
The immunopeptidomic landscape of intracranial neoplasias – Target identification for immunotherapy of glioblastoma, medulloblastoma, and meningioma

Lena Katharina Freudenmann

University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK)

The immunopeptidomic landscape of intracranial neoplasias – Target identification for immunotherapy of glioblastoma, medulloblastoma, and meningioma

Das Immunpeptidom intrakranieller Neoplasien – Identifizierung von Zielen für die Immuntherapie von Glioblastomen, Medulloblastomen und Meningeomen

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

> vorgelegt von M.Sc. Lena Katharina Freudenmann aus Hechingen

> > Tübingen 2020

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation:30.07.2020Dekan:Prof. Dr. Wolfgang Rosenstiel1. Berichterstatter:Prof. Dr. Stefan Stevanović2. Berichterstatter:Prof. Dr. Hans-Georg Rammensee3. Berichterstatter:Prof. Dr. Oliver Bozinov

für meine Eltern

Content

P	REFACE	1
Ρl	UBLICATIONS	2
รเ	UMMARY	3
Ζl	USAMMENFASSUNG	4
CI	HAPTER 1: INTRODUCTION	
1	INTRACRANIAL NEOPLASIAS	
	1.1 INCIDENCE AND CLASSIFICATION 1.2 GLIOBLASTOMA	
	1.3 MEDULLOBLASTOMA	
	1.4 MENINGIOMA	
2	CANCER IMMUNOTHERAPY	
	2.1 Key actors for effective anti-cancer immune responses2.2 Human leukocyte antigens present peptides to T lymphocytes	
	2.3 CANCER IMMUNOTHERAPY FOR INTRACRANIAL NEOPLASMS	
3	IMMUNOPEPTIDOMICS	39
	3.1 THE IMMUNOPEPTIDOME	
	3.2 MATERIALS AND METHODS FOR IMMUNOPEPTIDOME ANALYSES	
	AIM OF THE STUDY	
5	REFERENCES	56
	LIORI ASTOMA IMMUNOTHERAPY AND DELINEATES DYNAMICS DURING	
P	LIOBLASTOMA IMMUNOTHERAPY AND DELINEATES DYNAMICS DURING ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT	77
Р 1	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE	
P 1 2	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT	77
PI 1 2 3	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION	77 78
PI 1 2 3	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS	77 78 85 85
PI 1 2 3	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS RESULTS 4.1 PEPTIDE YIELDS OF HLA-IPS AND HLA CLASS I ALLOTYPE COVERAGE 4.2 DEFINITION OF GLIOBLASTOMA-ASSOCIATED ANTIGENS	77 78 85 85 87
PI 1 2 3	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS	77 78 85 85 87 98
PI 1 2 3 4	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS RESULTS 4.1 PEPTIDE YIELDS OF HLA-IPS AND HLA CLASS I ALLOTYPE COVERAGE 4.2 DEFINITION OF GLIOBLASTOMA-ASSOCIATED ANTIGENS 4.3 THE HLA PEPTIDOME OF PRIMARY VERSUS RECURRENT GLIOBLASTOMA	77 78 85 85 98 105
PI 1 2 3 4 5	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS RESULTS 4.1 PEPTIDE YIELDS OF HLA-IPS AND HLA CLASS I ALLOTYPE COVERAGE 4.2 DEFINITION OF GLIOBLASTOMA-ASSOCIATED ANTIGENS 4.3 THE HLA PEPTIDOME OF PRIMARY VERSUS RECURRENT GLIOBLASTOMA 4.4 NATURAL HLA PRESENTATION OF NEO-ANTIGENS	77 78 85 85 98 105 110
PI 1 2 3 4 5 6 CI	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS RESULTS 4.1 PEPTIDE YIELDS OF HLA-IPS AND HLA CLASS I ALLOTYPE COVERAGE 4.2 DEFINITION OF GLIOBLASTOMA-ASSOCIATED ANTIGENS 4.3 THE HLA PEPTIDOME OF PRIMARY VERSUS RECURRENT GLIOBLASTOMA 4.4 NATURAL HLA PRESENTATION OF NEO-ANTIGENS DISCUSSION	77 78 85 85 98 105 110 114
PI 1 2 3 4 5 6 CI PC	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT	77 78 85 98 105 110 114
PI 1 2 3 4 5 6 CI P(1	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT	77 78 85 98 105 110 114 5 120
PI 1 2 3 4 5 6 CI P(1 2	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS RESULTS 4.1 PEPTIDE YIELDS OF HLA-IPS AND HLA CLASS I ALLOTYPE COVERAGE 4.2 DEFINITION OF GLIOBLASTOMA-ASSOCIATED ANTIGENS 4.3 THE HLA PEPTIDOME OF PRIMARY VERSUS RECURRENT GLIOBLASTOMA 4.4 NATURAL HLA PRESENTATION OF NEO-ANTIGENS DISCUSSION REFERENCES HAPTER 3: HLA PEPTIDOME ANALYSIS OF MEDULLOBLASTOMA UNCOVERS OTENTIAL TARGETS FOR CANCER IMMUNOTHERAPY ABSTRACT	77 78 85 85 98 105 110 114 5 120 120
PI 1 2 3 4 5 6 CI PC 1 2 3	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS RESULTS 4.1 PEPTIDE YIELDS OF HLA-IPS AND HLA CLASS I ALLOTYPE COVERAGE 4.2 DEFINITION OF GLIOBLASTOMA-ASSOCIATED ANTIGENS 4.3 THE HLA PEPTIDOME OF PRIMARY VERSUS RECURRENT GLIOBLASTOMA 4.4 NATURAL HLA PRESENTATION OF NEO-ANTIGENS DISCUSSION REFERENCES HAPTER 3: HLA PEPTIDOME ANALYSIS OF MEDULLOBLASTOMA UNCOVERS OTENTIAL TARGETS FOR CANCER IMMUNOTHERAPY ABSTRACT INTRODUCTION METHODS. RESULTS	77 78 78 85 98 105 110 110 114 5 120 120 121 123
PI 1 2 3 4 5 6 CI PC 1 2 3	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS RESULTS 4.1 PEPTIDE YIELDS OF HLA-IPS AND HLA CLASS I ALLOTYPE COVERAGE 4.1 PEPTIDO OF GLIOBLASTOMA-ASSOCIATED ANTIGENS 4.2 DEFINITION OF GLIOBLASTOMA-ASSOCIATED ANTIGENS 4.3 THE HLA PEPTIDOME OF PRIMARY VERSUS RECURRENT GLIOBLASTOMA 4.4 NATURAL HLA PRESENTATION OF NEO-ANTIGENS DISCUSSION REFERENCES HAPTER 3: HLA PEPTIDOME ANALYSIS OF MEDULLOBLASTOMA UNCOVERS OTENTIAL TARGETS FOR CANCER IMMUNOTHERAPY ABSTRACT INTRODUCTION METHODS RESULTS 4.1 HLA CLASS I ALLOTYPE COVERAGE AND PEPTIDE YIELDS OF HLA-IPS	77 78 78 85 98 105 110 110 114 5 120 121 123 123
PI 1 2 3 4 5 6 CI PC 1 2 3 4	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS RESULTS 4.1 PEPTIDE YIELDS OF HLA-IPS AND HLA CLASS I ALLOTYPE COVERAGE 4.2 DEFINITION OF GLIOBLASTOMA-ASSOCIATED ANTIGENS 4.3 THE HLA PEPTIDOME OF PRIMARY VERSUS RECURRENT GLIOBLASTOMA 4.4 NATURAL HLA PRESENTATION OF NEO-ANTIGENS DISCUSSION REFERENCES HAPTER 3: HLA PEPTIDOME ANALYSIS OF MEDULLOBLASTOMA UNCOVERS OTENTIAL TARGETS FOR CANCER IMMUNOTHERAPY ABSTRACT INTRODUCTION METHODS RESULTS 4.1 HLA CLASS I ALLOTYPE COVERAGE AND PEPTIDE YIELDS OF HLA-IPS 4.2 IDENTIFICATION OF MEDULLOBLASTOMA-ASSOCIATED ANTIGENS	77 78 78 85 98 105 110 110 114 5 120 120 121 123 123 126
PI 1 2 3 4 5 6 CP 1 2 3 4 5 5	ROGRESSION FROM PRIMARY TO RECURRENT DISEASE ABSTRACT INTRODUCTION METHODS RESULTS 4.1 PEPTIDE YIELDS OF HLA-IPS AND HLA CLASS I ALLOTYPE COVERAGE 4.1 PEPTIDO OF GLIOBLASTOMA-ASSOCIATED ANTIGENS 4.2 DEFINITION OF GLIOBLASTOMA-ASSOCIATED ANTIGENS 4.3 THE HLA PEPTIDOME OF PRIMARY VERSUS RECURRENT GLIOBLASTOMA 4.4 NATURAL HLA PRESENTATION OF NEO-ANTIGENS DISCUSSION REFERENCES HAPTER 3: HLA PEPTIDOME ANALYSIS OF MEDULLOBLASTOMA UNCOVERS OTENTIAL TARGETS FOR CANCER IMMUNOTHERAPY ABSTRACT INTRODUCTION METHODS RESULTS 4.1 HLA CLASS I ALLOTYPE COVERAGE AND PEPTIDE YIELDS OF HLA-IPS	77 78 85 85 98 105 110 110 114 5 120 120 121 123 123 123 126 136

CHAPTER 4: THE IMMUNOPEPTIDOME OF MENINGIOMA REVEALS CANDIDATE TARGETS FOR IMMUNOTHERAPIES AND DELINEATES MODULATED PRESENTATION OF HLA LIGANDS IN COMPARISON WITH AUTOLOGOUS DURA

1	ABSTRACT	144					
2	INTRODUCTION	144					
3	METHODS	145					
4	 RESULTS. 4.1 PEPTIDE YIELDS OF HLA-IPS AND HLA CLASS I ALLOTYPE COVERAGE	147 150					
5	DISCUSSION	165					
6	REFERENCES	168					
	CHAPTER 5: A META-ANALYSIS COMPARING THE IMMUNOPEPTIDOMIC LANDSCAPE OF INTRACRANIAL NEOPLASIA						
1	ABSTRACT	172					
2	INTRODUCTION	172					
3	METHODS	173					
4	RESULTS 4.1 HLA CLASS I ALLOTYPES ASSOCIATED WITH INTRACRANIAL NEOPLASIA4.2 THE IMMUNOPEPTIDOME OF INTRACRANIAL NEOPLASIA IN COMPARISON	173					
5	DISCUSSION	176					
6	REFERENCES	178					
	CHAPTER 6: IMPLEMENTATION OF A MIX OF TEN SYNTHETIC HEAVY ISOTOPE- LABELED PEPTIDES AS RETENTION TIME STANDARD						
-							
L/							
L/ 1	ABELED PEPTIDES AS RETENTION TIME STANDARD	181					
L/ 1 2	ABELED PEPTIDES AS RETENTION TIME STANDARD ABSTRACT INTRODUCTION	181 181					
L/ 1 2 3	ABELED PEPTIDES AS RETENTION TIME STANDARD ABSTRACT INTRODUCTION	181 181 182 185 185 186 191					
L/ 1 2 3 4	ABELED PEPTIDES AS RETENTION TIME STANDARD ABSTRACT INTRODUCTION METHODS 4.1 COMPATIBILITY OF PROCAL PEPTIDES WITH IMMUNOPEPTIDOMICS 4.2 TITRATION OF IN-HOUSE HEAVY ISOTOPE-LABELED RT PEPTIDES 4.3 PERFORMANCE MONITORING OF LC-MS/MS SYSTEMS BY RT PEPTIDES	181 181 182 185 185 186 191 194					
L/ 1 2 3 4 5	ABELED PEPTIDES AS RETENTION TIME STANDARD ABSTRACT	181 181 182 185 185 186 191 194 194 196					
L/ 1 2 3 4 5 6	ABELED PEPTIDES AS RETENTION TIME STANDARD ABSTRACT	181 181 182 185 185 186 191 194 194 196					
LA 1 2 3 4 5 6 CI	ABELED PEPTIDES AS RETENTION TIME STANDARD ABSTRACT	181 181 182 185 185 186 191 194 194 196 198					
L/ 1 2 3 4 5 6 Cl 1	ABELED PEPTIDES AS RETENTION TIME STANDARD ABSTRACT	181 181 182 185 185 186 191 194 194 196 198					
L/ 1 2 3 4 5 6 Cl 1 2	ABELED PEPTIDES AS RETENTION TIME STANDARD ABSTRACT	181 181 182 185 185 191 194 194 196 198 198					
L/ 1 2 3 4 5 6 Cl 1 2 D/	ABELED PEPTIDES AS RETENTION TIME STANDARD ABSTRACT INTRODUCTION METHODS RESULTS 4.1 COMPATIBILITY OF PROCAL PEPTIDES WITH IMMUNOPEPTIDOMICS 4.2 TITRATION OF IN-HOUSE HEAVY ISOTOPE-LABELED RT PEPTIDES 4.3 PERFORMANCE MONITORING OF LC-MS/MS SYSTEMS BY RT PEPTIDES 4.4 COMPARISON OF LC-MS/MS SYSTEMS FOR A PROCUREMENT MEASURE DISCUSSION REFERENCES HAPTER 7: GENERAL DISCUSSION AND PERSPECTIVE GENERAL DISCUSSION AND PERSPECTIVE REFERENCES	181 181 182 185 185 191 194 194 196 198 198					
L/ 1 2 3 4 5 6 Cl 1 2 D/ Al	ABELED PEPTIDES AS RETENTION TIME STANDARD ABSTRACT INTRODUCTION METHODS RESULTS 4.1 COMPATIBILITY OF PROCAL PEPTIDES WITH IMMUNOPEPTIDOMICS 4.2 TITRATION OF IN-HOUSE HEAVY ISOTOPE-LABELED RT PEPTIDES 4.3 PERFORMANCE MONITORING OF LC-MS/MS SYSTEMS BY RT PEPTIDES 4.4 COMPARISON OF LC-MS/MS SYSTEMS FOR A PROCUREMENT MEASURE DISCUSSION REFERENCES HAPTER 7: GENERAL DISCUSSION AND PERSPECTIVE GENERAL DISCUSSION AND PERSPECTIVE REFERENCES ANKSAGUNG	181 181 182 185 185 191 194 194 196 198 200 203 208					

Preface

During the course of my PhD thesis, I had the possibility and the pleasure to work on various projects dealing with the exploration of the human leukocyte antigen (HLA) peptidome of primary human samples originating predominantly from different solid tumor entities. However, this thesis can only provide a deeper insight into a few of these studies. I decided to present my results on the immunopeptidomic landscape of intracranial neoplasias, namely glioblastoma, medulloblastoma, and meningioma as well as to include a meta-analysis comparing these three brain tumors originating from different cell types.

A detailed introduction into the biology of antigen presentation on HLA molecules as well as the tumor entities covered by this thesis is provided in CHAPTER 1. Further, the ingenious and ground-breaking principle of cancer immunotherapy is introduced supplemented with information on previous and current immunotherapeutic approaches targeting glioblastoma, medulloblastoma, or meningioma. CHAPTER 2 focuses on the insights gained by multi-omics sequencing in combination analyses including whole exome and RNA with immunopeptidomics of samples of a large cohort of glioblastoma patients. The availability of autologous primary and recurrent tumors of several patients allows investigating antigen presentation, mutation, and RNA expression dynamics during the course of disease progression. Results from studying the HLA peptidome of medulloblastomas and meningiomas including label-free quantitation of relative HLA ligand abundances on meningeal tumors as compared with autologous dura are presented in CHAPTER 3 and CHAPTER 4. A comparison of these three intracranial neoplasias of different cellular origin is provided in CHAPTER 5 in the form of a meta-analysis. The implementation of a mix of ten heavy isotope-labeled synthetic peptides as retention time standard is described as technical excursus in **CHAPTER 6.** This peptide mix is a tool to not only monitor mass spectrometric performance, but also to compare different systems and to perform e.g. data-independent acquisition with subsequent normalization of retention times between measurements. A general discussion and summary of the most important findings as well as an outlook beyond this thesis are provided in CHAPTER 7.

I am convinced that investigating the entirety of naturally presented HLA ligands is a cornerstone to state-of-the-art patient-tailored immunotherapies. It was a pleasure to get into the fascinating techniques of immunopeptidomics and mass spectrometry and I highly appreciate the previous work of colleagues in this field establishing methods, workflows, and bioinformatic tools on the basis of which I conducted my studies.

Publications

Research articles

Neidert MC, Kowalewski DJ, Silginer M, Kapolou K, Backert L, <u>Freudenmann LK</u>, Peper JK, Marcu A, Wang SS, Walz JS, Wolpert F, Rammensee HG, Henschler R, Lamszus K, Westphal M, Roth P, Regli L, Stevanović S, Weller M, Eisele G. The natural HLA ligandome of glioblastoma stem-like cells: antigen discovery for T cell-based immunotherapy. *Acta Neuropathol.* 2018;135(6):923-938.

Löffler MW, Mohr C, Bichmann L, <u>Freudenmann LK</u>, Walzer M, Schroeder CM, Trautwein N, Hilke FJ, Zinser RS, Mühlenbruch L, Kowalewski DJ, Schuster H, Sturm M, Matthes J, Riess O, Czemmel S, Nahnsen S, Königsrainer I, Thiel K, Nadalin S, Beckert S, Bösmüller H, Fend F, Velic A, Maček B, Haen SP, Buonaguro L, Kohlbacher O, Stevanović S, Königsrainer A, Rammensee HG. Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. *Genome Med*. 2019;11(1):28.

<u>Freudenmann LK</u>, Mayer C, Rodemann HP, Dittmann K. Reduced exosomal L-Plastin is responsible for radiation-induced bystander effect. *Exp Cell Res.* 2019;383(1):111498.

Marcu A, Bichmann L, Kuchenbecker L, Backert L, Kowalewski DJ, <u>Freudenmann LK</u>, Löffler MW, Lübke M, Walz JS, Velz J, Moch H, Regli L, Silginer M, Weller M, Schlosser A, Kohlbacher O, Stevanović S, Rammensee H-G, Neidert MC. The HLA Ligand Atlas. A resource of natural HLA ligands presented on benign tissues. *bioRxiv*. 2019:778944.

Review articles

<u>Freudenmann LK</u>, Marcu A, Stevanović S. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. *Immunology*. 2018;154(3):331-345.

Summary

Intracranial neoplasias account for more than 80,000 new cases in the US every year representing the eighth most common tumors in adults older than 40 years and even the most frequent pediatric tumor entity. They comprise malignancies of the brain parenchyma such as glioblastoma or medulloblastoma as well as meningeal neoplasms. Throughout the last decades, the outcome of intracranial neoplasias has remained poor calling for intensive research to establish novel therapies. Especially recurrent and non-resectable tumors are characterized by a profound lack of evidence-based therapeutic options, while irradiation of the developing brain in children causes severe long-term sequelae. With the development and successful administration of checkpoint antibodies, a new era of multimodal anti-tumor therapies has dawned. Patients suffering from intracranial neoplasias have, however, not clinically benefited from the recent advancements. The response to checkpoint blockade, in particular, positively correlates with mutational burden, which is low in brain tumors. This also reasons why neo-antigens have not yet been confirmed to be presented on HLA molecules of brain tumor cells. In a recent clinical trial, the administration of a multi-peptide vaccine targeting non-mutated HLA ligands has elicited remarkable immune responses in primary glioblastoma. Although we succeeded in proving the first two neo-antigenic HLA ligands in glioblastoma, we are convinced that non-mutated antigens will coin peptide-specific immunotherapeutic efforts for intracranial neoplasias with low mutational burden.

To define candidate targets for cancer immunotherapy, a large-scale study of the HLA class I and II peptidomes of glioblastoma (n=62), medulloblastoma (n=28), and meningioma (n=33) was performed. We defined a novel set of antigens and peptides characterized by natural, frequent, and tumor-exclusive HLA presentation on native human tumor tissue, whereby established tumor-associated and cancer-testis antigens did not fulfill these criteria. Tumor exclusivity was assessed by comparison with a reference immunopeptidome dataset acquired from approximately 400 benign human tissues covering 30 different organs. For glioblastoma, an additional comparison of primary and recurrent tumors was performed delineating not only dynamics of antigen presentation during disease progression, but also enabling further restriction of candidate targets to those robustly presented at both disease conditions. The implementation of a mix of ten synthetic heavy isotope-labeled peptides as retention time standard will guide future immunopeptidomic studies fostering innovative mass spectrometric data acquisition strategies and quantitative approaches with enhanced identification and reproducibility rates.

In conclusion, we investigated the immunopeptidomic landscape of glioblastoma, medulloblastoma, and meningioma in an unprecedented depth unveiling a large novel set of entity-specific tumor-associated antigens and peptides. Being naturally, frequently, and tumor-exclusively presented on HLA class I or II molecules, these represent prime candidates to deliver the power of T cells *via* antigen-specific immunotherapies to intracranial neoplasias. This may contribute to meet the urgent demand for alternatives to radiotherapy in the treatment of pediatric brain tumors as well as for therapeutic regimens to manage non-resectable neoplasms and disease recurrence.

Zusammenfassung

Jedes Jahr werden in den Vereinigten Staaten mehr als 80.000 neue Fälle intrakranieller Neoplasien, welche die achthäufigste Tumorart bei Erwachsenen über 40 Jahren und sogar die häufigste Tumorerkrankung im Kindesalter sind, diagnostiziert. Dazu zählen Neubildungen des Hirnparenchyms wie Glioblastome oder Medulloblastome und Tumore der Hirnhäute. Während der letzten Jahrzehnte blieb die Prognose intrakranieller Neoplasien schlecht, was intensive Forschung zur Etablierung neuer Therapien unabdingbar macht. Besonders für rekurrente und nicht resezierbare Tumore gibt es keine evidenzbasierte Behandlung, wohingegen die Bestrahlung des kindlichen sich entwickelnden Gehirns schwere Langzeitschäden verursacht. Die Entwicklung und erfolgreiche Anwendung von Immuncheckpoint-Antikörpern hat eine neue Ära multi-modaler Tumortherapien eingeläutet. Patienten mit intrakraniellen Neoplasien haben von den jüngsten Fortschritten klinisch gesehen jedoch nicht profitiert. Besonders das Ansprechen auf Immuncheckpoint-Inhibitoren korreliert positiv mit der Mutationslast, welche in Hirntumoren niedrig ist. Das erklärt unter anderem auch, weshalb es bislang nicht möglich war, die HLA-Präsentation von Neo-Antigenen auf Hirntumorzellen nachzuweisen. In einer kürzlich durchgeführten klinischen Studie rief die Anwendung eines Multi-Peptidimpfstoffs, der sich gegen nicht-mutierte HLA-Liganden richtet, beachtliche Immunantworten in Patienten mit primärem Glioblastom hervor. Obwohl wir den Nachweis für die ersten beiden mutierten HLA-Liganden im Glioblastom erbringen konnten, sind wir davon überzeugt, dass nicht-mutierte Antigene peptid-spezifische immuntherapeutische Ansätze für intrakraniellen Neoplasien mit geringer Mutationslast prägen werden.

Um mögliche Zielantigene für Immuntherapien zu bestimmen, wurde eine groß angelegte Untersuchung des HLA Klasse I- und II-Peptidoms in Glioblastomen (N=62), Medulloblastomen (N=28) und Meningeomen (N=33) durchgeführt. Wir haben eine neuartige Zusammenstellung von Antigenen und Peptiden definiert, welche sich durch natürliche, häufige und tumor-exklusive HLA-Präsentation auf nativem humanem Tumorgewebe auszeichnen - etablierte tumor-assoziierte und Cancer-Testis ("Tumor-Hoden") Antigene erfüllten diese Kriterien dagegen nicht. Die Bestimmung von Tumor-Exklusivität erfolgte durch den Abgleich mit einem Referenzdatensatz, welcher Immunpeptidome von circa 400 benignen humanen Geweben aus 30 verschiedenen Organen beinhaltet. Bei Glioblastomen wurden zudem primäre und rekurrente Tumore verglichen, was nicht nur Dynamiken der Antigenpräsentation im Laufe des Fortschreitens der Erkrankung aufdeckte, sondern bot auch die Möglichkeit, eine Beschränkung auf jene möglichen Zielantigene vorzunehmen, welche in beiden Krankheitsstadien robust präsentiert sind. Die Implementierung einer Mischung aus zehn isotopen-markierten synthetischen Peptiden als Retentionszeitstandard wird zukünftige Studien des Immunpeptidoms leiten, was innovative massenspektrometrische Datenaufzeichnungsstrategien und quantitative Ansätze mit verbesserten Identifikations- und Reproduzierbarkeitsraten unterstützen wird.

