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1. SUMMARY 

The hippocampus (HPC) and prefrontal cortex (PFC), two critical brain regions which 

support several basic brain functions, are essential for our daily life. For instance, as 

one of the most important brain functions, the memory process has been 

demonstrated to be correlated to both HPC and PFC. By remembering (memory 

consolidation) and recalling (memory retrieval) the episode we experienced before, 

the memory process guides our current life. Considering their contribution to memory 

and the anatomical connections between them, the interaction between PFC and 

HPC has drawn a lot of attention and there is an increasing number of studies talking 

about the PFC-HPC interplay. However, the mechanism of the PFC-HPC interaction 

still remains relatively unclear by now. 

The cross-regional coordination between spatially-distributed brain structures must 

rely on the direct/indirect anatomical connections. In rodents, while the direct 

connection between medial prefrontal cortex (mPFC) and HPC have already been 

elaborately studied, the indirect mPFC-HPC communication through the nucleus 

reuniens (RE) has not yet been well understood. In thesis, we aimed to investigate the 

role of RE in the mPFC-RE-HPC circuit. We first studied the RE contribution to the 

spatial memory process in a crossword maze task. By temporarily inactivating RE with 

muscimol injection, we revealed the important role of RE in spatial memory retrieval 

and/or “online” processing of spatial memory. Next, we performed multi-site recording 

in mPFC, RE and HPC in freely-moving rats. We observed the synchronization 

between RE and mPFC, between RE and HPC in high gamma frequency range. 

Moreover, we found a strong RE-HPC cross-frequency coupling around the high 

gamma synchrony event, which could be correlated to the memory demand. In the 

end, it was revealed that all nodes of mPFC-RE-HPC circuit could synchronize in high 

gamma range, during which the cross-frequency coupling between RE and HPC was 

significantly stronger. To summarize, the current work sheds light on the RE 

contribution to mPFC-HPC interaction and reveals the potential mechanism for mPFC 
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and HPC to communicate/coordinate indirectly. 
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2. SYNOPSIS 

2.1 Introduction 

2.1.1 Functional Interaction between mPFC and HPC 

Since the finding of patient H.M., the importance of hippocampus (HPC) in memory 

processing has been demonstrated and emphasized by numerous studies1-6. Besides, 

the finding of place cells in hippocampus revealed the key role of hippocampus in 

spatial navigation7. The importance of these hippocampus-dependent brain functions 

places the hippocampus in a critical position in human daily life and makes it one of 

the most important research objects in modern neuroscience. Another brain region 

that is absolutely critical for adaptive behavior and many cognitive functions is the 

prefrontal cortex8. The medial prefrontal cortex (mPFC) in rodents is one of the most 

studied brain regions in the context of the mechanism of executive control. It has been 

shown that mPFC plays a critical role in a number of cognitive functions including 

decision making and working memory9-14. Considering the common functions which 

rely on both HPC and mPFC, it is natural to hypothesize that these two areas can 

work interactively to enable specific brain functions. Indeed, the interaction between 

mPFC and HPC has been found to contribute to memory and spatial navigation. The 

mPFC and HPC mainly interact in a form of synchronization of neuronal activity. For 

instance, Jones and Wilson revealed an enhanced phase-locking of mPFC spikes to 

HPC theta and also strong theta coherence between mPFC and HPC when the 

working memory was supposed to be recruited15. The mPFC-HPC task-specific 

interactions were observed by Benchenane and colleagues16, there was enhanced 

theta coherence between mPFC and HPC at the choice point when rats were trained 

to learn new rules on maze. The mPFC neuron firing phase-locked to the HPC theta 

was also observed by17. Besides the theta-mediated interactions, in a recent work by 

Tamura et al.18, the theta-gamma cross-frequency coupling between HPC and mPFC 

during spatial working memory task was also studied and this coupling was found to 

become stronger when the task difficulty increased, suggesting the role of 
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HPC-mPFC coupling in supporting the animal’s performance in the task. Although the 

importance of mPFC-HPC interaction has been relatively well established, it is still not 

clear enough how these two distant brain areas coordinate with each other. Evidently, 

the functional interaction between mPFC and HPC must rely on anatomical 

connections.  

2.1.2 Anatomical Basis for mPFC-HPC Interaction 

The mPFC and HPC can be connected via direct and indirect pathways. There is a 

dense projection arising from the ventral HPC and terminating in the ventral 

mPFC19-21. This direct hippocampal projection to mPFC has been demonstrated to 

contribute to the spatial memory encoding22. The inactivation of this projection 

impaired the rats’ performance in a spatial working memory task while spared 

memory consolidation and memory retrieval functions. The direct projection from the 

mPFC to HPC was unknown until very recently. A sparse projection from the mPFC 

(anterior cingulate cortex) directly to HPC (CA1 and CA3) was found and this sparse 

projection could affect spatial memory retrieval23. Considering the importance and 

complexity of cognitive processes that rely on the mPFC-HPC interaction, it is natural 

that the circuit underlying mPFC-HPC interaction likely involves other brain areas. A 

candidate structure mediating mPFC-HPC interactions via indirect pathways is the 

midline thalamic nucleus reuniens (RE). RE is reciprocally connected with both mPFC 

and HPC and therefore was suggested to be a hub for linking the mPFC and HPC 

indirectly19,24-28. The RE projects densely to the ventral and dorsal HPC and forms 

terminals in the stratum lacunosum moleculare of CA1, meanwhile the ventral 

subiculum has dense projection to caudal RE. In addition, the RE has strong 

connections to all sub-regions of mPFC. Strikingly, some RE neurons were found to 

project to mPFC and HPC, simultaneously26,27. Besides the RE, the entorhinal cortex 

(EC) was also found to connect to both mPFC and HPC. Interestingly, EC29,30 is also 

the main target of RE and the RE projections to EC and HPC were found to arise from 

different neuron populations 31, indicating that RE may affect the interplay between 

mPFC and HPC through multiple indirect pathways. The RE electric stimulation was 
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found to induce subthreshold excitation in pyramidal neurons and supra-threshold 

excitation in putative interneurons in CA132, while the excitation in mPFC could also 

be elicited by RE stimulation33. The above findings further support the hypothesis that 

the RE may be a functional link between the mPFC and the HPC.  

2.1.3 RE Contribution to Memory Process 

As mentioned above, the RE is thought to be a putative node for coordinating 

activity in both mPFC and HPC and may play an important role in different cognitive 

functions which depend on the mPFC-HPC interaction. As a midline thalamus nucleus, 

RE receives diverse projections from many brain areas, mainly from limbic/limbic 

associated structures24. Meanwhile, the main targets of RE projections have been 

demonstrated to be the hippocampus and limbic cortical areas30. The research on the 

role of RE for cognition is largely limited lesion or RE inactivation studies, while 

physiological recordings in RE remain extremely rare. For example, it has been 

shown that the RE contributes to impulsive activity inhibition34 or to task performance 

strategy shifting35. It was found that the lesion of RE affected performance in a spatial 

memory task, but not in tasks that rely on sensory guided responding or sequence 

learning36. Consistently, temporary RE inactivation affected spatial working 

memory37,38. A recent work by Ito et al. revealed that RE spikes were phase-locked to 

HPC theta during a working memory task39. Hallock and colleagues found that the 

temporary RE inactivation affected the phase-locking and theta coherence between 

mPFC and HPC40. Recently, the RE was found to contribute to dopamine release in 

the ventral tegmental area; the latter could be an indirect way for RE to affect 

performance in various reward motivated tasks41. 

We now review a few most critical studies. Loureiro et al.42 carefully investigated 

the RE contribution to recent and remote spatial memory  was. I First, they trained 

rats a in the Morris water maze and performed the immediate early gene imaging 

(c-Fos) at a short (5 d) and long (25 d) delay after learning. They found that the c-Fos 

expression was dramatically increased in RE at long (but not short) delay, suggesting 

a potential contribution of RE to the long-term memory consolidation. The RE was 
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then permanently lesioned and rats were trained in the same water maze. After RE 

lesion, rats were able to learn the spatial task and no deficit was observed when rats 

received a probe test 5 days later after the task acquisition. However, when tested 25 

days later, the rats’ performance was significantly affected and there was no sign of 

previously acquired spatial memory trace. Intriguingly, reversible RE inactivation 

during the probe test at 5 d or 25 d delay caused no behavioral deficit. These findings 

clearly revealed the RE contribution to long-term spatial memory consolidation while 

no critical role of RE for memory retrieval was evident.   

