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Chapter 1 

1. Introduction 
1.1. Cigarette smoke and cigarette smoke-related diseases 
1.1.1. Cigarette smoke composition 
Cigarette smoke (CS), is the dominant cause of preventable deaths that endangers the 

longevity and life quality of humans (Chen et al., 2020). It is well known that more 

than 5000 detrimental chemical compounds and at least 55 carcinogens are involved 

in the CS (National Center for Chronic Disease et al., 2012, Chen et al., 2020). CS is 

an aerosol of liquid droplets generated by the combustion of tobacco during the 

smoking, containing about 1010 particles/mL (Valavanidis A et al., 2009). In general, 

CS consists of mainstream smoke (MSS) and sidestream smoke (SSS) (Fig. 1.1) 

(Thielen et al., 2008). The former is directly inhaled by the smoker, and the latter is 

absorbed from the surroundings of the burning cigarette. Two phases are involved in 

the MSS, namely a tar (particle) phase and a remaining gas phase. The gas phase (0.4 

− 0.5 g/cigarette) is mainly comprised of air constituents, oxygen and nitrogen. The 

extent of particles in fresh MSS ranges between 0.1 and 1 μm in diameter, and the 

weight is around 4.5% of the whole smoke (Thielen et al., 2008). A great number of 

mutagenic and carcinogenic agents, such as PAHs, N-nitrosamines, and phytosterols, 

are mostly found in the particulate phase only (Valavanidis A et al., 2009). The 

compounds of SSS both in the gas and particle phase are similar to those of MSS. The 

gas phase can infiltrate and transit the lung alveolus and damage tissues remote from 

the lung, suggesting it is more vital for human health (Yamaguchi et al., 2007). 

https://en.wikipedia.org/wiki/Mutagen
https://en.wikipedia.org/wiki/Carcinogen
https://en.wikipedia.org/wiki/Polycyclic_aromatic_hydrocarbon


2 
 

 
Figure 1.1 The sidestream smoke and mainstream smoke of a burning cigarette. 
(Reproduced with permission from (Thielen et al., 2008). 
 
1.1.2. Cigarette smoke-related diseases 

It is well established that CS could affect negatively most human body systems (Fig 

1.2), such as respiratory, cardiovascular and musculoskeletal diseases. The most 

common CS-related diseases are cardiovascular disease (CVD) (McEvoy et al., 2015), 

chronic obstructive pulmonary disease (COPD) (Laniado-Laborin, 2009), and diverse 

types of cancer, in particular lung cancer (Warren and Cummings, 2013). Cigarette 

smoking can damage the airway and pass through the lung alveolus, resulting in lung 

diseases and injury to other tissues. Smokers have a higher possibility (12 - 13 times) 

of dying from COPD than non-smokers, and CS is a major risk that triggers an attack 

in patients with asthma (National Center for Chronic Disease et al., 2014). Moreover, 

smokers have as much as a 30-fold increased risk of developing lung cancer or dying 

from lung cancer compared with non-smokers (National Center for Chronic Disease 

et al., 2014). Besides, exposure to cigarette smoke predisposes the individual to 

several diseases that affect heart and blood vessels (Barua et al., 2015). CS has been 

reported to cause approximately 140,000 premature deaths annually from CVD 

(National Center for Chronic Disease et al., 2014). 

Furthermore, exposure to the environment of smoked tobaccos among non-smokers 

also increases the health risk of respiratory (Oberg et al., 2011) and cardiovascular 

(Raghuveer et al., 2016) problems，as well as lung cancer (Manning et al., 2017). 
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However, owing to the loose regulation of tobacco products and difficulty in quitting 

smoking, the global tobacco control efforts are disappointing. 

 
Figure 1.2 The effects of smoking on the human body. Smoking can damage every 
part of the body. 
 

1.1.3. Cigarette smoke and musculoskeletal disorders 

Although the detrimental effects of smoking for human health have been well 

accepted, less attention has been paid by researchers to the relevance of CS to 

musculoskeletal disease. The musculoskeletal system, which provides support and 

motion to the body, is made up of skeletal bones, connective tissues (ligaments, 

tendons, and cartilage), as well as skeletal muscles (Al-Bashaireh et al., 2018). 

Several preclinical and clinical researches have examined the association between CS 

and the musculoskeletal system, its impact on the prognosis of several orthopaedic 

disorders, surgical complications and prolonged hospital stays (Ehnert et al., 2019, 

Greenberg et al., 2017, Sloan et al., 2010, Chen et al., 2020). Our lab has previously 

assessed and compared the fracture healing capacities of smokers and non-smokers 

among 1585 patients. The outcome of the study showed that smoking significantly 

increased surgical complications and delayed healing, which resulted in prolonged 

hospital stays in smokers when compared to non-smokers (Fig 1.3). Recent evidence 

has demonstrated that smoking could cause an imbalance between bone 
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mineralization and absorption, resulting in lower bone mass and bone mineral density 

(BMD) (Ward and Klesges, 2001) and predisposing bone to osteoporosis and fracture 

(Law and Hackshaw, 1997). 

 
Figure 1.3 Effect of smoking on the hospital stay and surgical complication 
during fracture healing. Data from 1585 patients of the BG Unfallklinik Tübingen 
shows smokers encounter significantly more complications and longer hospital stays 
than non-smokers (*p < 0.05) (Reproduced with permission from (Ehnert et al., 
2019). 
 

1.1.4. Cigarette smoke and osteoarthritis 

The relationship between CS and osteoarthritis (OA) has been assessed by several 

epidemiological surveys, but the results are controversial. CS has been thought to 

have a defensive effect against OA, through reducing body weight (Chiolero et al., 

2008) and stimulating anabolic action of chondrocyte by nicotine (Ying et al., 2012). 

In one follow-up study, Felson et al. (Felson et al., 1997) found that smokers had a 

lower incidence (28%) of OA than that of non-smokers (37.5%), after adjustment for 

multiple risk factors (age, sex, and weight). Similarly, in a retrospective study, Cerhan 

et al. found consistent results with those of the aforementioned study (Cerhan et al., 

1996). However, the protective effect of smoking is minimal, and the methods of 

evaluation and selection bias may be inaccurate, leading to the results of these studies 

not being conclusive. 

Recently, more and more researches have shown a positive relationship between CS 

and cartilage loss with the assistance of Magnetic Resonance Imaging (MRI) (Chen et 

al., 2020). Davies-Tuck and his colleagues indicated that smokers were related to 

increased medial knee cartilage loss, and a positive relationship between pack-year 
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(PY) smoked and the loss of cartilage bulk was observed (Davies-Tuck et al., 2009). 

Furthermore, in a cross-sectional analysis, Ding et al. suggested that smoking leads to 

an increase in knee cartilage loss and defects in subjects with a family history of knee 

OA (Ding et al., 2007). Nevertheless, these studies are only based on radiographic 

images (MRI, X-ray) or post-operative outcomes (Ding et al., 2007, Dube et al., 

2016), and no direct research yet has evaluated the effects of CS on human cartilage 

or primary human chondrocytes. Thus, these results may be not conclusive, since the 

structural changes of cartilages within the smoker’s joints are still not known (Chen et 

al., 2020). 

 

1.2. Osteoarthritis and cartilage 

1.2.1. Osteoarthritis epidemiology 

OA is a type of chronic disabling disease that affects millions of people all over the 

world (El-Tawil et al., 2016) (Fig. 1.4). It is a common form of arthritis and affects 

both large and small joints in the body, including hips, knees, hands, and feet (Allen 

and Golightly, 2015). Over the past decades, along with the increasing rate of joint 

injuries and obesity, the prevalence and burden of OA have consistently risen (March 

et al., 2014). In the recent Global Burden of Disease (GBD) 2015 Study, OA and 

diabetes accounted for the largest increases in burden disability of years lived with 

disability (YLDs) worldwide, when comparing the data of 1990−2005 with 

2005−2015 (Collaborators, 2016). OA accounted for 3.9% of YLDs in 2015 in the 

global population, and it is predicted to climb to the fourth leading cause of YLDs by 

2020, while it ranked sixth in 2003 (Silverwood et al., 2015). Overall, the incidence 

of OA is higher in women compared with men, as well as increasing with age. 

Approximately 15% of females and 9% of males aged over 60 have symptomatic 

knee OA (Hunter and Bierma-Zeinstra, 2019). 

In the clinic, the most susceptible site of OA is the knee, followed by the hand and the 

hip (Prieto-Alhambra et al., 2014). The knee and hip, two pivot joints in humans, are 

more prone to cause disability and comorbidity compared with other joints. 

Throughout the world, the prevalence of OA has been estimated to be 0.85% and 3.8% 
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for hip OA and knee OA, respectively (March et al., 2014). Approximately 85% of the 

burden of OA is occupied by knee OA, causing billions in medical costs every year 

(Collaborators, 2016). 

 
Figure 1.4 OA epidemiology and demographics. Age-standardized 
disability-adjusted life year rates for osteoarthritis by country (per 100,000 
inhabitants). (Reproduced with permission from (El-Tawil et al., 2016). 
 

1.2.2. Cartilage structure and morphology 

Human articular cartilage (AC) is a smooth, viscoelastic tissue, which coats and 

protects the ends of long bones. This specially designed structure possesses the 

function of decreasing friction and distributing loading, owing to its high content of 

components, including the incompressible water as well as the cartilaginous matrix 

(proteoglycans, collagen fibrils, etc.) (Archer, 2003). In healthy cartilage, water is 

estimated to account for 65% to 80% of the mass in the deep and surface layer, 

respectively (Sophia Fox et al., 2009, Akkiraju and Nohe, 2015). Water content 

increases with OA, leading to increased permeability, decreased strength as well as a 

decreased Young’s modulus of elasticity (Otero et al., 2012). Approximately 10% - 20% 

of cartilage gross mass is made of collagen, and 90% - 95% of the collagen is 

occupied by collagen II (Akkiraju and Nohe, 2015). Some small amounts of collagens 

(type V, VI, IX, X, and XI) and additional macromolecules are also present. The 

function of collagen is to provide a cartilaginous framework and tensile strength 

(Akkiraju and Nohe, 2015). Proteoglycans comprise 10 to 15% of cartilage and 

possess the functions of water condense and compressive strength support (Sophia 
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Fox et al., 2009). Large proteoglycan, also refers to aggrecan, attached through a link 

protein and is mostly responsible for hydrophilic behavior (Sophia Fox et al., 2009). 

In general, AC is structured in four laminar zones: superficial, transitional, deep and 

calcified zones (Davies and Kuiper, 2019) (Fig 1.5). Chondrocytes are derived from 

mesenchymal stem cells (MSCs) and exclusively found in the AC (Akkiraju and Nohe, 

2015). They possess the properties of proliferating and synthesizing extracellular 

matrix (ECM) to support the functionality and stability of AC (Archer, 2003, Chen et 

al., 2020). Owing to the high volume of matrix, only 1%–5% of the total cartilage is 

occupied by chondrocytes (Akkiraju and Nohe, 2015). Chondrocytes are entrapped in 

lacuna and separated by ECM, leading to their not being able to migrate to the lesion 

sites (Archer, 2003). Since cartilage is a tissue without a blood supply, chondrocytes 

are nourished through diffusion from synovium and subchondral bone (Hugle and 

Geurts, 2017). Moreover, these cells live in an environment with low oxygen content, 

resulting in their low metabolic turnover. Chondrocytes are metabolically active cells 

and respond to outside stimuli such as cytokines and mechanical changes. These 

factors are of great necessity to the degradation and regeneration of ECM (Scanzello 

and Goldring, 2012).  
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Figure 1.5 The structure of AC and underlying subchondral bone. There are four 
zones from the cartilage surface to the bone: the superficial, middle, deep and 
calcified zones. (Reproduced with permission, from (Davies and Kuiper, 2019). 
 

1.2.3. Pathophysiology of OA 

OA is a whole-joint disease, involving cartilage breakdown, osteophytes formation, 

synovial inflammation, degeneration of ligaments and menisci, as well as weakness of 

periarticular muscles (Hunter and Bierma-Zeinstra, 2019, Chen et al., 2020). The 

degeneration of cartilage is highly correlated with systemic risk factors (gender, aging, 

genetic heritability, nutrition, and smoking) and local risk factors (obesity, joint 

mechanics, occupational stress, physical activity, and injury) (Silverwood et al., 2015). 

In the traditional concept, OA was thought to be a condition of cartilage deterioration 

owing to increased mechanical loading. It was speculated that persistent mechanical 

loading disrupted ECM, which overruns the regeneration of cartilage by itself (Chen 

et al., 2017). Therefore, OA was defined simply as the damaged cartilage due to wear 
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and tear. Nevertheless, the onset and mechanism of OA are still unclear according to 

this explanation. Recently, this concept is being challenged, as the pathogenesis of OA 

is not so simple. The current view is that OA is a condition with a multifaceted 

etiology, including biomechanical factors (Guilak, 2011), cytokines (Fernandes et al., 

2002), and proteases (Troeberg and Nagase, 2012), and this change is more nuanced. 