Zusammenfassend haben wir das Immunpeptidom des Glioblastoms, des Medulloblastoms sowie des Meningeoms in einer beispiellosen Tiefe untersucht, was die Zusammenstellung einer umfangreichen und neuartigen Liste tumor-assoziierter Antigene und Peptide ermöglichte. Da diese natürlich, häufig und tumor-exklusiv auf HLA Klasse I- oder II-Molekülen präsentiert sind, stellen diese erstklassige Kandidaten dar, um intrakranielle Neoplasien durch antigen-spezifische Immuntherapien vermittelt durch T-Zellen anzugreifen. Das könnte dazu beitragen, der dringenden Forderung nach Alternativen zur Strahlentherapie bei der Behandlung kindlicher Hirntumoren sowie nach Leitlinien für die Behandlung nicht resezierbarer und rekurrenter Neoplasien nachzukommen.

CHAPTER 1

Introduction

1 Intracranial neoplasias

1.1 Incidence and classification

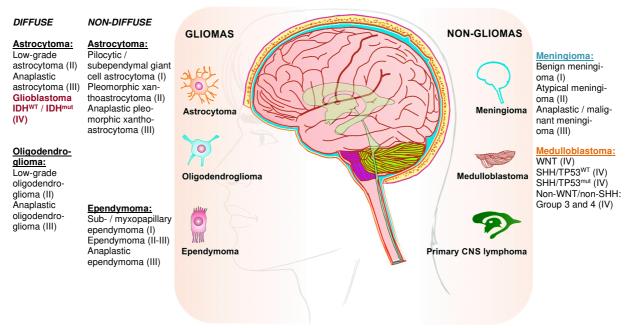

In the United States (US), neoplasms of the central nervous system (CNS) are the most common pediatric tumors (0-14 years), the third most frequent cancer among people from 15-39 years, and the eighth most common tumors in adults older than 40 years. From 2012-2016, 405,740 new cases of primary brain and CNS tumors were reported. Among these, malignant neoplasias (30.2%) were less than half as common as benign ones (69.8%). 5-year relative survival rates accounted for 35.8% for malignant and 91.5% for benign CNS tumors, respectively. Meningioma was the most frequent non-malignant brain and CNS tumor (53.3% of non-malignant / 37.6% of all neoplasms), whereas glioblastoma represented the most common malignant CNS tumor (48.3% of malignant / 14.6% of all neoplasms) (Table 1).¹

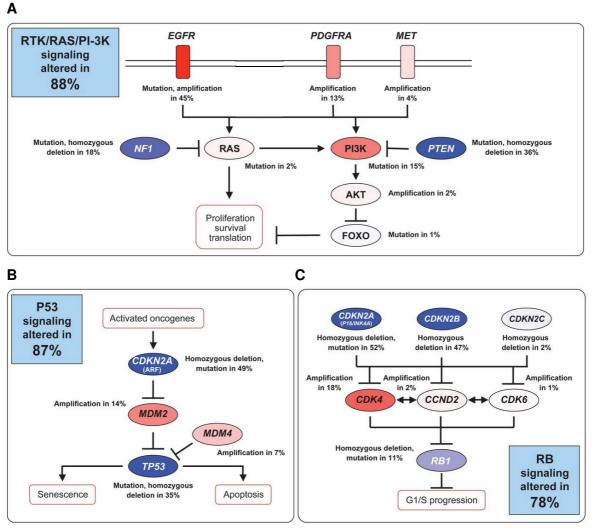
Table 1. Incidence and survival rates of three selected intracranial neoplasms in the US (2012-2016). Information were obtained from Ostrom *et al.*¹ * Median age at diagnosis reported for embryonaltumors, from which medulloblastomas constitute 64%. Missing data are marked as not available (n.a.).

	Glioblastoma	Medulloblastoma	Meningioma		
			Total	Malignant	Non-malignant
Proportion of all brain and CNS tumors	14.6%	0.6%	37.6%	0.4%	37.2%
5-year incidence	59,164	2,234	152,756	1,774	150,982
0-14	503	1,475	293	23	270
15-39	2,713	596	9,260	118	9,142
40+	55,948	163	143,203	1,633	141,570
Average annual incidence	11,833	446	30,551	355	30,196
0-14	101	295	59	5	54
15-39	543	119	1,852	24	1,828
40+	11,190	33	28,641	327	28,314
Median age at diagnosis	65	8*	66	65	66
Incidence rate male : female ratio	1.58	1.66 (age 0-14)	n.a.	0.89	0.43
5-year relative survival	6.8%	73.7%	n.a.	68.2%	88.0%
0-14	21.8%	72.3%	n.a.	75.3%	95.7%
15-39	26.2%	78.5%	n.a.	84.1%	97.0%
40+	5.5%	66.2%	n.a.	66.6%	87.3%

Besides distinguishing benign and malignant tumors, primary CNS neoplasias are grouped into glial and non-glial tumors according to their cell type of origin (Figure 1).² Gliomas arise from glial cells (astrocytes, oligodendrocytes, ependymal cells, and microglia), non-neuronal cells in the CNS that are supportive to neurons. Astrocytes fulfill homeostatic functions by regulating water and ion levels, modulating neurotransmission in tripartite synapses, and contributing to the formation of the blood-brain barrier. The insulating myelin sheath of axons is formed by oligodendrocytes and allows rapid conduction of electrical impulses. Microglia represent brain-resident phagocytic immune cells, whereas ependymal cells line the ventricular system, the central canal of the spinal cord as well as the choroid plexus, and produce cerebrospinal fluid (CSF).^{3,4} Glial intracranial neoplasias, namely astrocytoma, oligodendroglioma, and ependymoma can either grow in a diffuse or non-diffuse manner, whereby diffuse growth goes along with deep infiltration of surrounding benign brain tissue. Non-gliomas originate from hematopoietic / lymphoid cells (CNS lymphoma), the meninges (meningioma), or embryonal neuroepithelial / cerebellar granule neural precursor cells (medulloblastoma).^{1,2,5,6}

In 2016, grading of intracranial neoplasms as recommended by the World Health Organization (WHO) was for the first time not only based on histological and clinical, but also on molecular patterns which are of major importance for sub-classification of tumor types. Glioblastomas that have progressed from anaplastic astrocytoma or low-grade glioma, designated as secondary glioblastomas, have mutations of the isocitrate dehydrogenase (IDH) 1/2 genes (IDH^{mut}), whereas primary glioblastomas have non-mutated / wild-type (WT) IDH1/2 genes in most cases (IDH^{WT}).² Medulloblastomas (MB) are subdivided into four groups by means of expression and mutational profiles. In the first group, the Wingless and Int-1 (Wnt) pathway has a key role (WNT-activated; 11%), whereas the second group is characterized by strong activation of the Sonic Hedgehog (SHH) pathway (SHH-activated; 30%). Within this group, tumors with mutated and WT tumor suppressor p53 (TP53) are further distinguished from each other (SHH-activated/TP53^{mut}; SHH-activated/TP53^{WT}). Group 3 (25-28%) and Group 4 (35%) medulloblastomas are both non-WNT/non-SHH with dominant signaling through the photoreceptor/gamma-aminobutyric acid (GABA-)ergic or the neuronal/glutamatergic pathway instead (Figure 1).^{2,7,8}

Figure 1. Overview of glial- and non-glial brain tumors. WHO grades are indicated in Roman numerals for selected CNS neoplasms. Tumor entities that are part of the subsequent experimental section are color-marked. Image adapted from Malhotra *et al.*⁹ and supplemented with information from Louis *et al.*²


1.2 Glioblastoma

Etiology, common mutations, and epigenetic features

Glioblastoma is the most frequent and most malignant primary intracranial neoplasia. It mainly affects adults at a median age of 65 years and is characterized by the poorest 5-year relative survival rate of 6.8% among all brain tumors (Table 1). It constitutes 57.3% of all gliomas and only little is known about its etiology.¹ Hereditary cancer syndromes including Lynch or Li-Fraumeni syndrome, neurofibromatosis type 1 and 2, Turcot's syndrome (brain tumor-polyposis syndrome), Gorlin syndrome (nevoid basal cell carcinoma syndrome), and Cowden's

disease contribute to only 5% of glioblastoma cases.¹⁰⁻¹⁶ While (therapeutic) ionizing radiation represents a well-known risk factor, the neurocarcinogenic effect of polycyclic aromatic hydrocarbons, N-nitroso compounds, or other chemicals is still under investigation.^{10-12,17-19} Likewise, the association of glioblastoma with simian virus 40 (SV40) and different human herpes viruses (HHV) such as human cytomegalovirus (HCMV) in glioblastoma is controversially discussed.^{10,20-23} Heterozygous IDH1/2 mutations (IDH1: predominantly R132H (90%),^{2,24-26} less frequently R132C and R132G;²⁴ IDH2: mostly R172K²⁶⁻²⁹) occur in only 5% of primary or de novo glioblastomas, whereas these non-synonymous mutations are characteristic of secondary glioblastoma (approximately 80%).^{10,24,30} Determination of the IDHstatus is part of routine clinical diagnostics, since IDH-mutant tumors are associated with better prognosis (median overall survival after surgery and radiochemotherapy 31 versus 15 months).^{2,13} Non-mutated IDH catalyzes the reaction of isocitrate into α -ketoglutarate (α -KG), which is subsequently converted into D-2-hydroxyglutarate (D2HG) by mutant IDH exhibiting neo-enzymatic activity. D2HG acts as an oncometabolite by competitive inhibition of α -KGdependent enzymes affecting collagen synthesis, cell signaling, and epigenetic regulation.^{10,26} Secondary glioblastomas occurring in younger patients are relatively rare (5-10% of all glioblastomas) and subsequent information therefore focuses on classical de novo glioblastoma.2,10,31-33

The core pathways driving glioblastoma comprise enhanced phosphatidylinositol-3-OH kinase (PI3K) signaling, impaired activation of the Rb and p53 pathways, and uncontrolled growth factor signaling (Figure 2).^{10,33-35} Amplification of the epidermal growth factor receptor (EGFR), the cyclin-dependent kinase 4 (CDK4), and the p53 inhibitor mouse double minute 2 homolog (MDM2) are common genetic events in glioblastoma.^{10,12,32-34,36} The truncated epidermal growth factor receptor variant III (EGFRvIII) is a gain-of-function mutation resulting in constant activation of the EGFR pathway and is present in around 30% of newly diagnosed glioblastomas.^{10,12,33,34,37} Homozygous deletion of neurofibromin-1 (NF1), phosphatase and tensin homolog (PTEN), the cyclin-dependent kinase inhibitor 2A (CDKN2A / p16^{lnk4a}), or the cyclin-dependent kinase 4 inhibitor 2B (CDKN2B / p15^{lnk4b}) cause a loss of Ras, PI3K, or CDK4 inhibition, respectively. Besides p16^{lnk4a}, CDKN2A encodes the p53 activator alternative open reading frame (ARF / p14^{ARF}), which is lacking in case of CDKN2A deletion.^{10,12,32-34,36} Impaired p53 and Rb signaling can also be due to p53 and Rb mutations. PI3K mutations and deletions of PTEN as well as CDKN2A and Rb mutations seem to be mutually exclusive.^{10,24,31,34,38} PIK3CA mutations can either render the p110a catalytic subunit of the PI3K complex constitutively active or reduce its affinity to the inhibitor p85a.^{10,34,39-41} Figure 2 visualizes the frequencies of these mutations as well as the role of mutated proteins in the pathways driving glioblastoma. Common chromosomal aberrations comprise gain of chromosome 7, 19, and 20, loss of chromosome 10, 13, and Y as well as rearrangements affecting chromosome 12q.^{24,42-46}

Figure 2. Pathways driving glioblastoma. Color-coded frequencies of gain-of-function (red) and lossof-function mutations (blue) in glioblastoma patients. **(A) Increased Ras and PI3K signaling.** Loss of NF1 or PTEN, EGFR amplification, and PI3K mutations occur in many patients. **(B) Impaired senescence and apoptosis induction** *via* **p53.** In glioblastoma, TP53 or CDKN2A loss-of-function mutations and amplification of MDM2 are frequent genomic events. **(C) Reduced Rb signaling.** CDK4 gene amplification as well as CDKN2A, CDKN2B, or Rb loss can lead to uncontrolled progression of the cell cycle. Image adapted from McLendon *et al.*³⁴ and corrected with information from McLendon *et al.*⁴⁷.

Mutant IDH-derived D2HG competitively inhibits tet methylcytosine dioxygenase 2 (TET2). As a consequence, demethylation of DNA is impaired creating the so-called glioma CpG island methylator phenotype (G-CIMP).^{10,26,48,49} G-CIMP is associated with better prognosis of glioblastoma patients.^{10,50,51} Promoter methylation is a common epigenetic mechanism to silence gene transcription. DNA methylation of the O⁶-methylguanine-DNA methyltransferase (MGMT) promoter region is observed in 35% of glioblastoma patients. Alkylating chemotherapeutics such as temozolomide (TMZ) cause O⁶-alkylated guanine nucleobases. Repair of this DNA damage is mediated by MGMT, whereby decreased MGMT levels owing to promoter methylation can improve the efficacy of alkylating chemotherapies.^{10,13,27,52-57} The MGMT-status of glioblastoma patients is routinely determined in clinical practice.¹³ Recently, primary IDH^{WT} glioblastomas have been found to exhibit distinct DNA methylation patterns laying the foundation for annotation to the following epigenetic subclasses: mesenchymal,

midline, MYCN, RTK I, RTK II, RTK III, H3.3 G34 mutant, and infantile hemispheric glioma. The latter are observed in infants with supratentorial localization and at a median age of 0 years, whereby molecular characteristics have so far not been specified. Patients at a median age of 11 years with supratentorial or posterior fossa tumors are often affected by glioblastomas of the MYCN subtype with characteristic MYCN oncogene amplifications. Midline-type glioblastomas predominantly affect younger patients (median age of 13 years), are localized in the cerebellum, thalamus, or spine and have various copy number alterations on gene level (e.g. CDKN2A/B loss, platelet-derived growth factor receptor alpha (PDGFRα) amplification).⁴⁶ H3.3 G34 mutant glioblastomas harbor mutations of the histone H3.3encoding gene in codon 34 and occur at a median age of 19.5 years with supratentorial hemispheric localization. Gain of chromosome 7 or 1g as well as loss of chromosome 13, 10g. and 4q represent common chromosomal aberrations in this subgroup. Mesenchymal glioblastomas reside within the cerebral hemispheres, occur at a median age of 59 years and are characterized by loss of chromosome 10 and 9p21 as well as gain of chromosome 7. Glioblastomas of the RTK I type with prominent loss of chromosome 10 and 9p21 and gain of chromosome 7 affect the cerebral hemispheres of people at a median age of 64 years. RTK II glioblastomas affect patients at a median age of 61 years, reside within the cerebral hemispheres, and present with gain of chromosome 7, 19, or 20 and loss of chromosome 10 or 9p21. Glioblastomas of the subclass RTK III comprise childhood tumors occurring at a median age of 9 years. Localization within the cerebral hemispheres, EGFR amplification, and loss of chromosome 10 represent typical features of this subgroup.⁴⁶

Symptoms and standard treatment of glioblastoma

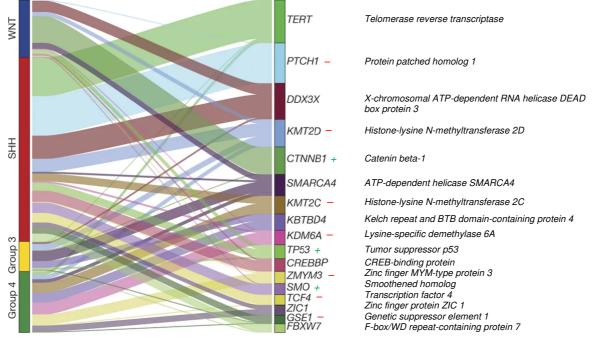
Primary glioblastoma typically occurs in the white matter of the cerebrum (supratentorial), whereby the spectrum of symptoms can vary depending on the exact localization.² Glioblastoma patients present with headaches and, in severe cases, nausea or vomiting. Confusion, focal neurological deficit, changes of personality, loss of memory, and seizures are associated with glioblastoma as well.^{10,12,14} Despite having high migratory potential, dissemination of glioblastoma cells remains usually CNS-restricted without distant metastases.^{10,13}

The so-called Stupp protocol includes surgery and adjuvant radiochemotherapy as standardof-care for newly diagnosed WHO grade IV glioma.¹³ The extent of surgical resection correlates with patient outcomes, but it is impossible to achieve complete surgical resection while fully preserving surrounding benign brain tissue^{10,13,58} Fractionated radiotherapy applied post-surgery delivers a total of 60 Gy split into 30-33 individual doses.^{10,13,59} The excellent bioavailability in the CNS distinguishes TMZ from other chemotherapeutics rendering it the first choice for glioblastoma patients. Concomitant administration during radiotherapy amounts to 75 mg/m² daily, whereas adjuvant chemotherapy lasting additional six months comprises five monthly doses of 150-200 mg/m² each. In elderly patients (> 70), maintenance TMZ is tailored to the individual performance status and health situation.^{10,12,13,60,61} Median survival of patients with newly diagnosed glioblastoma treated as recommended by the Stupp protocol accounts to 14.6 months, whereas radiotherapy alone achieves 12.1 months.⁶¹ Seizure management is based on valproate and second-generation antiepileptic drugs such as levetiracetam, lamotrigine, or pregabalin. Carbamazepine, phenobarbital, and phenytoin are avoided as anticonvulsants in glioblastoma, since they accelerate the metabolization of other medication.^{10,13,62,63} Dexamethasone (8-16 mg daily) and other corticosteroids symptomatically treat neurological deficits and elevated intracranial pressure caused by glioblastoma-associated brain edema.^{10,13}

Propensity for disease recurrence

Glioblastoma cells deeply infiltrate into surrounding benign brain tissue rendering complete surgical resection impossible.^{12,49} In addition, glioma stem cells acquire resistance to radiotherapy and TMZ by upregulation of MGMT and activation of other DNA repair pathways.^{10,12,64} Moreover, a pronounced high degree of intratumoral heterogeneity is a typical feature of glioblastomas. Under evolutionary pressure exerted by the applied therapies, tumor subclones constantly acquire new mutations leading to an intensified therapeutic situation.^{10,49,65} As a consequence, glioblastoma inevitably recurs in most patients accompanied by a decline of median overall survival to 6.2 months.^{13,49,66} Of note, a fraction of patients (37% in a study of The Cancer Genome Atlas Research Network) develops a socalled hypermutation phenotype, which is induced by alkylating chemotherapy.^{10,34,67} MutS homolog 2 (MSH2) / mutS homolog 6 (MSH6) heterodimers recognize mismatch base pairs formed by thymine and O⁶-alkylated guanine. MSH6-dependent apoptosis is induced when the number of these mismatches exceeds a certain threshold.^{10,67-69} In case loss-of-function mutations affect mismatch repair (MMR) genes such as MSH6 and TMZ is continued, glioblastoma cells acquire therapy resistance. Alkylating agents then facilitate the accumulation of mutations, clonal evolution, and glioblastoma progression instead of inducing apoptosis. Loss of either mutL homolog 1 (MLH1), MSH2, MSH6, or the endonuclease postmeiotic segregation increased 2 (PMS2) is designated as MMR deficiency and occurs predominantly in patients where the primary tumor had MGMT promoter methylation. Hypermutated recurrent grade IV glioma harbor > 30 mutations instead of less than five in primary tumors.^{10,34,67}

So far, no standard-of-care has been established to manage disease recurrence in glioblastoma. Up to one third of patients are eligible for surgical resection. However, clinical benefit of re-surgery and re-irradiation is usually very limited. Upon progression on first-line chemotherapy, TMZ dosage can be increased or nitrosoureas such as carmustine can serve as second-line medication. In case inclusion criteria are met, patients may receive experimental therapies evaluated in clinical trials.^{10,12,13,49,66,70,71} Constant application of electric fields alternating at a frequency of 200 kHz is capable of interrupting mitosis and inducing apoptosis. Applied subsequently to radiochemotherapy and concomitantly to maintenance TMZ, tumor treating fields (TTF) prolonged overall survival of patients with newly diagnosed glioblastoma by 4.9 months as compared with maintenance chemotherapy alone.⁷² In recurrent glioblastoma, TMZ-free TTF therapy *versus* chemotherapy resulted in a median survival of 6.6 or 6.0 months, respectively.⁷³ The device NovoTTF/Optune[®] was approved by the U.S. Food and Drug Administration (FDA) for the treatment of recurrent glioblastoma in 2011.⁷⁴ The monoclonal antibody bevacizumab is directed against vascular endothelial growth factor (VEGF) to target angiogenesis. It received FDA approval for recurrent glioblastoma in


2009, although an effect on overall survival has so far not been observed.^{70,75-77} Molecular therapies are further trying to exploit the regulators of PI3K, mitogen-activated protein kinase (MAPK), and DNA repair pathways as well as EGFR / EGFRvIII, VEGF receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and transforming growth factor β (TGF- β) as targets.^{10,12,78} Targeted monotherapies, however, elicit a response in only 0-15% of patients and these rare responses are only transient.^{12,79} The reason for this lies in the glioblastoma-driving signaling network harboring a high degree of functional redundancy. Targeting one molecule of this network results in upregulation or activation of another to circumvent effects on proliferation or survival of the tumor cell.^{10,12,80} Hence, ongoing and future studies aim at overcoming the mechanisms of therapy resistance in (recurrent) glioblastoma by combining various targeted therapies.^{10,12,79}

1.3 Medulloblastoma

Etiology and subgroup-associated mutational and pathway signatures

Behind pilocytic astrocytoma and malignant glioma, embryonal tumors constitute the third most common brain and CNS tumors (13.1%) in children younger than 14 years. Embryonal tumors comprise medulloblastomas (MB; 64.1%), atypical teratoid rhabdoid tumors (ATRT; 15.9%), and primitive neuroectodermal tumors (PNET; 10.4%), whereby medulloblastomas represent the most common pediatric intracranial malignancies. The peak incidence of medulloblastomas accounting for 66.0% (1,475 cases in the US from 2012-1016) is observed in children aged between 0 and 14 years, whereas only 7.3% of total cases occur in patients older than 40 years (Table 1). The total incidence in children younger than 14 years in the US from 2012-2016 distributed to 36% at age group 0-4 (535 cases), to 41% at age group 5-9 (603 cases), and to 23% at age group 9-14 (337 cases).¹

The underlying causes of medulloblastoma are in general unclear, with most cases being designated as sporadic.^{81,82} High birth weight, maternal diet – especially the uptake of *N*-nitroso compounds – during pregnancy, exposure to pesticides during childhood or the prenatal period as well as HCMV infection have been suggested as risk factors.^{8,83} As for glioblastoma, hereditary cancer syndromes are associated with a small proportion (5-6%) of medulloblastoma diagnoses, whereas this fraction is highest in the SHH-activated subgroup (14-20%). Germline mutations of deleted in polyposis 2.5 / adenomatous polyposis coli protein (DP2.5 / APC; Turcot's syndrome) or of suppressor of fused homolog (SUFU) and protein patched homolog 1 (PTCH1) (both Gorlin syndrome) are linked to WNT-activated or SHH-activated medulloblastomas, respectively. The latter distinguish into TP53^{WT} and TP53^{mut} tumors, whereby germline TP53^{mut} (Li-Fraumeni syndrome) medulloblastomas are always pediatric cases. Deficiency of homologous recombination expressed by germline breast cancer type 2 susceptibility protein (BRCA2; Fanconi anemia) or partner and localizer of BRCA2 (PALB2) mutations occurs across SHH-activated, Group 3, and Group 4 subtypes.^{81,82,84}

Figure 3. Recurrently mutated genes in medulloblastoma subgroups. Genes exceeding a mutation frequency of 5% in the respective study cohort (n=491 medulloblastomas; median age of 8 years [1 month – 50 years]) are depicted in a subgroup-specific manner. Driver genes affected by gain-of function mutations are marked with a +, whereas – indicates loss-of function driver mutations. Figure taken from Northcott *et al.*⁸⁵ and supplemented with information from Northcott *et al.*⁸⁵ and UniProt⁸⁶.