Recent study by Xu and colleagues demonstrated that RE is critical for fear 

memory generalization43. Specifically, in this study animals were fear conditioned in 

one chamber and then tested in a similar but altered chamber. Freezing behavior 

(expression of fear memory) in two chambers was then compared. By specifically 

inactivating the mPFC projection to RE or directly inactivating the RE projections 

using optogenetic method, an over generalization of fear memory was observed, that 

is the animals could not efficiently discriminate the two different chambers and 

showed strong freezing behavior in both the training and the altered chamber. Authors 

of this study proposed that mPFC-RE-HPC circuit contributes to memory 

generalization. They suggested specific directionality of signal flow within this circuit. 

Motivational and emotional aspects of the memory from the mPFC is transferred to 

the RE then conveyed to the HPC. Eventually the signal in HPC is transmitted back to 

mPFC for memory generalization. It was hypothesized that fear memory 

generalization is supported by the mPFC-RE-HPC circuit by RE regulating excitation 

of HPC remapping, which in turn, makes  ‘remapping’ process more efficient when 

similar memory is encoded in HPC. . 

A similar idea about the direction of information flow within the mPFC-RE-HPC 

circuit was also suggested by Ito44. Ito and colleagues recorded spiking activity in the 

mPFC, RE and HPC and found trajectory-specific firing in all three brain regions. 

When the animals were navigating on the central arm of a modified T-maze, neurons 

showed different firing rates on the left- and right-turn trajectories. This trajectory 

preference of neuronal activity was found in all three brain areas. The lesion and 
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inactivation of RE dramatically reduced the trajectory-specific firing in CA1. It was 

suggested that the indirect mPFC projection to HPC via RE may play a critical role in 

representing the future path in the goal directed behavior. Intriguingly, although the 

trajectory-specific firing in CA1 was impaired, the rat’s performance was not affected 

by the RE inactivation/lesion. It was suggested that, in a simple alternation task, the 

trajectory information that is presumably stored in the mPFC may reach other critical 

brain regions without passing through the HPC. This explained why the rat’s 

performance was intact event under RE inactivation. It was also shown that the RE 

processing and the directed information transfer might become critical under 

conditions when the trajectory information in the mPFC had to be combined with 

information about acute location in the HPC. Although Xu et al., and Ito et al. studies 

focused on different cognitive aspects of brain functions, they both emphasized the 

importance of indirect mPFC projection to HPC via RE and that the RE may play a key 

role in relaying the information. Moreover, Ito and colleagues also proposed that the 

importance of this circuit may vary with different cognitive load. The above reviewed 

studies inspired us to use a relatively complex task to address the role of RE in 

consolidation and retrieval of spatial memory. 

2.2 Thesis Overview 

In this thesis, we aim to: 

1) define the time window when the RE contributes to information processing and 

memory storage; interaction;  

2) identify the type of cross-regional coordination of neural activity underlying complex 

navigation behavior and spatial decision making.   

We first investigated the involvement of RE in spatial memory consolidation and 

retrieval using a complex maze task by transiently inactivating the RE at different 

phases of leaning. (A.1). Based on our results, we designed the second study for this 

thesis (A.2). We recorded electrophysiological activity in three brain regions and 

focused on the cross-regional interactions during spatial navigation.  

2.2.1 Part one (A.1): RE contribution to spatial memory process 
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We tested the hypothesis that RE may be critical for consolidation of spatial memory. 

To this end we conducted a behavioral experiment and used conventional 

pharmacology method to transiently inactivate the RE by local injection of muscimol. 

We designed a reward-motivated task on a complex crossword maze. Rats were 

released from one of the two start locations and had to find the reward location 

following a complex maze trajectory consisting of 6/7 right or left turns. Two 

extramaze cues were fixed on a black curtain surrounding the maze. Inside the maze, 

several barriers blocked access to specific maze sections leaving 4 or 6 decision 

areas where animals had to select a particular path. For the first five training sessions 

(day1-day5), the microinjection of muscimol was performed immediately after the 

training. On day 6 and day 7, muscimol was injected before the training session. From 

day 8, rats were given 20 days long ‘forgetting’ period during which no training took 

place and rats were kept in their home cages. On day 30, rats were tested again on 

the maze task without any microinjection.       

We found that the post-learning inactivation of RE did not affect learning of the 

spatial task, which is consistent with previous studies. In contrast, muscimol injection 

into RE before the probe test dramatically impaired the rats’ performance during the 

entire training session without affectingrats’ locomotion. The significantly increased 

error numbers indicated a deficit in retrieving the obtained spatial memory and 

suggested a critical role of RE for ‘on-line’ memory process, which is the memory 

retrieval and memory reconsolidation. This finding seems to be different with the study 

by Loureiro et al42 in which the pre-test inactivation of RE in the Morris water maze 

task did not affect the animal performance. The probe test on day30 did not reveal any 

difference between groups, suggesting that post-learning RE inactivation did not 

affect the system level memory consolidation.  

2.2.2 Part two (A.2): Synchronization/coupling between RE and 

mPFC/HPC  

After showing the critical contribution of RE activity to spatial memory retrieval tested 

in a complex maze, we further investigated the neurophysiological mechanism 
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underlying this phenomenon. We hypothesized that the RE may support coordination 

between the mPFC and HPC. We performed LFP recordings in the mPFC, RE and 

HPC while rats performed the same spatial task as in the study A.1. Based on the 

results of According to the finding in our first study (A.1), we mainly focused on the 

‘on-line’ information processing, that is, a period when rats were navigating on the 

maze.  

To characterize cross-regional interactions we first applied independent 

component analysis (ICA) to study if there is a cross-frequency coupling between the 

RE LFP oscillations and theta oscillations in the hippocampus. The ICA analysis 

revealed that power of high gamma (60-120 Hz) oscillation in the RE LFP was 

strongly correlated with HPC theta oscillation. We next calculated the pair-wise 

gamma synchrony between the RE and mPFC LFP and RE and HPC LFP and 

detected high gamma synchrony event (HGS event). We then examined spatial 

distribution of HGS events in the maze and did not observe any specific pattern of 

HGS event occurrence. We next compared the amplitude and duration of HGS 

eventbefore the correct and incorrect choices and found no difference For more 

detailed analysis, we combined the gamma synchronization analysis and 

cross-frequency coupling. Specifically, we used the times of HGS event as triggers 

and studied the phase-amplitude coupling between the RE and HPC around the HGS 

event. We found that, for the HGS event from both mPFC-RE and HPC-RE pair, 

incorrect choices were preceded by stronger coupling between the RE and HPC 

compared to the coupling strength before correct choices. The difference in 

cross-regional coupling strength around HGS event may reflect the level of animal 

uncertainty at the maze crossing and therefore is indicative for the efficiency of 

memory retrieval. We then compared the strength of RE-HPC coupling on the maze 

sections along the correct trajectory and on the maze segments outside the correct 

trajectory. Stronger HGS (both pair) event-triggered RE-HPC coupling accompanied 

rat traversing incorrect maze segments. This observation suggests that the RE-HPC 

coupling increase with the increase of memory/cognitive demand. When animals 

deviated from the correct trajectory, to return to the correct path they may need to 
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integrate previously acquired information (memory retrieval) and current spatial 

information (spatial orientation) , which is evidently cognitively more demanding. Thus, 

stronger functional interactions between the RE and HPC may reflect this cognitive 

effort.   

The gamma synchrony events detected from one LFP signal pairs (e.g. 

mPFC-RE) could co-occur with the gamma synchrony event detected from another 

signal pair (e.g. HPC-RE). Co-occurring HGS events will be further referred as Co 

even and the HGS events occurring within each signal pair non-synchronously will be 

referred as Nonco event. For each LFP signal pair and according to the HGS event 

type used as trigger, we further split the HGS event-triggered RE-HPC coupling into 

two groups (Co and Nonco group). On the incorrect maze segments, the Co 

event-triggered cross-reginal coupling was stronger for both LFP signal pairs 

(mPFC-RE and HPC-RE), comparing to the Nonco group. This finding suggests a 

possible mechanism for cross-talking between all three nodes in the mPFC-RE-HPC 

circuit. The difference in coupling strength between the Nonco events in mPFC-RE 

and HPC-RE pair further supported the hypothesis that when it is necessary, the 

memory-related information may be transferred from mPFC via RE to HPC.    

