; KDLLLHEPYVDL 2 3 MaCa101; MaCa102 2x Luminal A 

31 GOSR1 
RHRDILQDYTHEFHK; 
VNNRRTELFLKEHDH 

2 19 MaCa100; MaCa151 2x Luminal A 

32 SCGB1D2 
DQMSLQKRSLIAEVLVK; 

KRSLIAEVLVKILKK 
2 0 MaCa135; MaCa138 2x Luminal B; Her2- 

33 
IGKV1D-

12 
APKLLIYSASSL; SGTEFTLTISSLQPED 2 38 MaCa114; MaCa162 2x Luminal B; Her2- 

34 KRT6B NMQDLVEDLKNKYEDEI 2 52 MaCa156; MaCa162 1x Luminal B; Her2-; 1x TNBC 

35 INHBB 
GDRWNMVEKRVDLKR; 
VTALRKLHAGKVREDG 

2 7 MaCa102; MaCa127 1x Luminal A; 1x TNBC 

36 PTHLH 
EGRYLTQETNKVET; 

KPGKRKEQEKKKRRTRSAWLDSGVT 
2 8 MaCa114; MaCa162 2x Luminal B; Her2- 

37 HOXB8 
EQSPSPTQLFPWMRPQ; 
EQSPSPTQLFPWMRPQA 

2 10 MaCa151; MaCa162 
1x Luminal A; 1x Luminal B; 