Recurrent mutations in medulloblastoma are shown on a subgroup-specific level in Figure 3. These participate in the regulation of neuronal development, cell-cell contacts, chromatin modification, cell signaling, and the cell cycle. WNT-activated medulloblastomas show a clear enrichment of mutations affecting histone lysine methylation, the β -catenin nuclear pathway, and the differentiation of CNS neurons. Catenin beta-1 (CTNNB1) mutations and monosomy 6 are present in >80% of WNT-activated tumors, whereas molecules of the SWI/SNF nucleosome-remodeling complex (AT-rich interactive domain-containing protein 1A/2 (ARID1A, ARID2), ATP-dependent helicase SMARCA4) together reach a mutation frequency of around 30%. SHH-activated medulloblastomas recurrently harbor mutations altering CNS neuron differentiation and the SHH-Gli pathway. Mutations of the histone acetyltransferases KAT6B, p300, and CREB-binding protein (CREBBP) as well as of peregrin (BRPF1) and KAT8 regulatory NSL complex subunit 1 (KANSL1), which regulate histone acetyltransferase complexes, are observed in 19% of SHH-activated medulloblastomas. In turn, recurrent mutations in Group 3 and Group 4 medulloblastomas show a mixed pattern of pathway annotations. Group 3 tumors are rather enriched for mutations involved in the Notch and TGF-B pathway, whereas recurrent Group 4 mutations are rather assigned to mechanisms of chromatin modification. Amplifications of the myc proto-oncogene are specific for subgroup 3 (17%), whereas the cases of amplified N-myc proto-oncogene distribute equally to Group 3 and Group 4 medulloblastomas (5-6% each).⁸⁵ Further, medulloblastomas have recently been described to exhibit subgroup-characteristic DNA methylation patterns.⁴⁶

Pathology and standard treatment

Medulloblastomas are infratentorial tumors arising in the posterior fossa, whereby a cerebellar localization is most common.⁵ WNT-activated tumors typically grow in the cerebellar peduncles or the cerebellopontine angle connecting cerebellum and pons (brain stem). They can infiltrate into the brain stem and the fourth ventricle. SHH-activated medulloblastomas preferentially reside within the cerebellar hemisphere, whereby a small proportion is localized in the midline vermis. Group 3 and Group 4 occupy the midline of the fourth ventricle (median sulcus).^{7,8,87,88} Medulloblastoma is per se graded as malignant WHO grade IV tumor.² CNS-internal metastatic spread is frequently observed in cases of Group 3 and Group 4, whereas SHH- or WNT-activated medulloblastomas rarely disseminate. Overall, two out of five patients present with metastases affecting the thoracic and lumbar spine or the sacrum. Ventricular or subependymal dissemination, not uncommonly already at diagnosis, occurs as well.^{5,8} Depending on the assignment to a tumor subgroup, children suffering from medulloblastoma have a 5-year overall survival between <50% (very high-risk: SHH-activated/TP53^{mut} and metastatic Group 3) and >90% (low-risk: WNT-activated and non-metastatic Group 4). Highrisk medulloblastomas (metastatic SHH or Group 4 tumors and N-myc-amplified SHH) are characterized by a 5-year overall survival rate of 50-75%, whereas patients with average-risk tumors (non-metastatic / TP53^{WT} / non-N-myc-amplified SHH, non-metastatic / non-mycamplified Group 3, and non-metastatic Group 4 without loss of chromosome 11) have a 5-year overall survival rate of 75-90%.87

Symptoms of medulloblastoma comprise headache, visual and motor coordination disorders, clumsiness, cranial nerve palsies, reduced food intake, general indisposition, nausea, and vomiting.^{89,90} Standard-of-care following near or gross total resection depends on subgroup annotation and age. Children older than three to five years suffering from average-risk tumors undergo radiochemotherapy comprising craniospinal irradiation (CSI) with a total dose of 54-55.8 Gy (1.8 Gy per day) from one month post-surgery. 23.4 Gy are delivered to the whole brain and spinal cord, whereby the residual dose is directed to the posterior fossa or tumor bed. For WNT-activated tumors, a reduced dosing regimen is conceivable. Adjuvant chemotherapy lasts around seven weeks and can be followed by maintenance chemotherapy administered every four to six weeks. Chemotherapeutics of choice include vincristine (weekly 1.5 mg/m²), cisplatin (75 mg/m² for six cycles), cyclophosphamide (1,000 mg/m²/dose for three cycles of two doses each), and lomustine (75 mg/m² for six cycles). When diagnosed with highor very high-risk medulloblastoma, protocols comprising radiotherapy (standard, higher, or altered dose) with adjuvant standard or high-dose chemotherapy are applied. Infants younger than three to five years suffering from low- or average-risk tumors receive post-surgery standard chemotherapy only, eventually supplemented with intratumoral chemotherapy. Highor very high-risk disease is treated with standard chemotherapy, optional high-dose chemotherapy, and, if needed, focal or CSI radiotherapy. Treatment of adult medulloblastomas is similar to high-risk tumors in children, whereby the dose delivered to the whole brain and spine is increased to 36 Gy.^{8,90}

Risk of recurrence and long-term sequelae

Although response rates to extensive multimodal therapies are high and immediate, metastatic and high-risk medulloblastomas tend to acquire therapy resistance *via* apoptosis evasion.^{5,8} WNT-activated tumors rarely recur, whereas recurrence in SHH-activated medulloblastomas occurs, but remains local. In turn, recurrent Group 3 and Group 4 tumors are mostly even metastatic.⁸ Three-quarter of pediatric recurrences are observed within two years. As for primary medulloblastoma, the age of the patient decides on the application of radiotherapy. However, a treatment protocol to manage recurrent medulloblastoma has so far not been established.⁸

Those children belonging to the 70-75% designated as cured, will experience long-term treatment-associated sequelae comprising neurological, developmental, psychosocial, and neuroendocrine deficits or even secondary malignancies such as glioblastoma and meningioma. These are primarily attributed to irradiation of the developing brain. The development of novel, especially targeted or immunotherapies, is aimed at replacing radiotherapy.^{5,8,90-92} SMO (SHH pathway) inhibitors such as vismodegib, recombinant soluble tumor necrosis factor-related apoptosis inducing ligand (TRAIL), TRAIL receptor (TRAILR)-agonistic antibodies, N-myc inhibition, targeting of anti-apoptotic Bcl-2 proteins, and pro-apoptotic Bcl-2 homology protein mimetics belong to the most promising approaches. To circumvent mechanisms of early therapy resistance, the preferential use of combination therapies is suggested, whereas targeted monotherapies should be avoided.^{5,8,93}

1.4 Meningioma

Risk factors and genetic basis

Meningiomas constituted 37.6% of all primary intracranial neoplasms diagnosed in the US from 2012-2016. They occur at a median age of 66 years and are subdivided into benign (WHO grade I; 80.5%), atypical (WHO grade II; 17.7%), and anaplastic or malignant meningiomas (WHO grade III; 1.7%). Malignant meningiomas make up only 0.4% with an annual average of 355 cases in the US, whereas non-malignant tumors account to a yearly incidence of 30,196 (Table 1).^{1,2} Irradiation, e.g. for childhood medulloblastoma, represents an established risk factor for the development of meningeal neoplasia, whereas the role of head trauma, neurosurgery, and sex hormones, especially progesterone, has so far not been clarified.^{90,94-97} Hereditary predisposition applies to a minority of meningiomas and occurs in the context of neurofibromatosis type 2 characterized by germline mutations of the tumor suppressor gene neurofibromin-2 (NF2).95,98,99 Moreover, meningiomas have been associated with Turcot's, BRCA-associated protein-1 (BAP1) tumor predisposition, Cowden, Werner, Li-Fraumeni, Gorlin, multiple endocrine neoplasia type 1, von Hippel-Lindau, and Gardener's syndrome.^{16,84,95,99-106} Familial meningiomatosis is caused by germline mutations affecting two components of the SWI/SNF nucleosome-remodeling complex: SWI/SNF-related matrixassociated actin-dependent regulator of chromatin subfamily E member 1 and subfamily B member 1 (SMARCE1; SMARCB1).99,107,108

NF2 is not only affected by germline, but also by somatic loss-of function mutations present in 40-60% of meningiomas.^{95,99,109,110} Related thereto, loss of chromosome 22q harboring both

the NF2 region and SMARCB1 was identified to be causative of sporadic meningiomas.^{95,99,108,111} Moreover, BAP1, TERT, SMARCB1, SMO, SUFU, TNF receptorassociated factor 7 (TRAF7), RNA polymerase II subunit A (POLR2A), Krueppel-like factor 4 (KLF4) as well as the protein kinases AKT1, AKT3, and PI3K have been identified to be recurrently mutated in meningiomas, especially such harboring WT NF2. These mutated gene products mainly participate in the mammalian target of rapamycin (mTOR), SHH, and p53 pathway.^{110,112-117} High-grade meningiomas harbor a significantly increased mutational load as compared with low-grade meningiomas, apparent on the level of both non-synonymous mutations (on average 23 *versus* ~10 per tumor) and chromosomal copy number alterations (on average 19% *versus* 3% of the tumor genome disrupted). Despite that, no recurrent mutations (defined by a frequency of \geq 5% in the respective study cohort) apart from NF2 have so far been identified for high-grade meningiomas. Thus, mutated NF2 is designated a driver of meningioma across all WHO grades.¹¹⁰

Symptoms, structures affected by meningioma, and standard-of-care

Meningiomas arise from both cerebral and spinal meninges and show a characteristic tail of thickened dura on radiological images.^{1,2,118,119} Meningeal neoplasias invade both intra- and extracranial structures comprising the skull, dura mater, and dural sinuses or soft tissue, scalp, and the orbits, respectively.^{95,96,119,120} From WHO grade II, an invasion of the brain is observed.² Meningiomas manifest with symptoms of increasing intracranial pressure which include – depending on localization and size – headaches, nausea and vomiting, seizures, and visual impairment.⁹⁵⁻⁹⁷ A small proportion of meningiomas (estimated at 0.1%) forms extracranial and even extraneural metastases affecting predominantly the lungs as well as the pleura, bones, the liver, the mediastinum, and lymph nodes.¹²⁰⁻¹²²

Benign meningiomas are usually treated with surgical resection to the maximum possible extent alone. However, the specific localization of some tumors, particularly at the skull base, which is affected by 38% of grade I tumors and is rich in neurovascular structures, impedes surgery. This causes considerable morbidity and a 5-year recurrence rate of 22%.^{123,124} Atypical meningiomas receive optional adjuvant radiotherapy, whereas irradiation is a fixed pillar in the therapeutic regimen of anaplastic meningiomas. Radiotherapy typically comprises a total dose of 50 to 60 Gy applied in fractions of 1.5 to 2 Gy to the tumor bed and a margin of 0.5 to 1.5 cm.^{124,125} Stereotactic radiosurgery represents a sophisticated technique to direct irradiation emitted from a gamma knife to tumor tissue during the course of surgical resection, especially of skull base or posterior fossa meningiomas.^{124,126,127} So far, there is no FDA-approved chemotherapeutic agent – neither for primary nor for recurrent or refractory meningeal neoplasms.^{120,124} 5-year overall survival is stratified by WHO grade and comes up to 92% for grade I tumors, 78% for atypical meningiomas, and 44% for patients diagnosed with grade III.^{123,128}

Recurrent meningiomas and emerging targeted treatment strategies

Local recurrence of grade I meningiomas is rare (5-10%), whereas 5-year recurrence rates mount up to 40% for atypical meningiomas and to 50-80% when diagnosed with a malignant meningeal tumor. Recurrence of grade III meningiomas goes along with a decline in median survival to less than 24 months. So far, no effective therapies have been established to

manage recurrent meningioma.^{95,121,124,129,130} Of note, primary tumors treated with adjuvant radiotherapy show an increased amount of non-synonymous mutations and copy number alterations at recurrence.¹¹⁰

Recurrent meningiomas can be treated – if possible – with salvage resection and adjuvant radiotherapy or radiosurgery. In addition, these patients may receive hydroxyurea, anti-hormonal therapy (e.g. anti-progesterone with mifepristone), or somatostatin analogs (e.g. octreotide), whereby all these agents can mainly mediate stabilizing effects.^{124,131-133} Moreover, mTOR inhibitors such as everolimus and vistusertib are under investigation for use in recurrent or progressive meningioma.^{124,134} Anti-angiogenic therapy is increasingly applied and can be based on bevacizumab or small molecules (e.g. sunitinib and vatalanib) targeting VEGFR or PDGFR.^{124,135,136} As for medulloblastoma, the SMO inhibitor vismodegib is evaluated for use in meningeal neoplasias.^{93,124} In case eligibility criteria are fulfilled, participation in clinical trials represents a further option for patients suffering from recurrent meningioma.¹²⁴

2 Cancer immunotherapy

2.1 Key actors for effective anti-cancer immune responses

To protect the host from pathogens, infected or transformed cells, the immune system discriminates between self and non-self. It is made up of two major pillars: the innate and the adaptive system, which both have cellular as well as humoral components. The cellular part of the innate immune system encompasses macrophages, dendritic cells (DCs), granulocytes, mast cells, and natural killer cells, whereas the complement system and antimicrobial peptides predominantly build the humoral part.^{137,138} Professional antigen-presenting cells (APCs), especially DCs, connect the two subsystems by presenting fragments of incorporated antigens to naïve T lymphocytes of the adaptive immune system. These peptide fragments are bound to cell surface molecules of the major histocompatibility complex (MHC) and are specifically recognized by a T-cell receptor (TCR).¹³⁸ When naïve antigen-specific T cells bind to peptide-MHC complexes and receive co-stimulatory signals as well as cytokines from an APC, they get activated, proliferate, and differentiate into CD4⁺ helper T cells (Th cells; Th1 and Th2 as subtype), CD8⁺ cytotoxic T lymphocytes (CTLs), or CD4⁺CD25⁺ regulatory T cells (Treg cells). CTLs are responsible for the elimination of affected host cells, whereas Tregs suppress immune effector functions.¹³⁸⁻¹⁴⁰ In secondary lymphoid tissues, Th2 cells can induce the differentiation of antigen-experienced B lymphocytes into plasma cells. The latter produce antibodies, the humoral effectors of the adaptive immune system.^{138,141} Besides antigen specificity and clonality, the formation of long-lived memory B and T lymphocytes is a hallmark of adaptive immunity.^{138,142} Immune responses are orchestrated and regulated by numerous cytokines and chemokines produced by both innate and adaptive cells.137-139,142

2.2 Human leukocyte antigens present peptides to T lymphocytes

2.2.1 Expression and structure of HLA molecules

For adaptive immunity, MHC presentation of peptides derived from intracellular or incorporated proteinaceous antigens to T cells is an essential feature. In humans, the MHC is called human leukocyte antigen complex (HLA).^{10,143} The short arm of chromosome 6 (6p21.3) harbors the HLA gene cluster comprising the regions HLA class I-III. Molecules belonging to the tumor necrosis factor (TNF) family and the complement system are encoded by HLA class III, whereas HLA class I and II transcripts are translated into proteins involved in the processing and presentation of antigens.^{10,144} The α chains of both the classical (HLA-A, -B, -C) and the non-classical (HLA-E, -F, -G) HLA class I molecules are gene products of the HLA class I region. In addition, the stress-induced MHC class I polypeptide-related sequence proteins (MIC-A, -B) and the human hemochromatosis protein (HFE) are transcribed from this region as well.^{10,145} The genes for HLA class II α and β chains, the peptide transporter associated with antigen processing (TAP), the chaperone tapasin, and the low molecular weight proteins (LMP) 2 and 7, two proteasome subunits induced by interferon (IFN), are included in the HLA class II region. Further, HLA-DM and HLA-DO, two non-classical HLA class II molecules involved in antigen processing, are encoded here (Figure 4 A).^{10,146}

Chromosome 15 harbors the genetic information for β_2 microglobulin (β_2 m). β_2 m is neither polymorphic nor participates in building the peptide-binding cleft, but forms heterodimers with the α chains of classical HLA class I molecules (Figure 4 B). All nucleated cells express HLA-A, -B, and -C on their surface to provide CTLs with antigenic peptides. To fulfill their function as professional APCs, DCs, macrophages, B lymphocytes, Kupffer, and Langerhans cells express HLA class II.^{10,143,145,147} However, in recent years it has become evident that HLA class II expression is not absolutely restricted to APCs, but may also occur on epithelial (e.g. thyroidal or intestinal cells), endothelial, further lymphoid cells (e.g. granulocytes and mast cells), and even on solid malignancies (e.g. glioblastoma and renal cell carcinoma)^{10,145,147-149} – either constitutively or IFN- γ -induced.^{145,150} In heterodimeric HLA class II molecules, both the α and β chain participate in formation of the peptide-binding cleft (Figure 4 B) exposing antigenic peptides to TCRs.^{143,145}

Polygenicity and polymorphism characterize the HLA gene cluster. Per chromosome, one HLA-A, -B, and -C allele each is encoded, which together constitute the HLA class I haplotype (Figure 4 A). Thus, every individual can have cell-surface expression of up to six HLA class I allotypes.^{10,145} The IPD-IMGT/HLA Database (release 3.40.0, 2020-04-20) listed a total of 6,082 HLA-A alleles (3,794 proteins), 7,255 HLA-B alleles (4,648 proteins), and 5,842 HLA-C alleles (3,503 proteins), in June 2020. Among the 7,301 HLA class II alleles, were 3,357 isoforms of HLA-DR β chain alleles (2,378 proteins), 1,556 HLA-DP β allele (1,016 proteins), and 1,826 HLA-DQ β allele (1,213 proteins) variants.¹⁵¹ In some haplotypes, the expression of two functional HLA-DR β chains is observed (HLA-DRB1, -DRB3, -DRB4, and -DRB5 loci).¹⁴⁵ In contrast to HLA class II β chains, α polypeptides are hardly subject to polymorphism (2 HLA-DR α , 68 HLA-DP α , and 106 HLA-DQ α protein isoforms).¹⁵¹

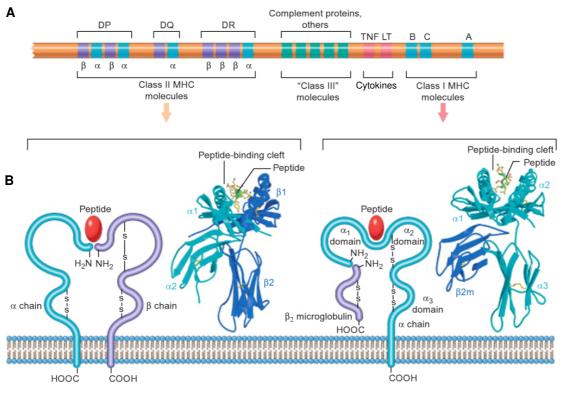


Figure 4. Structure of the HLA on genomic and protein level. (A) Organization of the HLA gene cluster on the sixth chromosome (6p21.3). The three gene regions (I-III) harbor the protein-coding information for HLA molecules themselves, other proteins of the antigen processing and presentation machinery as well as for cytokines and complement factors. (B) Schematic illustration of HLA class I- and II-peptide complexes. HLA class I-presented epitopes have only contact to the α polypeptide of the heterodimer (right), whereas the peptide-binding cleft of HLA class II molecules is formed by both the α and β chain (left). Figure taken from Bhagavan *et al.*¹⁵²; slightly modified.

2.2.2 Antigen processing and HLA-peptide complex formation

HLA class I ligands primarily originate from intracellular antigens deriving from both the host cell itself and from pathogens such as viruses residing inside the cell.¹⁵³ Multicatalvtic complexes with proteinase activity, so-called proteasomes, show nuclear and cytoplasmic localization. The catalytic activity is harbored by a core barrel of 20 Svedberg units (S) that is capped by two 19S subunits. These caps recognize proteins marked with ubiquitin for degradation. Upon unfolding of the substrate, it is introduced into the barrel, where peptide bonds are cleaved hydrolytically.^{10,154} Cleavage products are released into the cytoplasm,¹⁵⁴ from where TAP selectively translocates them into the endoplasmic reticulum (ER).¹⁵⁵ There, peptides are further trimmed by aminopeptidases, especially the ER aminopeptidase associated with antigen processing (ERAAP), to be of appropriate length for association with HLA class I molecules. HLA class I α polypeptides are synthesized at ER-bound ribosomes, are simultaneously imported into the rough ER lumen, and are bound by calnexin, an integral membrane chaperone. Upon binding of $\beta_2 m$ to the α chain, the complex associates with the chaperone calreticulin and the thiol reductase ERp57 assisting HLA molecules in proper folding.^{10,155,156} TAP, calreticulin, ERp57, and the TAP-associated tapasin form the peptideloading complex (PLC). The PLC recognizes processed peptides and α chain- β_2 m heterodimers and allows them to form a stable complex. HLA class I-peptide complexes dissociate from the PLC and undergo vesicular transport from the ER to the Golgi apparatus. In secretory Golgi vesicles, the complexes traffic to the plasma membrane in which they are integrated through membrane fusion (Figure 5 A).^{10,155,156} HLA class I ligands have a typical length of eight to ten amino acids (AA) and an extended conformation.^{157,158} Slightly longer peptides may be accommodated by bulging out in the center and slightly protruding from the groove.^{158,159} HLA class I molecules have five exceptionally polymorphic peptide-binding pockets (A-F), whereby the second and last pocket (B and F) authoritatively define biochemical properties of binding peptides for most allotypes. The interacting AAs of the ligand are designated as anchor residues and represent the peptide motif of the corresponding HLA class I allotype. Usually, these anchors are the C-terminal residue and the second AA counted from the N-terminus.^{10,160,161}

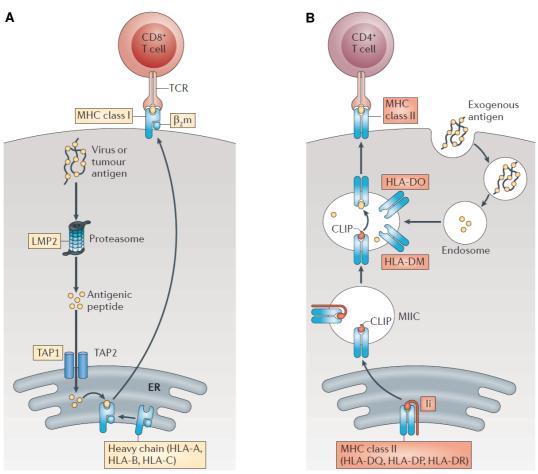


Figure 5. Loading of HLA molecules with antigenic peptides. (A) Processing of HLA class I antigens. Antigenic peptides are generated by the proteasome, bind to newly synthesized HLA class I molecules in the ER, and HLA-peptide complexes are integrated into the plasma membrane. (B) Generation of HLA class II-peptide complexes. Membrane proteins or extracellular antigens are broken down in vesicles and resulting peptides are loaded in MIIC on HLA class II molecules. This schematic leaves out the step of initial translocation of the HLA class II-li complexes to the plasma membrane and subsequent endocytosis. Figure adapted from Kobayashi *et al.*¹⁶².