2.3 General Discussion 

The midline thalamic nuclei including the RE belong to so called ‘nonspecific’ 

thalamus 45,46. Since recently, the RE started  drawing attention due to the reports 

about its involvement in higher-order brain functions like fear memory generalization 

and working memory. The RE was suggested to contribute to memory processing by 

its functional integration into memory supporting mPFC-HPC network36-38,43. The 

results of the first study of this thesis are consistent with previous studies. We have 

demonstrated that the RE does not appear to play a critical role during ‘off-line’ phase 

of memory consolidation as its inactivation after learning did not affect the learning 

efficiency of a spatial task In contrast, RE inactivation before the task caused a 

significant deficit during ‘on-line’ phase of learning (processing of current spatial 

information and/or spatial memory retrieval). At first glance, our findings appear to 
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contradict to previous studies that emphasized the importance of RE for memory 

consolidation. Earlier studies also did not indicate the RE contribution to memory 

retrieval42. However, this discrepancy in the results could be due to the use of different 

learning tasks. It has been demonstrated that the Morris water maze (MWM) task, 

which was used in Loureiro’s study, is hippocampus-dependent, but does not critically 

engage the mPFC Moreover, memory retrieval in MWM task was found to require the 

PFC for the retrieval of remote  (25-30d after learning), but not for recent memory 

retrieval (1-5d). This task-dependent effect was also observed when the RE 

contribution was compared in the spatial memory task that only depends on the HPC 

or in the task that depends on both mPFC and HPC38. In another study by Cholvin et 

al., RE was inactivated in different spatial tasks and its involvement was found to be 

cortical only in the task which depends on both mPFC and HPC35. The mechanism 

behind the differential RE involvement in different cognitive situations remains to be 

understood. The most consistent effects that are observed in situation when both the 

mPFC and HPC are simultaneously recruited during the task performance further 

support the idea that the RE contributes to the mPFC-HPC interaction.  

The population synchrony in gamma range between distant brain areas has been 

suggested to be a plausible mechanism underling cross-talking between brain areas a 

constituting functional network. The gamma oscillations are thought to represent local 

neural activity and reflect activation of both local excitatory and inhibitory networks47-49. 

The gamma synchrony between two brain regions could reflect coordinated 

excitation-inhibition state within each local area opening transient communication 

windows for interplay and information transfer between two or more brain regions 

forming a functional network. In addition, cross-regional gamma synchronization can 

make inter-regional communication more efficient50. Thus two brain structures 

synchronized in the gamma range could be in a fine window which makes the 

cross-talking possible and they can affect each other more efficiently. Besides gamma 

synchronization, cross-frequency coupling between within and also between brain 

regions has been suggested as another mechanism for information processing. For 

example theta-gamma coupling has also been described for other brain areas18,51,52. 
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Transient increases in gamma power may represent specific units of information. 

Phase coupling of gamma transients (at different phases of a single theta cycle) may 

organize multiple information units in a temporal pattern.   

In line with previous studies, we observed gamma synchronization within the 

circuit formed by the mPFC, RE and HPC. Using the HGS event as trigger, we have 

demonstrated that stronger gamma-theta coupling between the RE and HPC occurs 

before incorrect choice in the maze and also during navigation outside the correct 

path. In addition to detecting a pairwise (between two LFP signals) gamma 

synchronization that reflects crosstalk between the two brain regions (e.g. mPFC-RE 

or HPC-RE), we also detected joint gamma synchronization within the entire 

mPFC-HPC-RE circuit (or Co-event). Concurrent gamma synchrony within mPFC-RE 

and HPC-RE may further indicate a network state when all nodes of the circuit are 

activated and the information transfer is possible. Stronger gamma-theta coupling 

between the RE (gamma) and HPC (theta) occurring around Co event further 

supports the idea that the synchronization within the entire circuit could facilitate 

communication within functional network 51-53.  

 A relatively dense direct projection from the ventral HPC to ventral mPFC has 

been known since long time ago and only recently a sparse projection from the mPFC 

to HPC has been described23. It is natural to hypothesize that the RE could mediate 

mPFC-HPC communication via indirect pathways. In the study by Xu et al.43, it was 

shown that the inactivation of mPFC projection to RE affected fear memory 

generalization and the authors suggested that information flow from the mPFC to 

HPC via RE could be critical for fear memory consolidation. Ito et al.44 proposed that a 

copy of spatial memory trace may be transferred from the mPFC via RE to HPC. The 

transferred information from the mPFC would be then integrated with the current 

spatial information encoded in the HPC. The results of our second study (manuscript 

in preparation) also support the idea of directed information flow. The instances of 

RE-HPC coupling around co-occurring and nonco-occurring mPFC-RE HGS event 

had some similarities. Intriguingly, around nonco-occurring HPC-RE HGS event, high 

frequency oscillations in the RE LFPs which strongly coupled with the HPC theta 
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cycles were missing. The phase-amplitude coupling around Nonco event for 

mPFC-RE and HPC-RE LFP signal pairs further supports the potential information 

flow from the mPFC to HPC, through RE. The successful information transfer from the 

mPFC to RE could be the first step of the memory retrieval and it is successive 

transfer to the HPC would allow integration of the retrieved and acute information 

about spatial environment that would facilitated goal-oriented navigation. This 

plausible scenario could underlie the tight temporal relationships of the RE gamma 

oscillations with HPC theta that are task-dependent; it also explains why such cross 

regional coupling is attenuated during time windows when only two hubs of the 

network (RE and HPC) are synchronized in the gamma range.            

2.4 Conclusion and Outlook 

In this thesis, we first confirmed the critical role of the RE in the spatial memory 

processing. Although the anatomical connectivity suggested the RE as a possible 

modulator of the interactions between the mPFC and HPC via indirect pathways,  

very limited number of studies examined  the role of RE in spatial learning and 

memory. We have demonstrated that temporal RE inactivation significantly impaired 

memory retrieval in rats which had previously learned a complex spatial task. The 

subsequent analysis of population activity in the mPFC, RE and HPC revealed that a 

network state when all critical nodes are synchronized in the high gamma range 

maybe beneficial for successful information flow within this circuit and therefore 

supports memory retrieval and spatial information processing. We propose that within 

the mPFC-RE-HPC circuit, the memory retrieval related information may be 

transferred in a specific direction from the mPFC to HPC through RE, yet this 

prediction needs to be tested.  

Our results expand the current knowledge about the contribution of the RE to 

memory supporting network, but many open questions remain.  For instance, it is 

unknown what drives and coordinates the synchronization of all three brain regions. 

One possibility is that, collateral projections of some RE neurons to both mPFC and 

HPC26,27 may simultaneously broadcast to both brain regions and thus contribute to 
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cross-regional synchronization. Simultaneous activation of local networks as reflected 

by high gamma oscillations facilitates cross-talk within the functional network. Thus, 

the RE neurons projecting to both mPFC and HPC may serve as a pace maker and 

network coordinator. To test this idea, the specific activation/inactivation of these 

neurons should be done in the future studies. Another possibility is that, these three 

brain areas may receive a common input from another brain region.  

In the second study, we correlated cross-regional coupling with behavioral 

variables during rat’s performance of a spatial task. Our result suggested that the 

strength of the RE-HPC cross frequency phase-amplitude coupling can indicate some 

specific aspects of memory processing such as memory retrieval. However, the 

precise mechanism underlying the high frequency oscillation in RE to phase lock to 

the hippocampal theta is still unknown. Dolleman-Van der Weel and colleagues 

suggested that the RE and HPC could also form a sub-loop32, if this RE-HPC loop can 

contribute to the RE-HPC coupling could be an interesting question and should be 

answered in the future. The projections from rostral RE terminate in the 

stratum lacunosum moleculare of CA1 and could induce subthreshold excitation of 

the pyramidal neurons and supra-threshold excitation of putative interneurons. This 

RE contribution to the excitation level in the CA1 may be the mechanism for the RE to 

actively adjust the rhythms in CA1, which in turn, can phase-lock the RE gamma to 

hippocampal theta. Since it has been suggested that the different gamma oscillations 

which lock to different HPC theta phase may represent the sequence of the events, 

this mechanism could also provide a way for RE to transfer the mPFC information to 

HPC. Moreover, the dense projection from the subiculum to caudal RE could be a 

feedback mechanism for the HPC to adjust RE activity and eventually further adjust 

the rhythms in both RE and HPC. In the future, the multi-cite recording in RE, CA1 

and ventral subiculum should be performed. To test the idea that the RE could affect 

the oscillation in HPC, the transient inactivation in RE during the RE-HPC coupling 

could be applied.   