During the process of OA, the earliest change that occurs in cartilage is the shift of 

chondrocytes from a normally quiescent condition to activated cells as a 

compensatory mechanism, characterized by cell proliferation, cluster formation and 

increased synthesis of matrix molecules (collagen, aggrecan, and hyaluronan) 

(Goldring and Goldring, 2007). Nevertheless, in the end, the death of chondrocytes 

along with the alteration in the ECM prevail and change the development of OA. The 

initial degenerative switch in the AC brings about cartilage weakening and increased 

production of fragmented particles, which stimulate the release of pro-inflammatory 

cytokines, like TNFα, IL-1, and IL-6 (Scanzello and Goldring, 2012). Once secreted, 

these cytokines are able to affix to the receptors of chondrocytes or synoviocytes, 

contributing to the release of metalloproteinases such as matrix metalloproteinases 

(MMPs) and aggrecanases, which in turn accelerates cartilage degradation and 

fragmentation (Hwang and Kim, 2015). Increased cartilage fragments further induce 

the release of pro-inflammatory cytokines and proteases, forming a vicious cycle. 

Changes in the subchondral bone include the increase in bone turnover, development 

of bone marrow lesions, and vascular invasion from the subchondral bone through the 

tidemark into the cartilage (Hunter and Bierma-Zeinstra, 2019). In later stages, 

significant aseptic bone necrosis takes place and synovial fluid diffuses into the bone 

marrow, leading to bone cysts (Man and Mologhianu, 2014). 
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Figure 1.6 Signaling pathways and structural changes in the development of OA. 
(Reproduced with permission from (Hunter and Bierma-Zeinstra, 2019). 
 

1.2.4. Symptoms of OA 

Symptoms of OA often appear slowly and worsen over time. Pain is the hallmark of 

OA and a major driver of seeking clinical advice (Hunter et al., 2008). Swelling, 

morning stiffness, limited range of motion (ROM), muscle weakness, joint instability 

and crepitus are also observed frequently in OA patients (Hunter and Bierma-Zeinstra, 

2019). Radiographic evidence of the disease includes synovial thickening, joint space 

narrowing, and the formation of osteophytes (Braun and Gold, 2012). Sadly, neither 

complete cure nor satisfactory diagnostics are currently available to reverse the 

condition. 

 

1.2. Current treatments of OA 

Nowadays, treatment designed for OA is variable (Fig 1.7). In general, conservative 

treatment strategies of OA include non-pharmacological as well as pharmacological 
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treatments. They are employed for patients with early or less advanced stages 

(Kellgren and Lawrence, K-L Grade 1–3) of OA for relieving pain, increasing joint 

mobility, and improving life quality (Ringdahl E, 2011). In the end stage (K-L Grade 

4) of OA, surgery is the definitive option (Ronn et al., 2011). 

 
Figure 1.7 Ladder of treatment for knee OA. Treatment strategy varies from the 
mild (bottom), moderate to the advanced (top). 
 
1.3.1. Non-pharmacological treatment 
To date, all guidelines recommend that non-pharmacological treatments should play a 

core role in managing OA patients (Zhang et al., 2008, Silverwood et al., 2015, 

Nelson et al., 2014). Non-pharmacological methods such as patient education, regular 

exercise, weight control, physiotherapy, and assistive devices are recommended and 

treated as first-line treatment (Zhang et al., 2008). Most guidelines strongly 

recommend education and self-management as part of the administration of OA, 

including information about the pathophysiology of the disease, joint protection 

strategies, different treatment approaches and also about surgery when it is necessary 

(Zhang et al., 2008, Block, 2014). Performing moderate exercise is helpful in 
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improving joint flexibility, reducing pain and strengthening muscle in the leg and 

knee. Patients should be advised to participate in endurance or strengthening exercises 

and low-impact aerobic exercise (running, swimming, etc.), and lose weight if they 

are overweight or obese (Jordan et al., 2003). For obese persons, losing weight and 

augmenting physical health may help to alleviate the stress on the knees, and reduce 

symptoms. Several trials have clearly demonstrated a positive association between 

weight loss and symptom amelioration (Allen and Golightly, 2015). The use of braces 

and assistive devices are often recommended but not well defined, as they may be 

effective for reducing physical stress on the knees and relieving symptoms (Nelson et 

al., 2014). Other alternatives and complementary therapies, like acupuncture, taichi, 

transcutaneous electrical nerve stimulation and therapeutic ultrasound are still 

controversial in different guidelines, as there is insufficient evidence to support their 

efficacy (Block, 2014, Jordan et al., 2003).  

 
1.3.2. Pharmacological treatment 
Pharmacological treatments mostly often recommended in the guidelines are 

acetaminophen (Ace), non-steroidal anti-inflammatory drugs (NSAIDs), opioid 

analgesics, and intra-articular (IA) injections (Ringdahl E, 2011). As pain is the main 

symptom of and influence on the life quality of OA patients, analgesics are widely 

performed as a vital remedy for moderate-to-severe OA in clinic. Ace (Hunter and 

Bierma-Zeinstra, 2019) and NSAIDs (Dougados, 2006) are essential medicine and 

recommended as the first-line pain medication for OA by most guidelines. Although 

the efficacy of Ace has been well documented, the dosage should be limited since 

overdosing with Ace may be toxic to the liver (McGill and Jaeschke, 2014). 

Compared with Ace, NSAIDs have a stronger anti-inflammatory effect. Some studies 

have administered randomized controlled trials (RCTs) and meta-analysis to compare 

the safety and efficacy of Ace and NSAIDs, suggesting NSAIDs are more effective 

than Ace regarding pain relief (Towheed et al., 2006, Pavelka, 2004). However, side 

effects regarding gastrointestinal and cardiovascular complications should be 

considered in selecting these drugs. The dose and frequency of oral analgesic agents 



13 
 

are preferably restricted at the minimum effective level (Sostres et al., 2010). 

Additionally, as adjunctives or alternatives, topical NSAIDs can be as effective as oral 

analgesic agents in treating knee OA (R. and RL, 2009). There was no evidence that 

topical NSAIDs could cause serious gastrointestinal or renal adverse events in the 

general population. Some local reaction such as itching, skin irritation and burning are 

observed more frequently (Hunter and Bierma-Zeinstra, 2019). Recently, it was well 

established that IA injection of Ace (Arun et al., 2013) and NSAIDs (Thing et al., 

2014) were effective in suppressing inflammation and alleviating pain in joints, 

indicating that it would be a promising alternative to delay joint demolishment for 

patients with OA. When patients with refractory pain or Ace and NSAIDs are 

ineffective or contraindicated, more potent drugs are necessary, such as opioids. 

Opioids, both oral and transdermal administration, have potent effects on pain 

alleviation and function promotion of patients with hip or knee OA (Ringdahl E, 

2011). Benefits obtained from the use of opiates, however, can be outweighed by the 

frequent adverse effects, such as nausea, dizziness, vomiting, constipation and 

sleepiness (Fuggle et al., 2019). In addition, dependence or addiction to opiates is 

another potential risk, therefore low effective and tolerated doses are recommended 

(Lipman, 2001). 

Nowadays, IA injections of corticosteroids (CSs) and hyaluronic acid (HA) have been 

widely and successfully applied in treating knee OA(Wernecke et al., 2015, Concoff 

et al., 2017). IA injections of CSs, such as dexamethasone (Dex), hydrocortisone, and 

methylprednisolone, have been frequently used in alleviating joint symptoms and 

inhibiting inflammation, and their efficacy has been evaluated in many clinical trials 

(Grodzinsky et al., 2017, Stove et al., 2002). Osteoarthritis Research International 

(OARIS) recommended that IA injections of CSs should be performed after patients 

failing to respond, or having an unsatisfactory response, to oral analgesic/anti- 

inflammatory agents (Zhang et al., 2008). HA is the main component of cartilage 

ECM and synovial fluid in both healthy and OA joints (Akmal M, 2005, 

Temple-Wong et al., 2016, Chen et al., 2020). Most of the guidelines recommend that 

IA injection of HA (Wernecke et al., 2015, Baron et al., 2018) as a 
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viscosupplementation for OA joints, owing to HA concentration is decreased in the 

synovial liquid of pathologic joints compared with healthy joints (Akmal M, 2005, 

Temple-Wong et al., 2016, Chen et al., 2020).  The characteristics of IA injection of 

HA are delayed onset and prolonged duration of symptomatic benefits in comparison 

with CSs injections (Trueba Davalillo et al., 2015). 

Other drugs, such as chondroitin, glucosamine, antidepressants, sex hormones, herbal 

remedies, and vitamins are recommended by some guidelines, but little detail was 

given and there no consensus achieved (Nelson et al., 2014). 

 

1.3.3. Surgical treatments  

1.3.3.1. Arthroscopic lavage and debridement  

Arthroscopic surgeries including lavage and debridement have been extensively 

applied in the management of OA. In theory, arthroscopic lavage could relieve joint 

pain secondary to OA by way of clearing up the debris as well as inflammatory 

cytokines that may lead to synovitis and pain (Ronn et al., 2011). Nevertheless, there 

is no evidence to support the benefit of arthroscopic lavage. In a systematic review, 

Reichenbach et al. evaluated data from 567 patients in seven randomized trials, and 

found that joint lavage was no more effective in pain relief or function improvement 

than control groups (a sham intervention, a placebo injection, and a nonintervention 

control) (Reichenbach et al., 2010). 

Arthroscopic debridement should be used to treat patients with torn meniscal 

fragments, and isolated OA without meniscal tear should be avoided. Dervin et al. 

showed that patients with evident meniscus lesions or cartilage flaps might benefit 

from this surgery (Dervin et al., 2003). This result was similar to another study, in 

which middle-aged patients were selected, and arthroscopic debridement was found to 

be beneficial to transient relief of symptoms (Hubbard, 1996). In a systematic review, 

after two years, insignificant difference was observed in pain relief in the arthroscopic 

intervention groups compared with control treatments (sham surgery, exercise, or 

medical treatment) (Thorlund et al., 2015). 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/sex-hormone
https://www.ncbi.nlm.nih.gov/pubmed/?term=Reichenbach%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20464751
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1.3.3.2. Cartilage repair techniques 

1.3.3.2.1 Microfracture surgery 

Microfracture surgery is a technique that works by drilling a hole to penetrate the 

underlying bone. Theoretically, this technique causes MSCs derived from the 

subchondral bone marrow to differentiate into chondrocytes, promoting 

chondrogenesis in the defective area (Ronn et al., 2011). This is a relatively quick and 

simple operation and can be done through arthroscopy. The peculiarity of 

mini-incision and ease of handling of this technique results in its broad use (Erggelet 

and Vavken, 2016). On the other hand, forming fibrocartilage rather than hyaline 

cartilage and possible functional deterioration are the drawbacks one should be aware 

of (Mithoefer et al., 2009). 

 

1.3.3.2.2 Osteochondral graft transplantation  

Osteochondral graft transplantation is one of the most established techniques for 

reconstruction of a cartilaginous surface. Osteochondral grafts are made up of 

cartilage and bone from other parts of the body (osteochondral autograft) or from a 

tissue donor (osteochondral allograft), and replace both the AC and the subchondral 

bone (Ronn et al., 2011). This allows the defective area to be refilled immediately 

with mature and intact hyaline cartilage by using an arthroscopic or mini-invasive 

procedure (Richter et al., 2016b). The superiority of this technique is the lesion of 

cartilage can be substituted with a similar tissue. Minor integration, possible disease 

transmission, restricted donor sites, and complexity of handling are the disadvantages 

of this procedure (Ronn et al., 2011). According to the recent literature, a lesion with 

dimensions < 2 cm2 is the best indication that can be treated through microfracture 

(first-line option) or osteochondral graft transplantation (Richter et al., 2016a). 

Compared with microfracture, osteochondral graft transplantation showed results of 

more longevity and durability, especially among patients with high functional demand 

(Karmali et al., 2019). 

 

1.3.3.2.3 Autologous Chondrocyte Implantation (ACI) 
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ACI technique includes two-stage surgical procedures with laboratory processing, 

which was first reported clinically by Brittberg et al in 1994 (Brittberg et al., 1994). 