Extracellular antigens as well as membrane proteins can be incorporated by phagocytosis, (clathrin-mediated) endocytosis, or by macropinocytosis and do subsequently undergo proteolytic degradation in phagolysosomes, early endosomes, macropinosomes, and the antigen-processing compartment. Through autophagy, parts of the cytosol can be engulfed by membranes and degraded in autophagosomes. This allows intracellular antigens to be

presented on HLA class II, which is of utmost importance in DCs and thymic epithelial cells to establish central and peripheral tolerance to self-antigens.^{10,163-165} HLA class II α and β chains newly synthesized at ER-resident ribosomes heterodimerize and the peptide-binding cleft is occupied by the non-polymorphic invariant chain (li). The complex passes the trans-Golgi network and traffics to the plasma membrane. Clathrin-mediated endocytosis of the complex and translocation to multivesicular late endosomal-lysosomal MHC class II antigen-processing compartments (MIIC) is facilitated by li.^{10,163,164,166} li is cleaved in intraluminal vesicles within the MIIC, whereby the class II-associated invariant chain peptide (CLIP), a remnant of li, is still bound to the peptide-binding cleft. HLA-DO regulates the enzyme HLA-DM which removes CLIP from the HLA class II heterodimer to render it peptide-receptive.^{10,163,164,166} Association of ligands and HLA class II molecules takes place in (auto-)phagolysosomes and in the MIIC. HLA class II-peptide complexes become plasma membrane-bound via vesicles or tubules originating from the MIIC that fuse with the cell membrane (Figure 5 B).^{10,163,164,166} HLA class II ligands have a typical length of 15 to 17 AA.¹⁶⁷ However, longer peptides of up to 25 AA can be accommodated by protrusion of the C- and N-terminus from the groove as well.¹⁶⁸ The anchor residues of HLA class II-presented peptides which mediate binding specificity reside within the approximately central core region spanning nine AA.^{10,158,169} HLA class II molecules are renowned for promiscuous binding of peptides (with distinct core regions) due to decreased length preferences and degenerate peptide motifs.¹⁶⁹⁻¹⁷¹

The phenomenon of cross-presentation describes HLA class I presentation of extracellular antigens on DCs for the activation of naïve CTLs. One of the mechanisms accomplishing this is the phagosome-to-cytosol pathway. Macropinosomes and phagosomes are believed to derive from ER membranes and do hence comprise tapasin, TAP, and the protein transporter complex Sec61. The latter allows antigens to escape from endocytic vesicles into the cytoplasm.^{10,172} Proteins are proteasomally degraded, cleavage products are imported into the ER and occupy the peptide-binding cleft of HLA class I molecules. Alternatively, peptides leaving the proteasome may undergo phagosomal import *via* TAP, where they encounter ER-derived HLA class I heterodimers. A third mechanism depends on cathepsin S, a cysteine protease that is contained in endosomes. Besides taken up antigens that are broken down by cathepsin S, endosomes do also encompass HLA class I molecules either deriving from the ER or from the plasma membrane in the course of recycling processes. Upon association of peptides and HLA class I molecules, complexes are integrated into the cell membrane.^{10,172}

2.3 Cancer immunotherapy for intracranial neoplasms

2.3.1 Immunotherapy – a contemporary concept to treat malignancies

The idea that recognition and elimination of tumor cells through cells of the innate and adaptive immune system is as simple as it is ingenious.173,174 The beginnings of cancer immunotherapies reach back to 1893, when William Bradley Coley observed concomitant tumor regression in cancer patients suffering from Streptococcus-induced erysipelas after surgery. Based on a first hypothesis, he systematically infected patients with Streptococcus inducing remarkable anti-tumor effects.¹⁷⁵ Immune responses directed against cancer cells have two classes of antigens as targets: tumor-specific antigens (TSAs) and tumor-associated antigens (TAAs). Processing of mutation-bearing proteins (TSAs) can produce so-called neoepitopes. These can represent deletions or insertions, single nucleotide variants (SNVs), gene fusions, and frameshift mutations. Further, neo-antigenic HLA ligands can originate from mutations leading to splice site alterations or from defective products of usually untranslated RNA sequences.^{174,176,177} Cryptic peptides arising from cancer-specific antisense transcripts, novel unannotated open reading frames, non-coding regions (5' and 3' untranslated regions (UTR), introns, intergenic regions), non-canonical reading frames of protein-coding regions, or unconventional (proteasomal) splicing events as well as peptides harboring tumor-exclusive post-translational modifications (PTMs) can also be (non-mutated) neo-epitopes.¹⁷⁷⁻¹⁸⁶ WT genes can encode for tissue-specific differentiation antigens (TAAs) and cancer-testis (CTAs) or germline antigens (TSAs).^{174,187-190} Viral antigens, particularly when derived from oncogenic viruses, are another source of TSAs, 10,174,191-194 whereas protein overexpression in malianant cells gives rise to TAAs.^{10,174,191,195} The major advantage of TSAs over TAAs is real tumor specificity rendering 'on-target off-tumor' toxicities virtually impossible. Additionally, TSAspecific T cells do not underlie central tolerance to self-antigens that has to be overcome for anti-tumor responses and are thus expected to be strongly immunogenic. However, this might not be applicable for CTAs with ectopic expression in the thymus resulting in the deletion of highly affine TCRs.^{196,197} Targeting early oncogenic driver mutations by immunotherapy further has the advantage of homogenous expression (and probably HLA presentation) across subclones, which is highly preferable in heterogenous tumors such as glioblastoma. 49,65,198

Despite this large variety of potential targets, immune responses against tumors may be inefficient or even absent. In 2011, the famous hallmarks of cancer as defined by Hanahan and Weinberg were supplemented with 'immune evasion'.¹⁹⁹ Robert Schreiber summarized the steps to immune evasion as the three phases of immunoediting which are governed by interaction and co-evolution of immune and tumor cells. In the elimination phase, the immune system successfully defeats outgrowth of tumor cells, as it eliminates transformed cells during immunosurveillance. Few surviving cells enter the second phase. Tumor formation is not yet possible, since tumor cell division and eradication are at equilibrium. Selection pressure caused by the immune system in combination with genetic instability foster the development of new variants and subclones. Once cancer cells succeed in immune evasion, this results in clinical manifestation of tumor formation.^{200,201} The reasons for insufficient or even lacking tumor antigen-specific immune responses encompass inadequate HLA presentation of the tumor antigen (on APCs), scarceness of cytokines (e.g. interleukin 2 (IL-2), IL-12) and/or costimulatory molecules (e.g. CD80, CD86) required for T-cell activation, a lack of immune

effector cells at the site of action, and immunosuppression originating from the tumor microenvironment (TME).^{202,203} The latter can be mediated by immunosuppressive cells (e.g. Tregs, myeloid-derived suppressor cells (MDSCs), inhibitory B lymphocytes), high levels of inhibitory cytokines (TGF-β, IL-10) and signals (e.g. cytotoxic T-lymphocyte-associated antigen 4 (CTLA4, CD152), inhibitory Ig-like transcripts (ILTs), programmed cell death protein 1 (PD-1, CD279), programmed cell death ligand 1 / 2 (PD-L1, CD274, B7-H1 / PD-L2, CD273, B7-DC), Fas cell surface death receptor (Fas), Fas ligand (FasL), TRAIL, TRAILR, impaired antibody-mediated opsonization, a metabolic milieu which is adverse for immune cells, or elevated levels of enzymes degrading factors essential for T cells or producing inhibitory metabolites (e.g. arginase-1 (ARG1), heme oxygenase-1 (HO-1), indoleamine 2,3dioxygenase-1 (IDO1)).²⁰³⁻²⁰⁶ Cancer immunotherapy aims at breaking immune evasion by reconstituting or modulating anti-cancer immune responses.^{10,173,176,203,207} In general, this is pursued by three strategies: provision of the (appropriate) antigen (1), supply of T-cell costimulation or blockade of T-cell co-inhibition (2), and transfer of effector cells (3).²⁰² The so far most common approaches include vaccination with antigenic substances (1) or antigenpresenting DCs (1, 2), monoclonal antibodies intervening in T-cell activation (2), recombinant cytokines (2), adoptive T-cell transfer (3), and oncolytic viruses (multifaceted mode of action).10,174,203

Cancer vaccines

For vaccination-based immunotherapies, whole tumor cell lysates, antigen- or epitopeencoding expression vectors, processable long peptides or recombinant antigens as well as short peptides in the form of exact CD8⁺ or CD4⁺ T-cell epitopes directly binding to HLA molecules, are employed. *In vitro*, the antigen presentation of DCs can be modified by pulsation with antigens or peptides, cancer cell lysate, or nucleic acids (RNA / DNA) encoding the respective TAA or TSA. Upon administration, these antigen-presenting DCs are capable of priming adaptive immunity. Vaccines can increase both the repertoire and the number of (targetable) antigens presented on HLA paving the way to induce anti-cancer immune responses.^{10,196,203,208,209} However, sipuleucel-T (Provenge), a vaccine for metastatic castration-resistant prostate carcinoma composed of autologous APCs,²¹⁰ has so far remained the only therapeutic cancer vaccine receiving FDA approval.²⁰³

Short peptide vaccines have several clear advantages as compared to other vaccination approaches. On the one hand, they have a clearly defined composition which is also beneficial to evaluate immunogenicity prior to administration as well as to monitor CD8⁺ and CD4⁺ T-cell responses.²¹¹ On the other hand, peptide synthesis is well feasible in good manufacturing practice (GMP) grade without being disproportionately expensive allowing for *de novo* synthesis for single patients. Despite the high degree of individuality of peptide vaccines inherent to the HLA system, peptides for vaccine composition may also be chosen 'off-the-shelf' from a previously built up warehouse.^{196,212} Peptide vaccines using a mix of targetable epitopes have demonstrated to both have an exceptional safety profile and to elicit clinically significant anti-tumor responses. The latter is most likely not possible by targeting a single antigen.^{196,203} However, overall clinical response rates come up to a maximum of 5% indicating that the effectiveness of cancer vaccines does not solely depend on the selection of the right target. Great potential is seen for the combination with other immunotherapies such as

checkpoint inhibition or adoptive T-cell transfer (discussed in the next sections) and the use of an appropriate adjuvant has a decisive impact.^{185,196,213}

Adjuvants can protect the delivered peptide and mediate a depot effect, promote antigen uptake by APCs, and, most importantly, provide a more general stimulus to APCs inducing antigen-specific responses of the desired Th1/CTL type.¹⁹⁶ Montanide[™] ISA 51, also designated as analogue of incomplete Freund's adjuvant, is a delivery adjuvant used for oilin-water formulations of vaccines and has both protective and depot effects.^{196,214} In turn, the popular adjuvant granulocyte-macrophage colony-stimulating factor (GM-CSF) is capable of recruiting and activating APCs at the site of injection. However, this effect is far weaker than expected and doses above 100 µg can even lead to T-cell inhibition and proliferation of MDSCs.^{196,215} Other adjuvants bind to so-called toll-like receptors (TLR) resulting in strong stimulation of APCs accompanied by an increase in HLA expression, cytokine and chemokine secretion, as well as the number of costimulatory and adhesion molecules.¹⁹⁶ Deoxycytidyldeoxyguanosin oligodeoxynucleotides (CpG ODNs), a TLR9 ligand, was the first TLR agonist tested in a clinical trial of a therapeutic cancer vaccine (in combination with Montanide™ ISA 51) eliciting outstanding T-cell responses.^{196,216} Hiltonol[®] is composed of polyinosinicpolycytidylic acid stabilized by polylysine and carboxymethylcellulose (Poly-ICLC) which activates TLR3, but has not been tested in large cohorts yet. Single-stranded RNA or Imiquimod (Aldara[®] 5% cream) represent TLR7/8 activators. The results whether patients benefit from topical Aldara[®] application at the site of injection are controversial, whereas RNA adjuvants are still under development.¹⁹⁶ Recently, Pam₃Cys-GDPKHPKSF (XS15), a novel adjuvant mimicking the bacterial lipopeptide Pam₃Cys-Ser-Ser, has been described. First applications of this TLR1/2 ligand as adjuvant for peptide vaccines appear very promising (internal data created at the Department of Immunology, University of Tübingen).^{196,217} The optimal composition of therapeutic cancer vaccines remains an open question and is under intense investigation. Combinations of adjuvants acting in different manner, chimeric TLR agonists, as well as concomitant administration of other immunotherapies such as monoclonal antibodies or recombinant cytokines are possibilities to enhance the efficacy of cancer vaccines.196

Recombinant cytokines

Recombinant cytokines are supposed to supplement the immune system with missing signals to elicit anti-tumoral T-cell responses. Their use was the first proof of the effectiveness of cancer immunotherapy.²¹⁸ IL-2 is a stimulator of T-cell proliferation and acts *via* the highly affine α chain (CD25) of the IL-2 receptor complex. Natural killer (NK) and B cells have IL-2 receptors lacking CD25. In these cells, IL-2 induces proliferation as well as stimulation of NK-cell cytotoxicity and B-cell differentiation, respectively.^{10,203,219} Despite having been approved by the FDA, recombinant IL-2 (Proleukin[®], former aldesleukin) is rarely used in clinical routine owing to severe toxicities and limited efficacy.²⁰³ The latter is in part reasoned by the coincident expansion of CD4⁺CD25⁺ Tregs.^{203,220} Novel approaches to reduce IL-2 toxicity by altering pharmacokinetic properties include coupling to polyethylene glycol (PEG) or to Fc domains of antibodies thus increasing half-life of the molecule. Further, the pharmacodynamic profile is optimized by inhibiting binding to highly affine IL-2 receptors expressed by Tregs. Targeting IL-2 to the site of action can be achieved by chimeric molecules equipped with TME-specific

antibodies.²¹⁸ Besides IL-2, FDA approval was only given to one further recombinant cytokine: type I interferon (IFN- α), as native molecule and as half-life-optimized PEGylated version.^{218,221} IFN- α acts both on the TME by being anti-angiogenic and on tumor cells by promoting apoptosis and inhibiting proliferation.^{218,222} DCs and T cells mature under the influence of IFN- α , which is also an immunostimulant.^{218,223} However, recombinant IFN- α is rarely used in the clinics. This might be overcome by engineering novel variants with reduced toxicity and optimized binding properties. Fusion of IFN- α and apolipoprotein A-I improves the pharmacokinetic profile, whereas so-called AcTakines (activity-on-Target cytokines) deliver the cytokine to DCs *via* a Clec9A-specific antibody domain. Moreover, mutation of the cytokine itself can contribute to improved binding affinity.^{218,224,225}

CTLs and NK cells exert their cytotoxic activity, proliferate, and release cytokines upon stimulation with IL-15.^{218,226,227} In contrast to IL-2, it does not promote the concomitant expansion of Tregs.^{218,228} First in-human applications failed due to severe side effects and later studies did not show a clear clinical benefit of IL-15 treatment.^{218,229} Current approaches try to increase stability of this small molecule and to generate fusion proteins with better binding properties. RLI is a chimeric molecule consisting of IL-15 and the sushi domain bearing the binding domain of the IL-15 receptor α .^{218,230} Inclusion of apolipoprotein A-I might be a way to optimize delivery of the construct.^{218,231} IL-12, IL-21, and even IL-10, which has so far been designated as immunosuppressive cytokine but was shown to prevent apoptosis of CTLs following antigen recognition, are currently under intense investigation for application as cancer immunotherapies. In addition, there are ongoing studies evaluating the effects of targeting pro-tumor cytokines such as TNF- α , TGF- β , or the colony stimulating factor 1 (CSF-1) by antibodies, small interfering RNA (siRNA), cytokine traps, and inhibitors of cytokine receptor signaling.²¹⁸

Agonistic and antagonistic monoclonal antibodies

The category of monoclonal antibodies comprises agonistic ones acting on co-stimulatory molecules and antagonistic ones blocking co-inhibitory receptors, so-called checkpoint inhibitors. In 2018, Tasuku Honjo and James P. Allison were honored with the Nobel Prize in Physiology and Medicine for their work on immune checkpoints.²³² CTLA4 exceeds the affinity of CD28 to CD80 (B7-1) and CD86 (B7-2) expressed on APCs thus preventing CD28-CD80 or CD28-CD86 interactions that enable T-cell activation.^{233,234} CTLA-4-blocking antibodies (Ipilimumab) both facilitate T-cell effector function and deplete Tregs that constitutively express CTLA4 by antibody-dependent cellular cytotoxicity (ADCC).^{10,235-237} When PD-1⁺ T cells bind to PD-L1 or PD-L2, this induces an inhibitory signaling cascade rendering the T cell anergic. While hematopoietic and parenchymal cells express PD-L1 to prevent autoimmunity, PD-L2 is preferentially expressed by APCs and Th2 cells. Various types of cancer cells hijack the PD-1-PD-L1/PD-L2 axis as mechanism of immune evasion.^{10,203,206,238-240} Monoclonal antibodies blocking PD-1 (Pembrolizumab, Nivolumab, Cemiplimab) or PD-L1 (Atezolizumab, Durvalumab, Avelumab) have the capability to elicit anti-tumor responses and have been approved by the FDA for several cancer entities.²⁴¹⁻²⁴⁸ Antibodies blocking V-domain immunoglobulin suppressor of T-cell activation (VISTA), lymphocyte activation gene-3 (LAG-3, CD223), B- and T-cell lymphocyte attenuator (BTLA, CD272), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), B7 homolog 3 protein (B7-H3, CD276), T-cell

immunoglobulin and ITIM domain (TIGIT), or sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) are currently under development and designated as 'next-generation checkpoint inhibitors'. Furthermore, the combination of several checkpoint antibodies is considered to have high therapeutic potential.^{203,241,243,249} The response to checkpoint inhibition correlates with the mutational burden and, for antibodies targeting the PD-1–PD-L1/PD-L2 axis, with PD-1, PD-L1, and PD-L2 expression on tumor and T cells. Further predictive biomarkers include the pre-therapy tumor burden and site of metastases, the diversity and (relative) composition of the peripheral immune cell repertoire, cytokine profiles, levels of immunosuppressive cells (e.g. MDSCs, Tregs), the amount and type of tumor-infiltrating lymphocytes (TILs), the patient's performance status, or the occurrence of immune-mediated side effects. The exploitation of predictive biomarkers is of importance to weigh up the side effects of checkpoint blockade and the expected clinical benefit.²⁴¹

Engagement of co-stimulatory molecules can also contribute to the enhancement of anti-tumor T-cell responses. So far, none of these agonistic antibodies have received FDA approval for cancer immunotherapy. OX40 (CD134) belongs to the TNF receptor family and is expressed by CD8⁺ and CD4⁺ T lymphocytes upon antigen recognition. OX40-activating antibodies acting on 4-1BB (CD137) can enhance NK-mediated ADCC and even restore cytotoxicity of T cells.^{203,251} Engagement of the glucocorticoid-induced tumor necrosis factor receptor (GITR), which is expressed on activated DCs, NK cells, regulatory and effector T cells as well as B cells, enhances the activity of the targeted cell. In the T-cell compartment, the immunosuppressive effect of Tregs is reduced, whereby TCR signaling and proliferation of CTLs and Th cells are enhanced.^{203,252} CD40-targeted immunotherapy stimulates APCs, T cells, and anti-tumoral responses mediated by cytotoxic cells of the myeloid lineage^{203,253}

A more sophisticated approach to target co-stimulatory or -inhibitory molecules is based on aptamers. The specificity and affinity of these RNA or DNA oligonucleotides is comparable to monoclonal antibodies. Thus, they represent an additional tool to unleash anti-cancer T-cell responses.²⁵⁴ Another technique for future cancer immunotherapies are bi-specific antibody formats, so-called bi-specific antibodies for T-cell redirection and activation (BiTes). Antibodies with dual specificity are aimed at redirecting immune cells to the tumor. Blinatumomab, an anti-CD19/CD3 BiTe, brings CD3⁺ T lymphocytes into spatial proximity of CD19⁺ leukemia cells.²⁵⁵ Similar effects can be achieved with fusion proteins consisting of a soluble TCR and an antigen-binding domain, named immune-mobilizing monoclonal T-cell receptors against cancer (ImmTACs). Upon TCR binding to the tumor cell, polyclonal T lymphocytes are recruited *via* the CD3-specific part of the ImmTAC.²⁵⁶

Adoptive T-cell transfer

It is suggested that the affinity, frequency, and functionality of tumor-specific T cells correlate with the efficacy in eliminating cancer cells. Autologous T cells that recognize tumor antigens can be enriched and expanded *in vitro* to be subsequently used as passive immunotherapy. Enrichment of TAA- or TSA-specific T cells can be achieved by selecting peripheral or tumor-infiltrating T-cell clones.^{10,203,257-259} Upon lympho-depleting chemotherapy which eliminates immunosuppressive factors such as Tregs or so-called 'homeostatic cytokine sinks', expanded

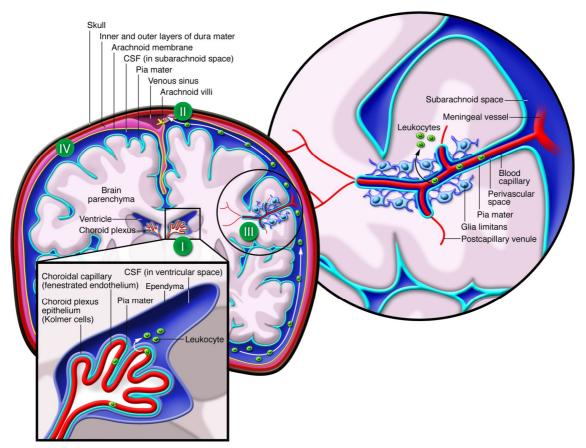
T cells are re-infused.^{203,260} Lymphodepletion goes along with the risk of severe infections and T-cell reconstitution is not only deferred, but often also incomplete which may ultimately also contribute to cancer recurrence.^{261,262} Therefore, alternative treatment regimens try to circumvent lymphodepletion by concomitant administration of CTL-promoting cytokines such as IL-15.²⁶² Despite eliciting clinically relevant responses e.g. in melanoma,²⁵⁹ adoptive T-cell therapy faces several obstacles: collection and expansion of T cells, especially TILs, is laborious and tumor-specific T cells are often rare and/or of low affinity.²⁰³ Genetic modification represents an option to equip T lymphocytes with highly affine TCRs specific for a pre-defined target antigen.^{203,263} Nevertheless, this approach does still require the target antigen to be processed and presented on HLA. Chimeric antigen receptors (CARs) link TCR signaling and antigen recognition of an antibody in one molecule thus rendering T-cell binding HLA-independent. CAR-expressing T cells can not only recognize unprocessed surface antigens, but also gangliosides, carbohydrates, proteoglycans, and glycosylated proteins.^{10,203,264} Moreover, co-stimulatory molecules and T cell-activating factors can be introduced into CAR-T cells by transfection.^{203,265,266}

CAR-T cells have enormous potential for immunotherapies and two CD-19-specific constructs, tisagenlecleucel and axicabtagene ciloleucel, have already been approved by the FDA for use in hematological malignancies.²⁶⁷ However, a major drawback of CARs is an unfavorable profile of adverse events including cytokine release syndrome and neurotoxicity as well as limited ability to target solid tumors.^{203,267} So-called suicide genes (e.g. Cetuximab-targetable truncated EGFR (EGFRt), ganciclovir-sensitive hygromycin phosphotransferase-herpes simplex virus 1 thymidine kinase (HyTK), truncated CD19 (CD19t), or drug-inducible caspase-9) increase the safety of CAR-T-cell therapies.²⁶⁸⁻²⁷³ То overcome immunosuppression in the TME, CAR-T cells redirected for universal cytokine killing (TRUCKs) are a sophisticated approach. TRUCK-T cells express stimulatory cytokines such as IL-18 upon CAR engagement at the site of disease. This might be an option to locally augment CAR-T-cell activity.^{203,274,275} Homing of CARs to the TME may be facilitated by using constructs with an antigen-binding domain similar to BiTes.^{203,276}

Oncolytic viruses

Employing so-called oncolytic viruses for immunotherapy is in concept similar to the experiments of Coley.^{277,278} Virotherapy is based on the idea that lytic replication happens almost exclusively in tumor cells instead of affecting all replicating cells. It is expected that the immunosuppressive mechanisms exhibited by the tumor itself as well as the TME facilitate the infection of cancer cells.²⁷⁷ This results in immunogenic cell death characterized by the release of danger signals and tumor antigens. Additionally, oncolytic viruses have been shown to enhance the number of TAAs cross-presented on HLA class I.^{10,203,279,280} This way, they are capable of both enhancing pre-existing and inducing *de novo* anti-tumor immunity. In contrast to targeted therapies, the big advantage of oncolytic viruses is being not solely dependent on one specific receptor.²⁷⁷ So far, Talimogene laherparepvec (T-Vec, Imlygic), a herpes virus modified to express GM-CSF, has remained the only oncolytic virus with FDA approval for use in metastatic melanoma.^{203,277,281} Besides herpes viruses, virus families tried to be exploited for virotherapy encompass *Paramyxo*- (e.g. *measles morbillivirus, mumps rubulavirus*), *Retro*- (e.g. *Moloney Leukemia Virus*), *Adeno*-, *Pox*- (e.g. *Vaccinia virus, Fowlpox*), *Parvo*-,