In the end, the potential directed information flow within the mPFC-RE-HPC 

circuit should also be carefully studied in the future. In the thesis, we hypothesized 
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that the RE mainly contribute the information transferring from the mPFC to HPC. To 

test this idea, the activation/inactivation of the mPFC projection to RE should be done. 

If the inactivation of aforementioned projection could abolish/dramatically impair the 

RE contribution, the mPFC could then be considered as the origin of the information 

flow in the mPFC-RE-HPC circuit. 
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4.1 A.1: The activity of thalamic nucleus reuniens is critical for 

memory retrieval, but not essential for the early phase of 
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4.2 A.2 : Investigation of cross-regional interactions within the 

prefrontal-thalamo-hippocampal circuit associated with spatial 

cognition in the rat  
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Abstract 

The interplay between medial prefrontal cortex (mPFC) and hippocampus plays a 

critical role in spatial memory process. The nucleus reuniens (RE) which has anatomical 

connections with both prefrontal cortex and hippocampus may contribute to the indirect 

mPFC-HPC communication. We here report spatial cognition related RE activity within the 

mPFC-RE-HPC circuit. While the rats were trained to learn a crossword maze task, we found 

synchronized gamma activity between mPFC and RE as well as between HPC and RE. 

Before the incorrect decision, we observed strong coupling between RE high frequency 

oscillation and HPC theta around the gamma synchronization event. The enhanced RE-HPC 

coupling was also found when rats were on the incorrect maze segments. The mPFC-RE and 

HPC-RE gamma synchronization could happen concurrently and was associated with strong 

coupling between RE and HPC. The finding indicates that the gamma synchronization may 

be a mechanism gating the spatial information transfer within the mPFC-RE-HPC circuit.      

 

 

Introduction 

The interaction between prefrontal cortex (mPFC) and hippocampus (HPC) has been 

suggested to play a key role in navigation and memory processing1-4.  By now, the mPFC 

and HPC were found to interplay in a way of synchronization. For instance, it was shown that 
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mPFC and HPC synchronized in theta range during a spatial task5. Siapas and colleagues 

also revealed that the mPFC spikes were phase locked to HPC theta3, while the similar 

finding was also observed in the study by Benchenane et al.2. The anatomical connections 

between mPFC and HPC have been well established. There is a dense projection arising 

from ventral HPC and terminating in ventral mPFC6-8, this direct projection has been 

demonstrated to contribute to spatial working memory encoding1. Recently a sparse 

projection from mPFC to HPC was found to contribute to spatial memory retrieval9. Besides 

these direct anatomical connections between mPFC and HPC, the indirect connection 

between mPFC and HPC through the nucleus reuniens (RE) starts drawing more attention 

and has been discussed recently. The nucleus reuniens (RE) has been considered to be a 

critical node which links the mPFC and HPC in an indirect way6,10-13. RE was found to have 

dense reciprocal connections with mPFC and HPC, moreover, some RE neurons show 

simultaneous projection to both mPFC and HPC12,14. The anatomical connections with mPFC 

and HPC place RE in a critical position in modulating the mPFC-HPC communication which 

underlies complicated brain functions. In addition, the studies on RE have found that the 

electric stimulation in RE could induce sub-threshold excitation of pyramidal neurons of CA1, 

supra-threshold excitation of putative CA1 interneurons15, as well as excitation in mPFC16. 

These studies further suggested a potential role of RE in modulating the interaction between 

mPFC and HPC. The lesion/inactivation of RE has been found affect the animal’s 

performance in various tasks which depend on both mPFC and HPC17-19. These findings 

further support the idea that the RE may contribute to mPFC-HPC interaction. Recently, Xu 

found that RE plays a critical role in fear memory generalization circuit which also involves 

both mPFC and HPC20, while Ito et al. revealed the RE contribution to spatial navigation and 

proposed that RE could transfer the spatial information from mPFC to HPC21. To study the 

RE contribution to spatial memory which depends on the mPFC-HPC coordination, in our 

previous study, we temporarily inactivated RE during a spatial learning task and found a 

deficit in ‘on-line’ memory process(memory retrieval) after the RE inhibition22, which is in line 

with the hypothesis that the RE is involved in spatial memory process. However, the 

electrophysiological mechanism behind the RE contribution to spatial memory is still unclear.  

In current study, we applied LFP recording simultaneously in mPFC, RE and HPC 

when rats were trained to finish a spatial learning task. By applying ICA analysis, we first 

identified a high gamma oscillation (60-150 Hz) in RE which nested in HPC theta. As the 

gamma synchrony has been considered to be one of the mechanisms underlie the 

cross-talking between the spatially distributed brain regions23-25, we then studied the gamma 

synchrony between mPFC/HPC and RE with the high gamma band we detected. It was found 

that the maximal amplitude and the duration of the mPFC-RE and HPC-RE gamma 



 

44  

synchrony events did not show significant difference before the decisions show different 

memory accuracy.  

Besides the gamma synchrony, the cross-frequency coupling has also been 

suggested to be a mechanism for modulating the cross talking between different areas4,26,27.  

By using the high gamma synchrony event as trigger, we found that the event-triggered 

phase-amplitude coupling showed stronger RE gamma-HPC theta coupling before the 

incorrect decision making, indicating that the event-triggered cross-frequency coupling is 

correlated to the memory process in our task. The enhanced event-triggered 

phase-amplitude coupling was also observed when rats were in the maze segments which 

deviated from the correct trajectory. Thus, the stronger coupling between RE and HPC may 

reflect an enhanced memory demand. While the mPFC-RE and HPC-RE gamma synchrony 

event could happen individually (Nonco-event), we also observed these two types of events 

happened with a short interval (Co-event).It was found that when mPFC, RE and HPC all 

synchronized in gamma range with in a short time window (Co-event), there was significant 

stronger coupling between RE high gamma oscillation and HPC theta.  Eventually, it was 

found that there was a difference between the event-triggered RE-HPC coupling when the 

mPFC-RE and HPC-RE gamma synchrony event happened individually. This finding further 

supports the hypothesis that the spatial information in mPFC could be transferred to HPC via 

RE. 

Materials and Methods 

6 male Sprague Dawley rats (Charles River) weighting 300-350g at the beginning of 

experiment were single housed with food and water ad libitum on 12h/12h light/dark cycle. All 

the experiments were performed during the dark cycle. When rat appetitive behavior was 

tested, rats were kept on a food-restricted diet to ensure their appetitive motivation at times of 

behavioral testing. On these days, in addition to the chocolate milk (0.6 ml) obtained as 

reward during maze exposure, each rat received 15-20g of food pellets and unlimited access 

to water in their home cage. Rat weight was monitored on a daily basis and kept at ~90% of 

ad libitum body weight. All experimental procedures were approved by the local authorities 

(Regierungspräsidium Tübingen, Germany, Referat 35, Veterinärwesen) in accordance with 

the regional animal welfare committee pursuant to §15 of the German Animal Welfare Act 

(Kommission nach §15 des Tierschutzgesetzes), and were in full compliance with the 

Directive 2010/63/EU of the European Parliament and of the council on the protection of 

animals used for scientific purposes. 

 

Surgical procedures 
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The rats were first anesthetized with 4% isoflurane for induction, the anesthesia was 

then maintained with 1.5% isoflurane during the surgery. After the rat’s head was fixed in 

stereotaxic frame (David Kopf Instruments), the skull was exposed and three craniotomies 

were performed on the same hemisphere. According to the brain atlas by Paxinos et al.28, 

circular holes were drilled above mPFC (AP/ML = 3.1/0.8 mm), HPC (AP/ML = −3.8/2.4 mm) 

and RE (AP/ML = −1.8/−1.3 mm). The platinum-iridium electrode (FHC Inc.) was implanted to 

mPFC (DV = 3.4 mm), HPC (DV = 2 mm) and RE (DV = 6.8 mm, Medial-Lateral angle = 10°), 

respectively. Rats were allowed to have an at least 1-week post-surgery recovery before 

behavioral testing began. 