In this technique, cartilage is sampled from non-weight-loading regions and then 

digested enzymatically to isolate chondrocytes, subsequently, these cells are cultured 

in vitro for several weeks and reimplanted on the damaged area of cartilage (Brittberg, 

2008). Although chondrocyte repairs the defect with tissue resembling hyaline 

cartilage, some issues remain, including low proliferation in their nature, 

dedifferentiation during in vitro expansion and limited cells being available (Schnabel 

et al., 2002). Additionally, donor-site morbidity caused by cartilage harvest, multiple 

surgical procedures, high cost and the lack of definitive scientific evidence to justify 

its large-scale use all limit the usage of ACI (Brittberg, 2008). 

 
Figure 1.8 Schematic illustration of ACI. The procedure consists of two steps: (1) 
cartilage harvested from non-weight-loading regions and cultured in in vitro 
environment; and (2) reimplantation of the cells by injecting them into the lesion. 
(Reproduced with permission from (Bauge and Boumediene, 2015). 
 
1.3.3.3. Osteotomy 

It has been widely noted that joint malalignment plays a fundamental role in OA onset 

and progression. Osteotomy is performed to relieve pain (particularly in patients with 

symptoms) and delay the onset or progression of OA through realigning the joints 

(Ronn et al., 2011). Different surgical techniques are used to adjust the load axis, 

including high tibial osteotomy (HTO) and distal femoral osteotomy (DFO) (Fig 1.9). 

HTO is commonly performed in patients with varus deformity, either by wedging 
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open bone from the proximal tibia to reconfigure the knee joint (Lee and Byun, 2012). 

Similarly, DFO is usually performed in patients with valgus deformity by closing the 

medial wedge of bone or wedging open lateral femur (Feucht et al., 2017). 

Osteotomies around the knee are effective, particularly in young patients or 

middle-aged active patients with predominantly unicompartmental OA. However, 

postoperative complications such as fracture, nonunion, nerve injury, as well as the 

risk of additional surgery following osteotomy should be taken into account (Sherman 

et al., 2018). Thus, appropriate patient selection, correct osteotomy types, and proper 

surgical techniques are essential to guarantee the success of osteotomy. 

 
Figure 1.9 Postoperative X-ray images of HTO and DFO. (a) Open-wedge HTO in 
unicompartmental OA of the medial knee compartment (Lee and Byun, 2012) and (b) 
open-wedge DFO in unicompartmental OA of the lateral knee compartment. 
(Reproduced with permission from (Feucht et al., 2017). 
 
1.3.3.4. Joint arthroplasty 

It is well accepted that joint arthroplasty is a safe and highly effective procedure for 

patients with severe OA (Grayson and Decker, 2012). In the light of its irreversible 

nature, this surgery is only recommended for patients who have failed to respond, or 

having an unsatisfactory response, to other treatments (Ronn et al., 2011). Owing to 

the limited endurance of prosthetic components, which is normally 15 to 20 years, 

arthroplasties are normally performed in patients older than 60 years old (Hunter and 

Bierma-Zeinstra, 2019). In general, knee joint arthroplasties contain 
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unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) (Fig 

1.10). The former is indicated in cases of OA with merely one side of damaged 

cartilage, and the latter is executed in patients with more than one lesion compartment 

involved or after the failure of other surgeries (Ahmad et al., 2015). Moreover, UKA 

is usually performed in patients with well-preserved lateral compartments, including 

intact meniscus, cartilage and cruciate ligaments (Arirachakaran et al., 2015). TKA is 

recommended in patients with more than one lesion compartment involved, and 

considerable improvements in the function and life quality have been shown (Aujla 

and Esler, 2017). The long-term follow-up study of TKA indicated that the survival 

rate was 92.7% and 90.4% at 10 years and 15 years, respectively (Feng et al., 2013). 

The main reasons for failure were aseptic loosening of components and infections 

(Feng et al., 2013). 

 
Figure 1.10 Plain radiographs of the TKA and UKA. (a) Anteroposterior (AP) 
view after the TKA surgery. (b) Lateral view after the TKA surgery. (c) AP view after 
the UKA surgery. (d) Lateral view after the UKA surgery(Reproduced with 
permission from (Ronn et al., 2011). 
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1.4. Aim of the study 

The objective of this thesis was to perform comparative analysis of 2-D monolayer 

and 3-D culture of primary human chondrocytes to establish an optimal cell culture 

model. The following points shall be addressed: 

1. To evaluate the effects of cigarette smoke extract (CSE) with different 

concentrations on the viability, function, and gene expression of primary 

human chondrocytes.  

2. “To research the possible mechanism by which CSE affects primary human 

chondrocytes.” (Chen et al., 2020) 

3. To evaluate whether the pharmacologic treatment of dexamethasone is 

beneficial to chondrocytes impaired by CSE, and if not, whether it could be 

substituted by other treatments, such as acetaminophen or NSAIDs. 

4. To evaluate the effects of HA and HA combinations (dexamethasone, 

acetaminophen or diclofenac) on chondrocytes impaired by CSE. 
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Chapter 2 

2. Materials and Methods 

2.1. Materials  

2.1.1. Chemicals and reagents 

Table 2.1: List of used chemicals and reagents. 

 

Substance  Article No. Company  
Acetic Acid Glacial (100%)  20104.298 VWR 
1,9-Dimethyl-Methylene Blue Zinc Chloride 
Double Salt (DMMB) 341088 Sigma 

2′, 7′-Dichlorfluorescein-Diacetate (DCFH-DA) 21884 Sigma  
4-Nitrophenyl Phosphate Disodium Salt 
Hexahydrate (pNPP) 4165.1 Carl Roth 

4-Nitrophenyl Sodium 10 mM N7660 Sigma 
Acetaminophen A5000 Sigma  
Agarose 2267.4 Roth 
Alcian Blue 3082.2 Carl Roth 
Ammonium Thiocyanate 221988-100g Sigma 
Antibiotic/Antimycotic Stock Solution P11-002 PAA 
Boric Acid 99.8% p.a 6943.1 Carl Roth 
Bromophenol A512.1 Carl Roth 

Calcein Acetoxymethyl Easter (Calcein AM) ABD-22002 ATT 
Bioquest 

Chloroform Y015.1 Carl Roth 
Chondroitin Sulfate A Sodium Salt from bovine 
trachea C9819 Sigma  

Collagenase II 17454.01 Serva 
Deoxyribonucleic Acid from Calf Thymus D4522 Sigma  
Dulbecco’s Modified Eagle Medium (DMEM) D6546 Sigma 
Dexamethason Water Soluble D2915 Sigma  
Diclofenac Sodium Salt D6899 Sigma  
Diethylpyrocarbonate (DEPC) K028.3 Carl Roth 
Dimethyl Sulfoxide (DMSO) 4720.2 Carl Roth 
Disodium Hydrogen Phosphate 7876.7 Carl Roth 
Dulbecco's Phosphate Buffered Saline (DPBS) D8537 Sigma 
Ethanol 99.9% p.a. (EtOH) 20821.33 VWR 
Ethidium Bromide 1% 2218.1 Carl Roth 
Fetal Calf Serum (FCS) 41G7141K Invitrogen 
First Strand cDNA Synthesis Kit K1621 ThermoFisher 
Formaldehyde, 37% solution A0823.1000 AppliChem 
Glycerol, >99% p.a. G6376-100G Sigma 
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2.1.2. Buffers, medium and solutions 

Table 2.2: List of buffers, medium and solutions. 

 

Glycine  3908.2 Carl Roth 
Glycine, >99%, p.a. A1067.5000 AppliChem 
Guanidine Hydrochloride G3272 Sigma  
Guanidine Thiocyanate 0017.1 Carl Roth 
Hoechst 33342 14533-100MG Sigma 
Hyaluronic Acid Sodium 53747 Sigma  
Hydrogen Chloride (HCl) 4625.2 Roth 
Isopropanol 100% 20842.33 VWR 
Isopropanol 100% 33539 Honeywell 
L-Ascorbate-2-Phosphate A8960-5G Sigma 
Magnesium Chloride KK36.2 Carl Roth 
Methanol >99% (Met OH) 20847.307 VWR 
N-Acetyl-L-Cyteine 4126.2 Carl Roth 
Papain from papaya latex P4762 Sigma  
Paraformaldehyde 335.2 Carl Roth 
Penicillin/Streptomycin (P/S) P0781 Sigma 
Resazurin Sodium Salt 199303-1G Sigma 
Roti Aqua Phenol A980.3 Carl Roth 
Safranin-O T129.1 Carl Roth 
Sodium Acetate X891.2 Carl Roth 
Sodium Chloride S7653-1KG Sigma 
Sodium Chloride S7653 Sigma  
Sodium Ethylene Diamine Tetraacetatic Acid 
(Na-EDTA) 8043.2 Roth 

Sodium Hydroxide (NaOH) T135.1 Carl Roth 
Sulforhodamine B Sodium Salt S1402-1G Sigma 
Trisamine (Tris) Base, >99%, p.a. T1503-1KG Sigma 
Trisaminomethan AE15.1 Roth 
TrizolQIAzol Lysis Reagent 79306 Qiagen 
Trypan Blue CN76.1 Roth 
Trypsin/EDTA T3924 Sigma  

 

Buffers/Mediums/Solutions Compounds and handling 
Calcein AM stock solution 502 µl DMSO 

1 mg Calcein AM 
Trypan blue solution 62.5 mg Trypan blue 

50 ml Dulbecco’s PBS 
Alcian blue solution (1%, PH 2.5) 500 mg Alcian blue (8 GX) 

50 ml Acetic Acid (3%) 
Guanidine Hydrochloride (6 M) 28.65 mg Guanidine Hydrochloride 

50 ml ddH2O 
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Safranin-O solution (0.1%) 50 mg Safranin-O 
50 ml ddH2O 

Formaldehyde (4%) Formaldehyde (37%) in ddH2O 
AP Activity Assay buffer (PH 10.5) 2 g 4-nitrophenyl-phosphate (0.2%) 

3.75 g Glycine (50 mM) 
12.11 g Tris-Base (100 mM) 
95.21 mg MgCl2 (1 mM) 

1 L ddH2O 
PCR loading buffer 25 mg Bromophenol blue 

5 ml 10X TBE 
5 ml Glycerol (20%) 

10 X TBE buffer 108 g TRIS 
55 g Boric acid 
40 ml EDTA (0.5 M, PH 8) 
1 L ddH2O 

Ethanol solution (70%) 99% Ethanol in ddH2O 
Sodium Acetate solution (3M, PH 5) 12.3 g Sodium Acetate in 50 ml ddH2O 
Acetic Acid Solution (1%) 100% acetic acid in ddH2O 
Acetic Acid Solution (3%) 100% acetic acid in ddH2O 
TRIS Solution (10 mM) 1.2g TRIS in 1L ddH2O 
SRB Solution 0.4% SRB in 1% acetic acid 
Resazurin stock solution 0.025% in DPBS 
Resazurin working solution 10% Resazurin stock solution in DPBS 
PBE Buffer (PH 6.5) 6.5 mg N-Acetyl-L-Cyteine 

138 mg Disodium hydrogen phosphate 

14.9 mg EDTA 

Adjust PH to 6.5 with NaOH 
Adjust volume to 20 ml with ddH2O 

Papain stock solution (5 mg/ml) 5 mg papain from papaya latex 

1 ml PBE buffer 
Papain working solution (25 µg/ml) 5 mg/ml stock solution in PBE buffer 

DMMB solution buffer (PH 3) 304 mg Glycine 

160 mg sodium chloride 
9.5 ml 0.1 M Acetic acid 
90.5 ml ddH2O 

DMMB stock solution (8 mg/ml) 8 mg DMMB in 1 ml buffer 

DMMB working solution (16 µg/ml) 8 mg/ml stock solution in DMMB buffer 
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2.1.3. Consumables 
Table 2.3: List of consumables 

 

 

Chondroitin Sulfate Standards stock 
solution 
(1 mg/ml) 

10 mg Chondroitin Sulfate Standards in 

10 mlPBE buffer 

Chondroitin Sulfate Standards working 
solution 
(100 µg/ml) 

1 mg/ml stock solution in PBE buffer 

TE buffer (PH 7.5-8.0) 10 mM Tris base 

1 mM EDTA 
Calf Thymus DNA stock solution (1 
mg/ml) 

1 mg Calf Thymus DNA in 1 ml TE 

buffer 

TNE buffer (PH 7.4) 121.1 mg Tris Base 

37.2 mg EDTA 
1.17 g sodium chloride 
Adjust PH to 7.4 with HCl 
Adjust volume to 100 ml with ddH2O 

Chondrocyte Cells Culture Medium 500 ml DMEM  
+500 ml Ham's F12  
+50 ml FCS  
+10 ml Penicillin/Streptomycin  
+50 µl L-Ascorbic-2-Phosphate 

 

Consumable  Manufacturer Type Serial number 

Cell culture plate Greiner bio-one 
96-well,flat 
bottom 655180 

Cell culture plate Greiner bio-one 
96-well, V  
bottom 651101 

Cell culture plate CorningInc. 
48-well,flat 
bottom 3548 

Cell culture plate Greiner bio-one 
24-well,flat 
bottom 662160 

Cell culture plate Corning Inc. 
6-well, flat  
bottom 353046 

Cell Star Tubes Greiner bio-one 50 ml 227261 

Cell Star Tubes Greiner bio-one 15 ml 188271 

Eppendorf tube SARSTEDT AG 0.5 ml, white 72.699 
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2.1.4. Equipment 

2.1.4. Equipment 

Table 2.4: List of used equipment. 