Rhabdo- (e.g. *Vesicular Stomatitis Virus*), *Reo-*, and *Picornaviridae* (e.g. *Seneca Valley Virus*, *Coxsackie-*, *Rhino-*, *Poliovirus*) as well as the *Newcastle disease virus*.^{10,277,282} Reduced off-target tropism and increased virulence for cancer cells is achieved by genetic modification.^{277,283} Intratumorally injected, the safety profile of oncolytic viruses – measured by the rate of (serious) adverse events – is superior to that of checkpoint inhibitors. Despite local injection, oncolytic viruses such as T-Vec are capable of inducing distant responses, for instance in metastases.^{277,283,284}


2.3.2 Current status of immunotherapy for intracranial neoplasias

For decades, the brain has been denoted an immune privileged organ shielded by the bloodbrain barrier of the cerebrovascular endothelium. This begs the question, whether immunotherapy is a realistic therapeutic concept for brain tumors. In 1948, Peter Brian Medawar provided the first evidence for intracranial immune effector cells. Following allogeneic skin transplantation, heterotopic skin grafts of the same donor were rejected in the brain.^{10,285,286} Likewise, transplants into the brain parenchyma were shown to be responsible for accelerated rejection of orthotopic skin grafts.^{286,287} Upon injection of T cells and DCs into the brain, these migrated to cervical lymph nodes indicating that the brain is not segregated from peripheral immunity and immunosurveillance.^{288,289} In 2014, the existence of meningeal lymphatic vessels located along dural sinuses was proven by two independent groups. This system accomplishes the drainage of immune cells as well as cerebrospinal and brain interstitial fluid from the CNS to deep cervical lymph nodes.^{290,291}

Microglia express MHC class II as well as co-stimulatory molecules and are responsible for the phagocytosis of tumor cells (e.g. gliosarcoma) damaged by CD8⁺ T cells. Consequently, they constitute an interface for interaction with peripheral immune cells.^{10,292-300} Activated T cells were also evidenced to penetrate into the CNS where final maturation and proliferation of tumor-specific CTLs takes place.^{10,301-307} In melanoma patients, i.v. administered T cells have reached brain metastases eliciting clinical responses.³⁰⁸ Three routes allow leukocytes to penetrate from the periphery into the CNS: leptomeningeal vessels (blood-to-subarachnoid space), the blood-brain barrier (blood-to-perivascular space), and the choroid plexus (blood-to-CSF) (Figure 6). Under pathological conditions, traffic rates increase dramatically.³⁰⁹⁻³¹¹ Following antigenic challenge, both the CSF and the brain parenchyma home memory T cells.^{309,311,312} As explained in 1.4, meningiomas originate from the meninges lying beyond the blood-brain barrier. Thus, these should be more easily accessible to drugs and immune cells as compared with glioblastomas or medulloblastomas.³¹³

Human glioblastomas, medulloblastomas, and meningiomas are infiltrated by both CD4⁺ and CD8⁺ T cells indicated by the detection or isolation of TILs from surgical specimens.^{129,314-317} In glioblastoma and high-grade meningioma, low amounts of CD3⁺CD8⁺FOXP3⁻ TILs (relative to CD4⁺ TILs) are described as negative prognostic factor for disease progression^{129,318} and survival of glioma-bearing mice was shown to be CTL-mediated.²⁸⁹ For medulloblastomas, no correlation between T-cell infiltration and clinical outcome has been observed.³¹⁷ Spontaneous intratumoral T-cell responses seem to be rare in glioblastoma. However, peptide vaccination is capable of promoting T-cell infiltration and eliciting TIL responses to both mutated neo-

epitopes and WT antigens, which is another indicator of the invalidity of an absolute immune privilege concept.^{314,315}

Figure 6. Leukocyte routes into and within the CNS. The brain parenchyma is separated from the skull by three meningeal layers, namely the pia mater, the arachnoid membrane, and the dura mater (from inside to outside). The subarachnoid space lies between pia mater and arachnoid membrane and is filled with CSF. The latter is produced in the choroid plexus, where leukocyte transmigration from the blood into CSF takes place (I). CSF-resident leukocytes penetrate the pia mater and the glia limitans, which is formed by astrocytes, to access the brain parenchyma. Alternatively, leukocytes can enter the parenchyma *via* the ependyma which lines the ventricular system. At the venous sinus, the uptake of leukocytes from CSF into the blood is mediated by arachnoid villi (II). The brain is supplied with blood by branches from meningeal vessels. Blood capillaries are located in the so-called perivascular space and reach deeply into the brain parenchyma. Immune cells can pass the blood-brain barrier by trafficking across vascular endothelium, the subarachnoid space, the pia mater, and the glia limitans (III). Leukocytes may also leave the blood by diapedesis to enter the CNS *via* the leptomeninges encompassing the arachnoid membrane and the pia mater (IV). Image taken from Wilson *et al.*³¹¹; slightly modified.

In order to reach the designated site of action, acellular immunotherapeutic agents have to permeate into the brain. The proportion of drugs which can do so was estimated at less than 5%.³¹⁹ Recombinant cytokines such as IFN- α can be engineered to be blood-brain barrier-permeable by coupling to Apolipoprotein A-I.²²⁴ The ability to cross the human blood-brain barrier was also evidenced for oncolytic viruses such as ParvOryx01 applied in an early clinical trial for the therapy of glioblastoma.³²⁰ So-called nanoscale immunoconjugates (NICs), chimeric molecules of antibodies and biopolymer scaffolds, can pass the blood-brain barrier, which is not applicable e.g. for unmodified anti-CTLA4 or anti-PD-L1 antibodies.^{319,321,322} Likewise, integration of a 'Brain Shuttle module' into therapeutic antibodies enables transferrin

receptor-dependent transcytosis into and optimized lysosome sorting in the CNS.³²³ Primary intracranial neoplasms – excepting hypermutated recurrent glioblastomas – are in general characterized by low mutational loads.³²⁴ Checkpoint blockade has significant clinical benefit e.g. in metastatic melanoma or non-small cell lung cancer, whereby response rates correlate with the mutational burden. Thus, checkpoint inhibitors as monotherapy are not expected to have the same therapeutic efficacy in brain tumors as observed for other cancer entities.³²⁵⁻³²⁷ Glioblastomas largely express PD-L1,³²⁸ whereas medulloblastomas are mostly PD-L1 negative³¹⁷ and PD-L1 expression is rarely observed in meningiomas.³²⁹ This further diminishes the expected clinical benefit of anti-PD-L1 therapy for the latter two cancer entities. Checkpoint antibodies represent passive immunotherapies that are not capable of priming *de novo* immune responses rendering pre-existing anti-cancer T cells a prerequisite for their effectiveness. This suggests that patients suffering from brain tumors and lacking endogenous anti-tumor immunity do not benefit from checkpoint inhibition as monotherapy. However, combinations of checkpoint blockade with other (active) immunotherapies such as cancer vaccines might be promising for intracranial neoplasias.^{10,203,330}

In conclusion, it can be stated that the anatomically reasoned dogma of the brain being devoid of immunity is no longer sustainable. Especially under pathological conditions, immune cells and cytokines enter the CNS and there is growing evidence for effective intracranial immune responses. This suggests to pursue cancer immunotherapy as means to counteract immunosuppression unleashing intracranial anti-cancer immune responses. As recently shown for peptide vaccination in glioblastoma, the timing and dosage of concomitant medication such as dexamethasone has a major impact on the effectiveness of immunotherapy and consequently requires in-depth evaluation.³¹⁵ Immunotherapy has shown to be feasible for immunologically cold brain tumors with low mutational burden, whereby the clinical benefit of standard therapy has still not been outcompeted by immunotherapeutic approaches. In the following, the current knowledge on tumor antigens in glioblastoma, medulloblastoma, and meningioma as well as a summary of recent or ongoing clinical trials will be presented. Searching the PubMed database for publications dealing with immunotherapy yielded 1,582 hits for glioblastoma and only 140 or 68 entries for medulloblastoma or meningioma, respectively.³³¹ The imbalance between these three tumor entities with a profound lack of immunotherapeutic approaches in medulloblastoma and meningioma is also reflected by the number of clinical trials registered at ClinicalTrials.gov to investigate immunotherapeutic intervention in glioblastoma (n=92), medulloblastoma (n=8), or meningioma (n=6).³³²

Tumor antigens in glioblastoma

For immunotherapeutic approaches targeting glioblastoma, a large variety of TAAs has been suggested. The target selection of WT antigens in a recent phase I clinical trial of multi-peptide vaccination conducted by the Glioma Actively Personalized VAccine Consortium (GAPVAC) was based on natural HLA presentation as well as RNA expression data. The source proteins of vaccine peptides comprised ankyrin repeat domain-containing protein 40 (ANR40), chondroitin sulfate proteoglycan 7 / brevican core protein (CSPG7), CDK4, ceramide synthase 1 (CerS1), clusterin (CLUS), cysteine and glycine-rich protein 2 (CSRP2), serine/threonine-protein kinase DCLK2 (DCLK2), dihydropyrimidinase-related protein 4

(DRP-4), eukaryotic translation initiation factor 4E (eIF4E), elongation of very long chain fatty acids protein 2 (ELOV2), glutamate receptor 4 (GluR4), ionotropic glutamate receptor kainate 3 (GluK3), ATP-sensitive inward rectifier potassium channel 10 (KCJ10), melanomaassociated antigen F1 (MAGE-F1), membrane-associated guanylate kinase inverted 2 (MAGI2), protein MTSS 2, X-linked neuroligin-4 (NLGNX), Y-linked neuroligin-4 (NLGNY), neuronal cell adhesion molecule (NRCAM), ORM1-like protein 1 (ORML1), protocadherin gamma-C5 (PCDGM), pecanex-like protein 3 (PCX3), pleckstrin homology domain-containing family A member 4 (PKHA4), receptor-type tyrosine-protein phosphatase zeta (PTPRZ), DNA repair and recombination protein RAD54B (RAD54B), seizure 6-like protein (SE6L1), transforming acidic coiled-coil-containing protein 3 (TACC3), ubiquitin carboxyl-terminal hydrolase 11 (UBP11), vacuolar protein sorting-associated protein 13B (VP13B), abnormal spindle-like microcephaly-associated protein (ASPM), protein crumbs homolog 1 (CRUM1), dedicator of cytokinesis protein 7 (DOCK7), brain-type fatty acid-binding protein (B-FABP), acyl-CoA 6-desaturase (FADS2), constitutive coactivator of PPAR-gamma-like protein 2 (F120C), neuronal membrane glycoprotein M6-b (GPM6B), HEAT repeat-containing protein 1 (HEAT1), heparan sulfate 2-O-sulfotransferase 1 (HS2ST), integrin alpha-7 (ITA7), the uncharacterized protein LOC728392, leucine zipper putative tumor suppressor 1 (LZTS1), oligodendrocyte transcription factor 2 (OLIG2), E3 ubiguitin-protein ligase Praja-2 (PJA2), 60S ribosomal protein L7a (RL7A), excitatory amino acid transporter 4 (EAA4), structural maintenance of chromosomes protein 4 (SMC4), alpha-2,8-sialyltransferase 8E (SIA8E), transmembrane protein 231 (TM231), transmembrane protein 255A (T255A), zinc finger protein 3 (ZNF3), and baculoviral IAP repeat-containing protein 5 / survivin (BIRC5).³¹⁴ The development of GAPVAC-101 included a phase I trial of the invariant peptide cocktail IMA950, which contained additional peptides derived from chondroitin sulfate proteoglycan 4 (CSPG4), insulin-like growth factor 2 mRNA binding protein 3 (IF2BP3), met proto-oncogene / hepatocyte growth factor receptor (c-Met), and tenascin C (TN-C).330

The glioblastoma-associated antigens IL-13 receptor alpha 2 (IL13Rα2), receptor tyrosineprotein kinase erbB-2 (HER2), tyrosinase-related protein 2 (TRP2), Wilms' tumor gene 1 (WT1), absent in melanoma 2 (AIM2), melanocytes lineage-specific antigen gp100 (gp100), and melanoma-associated antigen 1 (MAGE-A1 / CT1.1) have also been evaluated in inhuman trials employing e.g. DCs pulsed with peptides, CAR-T cells, or peptide vaccination.³³³⁻ ³³⁶ Besides MAGE-A1, expression of the CTAs X antigen family member 3 (XAGE3 / CT12.3), Opa-interacting protein 5 / protein Mis18-beta (OIP5 / CT86), transcriptional repressor CTCFL (CTCFL / CT27), and actin-like protein 8 (ACTL8 / CT57) was evidenced in WHO grade IV glioma.^{10,209,337,338} By comparing the repertoire of HLA ligands naturally presented on both primary glioblastoma and glioblastoma stem-like cells but not on healthy tissues, Neidert et al. described Ras and Rab interactor 1 (RIN1), hepatocyte cell adhesion molecule (HEPACAM), glypican-1 (GPC1), DnaJ homolog subfamily C member 25 (DJC25), alpha-tubulin Nacetyltransferase 1 (ATAT), paired box protein Pax-6 (PAX6), raftlin-2 (RFTN2), transforming growth factor beta-2 proprotein (TGFB2), protein AF1g, EF-hand domain-containing protein 1 (EFHC1), MICOS complex subunit MIC25 (MIC25), NmrA-like family domain-containing protein 1 (NMRL1), transmembrane prolyl 4-hydroxylase (P4HTM), plasminogen activator inhibitor 1 (PAI1), and prostaglandin F2 receptor negative regulator (FPRP) as further candidate targets for cancer immunotherapy.149 Overexpression renders ephrin type-A receptor 2 (EphA2), B7-H3, telomerase, and EGFR candidates for glioblastoma immunotherapy as well.³³⁹⁻³⁴³

Neo-epitopes are mainly eligible for fully individualized immunotherapeutic approaches. However, the EGFRvIII and IDH1R132H mutations may be exploited as targetable neoantigens in larger cohorts, as they occur in 25-30% or 5-15% of adults suffering from primary glioblastoma, respectively.^{27,37,342,344,345} Targeting the histone H3 K27M variant is currently under investigation for pediatric high-grade as well as diffuse midline (non-hemispheric) glioma characterized by a subgroup-specific mutation frequency of up to 30%.^{198,346} HCMV-directed immunotherapy, especially against the tegument protein pp65, has been subject of multiple clinical trials in glioblastoma and was even associated with clinical benefit. However, this therapeutic option is still under controversial discussion.^{10,209,341,347-350}

Targets for the immunotherapy of medulloblastoma

The number of potential targets for the immunotherapy of medulloblastoma is substantially lower as compared with glioblastoma. However, several CT antigens have been proposed based on expression data and correlation with poor patient outcome. These comprise melanoma antigen preferentially expressed in tumors (PRAME), sperm autoangiogenic protein 17 (SPA17 / CT22), MAGE-A1, New York esophageal squamous cell carcinoma-1 (NY-ESO-1 / CT6.1), G antigen 1 (GAGE-1 / CT4.1), synaptonemal complex protein 1 (SYCP1 / CT8), solute carrier organic anion transporter family member 6A1 (SO6A1 / CT48) as well as the melanoma-associated antigens 3, 4, 6, C1, and C2 (MAGE-A3 / CT1.3; MAGE-A4 / CT1.4; MAGE-A6 / CT1.6; MAGE-C1 / CT7.1; MAGE-C2 / CT10).^{268,351,352} Non-CTAs suggested for medulloblastoma immunotherapy include disialoganglioside GD2, Her2, EGFR, glypican-2 (GPC2), and B7-H3, whereby all antigens excepting the latter two have been subject of recent or ongoing clinical trials.³⁵³⁻³⁵⁷

Despite low mutational burden, somatic mutations in medulloblastoma were found to yield immunogenic predicted neo-epitopes. However, shared mutations translating into targetable neo-antigens for a larger number of patients have so far not been identified.^{324,358} As for glioblastoma, targeting HCMV-derived antigens has been suggested for medulloblastoma, but remains under controversial debate.^{83,347}

Antigens in meningioma immunotherapies

Immunotherapeutic approaches in meningioma face a profound lack of suitable target antigens. Most of the candidates including B7-H3,³⁵⁹ gp100,³⁶⁰ NY-ESO-1,^{361,362} IL13Rα2,³⁶³ survivin³⁶⁴, TRP-2,³⁶⁰ and WT1³⁶⁵ have also been proposed as targets for glioblastoma or medulloblastoma. In addition, members of the CT45 gene family (CT45A1-3, CT45A5-10) having \geq 90% sequence identity^{86,362,366} and synaptonemal complex protein 1 (SYCP1 / CT8) have been suggested as immunotherapeutic targets.^{230,232,233} Besides having in general low mutational load, little is known about the presence of neo-antigens in meningioma. In highgrade meningiomas characterized by a higher number of somatic mutations as compared with low-grade meningiomas, no common mutational signature (apart from NF2 alterations) has been identified so far. Thus, one can expect that targeting neo-epitopes in meningioma remains suitable for fully individualized approaches only.¹¹⁰

Evaluation of immunotherapy for intracranial neoplasms

Recent and ongoing clinical trials evaluating different immunotherapeutic approaches in glioblastoma, medulloblastoma, or meningioma are summarized in Table 2.

Table 2. Exemplary clinical trials evaluating immunotherapies for the treatment of intracranial neoplasms (pp. 34-39). Design and results of immunotherapeutic studies in glioblastoma (red), medulloblastoma (orange), and meningioma (blue). Listed adverse events do only refer to applied immunotherapies and not to concomitantly administered standard therapy. Abbreviations not introduced in the text above: anaplastic astrocytoma (AAST), Autologous Lymphoid Effector Cells Specific Against Tumour Cells (ALECSAT), brain stem glioma (BSG), complete response (CR), cobalt gray equivalent (CGE), delayed-type hypersensitivity (DTH), Epstein-Barr Virus (EBV), glioblastoma (GBM), intradermal (i.d.), intranodal (i.n.), intratumoral (i.t.), intravenous (i.v.), keyhole limpet hemocyanin (KLH), meningioma (MNG), months (mo), overall survival (OS), peripheral blood mononuclear cells (PBMCs), progressive disease (PD), progression-free survival (PFS), partial response (RR), subcutaneous (s.c.), stable disease (SD), time to progression (TTP), total tumor RNA (TTRNA), *ex vivo* expanded Autologous Lymphocyte Transfer (xALT), year (y), plaque-forming units (pfu).

Treatment Reference	Therapeutic schedule	Phase # Patients	Immuno- genicity	Outcome	Adverse events
Monoclonal antibodies					
Monoclonal antibodies	: checkpoint inhibitors				
Atezolizumab ³⁶⁷	Post-radiochemotherapy ± bevacizumab 1,200 mg atezolizumab i.v. every 3 rd week	la n=16 recur- rent GBM		n=1 PR n=3 SD 4.2 mo me- dian OS 1.2 mo me- dian PFS	n=3 grade 3 toxicities (brain edema, asthenia, aspartate aminotransferase elevation)
CheckMate 143 ³⁶⁸ : nivolumab ± ipilimumab	Group 1: 3 mg/kg nivolumab every 2 nd week Group 2: 4 doses 1 mg/kg nivolumab + ipilimumab 3 mg/kg every 3 rd week, then 3 mg/kg nivolumab Group 3: 4 doses 3 mg/kg nivolumab + ipilimumab 1 mg/kg every 3 rd week, then 3 mg/kg nivolumab	I recurrent GBM Group 1: n=10 Group 2: n=10 Group 3: n=20		n=1/0/1 PR n=2/2/4 SD 1.9/1.5/2.1 mo median PFS 10.4/9.2/7.3 mo OS	n=0/9/6 grade 3-4 toxicities Nivolumab mono- therapy tolerated best, side effects determined by ipilimumab dose
Pembrolizumab ³⁶⁹	Group 1: 200 mg pembroli- zumab i.v. 19-9 days before surgery (neoadjuvant), adju- vant 200 mg i.v. every 3 rd week Group 2: 200 mg i.v. every 3 rd week (adjuvant)	II, randomized recurrent GBM Group 1: n=16 Group 2: n=16		13.7 / 7.5 mo median OS 3.3 / 2.4 mo median PFS	n=10/7 grade 3-4 adverse events; n=1 grade 3 pneu- monitis and n=1 grade 4 elevation of alanine ami- notransferase (both in group 1)
Nivolumab ³⁷⁰	Nivolumab i.v., 4 doses of 240 mg every 2 nd week, 12 monthly doses of 480 mg	II, ongoing n=180 adults with re- current / refractory rare CNS tumors		Planned: OS, 6mo-PFS, RR	(
Avelumab ³⁷¹	Post-surgery Avelumab i.v., 10 mg/kg every 2 nd week for 3 mo, concomitant proton ther- apy 20 CGE / week	lb, ongoing n=12 recur- rent / progres- sive grade I-III MNG	Planned: changes in TILs	Planned: RR, PFS, OS	

Treatment	Therapeutic schedule	Phase	Immuno-	Outcome	Adverse
Reference		# Patients	genicity		events
Monoclonal antibodies	: others				
Bevacizumab ³⁷²	60 Gy (2 Gy/day, 6 weeks) + 75 mg/m ² TMZ daily (max. 49 days), subsequent mainte- nance TMZ 150-200 mg/m ² 5 successive days/mo (6-12 mo) Experimental treatment from week 4 of radiotherapy Group 1: bevacizumab 10 mg/kg i.v. every 2 nd week Group 2: placebo	III newly diag- nosed GBM Group 1: n=320 Group 2: n=317		15.7 / 16.1 mo median OS 10.7 / 7.3 mo median OS	Hypertension, thromboembolism, visceral perfora- tion, thrombocyto- penia, neutro- penia, fatigue in both groups, but more common in group 1
Bevacizumab ³⁷³	Bevacizumab + irinotecan \pm TMZ Group 1: n=5 10 mg/kg bevacizumab + 125-150 mg/m ² irionotecan i.v. every 2 nd week + 150 mg/m ² oral TMZ 5 days/mo Group 2: n=2 bevacizumab + irinotecan (as group 1) Group 3: n=2 15 mg/kg bevacizumab i.v. + 90 mg/m ² oral irinotecan for 5 succes- sive days + 1.5 mg/m ² vincris- tine i.v. every 3 weeks	Retrospective n=9 children with recurrent MB		11 mo median TTP 13 mo median OS n=6 PR, n=3 CR, n=3 PD, n=1 SD	n=2 grade III neu- tropenia, n=2 grade III thrombo- cytopenia, n=1 grade III elevated liver function test, n=1 grade III diar- rhea
¹³¹ I-3F8 anti-GD2 ³⁵⁵ : radio- immunotherapy		II n=43 high- risk / recurrent MB / PNET		24.9 mo me- dian OS, 11 mo median PFS, 5y-OS 44.9%, 6mo- PFS 57.1%	Self-limiting fever, headache, nau- sea, vomiting n=2 bradycardia, headache, fatigue, n=1 CSF pleocytosis
Bevacizumab ³⁷⁴	Monthly cycles (8 in median) of 10 mg/kg bevacizumab i.v. (day 1, 15) + oral 10 mg everolimus	II n=17 refrac- tory progres- sive grade I-III MNG		22 mo median PFS n=15 SD (in median for 10 mo), n=1 PD	Grade 1-2 adverse events: n=9 throm- bocytopenia, n=1 proteinuria, Grade 3 adverse events: n=2 pro- teinuria, n=1 coli- tis, n=1 thrombo- cytopenia
Cancer vaccines					
Cancer vaccines: pepti	de vaccination				
GAPVAC-101 ³¹⁴ : ware- house WT peptides (APVAC1; 33 HLA- A*02:01 / 26 HLA-A*24:02 ligands of 9-10 AA; 3 HLA- DR peptides of 14-18 AA) and individualized neo- epitopes (APVAC2; 19 AA)	Following surgery and radiochemotherapy; 400 µg/ peptide i.d. + 75 µg GM-CSF i.d. + 1.5 mg poly-ICLC s.c.; maintenance TMZ APVAC1: 7 warehouse pep- tides according to transcrip- tome and immunopeptidome data + 2 promiscuous HLA- DR peptides + 1 viral marker peptide; 12 applications in median (n=15 patients) APVAC2: predicted neo- epitopes, naturally presented WT peptides of 9-10 AA not part of APVAC1 as 2 nd choice; 10 applications in median (n=11 patients)	I, single-arm n=15 newly diagnosed GBM (HLA- A*02:01+ / -A*24:02+)	APVAC1: 12/13 pa- tients sus- tained CD8 ⁺ central memory re- sponses; functional T cells (killing assay) APVAC2: 8/10 neo-epi- tope-specific multifunc- tional Th1 re- sponses; 1/6 WT antigens immunogenic	29 mo median OS, 14.2 mo me- dian PFS	Mild-to-moderate injection site reac- tions; n=2 ana- phylactic reaction; n=1 brain edema