 

Recording during the behavior task 

As described previously in our previous study22 , the custom-built black crossword 

maze (130 × 130 cm) was applied in our study. The perpendicular maze alleys (4 × 4, 10-cm 

wide with 2-cm high rims on both sides) formed nine identical square sections. Nine vertical 

barriers (30-cm high and 25–40-cm wide) were placed on the maze to restrict the navigation 

to specific directions at specific crossings (Figure 1A). Thus, to get the only reward port on 

the maze, the rats needed to navigate in specific trajectory. The maze was elevated 80 cm 

above the floor and surrounded by black curtains with two different posters on it. After the 

3-day habituation period, during the training session, the rats were randomly released from 

one of the two start locations in each trial, rats received the reward from the nose-poking 

structure if they arrived the reward port in the time limit (3 min). For each training session, rats 

received 5 trials released from each of the two start locations. The sequence of the start 

locations was in a pseudo-random order and varied over the training sessions. After each trial 

the rats were kept in a waiting box for 3–5 min and the olfactory cues on the maze from last 

trial were wiped out during the inter-trial interval. The training was performed under dim light. 

The simultaneous recording in mPFC, RE and HPC was performed with Cheetah 

recording software (Neuralynx) when rats were trained to finish the spatial task. A bandpass 

filter with 1-9000 Hz passband was applied while the electrophysiology signal was sampled in 

32556 Hz. The LFP data were band-pass filtered with a pass band from 1 to 250 Hz and 

further down-sampled to 660 Hz. The LFP data were then used for all the following analysis.  

 

Motion detection and behavior definition 

A camera synchronized with the recording system was used to monitor the animal’s 

behavior with 25 frame rate. Two LEDs on the headstage were detected with a 

custom-written MATLAB program and rat’s position was represented as the middle point 



 

46  

between the two LED dots. The visit to a specific maze segment was defined when the rat’s 

position was detected to cross the midline of that maze segment. When the LEDs that were 

detected on specific maze segment, it was considered to be the rat’s movement on that 

segment. While the LEDs were detected to be out of the last segment but not yet on the next 

segment, it was also considered to be the movement of the last maze segment.   

 

Data analysis 

Theta-nested gamma oscillation in RE 

The analysis for extracting the independent components which nest in theta 

oscillation was elaborately described in the study by Lopes-Dos-Santos29. Generally, we 

used the same method as used in the above study. The only difference was in current study 

we decomposed the signal by directly filtering the signal, rather than applied the Ensemble 

Empirical Mode Decomposition (EEMD) method. The theta signal in HPC was obtained by 

band pass filtering the signal with the band 5-12 Hz, the low-frequency signal was obtained 

by low pass filtering the HPC signal (with 5 Hz cut-off frequency). The supra-theta signal in 

RE was defined as the high pass filtered RE signal with frequency above 30 Hz. The theta 

cycle candidates were detected as the period between two consecutive troughs which 

surrounded one peak, the duration of qualified theta cycle candidate should be no less than 

71 ms and no more than 200 ms. The valid theta cycle was defined as the theta cycle with 

absolute values of both peak and troughs higher than the corresponding values of envelope 

of the low frequency signal. 

Once the qualified theta cycles were detected, for each theta cycle, the spectrum 

vector of supra-theta signal was calculated by averaging the wavelet spectrum along the time 

of that theta cycle. The matrix contained multiple spectrum vectors was then submitted to the 

principal component analysis (PCA), the first 5 components were then applied by the 

independent component analysis (ICA). Eventually, the statistically independent components 

of supra-theta signal in RE that nested in HPC theta were extracted. 

 

Gamma synchrony calculation and gamma synchrony event detection 

For gamma synchrony calculation, the data from two brain areas were first bandpass 

filtered with the frequency band 70-150 Hz. The Hilbert transform was then applied to both 

andpass filtered signals and the phase (P1 and P2) and amplitude (A1 and A2) of the two 

signals were obtained. As described in the study by Yamamoto25, the gamma synchrony 

signal between paired brain structures was obtained by the equation: 𝐴1 ×  𝐴2 × 𝑐𝑜𝑠(𝑃1 −

 𝑃2). The envelope was obtained by applying the Hilbert transformation to the gamma 
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synchrony signal. The envelope signal was then normalized and the 2-SD threshold was 

used to detect the gamma synchrony events candidates. The candidates with the duration 

above the threshold longer than 1/70 second (one cycle of lowest frequency) were 

considered to be qualified gamma synchronization events. The duration of the event was 

defined as the length of signal around the event peak with amplitude above 1-SD. The event 

amplitude was defined as the maximal value in the gamma synchrony signal corresponded to 

time of envelop signal with values above the threshold. 

Phase-amplitude coupling matrix 

The modulation index of phase-amplitude coupling was a measurement to quantify 

the coupling between the amplitude of high-frequency oscillation and phase of low-frequency 

oscillation.  The modulation indexes were calculated with the 1000-ms long window 

centered at the gamma synchrony event. The modulation index was calculated between 

different high and low-frequency oscillation pairs, while the low frequency oscillation stepped 

in 1 Hz with 2 Hz band-width, the high frequency oscillation stepped in 2 Hz with 4 Hz band 

width. After the calculation of multiple/consecutive oscillation pairs, the phase-amplitude 

coupling matrix was obtained in the end. Each element in the matrix represents the 

modulation index of specific high and low frequency oscillation pair. The comodulogram was 

plotted with the phase-amplitude coupling matrix.  

We calculated the modulation index with the method described in Tort’s study30. The 

signals from RE and HPC were first band-pass filtered with corresponding pass bands. After 

the obtaining of high and low frequency oscillations, the amplitude of high frequency signal 

from RE and phase of low frequency signal from HPC were calculated with the Hilbert 

transform, respectively. The amplitude and phase signals were synchronized time series, the 

amplitude of each discrete phase point was defined as the value of the corresponding 

amplitude point. The phase signal was then binned with 20° interval and 18 bins were 

obtained. The amplitude of each bin j was calculated by averaging the amplitude over each 

phase bin and was eventually denoted as: 〈𝐴〉𝑃(𝑗) . As described in the study by Tort et al., 

the modulation index of the phase-amplitude was defined by:  

𝑀𝐼 =
𝐻𝑚𝑎𝑥−𝐻

𝐻𝑚𝑎𝑥
 . 

While the H was defined as entropy and given by:  

𝐻 =  − ∑ 𝑝𝑗 log 𝑝𝑗
𝑁
𝑗=1 . 

Where the N represents the bin numbers and the 𝑝𝑗 is calculated as: 

𝑝𝑗 =
〈𝐴〉𝑃(𝑗) 

∑ 〈𝐴〉𝑃(𝑗)𝑁
𝑗=1

. 

As described in Tort’s study30, to define the significance threshold of modulation index 

in the event-triggered phase-amplitude coupling, the base phase-amplitude coupling was 
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used. In current study, the base phase-amplitude coupling was calculated by using the 

1000-ms window centered at the randomly chosen points during the base activity, which had 

no overlap with the evet-triggered window. After averaging the base phase-amplitude 

coupling matrices, the distribution of modulation index in the averaged matrix was then 

obtained. By assuming distribution as a normal distribution, the modulation index which 

indicates the P<0.01 was considered as significance threshold. In the main article, each 

event-triggered phase-amplitude matrix was subtracted with the threshold and any value in 

the comodulagram that was above 0 indicated statistical significance. 