Her2- 

38 FPR3 
AQNHRTMSLAKRVMT; 

ERLIRSLPTSLERA 
2 7 MaCa101; MaCa138 

1x Luminal A; 1x Luminal B; 
Her2- 

40 GRPR DRYKAIVRPMD; SADRYKAIVRPMD 2 3 MaCa102; MaCa151 2x Luminal A 

41 FCGR2C EPPGRQMIAIRKRQPE 2 147 MaCa105; MaCa110 
1x Luminal A; 1x Luminal B; 

Her2- 

42 CBS 
LDQYRNASNPLAH; 

VDVLRALGAEIVRTP 
2 16 MaCa127; MaCa129 2x TNBC 

43 HIRA NPEMLKYQRRQQQQQ 2 20 MaCa101; MaCa107 2x Luminal A 

44 GFRA1 
MTPNYIDSSSLSVAPW; 

TPNYIDSSSLSVAPW 
2 3 MaCa138; MaCa151 

1x Luminal A; Luminal B; 
Her2- 

45 C1QTNF8 EILKGEKGEAGVRGRAG 2 13 MaCa101; MaCa110 
1x Luminal A; 1x Luminal B; 

Her2- 

46 PRKCZ GLIIHVFPSTPEQPG; RSPFDIITDNPD 2 2 MaCa114; MaCa158 
1x Luminal A; 1x Luminal B; 

Her2- 

47 PPFIA1 
DDKTTIKCETSPPSSPR; 

LPEVEAELAQRVAAL 
2 6 MaCa101; MaCa123 2x Luminal A 

48 OASL 
GGSYAYAINPNSFI; 

KEEVLDAVRTVEEFL 
2 7 MaCa101; MaCa162 

1x Luminal A; 1x Luminal B; 
Her2- 

49 CSPP1 KDLELRVAASGAQDP 2 6 MaCa116; MaCa125 
1x Luminal A; 1x Luminal B; 

Her2- 

50 AP5B1 EAVHVPCLCPGRPARPLLLPLQ 2 4 MaCa107; MaCa110 
1x Luminal A;1xLuminal B; 

Her2- 

51 FNBP1L 
AFFNILNELNDYAGQR; 
SPEGSYTDDANQEVR 

2 4 MaCa100; MaCa105 2x Luminal A 

52 C6orf132 
APGSADYGFAPAAGRSPYT; 

LPLPPSFHIRPASQVYPD 
2 4 MaCa113; MaCa138 

1x Luminal A; 1x Luminal B; 
Her2- 

53 RARS2 
KYNFDTMIYVTDKGQKKHFQQVFQM; 

LPPENLITSISAVPISQK 
2 3 MaCa101; MaCa127 1x Luminal A; 1x TNBC 

54 ATF7IP2 KVANSEAMILDKNL 2 4 MaCa107; MaCa151 2x Luminal A 

55 STRIP1 
EPAVGGPGPLIVNNKQPQPPPP; 
LPPLPEDSIKVIRNMRAASPPA 

2 11 MaCa101; MaCa123 2x Luminal A 

56 DARS2 
NTEIGFLQDALSKP; 

VSGTVISRPAGQENPK 
2 7 MaCa101; MaCa102 2x Luminal A 

57 MUC6 VTNEFVSEEGKFLEPH 2 10 MaCa135; MaCa144 
1x Luminal A; 1x Luminal B; 

Her2- 
58 PIP4P1 RSPLLSEPIDGGAG 2 12 MaCa101; MaCa158 2x Luminal A 

59 ENOX1 
KEALLIGII; 

QARDDFYEWECKQRMRAREERHRRK 
2 6 MaCa114; MaCa162 2x Luminal B; Her2- 

60 SSH3 RQSFAVLRGAVLGL 2 4 MaCa105; MaCa135 
1x Luminal A; 1x Luminal B; 

Her2- 

61 UGT2B28 
EAIYHGIPMVGIPLFWD; 

KNMIYVLYFDFWFQMCDMKKWDQF 
2 13 MaCa149; MaCa156 1x Luminal A; 1x TNBC 
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62 CHIA LLTGLVLIL 2 5 MaCa105; MaCa109 
1x Luminal A; 1x Luminal B; 

Her2- 
63 CEP44 VNPEITALQTMLA 2 2 MaCa123; MaCa127 1x Luminal A; 1x TNBC 

64 CHRD 
AHMLLQNELFLNVGTK; 

GVVKDLEPELLRH 
2 2 MaCa110; MaCa123 

1x Luminal A; 1x Luminal B; 
Her2-; 

65 JPT2 
EPKSDLKAARSIPAGAE; 

EPKSDLKAARSIPAGAEPG 
2 4 MaCa121; MaCa151 1x Luminal A; 1x Her2+; 

66 EXOSC4 
DHLERVLEAAAQAAR; 
GPHEIRGSRARALPD 

2 7 MaCa123; MaCa162 
1x Luminal A; 1x Luminal B; 

Her2- 

67 METTL5 
KIKIDIIAELRYDLP; 

RYDLPASYKFHKKKSVDIEVDL 
2 57 MaCa129; MaCa138 1x Luminal B; Her2-; 1x TNBC; 

68 
TMEM167

B 
TNVYSLDGILVFG 2 19 MaCa127; MaCa162 1x Luminal B; Her2-; 1x TNBC 

69 
ARHGAP3

5 
EEQRFKALQKLQAER; 

QEIDGRFTSIPCSQPQHKLEIFH 
2 23 MaCa100; MaCa123 2x Luminal A 

70 CZIB WQYIRLMDSVALKGGR 2 2 MaCa108; MaCa123 
1x Luminal A; 1x Luminal B; 

Her2- 

71 RAB20 
APKQVQLEDAVALYKK; 

SPRAPKQVQLEDAVALYKK 
2 6 MaCa123; MaCa127 1x Luminal A; 1x TNBC 

72 TAS2R4 SASLLIHSLRRHIQKMQKNATGFW 2 1 MaCa109; MaCa156 1x Luminal B; Her2-; 1x TNBC 
73 RELCH AKETIQALRANLTKAA 2 32 MaCa123; MaCa127 1x Luminal A; 1x TNBC 

74 ABCF2 
HGQELLSDTKLELNSGR; 

STLLKLLTGELLPT 
2 13 MaCa100; MaCa135 

1x Luminal A;1xLuminal B; 
Her2- 

75 METRN RRAYEAARAAHLHP 2 5 MaCa138; MaCa144 
1x Luminal A; 1x Luminal B; 

Her2-; 

 