Chapter 1: Cancer immunotherapy

Treatment	Therapeutic schedule	Phase	Immuno-	Outcome	Adverse
Reference		# Patients	genicity		events
NOA-16 ³⁴⁴ : IDH1R132H (20 AA)	Peptide in Montanide s.c. + topical Imiquimod Group 1: 4-6 weeks post ra- diotherapy Group 2: at day 10 of 4 th TMZ cycle Group 3: post radiochemo- therapy at day 10 of 1 st maintenance TMZ cycle 8 vaccinations (completed by n=29)	I, completed n=32 IDH1R132H ⁺ newly diagnosed grade III-IV astrocytoma	24/30 pa- tients IDH1R132H- specific T cells 26/30 IDH1R132H- specific anti- bodies	n=4 PD; n=28 SD Planned: PFS	Grade 1 reactions, n=1 serious ad- verse event
ACT IV ³⁷ : Rindopepimut (13 AA EGFRvIII peptide- KLH conjugate)	Following surgery and radio- chemotherapy Group 1: 500 µg rindopepi- mut + 150 µg GM-CSF i.d. Group 2: 100 µg KLH i.d. 2 priming doses (day 1 + 15), then monthly injections + maintenance TMZ until pro- gression / intolerance	III EGFRvIII-ex- pressing newly diag- nosed GBM, group 1 n=369; group 2 n=372	Robust anti- EGFRvIII re- sponse (hu- moral)	Group 1: 20.1 mo OS, 2-y survival 30% Group 2: 20.0 mo OS, 2-y survival 19%	Mild-to-moderate injection site reac- tions and single cases of rash (both groups); n=2 allergic reactions; n=1 fatal pulmo- nary thromboem- bolism
PRIME ^{347,375} : PEP-CMV (26 AA human pp65 pep- tide + CMV glycoprotein B conjugated to KLH)	PEP-CMV + Montanide (1:1) i.d. 3 doses every 2 nd week, fol- lowed by monthly administra- tion for a maximum of 10 y	I, ongoing n=30 recur- rent MB or grade III-IV glioma	Planned: vaccine-spe- cific T-cell and antibody responses		
Cancer vaccines: tumo	or cells and lysates				
ERC1671³⁷⁶ : autologous and allogeneic (3 GBM pa- tients) whole inactivated tumor cells $(1 \times 10^5 - 1 \times 10^6$ cells) and lysates $(1 \times 10^5 - 1 \times 10^6$ cells)	Group 1: from 1 mo post-sur- gery monthly ERC1671 + 500 µg GM-CSF i.d., 50 mg / day oral cyclophosphamide for 4 days (beginning of every cy- cle) + 10 mg/kg bevacizumab every 2 nd week Group 2: placebo vaccination + oral placebo, bevacizumab as group 1	II, randomized recurrent GBM Group 1: n=5 Group 2: n=4	Group 1: CD4 ⁺ T-cell numbers cor- relate with OS	12.1/7.6 mo median OS 7.3/5.4 mo median PFS	n=4/8 grade 3 ad- verse events
Autologous formalin- fixed tumor ³⁷⁷	1 mo after surgery and radio- chemotherapy, 1 vaccina- tion/week (5 i.d. injections each) + 500 ng tuberculin (1:1 soluble and microparti- cles), maintenance TMZ	l/lla n=24 primary GBM	n=23 tested patients: DTH re- sponse to autologous GBM tissue induced by vaccination	8.2 mo me- dian PFS 22.2 mo me- dian OS n=9 with strong DTH response: 29.5 mo me- dian PFS	n=19/1 grade 1/2 injection site reac- tions n=3 fever, n=2 headache, n=2 seizures, n=1 ap- petite loss
Autologous tumor cell vaccine, stem cell trans- plantation and xALT ³⁷⁸	Post-surgery induction che- motherapy i.v., tumor cell vaccine + GM-CSF every 2 nd week (up to 5 doses) s.c., high-dose chemotherapy i.v., autologous stem cell trans- plantation, ~3 mo later autolo- gous lymphocytes i.v. + 5 doses IL-2 every 2 nd day	II, completed n=30 recur- rent / refrac- tory primary high-grade brain tumors	Planned: de- convolute cellular anti- tumor re- sponse		
Cancer vaccines: DCs					
DCVax [®] -L ³⁷⁹ : autologous DCs pulsed with autolo- gous tumor lysate	Post-surgery + radiochemo- therapy, experimental treat- ment (day 0/10/20, then mo 2/4/8, from mo 12 half-yearly) + maintenance TMZ 150-200 mg/m ² for 5 days / mo Group 1: DCVax [®] -L 2.5×10 ⁶ DCs i.d. Group 2: placebo PBMCs Cross-over: upon progres- sion, DCVax [®] -L for patients from group 2	III, cross-over design newly diag- nosed GBM Group 1: n=232 Group 2: n= 99 Cross-over: n=54		23.1 mo me- dian OS (both groups incl. cross-over patients)	Grade 3-4 reac- tions: n=3 cerebral edema, n=2 seizures, n=1 lymph gland infection

Treatment Reference	Therapeutic schedule	Phase # Patients	Immuno- genicity	Outcome	Adverse events
Audencel ^{380,381} : autolo- gous DCs loaded with au- tologous tumor lysate	Group 1: 60 Gy radiation (2 Gy/fraction) + 75 mg/m ² TMZ, adjuvant TMZ 150-200 mg/m ² for 5 days / mo Group 2: radiochemotherapy as group 1, from week 3 of adjuvant TMZ n=3 weekly, then monthly i.n. vaccinations of 1.5×10^6 DCs (for 7 mo in median), 3-mo intervals until vaccines were used up	II, randomized newly diag- nosed GBM Group 1: n=42 Group 2: n=34	Enhanced Th1 anti-tu- mor immune responses upon vac- cination	28.4%/24.5% 12 mo-PFS 18.9/18.8 mo median OS	n=7 flu-like symp- toms, n=6 injection site reactions
Autologous DCs pulsed with HLA-A*01-/A*02-re- stricted peptides derived from Her2, TRP-2, gp100, MAGE-1, AIM-2, IL13Rα2 ³³⁴	Post-surgery + radiochemo- therapy I.d. injection every 2 nd week, n=3 vaccinations	I HLA-A*01 ⁺ / -A*02 ⁺ patients with confirmed expression of \geq 3 TAAs n=17 primary GBM, n=3 re- current GBM, n=1 BSG	33% of pri- mary GBM respond (≥ 1.5-fold in- creased IFN-γ secretion by peptide- stimulated PBMCs after vaccination)	Primary GBM: 16.9 mo median PFS, 38.4 mo median OS	n=9 grade 1, n=2 grade 2 toxicities
Autologous DCs loaded with an allogeneic brain tumor stem cell line ³⁶²	DCs i.d. + topical Imiquimod Group 1: 5×10^6 DCs Group 2: 10×10^6 DCs Group 3: 15×10^6 DCs 4 vaccinations every 2^{nd} week + 10 monthly vaccinations	I, completed n=8 recurrent MB / GBM / ependy- moma / AAST		Planned: TTP	
Autologous DCs loaded with autologous tumor lysate ³⁸³	Post-surgery, 0.25-11.9×10 ⁶ DCs i.d. for 2 lymph node re- gions each + topical Imiquimod Group 1: 2 vaccinations every 2 nd week, then monthly Group 2: 5 vaccinations every 2 nd week, then monthly Group 3: 4 weekly vaccina- tions, monthly i.d. injection of tumor lysate (220-3,125 µg protein) Group 4: treatment as group 3, altered DC maturation	Feasibility study in chil- dren n=33 glioma, n=5 MB / PNET, n=4 ependymoma, n=3 ATRT		MB / PNET: 5.7 mo me- dian OS; 3.7 mo median PFS	Mild injection site reactions; n=8 fa- tigue, n=5 head- ache, n=3 fever, n=1 flu-like symp- toms
Adoptive T-cell transfe					
IL13Rα2-specific CAR-T cells ^{384,385} : autologous T cells transduced with IL13Rα2-specific, 4-1BB- costimulatory CAR and CD19t	3 weekly intracavitary / intra- tumoral / intraventricular infu- sions, continued until product is used up Case report: 6 intracavitary + 10 intraventricular infusions of 2-10×10 ⁶ CAR-T cells	I n=92 recur- rent / refrac- tory IL13Rα2 ⁺ GBM Case report: n=1 recurrent multifocal GBM	Planned: cy- tokine, CAR- T-cell, TIL levels Case report: Increased cytokine and immune cell levels in CSF	Planned: PFS, OS, RR Case report: regression of all foci for 7.5 mo (upon in- traventricular administra- tion), possible IL13Ra2-low recurrence	Case report: grade 1-2 headache, fatigue, myalgia, olfactory auras
Her2-specific CAR-T cells ³³³ : autologous EBV-, adenovirus-, and CMV- specific CD4 ⁺ and CD8 ⁺ T cells (optimized persis- tence) transduced with Her2-specific CAR	1×10 ⁶ – 1×10 ⁸ CAR-T cells/m ² i.v. n=11 1 infusion, n=6 multiple infusions	I n=17 progres- sive / recur- rent Her2 ⁺ GBM	CAR-T-cell persistence for \geq 6 weeks and \leq 18 mo in 7/15 pa- tients	n=1 PR; n=7 SD; n=8 PD 11.1 mo me- dian OS from 1 st infusion 24.5 mo me- dian OS from diagnosis	n=2 grade 2 sei- zures, n=1 grade 2 headache
ALECSAT ³⁸⁶ : autologous CTLs and NK cells	3 i.v. infusions of 10×10 ⁶ - 1×10 ⁹ activated and ex- panded cells	I, completed n=23 recur- rent GBM		Planned: RR	

Treatment	Therapeutic schedule	Phase	Immuno-	Outcome	Adverse
Reference		# Patients	genicity		events
Re-MATCH ³⁸⁷ : TTRNA- loaded xALT and TTRNA- loaded autologous DCs	Following myeloablative chemotherapy 1 dose TTRNA-xALT i.v. (3×10 ⁷ /kg) 3 doses TTRNA-DCs i.d. (1×10 ⁷ ; every 2 nd week)	I/II, ongoing I: n=9 II: n=35 Recurrent MB, PNET	Planned: T- cell and anti- body re- sponse, cyto- kine profile, TLR activa- tion, lympho- cyte subset phenotypes	Planned: PFS, OS, RR	
Her2-specific CAR-T cells ³⁵³ : autologous CD4 ⁺ and CD8 ⁺ T cells trans- duced with Her2-specific CAR and EGFRt	2 cycles of 1 weekly infusion for 3 weeks each, 1 week off between cycles Group 1: tumor cavity infusion Group 2: ventricular infusion	I, ongoing n=36 chil- dren / adoles- cents with Her2* recur- rent / re- fractory CNS tumors		Planned: RR	
EGFR806-specific CAR-T cells ³⁵⁶ : autologous CD4 ⁺ and CD8 ⁺ T cells trans- duced with EGFR-specific CAR and EGFRt	Intra-patient dose escalation supratentorial tumors: tumor cavity infusion infratentorial / leptomeningeal tumors: ventricular infusion	I, ongoing n=36 chil- dren / adoles- cents with EGFR ⁺ recur- rent / re- fractory CNS tumors		Planned: RR	
NY-ESO-1-specific T cells ³⁶¹ : autologous T cells transduced with TCR recognizing HLA- A*02:01-presented NY- ESO-1	Conditioning non-myeloabla- tive lymphodepleting chemo- therapy, 7 days later T cells + IL-2 720,000 IU/kg i.v. every 8 h for max. 5 days	II, ongoing NY-ESO-1* HLA-A*02:01* recurrent / re- fractory MNG, melanoma, breast / non- small cell lung / hepato- cellular cancer		Planned: clinical response	
GRm13Z40-2 CAR-T cells ^{271,363} : allogeneic glu- cocorticoid-resistant ganciclovir-sensitive CTL line expressing IL-13-Ze- takine (IL13Rα2-specific CAR) and HyTK	Bi-weekly i.t. infusion (day 1, 3) + IL-2 i.t. (day 1/2-5) until progression / toxicity ± dexa- methasone	I, completed Recurrent / refractory brain tumors	Planned: anti- GRm13Z40- 2 responses (allograft re- jection)		
Oncolytic viruses					
ParvOryx01 ^{320,388} : replica- tion-competent parvovirus H-1	Group 1: 1 i.t. injection (50% of total dose), 10 days later tumor resection + virus application (remaining 50%) in resection cavity Group 2: 5 i.v. infusions (10% of total dose each), 2 nd dose as group 1 Dose escalation: 1×10 ⁶ -1×10 ⁹ pfu total dose in both groups	I/IIa Recurrent / refractory GBM Group 1: n=12 Group 2: n=6	n=18 dose- dependent anti-viral antibodies, n=9 (of 12 tested patients) anti-viral CD8 ⁺ T-cell responses n=3 (of 6 tested pa- tients) anti- tumor T-cell response	n=12 PD 27% 6-mo PFS, 3.7 mo median PFS 15.5 mo me- dian OS	n=1 conscious- ness upon admin- istration
G207³⁸⁹: oncolytic herpes simplex 1 virus	1.15×10 ⁹ pfu split into 1 pre- (2-5 days) and 1 post-surgery dose	lb n=6 recurrent GBM	n=5 virus-in- fected tumor cells n=4 in- creased CD3 ⁺ TIL numbers	3 mo median PFS 23 mo median OS from primary diagnosis 6.6 mo me- dian OS from administration	n=2 seizure, n=2 hemiparesis, n=2 fever, n=1 somno- lence, n=1 motor neuropathy, n=1 neglect, n=1 de- creased mental status

Treatment Reference	Therapeutic schedule	Phase # Patients	Immuno- genicity	Outcome	Adverse events
Delta-24-RGD ³⁹⁰ : replica- tion-competent adenovirus	Intracerebral infusion of $10^7 / 10^8 / 10^9 / 10^{10} / 3 \times 10^{10} / 10^{11}$ virus particles	I/II n=30 recur- rent GBM n=3 per dose level + n=6-9 after dose es- calation treated with 10 ¹¹ virus par- ticles		Planned: PFS, 6mo-PFS, OS, 6mo-OS, 12mo-OS	
G207 ³⁹¹ : oncolytic herpes simplex 1 virus	1 st cohort: 1 intracranial infu- sion (close to tumor site) 2 nd cohort: 1 intracranial infu- sion + 5 Gy after 24 h	I, ongoing n=15 children with re- current / refractory cerebellar brain tumors	Planned: HSV-1 anti- body titers	Planned: PFS, OS, performance status	
PVSRIPO ³⁹² : oncolytic po- lio-rhinovirus recombinant	1 i.t. infusion	lb, ongoing n=12 chil- dren / adoles- cents with recurrent supratentorial grade III gli- oma / GBM / MB / ATRT		Planned: 24mo-OS	

3 Immunopeptidomics

3.1 The immunopeptidome

The entirety of peptides presented by the HLA molecules of a cell or tissue is designated as the immunopeptidome, HLA ligandome, or HLA peptidome. Isolating these HLA ligands and employing subsequent liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) is a way to comprehensively view the antigenic signature of human neoplasms. Here, mass spectrometry (MS) represents the central component warranting unbiased peptide identification. In contrast to epitope prediction-based studies, the major strength of immunopeptidomics as approach to define candidate targets for cancer immunotherapies is focusing on those peptides that are naturally presented and thus of pathophysiological relevance.¹⁷⁷ Target discovery approaches based on genome or transcriptome sequencing with subsequent in silico prediction of HLA ligands yield a considerable number of false positives while missing others. This is reasoned by the poor stoichiometric relationship between RNA transcripts and HLA-presented peptides. The immunopeptidome represents an autonomous layer strongly influenced by the antigen processing machinery and can thus not be expected to mirror the proteome or even the transcriptome.^{177,393-396} Moreover, it has become evident that not the entire antigen translates into HLA ligands, but mainly so-called hotspot regions aive rise to HLA-presented peptides thus shaping the immunopeptidome.177,397-400

As shown e.g. for renal cell and epithelial ovarian carcinoma, glioblastoma, acute myeloid and chronic lymphocytic leukemia, or multiple myeloma, downregulation of surface HLA expression by tumors is far less common than originally expected and should thus not be designated a hallmark of cancer immune evasion anymore.^{149,177,315,401-405} For immunopeptidomics, primary human samples clearly outcompete artificial systems, especially permanent monoclonal cell lines, as they substantially more accurately reflect the biology of human malignancies, the genetical diversity among patients, and provide a high degree of translationability into individualized treatment attempts.¹⁷⁷ Analyses of the HLA peptidome can be performed with bulk or dissociated tumor tissue,^{149,401} primary cell lines established from solid tumors,⁴⁰⁶ leukemia cells,⁴⁰³⁻⁴⁰⁵ cancer cell-derived soluble HLA molecules,⁴⁰⁷ or extracellular vesicles as starting material.^{177,408} Immunopeptidomics can in principle cover all sources of HLA ligands and associated PTMs, whereby the majority of HLA ligands originates from WT canonical proteins. Cryptic peptides (2.3.1) were estimated to contribute with 6.5-13% to the entirety of HLA ligands.^{177,179} Proving neo-antigenic peptides to be naturally presented on cancer tissue by LC-MS/MS, has remained a major obstacle.^{177,409} The proportion of neo-antigenic HLA ligands is expected to be even smaller than that of cryptic ones, with only one mutated peptide being on average identified among 1.1×10⁴ HLA class I peptides and from 1,800 nonsynonymous somatic mutations.¹⁷⁷

In recent years, the concomitant development of orbitrap mass analyzers, chromatographic systems with enhanced performance, and algorithms for automated spectra interpretation have vastly improved speed, sensitivity, resolution, and mass accuracy of data acquisition and/or data analysis. Altogether, this enabled the fast ascent of immunopeptidomics as method of choice for state-of-the-art antigen discovery studies.¹⁷⁷ Nowadays, it is possible to extract and identify several thousands of unique HLA ligands from a single primary tissue sample.^{397,401,410} Four immunopeptidomic studies in glioblastoma have been performed, whereby not the entire datasets have been made publicly available.^{149,313,402,403} The published content of one study was even restricted to those HLA-A*02:01, -A*24:02, and -DR-presented peptides applied in a clinical trial of peptide vaccination (GAPVAC-101).³¹⁴ Two of the remaining datasets were acquired on a time of flight mass spectrometer (Q-TOF) or an LTQ Orbitrap XL, allowing the presumption that peptide identifications will increase when using another device such as the Orbitrap Fusion Lumos with higher resolution and scan rate. Moreover the number of primary samples came up to only four and nine, respectively.^{149,411} The fourth publication focuses on comparing the immunopeptidome of ten glioblastoma tissues to that of 142 samples of soluble HLA molecules obtained from 52 glioblastoma patients as well as 30 ankylosing spondylitis patients and 6 healthy donors as control. These data were also searched for known CTAs, however, tissue samples were part of the same cohort as used for the GAPVAC-101 project.^{314,396} So far, no study investigating the immunopeptidome of medulloblastoma has been published. HLA class I ligands have been isolated from twelve primary meningioma samples. These data were part of a training dataset (n=2) and used as benchmark dataset (n=10) for a model predicting length distribution and binding specificity across HLA class I allotypes and not reviewed for potential targets for cancer immunotherapy.412

3.2 Materials and methods for immunopeptidome analyses

3.2.1 Materials

Substantial parts of the material lists presented on the following pages are congruent with listings in 'Freudenmann LK. Mapping the HLA Ligandome of Primary *versus* Recurrent Disease in Glioblastoma Multiforme by Mass Spectrometry'¹⁰.

Chemicals

Acetonitrile CH ₃ CN (AcN; MS grade)	J.T.Baker [®] , Center Valley (USA)		
Baker water H ₂ O (MS grade)	J.T.Baker [®] , Center Valley (USA)		
CHAPS 3-[(3-cholamidopropyl) dimethyl-ammonio]-1- propanesulfonate 1.2% (w/v)	PanReac AppliChem, Darmstadt (Germany)		
Cyanogen bromide (CNBr)-activated sepharose 4B	GE Healthcare, Little Chalfont (UK)		
Dimethyl sulfoxide (DMSO) (CH ₃) ₂ SO	Merck Millipore, Billerica (USA)		
Dulbecco's phosphate-buffered saline (DPBS) without $CaCl_2 \ and \ MgCl_2$	Gibco [™] / Thermo Fisher Scientific, Waltham (USA)		
Formic acid (FA; MS grade)	Merck, Darmstadt (Germany)		
Glycine	Merck, Darmstadt (Germany)		
Hydrogen chloride HCl	Carl Roth, Karlsruhe (Germany)		
Phosphate-buffered saline (PBS) without CaCl_2 and MgCl_2	Produced in-house by Claudia Falkenburger		
Protease inhibitor cocktail tablets	cOmplete [™] / Roche, Basel (Switzerland)		
Sodium bicarbonate NaHCO3	Merck Millipore, Billerica (USA)		
Sodium chloride NaCl	VWR Chemicals / VWR International, Leuven (Belgium)		
Sodium hydroxide NaOH	Carl Roth, Karlsruhe (Germany)		
Trifluoroacetic acid C ₂ HF ₃ O ₂ (TFA; MS grade)	Sigma-Aldrich, St. Louis (USA)		
Solutions and buffers			
A*	0.1% TFA in Baker H ₂ O		
AB _E	32.5% AcN / 0.2% TFA in Baker H2O		
A _{Load}	1% AcN / 0.05% TFA in Baker H_2O		
Coupling buffer	0.5 M NaCl / 0.1 M NaHCO $_3$ in ddH $_2$ O adjusted to pH 8.3 with HCl (at room temperature)		
Lysis buffer (1×)	2× lysis buffer / PBS mixed 1:1		
Lysis buffer (2×)	33 ml PBS / 0.4 g CHAPS / 1 protease inhibitor cocktail tablet		

Antibodies

Table 3. HLA class I- or II-specific murine monoclonal antibodies employed for HLAimmunoprecipitation. All antibodies were kindly produced in-house by Claudia Falkenburger using murine B lymphocyte hybridoma cells.

Clone	Isotype	Specificity	Reference
W6/32 (ATCC [®] HB-95™)	IgG _{2α}	HLA-A, -B, -C	413
L243 (ATCC [®] HB-55™)	IgG _{2α}	HLA-DR	414
Tü39	IgG _{2α}	HLA-DP, -DQ, -DR	415

Consumable supplies

Acclaim [®] C18 PepMap RSLC column 50 μm × 25 cm	Thermo Fisher Scientific, Waltham (USA)
Acclaim [®] C18 PepMap RSLC column 75 μm × 2 cm	Thermo Fisher Scientific, Waltham (USA)
Amicon-Ultra 0.5 ml centrifugal filter unit 10 kDa	Merck Millipore, Billerica (USA)
Amicon-Ultra 0.5 ml centrifugal filter unit 3 kDa	Merck Millipore, Billerica (USA)
DeckWorks [®] low binding pipet tips 1-200 µl	Corning, Corning (USA)
Eppendorf adapter for rotors with 15 ml bore holes (allows using 5 ml conical tubes)	Eppendorf, Hamburg (Germany)
Eppendorf Safe-Lock tubes 1.5 ml	Eppendorf, Hamburg (Germany)
Eppendorf Safe-Lock tubes 2 ml	Eppendorf, Hamburg (Germany)
Eppendorf screw cap tubes 5 ml	Eppendorf, Hamburg (Germany)
Falcon tubes 15 ml	Greiner Bio-One, Frickenhausen (Germany)
Falcon tubes 50 ml	Greiner Bio-One, Frickenhausen (Germany)
Maxymum Recovery [®] universal filter tips 1000 μl	Axygen, Union City (USA)
Maxymum Recovery [®] universal tips 0.5-10 μl	Axygen, Union City (USA)
Millex®-SV low protein binding PVDF Durapore® syringe filter unit 5.0 μm	Merck Millipore, Billerica (USA)
Petri dishes ø 30 mm	Greiner Bio-One, Frickenhausen (Germany)
Petri dishes ø 60 mm	Greiner Bio-One, Frickenhausen (Germany)
Polypropylene autosampler vials 250 μ l	Thermo Fisher Scientific, Waltham (USA)
Polypropylene caps for 250 μl vials	Thermo Fisher Scientific, Waltham (USA)
Protein LoBind tubes 1.5 ml	Eppendorf, Hamburg (Germany)
Protein LoBind tubes 2 ml	Eppendorf, Hamburg (Germany)
SafeSeal [®] SurPhob filter tips 1250 μl	Biozym Scientific, Hessisch Oldendorf (Germany)
Surgical disposable scalpels	Aesculap AG, Tuttlingen (Germany) / B. Braun Melsungen AG, Melsungen (Germany)
Syringe Luer-Lok™ Tip 20 ml	Becton Dickinson, Drogheda (Ireland)
Syringe Luer-Lok™ Tip 30 ml	Becton Dickinson, Drogheda (Ireland)
Syringe Luer-Lok [™] Tip 50 ml	Becton Dickinson, Drogheda (Ireland)
ZipTip _{C18} [®] Pipette Tips with 0.6 μ l resin bed volume	Merck Millipore, Billerica (USA)
Basic equipment	
Double socket, 13 mm span	neoLab Migge, Heidelberg (Germany)
Econo-Column [®] low pressure glass chromatography columns, 0.5 cm × 5 cm	Bio-Rad, München (Germany)
Econo-Column [®] low pressure glass chromatography columns, 1 cm × 5 cm	Bio-Rad, München (Germany)
Hamilton syringe 50 µl	Sigma-Aldrich, St. Louis (USA)
Hamilton syringe 500 μl	Sigma-Aldrich, St. Louis (USA)
Lyophilization glass 600 ml, 105 mm outer diameter	Martin Christ Gefriertrocknungsanlagen, Osterode am Harz (Germany)
Micro pestle for 1.5 ml Eppendorf tubes	Carl Roth, Karlsruhe (Germany)
Polypropylene Luer adapters with 1/8" lock rings and 1/8" teflon tubing	Cole-Parmer, Vernon Hills (USA)
Potter glass	Wheaton, Milville (USA)

Rotilabo [®] tripod mount, 250 mm x 142 mm, M10 threaded hole	Carl Roth, Karlsruhe (Germany)
Rotilabo® tripod rod, 600 mm, M10 thread	Carl Roth, Karlsruhe (Germany)
Two-way stopcocks with female to male Luer fitting	Bio-Rad, München (Germany)
Tygon [®] 3350 2 stopper 104 mm distance, 2.06 mm inner diameter, 381 mm silicone tube	Hirschmann, Neckartenzlingen (Germany)
Tygon [®] 3350, 2.4 mm inner diameter, 0.8 mm wall thickness, 15 m silicone tube	neoLab Migge, Heidelberg (Germany)
Universal stand clamp Remanit 4301, 240 mm length, 90 mm span	Carl Roth, Karlsruhe (Germany)
Devices	
Autosampler WPS-3000PL (RS) UltiMate [™] 3000 Series	Dionex, Sunnyvale (USA)
Biofuge Pico centrifuge	Heraeus, Pforzheim (Germany)
Branson sonifier 250	Emerson Industrial Automation, Danbury (USA)
Chiller ThermoFlex 900	Thermo Fisher Scientific, Waltham (USA)
DURAN [®] beaker glass 1000 ml	Schott, Wertheim (Germany)
E2M28 rotary vacuum pump	Edwards, Feldkirchen (Germany)
Freeze dryer VaCo 2	ZIRBUS technology, Bad Grund (Germany)
IKA® KS 250 basic shaker	Sigma-Aldrich, St. Louis (USA)
IKA [®] MS 3 basic vortex mixer	Sigma-Aldrich, St. Louis (USA)
KF-2-110 cold trap	H. Saur Laborbedarf, Reutlingen (Germany)
LTQ Orbitrap XL	Thermo Fisher Scientific, Waltham (USA)
Megafuge 1.0 R centrifuge	Heraeus, Pforzheim (Germany)
MIKRO 200 R centrifuge	Andreas Hettich, Tuttlingen (Germany)
Nano/Cap System NCS-2500RS UltiMate [™] 3000 Series	Dionex, Sunnyvale (USA)
Nano/Pump System NCP-3200RS UltiMate [™] 3000 Series	Dionex, Sunnyvale (USA)
Nanospray Flex [™] ion source	Thermo Fisher Scientific, Waltham (USA)
Nanospray ion source	Thermo Fisher Scientific, Waltham (USA)
Orbitrap Fusion Lumos	Thermo Fisher Scientific, Waltham (USA)
Potter-Elvehjem tissue homogenizer	Omni International, Kennesaw (USA)
RC6 chemistry-HYBRID-vacuum-pump	vacuubrand, Wertheim (Germany)
rotarus [®] smart 30 peristaltic pump	Hirschmann, Neckartenzlingen (Germany)
RV8 oil-sealed rotary high vacuum pump	Edwards, Feldkirchen (Germany)
$Sogevac^{\tiny (\!\!\!\!\!\!\!\!^{\scriptscriptstyle (\!$	oerlikon leybold vacuum, Köln (Germany)
Solvent Rack SRD-3x00 UltiMate [™] 3000 Series	Dionex, Sunnyvale (USA)
SpeedVac vacuum concentrator	BACHOFER, Reutlingen (Germany)
Tube rotator L28	LABINCO, Breda (Netherlands)
Ultra-low freezer DF8517GL	Skadi, Wilmington (USA)
Ultrasonic cleaner	JSP, Los Angeles (USA)
VM-300 vortex mixer	neoLab Migge, Heidelberg (Germany)

Software and databases

Allele Frequency Net Database	416
area_picker.R (2015)	In-house R sc
BioVenn	417
Catalogue of Somatic Mutations in Cancer (COSMIC)	418
Chromeleon™ 6.80 Chromatography Data System	Thermo Fishe
DAVID Bioinformatics Resources 6.8	419,420
DCMS Link 2.14 for Xcalibur	Thermo Fishe
DB Browser for SQLite 3.11.2	Open-source
dbSNP	421
Discoverer Daemon 1.4	Thermo Fishe
GraphPad Prism 6.0	GraphPad Sol
Genotype-Tissue Expression (GTEx) database	422
HLA-C motifs	423
Hotspots.R (2018)	In-house R sc
Inkscape 0.92.4	Open-source :
Immune Epitope Database (IEDB): population coverage	424
In-house HLA class I SQL database (version 2019/04/25)	Benign primar

cript, written by Linus Backert

er Scientific, Waltham (USA)

er Scientific, Waltham (USA)

software

er Scientific, Waltham (USA)

oftware, La Jolla (USA)

cript, written by Leon Bichmann

software

<u>ry samples (n=418):</u>

n=10 adrenal glands, 10 aortae, 98 peripheral blood samples, 27 bone marrows, 12 brains, 11 cerebella, 8 colons, 10 esophagi, 4 gall bladders, 11 hearts, 12 kidneys, 14 livers, 14 lungs, 17 lymph nodes, 5 mammae, 10 skeletal muscles, 31 ovaries, 9 pancreases, 18 prostates, 11 skins, 12 small intestines, 1 spinal cord, 12 spleens, 10 stomachs, 13 thyroid glands, 9 tongues, 7 tracheae, 10 urinary bladders, 2 uteri

Malignant primary samples (n=874):

n=4 acute lymphocytic leukemias, 97 acute myeloid leukemias, 1 anaplastic astrocytoma, 10 atypical teratoid rhabdoid tumors, 3 bladder cancers, 59 breast cancers, 98 chronic lymphocytic leukemias, 21 chronic myeloid leukemias, 38 colorectal cancers, 23 ependymomas, 6 esophageal cancers, 4 fibroses, 30 gastric cancers, 1 gastrointestinal stromal tumor, 2 germ cell tumors, 50 glioblastomas, 28 hepatocellular carcinomas, leiomyosarcoma, melanoma. 1 1 33 meningiomas, 1 merkel-cell carcinoma, 13 multiple myelomas, 24 neuroblastomas, lung carcinomas, 18 non-small cell 1 oligodendroglioma, 28 oropharyngeal squamous cell carcinomas, 3 osteosarcomas, 139 ovarian carcinomas, 1 pancreatic cancer, 1 paraganglioma. parotis 1 carcinoma. 13 polycythemia veras, 8 primary myelofibroses, 28 prostate carcinomas, 79 renal cell carcinomas, 1 sarcoma, 5 subependymomas

The number of leukemia samples includes few genetic duplicates due to multiple HLA ligand isolations from sorted cell populations or treated cells

In-house HLA class II SQL database (version 2019/04/25)

jVenn

Ligandosphere

List of 366 established TAAs and CTAs collected and translated into UniProt accessions by Lena Mühlenbruch and Michael Ghosh from the following resources: Cancer-related proteins deposited in UniProt (search term: disease:cancer AND reviewed:yes AND organism:"Homo sapiens (Human) [9606]"; 2017/09/01) Cheever *et al.* (2009) CTDatabase (2019/08/16) Cancer Immunity Peptide Database (version: 2016)

LTQ Tune Plus 2.5.5 SP2

MHC Motif Viewer

Microsoft Office 2010 and Professional Plus 2016

NetMHC 4.0 Motif Viewer

NetMHCpan-4.0

Notepad++ v7.8.1

Orbitrap Fusion Lumos Tune Application 2.1.1565.23

Percolator 2.04 (2012)

PhosphoMotif Finder of the Human Protein Reference Database

Proteome Discoverer 1.4.1.14

replicate_merger.R (2016)

RStudio 3.4.2

Benign primary samples (n=364):

n=10 adrenal glands, 10 aortae, 85 peripheral blood samples, 23 bone marrows, 12 brains, 11 cerebella, 8 colons, 10 esophagi, 4 gall bladders, 11 hearts, 13 kidneys, 13 livers, 14 lungs, 17 lymph nodes, 5 mammae, 10 skeletal muscles, 2 ovaries, 9 pancreases, 6 prostates, 12 skins, 12 small intestines, 1 spinal cord, 12 spleens, 9 stomachs, 4 thymi, 13 thyroid glands, 9 tongues, 7 tracheae, 10 urinary bladders, 2 uteri

Malignant primary samples (n=626):

n=2 acute lymphocytic leukemias, 125 acute myeloid leukemias, 1 anaplastic astrocytoma, 3 bladder cancers, 59 breast cancers, 69 chronic lymphocytic leukemias, 20 chronic myeloid leukemias, colorectal 2 cancers. 23 ependymomas, 4 fibroses, 41 glioblastomas, 4 hepatocellular carcinomas, 1 melanoma, 33 meningiomas, 13 multiple myelomas, 16 neuroblastomas, 18 non-small cell lung carcinomas. 1 oligodendroglioma, 28 oropharyngeal squamous cell carcinomas, 3 osteosarcomas, 78 ovarian carcinomas, 1 pancreatic cancer, 1 paraganglioma, 1 parotis carcinoma, 11 polycythemia veras, 8 primary myelofibroses, 54 renal cell carcinomas, 1 sarcoma, 5 subependymomas

The number of leukemia samples includes few genetic duplicates due to multiple HLA ligand isolations from sorted cell populations or treated cells

425

In-house software

- 86
- 426
- 427
- 191

Thermo Fisher Scientific, Waltham (USA)

428

Microsoft Corporation, Redmond (USA)

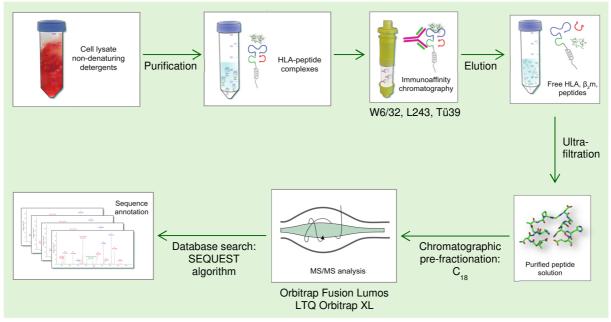
429

```
430-432
```

Open-source software

Thermo Fisher Scientific, Waltham (USA)

Department of Genome Science at the University of Washington, Seattle (USA)


433

Thermo Fisher Scientific, Waltham (USA) In-house R script, written by Linus Backert Open-source software

saturation_analysis.R (2016)	In-house R script, written by Linus Backert
Scintilla and SciTE	Open-source software
SEQUEST search engine	434
Scripts for complex SQL queries: sql_protein_benign_counter_classl_groupedtissue.R (2017) sql_protein_benign_counter_classlI_groupedtissue.R (2017) sql_protein_counter_malignant_classI.R (2017) sql_protein_counter_malignant_classI.R (2017) sql_sequence_counter_benign_classl_exactMatch_ case-insensitive.R (2018) sql_sequence_counter_benign_classII_exactMatch_ case-insensitive.R (2018) sql_sequence_counter_malignant_classI_exactMatch_ case-insensitive.R (2018) sql_sequence_counter_malignant_classI_exactMatch_ case-insensitive.R (2018) sql_sequence_counter_malignant_classII_exactMatch_ case-insensitive.R (2018)	In-house R scripts, written by Leon Bichmann
Skyline	435
SYFPEITHI	436
UniProt	86
Venn Diagram Plotter 1.5.5228.29250	Open-source software
volcano_plotter_from_area_all_conds_hardcoded_ lim2_new_style.R (2015)	In-house R script, written by Linus Backert
Xcalibur 2.1.0.1160 with Foundation 1.0.2.65	Thermo Fisher Scientific, Waltham (USA)
Xcalibur 2.2 SP1 with Foundation 2.0 SP1	Thermo Fisher Scientific, Waltham (USA)
Xcalibur 4.0.27.10 with Foundation 3.1 SP1	Thermo Fisher Scientific, Waltham (USA)

3.2.2 Methods

Following the pioneering work of Kirsten Falk and Olaf Rötzschke in the laboratory of Hans-Georg Rammensee, the protocol underwent several optimization processes, but core components have been retained. In brief, the workflow is composed of seven steps: preparation of tissue or cell lysate, immunoaffinity chromatography to pull down HLA-peptide complexes, acidic elution of HLA molecules and their ligands, purification of HLA ligands, peptide identification by LC-MS/MS, and subsequent data analysis (Figure 7).^{437,438} The major part of the protocol presented on the following pages resembles the methods section in 'Freudenmann LK. Mapping the HLA Ligandome of Primary *versus* Recurrent Disease in Glioblastoma Multiforme by Mass Spectrometry'¹⁰.

Figure 7. Isolation and analysis of HLA ligands from intracranial neoplasias. Here, icons depict schematics of HLA class I-peptide complexes. Modified from Freudenmann *et al.*¹⁷⁷

Preparation of lysate from tumor tissue

All steps for preparation of tissue lysate from fresh frozen surgical specimens were performed at 4°C in the cold room. The entire amount of tissue was never used up for immunopeptidomics alone in order to perform parallel analyses including whole exome (glioblastoma) and RNA sequencing (glioblastoma and medulloblastoma), DNA methylation profiling (planned for glioblastoma and medulloblastoma), and HLA typing (all samples) from the identical piece of tissue. As mentioned in 1.2, the degree of intratumoral heterogeneity is especially high in glioblastoma. In order to subject cells of every subclone – as far as possible – to every analytical method, tissue was chopped first and tiny pieces were then collected to either isolate DNA and RNA (\geq 20 mg) or HLA ligands. Since RNA degradation sets in as soon as tissue thaws, samples were kept on dry ice throughout almost the whole time and immediately returned to -80°C after tissue collection for sequencing until analysis at CeGaT GmbH (Tübingen).

Tissue for the preparation of cell lysate was weighed in appropriately sized petri dishes (30 or 60 mm in diameter). Having added one volume of 2×1 ysis buffer, tissue was chopped finely using forceps and scalpel. Tissue was transferred into a potter glass cleaned with 70% ethanol, dH₂O, and flushed out with PBS before. Two volumes of 1×1 ysis buffer each were used to rinse the petri dish twice and added to the potter glass as well. With a Potter-Elvehjem tissue homogenizer, samples were mashed for approximately 2 min, whereby the potter glass was kept on ice to avoid warming of the lysate. The latter was transferred into appropriately sized tubes (5 / 15 / 50 ml) and the potter glass was rinsed twice with two volumes of 1×1 ysis buffer each, that were subsequently added to the lysate. In case a substantial amount of sample was still left in the potter glass, another washing step – if necessary, with a slightly increased volume of lysis buffer – was performed. Samples were then incubated on the shaker at 200 revolutions per minute (rpm) for 1 h. To further disrupt cell membranes, five cycles of pulsed sonification (duty cycle output control = 5; 60% duty cycle) each lasting 20 s were applied to

the samples. To prevent lysates from warming, tubes were kept on ice and cool-down breaks of 20 s were performed after every cycle. After another incubation on the shaker for 1 h, samples were centrifuged at 4,000 rpm and 4°C for 1 h. For lysates prepared from \geq 1 g of tissue, centrifugation of the supernatant was repeated once. Employing 5.0 µm low protein binding filter units, samples were subsequently sterile filtrated into appropriately sized tubes (5 / 15 / 50 ml).

For tissue samples weighing less than 150 mg, tissue was manually minced with a micro pestle in 1.5 ml Eppendorf tubes instead of using the Potter-Elvehjem tissue homogenizer. Sonification was performed in an ultrasonic bath for five times 20 s with cool-down breaks on ice of 20 s each in between. Moreover, these samples were spun down only once at 13,000 rpm and 4°C for 1 h. Lysates with a volume of less than 2 ml (corresponds to ~222 mg tissue) were not filtered before being directly injected into either only the upper column equipped with W6/32 antibodies or into both columns. The outflow of the lower column with HLA class II-specific antibodies was straightly transferred to the upper column instead of being collected in and aspirated from a Falcon tube in between.

Isolation of HLA ligands by immunoaffinity chromatography

Immunoaffinity chromatography requires a solid phase, CNBr sepharose, to which HLAspecific antibodies are bound. Per 1 mg of antibody, 40 mg of CNBr-activated sepharose were weighed in and resuspended in 45 ml 1 mM HCl (in ddH₂O) by inverting for five times. At room temperature, the suspension was rotated for 1 h to be then spun down at 300 rpm and without break for 4 min. Having carefully decanted the supernatant, 20 ml coupling buffer and the respective antibody were added. Falcon tubes in which the antibodies had been stored were rinsed with ~10 ml of coupling buffer, added to the sepharose as well, and the total volume was adjusted to 45 ml with coupling buffer. After inverting for five times, tubes were rotated for 2 h and centrifuged as previously. The sepharose-antibody matrix was resuspended in 45 ml 0.2 M glycine (in ddH₂O) and rotated for 1 h to reduce unspecific binding activity. Sepharose was pelleted, washed twice with DPBS, adjusted with DPBS to a concentration of 1 mg antibody/40 mg sepharose per ml, and stored at 4°C. Newly coupled antibodies were only approved for patient samples upon passing quality control comprising isolation of HLA-peptide complexes from a standardized lysate (equivalent to 4.5×10^7 cells) prepared from the B-lymphoblastoid cell line JY.

Glass chromatography columns were cleaned thoroughly with 70% ethanol and afterwards with dH₂O by means of a 50 ml syringe. Before assembly of the chromatographic system in the cold room, possible sample residues were removed from peristaltic pumps, cassettes as well as tubes and the latter were examined for tightness. All cassettes mounted in the same peristaltic pump were manually adjusted to an equal flow rate at 10 rpm pump speed. For each sample, two columns were set up one above the other, so that the flowthrough of the upper column equipped with HLA class I-specific antibodies directly dropped into the lower column equipped with HLA class II-specific antibodies. By pipetting, sepharose-antibody matrices were resuspended and a minimum volume of 1 ml was added to each column. To precipitate HLA class II-peptide complexes, the antibodies L243 and Tü39 were mixed 1:1. For samples weighing more than 1 g, the amount of antibody was proportionally increased to an equivalent

of 1 mg per 1 g of tissue. Econo-Columns[®] with a diameter of 0.5 cm have a maximum capacity of 3 mg antibody-sepharose matrix so that columns with a diameter of 1 cm were used for samples above 3 g. The peristaltic pump was connected to the upper column equipped with W6/32 so that PBS flowed through both columns into a waste beaker glass. The liquid phase was changed to 1× lysis buffer and the system was subsequently cycled until preparation of tissue lysates had been finished.

Having linearized the system again, filtrated samples were aspirated from tubes and the system was cycled as soon as the lysate reached the lower column or before the tube ran dry, respectively. To manually load small samples, liquid was drained from either the upper or both chromatography columns and the lysate was directly pipetted onto the sepharose-antibody matrix. In order to prevent technical artefacts, samples subjected to relative quantitation of HLA ligands later on, were always run with the same peristaltic pump and under use of the identical antibody batches. Immunoaffinity chromatography was then performed overnight. To wash columns the next morning, PBS was pumped linearly through the system for 30 min followed by ddH₂O for 1 h. Having let columns run dry and washed the lids with ddH₂O in a beaker glass, 1 µl 10% TFA per 1 mg antibody and 100 µl 0.2% TFA were added with a 50 µl or a 500 µl Hamilton syringe, respectively. In case of large tissue samples, the amount of 0.2% TFA was increased until the entire antibody-sepharose matrix was covered. In a rack on the shaker, columns were incubated at 300 rpm and 4°C for 30 min. Using an air-filled 50 ml syringe, HLA molecules and peptides were eluted into 1.5 or 2 ml Protein LoBind Eppendorf tubes. This procedure was repeated for a total of four times, whereby incubation time on the shaker was reduced to 15 min and 0.2% TFA was used solely from the second to the fourth elution. Having completed the elution of HLA-peptide complexes, chromatography columns were cleaned thoroughly with dH₂O, 70% ethanol, and again with dH₂O using a 50 ml syringe.

Purification of peptides and preparation for mass spectrometry

In parallel to washing the chromatography columns and later shaking them for 30 min, Amicon filter units to separate peptides from HLA molecules were prepared. HLA class I peptides were ultrafiltrated at a pore size of 3 kDa, whereas longer HLA class II peptides were purified at a pore size of 10 kDa. As leak test, filters were filled with 500 μ I Baker H₂O and spun down at 13,000 rpm and room temperature for 7 min. Remaining volume inside all filters of the same pore size was then compared and filter units with significantly divergent fill level were replaced. After discarding the flowthrough and banging the filters upside down onto paper towels to empty them, four more washing steps were performed. Centrifugation time was increased to 15 min for all of them. Washing was performed by sequentially adding 500 μ I 0.1 N NaOH, Baker H₂O, and 0.2% TFA. 500 μ I 0.2% TFA were again pipetted into the filter unit and run through only upon the elution of HLA-peptide complexes had been completed.

Eluates were centrifuged at 13,000 rpm and 4°C for 5 min, before not more than 500 μ l supernatant were filled into the respective filter inlay which had been placed into a new collection tube. Amicon filters were spun down, until the volume had completely run through and the flowthrough was collected in appropriately sized Protein LoBind Eppendorf tubes (1.5 / 2 ml). This was repeated until the entire amount of eluate had been ultrafiltrated. Predominantly to elute hydrophobic peptides from the membrane, filters were then washed

with 450 μ I AB_E which was subsequently added to the sample. An additional loose lid was perforated and placed on each Protein LoBind tube. These were frozen to the core at -80°C for at least 1 h. Peptide extracts were subsequently lyophilized to a target volume of ~30 μ l.

Desalting of peptide solutions was achieved by reversed-phase liquid chromatography using ZipTip_{C18}[®] Pipette Tips.⁴³⁹ During the entire procedure, a volume of 10 μl was repetitively aspirated and dispensed in different solvents as well as the sample, whereby it was strictly avoided to introduce any air into the C₁₈ matrix. First, the resin was cleansed by quickly pipetting up and down in ~500 μ I AB_E for ten times followed by equilibration in ~500 μ I A* for ten pipetting cycles as well. Peptides contained in the respective sample, which had been centrifuged at 13,000 rpm and 4°C for 5 min, were bound to the C_{18} matrix by slowly aspirating and dispensing for ten times. Desalting was achieved during three very slow pipetting cycles in another tube containing ~500 µl A*. Bound peptides were subsequently eluted from the resin by quickly pipetting up and down in an autosampler vial filled with 35 µl AB_E for ten times. The steps from A*, via sample and A*, to the autosampler vial (AB_E) were repeated for another four times. Upon completion of five cycles, ZipTip_{C18}® Pipette Tips were cleansed in ~500 µl AB_E as before and stored until next use. Samples planned to be compared by relative quantitation of HLA ligands (e.g. primary and recurrent tumor pairs or meningioma and autologous dura), were desalting using the identical ZipTip_{C18}[®] Pipette Tip in order to reduce technical variability. The hydrophobic solvent content of AB_E was removed by reducing the volume to 1 to 5 μ l in the SpeedVac and A_{Load} was subsequently added to the desired target volume of 25 to 35 µl.

After establishment of direct injection, a method to subject peptide solutions to LC-MS/MS without prior purification *via* ZipTip_{C18}[®] Pipette Tips, this was done for every possible sample. Besides less cumbersome sample handling, the big advantage of direct injection is a reduction in possible technical artefacts and thus better reproducibility and comparability of samples. This is of particular importance when relative quantitation of peptides in two autologous samples (e.g. primary versus recurrence or tumor versus benign) is performed. Direct injection worked well for glioblastoma and medulloblastoma, but not for meningioma samples, since these tended to be sticky throughout the whole experiment and blocked - despite sterile filtration - not only the sepharose-antibody matrices during immunoaffinity chromatography, but also the trapping and separation columns of the liquid chromatography system. However, it should be noted that remnants of CHAPS might cause ion suppression during electrospray ionization and this method should therefore not be applied for big samples lysed with large amounts of this zwitterionic detergent.⁴⁴⁰ For direct injections, samples lyophilized to ~30 µl were spun down at 13,000 rpm and 4°C for 10 min, supernatants were transferred into autosampler vials and reduced to 1 to 5 µl by vacuum centrifugation. ALoad was added to the desired target volume of 25 to 35 µl.

Autosampler vials were stored at -80°C, thawed in an ultrasonic bath for 2.5 min, sublimated A_{Load} was replenished, and air bubbles were removed thoroughly prior to LC-MS/MS.

Peptide identification by LC-MS/MS and subsequent database search

LC-MS/MS

Analysis of peptide extracts was performed by nanoflow high-performance liquid chromatography (Dionex UltiMate[™] 3000 Series liquid chromatography system) and tandem mass spectrometry. For each tissue and HLA class, a minimum of three technical replicates consuming 5 µl sample and lasting 130 min each were acquired. During the first 10 min, sample was loaded onto the trapping column at 50°C and a flow rate of 4 µl/min, whereas it was gradually eluted from the separation column from min 10 to 100 at 50°C and 175 nl/min (LTQ Orbitrap XL) or 300 nl/min (Orbitrap Fusion Lumos), respectively. During this 90 min gradient, the proportion of hydrophobic solvent (NC pump solvent B) increased from to 3 to 40% (equivalent to 2.4 to 32.0% AcN). Between min 101 and 106, it mounted up to 95% to remove remaining sample from the column. Pre-fractionated peptides eluting from the separation column were introduced into an online-coupled tandem mass spectrometer, either the LTQ (linear trap quadrupole) Orbitrap XL (meningioma samples) or the Orbitrap Fusion Lumos (glioblastoma, medulloblastoma, and meningioma samples). Both devices were equipped with a nanospray ion source and were operated in data-dependent acquisition (DDA) mode. In a survey scan, masses of protonated precursor ions of a defined mass-to-charge ratio (m/z) were determined (MS¹ spectra) and the 5 (LTQ Orbitrap XL) or *n* (Orbitrap Fusion Lumos: top n) most intense / abundant peptides were isolated for fragmentation, respectively. Peptides were fragmented by collision with nitrogen and fragment (MS²) spectra were subsequently recorded. Detailed settings of both LC-MS/MS systems are listed in Table 4.

Table 4. LC-MS/MS settings for the identification of peptides eluted from HLA class I or II molecules. Abbreviations not introduced in the text above: collision-induced dissociation (CID), higherenergy induced dissociation (HCD). Table layout and listed parameters for the Orbitrap Fusion Lumos are largely congruent with Table 4 in ¹⁰.

Parameter	LTQ Orb	oitrap XL	Orbitrap Fusion Lumos		
	HLA class I peptides	HLA class II peptides	HLA class I peptides	HLA class II peptides	
Internal name of the method used	top5CID_400- 650mz_90min Gradient_3sDynExcl	top5CID_300- 1500mz_90min Gradient_3sDynExcl	DDA_400-650mz_ qIS_CIDOT(_6Port)	DDA_400-1000mz_ qIS_HCDOT(_6Port)	
LC flow rate					
Loading pump [µl/min]	4		4		
Nano pump [nl/min]	0-100 min: 175; 101-130 min: 275		300		
LC solvents					
Loading pump solvent A	0.1% FA / 1% AcN		0.05% TFA / 1% AcN		
Loading pump solvent B	0.1% FA / 80% AcN		0.15% FA / 80% AcN		
Nano pump solvent A	0.15% FA		0.15% FA		
Nano pump solvent B	0.15% FA / 80% AcN		0.15% FA / 80% AcN		
MS ¹					
Permitted positive charge states	2-3	≥2	2-3	2-5	
Permitted m/z	400-650	300-1,500	400-650	400-1,000	
Detector type	Orbitrap		Orbitrap		
Resolution	60,000		120,000		
MS ¹ precursor selection	Top 5; quadrupole		Top <i>n</i> ; quadrupole		

MS ²			
Fragmentation type	CID	CID	HCD
Normalized collision energy [%]	35	35	30
Localization	lon trap	lon trap lon-routing multipole	
Detector type	lon trap detector	Orbitrap	
Resolution	not specified	30,000	
Data type	Centroid	Centroid	
Dynamic exclusion			
Exclusion after n times	1	1	1
Duration [s]	3	7	10
Mass tolerance [ppm]	± 10	± 2.5	

Sequence annotation to uninterpreted MS/MS spectra and data export

So far, MS/MS spectra had only been recorded, but not yet interpreted. Annotation to a peptide sequence was accomplished by database search using the SEQUEST search algorithm⁴³⁴ which Proteome Discoverer 1.4.1.14 embeds as processing node. To identify peptides derived from canonical WT antigens, the Swiss-Prot release from September 27th 2013 (20,279 reviewed protein sequences) served as reference database. Subsequently, the Percolator algorithm 2.04 estimated the false discovery rate (FDR) by decoy database search. Target FDR was set to \leq 5%. Parameters for processing of raw files compiled by either the LTQ Orbitrap XL or the Orbitrap Fusion Lumos are given in Table 5.

To guarantee that every single measurement was technically accurate, not only the total ion chromatogram, loading and nano pump pressures were reviewed, but also a database search was performed for every technical replicate. For all analyses excepting those aimed at relative quantitation of HLA ligand abundances, the maximum number of available technical replicates was co-processed and exported peptide and protein lists served as base for downstream analyses. Due to the permission of methionine oxidation as dynamic modification, sequence duplicates with either oxidized (m) or reduced (M) methionine residues were included in the peptide lists. These two peptide variants were treated equally, whereby only the oxidized version was reported, in case the reduced one was present as well.

Table 5. Parameters for database search and data export in Proteome Discoverer. Abbreviations not introduced in the text above: signal-to-noise ratio (S/N), Fourier Transform Mass Spectrometry (refers to Orbitrap detection; FTMS). Table layout and listed parameters for the analysis of data compiled by the Orbitrap Fusion Lumos are congruent with Table 5 in ¹⁰.

Parameter	LTQ Orbitrap XL		Orbitrap Fusion Lumos		
	HLA class I peptides	HLA class II peptides	HLA class I peptides	HLA class II peptides	
Raw file processing					
Internal name of workflow	SequestIT	SequestIT_ ClassII	SequestOT	SequestOT_ ClassII	
Spectrum properties filter					
Precursor mass [Da]	800-	800-5,000		800-5,000	
Minimum peak count		1		1	
S/N threshold (FTMS)	1	1.5		1.5	

Input data						
Enzyme name	No-enzyme (unspecific)		No-enzyme (unspecific)			
Maximum missed cleavage sites	0		0			
Peptide length [# of AA]	8-12	8-25	8-12	8-25		
Scoring options						
Maximal delta Cn	0.05		0.05			
Tolerances						
Precursor mass tolerance [ppm]	±5 ±5		: 5			
Fragment mass tolerance [Da]	± 0.5 ± 0.02		0.02			
Spectrum matching						
Use of neutral loss ions	a, b, y ions		a, b, y ions			
Weight of a, c, x, z ions	0		0			
Weight of b or y ions	1		1			
Modifications						
Permitted dynamic modification	Oxidation / +15.995 Da (M) Oxidation / +15.995 Da (15.995 Da (M)			
Maximum modifications per peptide	:	3	3			
Permitted static modification	None None		one			
Data export						
Internal name of filter set	Class I.filters	Class II.filters	Class I.filters	Class II.filters		
Minimum peptide confidence	Medium (≤ 5% FDR)		Medium (≤ 5% FDR)			
Peptide length [# of AA]	8-12	8-25	8-12	8-25		
Search engine rank	1		1			
Peptide grouping	Enabled		Enabled			
Protein grouping	Disabled		Disabled			

Deconvolution of HLA class I datasets

As elucidated in 2.2.2, HLA class I allotypes have relatively strict binding preferences to particular peptide motifs. Peptides obtained from HLA-immunoprecipitation (HLA-IP) with W6/32 originate from up to six different HLA-A, -B, and -C molecules. To deconvolute this multi-allelic dataset, binding prediction algorithms are employed, which calculate the probability for each peptide to bind to one of the patient's HLA class I allotypes. Ligandosphere is an in-house software which offers, among others, a stand-alone version of NetMHCpan-4.0^{431,432} and an enhanced version of SYFPEITHI.⁴³⁶ Peptides were designated as HLA class I ligands, when predicted as such by at least one of the two algorithms. The binding threshold for SYFPEITHI predictions was set to \geq 60% of the maximum score of the respective position-specific scoring matrix. Binding peptides according to NetMHCpan-4.0, which is based on artificial neural networks and trained with both binding affinity and immunopeptidomic data,⁴³² had a percentile rank score \leq 2%. Proteins not represented by HLA class I ligands were subsequently removed from the protein lists. HLA annotation of class II peptides is still difficult owing to degenerate peptide motifs and promiscuous binding.¹⁷⁷

Label-free quantitation of relative HLA ligand abundances

For label-free quantitation (LFQ) of relative HLA ligand abundances in two autologous samples (primary and recurrent glioblastoma, meningioma and tumor-free dura), the total amount of substance analyzed per technical replicate, represented by the summed area under the curve (AUC) of all peptides, was adjusted for the two conditions. For this purpose, a so-called dose-

finding measurement was performed for every sample, separately for HLA class I and II. LFQ was only performed when both samples yielded at least 500 peptides and a total AUC of 1×10^9 or 400 peptides and a total AUC of 9×10^8 in the dose-finding run for the Orbitrap Fusion Lumos or the LTQ Orbitrap XL, respectively. For HLA class I-eluted peptides, the total AUC was only calculated from those assigned as HLA class I ligands. The higher concentrated sample was diluted with A_{Load} accordingly to reach the same amount of substance as the lower concentrated one. In case a dilution factor of more than eight was calculated, a new dose-finding run was acquired upon 1:8 dilution. A total number of five (adjusted) technical replicates were measured per condition and HLA class for LFQ experiments. As quality control, the HLA class I ligand or HLA class II peptide yield of each technical replicate was not permitted to deviate by > 30% of the mean peptide yield of all five adjusted measurements. In case a sample had to be heavily diluted for adjustment, two further undiluted replicates were performed in terms of qualitative analyses.

The five adjusted replicates of each condition were co-processed, protein and peptide lists were exported with standard filters, and peptide lists were merged for both conditions to compile the seedlist. For semi-quantitative HLA class I Volcano plots, this seedlist was filtered for ligands, as described previously. In addition, peptides of each replicate were exported without any filter being applied to the data, so that every peptide spectrum match (PSM) including such with a rank \geq 2 was reported with corresponding scores. Intensities (AUC of the extracted ion chromatogram of precursor ions) of those peptides contained in the seedlist were subsequently picked from the unfiltered lists. Reproducibility of intensities across technical replicates is exemplarily shown in Supplementary Figure 4 and Supplementary Figure 11. For each peptide and each condition, mean AUC across all LFQ-MS runs as well as the ratio of mean AUC in condition A versus condition B was calculated. So-called 'one hit wonders' (peptides not detected in at least two technical replicates) were excluded from semiquantitative Volcano plots. The fold-change of peptides exclusively detected in one condition was calculated by replacing zero values with the median of the five least intensities, which represents the limit of detection specific for the respective sample. Further, a normalization step computing PSM intensities in proportion to the total intensity of precursor ions in technical replicates was included. To test for significance, two-tailed *t*-tests with implemented correction for multiple testing according to the Benjamini-Hochberg (BH) procedure were conducted.

Comparative profiling against an in-house database and definition of presentation hotspots for HLA class II-presented antigens

To define glioblastoma-, medulloblastoma-, and meningioma-associated peptides and antigens, protein and peptides were queried against an in-house SQL database (3.2.1) comprising immunopeptidomic datasets from 30 benign primary human organs other than testis (n=418 samples for HLA class I; n=364 samples for HLA class II). The term tumor-exclusive was assigned to peptides and antigens that were never identified on CNS-related tissues (brain, cerebellum, spinal cord, and for meningiomas also dura which was not part of the benign database) and for which a maximum of one non-CNS-related sample was positive. Likewise, the presence of glioblastoma-, medulloblastoma-, or meningioma-associated peptides and proteins was checked in HLA peptidome datasets of up to 37 different primary human malignancies (n=874 samples for HLA class I; n=626 samples for HLA class II).

Comparative profiling is not capable of reflecting length variants and common core sequences of HLA class II-restricted peptides. Vimentin yielded a total of 29 distinct meningioma-exclusive peptides with presentation frequencies up to 67%, however, almost identical peptide sequences differing only in 1 AA in length were identified on benign tissues (Figure 36 A, Supplementary Figure 10 A). To circumvent this problem, all source proteins represented by at least one tumor-exclusive HLA class II-presented peptide were subjected to hotspot analysis. Unique peptides were aligned to human source protein sequences (as deposited in the UniProt⁸⁶ database for taxonomy ID 9606) and the proportion of all peptides covering a given position was calculated separately for identifications on malignant and benign tissues. Tumor-associated hotspots were defined to have a minimum length of eight AA and to be covered by peptides identified in at least five (medulloblastoma / meningioma) or eight (glioblastoma) patients, while not having matching sequences in benign samples.

4 Aim of the study

Primary brain and CNS tumors account for an average yearly incidence of 81,148 new cases in the US with 15,944 people dieing from malignant CNS cancers every year. They represent the eighth most common tumors in adults older than 40 years and even the most common pediatric tumor entity. Throughout the last decades, the outcome of intracranial neoplasms has remained poor calling for intensive research to establish novel therapies. Especially for recurrent glioblastomas, medulloblastomas, and meningiomas, no treatment protocols or standard-of-care guidelines have been established so far. Cancer immunotherapy has elicited remarkable responses in various cancer entities including glioblastoma. This suggests to employ immune-based therapies for intracranial neoplasias aimed at both preventing (or at least prolonging the time to) relapse, which is a common event especially in glioblastoma, and offering an option to manage disease recurrence. Peptide-specific immunotherapy targeting antigens with natural and tumor-specific presentation on HLA molecules may contribute to significantly improve prognosis and quality of life of patients suffering from glioblastoma, medulloblastoma, or meningioma. Despite extensive research on immunotherapeutic targets in gliomas, this has so far not translated into clinical benefit for patients. Of note, especially the antigenic landscape of recurrent tumors has so far not been investigated at all. Medulloblastoma and meningioma are even characterized by a profound lack of potential targets for cancer immunotherapy. HLA class II-presented antigens have not been adequately adressed for any of these three tumor entities. The aim of the present thesis is to define such tumor-associated peptides by employing an immunopeptidome-centric approach to a large number of primary human glioblastoma, medulloblastoma, and meningioma samples. This will allow adressing both HLA class I- and II-restricted peptides in future immunotherapeutic efforts. In the form of a meta-analysis, the immunopeptidomic data acquired from these three intracranial neoplasias will be compared. This will provide insight into whether the immunopeptidome views the different cellular origin of glioblastoma, medulloblastoma, and meningioma cells. Moreover, it will be analyzed whether shared or even pan-brain tumor antigens exist. These projects are intended to contribute to the development of innovative therapeutic strategies for patients suffering from intracranial neoplasms.

5 References

- 1. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. *Neuro Oncol.* 2019;21(Supplement_5):v1-v100.
- Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. *Acta Neuropathol.* 2016;131(6):803-820.
- 3. Jäkel S, Dimou L. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. *Front Cell Neurosci.* 2017;11:24.
- 4. Del Bigio MR. Ependymal cells: biology and pathology. Acta Neuropathol. 2010;119(1):55-73.
- 5. Johnsen JI, Kogner P, Albihn A, Henriksson MA. Embryonal neural tumours and cell death. *Apoptosis*. 2009;14(4):424-438.
- Schüller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, Huillard E, Sun T, Ligon AH, Qian Y, Ma Q, Alvarez-Buylla A, McMahon AP, Rowitch DH, Ligon KL. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. *Cancer Cell.* 2008;14(2):123-134.
- Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM. Molecular subgroups of medulloblastoma: the current consensus. *Acta Neuropathol.* 2012;123(4):465-472.
- 8. Massimino M, Biassoni V, Gandola L, Garre ML, Gatta G, Giangaspero F, Poggi G, Rutkowski S. Childhood medulloblastoma. *Crit Rev Oncol Hematol.* 2016;105:35-51.
- 9. Malhotra M, Toulouse A, Godinho BM, Mc Carthy DJ, Cryan JF, O'Driscoll CM. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. *Mol Biosyst.* 2015;11(10):2635-2657.
- 10. Freudenmann LK. Mapping the HLA Ligandome of Primary versus Recurrent Disease in Glioblastoma Multiforme by Mass Spectrometry. *Master Thesis, Master of Science in Molecular Medicine, Eberhard Karls Universität Tübingen, Faculty of Medicine.* 2017.
- 11. Schwartzbaum JÄ, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. *Nat Clin Pract Neurol.* 2006;2(9):494-503.
- 12. Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. *Pharmacol Ther.* 2015;152:63-82.
- 13. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol.* 2014;25 Suppl 3:iii93-101.
- 14. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492-507.
- 15. Farrell CJ, Plotkin SR. Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von Hippel-Lindau, and other syndromes. *Neurol Clin*. 2007;25(4):925-946.
- 16. Rieske P, Zakrzewska M, Biernat W, Bartkowiak J, Zimmermann A, Liberski PP. Atypical molecular background of glioblastoma and meningioma developed in a patient with Li-Fraumeni syndrome. *J Neurooncol.* 2005;71(1):27-30.
- 17. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005;109(1):93-108.
- 18. Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL. Epidemiology of brain tumors. *Neurol Clin.* 2007;25(4):867-890.
- 19. Wrensch M, Minn Y, Chew T, Bondy M, Berger MS. Epidemiology of primary brain tumors: current concepts and review of the literature. *Neuro Oncol.* 2002;4(4):278-299.
- 20. Miller G. Brain cancer. A viral link to glioblastoma? Science. 2009;323(5910):30-31.
- 21. Chi J, Gu B, Zhang C, Peng G, Zhou F, Chen Y, Zhang G, Guo Y, Guo D, Qin J, Wang J, Li L, Wang F, Liu G, Xie F, Feng D, Zhou H, Huang X, Lu S, Liu Y, Hu W, Yao K. Human herpesvirus 6 latent infection in patients with glioma. *J Infect Dis.* 2012;206(9):1394-1398.
- 22. Poltermann S, Schlehofer B, Steindorf K, Schnitzler P, Geletneky K, Schlehofer JR. Lack of association of herpesviruses with brain tumors. *J Neurovirol.* 2006;12(2):90-99.
- 23. Holdhoff M, Guner G, Rodriguez FJ, Hicks JL, Zheng Q, Forman MS, Ye X, Grossman SA, Meeker AK, Heaphy CM, Eberhart CG, De Marzo AM, Arav-Boger R. Absence of cytomegalovirus in glioblastoma and other high-grade gliomas by real-time PCR, immunohistochemistry and in situ hybridization. *Clin Cancer Res.* 2016.
- 24. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O'Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L. The somatic genomic landscape of glioblastoma. *Cell.* 2013;155(2):462-477.
- 25. Preusser M, de Ribaupierre S, Wohrer A, Erridge SC, Hegi M, Weller M, Stupp R. Current concepts and management of glioblastoma. *Ann Neurol.* 2011;70(1):9-21.
- 26. Cairns RA, Mak TW. Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. *Cancer Discov*. 2013;3(7):730-741.

- 27. Weller M, Pfister SM, Wick W, Hegi ME, Reifenberger G, Stupp R. Molecular neuro-oncology in clinical practice: a new horizon. *Lancet Oncol.* 2013;14(9):e370-379.
- Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB. The common feature of leukemiaassociated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2hydroxyglutarate. *Cancer Cell*. 2010;17(3):225-234.
- Raynaud S, Carbuccia N, Colin C, Adelaide J, Mozziconacci MJ, Metellus P, Chinot O, Birnbaum D, Chaffanet M, Figarella-Branger D. Absence of R140Q mutation of isocitrate dehydrogenase 2 in gliomas and breast cancers. *Oncol Lett.* 2010;1(5):883-884.
- 30. Cheng HB, Yue W, Xie C, Zhang RY, Hu SS, Wang Z. IDH1 mutation is associated with improved overall survival in patients with glioblastoma: a meta-analysis. *Tumour Biol.* 2013;34(6):3555-3559.
- Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Jr., Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. An integrated genomic analysis of human glioblastoma multiforme. *Science*. 2008;321(5897):1807-1812.
- 32. Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. *Neuro Oncol.* 1999;1(1):44-51.
- 33. Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol. 2006;1:97-117.
- 34. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, Lehman N, Aldape K, Yung WK, Bogler O, Weinstein JN, VandenBerg S, Berger M, Prados M, Muzny D, Morgan M, Scherer S, Sabo A, Nazareth L, Lewis L, Hall O, Zhu Y, Ren Y, Alvi O, Yao J, Hawes A, Jhangiani S, Fowler G, San Lucas A, Kovar C, Cree A, Dinh H, Santibanez J, Joshi V, Gonzalez-Garay ML, Miller CA, Milosavljevic A, Donehower L, Wheeler DA, Gibbs RA, Cibulskis K, Sougnez C, Fennell T, Mahan S, Wilkinson J, Ziaugra L, Onofrio R, Bloom T, Nicol R, Ardlie K, Baldwin J, Gabriel S, Lander ES, Ding L, Fulton RS, McLellan MD, Wallis J, Larson DE, Shi X, Abbott R, Fulton L, Chen K, Koboldt DC, Wendl MC, Meyer R, Tang Y, Lin L, Osborne JR, Dunford-Shore BH, Miner TL, Delehaunty K, Markovic C, Swift G, Courtney W, Pohl C, Abbott S, Hawkins A, Leong S, Haipek C, Schmidt H, Wiechert M, Vickery T, Scott S, Dooling DJ, Chinwalla A, Weinstock GM, Mardis ER, Wilson RK, Getz G, Winckler W, Verhaak RG, Lawrence MS, O'Kelly M, Robinson J, Alexe G, Beroukhim R, Carter S, Chiang D, Gould J, