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1.2 Summary 

For almost 30 years now, the immunopeptidome has been analyzed by eluting peptides from HLA 

molecules. This method has already been established in several institutes and companies 

worldwide and is now used for a wide range of investigations from the simple identification of 

HLA peptide motifs for different organisms to the detection of cryptic disease-specific peptides. 

The field of immunopeptidomics is more popular than ever as drug development has focused on 

the positive modulation of the immune system in recent years. Since the approval of the first 

checkpoint antibodies, the era of immunotherapy has been running and specific immunotherapies 

with fewer side effects are in the focus. There is a wide range of applications, yet, the 

immunopeptidome still contains a great wealth of information waiting to be deciphered. 

Currently, immunopeptidomics is limited in the identification of the large number of peptides with 

different affinities and stabilities of the peptide-HLA complexes. Therefore, amongst many other 

factors, only limited recovery rates are possible. When this doctoral thesis started, there were 

several unresolved questions in the field of immunopeptidomics that should be approached in this 

thesis:  

Is it possible to validate immunopeptidomics and use it reliably for clinical studies and drug 

development? Is there nowadays a reliable method to identify the peptide motif for peptide 

presenting MHC class I allotypes, the cornerstone for epitope predictions or active substance 

identification? Is it possible to use peptides to classify HLA allotypes or differentiate between 

healthy and malignant tissue? Can tumor-specific peptides be reliably characterized with this 

omic technology? 

In this doctoral thesis the immunopeptidomic method was validated to ensure the reliability of 

LC-MS/MS peptide identification and all required parameters of the European Medicines Agency 

(EMA) and Food and Drug Administration (FDA) were investigated. In addition, an updated 

protocol for the identification of MHC ligands, deconvolution of peptide motifs and generation of 

matrices for epitope prediction was established, which can be used for monoallelic cells as well as 

multiallelic tissue. Finally, a method was developed to identify allotypic peptides that allow HLA 

typing. These peptides can also be used as an internal standard for semi-quantitative investigation 

of the tumor specificity of peptides. The developed method was also successfully implemented to 

identify tissue and dignity specific patterns in the immunopeptidome and to determine the dignity 

of immunopeptidomic samples. 
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1.3 Zusammenfassung 

Seit fast 30 Jahren wird das Immunpeptidom durch Elution von Peptiden aus HLA-Molekülen 

analysiert. Weltweit nutzen mittlerweile mehrere Institute und Unternehmen diese Methode für 

ein breites Spektrum an Untersuchungen, die von der simplen Identifizierung von HLA-

Peptidmotiven für verschiedene Organismen bis hin zum Nachweis kryptischer 

krankheitsspezifischer Peptide reichen. Die Immunpeptidomik ist populärer denn je, seit sich die 

Medikamentenentwicklung in den letzten Jahren auf die positive Modulation des Immunsystems 

fokussiert hat. Die Zulassung der ersten Checkpoint-Antikörper leitete die Ära der Immuntherapie 

ein und spezifische Immuntherapien mit weniger Nebenwirkungen stehen nun im Blickpunkt. Das 

Anwendungsspektrum der Immunpeptidomik ist mittlerweile breit gefächert, dennoch enthält 

das Immunpeptidom immer noch eine große Fülle von Informationen, die darauf warten, 

entschlüsselt zu werden. Aktuell ist die Immunpeptidomik darin eingeschränkt, dass die große 

Anzahl von Peptiden, mit unterschiedlichen Affinitäten und Stabilitäten der Peptid-HLA-

Komplexe, nicht optimal erfasst werden kann und daher unter anderem nur begrenzte 

Wiederfindungsraten möglich sind. Zu Beginn dieser Doktorarbeit gab es ungelöste 

Fragestellungen auf dem Gebiet der Immunpeptidomik, die in dieser Arbeit untersucht werden 

sollten: 

Ist es möglich, die Immunpeptidomik zu validieren und diese zuverlässig für klinische Studien und 

die Medikamentenentwicklung einzusetzen? Gibt es heute eine zuverlässige Methode zur 

Identifizierung von Peptidmotiven für Peptid-präsentierende MHC-Klasse-I-Allotypen, dem 

Grundstein für Epitopvorhersagen und Wirkstoffidentifizierungen? Ist es möglich, Peptide zur 

Klassifizierung von HLA-Allotypen oder zur Unterscheidung zwischen gesundem und bösartigem 

Gewebe zu verwenden? Können tumorspezifische Peptide mit dieser Omik-Technologie 

zuverlässig charakterisiert werden?  

In dieser Doktorarbeit wurde die immunpeptidomische Methode validiert, um die Zuverlässigkeit 

der LC-MS/MS-Peptid-Identifizierung zu gewährleisten, und es wurden alle erforderlichen 

Parameter der Europäischen Arzneimittel-Agentur und U. S. Food and Drug Administration 

untersucht. Darüber hinaus wurde ein aktualisiertes Protokoll für die Identifizierung von MHC-

Liganden, die Entschlüsselung von Peptidmotiven und die Generierung von Matrizen für die 

Epitopvorhersage erstellt, das sowohl für monoallele Zellen als auch für multiallele Gewebe 

verwendet werden kann. Schließlich wurde eine Methode entwickelt, um allotypische Peptide zu 

identifizieren, die eine HLA-Typisierung ermöglichen. Diese Peptide können auch als interner 

Standard für die semi-quantitative Untersuchung der Tumorspezifität von Peptiden verwendet 

werden. Diese Methode wurde erfolgreich implementiert, um gewebe- und dignitätsspezifische 

Muster im Immunpeptidom zu identifizieren und die Dignität von immunpeptidomischen Proben 

zu bestimmen.   
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2 Introduction  

2.1 A short trip through the immune system 

There are numerous different cells and molecular structures in the innate and the adaptive 

immune system, protecting the organism against its own abnormal cells, foreign structures, and 

pathogens 1. The first defense is provided by the cellular components of the innate immune system 

such as dendritic cells (DCs) and natural killer cells (NK cells), but also humoral components such 

as the complement system play a role 2,3. The macrophages and DCs phagocyte foreign bodies by 

binding with their pattern recognition receptors (PRRs) to pathogen-associated molecular 

patterns (PAMPs), common foreign structures, or damage-associated molecular patterns 

(DAMPs), cell compounds released during cell damage and death 4,5. In addition, these phagocyting 

cells also function as antigen-presenting cells (APCs) presenting protein fragments, termed 

peptides, from phagocyted and digested foreign bodies on their cell surface using human 

leukocyte antigen (HLA) molecules. This mechanism enables a connection of the innate and the 

adaptive immune system 6.  

In contrast to the innate immune system, which ensures a rapid reaction and identification of 

harmful antigens 7, the adaptive immune system is highly specific 8. It enables effective and specific 

control of pathogens by its targeted response against certain antigens 9. The cellular components 

of the adaptive immune system are the lymphocytes, which can mainly be divided into T and B 

cells. The main groups of T cells are the cluster of differentiation (CD)8+ cytotoxic T lymphocytes 

(CTLs), the CD4+ T helper cells (TH cells), as well as the regulatory T cells (Treg cells). A 

characteristic of T cells is the pre-selection of antigen-specific T cells in the thymus. The avoidance 

of self-antigen specific T cells prevents T cell reactivity against self-antigens and provides central 

tolerance 10.  

Naïve T cells having survived thymus selection can be activated by APCs which present their 

specific antigen 11. As illustrated in Figure 1 three signals ensure T cell activation. In the first signal, 

the antigen-specific T cell receptor (TCR) binds the corresponding HLA-peptide complex, where 

the peptide is the specific antigen 12. This binding is additionally stabilized by co-receptors. In case 

of CTLs, CD8 binds the α3-domain of the HLA class I molecules or in case of TH cells, CD4 binds the 

β2-domain of HLA class II molecules 13. The second signal is a costimulatory signal generated by 

interaction of the protein CD28 (T cell) and the CD80/CD86 complex (APC). A missing 

costimulatory signal might result in T cell anergy or peripheral tolerance, which, in addition to 

thymic selection, acts as a second protective measure to prevent T cell reactions against self-

antigens 14. The third signal is mediated by cytokines which are secreted from APCs and T cells 

and polarizes the T cell to an effector phenotype based on the cytokine milieu 11,15–17.  
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The immune response of the adaptive immune system is diverse and antigen-specific, which is 

amongst others achieved by recombination and specification of TCRs 18 against antigens, but also 

delays the immune response by several days. Another peculiarity of the adaptive immune system 

is the memory of already opposed antigens against which quickly T memory cells are 

reactivatable, permitting an earlier immune response 19,20. The interaction of the innate and 

adaptive immune system enables an effective defense against pathogens. 

Figure 1: Activation of T cells via APCs. First, a naïve T cell recognizes a foreign peptide-HLA 

(pHLA) complex from an APC. Second, the T cell receives the costimulatory signal resulting in the 

survival and proliferation of the T cell (interaction of CD28 and the CD80/CD86 complex (B7). 

Third, the cytokine environment secreted by the APC polarizes the T cell to an effector phenotype 

based on the cytokine milieu 21.  

2.2 The human leukocyte antigen molecule 

A central element to enable T cells to recognize antigens and activate the highly specific adaptive 

immune system is the HLA molecule, a glycosylated membrane protein 22. HLA molecules are 

divided into HLA class I and HLA class II and differ in structure, protein source and expression 23. 

As this doctoral thesis is concerned with HLA class I presented peptides, this chapter will mainly 

focus on HLA class I.  

There are three classical molecules for HLA class I, HLA-A, B and C, whose genes are expressed in 

a highly polymorphic and codominant way. Besides the classical HLA alleles, HLA-E, F and G are 

coded for class I. 
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The classical HLA molecules, which are examined in Chapter 4 and 5, are located on the cell surface 

of nucleated cells presenting peptides from intracellular proteins to CTLs. The compilation of 

different HLA presented peptides is described as the immunopeptidome 24,25. The HLA class I 

peptide complex consists of a presented peptide, a heavy α chain (~ 43 kDa) composed of the α1-

α3-domains and the non-covalently bound invariant light β2-microglobulin (β2m) 26. The peptide 

is embedded in the peptide binding groove formed by two α-helices and an antiparallel β-strand 

between the α1- and α2-domains. The peptide binding groove is enclosed by the curved α-helices 

and large aromatic residues and limits the peptide length. The majority of HLA class I peptides 

consists of 8-12 amino acids (aa) 27. The pHLA bond is generated due to interactions with the 

peptide terminus and with aa residues as illustrated in Figure 2 28–30. There are six pockets A-F 

which interact with the peptide, wherein pocket B and F, with their interactions with peptide 

residues located at position 2 and the C-terminus, most constrain the peptide bond. These 

positions in the peptide that are most restricted are called anchor positions 31,32. The aa positions 

in the binding groove are highly polymorphic and thus lead to different presented peptides by the 

HLA allotypes 33,34. 

 

Figure 2: HLA class I peptide complex. An exemplary nonameric peptide is shown in the groove 

with the pockets A-F binding to the N-terminus, position 2, 3, 6, 7 and the C-terminus 35. 

HLA class II molecules are mainly found on APCs where they present CD4+ T cells peptides of 

majorly extracellular proteins. Compared to HLA class I, the anchor positions are less defined, 

resulting in a high promiscuity between HLA class II allotypes. The current state of known HLA 

alleles is 19.031 for class I (ebi.ac.uk/ipd/imgt/hla/stats.html, date: February, 2020). 

2.3 Antigen processing 

The immunopeptidome presented via HLA class I molecules is mainly formed by the large protein 

diversity in the cell’s proteome, which is not only formed by the different genes in the genome, 

but also by different transcription and translation by various messenger ribonucleic acid (mRNA) 

and protein isoforms 36–40. During protein synthesis in the cell, in addition to the correctly folded 
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and functional proteins a large number of misfolded proteins, so-called defective ribosomal 

products are formed and account for about 10% of all proteasomally degraded proteins 41–43. 

The emergence of the HLA class I presented peptide begins with protein degradation (Figure 3). 

Proteins are labelled by addition of ubiquitin molecules 44 and are proteolytically degraded in the 

26S proteasome, a macromolecule consisting of a 20S subunit (nucleus) and two 19S subunits 

(caps), in a cavity formed by four rings containing seven subunits (α7β7β7α7). In the ring structures 

of the core, the subunits β1, β2 and β5 have proteolytic activity. The β1 subunit prefers C-terminal 

acidic residues, the β2 subunit has a tryptic-like specificity and prefers basic residues and the β5 

subunit has chymotryptic-like specificity and cleaves after C-terminal hydrophobic residues. The 

linear peptides resulting from protein degradation have a length of 4-25 aa, with an average length 

of 7-9 aa 45. In the caps of the 26S proteasome there are two protein groups, the Rpn proteins, 

which recognize ubiquitin-labeled proteins, and the Rpt proteins, which unfold these proteins in 

an ATP-dependent manner 46. 

Figure 3: HLA class I antigen processing pathway. Antigen processing commences with the 

degradation of intracellular proteins (antigens), via the proteasome and other proteases to peptides. 

The peptides are transferred to the ER via TAP and then loaded on chaperone stabilized HLA 

molecules. Finally, the complexes get transported on the cell membrane by the secretory pathway 47. 



8 
 

Interferon-γ (IFN-γ) secretion by NK cells or CTLs in an immune response leads to the exchange 

of the proteolytic subunits β1, β2 and β5 by β1i, β2i and β5i and thus to the formation of the 

immunoproteasome 46,48. This exchange results in altered proteolytic activity, whereby increased 

tryptic- and chymotryptic-like specificity facilitates the formation of peptides having hydrophobic 

and basic residues at the C-terminus 49,50. Furthermore, the IFN-γ secretion stimulates the peptide 

generation by the PA28 subunit 51,52. The peptides formed in the proteasome are also truncated 

by cytosolic peptidases or in the endoplasmic reticulum (ER), where N-terminal trimming of the 

peptides takes place 23. Overall, there is a modulation of the immunopeptidome in both HLA class 

I and II after IFNγ stimulation 53,54. 

The peptides are loaded onto the HLA molecules in the ER. Preferably peptides having 

hydrophobic or basic residues at the C-terminus and 9 to 12 aa are transported ATP-dependently 

into the ER by the heterodimeric TAP1/TAP2 complex (transporter associated with antigen 

processing). The peptide loading complex (PLC) transfers peptides onto HLA molecules. It 

consists of the HLA class I stabilizing proteins calreticulin, tapasin and Erp57. The finished pHLA 

is transported to the plasma membrane via the secretory pathway 55. Ultimately, only one peptide 

in a thousand is likely to be presented on a HLA molecule after processing by the proteasome, 

proteases in the cytosol and ER, the restrictions of the TAP complex and the peptide motif of HLA 

allotypes on peptide length and C-terminal aa 56–58. 

As described above, HLA class I molecules mainly present peptides derived from intracellular 

cytosolic proteins and HLA class II molecules peptides of extracellular proteins from the cell’s 

environment. An exception of this division by peptide origin is presented by cross presentation. 

In this special case peptides from extracellular proteins can also bind to HLA class I molecules 59,60. 

Peptides from intracellular proteins can be presented on HLA class II molecules by the processing 

pathway called autophagy 61. 

2.4 The immunopeptidome and peptide motifs  

The immunopeptidome is the entirety of peptides presenting intra- and extracellular processes to 

T cells. Besides the diversity of degraded proteins, which is influenced by intrinsic, extrinsic, 

physiological and pathological factors, the expressed HLA allotypes also determine the peptide 

repertoire 62. Depending on the cell type, there are about 100,000 HLA molecules on the cell 

surface, which present one to 10,000 peptide copies per cell 56. The immunopeptidome is 

considerably modulated after tumor transformation or virus infection by altered cellular 

transcription, metabolic pathways or metabolism 62–64.  

HLA molecules influence peptide diversity through their high polymorphism. The molecules have 

distinctive peptide binding specificities, in particular through their different aa residues within 

the binding groove. This creates distinctive peptide repertoires, which can be represented in 
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peptide motifs. The motifs summarize the meaning of a position (in bits), the aa preferences in a 

particular aa position in the peptide (by size of the aa) 65 and non-covalent forces in the pHLA 

complex, which is described in detail in Chapter 4. There are three well established approaches to 

determine binding preferences of HLA molecules. First, in vitro binding experiments using 

synthetic peptides from mostly publicly available databases such as SYFPEITHI 66 or IEDB 67, 

second, direct peptide elution of HLA molecules on cell surfaces by HLA immunoprecipitation and 

subsequent peptide identification by liquid chromatographic tandem mass spectrometry (LC-

MS/MS), also known as immunopeptidomics, and third, the in silico prediction of possible 

peptides based on already known peptides and the structural surrounding of the binding 

groove 68. 

The second approach is still the only approach to investigate the entirety of HLA-presented 

peptides and, compared to the first approach, not only considers which peptides have an affinity 

to the HLA binding pocket, but also all previous antigen processing influences. In this thesis, the 

third approach, in silico prediction, will be addressed in Chapter 5, whereas in Chapters 3 and 4 

the focus is mainly on the second approach, immunoprecipitation with subsequent LC-MS/MS 

analysis.  

The actual knowledge on binding specificities of HLA class I molecules has been integrated into 

various prediction tools. Besides easy-to-use widely-known tools such as SYFPEITHI 66 and 

NetMHCpan/II 69,70 the constant emerge of novel binding prediction tools such as mixMHCpred 71, 

mixMHC2pred 72 and NNAlign_MA 73, underlines the necessity of reliable in silico prediction. The 

peptide prediction for HLA class I alleles is well established and in case of HLA class II there have 

recently been groundbreaking advances 72,73. 

2.5 Key points in carcinogenesis and immune defense 

Chapter 5 of the doctoral thesis deals with cancer in general and therefore this chapter provides 

a brief insight into the development and treatment of cancer but does not discuss specific types of 

cancer in detail. 

The interplay between the carcinogenesis and the immune defense has been known for half a 

century 74,75 and is described by the cancer immunoediting hypothesis. It is a dynamic process 

between tumor cells and the immune system, which is divided into three phases, elimination, 

equilibrium and escape 76. Through the mechanism of immunoselection, tumor cells try to 

circumvent clearance by immune cells by generation of tumor cell variants, which are less 

immunogenic. This leads to a state of equilibrium between tumor cells and the immune system, 

so the latter must continuously adapt its defense to the new tumor cell variants, which can extend 

over many years 77. As soon as the tumor cells break through the immune defense 

(immunosubversion), the last phase of immunoediting occurs, in which the tumor cells escape.  
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A transformation from a normal cell to a tumor cell occurs step by step through successive genetic 

changes obtained in time 78. Major steps are certain critical mutations in oncogenes, suppressor 

genes, and DNA repair genes, so-called hallmarks of cancer. These hallmarks must take place 

before unregulated cell division occurs and the cell ceases to be able to respond to signals like 

normal cells 79. The tumors can remain localized as benign tumors or spread further as malignant 

tumors and metastasize to distant tissues 80,81. Usually all these cellular changes do not occur 

unobserved. Tumor transformation is manifested in the immunopeptidome and leads to the 

presentation of tumor-specific antigens: antigens overexpressed in the tumor, tissue-specific 

antigens, differential post-translationally modified antigens, tumor-exclusive antigens such as 

cancer testis antigens, oncofetal antigens, oncoviral antigens or mutated and cryptic antigens, also 

known as neoantigens 63,82–88. Ideally, a presentation of tumor specific antigens and T cell 

recognition leads to the recruitment of the immune system and subsequent elimination of the 

transformed cells as illustrated in Figure 4. According to the cancer-immunity cycle, tumor 

specific antigens are released by killed or dying tumor cells. Next, APCs take up the antigens, prime 

and activate T cells in the proximate lymph nodes and subsequently, these T cells migrate to the 

tumor cells. They recognize and kill the tumor cells and in turn lead to further release of tumor 

specific antigens 89. 
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Figure 4: Overview of the cancer-immunity cycle. The dying or killing of cancer cells leads to 

antigen release. An APC takes up the antigens, processes them and presents the peptides to T cells. 

T cells are primed, activated and finally migrate to the tumor, penetrate and recognize the tumor 

cells by the presented antigens. The recognized tumor cells are killed and antigens are released 

again 89. 

The escape of tumor cells occurs through the mechanism of loss of immunogenicity or the 

acquisition of resistance to suppressive or cytotoxic mechanisms of the immune system 76,90,91. 

Examples are reduced immune recognition through loss or downregulation of HLA or 

dysregulation of antigen processing 92. A variety of immunosuppressive mechanisms are known, 

such as the production of transforming growth factor-β, indoleamine-2,3-dioxygenase, vascular 

endothelial growth factor or galectin, or the recruitment of regulatory immune cells, such as 

myeloid suppressor cells and Treg cells 76,93. 
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2.6 A short outline of immunotherapy against cancer 

The therapy of diseases by using the immune system is referred to as immunotherapy. In 

immunotherapy, an immune reaction is induced or enhanced, such as in tumor treatment, or the 

immune system is suppressed, as in the attenuation of the immune response in autoimmune 

diseases. Cancer immunotherapy began before the 19th century with William Coley's discovery of 

spontaneous tumor regression after treatment with bacteria, and with his development of Coley's 

toxin from dead bacteria, streptococcus pyogenes and serratia marcescens 94,95. Today there are 

numerous immunotherapies, which can be divided into active and passive immunotherapies. 

Active immunotherapies activate the body's own immune system and passive immunotherapies 

are based on the activity of the drugs administered. In addition, both approaches can be classified 

into specific, such as direct targeting of cancer, or non-specific, general activation of the immune 

system. Specific immunotherapies are dependent on antigens, such as active immunotherapy with 

prophylactic virus vaccinations or with therapeutic anti-tumor vaccinations or passive 

immunotherapies such as tumor-specific antibodies or adoptive cell administration. Examples of 

non-specific immunotherapies that are independent of antigens are the active therapy with 

immune checkpoint inhibitors or the passive therapy with cytokines 96. 

Based on the immunopeptidome specific immunotherapies can be developed. An advantage of the 

immunopeptidome is – in addition to surface antigens, which can be detected by antibodies - also 

antigens of intracellular proteins presented via pHLA, which are detected by T lymphocytes, can 

be targeted. This allows a wealth of new targets for immunotherapies, especially for neoantigens 

that are found in large numbers on intracellular proteins. Further advantages of specific 

immunotherapies, especially in comparison to current chemotherapies, are the induction of a 

memory function of the adaptive immune system and the low side effects due to immune tolerance 

mechanisms that maintain the integrity of the body in the presence of B and T lymphocytes with 

their antigen receptor specificities 97. However, it must be mentioned that there have been 

individual cases of immunotherapy with significant toxicities 98,99. Today, these advantages led to 

the development of numerous promising specific active immunotherapies based on pHLA 

epitopes including peptides, peptide loaded DCs, DNA, RNA, T cells for adoptive therapy (ACT) 

and virus-based systems. Multiple approaches progressed into clinical studies and are on the way 

to approval 100–103.  

2.6.1 Peptide vaccination 

The most important approach of the various immunotherapy platforms that were worked on in 

this doctorate at the Department of Immunology, Tübingen, is peptide vaccination, for which the 

Wirkstoffpeptidlabor was specially created and 2014 granted with the manufacturing 

authorization of peptide vaccination cocktails. Solid phase peptide synthesis enables the 
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production of peptide vaccines based on the epitope prediction described in Chapter 4, the tumor 

antigens characterized in Chapter 5 or tumor antigens that have already been discovered using 

the pipeline validated in Chapter 3.  

The peptide vaccines in the Wirkstoffpeptidlabor are used as active immunotherapy to stimulate 

T cells by in vivo stimulation with subcutaneous or intradermal injected peptide formulations. An 

effective peptide vaccine is based on a strong activation of APCs leading to T cell activation 104 

(Figure 5).  

Figure 5: Vaccination with peptides and 

adjuvant. First, the peptide adjuvant 

formulation is injected subcutaneously or 

intradermally. Next, a depot is formed, and 

peptides are slowly and continuously 

released. This induces an activation of 

APCs by adjuvant binding to PRRs and T 

cells are stimulated 105. 

Normally, tumor-specific antigens are 

identified by immunopeptidomics of 

cancer samples (Chapter 3) or epitope 

prediction of HLA-presented peptides 

from the aa sequence (Chapter 4). 

Subsequently the immunogenicity, T cell 

recognition ability and ability to elicit an 

immune response of an epitope, are 

tested by in vitro immunogenicity 

screening 106. Peptide vaccines contain one to more peptides consisting of short (CD8+ T cell 

epitope) to longer (TH cell epitope) peptides to prevent immunological tolerance of tumor cells to 

these peptides 107. Peptide cocktail formulations with multiple peptides allow a simultaneous 

attack of different presented antigens compared to single-peptide approaches, thereby reducing 

the likelihood of immune escape or adaptation of the tumor. Peptides per se have a weak 

immunogenicity and must therefore be applied in combination with an immunostimulatory 

adjuvant 104. The combination with adjuvants enables the formation of depots for a gradual and 

steady peptide release and additionally an activation of APCs upon binding to PRRs. By mixing the 

peptides with the adjuvant a stable emulsion is formed, which generates a depot effect 108. 

Examples of adjuvants with depot formation ability are the incomplete Freund's adjuvant, a 
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combination of water-in-oil, MF59, a combination of oil-in-water, or Montanide ISA™51/720, a 

water-in-oil emulsion 109–111. 

Modern vaccine adjuvants activate specific APCs via different channels by specific induction of the 

Toll-like receptor (TLR)1/2 with XS15, TLR3 with poly(I:C), TLR4 with monophosphoryl lipid A 

(MPLA), TLR7 with imiquimod and TLR9 with CpG-containing oligonucleotides 112,113. Strong 

immune responses can also be induced by combinations of adjuvants, such as the combination of 

XS15 and Montanide ISA™51, or the adjuvant system AS01, a liposome-based vaccine adjuvant 

system consisting of MPL and saponin QS-21, which enables vaccine development against malaria 

and herpes zoster through its synergistic effect 113,114. Meanwhile, there are 266 clinical trials with 

peptide vaccines (25 active studies) and 4441 with immunotherapies for various diseases 

(clinicaltrials.gov, search term: "peptide vaccine"/"immunotherapy", date: March, 2020), which 

clearly shows the relevance and the many new insights expected from immunotherapeutic 

strategies in disease control. 

2.7 Good manufacturing practice (GMP): Compliance with quality standards and 

method validation 

Almost worldwide, all drugs must be manufactured, controlled, and distributed according to Good 

Manufacturing Practice (GMP) to assure pharmaceutical patient safety. This also applies to clinical 

trials where vaccine peptide treatments are currently being applied. The manufacturing process 

of the vaccine peptide cocktail from peptides to a drug is controlled and divided into peptide 

production and sterile filling, always monitored by quality control. Thus, GMP can guarantee a 

continual product quality in the manufacturing process. Production and analysis must follow 

standard operating procedures (SOPs), be continuously documented and allow complete 

traceability (Arzneimittel- und Wirkstoffherstellungsverordnung - AMWHV, 2006, last amended 

09.08.2019). The active ingredients, the peptides, must be produced synthetically in the required 

quality by solid phase peptide synthesis and examined by high performance liquid 

chromatography and mass spectrometric analysis for identity, purity and content with which the 

product is declared.  

Within the scope of this dissertation, following the recommendation of the Paul Ehrlich Institute, 

Langen, we intended to validate the reliability of the peptide identification pipeline, which 

provides the peptide sequences for future active ingredients, according to GMP quality standards. 

To ensure that the analytical method is suitable and reliable for identification, a method validation 

was performed (Chapter 3). According to the International Council for Harmonisation of Technical 

Requirements for Pharmaceuticals for Human Use (ICH), different characteristics are evaluated 

depending on whether the analytical procedure is an identification test, limit or quantitative test 

for impurities' content or quantitative measurement of the major component/s (Table 1). 
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Table 1: Validation characteristics. Characteristics regarded as most important for validation of 

different analytical procedures. Robustness is not listed; however, it should be considered at an 

appropriate stage in analytical procedure development. Modified from validation of analytical 

procedures: text and methodology Q2(R1) 115. Abbreviations: - normally not evaluated, + normally 

evaluated. 

Type of analytical 

procedure Identification 
Testing for impurities 

Assay 

Characteristics Limit tests Quantitative tests 

Accuracy - - + + 

Precision 

- Repeatability 

- Intermediate 

precision 

- 

- 
- 

+ 

+ 

+ 

+ 

Specificity + + + + 

Detection limit - + - - 

Quantitation limit - - + - 

Linearity - - + + 

Range - - + + 

 

Characteristics are the accuracy, closeness of a true value to the detected value, precision, 

closeness between a series of measurements from multiple sampling (repeatability: over a short 

interval of time; intermediate precision: within-laboratories variation such as different 

measurement days), specificity, the unambiguous determinability of the analyte in the presence 

of components, limit of detection (LOD), the lowest detectable amount of the analyte in a sample, 

limit of quantification (LOQ), the lowest quantifiable amount of the analyte in a sample, linearity, 

the range that gives results directly proportional to the concentration of the analyte in the sample, 

range, section in which the analytical method has an appropriate degree of precision, accuracy 

and linearity and robustness, capability of the analytical procedure to remain unaffected by small 

variations of the method parameters 115. It should be noted that the requirements are dependent 

on the approving authorities and may differ from the ICH guidelines. 
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2.8 Objectives 

For almost three decades now, the immunopeptidome has been analyzed by eluting peptides from 

MHC molecules. Immunopeptidomics has already been established in several institutes and 

companies worldwide. The method is now used for various investigations from the simple 

identification of MHC peptide motifs for different organisms to the detection of cryptic disease-

specific peptides. The range of applications is already widespread, yet the immunopeptidome still 

contains a great variety of information still waiting to be deciphered (Chapter 2). 

Despite the successes, the method is still not ideal. The immunopeptidome contains a large 

number of peptides with different affinities. It can only be analyzed in its entirety using LC-MS/MS 

based immunopeptidomics, which is limited in its sensitivity and therefore has shortcomings such 

as a lower recovery rate. Consequently, immunopeptidomic data are not directly comparable 

between different mass spectrometers. 

Is it still possible to validate immunopeptidomics and use it reliably for clinical studies and drug 

development? Is there nowadays a reliable method to identify the peptide motif for each MHC 

allotype, the cornerstone for epitope predictions or reliable active substance identification? What 

further information besides epitope identification for therapies can be derived from the individual 

peptides? Is it possible to use peptides to classify HLA allotypes or differentiate between healthy 

and malignant tissue? Can tumor-specific peptides be reliably identified with this omic 

technology?  

Within the scope of this dissertation the immunopeptidomic method should be validated to 

ensure the reliability of LC-MS/MS peptide identification. All required parameters of the EMA and 

FDA should be investigated to verify GMP suitability (Chapter 3). Furthermore, an updated 

protocol for the identification of HLA ligands, deconvolution of peptide motifs and generation of 

matrices for epitope prediction should be established, which can be used for monoallelic cells as 

well as multiallelic tissue (Chapter 4). Finally, a method should be developed to identify allotypic 

peptides that allow HLA typing. In addition, the peptides could also be used as an internal standard 

for semi-quantitative investigation of the tumor specificity of peptides. Further possibilities of this 

method were investigated in order to eventually be able to determine the tissue origin or even the 

dignity of samples (Chapter 5). 
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3 Guidance document: validation of a high-performance liquid 

chromatography-tandem mass spectrometry immunopeptidomics 

assay for the identification of HLA class I ligands suitable for 

pharmaceutical therapies 

3.1 Publication and author contributions 

The chapter was accepted for publication in Molecular & Cellular Proteomics titled “Guidance 

Document: Validation of a High-Performance Liquid Chromatography-Tandem Mass 

Spectrometry Immunopeptidomics Assay for the Identification of HLA Class I Ligands Suitable for 

Pharmaceutical Therapies” 116, was selected as issue highlight and covered MCP Vol. 19, Issue 3, 1 

Mar 2020. Authors contributing to this work are listed below. All experiments, data analysis and 

manuscript writing were performed by the author of this thesis, except of the described 

contributions in following lines. Marion Gauger supported the data analysis and writing of the 

paper. Ana Marcu and Annika Nelde performed experiments (of the robustness section). Monika 

Denk supported the data analysis. Heiko Schuster, Hans-Georg Rammensee, Stefan Stevanović 

supported the design of research and data evaluation. All authors proofread the manuscript. 
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3.2 Graphical abstract and highlights 

 

Highlights 

• Validation of an omic method for antigen identification using LC-MS/MS. 

• Validation of accuracy, precision, specificity, limit of detection and robustness. 

• Validation according to the current FDA and EMA guidelines. 

Abbreviations 

• AcN, Acetonitrile 

• BC, Bladder cancer 

• CLL, Chronic lymphocytic leukemia 

• EMA, European Medicines Agency 

• FDA, Food and Drug Administration 

• FDR, False discovery rate 

• GLP, Good laboratory practice 

• GMP, Good manufacturing practice 

• HLA, Human leukocyte antigen 

• LOD, Limit of detection 

• OECD, Organisation for Economic Co-operation and Development 

• PBMC, Peripheral blood mononuclear cells 

• PPM, Parts per million 

• SD, Standard deviation 
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3.3 Abstract 

For more than two decades naturally presented, human leukocyte antigen (HLA)-restricted 

peptides (immunopeptidome) have been eluted and sequenced using liquid chromatography-

tandem mass spectrometry (LC-MS/MS). Since, identified disease-associated HLA ligands have 

been characterized and evaluated as potential active substances. Treatments based on HLA-

presented peptides have shown promising results in clinical application as personalized T cell-

based immunotherapy. Peptide vaccination cocktails are produced as investigational medicinal 

products under GMP conditions. To support clinical trials based on HLA-presented tumor-

associated antigens, in this study the sensitive LC-MS/MS HLA class I antigen identification 

pipeline was fully validated for our technical equipment according to the current US Food and 

Drug Administration (FDA) and European Medicines Agency (EMA) guidelines. 

The immunopeptidomes of JY cells with or without spiked-in, isotope labeled peptides, of 

peripheral blood mononuclear cells of healthy volunteers as well as a chronic lymphocytic 

leukemia and a bladder cancer sample were reliably identified using a data-dependent acquisition 

method. As the LC-MS/MS pipeline is used for identification purposes, the validation parameters 

include accuracy, precision, specificity, limit of detection and robustness. 

3.4 Introduction 

The immunopeptidome is a vast and diverse compilation of HLA-presented peptides (HLA 

ligands), which serve as a showcase of inter- and intracellular processes. T cells recognize 

presented peptides in the immunopeptidome, which is constantly modulated by gene expression, 

transcription, translation, posttranslational modification and antigen processing and 

presentation117–120. Especially in tumor immunology, HLA ligands are used in many ways. They 

are suited as biomarkers, presenting intracellular abnormalities like malignant transformation 

and as active pharmaceuticals, activating cancer specific T cells121. 

Natural HLA ligands have been isolated and sequenced using LC-MS/MS for almost three 

decades122–128. So far, the LC-MS/MS analysis is the only method to investigate the entirety of HLA-

presented peptides. However, based on these peptide data in silico prediction tools have been 

developed, which allow the prediction of possibly presented peptides from exome, RNA or whole 

genome sequencing data and have extended the toolbox even further129–134. 

Developing from such identifications, peptide vaccination cocktails have been produced as active 

pharmaceuticals under GMP conditions135. The acceptance, safety and efficacy of peptide 

vaccinations have been investigated135 and several clinical studies testing peptide vaccinations 

have been performed with our contribution (GAPVAC121, NCT02149225 and NOA-16, 

NCT02454634) or are ongoing (iVAC-CLL01, NCT02802943). The procedures of active substance 

production, analysis, and batch release have been validated and reliably lead to reproducible 
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products of desired quality. However, the initial antigen identification procedure using mass 

spectrometry-based immunopeptidomics has not been validated yet. In this study, the LC-MS/MS 

antigen identification procedure was fully validated for our technical equipment according to 

current FDA and EMA guidelines to support further clinical trials based on HLA-presented tumor-

associated antigens. This validation should serve as a guidance that can be adapted to other LC-

MS/MS platforms and samples. 

Protocols for large-scale immunopeptidomics using LC-MS/MS and the identification of HLA 

ligands are established and have been published64,136,137. To our knowledge, no validation of an 

omics method using LC-MS/MS-has been published so far138,139. This article presents an 

immunopeptidomics assay using LC-MS/MS, which is fully validated according to the latest US 

Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines138–142. We 

have to emphasize that such validations are specific only for dedicated equipment of one distinct 

laboratory. We provide a first protocol and template to enhance the validation of other 

laboratories with similar equipment and other omics fields using LC-MS/MS such as proteomics, 

metabolomics, and lipidomics.  

3.5 Experimental procedures 

3.5.1 Peptide synthesis 

The automated peptide synthesizer Liberty Blue (CEM) was used to synthesize peptides following 

the 9-fluorenylmethyl-oxycarbonyl/tert-butyl (Fmoc/tBu) strategy. The identity and purity of the 

peptides were confirmed using a reversed-phase liquid chromatography (Alliance e2965, Waters) 

and an uHPLC system (nanoUHPLC, UltiMate 3000 RSLCnano, Dionex) on-line coupled LTQ 

Orbitrap XL hybrid mass spectrometer (ThermoFisher) system. Synthesized peptides were 

employed in the validation of LC-MS/MS identifications. Peptide sequences used for the validation 

are listed in supplemental Table S1. 

3.5.2 Tissue samples 

The EBV-transformed human B-cell line JY (ECACC 94022533) was cultured in RPMI1640 with 

10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin/streptomycin to a total number 

of 1*1011 cells, centrifuged at 1,500 rpm for 15 min at 4 ̊C, washed two times with cold PBS and 

aliquots containing 75*106 cells were frozen and stored at -80 ̊C until use. The cells were tested 

negative for mycoplasma contamination via PCR. 

The peripheral blood mononuclear cells (PBMC), chronic lymphocytic leukemia (CLL) and bladder 

cancer (BC) tissue samples were collected at the University Hospital of Tübingen with the 

informed consent of patients according to the principles of the Declaration of Helsinki. The local 

institutional review board (Ethics Committee at the Medical Faculty and the University Hospital 

of Tübingen) has approved the use of the patient samples. 
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3.5.3 Immunoaffinity purification of HLA ligands 

HLA class I molecules were isolated using standard immunoaffinity purification as 

described125,136,143,144 using the HLA class I-specific monoclonal antibody W6/32145. First, the cell 

pellets were lysed in 10 mM CHAPS (Applichem)/PBS (Lonza) containing protease inhibitors 

(Complete, Roche) and subsequently HLA molecules were purified using the pan-HLA class I–

specific monoclonal W6/32 Ab covalently linked to CNBr-activated Sepharose (GE Healthcare). 

Repeated addition of 0.2% trifluoroacetic acid (Merck) eluted HLA molecules and peptides. The 

peptides were isolated employing ultrafiltration with centrifugal filter units (Amicon, Merck 

Millipore), extracted and desalted using ZipTip C18 pipette tips (Merck Milli-pore), eluted in 35 µl 

acetonitrile (Merck)/0.1% trifluoroacetic acid, vacuum centrifuged to 5 µl, and resuspended in 

25 µl of 1% acetonitrile/0.05% trifluoroacetic acid. Finally, the peptide solutions were stored at 

 -20 ̊C until analysis by LC-MS/MS. 

3.5.4 Analysis of HLA ligands by LC-MS/MS 

Peptides were separated by nanoflow high-performance liquid chromatography (nanoUHPLC, 

UltiMate 3000 RSLCnano, Dionex) and subsequently analyzed in an on-line coupled Orbitrap 

Fusion Lumos or LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific). Volumes of 5 μl 

peptide solution were injected onto a 75 μm × 2 cm trapping column (Acclaim PepMap RSLC, 

Dionex) at 4 μl/min for 5.75 min in five technical replicates. Subsequently, peptide separation was 

performed at 50°C at a flow rate of 300 nl/min on a 50 μm × 25 cm separation column (Acclaim 

PepMap RSLC, Dionex) applying a gradient ranging from 2.4 to 32.0% of AcN over the course of 

90 min. Eluted peptides were ionized by nanospray ionization and analyzed in the Orbitrap Fusion 

Lumos implementing top speed collision-induced dissociation (CID) fragmentation. Survey scans 

were performed at 120,000 resolution and fragment detection at 60,000 resolution in the 

Orbitrap.  

To demonstrate a method transfer, the immunopeptidomics pipeline was transferred from the 

Orbitrap Fusion Lumos to a LTQ Orbitrap XL. In the LTQ Orbitrap XL peptides were analyzed using 

a top five CID method with survey scans at 60,000 resolution and fragment ion detection in the 

ion trap operated at normal scan speed. On both instruments, the mass range was limited to 400–

650 m/z with precursors of charge states 2+ and 3+ eligible for fragmentation. 

Maintenance and OQ of the LC-MS/MS system are performed annually (Thermo Fisher Scientific). 

A positive ion calibration using a Pierce™ LTQ Velos or LTQ ESI positive ion calibration solution 

(Thermo Fisher Scientific) and a system suitability test using natural HLA class I-presented 

peptides of JY cells is performed weekly. 

3.5.5 Database search and spectral annotation 

Data was processed against the human proteome included in the Swiss-Prot database 

(http://www.uniprot.org, release September 27, 2013; containing 20,279 reviewed protein 
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sequences) applying the Sequest algorithm146 in the Proteome Discoverer (version 1.3, Thermo 

Fisher) software. 

Precursor mass tolerance was set to 5 ppm, product ions mass tolerance was set to 0.02 Da for 

Orbitrap Fusion Lumos data and 0.5 Da for LTQ Orbitrap XL Data and oxidized methionine was 

allowed as the only dynamic modification with no restriction by enzymatic specificity. 

Percolator147-assisted false discovery rate (FDR) calculation was set at a target value of q ≤ 0.05 

(1% FDR). Peptide-spectrum matches with q ≤ 0.05 were filtered according to additional 

orthogonal parameters to ensure spectral quality and validity. Peptide lengths were limited to 8–

12 amino acids. 

3.5.6 Validation procedures 

The validation of the immunopeptidomics procedure was done according to the OECD principles 

of Good Laboratory Practice (GLP)148 and accuracy, precision, specificity, limit of detection and 

robustness were validated according to the FDA and EMA guidelines140,141. Clear definitions can 

be found in140,141,148. 

As the immunopeptidome LC-MS/MS system separates the peptides using the LC and 

subsequently identifies the peptide ions 

in MS mode and product ions in the 

MS/MS mode, we tried to consider these 

three parts for every validation 

parameter summarized in Table 1 and 

Figure 1. 

Figure 1: Schematic overview of the 

validation of the LC-MS/MS 

immunopeptidomics assay for the 

identification of HLA ligands suitable 

for pharmaceutical therapies. The LC-

MS/MS pipeline is used for identification 

purposes, consequently the validation 

parameters accuracy, precision, 

specificity, limit of detection and 

robustness were validated according to 

current FDA and EMA guidelines. 

3.5.7 Experimental design and statistical rationale 

A summary of the performed experiments, samples, technical replicates, and MS RAW files is given 

in supplemental Table S2. Results were analyzed using GraphPad Prism (GraphPad software Inc). 
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The recovery rate was obtained by taking the average of the percentual overlapping peptides 

between the technical replicates normalized to the total number of peptides. The LC peptide 

retention times (RTs) were compared calculating the average of the Pearson correlations of the 

technical replicates. 

3.6 Results 

3.6.1 Accuracy 

To investigate the accuracy and specificity, the purified HLA-eluted peptides from one JY batch 

was spiked with 100 fmol isotope labeled synthetic peptides (Table S1) and analyzed in three 

separate analytical replicates (for identified peptides, see supplemental Table S3). The accuracy 

of the mass spectrometer did fulfill the acceptance criteria (Table 1) with a deviation below 2 ppm 

between the median mass deviation from the theoretical mass of all identified natural (median 

M: 0.05 ppm) and synthetic peptides (median M: 0.19 ppm) in Figure 2A. The peptide RTs 

between the replicates of all natural and all synthetic peptides do have a mean Pearson correlation 

above 95%, verifying the accuracy of the LC (Figure 2B).  
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Table 1: Acceptance criteria for the different parameters selected for LC-MS/MS validation. 

The acceptance criteria for the selected parameters are indicated for the mass spectrometer and the 

LC. Abbreviations: PC, Pearson correlation; SD, standard deviation. 

 MS and MS/MS LC 

Characteristics Specification/ acceptance criteria 

Accuracy  

(comparison to theoretical 

masses and synthetic peptides) 

The median of the deviation of the 

theoretical masses (M ppm) of  

• the entirety of peptides 

• the selected peptides 

between natural and synthetic peptides 
should be ≤ 2 ppm 

PC ≥ 95%  

Precision 

(natural peptides) 

- repeatability 

- intermediate precision 

SD of peptide number: ≤ 10% 
 
Recovery rate: 80% ± 20% 

PC ≥ 95% 

Specificity 

(natural and synthetic peptides) 

The SD between the precursor ion and 
five top fragment masses of selected 
peptides: ≤ 0.001 Da. The peptide must 
be identified in two of three replicates. 
 
Selectivity of all identified peptides based 
on precursor mass combined with top five 
fragments  
 

PC ≥ 95% 
 

Limit of detection 

(synthetic peptides) 

50% (n = 31) of the peptides have to be 
identified 
 
Recovery rate: 80% ± 20%  

PC ≥ 95% 

Robustness 

(natural peptides from three 

primary samples isolated by three 

different persons) 

Accuracy: as mentioned above 
 
Precision: 

• repeatability: as mentioned above 

 
Specificity: as mentioned above 

 
PC ≥ 95% 
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Figure 2: Validation of the accuracy using immunopeptidomes from JY cells and spiked 

isotope labeled synthetic peptides. Three replicates were analyzed. A, Mass deviation of the 

detected precursor mass from the theoretical mass (ΔM ppm) of all identified natural (n = 1648) and 

synthetic peptides (n = 62). B, Mean Pearson correlation of the peptide retention times. 

Abbreviations: PC, Pearson correlation; ppm, parts per million; ΔM, mass deviation. 

3.6.2 Specificity 

Based on our experience from the first series of analyses, the five peptides AIVDKVPSV, 

RPSGPGPEL, YLLPAIVHI, KVLEYVIKV and SPSSILSTL are expected as natural HLA class I-

presented peptides of JY cells. In order to prove the specificity, the mass spectrometer must fulfill 

the MS mode acceptance criteria for precursor ions and the MS/MS mode acceptance criteria for 

five selected top product ions of the expected five peptides (Table 1). Here, we use two ways to 

select the five top product ions, we simply choose the top five most intensive fragments (last 

paragraph of specificity) or the most intensive fragments such as b and y fragments with the 

highest intensity and relevance (penultimate paragraph of specificity). Furthermore, in the LC 

separation, the correlation of the retention times of the natural and synthetic counterparts of the 

five peptides have to fulfill the acceptance criteria. 

The difference of the median of the mass deviation from the theoretical mass (M ppm) of the five 

selected peptides AIVDKVPSV, RPSGPGPEL, YLLPAIVHI, KVLEYVIKV and SPSSILSTL, which were 

identified as natural (median M: 1.34 ppm) and synthetic peptides (median M: 0.09 ppm), is 

below 2 ppm (Figure 3A) (for identified peptides and product ions, see supplemental Table S4). 
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Figure 3: Validation of the specificity using immunopeptidomes from JY cells and spiked 

isotope labeled synthetic peptides. Three replicates were analyzed. A, Mean of the mass deviation 

from the theoretical precursor mass (ΔM ppm) of the five identified natural and synthetic peptides 

AIVDKVPSV, RPSGPGPEL, YLLPAIVHI, KVLEYVIKV and SPSSILSTL in three technical replicates. B, 

Mean Pearson correlation of the RTs of the five identified natural and synthetic peptides. Mass 

deviation as S.D. of the (C) precursor ion masses in MS mode and the (D) resulting five selected top 

fragments in MS/MS modes of the five identified natural and synthetic peptides. Abbreviations: PC, 

Pearson correlation; ppm, parts per million; ΔM, mass deviation; S.D., standard deviation. 

The peptide RTs between the replicates of the five selected peptides AIVDKVPSV, RPSGPGPEL, 

YLLPAIVHI, KVLEYVIKV and SPSSILSTL, which were identified as natural and synthetic peptides, 

do have a Pearson correlation above 95% (Figure 3B). 

The standard deviation (SD) of the mass accuracy of the precursor masses in MS mode (Figure 3C) 

and of the five selected top product ions, selected based on intensity and relevance, in MS/MS 

mode (Figure 3D, for MS/MS spectra, see supplemental Figure S1) of the five selected peptides 

AIVDKVPSV, RPSGPGPEL, YLLPAIVHI, KVLEYVIKV and SPSSILSTL is below 0.001 Da for both the 

natural and synthetic peptides. 

As an additional step to prove the specificity of the LC-MS/MS system, we validated our manual 

quality control method, to distinguish all peptides based on the mass of a precursor ion combined 
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with the masses of the top five most intensive product ions. As the SD of the mass accuracy 

deviates at four decimals, our peptide identity criteria of the quality control should enable 

specificity at a four-decimal level (Table 1). Based on the precursor masses in MS mode at four-

digit level there was an overlap of 7 to 12 natural peptide masses in the three replicates (Table 

2A). These peptide masses could be separated using the top five masses with the highest intensity 

in MS/MS mode. In MS/MS mode the highest number of overlapping product ion masses were two 

duplicates in replicate two (Table 2B). All synthetic peptides could be separated based on the 

precursor masses at four decimals (Table 2C). 

Table 2: Validation of the specificity and suitability of the top five product ion peptide quality 

control using immunopeptidomes from JY cells and spiked isotope labeled synthetic peptides. 

A, Overlap of the detected peptide precursor masses in MS mode of the natural peptides at four 

decimals. B, Overlap of the measured top five product ion masses of the manifold peptide precursor 

masses from (A) in MS/MS mode of the natural peptides at four decimals. C, Overlap of the measured 

62 synthetic peptide precursor masses in MS mode at four decimals. 

(A) MS: natural peptides, precursor masses 

replicates 1 2 3 

unique 1181 1260 1362 

duplicate 7 12 12 

(B) MSMS: natural peptides, five top-fragment masses 

replicates 1 2 3 

unique 70 116 120 

duplicate 0 2 0 

(C) MS: synthetic peptides 

replicates 1 2 3 

unique 61 62 61 

duplicate 0 0 0 

 

3.6.3 Limit of Detection 

To determine the limit of detection (LOD), four aliquots of purified HLA-eluted peptides from JY 

cells were spiked with 0.1 fmol, 1 fmol, 10 fmol, or 100 fmol isotope labeled synthetic peptides 

(Table S1) and analyzed in three replicates leading to 12 separate analytical replicates (for 
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identified peptides, see supplemental Table S3). Based on our experience with JY cells, in HLA 

ligandomic experiments an optimal setting enables a peptide recovery rate of 80 ± 20% between 

two replicates. Thus, there is no LOD where 100% of the peptides will be discovered, especially in 

data-dependent acquisition. Here, we set the LOD to the peptide concentration that enables an 

identification of at least 50% (n = 31) of the peptides per replicate, with a recovery rate of 80% ± 

20% and a Pearson correlation of the peptide retention times above 95% between three 

replicates. 

The JY sample spiked with 10 fmol synthetic peptides had the lowest peptide content enabling a 

reproducible identification of 50% of the 62 added isotope labeled peptides (Figure 4A). At the 

LOD the recovery rate of peptides in a replicate mass spectrometric measurement is in the range 

of 80% ± 20% (Figure 4B) and the mean Pearson correlation of the retention times of the synthetic 

peptides in the three technical replicates analyzed in the LC is above 95% (Figure 4C). 

 

Figure 4: Validation of the limit of detection using spiked isotope labeled synthetic peptides. 

Three replicates of JY samples spiked with 0.1 fmol, 1 fmol, 10 fmol, and 100 fmol isotope labeled 

synthetic peptides were analyzed. A, Number of total identified isotope labeled peptides and shared 

peptides identified in the three replicates. The LOD of 50% (n = 31) of the spiked synthetic peptides 

is indicated with a red line. B, Recovery rate of synthetic peptides recovered between the three 

replicates of each condition. C, Mean Pearson correlation of the peptide retention times between the 

replicates. Abbreviation: PC, Pearson correlation. 
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3.6.4 Precision 

The precision (also referred to as imprecision) was determined by assaying three aliquots of HLA-

eluted peptides from JY samples in three technical replicates leading to nine separate analytical 

replicates. To prove the intermediate precision, the measurement series was repeated after seven 

days (for identified peptides, see supplemental Table S5). The number of identified peptides 

fulfilled the acceptance criteria of ± 10% SD of the repeatability on the initial day and after one 

week (Figure 5A, B). Furthermore, the acceptance criteria of the recovery rate with a recovery of 

80 ± 20% of identified peptides in a repeated replicate were fulfilled on both measuring days 

(Figure 5C). A closer look at the LC demonstrates that the mean Pearson correlation of the peptide 

retention times between all nine replicates was above 95% and fulfilled the criteria of the 

repeatability and intermediate precision (Figure 5D). 

 

Figure 5: Validation of the precision using immunopeptidomes from JY cells. A, Number of 

synthetic peptides identified at day 0 and day 7 in nine replicates, respectively. B, Standard deviation 

(S.D.) given in total peptide numbers and in percent. C, Recovery rate of peptides between the 

replicates. D, Mean Pearson correlation of the peptide retention times between the replicates. 

Abbreviation: S.D., standard deviation; PC, Pearson correlation. 
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3.6.5 Robustness of the precision, accuracy and specificity 

The robustness was investigated performing a retrospective analysis of the purified HLA-eluted 

peptides of three primary samples: peripheral blood mononuclear cells from a healthy donor, a 

chronic lymphocytic leukemia sample, as well as a bladder cancer sample. The 

immunopeptidomes were isolated and analyzed by three different persons. To validate the 

robustness the specifications indicated in Table 1 should be fulfilled with regard to accuracy, 

precision, and specificity. 

The identified peptides of the three primary samples fulfill the acceptance criteria of the accuracy 

for the mass spectrometer and for the LC. The difference of the median of the mass deviation from 

the theoretical mass of all identified natural peptides (median M: PBMC -0.06 ppm, CLL 0.05 

ppm, BC 0.14 ppm) (Figure 6A) and synthetic peptides (median M: 0.19 ppm) is below 2 ppm 

(Figure 6A). The peptide RTs between the replicates of all natural and all synthetic peptides have 

a Pearson correlation above 95% (Figure 6B). 

 

Figure 6: Validation of the accuracy using immunopeptidomes from primary PBMC, CLL, and 

BC samples. Three replicates were analyzed. A, Mass deviation from the theoretical precursor mass 

(ΔM ppm) to the theoretical mass of all identified natural peptides. B, Mean Pearson correlation of 

the peptide retention times between the replicates. Abbreviations: PC, Pearson correlation; ppm, 

parts per million; ΔM, mass deviation. 

Regarding the precision, the three technical replicates of the three primary samples fulfill the 

acceptance criteria of the repeatability for both the mass spectrometer and the LC. The replicates 

have a percentage SD of identified peptide numbers below 10% (Figure 7A, B) and the recovery 

rate is in the range of 80% ± 20% (Figure 7C). The peptide RTs between the replicates have a 

Pearson correlation above 95% (Figure 6B). 
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Figure 7: Validation of the repeatability using immunopeptidomes from primary PBMC, CLL, 

and BC samples. A, Total number of natural peptides identified in three technical replicates, 

respectively. B, Standard deviation (S.D.) given in total peptide numbers and in percent. C, Recovery 

rate of peptide identifications between the replicates. Abbreviation: S.D., standard deviation. 

The specificity can be investigated, as all analyzed primary samples are expected to contain at 

least one of the previously used 62 synthetic peptides as natural HLA class I-presented peptide. 

The natural peptides should fulfill the acceptance criteria of the accuracy and specificity indicated 

in Table 1 for the mass spectrometer and the LC, respectively (for identified peptides and product 

ions, see supplemental Table S6). 

The three replicates fulfill the acceptance criteria of the specificity for the mass spectrometer and 

for the LC. The difference of the median of the mass deviation from the theoretical mass (M ppm) 

of the peptides AIVDKVPSV, YLLPAIVHI, GTYVSSVPR, RPSGPGPEL, SVINLVIVK and RVYGGITTK, 

which were identified as natural and 100 fmol spiked synthetic peptides, is below 2 ppm (Figure 

8A).  
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Figure 8: Validation of the specificity using immunopeptidomes from primary PBMC, CLL, and 

BC samples and isotope labeled synthetic peptides spiked into JY. The samples were analyzed in 

three replicates. A, Mean mass deviation of the detected precursor masses from the theoretical 

masses (ΔM ppm) of the identified natural peptides AIVDKVPSV, YLLPAIVHI, GTYVSSVPR, 

RPSGPGPEL, SVINLVIVK and RVYGGITTK and 100 fmol synthetic peptides spiked into JY. B, Mass 

deviation as S.D. of the precursor masses detected in MS mode and (C) the resulting five selected top 

fragments in MS/MS modes of the identified natural and synthetic peptides. Abbreviations: ppm, 

parts per million; ΔM, mass deviation; S.D., standard deviation. 

The SD of the mass accuracy of the precursor masses in MS mode and of the selected five top 

product ions in MS/MS mode of the peptides AIVDKVPSV, YLLPAIVHI, GTYVSSVPR, RPSGPGPEL, 

SVINLVIVK and RVYGGITTK is below 0.001 Da for both the natural and synthetic peptides (Figure 

8B and C, for MS/MS spectra, see supplemental Figure S1). 

3.6.6 Transfer of the method to other LC-MS/MS systems 

In addition to the previous robustness analyses, the method was transferred to an LC-MS/MS 

system with a less sensitive LTQ Orbitrap XL and the HLA-eluted peptides from JY cells were 

analyzed. To demonstrate the method transfer to another LC-MS/MS system, the robustness 

measurements of the method were investigated with regard to accuracy, precision, and specificity 

on the LTQ Orbitrap XL containing LC-MS/MS system regardless of the specifications indicated in 

Table 1 set for an Orbitrap Fusion Lumos containing LC-MS/MS system. In order to increase the 
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number of identified peptides, the MS/MS analysis is performed in the ion trap to enable a faster 

scanning throughput. Consequently, different peptide spectra are expected using adapted settings 

(described in experimental procedures) and therefore besides the JY samples also 500 fmol 

synthetic peptides of the five selected sequences AIVDKVPSV, RPSGPGPEL, YLLPAIVHI, 

KVLEYVIKV and SPSSILSTL were spiked in JY matrix and measured on the LTQ Orbitrap XL for a 

spectral comparison. New five top product ions were selected based on intensity and relevance in 

MS/MS mode for the LTQ Orbitrap XL system. To investigate the accuracy, the purified HLA-eluted 

peptides from one JY batch were analyzed in three separate analytical replicates. Regarding the 

accuracy of the mass spectrometer in MS mode the median mass deviation from the theoretical 

mass of all identified natural peptides (median M: -0.37 ppm) is below 2 ppm in Figure 9A similar 

to the Orbitrap Fusion Lumos system. The peptide RTs between the replicates of all natural 

peptides do have a mean Pearson correlation above 95%, demonstrating the accuracy of the LC 

(Figure 9B).  
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Figure 9: Investigation of the accuracy, repeatability and specificity using 

immunopeptidomes from JY cells analyzed after method transfer to a less sensitive LC-MS/MS 

system. Three replicates were analyzed. A, Mass deviation from the theoretical precursor mass  

(ΔM ppm) to the theoretical mass of all identified natural peptides and of the five identified natural 

peptides AIVDKVPSV, RPSGPGPEL, YLLPAIVHI, KVLEYVIKV and SPSSILSTL. B, Mean Pearson 

correlation of the peptide retention times between the replicates for all identified natural peptides 
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and the five selected peptides. C, Total number of natural peptides identified in three technical 

replicates, respectively. D, Standard deviation (S.D.) given in total peptide numbers and in percent. 

E, Recovery rate of peptide identifications between the replicates. Abbreviation: S.D., standard 

deviation. Mass deviation as S.D. of the (F) precursor ion masses in MS mode and the (G) resulting 

five selected top fragments in MS/MS modes of the five selected natural and synthetic peptides. 

Abbreviations: PC, Pearson correlation; ppm, parts per million; ΔM, mass deviation; S.D., standard 

deviation. 

The precision was determined by assaying the previously mentioned three technical replicates. 

The number of identified peptides was similar to the validated LC-MS/MS system below 10% SD 

with 5% SD of the repeatability on the initial day (Figure 9C, D). However, the recovery rate with 

a recovery of 55 ± 4% of identified peptides in a repeated replicate is below the specifications of 

the Orbitrap Fusion Lumos system (Figure 9E). 

The specificity was again investigated using the mass deviation from the theoretical mass of the 

five selected peptides AIVDKVPSV, RPSGPGPEL, YLLPAIVHI, KVLEYVIKV and SPSSILSTL. The 

median of the identified natural peptides is M: -0.57 ppm (Figure 9A) (for identified peptides 

and product ions, see supplemental Table S7). 

The peptide RTs between the replicates of the five selected peptides identified as natural and 

synthetic peptides do have a Pearson correlation above 95% (Figure 9B). 

The standard deviation (SD) of the mass accuracy of the precursor masses in MS mode (Figure 9F) 

and of the five selected top product ions in MS/MS mode (Figure 9G, for MS/MS spectra, see 

supplemental Figure S3), selected based on intensity and relevance, of the five selected peptides 

AIVDKVPSV, RPSGPGPEL, YLLPAIVHI, KVLEYVIKV and SPSSILSTL is below 0.001 Da in MS Mode, 

analyzed in the Orbitrap, and below 0.1 in MS/MS mode, analyzed in the ion trap, for the natural 

peptides. 

3.7 Conclusion/Discussion 

To provide reliable biomarker and patient-individual tumor-associated target antigen 

identification for clinical studies, the fast and sensitive LC-MS/MS assay for the identification of 

natural and synthetic HLA-restricted peptides was validated for the technical equipment of our 

laboratory, consisting of a nanoUHPLC, UltiMate 3000 RSLCnano on-line coupled to an Orbitrap 

Fusion Lumos mass spectrometer. The immunopeptidomics pipeline is used for identification and 

impurity detection, thus according to FDA and EMA guidelines a validation of the specificity and 

LOD is required. Additionally, we validated the accuracy, precision, and robustness to 

demonstrate the reliability of the pipeline. 
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The results of the JY samples spiked with isotope labeled synthetic peptides enabled verification 

of the accuracy of the LC-MS/MS system in terms of similarity of the analyzed natural peptides to 

the theoretical and synthetic peptide masses. With the same dataset we were able to identify five 

specific peptides, expected as natural and synthetic peptides, which fulfil the acceptance criteria 

of the accuracy and could prove the specificity. Furthermore, we could show that with five selected 

MS/MS product ions all identified peptides within one replicate can be distinguished. Instead of 

picking simply the five most intensive product ions for therapeutic peptide candidates, our quality 

control selects the top five product ions also according to meaningfulness (expert review: b- or y-

ions are preferred), thus further increasing specificity. The validation of the precision showed a 

reliable identification of peptides with a uniform recovery rate proving the repeatability and 

intermediate precision after one week. 

A major limitation of MS-based data-dependent acquisition (DDA) discovery approaches is the 

low recovery rate. In our immunopeptidomics experiments a recovery rate of 80% ± 20% was 

achieved for cell lines and tissue samples, owing to the tissue heterogeneity and high dynamic 

range. Due to the recovery rate, in our lab routinely triplicate measurements are performed. At 

the LOD a reasonable reliability should be provided with a recovery rate of 50%, when triplicate 

measurements are performed. A peptide content of 10 fmol synthetic peptides in JY matrix 

enabled a reliable identification of 50% of the peptides. An improvement of the recovery rate 

might be obtained with a replacement of the DDA analysis with data-independent acquisition, 

which has demonstrated a superior reproducibility149–153.  

In order to prove the robustness of the immunopeptidomics assay, we synthesized a large variety 

of known HLA ligands, with different length, mass, grand average of hydropathicity (GRAVY), 

theoretical isoelectric point (pI) and HLA allotype restriction. In addition, we employed several 

primary, clinically relevant samples in addition to the JY cell line and further analyzed soluble 

peripheral blood mononuclear cells from a healthy donor, a soluble chronic lymphocytic leukemia 

and a solid bladder cancer sample. Lastly, for the three primary samples the HLA immunoaffinity 

chromatography and immunopeptidomics analysis was performed from three different persons. 

We could successfully verify the specifications of the accuracy, precision, and specificity for both 

the mass spectrometer and LC, respectively. 

Besides the robustness of the method, we exemplarily further investigated for precision, accuracy 

and specificity after the method transfer to a LC-MS/MS system utilizing an LTQ Orbitrap XL. 

However, in order to obtain a high number of identified peptides, the MS/MS analysis is 

performed in the ion trap, instead of the Orbitrap, to enable a faster scanning throughput. 

Consequently, the mass accuracy of the product ions in the MS/MS analysis varies already at the 

second decimal and for the previously selected top five ions, two new ions had to be defined for 
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SPSSILSTL and one new ion for the other peptides, except of AIVDKVPSV. Furthermore, the 

recovery-rate is much lower using the LTQ Orbitrap XL. 

The specifications of our validated Orbitrap Fusion Lumos based LC-MS/MS system are not met 

by the LTQ Orbitrap XL. In order to fully validate the method on the LTQ Orbitrap XL for peptide 

identification according to the current FDA and EMA guidelines, at least the analyses regarding 

specificity and LOD have to be performed or, ideally, all mentioned parameters should be 

investigated. The specifications of the precision, specificity and LOD have to be adapted to the 

capabilities of the less sensitive mass spectrometer. However, the specifications should be tight 

enough to recognize immediately any functional problems with the LC-MS/MS system. 

To enable standardization between different MS platforms and laboratories, the same 

immunopeptidome batch from one cell line should be used for immunopeptidomics. Here we 

present how the parameters accuracy, specificity, LOD, precision and robustness can be 

investigated for the validation of LC-MS/MS systems. However, every LC-MS/MS system in every 

laboratory needs to be validated independently with its own specifications142. For the validation 

the specifications should be adapted as closely as possible to the optimal performance of the 

respective LC-MS/MS system, but should also consider the harmless device-related performance 

variations. Furthermore, it must be considered that more sensitive devices can detect peptides in 

lower quantities that less sensitive devices cannot identify. Here, the Orbitrap Fusion Lumos 

discovers twice the number of peptides.  

The validation is performed in a new process to show that the previously specified requirements 

(acceptance criteria) are reproducibly met in practical use and that the analytical method is 

appropriate for its intended use. After the validation a system suitability test (SST) is used to 

continuously monitor the performance of the instrument in different fixed intervals, to verify that 

an analytical method is suitable for the intended purpose on the day of analysis. Control peptides 

known from experience to be reliably identified in the respective immunopeptidome of the cell 

line in higher quantity should be selected for this purpose. The identification and the retention 

time of these peptides in the immunopeptidomes could be routinely checked in the LC-MS/MS 

analysis. The selected peptides can be standardized between different suitable LC-MS/MS systems 

and laboratories. The scope of each LC-MS/MS validation and the SSTs can prove the suitability 

and comparability of different laboratories for a particular analysis. The immunopeptidomic 

pipeline is currently in use for the identification of tumor-associated target antigens of multiple 

patients in the peptide vaccination study iVAC-CLL01(NCT02802943) and for the preparation of 

further studies (e.g., PepIVAC01). Due to the peptide recovery rate of 80±20% per replicate, 

patient samples are routinely analyzed in triplicates to ensure a high recovery. Finally, candidate 

peptide antigens are always verified using synthetic peptides to exclude false positives and 
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artefacts. The identification procedure of tumor-specific HLA ligands using a comparison of ligand 

source proteins to established tumor antigens or ligand mapping on different malignant and 

benign tissues was carried out for cell lines and various tumor entities124,143,154–158. During the last 

decades and in ongoing studies the immunopeptidomics pipeline has demonstrated its reliability 

and applicability. 

In addition, we have now validated the accuracy, precision, specificity, LOD, and robustness in line 

with the current FDA and EMA guidelines. This validated pipeline enables the reliable 

identification of tumor-associated HLA-presented target antigens to support current and future 

clinical studies. Furthermore, different validation approaches are presented, that can be 

translated to other laboratories with similar equipment, or to other MS-based discovery 

approaches, such as proteomics, metabolomics, and lipidomics. 

3.8 Acknowledgements 

This work was supported by the German Cancer Consortium (DKTK) and the Natural and Medical 

Sciences Institute at the University of Tübingen NMI. We thank the Wirkstoffpeptidlabor, 

especially Patricia Hrstić, Ulrich Wulle, Nicole Bauer, Camille Supper, and Mirijam Bohn for expert 

peptide synthesis and quality control. 

3.9 Data availability 

The mass spectrometry data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE159 partner repository with the 

dataset identifier PXD012797. 

3.10 Supplementary data 

Supplementary data files of the final publication in Molecular & Cellular Proteomics can be 

accessed via: 

https://www.mcponline.org/content/19/3/432/tab-figures-data  

Supplementary data files of the previous version in bioRxiv can be freely accessed via: 
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3.10.1 Supplementary Tables 

Supplemental Table S1: Selected individual synthetic peptides for the validation of the LC-MS/MS 

method. The 62 synthetic isotope labeled peptides consist of different amino acid sequences and 

physicochemical properties and depict a cross-section of peptides identified in a typical 

immunopeptidomics experiment. For the assessment of the differences between the peptides, the 

grand average of hydropathicity (GRAVY), the theoretical isoelectric point (pI) under physiological 

conditions, and the molar mass of the peptides were calculated using ProtParam 

(https://web.expasy.org/protparam). Heavy-labeled amino acids are indicated in bold (leucine +7 

Da, proline and valine +6 Da). Abbreviations: pI, isoelectric point, GRAVY, grand average of 

hydropathicity. 

Batch Sequence Molecular weight pI GRAVY 

174121 DGPSSAPATPTK 1,128.20 5.84 -1.00 

174013 SLNSNVYDV 1,010.07 3.80 -0.13 

174014 FPHLPGKTFVY 1,305.54 8.60 0.08 

174015 SVLTPLLLR 1,011.27 9.47 1.31 

174085 RYQALFHDF 1,196.33 6.74 -0.53 

174122 GPSSAPATPTK 1,013.12 8.75 -0.77 

174123 FPHLPGKTF 1,043.23 8.76 -0.22 

174124 FLLPAGWIL 1,029.29 5.52 1.96 

174125 LLPAGWIL 882.11 5.52 1.85 

174126 TPLLLRGL 882.11 9.41 1.00 

174017 AIVDKVPSV 927.11 5.88 1.01 

174018 YLLPAIVHI 1,038.30 6.74 1.83 

174019 VYVVGTAHF 992.14 6.71 1.29 

174020 GTYVSSVPR 965.07 8.75 -0.19 

174021 TYQEVAQKF 1,113.24 5.66 -0.84 

174022 SPQGRVMTI 988.17 9.47 -0.10 
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Batch Sequence Molecular weight pI GRAVY 

174086 ITDSAGHILY 1,089.21 5.08 0.47 

174087 RVYGGLTTK 994.16 9.99 -0.43 

174088 ALKTGIVAK 900.13 10.00 0.80 

174089 SVLNLVIVK 984.25 8.47 1.83 

174090 DLIIKGISV 957.18 5.84 1.43 

174127 NTDSPLRY 965.03 5.84 -1.51 

174128 RPSGPGPEL 909.01 6.00 -1.18 

174023 DLKEKKEVV 1,087.28 6.18 -1.11 

174024 TLHDQVHLL 1,075.23 5.90 0.17 

174061 NVGGLIGTPK 955.12 8.75 0.16 

174062 FYFPTPTVL 1,084.28 5.52 0.86 

174063 RSYHLQIVTK 1,244.46 9.99 -0.54 

174064 NPKAFFSVL 1,022.21 8.75 0.62 

174065 NPSVREFVL 1,060.22 6.00 0.12 

174066 VLVDQSWVL 1,058.24 3.80 1.28 

174068 APDAKSFVL 947.10 5.88 0.51 

174069 KVLEYVIKV 1,090.37 8.50 0.92 

174070 GVYDGREHTV 1,132.20 5.32 -0.91 

174071 KVLEHVVRV 1,078.32 8.75 0.61 

174072 ALDEKVAEL 987.12 4.14 0.11 

174073 GVYDGEEHSV 1,091.10 4.13 -0.82 

174074 FVYGEPREL 1,109.25 4.53 -0.44 

174075 NAVGVYAGR 906.01 8.75 0.21 

174076 VWSDVTPLTF 1,164.32 3.80 0.68 
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Batch Sequence Molecular weight pI GRAVY 

174077 AVLPLTVAEVQK 1,267.53 6.05 0.88 

174078 RVRELAVAL 1,026.25 9.60 0.79 

174079 HLTEVYPEL 1,100.24 4.51 -0.22 

174080 SVLADLVTTK 1,046.23 5.55 0.82 

174081 IPFSNPRVL 1,042.25 9.75 0.37 

174082 VLYGPAGLGK 974.17 8.56 0.56 

174083 SPSVSQLSVL 1,016.16 5.24 0.77 

174084 VLYPVPLESY 1,179.38 4.00 0.59 

174092 TLLKALLEI 1,013.29 5.66 1.49 

174093 ALREEEEGV 1,031.09 4.09 -1.01 

174094 SLLKFLAKV 1,018.31 10.00 1.29 

174095 LIHFLLLK 996.30 8.76 1.93 

174096 GLYDGREHSV 1,132.20 5.32 -0.96 

174129 LAQPPSGQR 953.07 9.75 -1.14 

174130 FPSLREAAL 1,003.17 6.00 0.40 

174132 SPSKAFASL 907.03 8.47 0.26 

174205 RLLDSVSRL 1,058.25 9.60 0.17 

174206 TYSEKTTLF 1,089.21 5.66 -0.56 

174207 SLLQHLIGL 993.21 6.46 1.31 

174208 SPSSILSTL 904.03 5.24 0.73 

174210 VLLAGFKPPL 1,054.34 8.72 1.27 

174211 LYLPKSWTI 1,120.36 8.59 0.32 
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Supplemental Table S2: Experimental design. Information about the sample, performed analysis, 

number of replicates, and raw file name of each sample is provided. Abbreviations: LOD, Limit of 

detection; PBMC, Peripheral blood mononuclear cell; CLL, Chronic lymphocytic leukemia; BC, 

Bladder cancer. 

Sample Purpose Condition/ number 
Technical 

replicate 
Raw file name 

JY cell 

line 
Precision 1 (day 0) 1 JY_repeatability_1_1 

JY cell 

line 
Precision 1 (day 0) 2 JY_repeatability_1_2 

JY cell 

line 
Precision 1 (day 0) 3 JY_repeatability_1_3 

JY cell 

line 
Precision 2 (day 0) 1 JY_repeatability_2_1 

JY cell 

line 
Precision 2 (day 0) 2 JY_repeatability_2_2 

JY cell 

line 
Precision 2 (day 0) 3 JY_repeatability_2_3 

JY cell 

line 
Precision 3 (day 0) 1 JY_repeatability_3_1 

JY cell 

line 
Precision 3 (day 0) 2 JY_repeatability_3_2 

JY cell 

line 
Precision 3 (day 0) 3 JY_repeatability_3_3 

JY cell 

line 
Precision 1 (day 7) 1 

JY_intermediate_precision_1_

1 

JY cell 

line 
Precision 1 (day 7) 2 

JY_intermediate_precision_1_

2 

JY cell 

line 
Precision 1 (day 7) 3 

JY_intermediate_precision_1_

3 

JY cell 

line 
Precision 2 (day 7) 1 

JY_intermediate_precision_2_

1 

JY cell 

line 
Precision 2 (day 7) 2 

JY_intermediate_precision_2_

2 

JY cell 

line 
Precision 2 (day 7) 3 

JY_intermediate_precision_2_

3 

JY cell 

line 
Precision 3 (day 7) 1 

JY_intermediate_precision_3_

1 
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Sample Purpose Condition/ number 
Technical 

replicate 
Raw file name 

JY cell 

line 
Precision 3 (day 7) 2 

JY_intermediate_precision_3_

2 

JY cell 

line 
Precision 3 (day 7) 3 

JY_intermediate_precision_3_

3 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 0.1 fmol 

synthetic peptides 
1 JY_100amol_1_1 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 0.1 fmol 

synthetic peptides 
2 JY_100amol_1_2 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 0.1 fmol 

synthetic peptides 
3 JY_100amol_1_3 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 1 fmol 

synthetic peptides 
1 JY_1fmol_1_1 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 1 fmol 

synthetic peptides 
2 JY_1fmol_1_2 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 1 fmol 

synthetic peptides 
3 JY_1fmol_1_3 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 10 fmol 

synthetic peptides 
1 JY_10fmol_1_1 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 10 fmol 

synthetic peptides 
2 JY_10fmol_1_2 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 10 fmol 

synthetic peptides 
3 JY_10fmol_1_3 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 100 fmol 

synthetic peptides 
1 JY_100fmol_1_1 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 100 fmol 

synthetic peptides 
2 JY_100fmol_1_2 
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Sample Purpose Condition/ number 
Technical 

replicate 
Raw file name 

JY cell 

line 

LOD, 

specificity, 

accuracy 

spiked 100 fmol 

synthetic peptides 
3 JY_100fmol_1_3 

PBMC Robustness 1 1  

PBMC Robustness 1 2  

PBMC Robustness 1 3  

CLL Robustness 1 1  

CLL Robustness 1 2  

CLL Robustness 1 3  

BC Robustness 1 1  

BC Robustness 1 2  

BC Robustness 1 3  

JY cell 

line 

Precision, 

accuracy (LTQ 

Orbitrap XL) 

1 (day 0) 1  

JY cell 

line 

Precision, 

accuracy (LTQ 

Orbitrap XL) 

1 (day 0) 2  

JY cell 

line 

Precision, 

accuracy (LTQ 

Orbitrap XL) 

1 (day 0) 3  

JY cell 

line 

Specificity, 

accuracy (LTQ 

Orbitrap XL) 

spiked 500 fmol 

synthetic peptides 
1  

 

Supplemental Table S3: Limit of detection. List of identified peptides in four aliquots of HLA eluted 

ligands from JY cells spiked with 0.1 fmol, 1 fmol, 10 fmol, and 100 fmol isotope labeled synthetic 

peptides. The lowercased amino acids indicate the isotope labeled amino acids. Abbreviations: M, 

mass deviation; PPM, parts per million; RT, retention time. 

Direct link: 

https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/6/154045_2

_supp_455925_q3txy1.xlsx  

 

https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/6/154045_2_supp_455925_q3txy1.xlsx
https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/6/154045_2_supp_455925_q3txy1.xlsx
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Supplemental Table S4: Specificity. Information about the precursor mass, the mass deviation from 

the theoretical mass, the retention time, and the selected top five product ions is provided. 

Abbreviations: M, mass deviation; PPM, parts per million; RT, retention time. 

Direct link: 

https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/7/154045_2

_supp_455926_q3txy2.xlsx  

Supplemental Table S5: Precision. List of identified peptides in nine separate analytical runs and 

further nine runs after one week. Abbreviations: PSM, peptide-to-spectrum matches; PEP, posterior 

error probability; Xcorr, cross correlation score, M, mass deviation; PPM, parts per million; RT, 

retention time. 

Direct link: 

https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/8/154045_2

_supp_455927_q3txy2.xlsx  

Supplemental Table S6: Specificity in primary patient samples. Information about the precursor 

mass, the mass deviation from the theoretical mass, the retention time, and the selected top five 

product ions is provided. Abbreviations: M, mass deviation; PPM, parts per million; RT, retention 

time. 

Direct link: 

https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/9/154045_2

_supp_455928_q3txy2.xlsx  

Supplemental Table S7: Specificity of the LTQ Orbitrap XL containing LC-MS/MS system. 

Information about the precursor mass, the mass deviation from the theoretical mass, the retention 

time, and the selected top five product ions is provided. Abbreviations: M, mass deviation; PPM, 

parts per million; RT, retention time. 

Direct link: 

https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/10/154045_

2_supp_455929_q3txy2.xlsx  

 

https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/7/154045_2_supp_455926_q3txy2.xlsx
https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/7/154045_2_supp_455926_q3txy2.xlsx
https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/8/154045_2_supp_455927_q3txy2.xlsx
https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/8/154045_2_supp_455927_q3txy2.xlsx
https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/9/154045_2_supp_455928_q3txy2.xlsx
https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/9/154045_2_supp_455928_q3txy2.xlsx
https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/10/154045_2_supp_455929_q3txy2.xlsx
https://www.mcponline.org/highwire/filestream/54083/field_highwire_adjunct_files/10/154045_2_supp_455929_q3txy2.xlsx
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3.10.2 Supplementary Figures 

Supplemental Figure S1: Validation of the specificity using the MS/MS spectra of the natural 

presented peptides with the corresponding synthetic peptides of the five selected peptides 

AIVDKVPSV, RPSGPGPEL, YLLPAIVHI, KVLEYVIKV and SPSSILSTL. 

Direct link: 

https://www.mcponline.org/content/mcprot/suppl/2020/01/14/C119.001652.DC1/154045_2_su

pp_455919_q3txy1.pdf  

Supplemental Figure S2: Validation of the robustness and specificity using the MS/MS spectra of 

natural presented peptides with the corresponding synthetic peptides of AIVDKVPSV, YLLPAIVHI, 

GTYVSSVPR, RPSGPGPEL, SVINLVIVK and RVYGGITTK. Abbreviations: PBMC, Peripheral blood 

mononuclear cell; CLL, Chronic lymphocytic leukemia; BC, Bladder cancer. 

Direct link: 

https://www.mcponline.org/content/mcprot/suppl/2020/01/14/C119.001652.DC1/154045_2_su

pp_455920_q3txy1.pdf  

Supplemental Figure S3: Investigation of the specificity of the LTQ Orbitrap XL LC-MS/MS system 

using the MS/MS spectra of the natural presented peptides with the corresponding synthetic peptides 

of the five selected peptides AIVDKVPSV, RPSGPGPEL, YLLPAIVHI, KVLEYVIKV and SPSSILSTL. 

Direct link: 

https://www.mcponline.org/content/mcprot/suppl/2020/01/14/C119.001652.DC1/154045_2_su

pp_455921_q3txy1.pdf  

  

https://www.mcponline.org/content/mcprot/suppl/2020/01/14/C119.001652.DC1/154045_2_supp_455919_q3txy1.pdf
https://www.mcponline.org/content/mcprot/suppl/2020/01/14/C119.001652.DC1/154045_2_supp_455919_q3txy1.pdf
https://www.mcponline.org/content/mcprot/suppl/2020/01/14/C119.001652.DC1/154045_2_supp_455920_q3txy1.pdf
https://www.mcponline.org/content/mcprot/suppl/2020/01/14/C119.001652.DC1/154045_2_supp_455920_q3txy1.pdf
https://www.mcponline.org/content/mcprot/suppl/2020/01/14/C119.001652.DC1/154045_2_supp_455921_q3txy1.pdf
https://www.mcponline.org/content/mcprot/suppl/2020/01/14/C119.001652.DC1/154045_2_supp_455921_q3txy1.pdf
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4 Identification of MHC Ligands and Establishing MHC Class I 

Peptide Motifs 

4.1 Publication and author contributions 

The chapter was accepted for publication as a protocol in the book “Methods in Molecular Biology” 

titled “Identification of MHC Ligands and Establishing MHC Class I Peptide Motifs” 65. Authors 

contributing to this work are listed below. All experiments, data analysis and manuscript writing 

were performed by the author of this thesis, except of the described contributions in the following 

lines. Moreno Di Marco cultured and analyzed the monoallelic HLA-C*01:02 transfected C1R cells 

as previously described 154 and Stefan Stevanović supported the project draft. All authors 

proofread the manuscript. 

Author information: 

Ghosh MI, Di Marco MI, Stevanović SI 

Affiliations: 

I. Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, 

Germany. 

4.2 Summary 

MHC class I peptide motifs are used on a regular basis to identify and predict MHC class I ligands 

and CD8+ T cell epitopes. This approach is above all an invaluable tool for the identification of 

disease-associated epitopes ranging from pathogen associated epitopes, tumor associated natural 

and neoepitopes to autoimmune disease associated epitopes. As a matter of fact, the vast majority 

of T cell epitopes discovered during the past two decades was identified by means of epitope 

prediction and MHC ligand identification. Here we describe the steps which are necessary to 

identify MHC epitopes from monoallelic and multiallelic cells and establish MHC class I peptide 

motifs to compose a reliable scoring matrix for epitope prediction. As an example, the ligands of 

monoallelic C1R cells and multiallelic peripheral blood mononuclear cell tissue will be identified 

and a scoring matrix for the prediction of HLA-C*01:02-presented T cell epitopes will be 

developed. 

4.3 Introduction 

Major histocompatibility complex (MHC) class I molecules play an important role in cellular 

immunology with impact on the growing fields of individualized medicine and cancer 

immunotherapy 64,160,161. The main purpose of these protein complexes is to present peptides of 

intracellular origin to T cells for immunosurveillance. Only a specific subset of peptides is 
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showcased in such a way. Peptide precursors are mainly produced by the proteasome and are 

transported into the endoplasmic reticulum (ER) by the transporter associated with antigen 

processing (TAP). Further trimming by ER proteases yields peptides which are transported to the 

plasma membrane after being bound to MHC complexes 162–164. All these steps are dependent on 

the peptide sequence and are summarized in the selected ligands presented by MHC molecules. 

Hence peptides presented by a certain MHC allotype share common characteristics referred to as 

MHC peptide motif 125. These motifs usually determine the preferred peptide length and specific 

amino acid residues in certain positions called anchors 165. In most cases the peptides comprise 

nine amino acids and the anchors are the second and the C-terminal amino acid 166 (Figure 5). 

Here we show how the amino acid distribution of naturally processed and presented ligands of 

the MHC allotypes HLA-C*01:02 and HLA-B*56:01 can be exploited for the elucidation of the 

corresponding peptide motif. We further describe the procedural steps to confirm the accuracy 

and validity of such a motif. Nowadays, there are multiple ways to identify MHC ligands and 

generate a peptide motif. Figure 1 illustrates the consecutive steps to identify MHC ligands, to 

generate a peptide motif and to set up a scoring matrix for epitope prediction. Here we focus on 

the identification of MHC ligands from mono- and multiallelic cells, which can be used to identify 

unknown MHC motifs. 

  



50 
 

 

Figure 1: Workflow to identify MHC ligands and establish MHC class I peptide motifs. 

Nowadays, there are several options to identify MHC ligands (see Note 5). A simple and efficient 

workflow using clustering is performed for the identification and successive scoring matrix 

generation of MHC ligands from mono- and multiallelic cells described in more detail below. 

4.4 Methods 

1. Isolate at least 200 naturally presented MHC ligands of the desired MHC allotype  

(see Note 1). 

 

2. Create a curated list of these ligands that contains only valid MHC ligands (see Note 2). 

Here GibbsCluster 2.0 is used to identify MHC class I ligands from mono- and multiallelic 

cells 167. Use the recommended settings for MHC class I with one to six clusters enabled. 

 

a. To analyse monoallelic cell lines use GibbsCluster 2.0 with an appropriate number 

of clusters to remove contaminants. In case of the HLA-C*01:02 transfected C1R 

cell line (data provided from Di Marco et al. 154 used in our example a low 

expression of endogenous HLA-B*35:03 and C*04:01 is expected. At least two 
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clusters will be needed to separate MHC ligands and contaminants from the MHC 

ligands of the desired allotype (Figure 2).  

 

b. For the analysis of MHC ligands isolated from multiallelic cells multiple clustering 

steps need to be performed (Note 3). In case of multiallelic cells it needs to be 

considered, that clustering might not separate similar motifs and MHC ligands of 

HLA-C, as there will be a lower number of ligands of every HLA-C compared to the 

HLA-A and -B clusters. Hence a repeated clustering using only ligands from the 

clusters consisting of multiple not deconvoluted motifs might lead to a motif 

separation. The MHC ligands extracted from peripheral blood mononuclear cells 

(PBMC) were clustered into five different motifs using two clustering approaches 

(Figure 2). As HLA-B*56:01 is rare, no reliable prediction motif based on eluted 

B*56:01 ligands is available yet. Thus, the motif can be identified excluding the 

other ligands of known MHC motifs. 
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Figure 2: Identification of 

MHC class I ligands using 

GibbsCluster 2.0. All identified 

peptides are uploaded into the 

Gibbs cluster web application 

(cbs.dtu.dk/services/GibbsCluster-

2.0/). In case of the HLA-C*01:02 

positive C1R cells, three clusters 

were created. Typically, the best 

number of clusters with the highest 

Kullbach Leibler distance will be 

suggested. However, often a lower 

or higher number of clusters is 

beneficial with an improved or no 

further unnecessary motif 

segregation. In comparison to 

known motifs (Figure 5), the 

desired C*01:02 motif can be 

identified. Here we generate a 

matrix for ligands comprising 9 

amino acids (Figure 3). 

Subsequently, performing a 

filtering for the desired anchor 

positions (position 3: P and 9: L, M, 

V, I and F) will result in a list of peptides with the selected anchor positions independent of the peptide 

length. Using the web application Seq2motiv 168 the motifs can be visualized. In case of the 

multiallelic PBMC the first round of clustering could elucidate 4 motifs. We could identify the HLA-

A*02, B*40 and HLA-C motifs based on Figure 5. Another round of clustering using the peptides of 

cluster 2 deconvolutes the two HLA-C motifs. The first motif is most similar with HLA-B*55. HLA 

allelotyping of the PBMCs resulted in HLA-A*02:01, B*40:02, B*56:01, C*01:02 and C*03:04 and 

confirmed the previous findings. Knowing that the donor is HLA-B*56:01 positive we can identify the 

first cluster as the missing B*56:01 motif. As the number of ligands of the HLA-A*02 cluster is the 

largest, and no further known HLA-A motif was identified, it is assumed that the patient is HLA-A*02 

homozygous. 

3. Create a distribution matrix based on the relative frequency of amino acids in the different 

positions. Matrices should be generated for peptide lengths which make up more than 
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10% of the entire peptide repertoire, usually 8-10 amino acids regarding HLA class I. An 

example is depicted in Figure 3. 

Figure 3: Amino acid distribution matrix, 

scoring matrix and ROC curve validation 

of HLA-C*01:02 ligands. In the distribution 

matrix columns represent the respective 

position of amino acids (AA) within the 

peptide sequence (shown here for 9mer 

peptides). The numbers indicate the 

preference for amino acids of the respective 

positions indicated as percentage of 

occurrence. For example, 100% of the 9mer 

ligands carry proline (P) in position 3. 

Values above 10% are highlighted in grey. 

The distribution matrix can be used to 

generate a scoring matrix. A way to 

generate scoring matrices is presented in 

step 4 and Note 4. Finally, the matrix has to 

be validated. To visualise the performance 

of the matrix in step 8 it is described how to 

generate a receiver operating 

characteristic (ROC) curve. Each point of 

the curve represents the TP- and FP-

predicted peptides using the generated 

scoring matrix applying thresholds from 0 

to 100% of the maximal score of the matrix 

in 5% steps. 
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4. Using the results of this amino acid distribution matrix a scoring matrix is assigned. A 

scoring matrix based on the frequency of amino acids in each position of the investigated 

MHC class I ligands represents the simplest example of such a matrix. There are numerous 

strategies to create a scoring matrix, including those based on automated systems (for 

example machine learning, support vector machines, artificial neural networks 169,170. We 

will describe a procedure that can be followed without the need of bioinformatics. A 

method is to assign points for the different amino acids in the different positions 66. 

Obviously, this can be done in various ways.  

The following approach is suggested as a guideline: Amino acids with similar chemical 

properties are combined in one group (see Note 4). If the relative frequency of one group 

in a certain position exceeds 80% it is declared an anchor. The most frequent amino acids 

are scored 10 points, amino acids with 1/3, 1/5, or lower frequency are awarded 8, 6 or 4 

points. If a group constitutes 50-80% in one position it is declared an auxiliary anchor. The 

most frequent amino acids are scored 6 and amino acids below 1/2 of the most frequent 

amino acid are scored with 4 points. If a group constitutes 10-50% of amino acids in a 

specific position, 1 to 3 points can be awarded e.g. 30-49% (3 points), 20-29% (2 points) 

and 10-19% (1 point). These amino acids are called preferred residues. This is only one 

exemplary strategy to award points, which can be altered on a logical basis (see Note 4 

and Figure 4). A typical scoring matrix is shown in Figure 3. Rare amino acids such as 

methionine can be awarded with points even if their respective frequencies do not reach 

the%-threshold in a specific position. The natural frequency of the amino acids in the 

Swiss-Prot database is depicted in Figure 4. 
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Figure 4: Amino acid frequency in the Swiss-Prot database (www.uniprot.org, release 

February, 2018). Regarding the importance of every amino acid in the scoring matrix the frequency 

of the amino acid in the proteome should be considered. 

5. Defining anchor residues: Identify highly abundant residues in your distribution matrix. 

Investigate whether chemically closely related amino acids are also overrepresented. As 

shown in Figure 3 in position 9 (P9) leucine dominates, furthermore methionine, valine, 

phenylalanine and isoleucine are most present. Together these amino acids occur at 100% 

in P9 of the investigated MHC ligands. The amino acids share some characteristics and are 

therefore put in one group. Because leucine is dominant 10 points are awarded. The other 

amino acids in this group are less abundant and are awarded 4 points. The second anchor 

is proline in position 3 (P3). A vast majority of the investigated ligands (100%) contain 

this residue in P3. Thus 10 points are assigned to this amino acid in P3.  

 

6. Defining auxiliary anchors: This is carried out analogously to the definition of anchor 

residues described in Step 5. A group of chemically related amino acids is defined as an 

auxiliary anchor, if its relative frequency in a specific position lies between 50% and 80% 

(see Note 4). In the present example (see Figure 3) no auxiliary anchors can be defined 

according to these criteria.  

 

7. Defining preferred residues: All non-anchor positions are investigated for the occurrence 

of preferred residues. If the relative frequency of a specific amino acid exceeds 10% in one 

position, it is considered a preferred residue. 

 



56 
 

8. The next step is to evaluate the performance of the proposed scoring matrices. There are 

different approaches, here an approach from Di Marco et al. 154 is used for nonamer 

peptides. A 5-fold cross-validation was performed. All peptides identified in step 2a were 

randomly split into 5 same sized groups. Four folds are used to generate a scoring matrix 

(step 2a to 7), which is subsequently used to identify the ligands in the fifth fold. Clustered 

peptides matching to the HLA-C*01:02 motif were defined as true positives and the 

remaining peptides as true negatives. ROC curve analysis was performed using GraphPad 

Prism (version 6.00; La Jolla California USA) in 5% steps from 0 to 100% of the maximal 

possible score of the matrix. Figure 3 indicates the specificity and selectivity of the 

developed matrix. Based on the HLA motifs generated so far, a recommended AUC of 0.8 

and higher should be achieved. Other methods to verify the reliability is using decoy 

peptides 171 or testing the ability to predict the identified peptides from their source 

protein sequence as shown in 172. 

 

9. If the matrix performs poorly, the clusters have been to unspecific, and should be purified 

using a further clustering step. MHC class I molecules have clear anchors, which should 

enable a stringent epitope prediction.  
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Figure 5: Summary of the most frequent known MHC motifs from primary tissue visualized 

using Seq2Logo 2.0 168. Black, aliphatic residues; green, hydrophilic residues; blue, basic residues; 

red, acidic residues. 
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4.5 Notes 

1. For a brief review of strategies for the isolation of MHC ligands and the protocol for 

immunoaffinity purification of MHC class I ligands used for the example at hand, see 

“Purification and identification of naturally presented MHC class I and II ligands” by 

Nelde et al. 173 in this issue. Usually the following step should be a filtering as described 

in Note 2 to identify the MHC ligands with a motif and exclude contaminants. 

 

2. To validate MHC class I derived peptides they have to be verified for several criteria. 

The peptides should have an appropriate length for MHC ligands. It is suggested to use 

only peptides with 8-12 amino acids for HLA class I and 9-25 amino acids for HLA class 

II. Secondly, the occurrence of specific amino acids at the C-terminal position (which 

always serves as an anchor position in MHC class I restricted peptides) has to be 

evaluated. MHC class I ligands usually do not possess glycine, serine, or acidic amino 

acids in the C-terminal position. Furthermore, peptides derived from known 

contaminations or artefacts have to be excluded 174. Depending on the tissue origin 

usually 60-100% of the isolated peptides are MHC ligands after a proper 

immunoaffinity purification of MHC class I derived peptides. 

 

3. To identify the different motifs of the MHC allotypes, sufficient ligands of every 

allotype have to be eluted, which is mostly ensured only for HLA-A and B. Secondly, 

the clusters will be identified if the motifs have strong differences in the anchor 

positions. In case of missing motifs, the peptides identified in each cluster should be 

repeatedly clustered independently to identify, whether similar motifs have been 

merged and are separated in a second clustering. HLA-C molecules are lower 

expressed than HLA-A and -B and therefore lead to less isolated peptides. Hence, 

enough peptides have to be isolated first. After the first clustering the remaining 

peptides should be excluded from HLA-A and -B ligands and clustered independently 

again.  

 

4. Amino acids are usually grouped according to their chemical properties and size. Such 

grouping may vary between MHC ligand pools of different allotypes. For example, 

aspartic acid and glutamic acid are often grouped together. However, there are several 

cases where only one of these amino acids is accepted in an anchor position (e.g. HLA-

B*49 majorly allows glutamic acid in position 2). Sometimes even amino acids with 

considerably different properties may occupy the very same anchor position. For 

example, in HLA-B*13:02 glutamine and leucine constitute the P2 anchor position. 
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5. In this example GibbsCluster 2.0 was used to enable an unbiased clustering of MHC 

ligands and no knowledge about the HLA allotype of the sample is required. Knowing 

the MHC alleles of the samples, MHC ligands can be simply identified using tools such 

as SYFPEITHI (http://www.syfpeithi.de/index.html) and NetMHC 

(http://www.cbs.dtu.dk/services/NetMHCpan/). Here peptide lists can be entered 

directly into the web application after selection of epitope prediction in SYFPEITHI or 

peptide in type of input in NetMHC. Having more bioinformatical skills FRED 2 175 and 

MixMHCpred 171 can be implemented, which provide additional benefits. FRED 2 

enables a prediction of the best fitting MHC motif for a peptide based on e.g. all MHC 

provided in SYFPEITHI and NetMHC. Recently, MixMHCpred enabled a high 

deconvolution of 78% of HLA allotypes in 50 HLA ligandomes including rare HLA types 

like HLA-B*56:01 171. 
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5 An innovative approach for HLA typing, molecular tumor testing 

and the validation of tumor exclusive antigens 

5.1 Graphical abstract 
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5.2 Abstract 

The immunopeptidome, representing all human leukocyte antigen (HLA) presented peptides, is 

the key for adaptive immunity. Each presented peptide holds an abundance of information not yet 

well understood. Up to now, the scientific focus has been on the definition of pathogenic or tumor-

derived epitopes and the deconvolution of HLA peptide motifs of the entire immunopeptidome. 

Here we go one step further and assess the properties of individual peptides to identify defined 

HLA allotype-specific and frequently presented peptides. Such allotypic peptides represent a 

versatile tool to determine HLA allotypes or serve as internal standard for characterization of 

cancer antigens and differentially processed antigens. Finally, individual tissue- and dignity-

specific antigens were defined, and the latter were successfully implemented for molecular tumor 

testing. 

Using mass spectrometry-based immunopeptidomics a database was generated consisting of 

~900 HLA-typed samples. The identified allotypic peptides enabled a HLA class I allotype 

determination, which was 95% correct in our in-house dataset and 98% in an external dataset. 

These abundant peptides were implemented as internal standard for a semi-quantitative 

investigation of established tumor antigens and antigens processed differentially in malignant and 

benign tissue. Defined dignity-specific antigens allowed 87% correct tumor detection across 

numerous tumor types. 

In summary, we describe a machine learning approach for mining immunopeptidomic data in 

order to develop a classification method, allowing to differentiate HLA class I-allotypes of a sample 

or to distinguish between healthy and malignant state of tissues. Furthermore, based on this 

method, we developed a procedure for the validation of tumor exclusive antigens. Our results 

support the classification of immunopeptidomic data sets using machine learning and highlight 

their potential utility for biomarker development. 

5.3 Introduction 

The immunopeptidome comprises a vast number and diversity of human leucocyte antigen-

presented peptides (ligands), providing T cells insights into inter- and intracellular processes. The 

ligands are constantly modulated by cellular metabolism, including gene expression, 

transcription, translation, posttranslational modifications, and antigen processing and 

presentation117,119,176. In the HLA class I pathway, intracellular proteins are enzymatically 

degraded by the proteasome and resulting peptides are transported into the endoplasmic 

reticulum (ER) via the transporter associated with antigen processing (TAP) protein complex. In 

the ER peptides can bind to HLA class I molecules and are transported to the cell surface, where 

CD8+ T cells can interact and recognize these HLA-peptide complexes. Such peptides are mainly 
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presented on the classical HLA molecules, HLA-A, HLA-B and HLA-C. HLA-A and HLA-B are most 

abundant, whereas HLA-C represents only about 10% of the classical HLA molecules 154.  

Each HLA allotype has different peptide preferences which lead to a vast and diverse peptide 

presentation in each individual. HLA class I molecules present short peptides of 8-12 amino acids 

(AA) length. The peptides presented by an allotype can be summarized in a peptide motif 35. Amino 

acids occurring with increased frequency at a defined position of the peptide sequence were 

identified and designated as anchors 65. For the distinct HLA alleles various genetic associations 

with disease susceptibility have been established 154,177–179. Besides genetic associations, also 

pathogen-derived T cell epitopes presented on infected cells have been discovered for various 

HLA allotypes and an array of immunogenic epitopes is available 180–182. In cancer many 

endogenous tumor-specific peptides 143,157,183–187 and mutation-derived peptides have been 

identified and proven to be immunogenic 124,188–190. Such immunogenic presented peptides may 

also be recognized by T cells in case of an autoimmune disease 191.  

Today, immunopeptidomic approaches are increasingly used and the application is widely 

diversified. The knowledge of HLA peptide motifs has enabled epitope prediction with a high 

sensitivity and reliable specificity 65,69,154,167,192. Still, current predictions are lacking in 

discrimination of peptides derived from HLA molecules with similar peptide motifs. Inferring the 

HLA allotype of a patient based on HLA-presented peptides has so far not been possible in an 

automated manner. 

In this study we identified allotype-specific peptides for the most frequent HLA class I allotypes 

to enable peptide-based HLA class I allotyping. In addition, allotypic peptides were implemented 

as internal standard to clarify whether established tumor antigens are presented exclusively in 

tumors and whether certain antigens are differentially processed in tumors compared to benign 

tissue. Finally, we applied the machine learning strategy to investigate, whether it is possible to 

distinguish between tumor and benign tissue on the basis of the immunopeptidome. 

5.4 Materials and Methods 

5.4.1 Tissue samples and cell lines 

Immediately after surgery, patient derived primary tissues from histologically confirmed non-

malignant tissue samples, tumor samples and tissue from adjacent sites were snap-frozen in liquid 

nitrogen and stored at -80°C. In Chapter 5 these sample types will be referred to as benign, 

malignant, and adjacent benign and are summarized by the term dignities. From every patient, 

written informed consent was obtained in accordance with the Declaration of Helsinki as well as 

local laws and regulations. Polymerase chain reaction (PCR)-based HLA typings of cell lines and 

tumor samples were carried out at the Department of Hematology and Oncology, University of 
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Tübingen, Germany. The samples were collected by many different employees of the Department 

of Immunology, Tübingen, for about the last ten years. 

5.4.2 Cell lines, transfection, and selection 

Data from monoallelic cells were retrieved from Abelin et al. 126, Di Marco et al. 154 and in-house 

analyzed C1R cells. In-house generated C1R cells were transfected and selected as previously 

described 154, cultured up to an amount of at least 109 cells and harvested by centrifugation at 

1500 rpm for 15 min at 4 ̊C. After two washing steps with cold PBS, cells were collected and frozen 

at -80°C. The immunopeptidome analysis of the in-house generated C1R cells was carried out by 

many different employees of the Department of Immunology, Tübingen. 

5.4.3 Isolation of HLA ligands by immunoaffinity purification 

HLA class I molecules were isolated using standard immunoaffinity purification as previously 

described 137, using the pan-HLA class I–specific monoclonal antibody W6/32 145 (produced in-

house) to extract HLA ligands. The obtained peptide solutions were stored at -20 ̊C until analysis 

by liquid chromatography–tandem mass spectrometry (LC-MS/MS). 

5.4.4 Analysis of HLA ligands by LC-MS/MS 

Peptides were separated by nanoflow high-performance liquid chromatography (nanoUHPLC, 

UltiMate 3000 RSLCnano, Dionex) and subsequently analyzed in one of two on-line coupled mass 

spectrometers, either an Orbitrap Fusion Lumos or LTQ Orbitrap XL (both Thermo Fisher 

Scientific) using data-dependent acquisition (DDA) as previously described 116.  

5.4.5 Database search, spectral annotation  

The acquired LC-MS/MS data was processed against the human proteome included in the Swiss-

Prot database (http://www.uniprot.org, September, 2013; containing 20,279 reviewed protein 

sequences), applying the SequestHT algorithm 146 with Proteome Discoverer software (version 

1.3 and 1.4, Thermo Fisher Scientific). Precursor mass tolerance was set to 5 ppm, product ions 

mass tolerance was set to 0.5 Da (LTQ Orbitrap XL)/0.02 Da (Orbitrap Fusion Lumos) and 

oxidized methionine was allowed as the only dynamic modification. Percolator 147-assisted false 

discovery rate (FDR) calculation was set at a target value of q ≤ 0.05 (5% FDR). Peptide length was 

limited to 8–12 AA. 

5.4.6 Classification with random forest 

We chose the random forest machine learning classification algorithm using the default 

parametrization (ntree = 100; Mtry = 10) of the R Statistical Computing software (v. 2.5.0) 

package randomForest (v. 4.6). In a 10-fold cross-validation this parametrization was determined 

to achieve reliable accuracy (AUC). Here, the principle of the random forest decision tree is that 

the leaves at the top represent class labels (HLA positive or negative) and branches represent 

conjunctions of features (HLA-specific peptide sequences). The path for a sample, which is drawn 
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by the chosen branches, decides the output of the classification (only allotypes on ≥ 10 samples 

were considered). The leaves between the root and the tree top represent the weighted predictors 

(peptides) that decide about the best split of branches 193. The random forest analysis in Chapter 5 

was carried out by Gizem Güler and Leon Bichmann. 

5.4.7 Experimental design and statistical rationale 

Peptide lists of every sample were exported from Proteome Discoverer and summarized with 

sample ID, dignity, tissue type and HLA allotype in the open-source database SQLite. Random 

Forest classification and AUC calculations were performed using R. In order to determine the 

parameters - number of samples, percentage of allotype positive samples and percentage of 

allotype restriction (Table 1) - peptides were exported as csv file from the SQLite and the 

parameters determined using Microsoft Excel. Pearson correlation and unpaired t-tests were as 

well calculated using Microsoft Excel. 

5.4.8 Generation of an immunopeptidome tissue database 

To obtain maximal biological diversity and robustness, a database was generated containing the 

immunopeptidomes of human primary tissues and cell lines covering various organs from benign, 

adjacent benign, and malignant tissues from various donors, tissues, and tumor entities 

(Supplemental Figure S1 and S2). The database contains peptide data of samples that have been 

analyzed from many different employees of the Department of Immunology, Tübingen, for about 

the last ten years. The database was primarily compiled and maintained by Ana Marcu. For HLA 

class I, this database comprised 1,237 different patient or cell line samples containing 892 

different HLA-typed tissues and 103 HLA-typed human cell lines (all samples were at least two-

digit HLA-typed (2-d-DB)) with a total of 333,431 peptides derived from 18,624 source proteins 

(only unique protein annotations considered). Supplemental Figure S1 depicts the distribution of 

samples across different tissues. The samples in the database include a total of 19 different HLA-

A, 28 HLA-B and 14 HLA-C allotypes on two-digit level (Supplemental Figure S2). Several 

publications have emerged from this immunopeptidome database with partially deposited data 

in online repositories 143,157,183–187 

Additional 28 in-house analyzed samples, not included in the database, and ten additional samples 

from the literature 192 were used to test the HLA typing based on HLA-presented peptides. 

5.4.9 Generation of four-digit peptide frequency tables for HLA-A, B and C 

All four-digit typed samples from the generated database (4-d-DB), containing 498 samples, were 

used to generate tables for HLA-A, B and C (Supplemental Figure S3). These tables list each peptide 

frequency for each HLA-A, B and C allotype in the 4-d-DB and enable the determination of the 

parameters described in table 1. The tables were created in collaboration with Jonas Scheid. 
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Comparing the HLA allele frequency of the four-digit typed samples (allotype ≥ 5%) with the allele 

frequency net database 194 (04.2020; German pop 8; n = 39,689) the frequencies in both cohorts 

correlate to 97% (Supplemental Table S1). 

5.4.10 Data availability 

The mass spectrometry data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE 159 partner repository with the 

dataset identifier PXD009531 for the HLA-C and G positive monoallelic cell lines. A summary of 

the monoallelic samples, technical replicates and MS RAW files is provided in Supplemental Table 

S2. 

5.5 Results 

5.5.1 Higher peptide frequency increases reliability of peptide identification 

First, we investigated whether a larger database with multiple peptide identifications increases 

the reliability of the identified peptide sequence and minimizes LC-MS/MS artefacts. In our 

generated immunopeptidome database, the majority of samples was analyzed in three technical 

LC-MS/MS replicates. Using HLA-B*15:01-transfected C1R cells we could verify that three 

technical replicates of ⅕ of the total eluted peptides suffice to characterize most identifiable 

peptides (Supplemental Figure S4; 8%±2% novel peptides in the third replicate). The analysis of 

30 replicates (three biological x ten technical replicates) reveals that a large part of the peptides 

(26%) was only found in one replicate (Supplemental Figure S5). A comparison of the q-value and 

x-Corr of the peptides found in one or 30 replicates clearly shows that the minimal false discovery 

rate at which the identification is considered correct and goodness of fit of experimental peptide 

fragments to theoretical spectra is significantly better in the latter (Supplemental Figure S5). In 

order to avoid measurement and processing artefacts, only peptides sequenced in ≥5 samples 

were selected for the database analysis (except for differential antigen processing, Supplemental 

Figure S23). 

5.5.2 Characteristics of HLA-presented peptides 

In the next step, we investigated how many of the HLA-A, B and C presented peptides are 

exclusively restricted to the respective HLA allotype and how many are shared by several 

allotypes. We compared ligands eluted from monoallelic HLA-transfected C1R cells (internal and 

external data to cover more allotypes) with the 4-d-tables (see Materials and Methods). We 

determined all HLA ligands of the transfected allele (workflow in Supplemental Figure S6) and 

mapped these ligands to the 4-d-tables (Figure 1; peptide sequences in Supplemental Table S3). 

  



66 
 

 

Figure 1: Peptides, HLA ligands and mapped ligands of monoallelic cell lines. The total number 

of peptides identified, the peptides matching to each HLA peptide motif and the peptides mapped to 

the 4-d-DB of the internal (in) and external (ex) monoallelic cells are indicated.  

The peptide motifs of the mapped ligands matched the known peptide motifs of the respective 

HLA allotypes (Supplemental Figure S7). Most presented peptides of HLA-B*35:03 and C*04:01 

endogenously expressed in C1R were removed. Regarding the peptide length distribution, 

nonamers were preferred for most allotypes. Only in the case of HLA-B*52:01 the octamers did 

predominate and also HLA-B*51:01 had a high proportion of 31% octamers (Supplemental Figure 

S8). 

We were able to determine the parameters in Table 1 for the mapped ligands. The average number 

of samples on which ligands eluted from one allotype were found (mean number of samples, 

Figure 2), the average percentage of these samples that were positive for this allotype 

(mean allotype positive samples, Figure 3) and the difference of this percentage between the 

allotype with highest percentage and the second highest (mean allotype restriction, Figure 4).  

Table 1: Parameters to assess the peptide relevance in the immunopeptidome. Parameter and 

equation used for calculation. 

Parameter Feature 

Number of samples  • Number of samples presenting the peptide and positive for 
the allotype 

%allotype positive samples • Percent of allotype positive samples of all peptide 
presenting samples 

%allotype restriction • Difference of the specificity from the most specific to the 
second most specific allotype 

 

When considering the parameters, we wanted to examine not only the average of all mapped 

ligands, but also explicitly the top ten peptides for each allotype and parameter. This allows to 
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determine whether low values for a parameter of the mapped ligands of an HLA allotype are valid 

for all peptides or whether individual peptides are presented that achieve higher values.  

 

Figure 2: Average number of ligand positive samples. The mean number of samples on which 

ligands eluted from one allotype of the internal (in) and external (ex) monoallelic cells were 

identified for HLA-A, B and C allotypes. The overall number of mapped ligands was considered as well 

as the ten peptides with the highest number of ligand positive samples per allotype (Top 10). 

 

Figure 3: Average percentage of allotype positive samples. The mean percentage of allotype 

positive samples on which ligands eluted from one allotype of the internal (in) and external (ex) 

monoallelic cells were found for HLA-A, B and C allotypes. The overall number of mapped ligands was 

considered as well as the ten peptides with the highest number of ligand positive samples per allotype 

(Top 10). 
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Figure 4: Average allotype restriction. The mean allotype restriction is indicating the difference 

of the mean %allotype positive samples of the best fitting and the next highest allotype for the ligands 

eluted from one allotype of the internal (in) and external (ex) monoallelic cells for HLA-A, B and C. 

The overall number of mapped ligands was considered as well as the ten peptides with the highest 

number of ligand positive samples per allotype (Top 10). 

Despite the large disparities in the allotype frequency in the database, the differences between the 

mapped ligands of the allotypes appeared to be rather small regarding the three analyzed 

parameters. However, deviations between allotypes were observed particularly in the top ten 

peptides.  

The average number of samples of the top ten peptides was consistent with the allotype frequency 

in the database. The top ten peptides of HLA-A*02 and -B*15 were identified in most samples. 

However, this was not the case with HLA-C. Against expectation HLA-C*07 did not stand out. This 

was probably due to fewer HLA-C molecules on the surface, resulting in a lower number of eluted 

peptides that can only be identified with sensitive LC-MS/MS, especially in larger samples or 

samples with high peptide presentation.  

For the mean allotype positive samples there were less differences between the top ten scores. 

An exception were the subtypes HLA-A*02:07, C*03:03 and C*17:01 which did not present highly 

specific peptides. Most of the HLA-A*02:07 presented peptides were also detected in A*02:01 

positive samples. Many HLA-C*03:03 presented peptides were also identified on C*03:04. The 

HLA-C*17:01 presented peptides had a peptide motif that resembles several allotypes such as 

C*02:02, C*03:03/04, C*12:03 and C*16:01. 

Concerning the %allotype restriction, HLA-A*02:07, C*03:03 and C*17:01 still reached high 

percentages. This is due to the calculation in Table 1, comparing the best allotype with highest 

%allotype-positive samples with the second best allotype. In these cases, the %allotype restriction 

is still high because the peptides of HLA-A*02:07 are also presented on A*02:01, the peptides of 

C*03:03 also presented on C*03:04 and the peptides of C*17:01 also presented on the allotypes 

C*02:02, C*03:04, C*12:03 and C*16:01. In contrast to the top ten, the mean %allotype restriction 
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of the total number of mapped ligands varied greatly. HLA-A*01, A*02, B*15 and B*51 mapped 

peptides were the most allotype-restricted. In general, the selected HLA-A allotypes, except HLA-

A*02:07, seemed to have the most allotype-specific peptides. For HLA-B the overall peptide 

specificity was lower, especially for HLA-B*52:01 and B*58:01. In case of HLA-C the peptides 

seemed to be poorly specific.  

5.5.2.1 Characteristics of allotype classification peptides 

In order to identify allotypic peptides, which enable a classification of HLA allotypes, we applied 

the random forest (RF) algorithm to the 2-d-DB (as described in the method section). The 

calculated area under the curve (AUC) for each allotype was determined to estimate the 

performance of the trained RF model using the 2-d-DB and led to an AUC >90% (mean AUC: HLA-

A = 95% ± 5%, HLA-B = 94% ± 8%, HLA-C = 93% ± 8%; maximal AUC: HLA-A*01 = 96% ± 3%; 

minimal AUC: HLA-C*17 = 93% ± 8%) indicating high specificity and sensitivity. 

We determined the most weighted predictors for the allotypes - the 20 top ranking classification 

peptides (Top20_CP) - to investigate whether the top peptides for the classification were 

rationally reasonable (Top20_CP list provided in Supplemental Table S3) and, compared to the 

ligands eluted from monoallelic cells, have above average values near to the top ten values 

depicted in Figure 2-4. An alignment of the Top20_CP (generated from the 2-d-DB) with the 4-d-

tables (generated from the 4-d-DB) revealed that the Top20_CP had a high consensus of sample 

frequency (number of peptide positive samples), specificity (%allotype positive samples) and 

restriction (%allotype positive samples) for the respective allotype as depictured for each 

individual peptide in Supplemental Figure S9-11. Similar to the monoallelic cells, the C*17 allotype 

was outstanding with poorly specific and restricted classification peptides.  

A closer look at the peptide motifs of the Top20_CP demonstrated that the peptides of most HLA-

A and B had homogeneous peptide motifs and match the known motifs of the allotypes 

(Supplemental Figure S12). In the case of all HLA-C, except for C*01, *05, *14 and *16, there was 

a relevant contamination of peptides with motifs matching other HLA allotypes. This was mainly 

related to the linkage disequilibrium. For an overview of alleles that could be inherited via a 

possible HLA linkage disequilibrium, a heat map for HLA with more than five positive samples in 

the 4-d-DB was created at two-digit level, showing how frequently the combination of two alleles 

occur in a sample of the 4-d-DB. When comparing the alleles, the allele frequencies of the German 

population (allele frequency net database 194, 04.2020; German pop 8; n = 39,689) were 

subtracted from the calculated frequency, resulting in the linked alleles (Supplemental Figure 

S13). Most HLA-C were coexpressed with other HLA-B alleles on the samples, for example in the 

form of peptides having a HLA-B*07 motif in the Top20_CP of HLA-C*07. 
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5.5.2.2 Characteristics of allotype classification peptides excluding linkage disequilibrium 

To further characterize the top 20 allotypic peptides from each HLA, all peptide contaminants of 

linkage disequilibrium were removed. Among all RF predicted peptides, the 20 peptides with the 

highest RF score of all peptides matching the peptide motif of the allotype were determined using 

GibbsCluster-2.0 167 or the peptides eluted from monoallelic transfected cell lines as described in 

Supplemental Figure S14. The top 20 allotype-associated peptides, devoid of peptide motifs 

characteristic for other allotypes, will be referred to as Top20 associated peptides (Top20_AP; 

Top20_AP list is provided in Supplemental Table S3). Especially in the case of HLA-C*07, C*08 and 

C*17 the Top20_AP, matching the peptide motifs, were distributed in the RF ranking from the first 

to the thousandth position. All linkage disequilibrium derived peptide contaminations in the 

Top20_CP peptide motifs were successfully removed in the filtering to the Top20_AP 

(Supplemental Figure S15).  

The peptide length distribution of the Top20_AP was similar to that of C1R cells. In some allotypes 

a higher proportion of octamers as in HLA-B*52 or deca- and undecamers as in B*35 was found 

besides the typical nonamers, which matches the literature 71 (Supplemental Figure S16). 

An analysis of protein abundance and protein turnover by overlapping Top20_CP and AP source 

proteins with proteome studies of Hela cells 195 demonstrates that the proteins cover the entire 

range of protein abundance and protein turnover of cytoplasmic proteins (Supplemental Figure 

S17). A closer look at the UniProt keyword annotations of the source proteins of the Top20_AP 

resulted in 69% cytoplasm annotations, but also 57% nucleus (Supplemental Figure S18; 

complete data in Supplemental Table S4). About 20% of the source proteins were involved in host-

virus interaction.  

5.5.3 Allotypic peptides implemented for HLA allotyping 

In order to test whether a simple HLA typing based on the Top20 peptides is possible and can 

provide comparable results to the RF typing, HLA-classifications of 28 internally (17 malignant 

tumors, 5 adjacent benign and 6 benign samples) and ten externally analyzed malignant 

samples 196 (processed as described in the methods section) were performed using the RF 

algorithm, Top20_CP and AP. The cut-off was a minimum of three peptides of the Top20 peptides 

per allotype that have to be identified. Two internal samples contained allotypes not considered 

in the training data set (HLA-A*66 and B*47), as there were less than ten positive samples 

available (Supplemental Table S5).  

HLA allotyping at peptide level using the RF algorithm enabled the correct typing of over 80% of 

the allotypes in the internal and external data set with a maximum of 3% mistyped alleles  

(Table 2). Typing of more than six allotypes was rare and the greatest limitation was the absence 

of almost 20% of the allotypes. Surprisingly, allotyping using the Top20_CP reduced the missing 
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alleles to a maximum of 5%. At the expense of false typing and overtyping, over 95% of the 

allotypes in the data sets could be typed correctly (98% in the external dataset). The Top20_AP 

could not keep up with the Top20_CP in typing.  

Table 2: HLA allotyping performance. HLA allotyping at the peptide level using the RF algorithm, 

Top20_CP and AP. A summary of all correct, false, missing, and overtyped allotypes of the 38 novel 

internal and external samples is given. 

Allotyping Dataset Correct False Missing Overtyping 

RF 

Internal 83% 3% 17% 2% 

Internal# 81% 2% 18% 2% 

External 83% 2% 15% 0% 

Top20_CP 

Internal 96% 10% 3% 9% 

Internal# 95% 11% 5% 10% 

External 98% 13% 2% 13% 

Top20_AP 

Internal 94% 21% 5% 19% 

Internal# 93% 23% 7% 20% 

External 95% 17% 5% 17% 

#containing HLA allotypes not considered in the RF training, Top20_CP or AP 

 

When considering all allotypes per sample the overtyping of the Top20_CP seemed to result in no 

more correctly typed samples compared to the RF algorithm (Table 3). 

Table 3: Sample typing performance. HLA allotyping of each sample at the peptide level using the 

RF algorithm, Top20_CP and AP. A summary of all six correct and false typed HLA allotypes per 

sample of the 38 novel internal and external samples is given. 

  False allotype 

Allotyping Dataset 0 1 2 >2 

RF 
Internal# 52% 31% 21% 17% 

External 60% 20% 0% 20% 

Top20_CP 
Internal# 59% 10% 17% 14% 

External 40% 30% 30% 0% 

Top20_AP 
Internal# 10% 55% 14% 21% 

External 30% 30% 20% 20% 

 #containing HLA allotypes not considered in the RF training, Top20_CP or AP 

 

An advantage of using the Top20_CP was that the typing could be subjectively improved. If more 

than two allotypes per HLA locus were suggested and the allotype with the fewest peptides from 

the respective Top20_CP list was omitted, four samples of the internal (AML1, Mng1,  

MaCa1 and 2) and external (CD165, Mel12, 15 and 16) data set were typed without error. Thus 

72% of the internal and 80% of the external samples would be typed without errors. The three 
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most challenging samples (CLL1; Mng1 and Sarc1) were tumor samples in which too many 

additional allotypes were suggested. A more precise examination of the allotyping of the alleles in 

the different dignities (benign, adjacent benign, malignant; exclusion of allotypes not considered 

in the RF training) showed that the overtyping occurred mainly in tumor samples (16% of the 

malignant samples; Table 4).  

Table 4: HLA allotyping performance per dignity. HLA allotyping at the peptide level using the 

RF algorithm, Top20_CP and AP for samples of each dignity (benign, adjacent benign and malignant 

tissue). A summary of all correct, false, missing, and overtyped allotypes of samples of each dignity of 

the 28 novel internal samples is given. The samples with infrequent HLA, not considered in the RF 

training, are excluded. 

Dignity Dataset Correct False Missing Overtyping 

Benign Internal 89% 0% 8% 0% 

Adjacent Internal 100% 0% 0% 0% 

Malignant Internal 98% 17% 2% 16% 

 

Overtyping occured mainly at higher peptide numbers (Figure 5D) and thus led mainly to 

incorrect annotations (Figure 5B). These false annotations involved mainly additional allotypes 

with similar motifs. In case of TIL1 the incorrect HLA-C*12 and C*16 were suggested, whose 

motifs have similarities to HLA-A*02 and are therefore likely to present Top20_CP-A*02 peptides 

in small quantities. This effect is expected to occur during in-depth measurements with large 

sample quantities and sensitive mass spectrometers resulting in a high peptide yield. The correct 

typing of allotypes per sample seemed to be less influenced by peptide numbers, as well as the 

proportion of missing allotypes (Figure 5A and C). Among the missing HLA, C*07 was most 

frequently missing. HLA-C was probably most challenging to type, due to the significantly lower 

expression and associated reduced number of HLA-C peptides 154. HLA allotypes not considered 

during the training of the RF algorithm were not typed at all. In this case, the deciphering of the 

peptide motifs in the sample as shown in 65,192 can provide further indications whether an allele is 

missing or the sample is homozygous. There were no typing difficulties with the homozygous 

samples. If overtyping should occur, the excess HLA allotype most likely has significantly less 

Top20_CP than the correct HLA. 
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Figure 5: Visualized HLA allotyping performance. HLA allotyping at the peptide level using the 

Top20_CP. A visualization of all correct (A), false (B), missing (C) and overtyped (D) allotypes of each 

sample of the 28 novel internal samples is given. The two samples with HLA not considered in the RF 

training are excluded. 

In case of the infrequent HLA allotypes that were not included in RF training, top lists were created 

from in-house data. For these allotypes at least a prioritization based on the peptide frequency on 

HLA positive samples and the motif was performed (Supplemental Figure S19; TopX lists in 

Supplemental Table S6). If an unknown allotype is suspected, a comparison with the TopX 

peptides of the infrequent HLA can be performed after typing using Top20_CP. 

5.5.4 Allotypic peptides for application as internal standard 

Due to the high immunopeptidome diversity and low abundance of HLA ligands, it is difficult to 

reliably identify peptides that can be used as internal standards to compare different samples. 

Here we evaluated the Top20_CP and AP as suitable unlabeled internal standards. Based on 

peptides eluted from a JY cell batch analyzed in 18 replicates over two weeks (as described in 116), 

the technical influence on the Top20 peptide identification and unlabeled semi-quantification was 

investigated (Supplemental Figure S20A and B). In a comparison of two replicates each, there was 

a >90% overlap for the Top20_CP and AP (Supplemental Figure S20C). The area of the peptides 

overlapping in all 18 replicates, as compared to two replicates, had a low relative standard 
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deviation (%RSD) of 8% in the Top20_CP (n = 33) and 10% in the Top20_AP (n = 41) and across 

all 18 replicates the %RSD was still <20% (Supplemental Figure S20D).  

Measuring a replicate of peptides eluted from a JY cell batch (batch production described in 116) 

every two months, we were also able to determine a reliable identification of peptides from the 

top 20 pools over a period of one year (the JY cell batches were analyzed from Annika Nelde, Ana 

Marcu and Jens Bauer). The peptide abundance of the pool peptides fluctuated similarly to the 

total peptides (Supplemental Figure S21A and B). Many of the peptides from the Top20_CP and 

AP pool were highly abundant in the immunopeptidome (Supplemental Figure S21C and D). In 

comparison to the sum of peptide areas per replicate, which had a Pearson correlation of 100% 

between the total peptides and the Top20_CP and AP, the peptide overlap of the Top20_CP and AP 

between the replicates was significantly higher compared to the total peptides (Supplemental 

Figure S22A). Almost one third of the total peptides (28%) was only found on one replicate 

(Supplemental Figure S22C). For the peptides from the Top20 pools, however, this was only 7%. 

The majority of the pool peptides were found in all seven replicates (Top20_CP = 71%, AP = 67%) 

while only 22% of the total peptides were found in all replicates. In terms of retention time, the 

Top20 peptides showed less variation in RT compared to the total peptides (Supplemental Figure 

S22B). In contrast to the total peptides, the Top20 pool peptides seemed to be reliable candidates 

in the immunopeptidome. 

5.5.4.1 Investigation of differential antigen processing and tumor exclusive peptides using 

allotypic peptides 

Numerous factors influence protein metabolism from synthesis through antigen processing to 

antigen presentation, which modulate the pool of presented peptides. For these reasons it is 

difficult to determine whether peptides are actually not presented at all or only in low numbers. 

In order to investigate whether peptides are presented exclusively or modulated in tumors, 

malignant and adjacent benign tissues were examined (the peptide data of all malignant and 

adjacent benign tissues described in chapter 5.5.4.1 and the mentioned supplemental figures were 

derived from the internal database described in chapter 5.4). To identify peptides modulated in 

tumors, resulting from differential antigen processing (DAP), the top five single transcript 

proteins (STP) were selected, which were most frequently identified via a tumor-specific peptide 

and an additional peptide identified on healthy samples (Supplemental Figure S23). In addition, 

we selected the top STP with the reverse case, which was most frequently identified via a benign-

specific peptide and additional peptides found on malignant samples. By using STPs (downloaded 

from ensembl.org, November, 2016), influences prior to antigen processing should be almost 

precluded with few remaining influences such as proteasomal splicing 197. The allotypic peptides 

will be used to determine the respective tumor and adjacent benign sample size so that the 

differentially processed peptides in both samples could be compared. In addition, we searched for 
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established tumor-associated peptides (TUMAPs) in our samples. The allotypic peptides should 

be analyzed to ensure the TUMAPs would have been identified in adjacent benign tissue if the 

peptides had been presented in the same proportions. 

We investigated exemplarily the samples of five donors and examined the DAP in four samples 

(colorectal cancer, non-small-cell lung carcinoma and renal cell carcinoma I and II; Figure 6; 

Supplemental Figure S24 and S26, 27) and the TUMAP presentation in three samples (colorectal 

cancer, non-small-cell lung carcinoma, and gastric cancer; Figure 6, Supplemental Figure S24 and 

S25). 

In the colorectal cancer sample and the respective adjacent benign sample, the TUMAP 

VWSDVTPLTF and the peptide YGGLIFNSY, probably generated by DAP, were presented tumor-

exclusively (Figure 6A). In comparison to the areas of the Top20_CP, the two peptides were 

presented poorly (Figure 6B). Nevertheless, there were peptides of the Top20_CP in the tumor 

sample which were presented in lower quantities and also found in the adjacent benign sample. 

Therefore, it could be assumed that the peptides would have been detected if they were presented 

to the same extent or slightly less in the adjacent benign sample. In case of the STP osteoclast-

stimulating factor 1 (OSTF1) the peptides seemed to have a similar ratio of the mean area in the 

adjacent benign and tumor tissue which might indicate a similar processing (Figure 6C). In 

contrast, the STP cytochrome c oxidase subunit 2 (MT-CO2) seems to be processed differentially 

in the colorectal cancer sample. Despite the larger tumor sample according to Top20_CP, the 

peptide LPIEAPIRM was found in smaller amounts in the tumor and the peptide YGGLIFNSY was 

exclusively identified in the tumor. There seemed to be no downregulation of HLA class I 

molecules on the tumor (Figure 6D). 
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Figure 6: TUMAPs and DAP in colorectal cancer and adjacent benign tissue. Area of the 

identified TUMAP (VWSDVTPLTF), STP (MT-CO2 and OSTF1) peptides and the Top20_CP of each 

replicate (total replicates: n = 4) in the adjacent benign and malignant sample (A). Individual 

peptide area of the TUMAP, STP peptides and Top20_CP (B). Ratio of the mean area of the peptides 

in the adjacent benign and malignant sample (C). The proportion of the allotype-specific Top20_CP 

in the malignant and adjacent benign sample (D). 
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Similar to the case of colorectal cancer, also for the non-small-cell lung carcinoma and gastric 

cancer sample, it could be shown that the TUMAPs are most likely presented tumor-exclusively. 

Compared to allotypic peptides, TUMAPs are presented less abundantly (Supplemental Figure S24 

and S25). 

With regard to differential antigen processing, a similar processing of the STP of ferritin light chain 

(FTL) in both dignities seems to take place in the case of the non-small-cell lung carcinoma sample 

(Supplemental Figure S24). In the renal cell carcinoma I and II samples, however, a differential 

processing of the proteins STPs MT-CO2 and armadillo repeat-containing X-linked protein 1 

(ARMCX1) seems to take place (Supplemental Figure S26 and S27). 

In cases where a peptide is only found in a few replicates such as KVLEYVIKV (Supplementary 

Figure S25) or only a few replicates have been measured, no reliable assumption is possible. For 

example, in the case of the non-small-cell lung carcinoma (Supplemental Figure S24) the 

sensitivity of the mass spectrometric DDA method does not allow a statement whether the peptide 

is presented at all on adjacent benign tissue. Since only two replicates of this sample were 

analyzed and our LTQ Orbitrap XL has a recovery rate of about 60% with a 5% FDR 198, there still 

remains a small probability of about 20% that the TUMAP was existing in the adjacent benign 

sample but not detected.  

The inhomogeneous Top20_CP ratios between the adjacent benign and tumor tissues in Figure 6B 

and Supplemental Figure S24-27B display the multiple factors impacting the immunopeptidome 

and influencing the peptide presentation of each peptide differently. Hence, the Top20_CP should 

be used summarized (as in Figure 6C and Supplemental Figure S24, 26 and 27C) to assess the size 

of the immunopeptidome of each tissue. For the STP derived peptides, however, there should be 

less difference in presentation compared to the Top20_CP as they derive from the same protein, 

which originates from one single transcript. There seemed to be no downregulation of HLA class 

I on the tumor tissues (Figure 6C, Supplemental Figure S24, 26, 27D and 25C). Besides the 

biological influences, additional mass spectrometer and data processing derived effects were 

possible as assessed in Supplemental Figure S20A. The Top20_CP serve as internal standard to 

estimate the size of the immunopeptidome and cover the detectable area range. Nevertheless, a 

spike-in of synthetically labelled peptides and targeted methods are the gold standard to 

investigate peptide quantities via LC-MS/MS. 

5.5.5 Identification of dignity and tissue classification antigens 

In addition to HLA classification based on peptides, RF has also been successfully used to classify 

the dignity (benign or malignant) of the samples in the database and additionally identify tissue-

specific proteins presented in the immunopeptidome. Since tumor transformation is a 

multifaceted process that proceeds differently in each tumorigenesis, benign rather than 
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malignant was used for classification and dignity distinction. To identify tissue-specific proteins, 

only benign samples from tumor-free donors were used.  

The dignity classification was carried out at both peptide and source protein level and the AUCs 

of the classification of the 2-d-DB were slightly better for the latter (Supplemental Figure S28A). 

The AUC was probably higher because the peptide restriction had less influence on proteins than 

on the presented peptides, and thus there was an improved classification of samples with different 

HLA-presented peptides but shared source proteins. For a closer look into the individual source 

proteins of the Top_20 benign classification peptides (Top20_BCPep), as well as Top20 benign 

classification proteins (Top20_BCPro), the number of benign samples positive for the 

peptides/proteins and the percentage of benign samples among the peptide/protein positive 

samples were analyzed (Supplemental Figure S28B and C). The Top20 indicated high sample 

coverage and the peptide and protein positive samples were on average 69% and 64% benign 

samples.  

To provide simple Top20 lists which can be used for simple dignity-determination and to partially 

bypass the HLA allotype restriction, the criteria of the Top20_BCPro protein lists for benignity 

were used to create Top20 lists that were at least 65% positive for benign (Top20_BPro) and 

malignant (Top20_MPro) samples and have a high sample frequency (Supplemental Figure S28B 

and C). The Top20_Lists are provided in Supplemental Table S3. An analysis of the Top20_BCPep 

source proteins, Top20_BCPro, Top20_BPro and Top20_MPro annotated UniProt keywords and 

disease annotations from the GAD dataset 199 did not present conspicuous tumor annotations for 

the benign Top20, but the Top20_MPro did have tumor-associated annotations for both categories 

(Supplemental Figure S29). 

To identify tissue specific proteins, only benign samples from Marcu et al. 183 were used. The HLA 

restriction was partially circumvented by classification using the peptide source proteins instead 

of the peptides. High AUCs could be achieved using RF that were comparable to the previously 

obtained AUCs for HLA and dignity classification (mean AUC: tissues = 92% ± 11%; maximal AUC: 

adrenal gland = 94% ± 9%; minimal AUC: Mamma = 76% ± 23%). A closer look at the UniProt 

keyword and disease annotations of the Top20 source proteins demonstrated that many of the 

annotations matched the respective tissue functions as depictured for the most annotated tissues 

liver, muscle, adrenal gland and kidney (Supplemental Figure S30, disease and keyword 

annotations in Supplemental Table S4). 

5.5.5.1 Molecular tumor testing based on dignity classification antigens 

After the promising HLA-classifications, we also aimed to investigate a dignity classification based 

on the immunopeptidome. Due to the idea of typing the “benignity” of the tissue, the typing should 

be applicable to all tumor types. Using the RF algorithm based on the peptides of our database it 
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was possible to perform a more than 83% correct dignity testing on the 28 internal test samples, 

covering more than ten tumor types (Supplemental Table S5). 94% of the tumor samples were 

correctly classified and one tumor sample was falsely assigned benign. In contrast, only 50% of 

the six benign samples were correctly typed as benign. A larger database, with more different 

tumor types and benign tissues, should significantly improve testing. 

A tumor testing using Top20_BCPro should theoretically allow a good testing with more than 

three identified proteins, as these were found on average in 65% of the healthy samples. In 

practice, however, up to seven of the proteins were found on the tumor samples and a cut-off of 

7-10 proteins led to the best result of 87% correctly typed samples (Supplemental Table S7; 

Top20_BCPro cut-off = 10 proteins). The use of Top20_BPro and Top20_MPro provides an 

additional parameter for tumor testing. In most tumor samples almost all Top20_MPro were 

located and the lowest were 13 proteins. However, many of the Top20_MPro could also be found 

on the benign samples, which may be attributable to the disproportionately high number of blood 

and bone marrow tumors in the database and much less benign blood and bone marrow samples. 

A cut-off with a ratio Top20_BPro/Top20_MPro of 0.4-0.8 led to the best classification with 87% 

correct samples. When using the Top20_MPro, care should be taken, especially with 

haematological samples, as benign samples might be often classified as tumor samples 

(Supplemental Table S7; Top20_BPro/Top20_MPro cut-off = 0.8). Interestingly, the mean value of 

the ratios from Top20_BPro/Top20_MPro for the adjacent benign samples with 0.25 ± 0.18 was 

between the tumor samples with 0.11 ± 0.12 and the benign samples 0.56 ± 0.40 and with the cut-

off 0.8 all would have been classified as malignant. 

5.6 Discussion 

The immunopeptidome has been studied for almost three decades. It harbors ample information 

and will enable versatile future applications 200. Nevertheless, we have only understood a fraction 

of the information potentially contained in the immunopeptidome. Machine learning enables 

deciphering the great diversity of the immunopeptidome to identify individual antigens that 

enable assessments about the HLA allotypes, tissue dignity or tissue origin. The primary goal of 

this present study was the identification of allotypic peptides that allow HLA-classification. The 

approach also turned out to be suitable to assign tissue dignity. 

First, we confirmed that the approach to determine peptides with the highest possible sample 

frequency leads to reliable identifications. Assessment of true ligands of monoallelic cell lines 

revealed that most of these ligands are not specific for a distinct HLA allotype but are present on 

several allotypes. This supports the concept of grouping HLA allotypes according to the anchor 

specificities of the peptide motifs in supertypes 154,201,202. However, there are highly specific 

peptides for each allotype. In the considered monoallelic cell lines the HLA-A presented peptides 
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were the most allotype-restricted peptides. The HLA-C presented peptides, on the other hand, 

seemed to be poorly restricted to each HLA-C molecule. HLA-A*01, A*02, B*15 and B*51 mapped 

peptides were the most allotypically restricted, which might be explained by their relatively 

unique motifs and the high molecule count on the surface compared to HLA-C.  

To reliably determine which peptides are highly specific and identified on most respective 

samples, a large database was generated covering many HLA allotypes across different tissues. 

The RF algorithm enabled us to identify those HLA-presented peptides with highest specificity 

and frequency for HLA allotype assignment. The top 20 peptides of each allotype, found on many 

samples, are very specific and restricted, except for HLA-C*17. The RF algorithm considered the 

linkage disequilibrium and thus achieved optimal HLA-classification at the peptide level. 

Assessing the top 20 proposed peptides of the algorithm which were unaffected by linkage 

disequilibrium and fit the motif of the respective HLA, we discovered that these peptides are 

derived from proteins distributed over the entire range of protein quantities and protein 

degradation rates in the cytoplasm. These proteins represent the most common protein functions 

in the cytosol, and some are also involved in host-virus interactions. 

The HLA allotyping using individual peptides enables a good HLA-classification based on the RF 

algorithm, trained with the entire database. In addition, using merely the top 20 proposed 

peptides per allotype (Top20_CP) lead to successful classifications. A manual allotyping based on 

the Top20_CP enables an additional subjective assessment of the proposed allotypes and can even 

improve the typing. An interesting observation was a frequent overtyping of tumor samples with 

additional allotypes. One possible explanation could be the increased peptide presentation in the 

tumor samples. So far, there was no simple tool available to reliably identify the allotype after 

immunopeptidomic analysis, except of PCR typing of additional donor tissue or extensive dataset 

comparisons (e.g. MixMHCpred 192), which can now easily be done using the Top20_CP.  

In addition to allotyping, the Top20_CP were also suitable as an internal standard and 

outperformed the total peptides in semi-quantitative estimation of the "size" of the 

immunopeptidome. This allows a comparison of two separate samples with different presented 

peptide numbers. In this way, it is possible to determine whether a certain peptide is indeed tumor 

exclusive and to ensure that the peptide did not remain unidentified due to a smaller sample of 

surrounding benign tissue. In addition, it can be investigated whether the source protein was 

differentially processed in the tumor compared to the surrounding benign tissue. To date, semi-

quantitative analyses have usually considered the total amount of peptides as a comparative 

value 53,186. However, the allotypic peptides might be a better reference as demonstrated in this 

study. The search for a reliable internal standard is an important prerequisite to ensure the 

comparability and robustness of immunopeptidomic analysis and is especially relevant for 
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promising applications such as quantitative immunopeptidomics 24,203. So far, protocols exist for 

the validation of LC-MS/MS based immunopeptidomics pipelines according to pharmaceutical 

good manufacturing practices (GMP) for peptide identification 116. Nevertheless, there is currently 

no method validation available for (semi-)quantitative immunopeptidomics, in which allotypic 

peptides might become an important tool as internal standard. 

Allotypic peptides are a tool for a variety of applications, many of which are sure to be found. In 

this paper, presented applications are HLA allotyping or the use as internal standard for unlabeled 

semi-quantitative experiments. Further implementations include quality control in HLA-peptide 

monomer refolding or, as previously used, negative control in immunogenicity assays 204, or to 

generate monomers for UV-mediated ligand exchange 186. 

Besides the determination of allotypic peptides, our RF pipeline also proved successful in the 

identification of tissue- and dignity-specific antigens. Using the RF algorithm, trained with the 

entire database, effectively the dignity (benign or malignant) of samples could be determined on 

protein level as well as by typing based on solely the top 20 benign and malignant associated 

antigens. The extensive peptide diversity in various tissues and the high sensitivity of mass 

spectrometry highlight the potential use of immunopeptidomic for antigen classification and 

biomarker diagnostics for cancer testing and further diseases 205,206.  

In this study, we have demonstrated which conclusions are possible by means of the 

immunopeptidome, based on a large database combined with artificial intelligence. With even 

larger databases, more reliable and robust estimations will be possible. In future it might become 

feasible to classify individual tumor entities or different diseases. We have compiled top 20 lists 

that anyone can perform HLA-classification and molecular tumor testing of immunopeptidomic 

data without a database. It was also shown how the combination of subjective evaluation with the 

proposed results of machine learning could even improve testing. However, with a larger 

database, we assume subjective evaluation will be dispensable soon. In future, machine learning 

might revolutionize and improve clinical diagnostics, precision treatments and health 

monitoring 207. The immunopeptidome, with its substantial diversity and detailed immunological 

information, which can be structured and made comprehensible with the help of artificial 

intelligence, has the potential to become an important part of it. 
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5.8 Supplementary data 

5.8.1 Supplementary Tables 

Supplemental Table S1: HLA allele frequency. Comparison of the HLA allele frequency of the four-

digit typed samples (allotype ≥ 5%) with allelefrequencies.net (04.2020; German pop 8), the 

frequencies of HLA-A, B and C correlate 97% each (Pearson correlation).  

 Allele frequency 

HLA 4-d-DB Germany 

A*01:01 13% 15% 

A*02:01 28% 27% 

A*03:01 16% 15% 

A*11:01 7% 6% 

A*24:02 11% 10% 

B*07:02 12% 12% 

B*08:01 9% 10% 

B*15:01 7% 6% 

B*18:01 7% 5% 

B*35:01 8% 6% 

B*40:01 6% 5% 

B*44:02 9% 7% 

B*51:01 9% 6% 

C*01:02 5% 4% 

C*02:02 6% 5% 

C*03:03 5% 5% 

C*03:04 9% 7% 

C*04:01 15% 13% 

C*05:01 7% 6% 

C*06:02 9% 10% 

C*07:01 14% 15% 

C*07:02 14% 13% 

C*12:03 7% 6% 

Pearson correlation 97% 
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Supplemental Table S2: Monoallelic cells. Summary of the monoallelic samples, technical 

replicates, and MS RAW files. 

Cell line Transfected HLA 
Technical 

replicates 
Raw file name 

C1R A*02:01 8 C1R-A02_msms1-8 

C1R A*24:02 3 C1R-A2402_msms1-3 

C1R A*32:01 5 C1R-A3201_msms1-5 

C1R B*15:01 3x10 C1R-B1501_msms1-3_1-10 

C1R B*52:01 5 C1R-A5201_msms1-5 

C1R B*58:01 5 C1R-A5801_msms1-5 

C1R C*01:02 5 …C1R-C0102…msms13-17 

C1R C*02:02 5 …C1R-C0202…msms7-11 

C1R C*03:03 5 …C1R-C0303…msms1-6 

C1R C*03:04 5 …C1R-C0304…msms31-35 

C1R C*04:01 5 …C1R-C0401…msms7-11 

C1R C*05:01 5 …C1R-C0501…msms13-17 

C1R C*06:02 5 …C1R-C0602…msms18-22 

C1R C*07:01 5 …C1R-C0701…msms41-45 

C1R C*07:02 5 …C1R-C0702…msms47-51 

C1R C*08:02 5 …C1R-C0802…msms13-17 

C1R C*12:03 5 …C1R-C1203…msms23-28 

C1R C*14:02 5 …C1R-C1402…msms5-12 

C1R C*15:02 5 …C1R-C1502…msms25-29 

C1R C*16:01 5 …C1R-C1601…msms19-23 

C1R C*17:01 5 …C1R-C1701…msms31-35 

C1R G*01:01 5 …C1R-G0101…msms7-15 

 

Supplemental Table S3: Mapped ligands from monoallelic cell lines and Top20 

peptide/protein lists. List of peptide sequences, which were isolated, clustered, and mapped to the 

4-d-DB from the in-house analyzed and unpublished monoallelic cell lines. Summary of generated 

HLA specific Top20_CP and AP, tissue specific Top20_TissuePro and dignity specific Top20_BCPro, 

Bpro and MPro lists.  

Supplemental Table S3 is attached externally.  
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Supplemental Table S4: Disease GAD and UniProt keyword annotations. Summary of all Top20 

(Top20_AP, BCPro, BPro, MPro, TissuePro) disease GAD and UniProt keyword annotations 

(Top20_AP: only source proteins of peptides with n ≤ 3 protein annotations were considered). Disease 

annotations and functional UniProt keyword annotations were obtained using DAVID 

david.ncifcrf.gov. 

Supplemental Table S4 is attached externally. 

Supplemental Table S5: Novel samples for HLA allotyping verification. Summary of the novel 

28 samples analyzed in-house and 10 samples from the literature, not included in the database, 

which were used to test the HLA typing based on peptides.  

Supplemental Table S5 is attached externally.  

Supplemental Table S6: Infrequent allotypes. Summary of generated HLA specific TopX peptide 

lists not included in RF. For infrequent HLA, a prioritization based on the frequency of the peptide on 

HLA positive samples and the peptide motif was performed. The number of overlaps was reduced 

until at least a Top20 list was reached (except for HLA-C*18). 

Supplemental Table S6 is attached externally.  

Supplemental Table S7: Novel samples for molecular tumor testing verification. Summary of 

the novel 28 samples analyzed in-house, not included in the database, which were used to test the 

dignity-typing (malignant or benign) based on peptides.  

Supplemental Table S7 is attached externally.  
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5.8.2 Supplementary Figures 

 

Supplemental Figure S1: Primary tissue and cell line database. The immunopeptidome 

database contained benign and malignant primary samples from 36 different tissues from various 

donors and cell lines. 
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Supplemental Figure S2: Number of HLA positive samples in the database. The 

immunopeptidome database covered 19 different HLA-A, 28 HLA-B and 14 HLA-C allotypes on two-

digit level. 
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Supplemental Figure S3: 4-digit HLA-A, B and C tables. The 4-digit typed samples were used to 

generate tables of the peptide frequencies for each HLA-A, B and C allotype per sample in the 4-d-DB 

and the total number of peptide positive samples in the DB (homozygous HLA allotypes were counted 

as one allotype per sample). The frequency tables were used to determine the parameters mean 

number of samples, mean %positive samples and mean %allotype restriction. Exemplarily, these 

three parameters were determined for the peptide ITDSAGHILY using the HLA-A table. 

 

Supplemental Figure S4: Novel peptides per replicate. Three HLA-B*15:01 transfected C1R 

samples were analyzed in ten replicates on the LTQ Orbitrap XL LC-MS/MS system. The total number 

of peptides and the novel peptides per replicate are indicated. All HLA-B*15:01 peptide extractions 

were carried out by Meret Beyer. 
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Supplemental Figure S5: Peptide overlap and quality per replicate. Three HLA-B*15:01 

transfected C1R samples were analyzed in ten replicates on the LTQ Orbitrap XL LC-MS/MS system. 

The peptide overlap after each replicate and the peptide motif, Q-Value and x-Corr of all peptides 

found in one or thirty replicates are indicated. All HLA-B*15:01 peptide extractions were carried out 

by Meret Beyer. 
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Supplemental Figure S6: Isolation and mapping of HLA ligands. Using Gibbs clustering, all 

peptides matching the motif of the transfected HLA were isolated and subsequently aligned to the 

peptides in the 4-d-DB.  
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Supplemental Figure S7: Peptide motifs of mapped ligands from monoallelic cell lines. Peptide 

motifs of peptides from the internal and external monoallelic cell lines, which were isolated, 

clustered, and mapped to the 4-d-DB. 
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Supplemental Figure S8: Length distribution of mapped ligands from monoallelic cell lines. 

Length distribution of peptides from the internal and external monoallelic cell lines, which were 

isolated, clustered, and mapped to the 4-d-DB. 
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Supplemental Figure S9: Number of peptide positive samples of Top20_CP and AP. Number of 

samples (in 4-d-DB) on which each individual peptide from the Top20_CP and AP of each allotype 

was identified for HLA-A, B and C allotypes.  

 

Supplemental Figure S10: Percentage of allotype positive samples of Top20_CP and AP. 

Percentage of allotype positive samples (in 4-d-DB) from the samples on which each individual 

peptide from the Top20_CP and AP of each allotype was identified for HLA-A, B and C allotypes.  
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Supplemental Figure S11: Allotype restriction of Top20_CP and AP. Allotype restriction is 

indicating the difference of the mean %allotype positive samples of the best fitting and the next 

highest allotype for each individual peptide of the Top20_CP and AP of each allotype for HLA-A, B 

and C. 
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Supplemental Figure S12: Peptide motifs of the Top20_CP for each HLA. Peptide motifs 

generated from the Top20_CP for each allotype. Due to the linkage disequilibrium HLA-C peptide 

motifs contain contaminating peptides with motifs matching other HLA allotypes (except for C*01, 

*05, *14 and *16). 



95 
 

 

Supplemental Figure S13: Linkage disequilibrium of the alleles in the 4-d-DB. Heat map for 

HLA with more than five positive samples in the 4-d-DB at two-digit level, indicating how frequently 

the combination of two alleles occur in a sample of the 4-d DB. The allele frequencies of the German 

population (allelefrequencies.net: German pop 8, 04.2020) were subtracted from the calculated 

frequency, resulting in the linked alleles. In the samples of the 4-d-DB, especially HLA-C alleles are 

frequently present in combination with HLA-B alleles. The heatmap was created by Jonas Scheid. 
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Supplemental Figure S14: Mapping and clustering of Top20_CP to Top20_AP. The Top20_CP 

were mapped to the four-digit HLA-A, B and C tables generated from the 4-d-DB. Subsequently, the 

peptides with the fitting peptide motif were clustered with Gibbs clustering or, in the case of HLA-

B*52, and HLA-C, only the peptides overlapping with the peptides of the respective monoallelic cell 

line, were selected. In case of HLA-C*03 and C*07 an alignment with the eluted peptides of both cell 

lines combined, C*03:03/04 and C*07:01/02, was performed. 
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Supplemental Figure S15: Peptide motifs of the Top20_AP for each HLA. Peptide motifs 

generated from the Top20_AP for each allotype. The peptide contaminants from the peptide motifs 

of the Top20_CP could be removed by purification to the Top20_AP. 
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Supplemental Figure S16: Peptide length distribution of the allotypic peptides. Peptide length 

distribution of the Top20_AP for each HLA allotype. Most allotypes present a high proportion of 

nonamers. Some allotypes present a higher proportion of octamers such as HLA-B*52 or deca- and 

undecamers such as B*35. 

Allotype Length % Allotype Length % Allotype Length % Allotype Length % Allotype Length %

8 5 8 5 8 60 8 0 8 25

9 75 9 60 9 40 9 80 9 70

10 15 10 15 10 0 10 20 10 5

11 5 11 20 11 0 11 0 11 0

12 0 12 0 12 0 12 0 12 0

8 0 8 0 8 0 8 40 8 0

9 95 9 85 9 90 9 55 9 100

10 0 10 5 10 10 10 5 10 0

11 0 11 10 11 0 11 0 11 0

12 5 12 0 12 0 12 0 12 0

8 0 8 5 8 0 8 75 8 15

9 65 9 60 9 90 9 25 9 85

10 25 10 15 10 10 10 0 10 0

11 5 11 20 11 0 11 0 11 0

12 5 12 0 12 0 12 0 12 0

8 10 8 0 8 40 8 0 8 5

9 60 9 75 9 60 9 55 9 90

10 5 10 10 10 0 10 40 10 5

11 25 11 10 11 0 11 5 11 0

12 0 12 5 12 0 12 0 12 0

8 5 8 0 8 0 8 0 8 5

9 45 9 85 9 70 9 65 9 95

10 35 10 15 10 30 10 15 10 0

11 15 11 0 11 0 11 20 11 0

12 0 12 0 12 0 12 0 12 0

8 0 8 0 8 20 8 5 8 30

9 90 9 70 9 80 9 75 9 65

10 10 10 15 10 0 10 15 10 5

11 0 11 15 11 0 11 5 11 0

12 0 12 0 12 0 12 0 12 0

8 0 8 25 8 5 8 0 8 0

9 50 9 75 9 55 9 85 9 100

10 35 10 0 10 30 10 15 10 0

11 15 11 0 11 10 11 0 11 0

12 0 12 0 12 0 12 0 12 0

8 0 8 15 8 0 8 0 8 5

9 70 9 80 9 80 9 90 9 95

10 15 10 5 10 15 10 10 10 0

11 15 11 0 11 5 11 0 11 0

12 0 12 0 12 0 12 0 12 0

8 0 8 35 8 0 8 0 8 25

9 90 9 65 9 60 9 85 9 70

10 10 10 0 10 30 10 15 10 0

11 0 11 0 11 10 11 0 11 5

12 0 12 0 12 0 12 0 12 0

8 5 8 15 8 15 8 5

9 55 9 75 9 80 9 90

10 20 10 10 10 5 10 5

11 20 11 0 11 0 11 0

12 0 12 0 12 0 12 0

A29 B14 B44 C03 C17

A30 B15 B49 C04

A25 B08 B40 C01 C15

A26 B13 B41 C02 C16

A23 A69 B38 B57 C12

A24 B07 B39 B58 C14

A03 A33 B35 B52 C07

A11 A68 B37 B55 C08

A01 A31 B18 B50 C05

A02 A32 B27 B51 C06
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Supplemental Figure S17: Cytoplasmatic protein abundance and turnover rates of Top20_CP 

and Top20_AP source proteins. Analysis of protein abundance and protein turnover by overlapping 

Top20_CP (blue) and AP (green) source proteins with proteome studies of Hela cells (black). For the 

graphs only proteins with cytoplasmatic abundance and turnover rate above zero were used. Protein 

abundance: Top20_CP = 495 mapped proteins (A), Top20_AP = 510 mapped proteins (B); protein 

turnover rates: Top20_CP = 395 mapped proteins (C), Top20_AP = 365 mapped proteins (D). 
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Supplemental Figure S18: UniProt keyword annotations of the Top20_AP source proteins. 

Analysis of the UniProt keyword annotations of the Top20_AP source proteins (only annotations with 

≥ 5 proteins (10%)). 

 

Supplemental Figure S19: TopX peptide lists of Infrequent allotypes. Generation of HLA specific 

TopX peptide lists for infrequent allotypes not included in RF training (≤ 10 allotype positive samples 

in 2-d-DB). A prioritization based on the frequency of the peptides on ≥ 2 HLA positive samples and 

the peptide motif was performed. For each allotype, the peptide motif, the contained TopX peptides 

and the number of allotype positive and peptide presenting samples (n) are given. 
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Supplemental Figure S20: Technical influence on the Top20 peptide identification and 

unlabeled semi-quantification in 18 replicates. Based on a JY eluted peptide batch measured in 

18 replicates over two weeks the technical influence on the Top20_CP and AP peptide identification 

and unlabeled semi-quantification was investigated. Area of peptides identified in all 18 replicates 

for Top20_CP (n = 33; A) and Top20_AP (n = 41; B). Mean %RSD of peptide area of two replicates 

each or all replicates combined for Top20_CP and AP (C). Only peptides identified in all 18 replicates 

were considered (A-C). The percentage of shared peptides between two replicates each (D). 



102 
 

 

Supplemental Figure S21: Performance of the Top20 peptides over a year. The Top20_CP and 

AP were retroperspectively analyzed in a JY eluted peptide batch measured in seven replicates over 

one year. Sum of the area of all identified peptides, the Top20_CP (n = 44) and AP (n = 53) over the 

course of a year (A). Average area and %RSD of all peptides and the Top20 in a year (B). Rank and 

area of the Top20_CP (blue; C) and AP (green; D) highlighted compared to the total peptides (black). 

Only peptides identified in all seven replicates were considered for Top20_CP and AP (A-D). 
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Supplemental Figure S22: Identification of the Top20 peptides over a year. Peptide overlap of 

the Top20_CP and AP between seven replicates of a JY eluted peptide batch measured over one year 

was performed and the mean peptide overlap (A) and the proportion of overlaps depicted (C). 

Deviation of the liquid chromatography retention time (RT) of the peptides shared in all seven 

replicates (B). 
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Supplemental Figure S23: Screening for differentially processed antigens and tumor 

antigens. To screen for peptides modulated in tumors, which result from DAP, the top five single 

transcript proteins (STPs retrieved from ensemble.org, 11.2016) were filtered out, which were most 

frequently identified via a malignant-specific peptide and an additional benign-specific peptide. In 

addition, the top STP MT-CO2, which was most frequently identified via a benign-specific peptide and 

other peptides on malignant samples was selected (only the 5 malignant-specific or the benign 

peptide are depictured). The 2-d-DB was screened for exemplary cancer and adjacent benign samples 

presenting the desired peptides. Additionally, these samples were also screened for tumor associated 

peptides from established tumor antigens, to validate their tumor exclusivity. *MAGEA1 is both a 

tumor antigen and STP.  
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Supplemental Figure S24: TUMAPs and DAP in non-small-cell lung carcinoma and adjacent 

benign tissue. Area of the identified TUMAP (RLLDSVSRL), STP peptide (AVNSLVNLY) and the 

Top20_CP of each replicate (total replicates: n = 2) (A). Individual peptide area of the TUMAP, STP 

peptide and Top20_CP (B). Ratio of the mean area of the peptides (C). The proportion of the allotype-

specific Top20_CP (D).  
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Supplemental Figure S25: TUMAPs and DAP in gastric cancer and adjacent benign tissue. Area 

of the identified TUMAPs (NVGGLIGTPK, NPKAFFSVL and KVLEYVIKV) and the Top20_CP of each 

replicate (total replicates: n = 4) in the adjacent benign and malignant sample (A). Individual 

peptide area of the TUMAPs and Top20_CP (B). The proportion of the allotype-specific Top20_CP (C).  
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Supplemental Figure S26: DAP in renal cell carcinoma I and adjacent benign tissue. Area of 

the identified STP (MT-CO2 and ARMCX1) peptides and the Top20_CP of each replicate (total 

replicates: n = 4) (A). Individual peptide area of the STP peptides and Top20_CP (B). Ratio of the 

mean area of the peptides (C). The proportion of the allotype-specific Top20_CP (D). 
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Supplemental Figure S27: DAP in renal cell carcinoma II and adjacent benign tissue. Area of 

the identified STP (MT-CO2) peptides and the Top20_CP of each replicate (total replicates: n = 4) (A). 

Individual peptide area of the STP peptides and Top20_CP in the adjacent benign and malignant 

sample (B). Ratio of the mean area of the peptides (C). The proportion of the allotype-specific 

Top20_CP (D).  

 

Supplemental Figure S28: Dignity classification antigens. Identification of dignity specific 

antigens based on benign samples from tumor-free donors in the 2-d-DB. The classification was 

carried out at peptide (benign peptides) and source protein (benign proteins) level and the AUC's of 

the classifications in the 2-d-DB were determined (A). Assessment of the number of benign samples 

presenting the individual peptides (B) and the percentage of benign samples among the peptide 

presenting samples (C) of the individual Top20 benign classification peptides (Top20_BCPep), as well 

as the individual Top20 benign classification proteins (Top20_BCPro). Additionally, the manually 

generated Top20 lists, that are at least 65% positive for benign (Top20_BPro) and malignant 

(Top20_MPro) samples were considered.  
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Supplemental Figure S29: Annotations of the dignity classification antigens. Disease 

annotations (table) and functional UniProt keyword annotations (word cloud) of the Top20_BCPro, 

Top20_BPro and Top20_Mpro. Proteins were annotated using DAVID david.ncifcrf.gov and word 

clouds, word size depending on fold enrichment, were generated using worditout.com.  
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Supplemental Figure S30: Annotations of tissue classification antigens. Functional UniProt 

keyword annotations (word cloud) of the Top20 tissue proteins. Proteins were annotated using 

DAVID david.ncifcrf.gov and word clouds, word size depending on fold enrichment, were generated 

using worditout.com.   
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6 Current state of research and outlook 

6.1 Current status 

This doctoral thesis and the increasing research interest in the field of immunopeptidomics 

demonstrate that the immunopeptidome is a fascinating "Wikipedia" containing an unimaginable 

wealth of information which offers us numerous new insights and will not only revolutionize 

tumor and virus therapy, but also provide countless other possibilities. Impressive examples of 

the variety and range of possible applications of immunopeptidomic analysis are reflected in the 

manifold projects during this doctorate, both in research and the GMP quality control for clinical 

applications, which I was able to work on thanks to the Stevanović working group (WG) in the 

Department of Immunology, Tübingen and Biochemistry WG in the NMI Natural and Medical 

Sciences Institute at the University of Tübingen, Reutlingen. 

6.1.1 Research 

An evolution in immunopeptidomics, that I witnessed in the field, was the leap from thousands of 

peptide identifications to tens of thousands of peptide identifications per sample, by 

supplementing our LTQ Orbitrap XL with an Orbitrap Fusion Lumos (Thermo Fisher Scientific, 

MA, USA). I also replaced the time of flight Q-Tof (Waters, MA, USA) instrument with a modern 

LTQ Orbitrap XL in the mass spectrometric GMP quality control of the Wirkstoffpeptidlabor and 

we experienced a significant boost in high mass resolution and a much better distinction between 

similar compounds.  

The scope and possibilities of immunopeptidomic can best be demonstrated through the more 

than 20 different cooperations I had in the last three years. The publication of most projects is still 

in the distant future, already published or drafted publications are mentioned in brackets.  

I had the great opportunity to experience the process from bench to bedside in two compassionate 

use vaccinations. In collaboration with the entire Stevanović research group and the 

Wirkstoffpeptidlabor I was able to predict human papillomavirus (HPV) epitopes, which were 

synthesized and vaccinated in compassionate use to treat HPV induced skin warts. In cooperation 

with the University Hospital Tübingen, Tübingen, and the CeGaT GmbH, Tübingen, a vaccination 

against a submandibular salivary gland tumor was conducted, where tumor specific antigens were 

identified after immunopeptidome analysis.  

In addition to human samples in my doctoral thesis I examined the immunopeptidome of stem 

cells in murine samples with the Haas working group (WG) (Heidelberg Institute for Stem Cell 

Technology and Experimental Medicine (HI-STEM), Heidelberg; manuscript submitted), 

identified peptide motifs of chicken MHC allotypes and generation of crystal structures with the 

Kaufmann WG (University of Cambridge, UK) and Härtle WG (Ludwig-Maximilians-University, 
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Munich) and analyzed the presented peptides in canine samples in cooperation with the Planz WG 

(University of Tübingen, Tübingen).  

I had the opportunity to work with almost ten different types of viruses. Solely in the institute I 

could cooperate with the Planz WG and discover different influenza epitopes (draft in progress), 

decode Orf virus (ORFV) epitopes in cooperation with the Amann WG and could show that after 

vaccination no immune reaction develops against these viruses (Reguzowa et al, publication 

accepted in Vaccines). Furthermore, I was able to work with HPV in the previously mentioned HPV 

vaccination and in cooperation with Maren Lübke (Stevanović WG), Jonjic WG (University of 

Rijeka, Croatia) and Erhard WG (University of Würzburg) I could investigate human 

cytomegalovirus (HCMV) epitopes. In Tübingen I could also identify measles virus epitopes in a 

study with the Tabatabai WG (Interdisciplinary Division of Neuro-Oncology University Hospital 

Tübingen) and could show the advantages of treatment with oncological measles viruses in 

combination with radiation 63. For the identification of murine cytomegaloviruses (MCMV) 

epitopes I had two projects with the WG Jonjic (University of Rijeka) and the WG Schönrich 

(Charité - Universitätsmedizin Berlin, Berlin). In cooperation with the Solimena WG (Paul 

Langerhans Institute Dresden of the Helmholtz Center Munich at the University Clinics and 

Medical Faculty Carl Gustav Carus at TU Dresden, Dresden) I could investigate coxsackieviruses 

in connection with the pathogenesis of diabetes mellitus type 1. An intensive collaboration with 

the Kaufmann WG (University of Cambridge) and Härtle WG (Ludwig-Maximilians-University) 

enabled the identification of the infectious bursal disease virus (IBDV) and Marek's disease virus 

(MDV) epitopes (publication submitted in PNAS).  

Besides the identification of viral epitopes, immunopeptidomics is mainly used for the 

identification of tumor antigens. In addition to the above mentioned tumor types, I was able to 

examine glioblastoma and atypical teratoid rhabdoid tumors (ATRT) in cooperation with the 

Tabatabai WG. In addition, I was able to identify post-translationally modified peptides in ovarian 

cancer in collaboration with the Santambrogio WG (Albert Einstein College of Medicine, New 

York) and I could identify tumor antigens in renal cell carcinomas in cooperation with the Sester 

WG (Saarland University Medical Center and Saarland University Faculty of Medicine). The 

identified tumor antigens can be administered as peptide vaccination, as in the compassionate use 

case described above, or as in the latter cooperation for ACT, in which the peptides are used to 

isolate tumor-specific T cells, expanded in vitro and administered back to the patient. 

An exciting new field of immunopeptidomics is the search for neoantigens, e.g. peptides derived 

from in tumor mutated antigens. In cooperation with the Gros WG (Vall d'Hebron Institute of 

Oncology (VHIO), Barcelona) I was able to identify neoantigens in hematological tumors. In 

collaboration with the WG Apcher (National Institute of Health and Medical Research, Paris) I was 
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able to detect a special type of neoantigens, peptides of unspliced antigens, that occur in tumors 

after splicing inhibition 87.  

In addition to the application-related projects, I was also able to employ immunopeptidomics for 

basic research, for example in collaboration with the Stevanović WG for the deciphering of 

previously unknown HLA peptide motifs using monoallelic cells and multiallelic tissue 154; 

(Chapter 4 and 5) or the influence of individual proteins (T6BP) in the MHC class II presentation 

pathways with the Arnaud WG (Institut Curie, Paris; draft in progress).  

This variety of projects shows how broad the immunopeptidomic applications are currently 

ranging from basic research to applied research from bench to bedside, although there is still no 

approved immunopeptidome-derived therapy yet. 

6.1.2 Clinical application 

Peptide vaccinations have been used in clinical application for a long time and its efficacy has been 

demonstrated 208,209. Since 2004 the peptide vaccines must be produced under GMP conditions 

and a manufacturing license is required. I was allowed to work in the GMP vaccine peptide 

production facility, the Wirkstoffpeptidlabor. As described in Chapter 2.7., GMP requires the 

analytical method to be suitable and reliable for your analytical procedures. These requirements 

have evolved from previous experience with active substances, mainly from analytical procedures 

in which individual analytes were considered. In the current research environment, however, 

omic technologies that can be used to examine several analytes at once are playing an increasingly 

important role, especially for medical diagnosis based on biomarkers 210. So far there were already 

proposals for method validation of genomic and transcriptomic technologies, but not for LC-

MS/MS based omic technologies 211,212. In this thesis first guidelines for the method validation of 

LC-MS/MS based immunopeptidomics were proposed 116, which can also be used as inspiration 

for the validation of proteomics, lipidomics or metabolomics technologies.  

As discussed in Chapter 2.6.1., peptide vaccinations need the support of adjuvants to induce an 

immune response. In another validation, I was able to develop a protocol for the detection of equal 

antigen distribution in a vaccine syringe with an antigen-adjuvant emulsion 108 and to develop and 

validate a LC-MS/MS method to enable the analysis of the new adjuvant XS15, for which the 

Wirkstoffpeptidlabor recently received manufacturing approval 113. Besides the LC-MS/MS 

method development for the adjuvant, I was also able to develop a LC-MS/MS based protocol in 

cooperation with the Jung WG (University of Tübingen, Tübingen) to successfully detect the 

proportion of antibody compounds in resulting products of a GMP antibody batch in a protein gel 

(draft in progress).  
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Today, there are many planned and ongoing clinical trials using active ingredients, which are 

based on antigens previously identified through immunopeptidomics, such as peptide vaccines, 

ACT or bispecific T cell engaging receptors (TCER™). In this doctoral thesis, thanks to the 

Wirkstoffpeptidlabor I was able to collaborate in the development of peptide vaccines from 

natural tumor-specific self-peptides (GAPVAC 121, NCT02149225; iVAC-CLL01, NCT02802943 ; 

PepIVAC-01, IVAC-XS15-CLL01), or neoantigens (NOA-16, NCT02454634; IVAC-ALL-1, 

NCT03559413, AMPLIFY-NEOVAC, NCT03893903) in clinical studies. Within the framework of 

ACTolog (NCT02876510), our peptides were also used for the isolation of T cells for ACT and, in 

addition to the adjuvants used previously, new promising XS15 studies will start with the recently 

obtained XS15 manufacturing authorization (IVAC-XS15-CLL01).  

In the duration of this doctorate only, almost 5000 measurements of test instructions for GMP 

peptides or adjuvants were performed in our mass spectrometric quality control department, 

with the majority of analytes originating from immunopeptidome-based projects. This illustrates 

the current relevance of immunopeptidomics in clinical application. 

6.2 Outlook 

Significant advances in sequencing and LC-MS/MS technologies, in addition to improved and 

diverse bioinformatic pipelines, will continue to enhance peptide yields and provide deeper 

insights into the immunopeptidome 205. Thus, the repertoire of tumor-associated antigens will be 

increased and optimized, mutated neoantigens will be detected more effectively and the epitope 

discovery of more pathogens will be possible. In addition, all areas will be expanded with cryptic 

peptides from non-encoded open-reading frames in the genome 86. This will develop 

immunotherapy by numerous targets.  

In addition to therapeutic targets, immunopeptidomics will also be used in other areas to exploit 

the sensitive biomarker system. The amount of measured immunopeptidomic data will continue 

to increase. Large databases will allow immunoinformatics to improve the determination of HLA 

allotypes, tissue type and dignity of samples as described in Chapter 5, and to go deeper and 

identify peptide patterns caused by altered cellular pathways or cellular stress, which will 

eventually lead to the identification of biomarkers that could be used for example in T cell 

response quick test 213. A cellular test system could be developed to detect and predict cellular 

influences of biomaterials in vitro to minimize animals testing. Which peptide patterns appear in 

inflammations, which in cellular stress and which are suspected to trigger autoimmune diseases? 

Artificial intelligence and more sophisticated algorithms permit to keep track of alterations of 

multiple peptides at once. Complex cellular changes, such as the gradual alterations in cell aging 

and the transition to senescence, could be tracked externally through detailed peptide patterns at 

the immunopeptidome level. A detailed immunopeptidomic investigation of non- and senescent 
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cells could allow the identification of such biomarkers that could also be used for the therapeutic 

elimination of senescent cells, which has already led to significant improvements in vitality and 

lifespan of mice 214. 

While writing this dissertation, the SARS-CoV-2 pandemic is keeping the world in suspense. More 

than hundred companies and institutes worldwide are working on a SARS-CoV-2 vaccine 

including multiple innovative approaches, such as RNA-based vaccines 215,216, of which there is no 

approved drug yet. The example of SARS-CoV-2 can demonstrate how a vaccine based on the 

immunopeptidome may be produced in future using the methods presented in this dissertation. 

The developed validation of the LC-MS/MS based immunopeptidomic in Chapter 3 allows to 

reliably identify SARS-CoV-2 epitopes e.g. in virus infected cells, as already shown in the case of 

measles 63. Furthermore, the protocol described in Chapter 4 for the identification of MHC peptide 

motifs and the generation of MHC prediction matrices can theoretically predict SARS-CoV-2 

epitopes for the MHC of all vertebrates. The discovered epitopes could be used for therapies 

against SARS-CoV-2 217. Using the method described in Chapter 5, a database of 

immunopeptidomes from SARS-CoV-2 infected and non-infected samples might be used to 

develop a classification that enables the detection of infected tissue. Furthermore, the antigens 

can be determined, which might be used as biomarkers for the identification of SARS-CoV-2 

infections.  

An advantage of possible immunopeptidome based SARS-CoV-2 therapies is the usage of specific 

T cell epitopes, which minimizes the potential risk of side effects such as autoimmune diseases 218. 

Even the most innovative current approaches from vaccine manufacturers against SARS-CoV-2 

are based on whole proteins instead of the individual peptide epitopes 215,216. Thus, the next step 

after the development of protein-based vaccines might be the development towards epitope-

reduced vaccines 219. 
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7 Abbreviations 

aa  amino acid  

ACT  adoptive T cell transfer   

APC  antigen presenting cell  

AUC  area under the curve   

β2m  β2-microglobulin 

CD  cluster of differentiation 

CTL  cytotoxic T lymphocyte  

DAMPs  Damage-Associated Molecular Patterns 

DC  dendritic cell  

DRiP  defective ribosomal product  

EMA  European Medicines Agency 

ER  endoplasmic reticulum 

FDA  Food and Drug Administration 

FDR  false discovery rate 

GMP  Good Manufacturing Practice 

HCMV  human cytomegalovirus 

HLA  human leukocyte antigen 

HPV  human papillomavirus 

IBDV  infectious bursal disease virus 

ICH  International Council for Harmonisation of Technical Requirements for 

Pharmaceuticals for Human Use 

IFN  interferon 

IL  interleukin 

LC  liquid chromatography 

LC-MS/MS liquid chromatographic tandem mass spectrometry 
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LOD  limit of detection 

LOQ  limit of quantification 

MCMV  murine cytomegaloviruses 

MDV  Marek's disease virus 

MHC  major histocompatibility complex 

MIIC  MHC class II compartment 

MPLA  monophosphoryl lipid A 

mRNA  messenger ribonucleic acid 

NK cell  natural killer cell 

ORFV  Orf virus 

PAMPs  pathogen-associated patterns 

PBMC  peripheral blood mononuclear cell 

pHLA  peptide-HLA complex 

PLC  peptide loading complex 

PRRs  pattern recognition receptors 

RCC  Renal cell carcinoma 

ROC  receiver operating characteristic 

RT  room temperature 

TAP  transporter associated with antigen processing 

TCR  T cell receptor 

TH cell  T helper cell 

TLR  Toll-like receptor 

Treg cell regulatory T cell 

TUMAP tumor-associated peptide 

WG  working group 
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