Statistics analysis 

The statistical significance α-value was set at p < 0.05 level. When compared different 

event-triggered phase-amplitude coupling groups, for example, group A and group B, we 

applied an element to element statistics analysis. Each element (𝑀𝑖𝑗) in the modulation index 

matrix represented the strength of the coupling between specific high-frequency oscillation in 

RE and slow-frequency oscillation in HPC. In group A, the specific element in the same 

position of the modulation index matrix was subtracted as vector: 〈𝑀𝑖𝑗〉1, 〈𝑀𝑖𝑗〉2 … 〈𝑀𝑖𝑗〉𝑛, 

while the n presents the size of group A (number of matrix). The corresponding vector of the 

same matrix element would be: 〈𝑀𝑖𝑗〉1, 〈𝑀𝑖𝑗〉2 … 〈𝑀𝑖𝑗〉𝑚 in group B, while the m is the size of 

group B. The two vectors would be subjected to Wilcoxon rank sum test and the P-value for 

specific matrix element was calculated. After calculating the P-value for all the elements in 

the event-triggered modulation index matrix, a new P-value matrix was obtained. Any 

element with P-value>0.95 indicated a significant difference. 

 

Results 
Gamma synchronization event distribution 

In order to study the learning associated cross-regional coupling within 

mPFC-RE-HPC circuit, we first validated the existence of cross-regional interaction. The 

theta oscillation in HPC was first subtracted from the HPC LFP and the qualified theta cycles 

were then detected. The corresponding RE power spectral density during each HPC theta 

cycle was calculated and the matrix contained multiple RE PSD vectors was subjected to ICA 

analysis. We then found the components in RE which nested in HPC theta (Figure 1B). 

According to the study by Yamamoto et al.25, the cross-regional gamma synchronization (e.g. 

between the entorhinal cortex and HPC) can be related to the spatial task performance. To 

link the coordinated neural activity in the RE, HPC and mPFC with maze task performance, 

we calculated the gamma synchrony between the RE and HPC (HR pair) and between the 

RE and mPFC (PR pair) (see Materials and Methods) with the frequency range of the high 
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gamma component (60-120 Hz) we detected. The high gamma synchrony events (HGS) in 

each gamma synchrony signal were then detected.  

We next analyzed in more detail the spatial pattern of occurrence of the HGS event 

while rats performed the maze task. We selected the data from the last training day (day5) 

and from error-free trials (rat passage without any deviation from the correct trajectory) and 

extracted the number of HGS event for each maze segment and for each signal pair. The 

correct maze segment sequences for S1 and S2 trial are illustrated on Figure 1A; there were 

total of 4 and 6 choice points (points where animal could deviate from the correct trajectory) 

for S1 and S2 trials, respectively (Figure 1B). The average occurrence of HGS event is 

shown in Figure 1D. Different from the finding in Yamamoto’s study which used the T-maze25, 

although the distribution of HGS event along the correct trajectory was uneven for both PR 

and HR pair, we did not find a spatial position where the high gamma synchrony events could 

specifically happen.  

Cross-regional high-gamma synchrony precedes navigation decision making 

For both PR and HR-HGS events, the segment10 of S1 trail and segment1 of S2 trial 

showed high event possibility. In both types of training trial, the corresponding segment was 

the maze section adjacent to a junction area where the first time animals need make decision 

between multiple choices. This raised a question: if the HGS events could be correlated to rat 

decision making process (e.g. selection of next maze segment to enter) or memory process 

(selection of the correct motor program) in our task. In the first case, the HGS event would be 

expected to occur before each maze junction, regardless if the rat followed the correct of 

incorrect trajectory. In case of memory-related processing, the HGS event before the correct 

and incorrect choice would be expected to be different, since these two decision types reflect 

different memory accuracy. We extracted HGS events detected between the entering of the 

maze segment preceding the choice point and the moving out of the choice point. The data 

were further split according to the rat choice accuracy (entering ‘correct’ or ‘incorrect’ maze 

section after the junction) and signal pair (PR and HR). If the HGS event is required for 

decision making, there should be no difference between the ‘correct’ and ‘incorrect’ choices. 

Alternatively, difference between groups would indicate that the cross-regional high gamma 

synchrony may be related to spatial memory. For PR and HR–HGS events, we compared the 

event duration and event peak amplitude of the first decision area (S1 and S2 trials pooled 

together). None of the variable predicted the rat choice at the first maze junction (Wilcoxon 

rank sum test). 

To further examine if there were other LFP frequency bands that associated with 

PR/HR HGS event and could contribute to decision making or memory processing, we then 

applied cross-regional phase-amplitude coupling analysis (PAC) by centering a 1-second 
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window at each PR/HR HGS event. Briefly, the temporal relationships between the power of 

high frequency oscillations (hfo) (30-250 Hz) in the RE LFPs (amplitude component) and the 

phase of low frequency oscillations (6-20 Hz) in HPC LFPs (phase component) were 

calculated. The data of the last training day was first estimated.  

To specifically test if the transient HPC-RE phase-amplitude coupling around HGS 

event contributes to some aspects of cognition during the maze task performance (e.g. 

decision making, memory retrieval), we selected the HGS events occurring prior the first 

choice point for both S1 and S2 trials (Figure 2) and compared the HGS event-triggered PAC 

before the correct and incorrect choices (as described above). On day5, we analyzed total of 

39 correct and 26 incorrect choices (entering ‘correct’ or ‘incorrect’ maze segment after 

choice point, respectively) made prior the first choice point. Correspondingly, 84 and 39 PR 

HGS events were detected prior the correct and incorrect first choice, respectively. Similarly, 

94 and 35 HR events were detected before the correct and incorrect first choice, separately. 

Significant coupling was present between the HPC-theta and RE-hfo around both PR and HR 

HGS event (Figure 2A, 2B). Notably, regardless of the HGS event type (PR or HR), incorrect 

choices were preceded by stronger phase-amplitude coupling (higher modulation index) 

between the HPC theta and RE hfo (60-100 Hz) compared to ‘correct’ choices (Wilcoxon rank 

sum test, P < 0.05).  

Similar result was obtained when we extended the analysis to all choice points (Figure 

3). On day 5, rats (n = 6) made total 274 correct and 32 incorrect choices. Correspondingly, 

259/46 PR and 293/45 HR HGS events were detected prior correct/incorrect choices, 

respectively. The event-triggered coupling between the HPC-theta and RE-hfo was stronger 

prior incorrect choices (Wilcoxon rank sum test, P < 0.05).   

We repeated the above analysis for an earlier (intermediate) stage of learning. On 

day3, rats made total 239 correct and 70 incorrect choices at all choice points.  

Correspondingly, 231/151 PR and 245/151 HR HGS events were detected prior the 

correct/incorrect choice, respectively (Figure 3C, 3D). With some notable differences 

compared to day 5, the strength of both PR and HR event-triggered RE-HPC coupling was 

relative week, regardless of the decision accuracy (correct and incorrect choice). Meanwhile, 

PR HGS event-triggered coupling did not show any difference between the correct and 

incorrect group. The HR HGS event-triggered coupling differed between correct and incorrect 

choices at two relatively narrow frequency ranges (~70-80 Hz and ~230-250 and; Wilcoxon 

rank sum test, P < 0.05). 

Since S1 and S2 trials had the identical second-half of the trajectory (segments 13-18, 

Figure 1A), we next compared cross-regional coupling just before animal entering the 

common path for S1 and S2 trials (segment13, Figure 4). The data from correct choices only 

were included for this analysis. On day5, we detected total 31/19 PR HGS events and 35/27 
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HR HGS events for S1/S2 trials, respectively (Figure 4A, 4B). Despite relatively small number 

of HGS events, a strong phase-amplitude coupling was present between the HPC theta and 

RE-hfo around both PR and HR HGS events before rat entered the common maze trajectory 

(Figure 4). The RE LFPs showed strong HPC theta modulation was at ~110-130 Hz and 

~160-200 Hz around PR HGS events, at ~160-230 Hz around HR events and stronger for S1 

than for S2 trials.  

Transient phase-amplitude coupling before entering a common path was also 

observed on day3 (Figure 4C, 4D). On day3, total of 19/14 PR and 17/22 HR HGS events 

were detected for S1/S2 trials, respectively. The strength of PR HGS event triggered 

cross-regional coupling on day 3 differed between S1 and S2 trials (Wilcoxon rank sum test, 

P < 0.05), but within higher frequency range (~220-240 Hz). The RE-HPC coupling around 

the HR HGS event did not show difference between S1 and S2 trials. 

Collectively, our results demonstrate that transient functional coupling occurs 

between the phase of HPC-theta and the amplitude of RE-hfo prior choice point and this type 

of cross-regional interaction is gated by PFC-RE and/or HPC-RE high gamma synchrony 

events. The HGS event-triggered coupling could be more related to memory process than the 

decision making. However the strength of cross-regional coupling did not appear to predict 

the outcome of the rat spatial navigation. Yet, our present results do not rule out the 

contribution of this form of cross-regional interactions to some other aspects of cognition (e.g. 

memory demand, cognitive effort, choice uncertainty, etc.) that are varying across learning 

stages and accompany the maze task performance. 

HPC-RE coupling is correlated to the spatial memory demand 

If the RE-HPC coupling contributes to memory process, such as memory retrieval, we 

predicted that error corrections (when animal shortly deviates from the correct trajectory and 

returns back to the correct path) shall be accompanied by enhanced HPC-RE coupling as 

indication of increased memory demand. To test this prediction, we compared the strength of 

HPC-RE coupling on the ‘correct’ and ‘incorrect’ maze segments (Figure 5). Specifically, we 

computed the HPC-RE phase-amplitude coupling triggered by PR and HR HGS events as 

described above. On day5, total of 651 PR events and 656 HR HGS events were detected on 

correct maze segments. On the incorrect maze segments, total of 313 PR events and 263 HR 

HGS events were detected. In line with our prediction, the HGS event-triggered 

phase-amplitude coupling between RE and HPC was stronger on the incorrect segments. 

Around PR events, a clear RE hfo-HPC theta coupling at frequency range 160-204 Hz were 

only observed when rats were on incorrect maze segments. The PR HGS event-triggered 

RE-HPC coupling was also stronger on incorrect than on correct maze segments (Wilcoxon 

rank sum test, P < 0.05, Figure 5A). Around HR HGS events, the RE LFPs strongly HPC 
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theta-phase modulated at frequency range 160-200 Hz were also found only when rats 

deviated from the correct trajectory. The HR HGS event-triggered HPC-RE coupling was 

stronger on incorrect than on correct maze segments (Wilcoxon rank sum test, P < 0.05).  

A stronger coupling between RE-hfo and HPC-theta on incorrect maze segments was 

already detected earlier in learning on day3. On day3, on the correct maze segments, total of 

809PR HGS and 809 HR HGS events were detected. On the incorrect maze segments, total 

of 670 PR and 640 HR HGS events were detected. The PR and HR HGS event-triggered 

phase-amplitude coupling between RE and HPC was stronger on incorrect than on correct 

maze segments (Wilcoxon rank sum test, P < 0.05). On the incorrect maze segments, 

comparing to day5, the frequency range of RE-LFPs that was modulated by HPC-theta and 

triggered by both PR and HR HGS events was much broader and the modulation strength 

was relatively week. 

Thus, differential cross-regional interaction day 3 and day 5 reflected a network 

dynamics over learning process. Our results indicate that transient epochs of high-gamma 

synchrony within PFC-RE-HPC circuit that are also organized by the HPC-theta phase may 

underlie some critical aspects of spatial cognition.  

Co-occur gamma synchronization event  

We also studied beyond pair-wise high-gamma synchronization within the 

PFC-RE-HPC circuit. Thus, we considered the epochs when PFC-RE and HPC-RE events 

occurred in synchrony or not and repeated the phase-amplitude analysis for above cases.  

We first plotted the cross-correlogram with PR and HR event trains. As shown in 

Supplementary Figure, there is a strong correlation between PR and HR events. Accompany 

with the occurrence of PR HGS event, there is strong tendency that a HR HGS event would 

happen within a short interval. By applying a 0.5 second long window centered at the 

occurrence of PR event, we found that 29.18% (274/939) of HR events detected in the 

window also happened in a range of 40 ms around the PR event. Thus we further defined the 

Co event, that is the two events from PR and HR event trains respectively with interval less 

than 40 ms would be considered as Co event of each pair-wise. The rest events of each 

event type which happened individually were then grouped as Nonco events. For both PR 

and HR events, the Co and Nonco event-triggered phase-amplitude coupling were compared 

(Figure 6). Since we have already revealed that there was stronger RE-HPC cross-frequency 

coupling when rats were on in correct maze segments, here we only focused on the Co and 

Nonco event detected on incorrect maze segments. On day5, 77 Co events were detected, 

while 236 and 186 Nonco events were found in PFC-RE and HPC-RE pair, respectively. Two 

frequency ranges (100-130 Hz and 150-200 Hz) of RE hfo showed strong coupling to HPC 

theta when Co event happened on incorrect segments. Comparing to the Co event, strong 
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coupling between the RE hfo at range of 150-200 Hz and HPC theta was still observed 

around Nonco PR HGS event, whereas, the coupling between lower frequency range 

(100-130 Hz) in RE and HPC theta was missing. Intriguingly, comparing to Co event, for 

cross-frequency coupling around the individually occurred HR HGS event, both of the two 

frequency ranges in RE which strongly coupled to HPC theta disappeared. On day3, Co 

(158/158) and Nonco (512/482) events were also detected in PFC-RE/HPC-RE pair. There 

was also stronger coupling between RE hfo and HPC theta was also found around Co event, 

however, frequency range of the theta modulated RE hfo was relatively broad.  

The co-occurred PFC-RE and HPC-RE synchronization as well as the stronger 

RE-HPC cross frequency around Co event indicates that, the PFC-RE-HPC synchronization 

may be a mechanism underlying the cross-talking and information transfer in the 

PFC-RE-HPC circuit.    

Discussion  

There is a great body of studies discussing about the important role of prefrontal– 

hippocampal communication in memory processing and memory dependent navigation1-3,5. 

Considering the complexity of the brain functions depend the mPFC-HPC interaction, it is 

natural that other brain areas would also be involved in this mPFC-HPC circuit and work 

together with both mPFC and HPC. Because of its reciprocal connections with both mPFC 

and HPC, the RE has been suggested to play a key role in modulating the mPFC-HPC 

interaction. In line with this idea, recent studies observed RE contribution to the brain 

functions which depend on the hippocampal-prefrontal communication, for example, the fear 

memory generalization20, strategy shifting18, spatial navigation/memory 21,31. In our previous 

study, we revealed the critical role of RE in spatial memory retrieval process22. The 

pre-training RE inactivation dramatically impaired the performance of well-trained rats in a 

spatial learning task. To further explore the neurophysiological mechanism underlies RE 

contribution to spatial memory retrieval, in current study, we performed simultaneous LFP 

recording in mPFC, RE and HPC when animals were trained to finish the same spatial task. 

We first observed epochs with synchronized high gamma oscillation in both mPFC-RE and 

HPC-RE signal pair. Next, we found a rats’ performance dependent RE gamma-HPC theta 

coupling which associated with high gamma synchrony events. Although the high gamma 

synchrony in the mPFC-RE-HPC circuit could be observed since the first training day, we 

found a dynamic change of the HPC-RE cross-frequency coupling triggered by high gamma 

synchrony event over the training session. In the end, we found the co-occurred gamma 

synchrony between mPFC-RE and HPC-RE pair. The RE-HPC phase-amplitude coupling 

around the co-occurred gamma synchrony was dramatically stronger than the coupling 

triggered by the non-concurrent gamma synchrony.  
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The rats’ performance dependent HPC-RE coupling  

In current study, we found distinct patterns of HGS event-triggered HPC-RE 

cross-frequency coupling which depended on rats’ performance. The synchronized gamma 

oscillation between brain areas has been extensively studied and is suggested to contribute 

to the information processing between spatially distributed brain areas. While the gamma 

oscillation in each brain structure reflects the local activity, the two brain regions showed 

synchronized gamma oscillations could be temporarily connected and make the information 

follow between them possible. For instance, the CA1-CA3 and CA1- entorhinal cortex gamma 

synchrony was found to gate the input to CA1 4,32,33; Yamamoto and colleagues25 found 

transient gamma synchronization is associated to successful working memory execution 

while the gamma synchrony specifically occurred around the junction of T-maze. In 

consistent with these findings, in current study we also observed gamma synchrony within 

the brain circuit constituted by mPFC, RE and HPC. However, in our task the gamma 

synchrony events could be detected at various spatial positions on the crossword maze, 

suggesting a more complicated event distribution in a complex spatial environment.  

Besides the gamma synchrony, the gamma-theta coupling between different brain 

regions are also demonstrated to contribute to memory processing4,30,32,34,35. While the 

gammy synchrony links different brain regions and enable the precise information processing 

between brain areas in a precise time window, the gamma-theta coupling could provide a 

mechanism for further organizing different gamma oscillations 26,27,36. In our study, we 

combined the gamma synchrony and cross-frequency coupling analysis together. By 

applying the gamma synchrony event as trigger, we found significant difference between RE 

gamma-HPC theta coupling preceding the correct and incorrect decisions. This may be 

correlated to the uncertainty of the animals and reflect the efficiency of memory retrieval. The 

differential HGS event-triggered RE-HPC coupling was also observed when animals were on 

correct and incorrect maze segments. For both PR and HR HGS events, the event-triggered 

phase-amplitude coupling showed stronger RE high gamma- HPC theta coupling during the 

period when the animals deviated from correct trajectory. This enhanced RE high 

gamma-HPC theta coupling may be due to a stronger memory demanding. When animals 

made errors and navigated to incorrect maze segments, to return to the correct trajectory, 

re-localization and retrieval of previously obtained memory would be needed. This processing 

may need an extra memory effort and a copy of consolidated memory may transmitted from 

mPFC via RE to HPC, in the end combine with the information representing current spatial 

environment.  

The gamma synchrony event type dependent RE-HPC cross frequency 

coupling 
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For both PR and HP HGS events, an event type (Co and Nonco event) dependent 

phase-amplitude coupling between RE and HPC was also found in current study. In both 

mPFC-RE and HPC-RE pair, the RE-HPC coupling around the Co event is dramatically 

stronger than it around the Nonco event. As mentioned above, the gamma synchrony may 

indicate that the two brain regions are in a state which can make cross-talking more efficient. 

The co-occurred gamma synchrony may further indicate a network state that all nodes of the 

circuit are activated and the information transfer is possible. Stronger gamma-theta coupling 

between the RE (gamma) and HPC (theta) occurring around Co event further supports the 

idea that the synchronization within the entire circuit could facilitate communication within 

functional network26,27,32. 

When animals deviated from the correct trajectory and PR event happened 

individually (Non-co event), comparing to Co event, the event-triggered phase-amplitude 

coupling showed a comparable phase-locking between RE high frequency oscillation and 

HPC theta. This high frequency oscillation could be remnants of local spike activities in RE. It 

has been shown that the local fast gamma oscillation is related to the synchronized firing of 

local neurons35. The mPFC-RE synchrony could reflect the synchronous firing of both mPFC 

and RE neurons, thus the high frequency oscillation in LFP could be remnants of local spike 

activities. Therefore, when both mPFC and RE synchronized in gamma range, there could be 

synchronous RE spikes phase-locking to hippocampal theta and the remnants of RE neuron 

firing also locked to HPC theta phase. 

Interestingly, when only HPC-RE synchrony was detected, neither high gamma nor 

high frequency oscillation in RE showed strong phase-locking to HPC theta as it was in Co 

event group. These findings seem to be in line with the idea that the gamma synchrony and 

gamma-theta coupling could contribute to the information flow between different brain areas. 

In our study, we hypothesized that the information from mPFC would be transmitted to HPC 

via RE when there was high memory demanding. If the high gamma synchronization was 

only observed between RE and HPC, which indicated the first step of information flowing in 

the circuit (from mPFC to RE) was missing, the absence of RE-HPC cross frequency coupling 

could be expected. In contrast, when all the nodes (mPFC, RE and HPC) of the circuit were 

activated and synchronized, all structures of the network were recruited in a time window 

could ‘talk’ to each other, the memory related information could first flow from mPFC to RE, 

then transmitted from RE to HPC. Thus, the differentiation between phase-amplitude 

coupling triggered by Co and Non-co events further revealed the way that gamma oscillations 

contributes to the transmission of memory related information in the network formed by 

mPFC, RE and HPC.  
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Main Figures 

 
Figure 1. The HGS event distribution over maze segments.  

(A) Left: number for each maze segment. The gray and dark gray represent the correct 

trajectories correspond to different start points. Right: choice points. The red dashed squares 

marks the choice points where the animal needs to make decision between multiple choices. 

(B) The independent RE spectral component which nested in HPC single theta cycles (C) 

Example of detected HGS event. The red dashed square indicates an HR HGS event, the 

orange and blue traces represent the bandpass filtered HPC and RE high gamma signal. (D) 

The averaged HGS event over segments of correct trials. From the left to right panels: the 

mean PR HGS event distribution over the segment of S1 trials; mean PR HGS event 

distribution over the segment of S2 trials; mean HR HGS event distribution over the segment 

of S1 trials; mean HR HGS event distribution over the segment of S2 trials (n = 6 rats). 
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Figure 2. The HGS event-triggered phase-amplitude couplings precede correct and 

incorrect decisions of the first choice point.  

(A) Left and Middle: the averaged phase-amplitude comodulogram around the PR HGS 

events which occurred before the correct and incorrect decisions of the first choice point (in 

both S1 and S2 trials). The colorbar at the right represents the modulation index. Positive 

values indicates the statistically significant (P<0.05) phase-amplitude coupling between RE 

and HPC (see Materials and Methods). Right: the statistical matrix, each yellow pixel 

indicates a significant difference between the modulation indexes of specific frequency-pair in 

correct and incorrect group, while the blue pixel represents nonsignificant difference. (B) Left 

and Middle: the averaged phase-amplitude comodulogram around the HR HGS events which 

occurred before the correct and incorrect decisions of the first choice point (in both S1 and S2 

trials). As in (A), the Positive values indicates the statistically significant (P<0.05) 

phase-amplitude coupling between RE and HPC. Right: the statistical result of the 

comparison between correct and incorrect group. (C) and (D): The same as in (A) and (B), 

respectively, but on day3.  
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Figure 3. The HGS event-triggered phase-amplitude couplings precede correct and 

incorrect decisions of all choice points.  

(A) Left and Middle: the averaged phase-amplitude comodulogram around the PR HGS 

events which occurred before the correct and incorrect decisions for all the choice points in 

both S1 and S2 trials. Right: the statistical result between correct and incorrect group. (B) Left 

and Middle: the averaged phase-amplitude comodulogram around the HR HGS events which 

occurred before the correct and incorrect decisions for all the choice points in both S1 and S2 

trials. Right: the statistical result of the comparison between the correct and incorrect group. 

(C) and (D): The same as in (A) and (B), respectively, but on day3. 
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Figure 4. The HGS event-triggered phase-amplitude couplings preceding the correct 

entering to maze segment13. 

(A) Left and Middle: the averaged phase-amplitude comodulogram around the PR HGS 

events detected before the correct entering to maze segment13 in S1 and S2 trial, separately. 

Right: the statistical result of the comparison between S1 and S2 trials. (B) Left and Middle: 

the same as the left and middle panel in (A), but the phase-amplitude comodulogram is 

triggered with PR HGS event. Right: the statistical result of the comparison between S1 and 

S2 trials. (C) and (D): The same as in (A) and (B), respectively, but on day3.  
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Figure 5. The HGS event-triggered phase-amplitude couplings on correct and incorrect 

maze segments. 

(A) Left and Middle: the averaged phase-amplitude comodulogram triggered by the PR HGS 

events on the correct (correct groups) and incorrect (incorrect group) maze segments. Right: 

the statistical result of comparison between correct and incorrect group. (B) Left and Middle: 

the same as the left and middle panel in (A), but with PR HGS event as trigger. Right: the 

statistical result of the comparison between correct and incorrect group. (C) and (D): The 

same as in (A) and (B), respectively, but on day3.  
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Figure 5. The phase-amplitude couplings triggered by Co and Nonco HGS event, on 

incorrect maze segments. 

(A) Left and Middle: the averaged phase-amplitude comodulogram around the Co and Nonco 

PR HGS events when rats were on incorrect maze segments. Right: the statistical result of 

comparison between Co and Nonco group. (B) Left and Middle: the same as the left and 

middle panel in (A), but with PR HGS event as trigger. Right: the statistical result of the 

comparison between Co and Nonco group. (C) and (D): The same as in (A) and (B), 

respectively, but on day3.  
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Supplementary Figure 1. Cross-correlogram with PR and HR HGS events, on day5. The 

vertical red lines mark the time window from -20 to 20 ms. 

 

 

 

 

 

 