 

Eppendorf tube Carl Roth GmbH + Co.KG 1.5 ml, white 4182.1 

Eppendorf tube Carl Roth GmbH + Co.KG 1.5 ml, blue   4190.1 

Eppendorf tube Carl Roth GmbH + Co.KG 1.5 ml, green 4209.1 

Eppendorf tube Carl Roth GmbH + Co.KG 1.5 ml, red 4189.1 

Eppendorf tube Carl Roth GmbH + Co.KG 1.5 ml, yellow  4204.1 

Eppendorf tube Eppendorf 2.0 ml, white 2549 

Pipette Tips Sorenson BioScience, Inc.  0.1 - 10 μl Colorless 

Pipette Tips Sarstedt AG & Co. 2 - 200 μl Yellow 

Pipette Tips Ratiolab GmbH 100 - 1000 μl Blue 

Single-channel Pipette Corning Inc. 10-100 μl 158240031 

Single-channel Pipette Corning Inc. 20-200 μl 158250088 

Single-channel Pipette Corning Inc. 100-1000 μl 058261237 

Single-channel Pipette Eppendorf  0.1-2.5 μl P35434B 

Spectrophotometer BMG Labtech GmbH Fluostar Omega 415-1264 

Water-bath Lauder Dr. R. Wobser GmbH Al 25 
LCB 
0727-11-0094 

Water-bath Lauder Dr. R. Wobser GmbH ECO ET 20 LY 06.1 

 

Equipment Manufacturer Type Serial number 
Agitator, 
magnetic stirrer IKA-Werke GmbH  RH B2 06.050357 
Agitator, 
magnetic stirrer Heidolph Instruments GmbH MR Hei-Mix L 040700340 

Centrifuge Dako Deutschland GmbH Stat Spin 620E50000693 

Centrifuge Thermo Fisher Scientific Megafuge 40 R 41307652 

Centrifuge Scientific Industries Inc. SI DD 58 DD58-1001 

Centrifuge (Mirco) Labnet International BN 08060235 C1301B 

Centrifuge (Mirco) HERAEUS Med GmbH Fresco 17 41250019 
Electrophoresispower 
supplies Bio-Rad Laboratories GmbH Power Pac 200 285BR05538 

Freezer -20℃ BSH IQ500 
GS51NYW41 
(01) 
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Freezer -20℃ Liebherr Med Line 
LGex3410-21K 
001 

Freezer -80 ℃ Thermo Fisher Scientific 905 827860-2521 

Freezer -86 ℃ Revco ULT1386-9-V17 R10G-333095-RG 

Fridge +4 ℃ Liebherr Comfort 3523-21L 

Fridge +4 ℃ Cool Compact Kühlgeräte G HKMT 040-01 CC00412514 

Gas washing bottle 
Lenz Laborglass GmbH & 
Co.KG 100 ml 5500537 

Gas washing bottle 
Lenz Laborglass GmbH & 
Co.KG 250 ml 5500549 

Ice maker Scotsmen AF 80 DD 8837 11 X 

Incubator  Thermo Fisher Scientific 
Heratherm 
OMS 60 41296334 

Incubator Binder GmbH 9040-0078 11-22649 

Incubator Binder GmbH 9040-0081 11-22190 
Laboratory 
pump (Bench) Carl Roth GmbH + Co.KG Cyclo 2 1109-065 

Microscope PeqlabBiotechnologie GmbH EVOS-fl 91-AF-4301 

Mixer Corning Inc. Vortex Mixer 804995 

Mixer Labinco BV LD-76 76000 

Multichannel Pipette Corning Inc. 5-50 μl 151620022 

Multichannel Pipette Corning Inc. 20-200 μl 551630277 

Multichannel Pipette Thermo Electron Co. 0.5-10 μl CH98998 4510 

Multichannel Pipette Corning Inc. 50-300 μl 151640033 

PCR thermal cyclers Thermo Fisher Scientific Arktik 10040953 

PCR thermal cyclers Applied Biosystems GmbH Forschungslabor 50132 

pH meter Mettler-Toledo GmbH Five Easy FE 20 1232315296 

Pipette controller Integra GmbH Pipetboyacu 629619 

Pipette controller Heathrow Scientific LLC Rota-Filler 3000 HSA05119 

Refrigerator  Cool Compact Kühlgeräte G HKMT 040-01 CC 00412516 

Refrigerator  Cool Compact Kühlgeräte G HKMN 062-01 CC 00412513 

Safety workbench Thermo Fisher Scientific 
Maxisave 
S20201.8 41293949 

Safety workbench Thermo Fisher Scientific 
Maxisave 
S20201.8 41293948 

Scale Kern &Sohn GmbH ABJ 120-4M WB 1140084 
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2.2 Ethics Statement 
All human studies were performed in accordance with the latest revision of the 

Helsinki declaration. All human tissues were obtained in accordance with the ethical 

vote (653/2018BO2) of Eberhard-Karls University and the patients’ written consent. 

The average age of donors for primary chondrocytes isolation was 69.64 ± 8.82 years 

(10 males and 4 females). 

 

2.3 Methods  

2.3.1. Generation of Cigarette Smoke Extract (CSE) 

We used two commercial cigarettes (Marlboro, Philip Morris, New York City, USA) 

to prepare fresh CSE. In brief, the cigarettes were constantly combusted into a 

standard gas washing bottle with a 50 ml pre-warmed DMEM medium. Here two 

cigarettes were bubbled at a speed of 95 bubbles/min. The concentration of CSE was 

measured by a plate reader at λ = 320 nm (OD320). An OD320 of 0.7 was regarded as 

100% CSE. The fresh CSE was passed through a 0.22 μm pore filter to ensure sterility, 

and then it was diluted further (0.1, 0.5, 1, 5, 10, 20, 50%) with chondrocyte culture 

Shaker, laboratory LTF Labortechnik GmbH DRS 12 11DE243 

Shaker, laboratory PeqlabBiotechnologie GmbH ES-20 010111-1107-0119 

Shaker, laboratory LTF Labortechnik GmbH DRS 12 11DE090 

Shaker, Laboratory  Corning Inc. LSE Vortex Mixer 1101260 

Single-channel Pipette Corning Inc. 0.5-10 μl 158220060 

Single-channel Pipette Corning Inc. 2-20 μl 158230441 

Single-channel Pipette Corning Inc. 10-100 μl 158240031 

Single-channel Pipette Corning Inc. 20-200 μl 158250088 

Single-channel Pipette Corning Inc. 100-1000 μl 058261237 

Single-channel Pipette Eppendorf  0.1-2.5 μl P35434B 

Spectrophotometer BMG Labtech GmbH Fluostar Omega 415-1264 

Water-bath Lauder Dr. R. Wobser GmbH Al 25 
LCB 
0727-11-0094 

Water-bath Lauder Dr. R. Wobser GmbH ECO ET 20 LY 06.1 
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medium. The CSE concentrations correspond to exposure associated with smoking 

from 0.01 pack (0.1%) to 1 pack (10%) cigarettes/day (Sreekumar et al., 2017, Chen 

et al., 2020). 

 

2.3.2. Isolation and culture of primary human chondrocytes 

We obtained samples of primary human chondrocytes from osteoarthritic patients 

undergoing total knee arthroplasty. Isolation and culture of primary human 

chondrocytes were mentioned as previously described (Tendulkar et al., 2019). In 

short, the cartilages were chopped into pieces and washed with DPBS (w/o Ca2+/Mg2+) 

thoroughly. Subsequently, these pieces were subjected to collagenase (1500 U/mL) 

digestion in a 37 ℃ shaker incubator overnight, then the supernatant of the mixture 

was obtained by centrifugation to eliminate impurities. Finally, these cells were 

expanded in culture medium at 37 °C and 5% CO2. The cell culture medium with or 

w/o CSE was changed every 24 hours until 3, 7 and 14 days post-inoculation (Chen et 

al., 2020). 

 

2.3.3. Chondrocyte pellet culture 

Chondrocyte pellets were formed in polypropylene 96-well conical plates with 

2.5 × 105 cells per pellet (Solchaga et al., 2011). In brief, after centrifugation at 600 g 

for 10 min, pellets were resuspended at a density of 1.25 × 106 cells/ml in the 

chondrocyte culture medium. Subsequently, 200 µl aliquots of the cell suspension (2.5 

× 105 cells/well) were dispensed into 96-well conical plates and spun in a benchtop 

centrifuge at 600 g for 10 min. Afterward, the pellets were cultured at 37 °C under a 

gas mixture of 95% air/5% CO2. Medium change was performed twice a week. 

 

2.3.4. Resazurin Conversion Assay  

To measure cell viability (mitochondrial activity) of primary human chondrocytes, a 

resazurin conversion assay was performed. In short, after half an hour incubation with  

0.0025% (w/v) Resazurin working solution (in PBS) in a 37°C incubator, the 

fluorescence  (ex/em = 540/590 nm) was evaluated by a plate reader, as the protocol 



28 
 

described before (Ehnert et al., 2018, Chen et al., 2020). 

 

2.3.5. Sulforhodamine B (SRB) Staining to assess total protein content 

To assess the total protein content of primary human chondrocytes, SRB staining was 

performed as reported before (Ehnert et al., 2018, Chen et al., 2020). In short, cells 

were fixed with ice-cold ethanol for 30 min at -4°C, and then stained with SRB 

working solution (0.4% w/v in 1% v/v acetic acid) at RT for 30 min followed by 3 

washing steps with acetic acid (1% v/v) to eliminate unbound SRB. After dissolving 

the bound SRB in unbuffered TRIS solution (10 mM, pH ~10.5), the absorbance was 

recorded at λ = 565 nm with a plate reader. 

 

2.3.6. Determination of sulfated glycosaminoglycan (sGAG) content 

The content of sGAG was determined to assess the matrix formation of chondrocytes. 

Briefly, the pellets were transferred into 1.5-ml micro-centrifuge tubes (one pellet per 

tube) and washed with PBS. One ml papa in working solution was added into each 

tube, then the mixtures were incubated at 60℃ overnight. DMMB dye (1,9 - 

Dimethyl - Methylene Blue zinc chloride double salt) was performed to quantify the 

sGAG content with chondroitin sulfate A (0–50 mg/mL) as a standard. The amount of 

sGAG was quantified by measuring the color shift (blue to purple) at λ = 530 nm and 

λ = 590 nm, respectively, in a plate reader (Babur et al., 2013). 

 

2.3.7. DNA Quantification 

DNA content was determined by Calf thymus DNA (ct-DNA) assay, as the 

manufacturer’s protocol decribed before. In brief, 100 µl of standard or sample was 

mixed with 100 µl of Hoechst 33342 dye working solution in a fluorescence plate and 

analyzed (ex/em = 355/460 nm) in a plate reader (Solchaga et al., 2011). 

 

2.3.8. Live/dead staining  

Calcein AM (living cell staining ) and Ethidium homodimer (dead cell staining ) were 

considered as indirect parameters of cell viability. Following the washing with PBS 3 
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times, chondrocytes exposed to the culture medium with or w/o CSE were stained 

with a mixture of 2 µM Calcein AM, 4 µM Ethidium homodimer and 1 mg/ml 

Hoechst 33342 at RT for 30 min. The stained cells were visualized under a 

fluorescence microscope (Mi et al., 2016, Chen et al., 2020). 

 

2.3.9. Assessing ECM production by Alcian blue and Safranin-O staining 

In order to evaluate the generation of glycosaminoglycans (GAGs) and collagen, 

Alcian blue and Safranin-O staining were performed (Tendulkar et al., 2019). In short, 

cells were fixed with 4% V/V formaldehyde for 30 min at RT followed by a washing 

step in PBS. Subsequently, cells were labeled with 1% w/v Alcian blue and 0.1% w/v 

Safranin-O staining at RT for 30 min, respectively. Afterwards, distilled water was 

added to eliminate the unbounded dye solution. All images were photographed with 

an EVOSfl microscope. After dissolving the bound Alcian blue staining with 6 M 

guanidine HCl in distilled water, the optical density was recorded at λ = 620 nm using 

a plate reader  (De Bari et al., 2001, Chen et al., 2020). 

 

2.3.10. Determination of Reactive oxygen species (ROS) production  

ROS production was measured using 2′,7′-dichlorofluorescein-diacetate (DCFH-DA). 

In short, 10 μM DCFH-DA dissolved in serum-free culture medium was 

supplemented to cells after washing with PBS and incubated for at 37 °C for 30 min. 

Then cells were exposed to CSE after washing with PBS. The measurement of 

fluorescence intensity was obtained by a plate reader (ex/em = 485/520 nm) following 

15 min of incubation (Sreekumar et al., 2017, Chen et al., 2020). 

 

2.3.11. Alkaline Phosphatase (AP) Activity Assay 

AP activity is considered as a hypertrophic marker of chondrocytes (Nadzir et al., 

2011). In short, AP reaction buffer was added to cells after washing with PBS and 

incubated in a 37°C incubator for one hour. Then, absorbance was determined using a 

plate reader (λ = 405 nm / OD405) as described (Sreekumar et al., 2017). The 

normalization was performed by Resazurin conversion (Chen et al., 2020). 
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2.3.12. Semi-Quantitative RT-PCR 

The TriFAST reagent was used to collect total RNA based on the manufacturer’s 

instructions (Tendulkar et al., 2019). Complementary DNA (cDNA) was synthesized 

with the First Strand cDNA Synthesis Kit after the measurement of RNA 

concentration. Then, 10 ng of cDNA was used as a template to perform 

semi-quantitative RT-PCR by using Biozym Ready Mix. Details of primer used are 

provided in Table 2.5. Afterward, 1.5% agarose gel electrophoresis and ethidium 

bromide were utilized to separate and visualize the PCR products. Moreover, the 

pUC19/Msp1 marker was used as a size reference. Internal control was GAPDH. The 

data obtained was quantified using the ImageJ software (NIH, Bethesda, MD, USA). 

Table 2.5: Summary of primers sequences and PCR conditions for the genes. 

 

Statistics  

Graph Pad Prism software (El Camino Real, CA, USA) was used for statistical 

analyses. Results are expressed as bar or line diagrams (mean ± SEM). All the 

experiments were performed at least 3 times (N≥3) and measured as triplicates or 

more (n≥3). Data were analyzed by Mann–Whitney U-test or Kruskal–Wallis H test 

followed by a Dunn’s test. Minimum level of significance: p ≤ 0.05. The statistical 

analyses were advised by PD Dr. Sabrina Ehnert. 
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Chapter 3 

3. Result  

3.1. Comparison of 3-D culture and 2-D monolayer culture of primary human 

chondrocytes 

Firstly, in order to establish the optimal model for chondrocyte cell culture, we 

compared different cell culture methods, namely 3-D pellet (Fig. 3.1.a), 2-D 

monolayer (Fig. 3.1.b) and knitted titanium scaffold (Fig. 3.1.c) culture. Viability, 

matrix formation and function of chondrocytes in these culture methods were 

evaluated to decide the optimal model. As shown in the table (Fig 3.1.d), 2-D 

monolayer culture has the advantage of simplicity and ease of operation compared 

with 3-D culture. 

 
Figure 3.1 Comparison of 3-D culture and 2-D monolayer culture of primary 
human chondrocytes. (a) Morphology and size of primary human chondrocytes in 
pellet culture and (b) morphology of primary human chondrocytes in monolayer 
culture after 24 h. (c) Illustration of chondrocytes seeded on the knitted titanium 
scaffolds after 24 h. Calcein-AM was used to show the living cells in the scaffold. The 
black arrowhead indicates the pellet. Different experimental methods were compared 
and listed in the table (d). Tick (√) means the method is available and cross (x) means 
the method is not available. 
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3.2. CSE exposure induces the reduction in viability of primary human 

chondrocytes after 24 h 

Afterward, in order to assess the toxicity of CSE on the chondrocytes, cells were 

exposed to the CSE with increasing concentrations (0.1, 0.5, 1, 5, 10, 20, 50%) for 24 

h. Mitochondrial activity (Fig. 3.2.a) and total protein content (Fig. 3.2.b) were used 

to determine the viability of cells after 24 h incubation (Chen et al., 2020), 

respectively. Mitochondrial activity (20%, **p ≤ 0.01 and 50%, ***p ≤ 0.001) and 

total protein content (20% and 50%, ***p ≤ 0.001) of chondrocytes were significantly 

reduced in the concentrations of CSE over 20% compared to the control group. 

Similarly, the number of living cells was significantly reduced by 20% CSE, as 

determined by Calcein-AM staining (Fig. 3.2.c). 

 
Figure 3.2 CSE exposure induces the reduction in viability of primary human 
chondrocytes after 24 h. After 24 h, (a) Resazurin conversion and (b) SRB staining 
were performed for cell viability. (c). Representative microscopic images for 
Calcein-AM staining. Cells were visualized with Calcein-AM (green) and Hoechst 
33342 (blue) for living cells and nuclear, respectively. Data are presented as bar 
diagrams (mean ± SEM); analyzed by Kruskal–Wallis H test. *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001 as compared to the control group. Scale bar = 1000 µm. 
 

3.3. Comparison of the effect of CSE exposure twice a week and once a day on 

the primary human chondrocytes 
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For the next step, in order to determine the optimal smoking condition, we compared 

two different exposure pathways to chondrocytes, namely, exposing twice a week  

(Fig. 3.3.a, b, c) and once a day (Fig. 3.3.d, e, f). Cells were exposed to increasing 

concentrations of CSE (0.1, 0.5, 1, 5, 10%) and stopped on days 1, 3, 7 and 14, 

respectively. On day 3 and day 7, mitochondrial activity (Fig. 3.3.a) and total protein 

content (Fig. 3.3.b) of chondrocytes were not affected significantly by exposure to 

CSE twice a week, which was consistent with Calcein-AM staining (Fig. 3.3.c) on 

day 7. On day 14, however, CSE exposure significantly decreased the mitochondrial 

activity (Fig. 3.3.a, 5% and 10%, **p ≤ 0.01 and ***p ≤ 0.001, respectively) and total 

protein content (Fig. 3.3.b, 0.5%, **p ≤ 0.05 and 1%, 5%, 10%, **p ≤ 0.01) of 

chondrocytes compared to the control group. Nevertheless, on day 3, mitochondrial 

activity (Fig. 3.3.d) and total protein content (Fig. 3.3.e, 10%, **p ≤ 0.01) of 

chondrocytes were inhibited significantly by exposing to CSE once a day. On days 7 

and 14, CSE-exposed chondrocytes showed a strong reduction in mitochondrial 

activity (Fig. 3.3.d, 5% and 10%, **p ≤ 0.01) and total protein content (Fig. 3.3.e, 5% 

and 10%, ***p ≤ 0.001), respectively. Similarly, the number of living cells was 

decreased by CSE in a dose-dependent manner on day 7, as determined by 

Calcein-AM staining (Fig. 3.3.f). Therefore, CSE exposure every day is more 

pronounced than exposure twice a week. Based on the above, chondrocytes exposed 

to CSE once a day were selected for further experiments. 
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Figure 3.3 Comparison of the effect of CSE exposure twice a week and once a 
day on the primary human chondrocytes. On days 1, 3, 7 and 14, (a) Resazurin 
conversion and (b) SRB staining were performed for cell viability. (c). Representative 
microscopic images for Calcein-AM staining. Cells were visualized with Calcein-AM 
(green) and Hoechst 33342 (blue) for living cells and the corresponding nuclei, 
respectively. Data are presented as bar diagrams (mean ± SEM); analyzed by 
Kruskal–Wallis H test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 as 
compared to the control group. Scale bar = 1000 µm. 
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3.4. CSE exposure inhibits the accumulation of ECM in primary human 

chondrocytes 

Aggrecan and collagen II are major components of ECM and can be stained 

specifically by Alcian blue and Safranin-O staining (Akkiraju and Nohe, 2015). We 

performed Alcian blue and Safranin-O staining to investigate the effect of CSE on the 

functionality of primary human chondrocytes. CSE-exposed chondrocytes showed a 

dose-dependent decline in matrix accumulation on day 7 (Fig 3.4.a, 10%, ***p ≤ 

0.001) and day 14 (Fig. 3.4.b, 5% and 10%, **p ≤ 0.01 and ***p ≤ 0.001, 

respectively), respectively. Similarly, the stains of Alcian blue (Fig 3.4.c) and 

Safranin-O (Fig 3.4.d) dye were decreased on day 7, respectively.  

 
Figure 3.4 CSE exposure inhibits the accumulation of ECM in primary human 
chondrocytes. Matrix formation was quantified on day 7 (a) and day 14 (b) by Alcian 
blue staining. Representative microscopic images for Alcian blue (c) and Safranin-O 
(d) staining were performed on day 7. Data are presented as bar diagrams (mean ± 
SEM); analyzed by Kruskal–Wallis H test. **p ≤ 0.01, ***p ≤ 0.001 as compared to 
the control group. Scale bar = 400 µm. 
 

3.5. CSE exposure down-regulates the anabolic gene expression of primary 

human chondrocytes 

Since after 7 days of treatment with CSE, the matrix accumulation of chondrocytes 
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was inhibited significantly by 10% CSE, we wanted to know whether the inhibition 

was due to the down-regulation of gene expression. On day 7, the mRNA expression 

analysis showed that Collagen II (Fig. 3.5.a, **p ≤ 0.01), a major component of ECM 

protein (Archer, 2003), was significantly down-regulated to 0.2-fold in 10% 

CSE-exposed group. Similarly, gene expression of Aggrecan (Fig. 3.5.b, **p ≤ 0.01), 

an ECM marker for cartilage(Archer, 2003), and SOX-9 (Fig. 3.5.c, **p≤ 0.01), which 

is the main transcription factor for particularization and sustentation of cartilage (Tew 

et al., 2008), was significantly suppressed to 0.5-fold and 0.75-fold, respectively. 

Intriguingly, gene expression of Collagen X (Fig. 3.5.d), a marker of hypertrophic 

chondrocyte (Nejadnik et al., 2015), was not affected by 10% CSE. Therefore, CSE 

exposure negatively affected the anabolic gene expression (Collagen II, Aggrecan and 

SOX-9) of chondrocytes, which might interrupt the formation of the chondrocyte 

matrix and result in cartilage demolishment. 

 
Figure 3.5 CSE exposure down-regulates the anabolic gene expression of 
primary human chondrocytes. Semi-quantitative RT-PCR was performed using 
primers for gene expression. The gene expression of (a) Collagen II, (b) Aggrecan, (c) 
Sox9, and (d) Collagen X was normalized to the GAPDH (housekeeping gene). Data 
are presented as bar diagrams (mean ± SEM); analyzed by Mann Whitney test. **p ≤ 
0.01 as compared to the control group. 
 

3.6. CSE exposure increases oxidative stress and accelerates the death of primary 

human chondrocytes 

It is believed that ROS in or induced by CS is one of the critical risk factors in 

producing adverse effects on the human body (Kamceva et al., 2016, Chen et al., 

2020). The production of ROS was increased when chondrocytes were exposed to 
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CSE at the concentration of 1% and above, and 10% CSE induced significantly high 

amounts of ROS (2-fold) as compared to corresponding untreated cells, (Fig. 3.6.a, 

**p ≤ 0.01). Meanwhile, the death of chondrocytes occurs during the process of OA 

and is connected with the accumulation of ECM (Valavanidis A et al., 2009, Thomas 

et al., 2007). Increased oxidative stress is known to induce cell death (Collins et al., 

2016, Chen et al., 2020). Therefore, it is interesting to assay whether the CSE could 

induce chondrocyte cell death through the generation of ROS production. Incubation 

of chondrocytes with 10% CSE for 3 days showed an increase in dead cells and a 

decrease in living cells, and treatment of chondrocytes with 0.01% hydrogen peroxide 

for 20 min, which represents a principal ROS in cigarette smoke (Valavanidis A et al., 

2009, Chen et al., 2020), significantly induced cell death of chondrocytes (Fig. 3.6.b), 

thus associating the high ROS production by CSE with the increase of cell death in 

chondrocytes.  

 
Figure 3.6 CSE exposure increases oxidative stress and accelerates the death of 
primary human chondrocytes. (a). ROS production was measured by DCFH-DA 
assay. (b). Living cells (green) and dead cells (red) were visualized by Calcein AM 
and ethidium homodimer, respectively (Representative figure for day 3. H2O2 (0.01% 
V/V) was performed as a positive control. Data are presented as line diagrams (mean ± 
SEM); analyzed by Kruskal–Wallis H test. **p ≤ 0.01, ****p ≤ 0.0001 as compared 
to the control group. Scale bar = 400 µm. 
 

3.7. Clinical doses of Dex are toxic to the primary human chondrocytes 

Steroid injections, such as hydrocortisone, Dex, and methylprednisolone, have been 

frequently and successfully used in alleviating joint symptoms and inhibiting 

inflammation (Wernecke et al., 2015, Chen et al., 2020). CSs act both immune- 
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suppressive and anti-inflammatory (Huebner et al., 2014). Besides, it is also reported 

that CSs could inhibit ROS generation (Dandona et al., 1999, Chen et al., 2020). On 

the other hand, many preliminary studies reported the adverse effects of Dex on 

cartilage integrity and chondrocyte viability (Tu et al., 2013, Zhao et al., 2014). In 

order to test the non-toxic concentrations of Dex to the chondrocytes, cells were 

treated with a series of doses of Dex (4-4000 μg/ml) for 24 h, in which clinical dosage 

(4000 μg /ml) was included (JR, 1996, Grodzinsky et al., 2017, Chen et al., 2020). 

Mitochondrial activity (Fig. 3.7.a, ≥ 1000 μg/ml, ****p ≤ 0.0001) and total protein 

content (Fig. 3.7.b, 2000 μg/ml and 4000 μg/ml, **p ≤ 0.01 and ***p≤ 0.001, 

respectively) showed a dose-dependent inhibition in Dex-treated chondrocytes, 

suggesting detrimental effects of Dex on chondrocytes (Chen et al., 2020). 

 

Figure 3.7 Clinical doses of Dex are toxic to the primary human chondrocytes. 
After 24 h, (a) Resazurin conversion and (b) SRB staining were performed for cell 
viability. Data are presented as line diagrams (mean ± SEM); analyzed by 
Kruskal–Wallis H test. **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 as compared to the 
untreated controls. 
 
3.8. Clinical doses of HA increases the viability of primary human chondrocytes 

HA is the main component of cartilage ECM and synovial fluid in both healthy and 

OA joints (Akmal M, 2005, Temple-Wong et al., 2016, Chen et al., 2020). It is used 

with IA injection and is extensively recommended in most guidelines ( Wernecke et 

al., 2015, Baron et al., 2018) as a visco-supplementation, owing to HA concentration 

is decreased in the synovial liquid of pathologic joints compared with healthy joints 

(Akmal M, 2005, Temple-Wong et al., 2016, Chen et al., 2020). In addition to its role 
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in visco-supplementation, an important biological aspect of HA is its benefits to the 

chondrocytes, such as chondro- protection (Akmal M, 2005), scavenging of reactive 

oxygen-derived free radicals (Yu et al., 2014) and inhibition of inflammation 

(Fioravanti et al., 2005). In order to determine the non-toxic concentrations of HA to 

the chondrocytes, cells were treated with HA (0.1–5 mg/ml) for 24 h, in which 

clinical dosage (5 mg/ml) was included (Trueba Davalillo et al., 2015, Chen et al., 

2020). Mitochondrial activity (Fig. 3.8.a) and total protein content (Fig. 3.8.b, 5 

mg/ml, ***p ≤ 0.001) showed a dose-dependent improvement of cell growth in 

HA-treated chondrocytes, indicating the applied clinical doses of HA are beneficial to 

the primary human chondrocytes. 

 
Figure 3.8 Clinical doses of HA increases the viability of primary human 
chondrocytes. After 24 h, (a) Resazurin conversion and (b) SRB staining were 
performed for cell viability. Data are presented as line diagrams (mean ± SEM); 
analyzed by Kruskal–Wallis H test. ***p ≤ 0.001 as compared to the untreated group. 
 

3.9. Cytotoxicity assessment of Vitamin C on the primary human chondrocytes 

Vitamin C, also known as ascorbic acid (AA), has been extensively applied in 

orthopedic applications for its role in wound healing (Bikker et al., 2016), bone 

formation (Aghajanian et al., 2015) and chondro-protection (Chiu et al., 2016). 

Furthermore, AA is also a robust antioxidant and cofactor, which provides protection 

against oxidative stress and regulates cellular development (Graeser et al., 2009). 

Several studies have demonstrated that AA supplementation has the potential to 

inhibit the degeneration of chondrocyte morphology and biochemistry (Ibold et al., 

2009, Stabler and Kraus, 2003). These findings suggest that AA may be a promising 



40 
 

drug or antioxidant in protecting oxidative stress damaged chondrocyte. In order to 

evaluate the concentrations that were non-toxic to the chondrocytes, cells were treated 

with a series of concentrations of AA (50 µM − 10 mM) for 24 h. Mitochondrial 

activity (Fig. 3.9.a, 10 mM, ****p ≤ 0.0001) and total protein content (Fig. 3.9.b) 

showed that the concentrations of AA over 1 mM were toxic to the chondrocytes.  

 
Figure 3.9 Cytotoxicity assessment of Vitamin C on the primary human 
chondrocytes. After 24 h, (a) Resazurin conversion and (b) SRB staining were 
preformed for cell viability. Data are presented as line diagrams (mean ± SEM); 
analyzed by Kruskal–Wallis H test. *p ≤ 0.05, **p ≤ 0.01, *****p ≤ 0.0001 as 
compared to the untreated group. 
 

3.10. Effects of AA on the CSE-exposed primary human chondrocytes 

Subsequently, three concentrations of AA (50, 100, 200 µM) were performed in the 

following experiments. Mitochondrial activity (Fig. 3.10.a, 50, 100, 200 µM, ***p ≤ 

0.001), total protein content (Fig. 3.10.b, 50, 100, 200 µM, ****p ≤ 0.0001), and 

matrix formation were increased (Fig 3.10.c, 50 µM, **p ≤ 0.01 and 100, 200 µM, *p 

≤ 0.05) when the cells were solely incubated with AA on day 7. However, 

mitochondrial activity (Fig. 3.10.a, 200 µM, °°°°p ≤ 0.0001), total protein content 

(Fig. 3.10.b, 200 µM, °°p ≤ 0.01) and matrix formation showed a dose-dependent 

decrease (Fig. 3.10.c; 200 µM, °°p ≤ 0.01) when the chondrocytes were co-incubated 

with CSE and AA on day 7. 
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Figure 3.10 Effects of AA on the CSE-exposed primary human chondrocytes. On 
day 7 of treatment, (a) Resazurin conversion and (b) SRB staining were performed for 
cell viability. Matrix accumulation was quantified by (c) Alcian blue staining. Data 
are presented as bar diagrams (mean ± SEM); analyzed by Kruskal–Wallis H test. *p 
≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 vs. the untreated group, °°p ≤ 
0.01, °°°°p ≤ 0.0001 as indicated. 
 
3.11. Evaluation of low doses of Dex and HA on the CSE-impaired primary 

human chondrocytes 

HA injection is used to improve the functional mobility of pathologic OA joints, since 

HA is capable of improving viscoelastic properties to the synovial liquid 

(Temple-Wong et al., 2016, Chen et al., 2020). In addition to its role in 

viscosupplementation, an important biological aspect of HA is its benefits to the 

chondrocytes, such as chondro- protection (Akmal M, 2005), scavenging of reactive 

oxygen-derived free radicals (Yu et al., 2014) and inhibition of inflammation 

(Fioravanti et al., 2005). Subsequently, we attempted to evaluate whether the 

detrimental effects of CSE on cells could be retrieved by HA or low doses of Dex. 

Three different concentrations of HA (0.1, 1, 5 mg/ml) and Dex (4, 40, 400 μg/ml) 

based on the above data were chosen for the following experiments. On day 7, a 
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dose-dependent decrease in mitochondrial activity (Fig. 3.11.a, 400 μg/ml, **p ≤ 

0.01), total protein content (Fig. 3.11.b, 400 μg/ml, **p ≤ 0.01) and matrix formation 

(Fig. 3.11.c, 400 μg/ml, **p ≤ 0.01) was observed in Dex-treated chondrocytes. 

Interestingly, there was no differential variation was observed when CSE-impaired 

cells were incubated with Dex for 7 days. On day 14, AP activity increased 

significantly (Fig. 3.11.d, 4μg/ml, *p ≤ 0.05, 40μg/ml, **p ≤ 0.01 and 400 μg/ml, **p 

≤ 0.01) in the Dex-treated cells, indicating that Dex was prone to modifying the 

morphology of chondrocytes after long-term treatment. In contrast to Dex, a 

significant increase in mitochondrial activity (Fig. 3.11.e, 1 mg/ml and 5 mg/ml, °°p ≤ 

0.01 and °°°°p ≤ 0.0001, respectively) and total protein content (Fig. 3.11.f, 5 

mg/ml, °°°°p ≤ 0.0001) was observed after HA exposure of CSE-impaired cells after 

7 days. Besides, the accumulation of chondrocyte matrix was enhanced significantly 

(Fig. 3.11.g, 1 mg/ml, °p ≤ 0.05 and 5 mg/ml, °p ≤ 0.05) on day 7. 
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Figure 3.11 Evaluation of low doses of Dex and HA on the CSE-impaired 
primary human chondrocytes. On day 7 of treatment, (a, e) Resazurin conversion 
and (b, f) SRB staining were performed for cell viability. Matrix accumulation was 
quantified by (c, g) Alcian blue staining. (d). AP activity was measured on day 7 and 
day 14, respectively. Data are presented as bar and diagrams (mean ± SEM); analyzed 
by Kruskal–Wallis H test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 vs. 
the untreated group, °p ≤ 0.05, °°°p ≤ 0.001 as indicated. 
 

3.12. Effects of Ace and Dic on the CSE-impaired primary human chondrocytes 

Severe adverse effects of oral analgesic/anti-inflammatory agents, like Ace and 

NSAIDs, led to the emergence of IA injections of these drugs, which proved to be 

effective in suppressing inflammation and alleviating pain in joints (Arun et al., 2013, 

Cannava et al., 2013, Mertz et al., 2016). Considering OA is a chronic disabling 

disease, pharmacological treatments would require a prolonged time-span (Chen et al., 

2020). We evaluated the effects of Ace (10 μg/ml) and Dic(1 μg/ml) on the 

CSE-impaired chondrocytes, showing that these drugs did not promote the 

detrimental effects of CSE on the mitochondrial activity (Fig 3.12.a) and the total 

protein content (Fig 3.12.b) of chondrocytes on day 7. Similarly, matrix formation of 

CSE-impaired chondrocytes was unaffected by Ace and Dic (Fig 3.12.c). 
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Figure 3.12 Effects of Ace and Dic on the CSE-impaired primary human 
chondrocytes. On day 7 of treatment, (a) Resazurin conversion and (b) SRB staining 
were performed for cell viability. Matrix accumulation was quantified by (c) Alcian 
blue staining. Data are presented as bar diagrams (mean ± SEM); analyzed by Mann 
Whitney test. ****p ≤ 0.0001 vs. the untreated group, °p ≤ 0.05, °°p ≤ 0.01, °°°p ≤ 
0.001 as indicated. 
 

3.13. Evaluation of HA combined with anti-inflammatory drugs on the 

CSE-impaired chondrocytes 

Lastly, we investigated the effects of HA combined with Dic (1 μg/ml), Ace (10 

μg/ml) or low dose of Dex (4 μg/ml) on CSE-impaired chondrocytes. On day 7 of 

treatment, the groups of HA + Dic and HA + Ace significantly increased 

mitochondrial activity (Fig. 3.13.a, HA+Dic and HA+Ace, °°°p ≤ 0.001), and matrix 

accumulation (Fig. 3.13.c, HA+Dic and HA+Ace, °p ≤ 0.05, °°p ≤ 0.01, respectively) 

in CSE-impaired chondrocytes when compared with 10% CSE-exposed chondrocytes 

without treatment. Although HA combined with Dex did not significantly increase the 

mitochondrial activity and matrix accumulation in CSE-impaired chondrocytes, a 

slight increase trend was observed. All HA combination groups significantly 

promoted the total protein content (Fig. 3.13.b, HA+Dex and HA+Dic, °°p ≤ 0.01, 
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HA+Ace, °°°p ≤ 0.001) of CSE-exposed chondrocytes, bringing it up to nearly the 

level of chondrocytes unexposed to CSE. The generation of ROS was suppressed by 

HA alone and HA combinatory treatments (Fig. 3.13.d, HA+Dex and HA+Dic, °°p ≤ 

0.01, HA+Ace, °°°p ≤ 0.001), indicating that HA alone and HA combinatory 

treatments retrieved the chondrocyte impairment caused by CSE through suppressing 

and/or quenching the production of ROS. 

 
Figure 3.13 Evaluation of HA combined with anti-inflammatory drugs on the 
CSE-impaired chondrocytes. On day 7 of treatment, (a) Resazurin conversion and 
(b) SRB staining were performed for cell viability. Matrix accumulation was 
quantified by (c) Alcian blue staining. (d). ROS production was measured by 
DCFH-DA assay. H2O2 (0.01% V/V) was performed as a positive control. Data are 
presented as bar diagrams (mean ± SEM); analyzed by Kruskal–Wallis H test. *p ≤ 
0.05, **p ≤ 0.01, ***p ≤ 0.001，****p ≤ 0.0001 vs. the untreated group, °p ≤ 0.05, °°p 
≤ 0.01, °°°p ≤ 0.001 as indicated. 
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Chapter 4 

4. Discussion  

CS is a poisonous and carcinogenic combination, which more than 5,000 chemicals 

and at least 55 carcinogens are involved (Talhout et al., 2011, Chen et al., 2020). 

Several preclinical and clinical studies have demonstrated the detrimental effects of 

CS in musculoskeletal disorders (Sreekumar et al., 2017, Ehnert et al., 2019, Chen et 

al., 2020). However, the association between CS and symptomatic OA is still unclear. 

Racunica et al. demonstrated that tibial cartilage volume was increased in smokers, 

but tibiofemoral cartilage defects were not present (Racunica et al., 2007). In a 

cross-sectional study, Kang et al. found that there was a weak association between 

indirect smoking and the prevalence of knee OA, while direct and former smoking 

was not associated with OA prevalence (Kang et al., 2016). On the contrary, the 

finding of Davies-Tuck and colleagues suggested that smoking was associated with 

increased medial knee cartilage loss (medial: difference=13.4 µl, P=0.03). In addition, 

a positive relationship between pack-year (PY) smoked and the loss of medial 

cartilage bulk was also observed (P=0.04) (Davies-Tuck et al., 2009). Similarly, Amin 

et al. found that male smokers with knee OA suffered the greater risk of cartilage loss 

as well as more severe pain than non-smokers (Amin et al., 2007). Nevertheless, these 

studies are only based on the radiographic images (MRI, X-ray) or post-operative 

outcome, and no direct research yet has evaluated the effects of CS on human 

cartilage or primary human chondrocytes. Thus, these results may be not conclusive, 

since the structural changes of cartilages within the smoker’s joints are still not known 

(Chen et al., 2020). Ying et al. (Ying et al., 2012) and Gullahorn et al.(Gullahorn et 

al., 2005) reported that nicotine increased proliferation, collagen synthesis, as well as 

gene and protein expression of chondrocytes from both normal human and OA 

patients. Nevertheless, cigarettes contain plenty of toxins, such as nicotine, cotinine, 

carbon monoxide and tar (Talhout et al., 2011). Toxins involved in tobaccos have 

been shown to increase oxidative stress (Kamceva et al., 2016, Chen et al., 2020), 

inflammatory responses (Barua et al., 2015), or hypoxia (Fricker et al., 2018), which 
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all could lead to cartilage damage. Recently, we have reported that CSE could damage 

the TGF-β signaling pathway and negatively affect migration, proliferation, and 

chondrogenesis of MSCs (Aspera-Werz et al., 2019). However, it is still unknown 

how cigarette smoke affects human cartilage and primary chondrocytes.Chondrocytes 

are derived from MSCs and exclusively found in AC, they possess the properties of 

proliferating and synthesizing ECM to maintain the functionality and integrity of AC 

(Sophia Fox et al., 2009, Chen et al., 2020). Chondrocytes lose their phenotype and 

dedifferentiate when they are expanded on conventional 2D culture surfaces (Babur et 

al., 2013), and this shift is activated both by morphological changes and by alteration 

in gene expressions (Schnabel et al., 2002). In this context, pellet culture and 

biomaterial-based scaffold, supplemented with or without various growth factors 

(TGF-ß, BMP, FGF-2), were developed to avoid chondrocyte dedifferentiation 

(Solchaga et al., 2011, Herlofsen et al., 2011). In our previous studies, a high 

biocompatible knitted titanium scaffold was utilized as a pattern of the 3D cell culture 

method in intervertebral disc (IVD) treatment (Tendulkar et al., 2019). Thus, we 

compared these three different methods (monolayer culture, pellet culture, and 

scaffold) to establish an optimal cell culture method for chondrocytes. We found that 

the traditional 2D monolayer culture had the advantages of simplicity and ease of 

operation compared with 3D culture in our lab.  

Nicotine is known as the primarily pharmacologically active and addictive component 

involved in smoking (Benowitz et al., 2009). The levels of nicotine in the blood 

plasma can reach to 100 ng/ml gradually after smoking a cigarette, but usually 

fluctuate between 20 and 60 ng/ml (Benowitz et al., 2009). The plasma half-life of 

nicotine averages about 2 h after cigarette smoking (Benowitz et al., 1988). Moreover, 

the concentrations of nicotine in skeletal muscle are in line with those of whole blood. 

In our study, the concentrations of CSE were correspond to the nicotine concentration 

in the cigarettes (Sreekumar et al., 2017). In addition, among “smokers,” the smoking 

history for patients can differ from a few cigarettes a day for a few years to packs of 

cigarettes daily for decades (Janjigian et al., 2010). In order to mimic this situation, 

we compared two different exposure pathways to chondrocytes, namely, exposing 
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twice a week and once a day. We found that CSE exposure every day is more 

pronounced than that of twice a week.  

In our study, we observed an inhibited effect of CSE on the metabolic activity of 

primary human chondrocytes. However, the mechanisms leading to these detrimental 

effects are still unknown. Thus, we subsequently attempt to investigate how CSE 

negatively affected chondrocytes. It is believed that oxidative stress induced by CS is 

one of the critical risk factors in producing adverse effects on the human body. 

Kamceva and co-workers reported that smoking is a key factor in promoting oxidative 

stress and inhibiting antioxidant defense in Coronary Artery Disease (CAD) patients, 

and the number of cigarettes smoked was positively associated with the level of 

oxidative damage (Kamceva et al., 2016). Recently, we have reported that nicotine 

and cotinine led to the accumulation of ROS by impairing antioxidant defense activity 

in bone cells, although they did not directly produce ROS (Aspera-Werz et al., 2018). 

In our study, ROS production of chondrocytes was significantly elevated in culture 

supernatants following an exposure of 10% CSE, which corresponds to smoking 

approximately one pack cigarettes/day (Aspera-Werz et al., 2019, Chen et al., 2020). 

Considering that chondrocytes are quiescent cells and only proliferate under 

pathological conditions, the survival of chondrocytes is crucial for the functionality 

and integrity maintenance of AC (Charlier et al., 2016, Chen et al., 2020). 

Furthermore, the death of chondrocytes occurs during the process of OA and is 

connected with the accumulation of ECM (Thomas et al., 2007). Collins et al. 

reported that pro-death signaling pathways in chondrocytes could be initiated by 

increased oxidative stress, resulting in cell death and consequently compromising the 

integrity of AC (Collins et al., 2016). Therefore, we hypothesized that CS would 

induce chondrocyte cell death by increasing oxidative stress. We found that 10% CSE 

and 0.01% hydrogen peroxide (a principal ROS in cigarettes) equally caused a 

significant growth in the number of dead cells, thus linking the increased oxidative 

stress by CSE to the induction of cell death in chondrocytes. However, multiple 

modes are involved in the chondrocyte cell death, including apoptosis (Hwang and 

Kim, 2015), necrosis (Chen et al., 2001), autophagy (Chang et al., 2013), or a 
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combination of these processes (Almonte-Becerril et al., 2010). In the future, it is 

necessary to investigate which form of death occurs in the CSE-induced chondrocytes 

(Chen et al., 2020). 

Vitamin C, also known as L-ascorbic acid (AA), has been extensively applied in 

orthopedic applications for its role in wound healing (Bikker et al., 2016), bone 

formation (Aghajanian et al., 2015) and chondro-protection (Huang et al., 2018). 

Furthermore, AA is also a robust antioxidant and cofactor, which provides protection 

against oxidative stress and regulates cellular development (Chiu et al., 2016). Several 

studies have demonstrated that AA supplementation is able to inhibit the degeneration 

of chondrocyte morphology and biochemistry (Chiu et al., 2016, Chang et al., 2015). 

These findings suggest that AA may be a promising drug or antioxidant in protecting 

oxidative stress damaged chondrocyte. Furthermore, smokers showed lower AA 

concentrations in blood plasma than those of nonsmokers (Kelly, 2003, Smith and 

Hodges, 1987). Therefore, higher daily consumption of AA is required for smokers to 

reach the normal plasma concentration, owing to their elevated metabolic rate and 

defective AA recycling (Smith and Hodges, 1987, Schectman, 1993). In our study, 

AA inhibited the metabolism of chondrocytes co-incubated with CSE, resulting in a 

decreased viability and matrix formation on day 7. The concentrations of AA used in 

our study were lower than the peak concentration (200 μM) of AA that can be 

obtained by oral administration (AA 3 g every day 4 h administrated orally) 

(Padayatty et al., 2004), suggesting that AA supplementation was not an appropriate 

treatment for smokers with OA. 

IA injections of CSs, such as hydrocortisone, dexamethasone (Dex), and 

methylprednisolone, have been frequently used in alleviating joint symptoms and 

inhibiting inflammation, and their efficacy has been evaluated in many preclinical and 

clinical trials (Zhang et al., 2008, Grodzinsky et al., 2017, Stove et al., 2002). Former 

studies have demonstrated the advantageous effects of Dex on suppressing 

pro-inflammatory cytokine accumulation, such as IL-1β, in the affected joint 

(Huebner et al., 2014, Chen et al., 2020). Besides, it is reported that Dex unleashes 

immune-suppression and anti-inflammation by means of suppressing the generation 
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of ROS production (Dandona et al., 1999, Chen et al., 2020). However, the negative 

effects of these drugs on AC remain a concern, and many guidelines suggest that it 

should be used with caution (Grillet and Dequeker, 1990, Chen et al., 2020). Many 

preliminary studies also reported the adverse effects of Dex on cartilage integrity and 

chondrocyte viability (Song et al., 2012, Su et al., 1996). Our study showed that 

clinical doses of Dex were noxious to chondrocytes, and lower doses seemed to be 

nontoxic (Chen et al., 2020). Results of our present study are similar to findings by 

Busse et al., showing that Dex with diluted concentrations has minor effects on the 

viability of primary human chondrocytes (Busse et al., 2019, Chen et al., 2020). In 

addition, our study found that treatment with Dex for 14 days significantly increased 

the AP activity of primary human chondrocytes, suggesting that Dex might modify 

the function of chondrocyte after long-term exposure. Similarly, Stewart and 

colleagues reported that AP activity and AP mRNA were increased when the equine 

MSCs treated with Dex, resulting in cells differentiation toward bone (Stewart et al., 

2008, Chen et al., 2020). In summary, the beneficial effects of IA injection of Dex 

occur at low doses and short-time treatment duration. Therefore, for clinical 

application in smokers with OA, several factors such as indication, dose, and 

treatment duration should be taken into consideration.  

HA, also called hyaluronan, is a form of polyanionic, nonsulfated glycosaminoglycan 

with high molecular weight (Sirin et al., 2018). In the clinic, it is used with IA 

injection to improve the functional mobility of pathologic OA joints, since HA is 

capable of improving viscoelastic properties to the synovial liquid (Temple-Wong et 

al., 2016, Chen et al., 2020). In addition to its role in viscosupplementation, an 

important biological aspect of HA is its benefits to the chondrocytes, such as chondro- 

protection (Akmal M, 2005), scavenging of reactive oxygen-derived free radicals (Yu 

et al., 2014) and inhibition of inflammation (Fioravanti et al., 2005). The volume of 

synovial fluid in most of the knee joints is around 0.5-4.0 ml, and the pH is between 7 

and 8 (Kraus et al., 2007). In general, IA injections of HA (2-3 ml) with a 

concentration of 10 mg/ml are used in treating the affected joints (Concoff et al., 2017, 

Chen et al., 2020). According to that, the dilution of HA with synovial fluid is 



51 
 

approximately 1:2 (Chen et al., 2020). In our study, high doses of HA (2.5 mg/ml and 

5.0 mg/ml) promoted the viability and matrix accumulation of CSE-impaired 

chondrocytes. On the contrary, Akmal et al. found that HA had a beneficial effect on 

the metabolic activity of bovine articular chondrocytes in low doses (0.1 mg/ml and 

1.0 mg/ml) (Akmal M, 2005, Chen et al., 2020). It is likely that CSE down-regulated 

the expression of CD44 (a HA receptor at the chondrocyte cell surface) and limited 

the interaction of chondrocytes with their surrounding ECM (Responte et al., 2012), 

resulting in a decreased cell response to HA (Chen et al., 2020). 

In the past decades, oral NSAIDs or Ace have been widely used for relieving pain in 

OA patients (Ringdahl E, 2011, Sostres et al., 2010) and recommended as the 

first-line pain medication for OA by most guidelines (Hunter and Bierma-Zeinstra, 

2019, Dougados, 2006). However, limited delivery to the inflamed joints 

(Wongrakpanich et al., 2018) and side effects regarding gastrointestinal and 

cardiovascular complications of oral administration (Sostres et al., 2010, McGill and 

Jaeschke, 2014) restrict their efficacy and application. These limitations have hence 

led to the emergence of IA injections of these drugs, which proved to be effective in 

suppressing inflammation and alleviating pain in joints (Arun et al., 2013, Cannava et 

al., 2013, Mertz et al., 2016). Considering OA is a chronic disabling disease, 

pharmacological treatments would require a prolonged time-span (Chen et al., 2020). 

Additionally, the nature of short biological half-life of Ace (approx 3 h) (Hodgman 

and Garrard, 2012) and Dic (approx 2 h) (Miyatake et al., 2009) requires frequent 

injections to obtain effective concentration (Chen et al., 2020). Therefore, we used 

these drugs with identical therapeutic levels observed in plasma and exposed primary 

human chondrocytes to them every day. We found that therapeutic doses of Dic (1 

μg/ml) and Ace (10 μg/ml) did not augment the detrimental effects of CSE on the 

overall metabolism of chondrocytes (viability, proliferation, and matrix accumulation). 

Similarly, in the findings of Blot et al., 0.3−3 μg/ml of Dic unaffected the synthesis of 

proteoglycan and HA within the cartilages of moderate and severe OA (Blot et al., 

2000). Qi et al. and Arun et al. found that IA injection of Dic had analgesic and 

anti-inflammatory effects on rats (Qi et al., 2016, Arun et al., 2013), indicating their 
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possibility for IA injection. Accordingly, IA injections of NSAIDs and Ace would be a 

promising alternative for Dex and might delay joint deterioration in smokers with OA. 

It is critical to note that OA is a chronic disease that affects the whole joint, involving 

cartilage breakdown, inflammation, and osteophytes formation (Hunter and 

Bierma-Zeinstra, 2019, Chen et al., 2020). Therefore, in addition to pain alleviation 

and inflammation inhibition should be addressed, another important aspect is cartilage 

repair (Chen et al., 2020). In recent, several studies evaluated the effects of HA 

combined with anti-inflammatory drugs (CSs or NSAIDs) (Siengdee et al., 2015, 

Euppayo et al., 2017), for the sake of developing more effective OA treatments (Chen 

et al., 2020). Euppayo et al. compared the efficacy of IA injection of HA with or 

without anti-inflammatory (AI) drugs (CS or NSAIDs) in OA patients, and found that 

HA combined with AI had greater efficacy than HA alone in terms of pain alleviation 

(Euppayo et al., 2017). We investigated the effects of HA combined with different 

anti-inflammatory drugs (Ace, Dic, and Dex) on CSE-impaired chondrocytes. Our 

results demonstrated that HA combined with Dic, Ace, or low doses of Dex had a 

protective effect on the CSE-exposed chondrocytes, as they significantly inhibited the 

generation of free radicals and promoted the viability and ECM accumulation of cells. 

It is reported that synovial fluid levels of ROS (H2O2 and O2
−) and H2O2-induced 

chondrocyte cell death could be suppressed by IA injection of HA (Yu et al., 2014). 

Our present study shows that an inhibition of ROS production with HA or its 

combinations with anti-inflammatory drugs, exhibiting chondro-protective effects by 

scavenging the generation of free radicals (Chen et al., 2020). 

In addition, the detrimental effects of cigarette smoke on chondrocytes in vitro are, at 

least partially, mitigated to the in vivo situation. Therefore, further studies are needed 

to elucidate whether the metabolic changes of cells in vitro would also appear in 

articular cartilage (Chen et al., 2020). Moreover, further in vivo work should be 

performed to determine the optimal drug dose and frequency before clinical 

application (Chen et al., 2020). 

In conclusion, the data presented herein are the first time to evaluate the effects of 

CSE on the metabolisms of primary human chondrocytes. CSE inhibited 
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chondrocytes viability, ECM accumulation, as well as it decreases their anabolic gene 

expression (Collagen II, Aggrecan, Sox9). Oxidative stress was associated with CSE 

and generated when chondrocytes were exposed to it. Increased oxidative stress 

induced chondrocyte cell death. Dex had a dose- and time- dependent negative effect 

on primary human chondrocytes, however, with favorable effects occurring at low 

doses (＜ 400 μg/ml) and short treatment intervals. Clinical dose (4 mg/ml) of Dex 

was toxic to the cells, and long-term duration would modify the function and 

morphology of cartilage. In contrast to Dex, therapeutic doses of Dic (1 μg/ml) and 

Ace (10 μg/ml) did not augment the detrimental effects of CSE on the overall 

metabolisms of chondrocytes. Additionally, a clinical dose of HA (5 mg/ml) or HA 

combined with Dic, Ace, or low doses of Dex had a protective effect on the 

CSE-exposed chondrocytes, as they significantly inhibited the generation of free 

radicals and promoted the viability and ECM accumulation in cell cultures. 
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Chapter 5 

5. Summary 

Although the adverse effects of smoking for human musculoskeletal system have 

been well accepted, less attention has been paid by researchers to the relevance of 

cigarette smoke to the onset of osteoarthritis (OA). Here, we investigated the effects 

of cigarette smoke extract (CSE) on human primary chondrocyte function. In addition, 

we investigated whether the pharmacologic treatment of dexamethasone was 

beneficial to chondrocytes impaired by CSE, and if not, whether it could be 

substituted by other treatments, such as acetaminophen and NSAIDs. Finally, we 

evaluated the effects of hyaluronic acid (HA) and HA combinatory treatments 

(dexamethasone, acetaminophen or diclofenac) on the chondrocytes impaired by CSE, 

in order to determine a potential therapeutic alternative for clinical application to 

smokers undergoing symptomatic OA. 

All human tissues were obtained in accordance with the ethical approval of the 

University Hospital Tübingen and with patients’ written consent. Human primary 

chondrocytes were exposed to increasing concentrations (0%, 0.1%, 0.5%, 1%, 5%, 

10%) of CSE (containing 3.6 ng/ml to 72 ng/ml nicotine and 40 ng/ml to 800 ng/ml 

tar). Cell viability was analyzed by resazurin conversion assay and SRB staining, 

matrix formation was stained using Alcian blue and Safranin-O staining. The 

generation of free radical was evaluated by DCFH-DA assay. Semi-quantitative 

RT-PCR was performed to analyze gene expressions. 

Our present study demonstrated that the mitochondrial activity, total protein content 

and the accumulation of matrix were dose- and time-dependently inhibited by CSE in 

primary human chondrocytes. Moreover, increased oxidative stress led to cell death 

by 10% CSE, which is associated with approximately smoking one pack a day. As an 

anti-inflammatory treatment strategy, traditional pharmacologic therapy with 

dexamethasone (Dex) was evaluated. Clinical doses of Dex were toxic to the cells, 

and long-time incubation with lower doses (4−400 μg/ml) of Dex would lead to a 

hypertrophic chondrocyte phenotype. To substitute dexamethasone, a clinical dosage 
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of diclofenac (Dic) and acetaminophen (Ace) was tested on chondrocytes. 

Interestingly, therapeutic doses of Dic (1 μg/ml) and Ace (10 μg/ml) did not augment 

the detrimental effects of CSE on the overall metabolisms of chondrocytes. 

Additionally, a clinical dose of HA (5 mg/ml) and/or HA combined with Dic, Ace, or 

doses of Dex had protective effects on the CSE-exposed chondrocytes, as they 

significantly inhibited or trap the generation of free radical and promoted the viability 

and ECM accumulation of cells. Our study demonstrates that cigarette smoke induces 

cell death through elevating oxidative stress and demolishes cartilage formation. 

Intra-articular (IA) injection of HA combined with therapeutic doses of 

analgesic/anti-inflammatory agents (Ace or Dic) could reverse the detrimental effects 

of CSE on primary human chondrocytes, thus opening up potential therapeutic 

alternatives in treating smokers to suffering from symptomatic OA. 
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6. Zusammenfassung 

Obwohl mehrere Forscher die schädlichen Auswirkungen des Rauchens auf den 

Bewegungsapparat bestätigt haben, ist der Zusammenhang zwischen Rauchen und 

dem Auftreten von Arthrose (OA) immer noch unklar. Hier untersuchten wir die 

Auswirkungen von Zigarettenrauchextrakt (CSE) auf die primäre 

Chondrozytenfunktion des Menschen. Darüber hinaus wurde getestet, ob die 

pharmakologische Behandlung von Dexamethason für durch CSE beeinträchtigte 

Chondrozyten von Vorteil ist oder ob sie durch andere Behandlungen wie Paracetamol 

und NSAR ersetzt werden kann. Zusätzlich untersuchten wir die Auswirkungen von 

Hyaluronsäure (HA)- und HA-Kombinationen (Dexamethason, Acetaminophen oder 

Diclofenac) auf die Funktion und Viabilität von CSE exponierten Chondrozyten, um 

eine mögliche therapeutische Alternative für die klinische Anwendung bei Rauchern 

mit symptomatischer OA zu ermitteln. 

Humanes Knorpelgewebe, welches im Rahmen von Routineoperationen entnommen 

werden musste, wurde nach ethischer Genehmigung der Etikkomission des 

Universitätsklinikums Tübingen und mit schriftlicher Zustimmung des Patienten für 

die Isolation der Chondrozyten genutzt. Humane primäre Chondrozyten wurden 

physiologisch erreichbaren CSE Konzentrationen (0%, 0,1%, 0,5%, 1%, 5%, 10%) 

ausgesetzt, was Nikotinkonzentrationen von 3,6 ng / ml bis 72 ng / ml sowie 

Teerkonzentrationen von 40 ng / ml bis 800 ng / ml entspricht. Die Viabilität der 

Zellen wurde durch die Messung des Resazurinumsatzes sowie durch eine 

SRB-Färbung analysiert, die Matrixbildung wurde unter Verwendung von Alcianblau- 

und Safranin-O-Färbung gefärbt. Die Produktion freier Radikale wurde mit einem 

DCFH-DA-Assay bewertet. Die Genanalyse wurde mittels semi-quantitativer 

RT-PCR durchgeführt.  

Unsere vorliegende Studie zeigte, dass die mitochondriale Aktivität, der 

Gesamtproteingehalt und die Akkumulation von Matrix durch CSE in primären 

menschlichen Chondrozyten dosis- und zeitabhängig gehemmt wurden. Darüber 

hinaus führte erhöhter oxidativer Stress zu einem Zelltod von 10% CSE, was mit 
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ungefähr dem Rauchen einer Packung pro Tag verbunden ist. Als 

entzündungshemmende Behandlungsstrategie wurde die traditionelle 

pharmakologische Therapie mit Dexamethason (Dex) evaluiert. Klinische Dex-Dosen 

waren für die Zellen toxisch, und eine Langzeitinkubation mit niedrigeren Dex-Dosen 

(4–400 μg / ml) würde zu einem hypertrophen Chondrozyten-Phänotyp führen. Um 

Dexamethason zu ersetzen, wurde eine klinische Dosierung von Diclofenac (Dic) und 

Paracetamol (Ace) an Chondrozyten getestet. Interessanterweise verstärkten 

therapeutische Dosen von Dic (1 μg / ml) und Ace (10 μg / ml) die schädlichen 

Auswirkungen von CSE auf den Gesamtstoffwechsel von Chondrozyten nicht. 

Zusätzlich hatte eine klinische Dosis von HA (5 mg / ml) und HA in Kombination mit 

Dic, Ace oder Dosen von Dex eine schützende Wirkung auf die CSE-exponierten 

Chondrozyten, da sie die Bildung freier Radikale signifikant hemmten und die 

Lebensfähigkeit förderten und ECM-Akkumulation von Zellen. Unsere Studie zeigt, 

dass Zigarettenrauch durch Erhöhung des oxidativen Stresses den Zelltod induziert 

und die Knorpelbildung zerstört. Eine intraartikuläre (IA) Injektion von HA in 

Kombination mit therapeutischen Dosen von Analgetika / entzündungshemmenden 

Mitteln (Ace oder Dic) könnte die schädlichen Wirkungen von CSE auf primäre 

menschliche Chondrozyten umkehren und somit potenzielle therapeutische 

Alternativen bei der Behandlung von Rauchern für symptomatische Patienten 

eröffnen OA. 
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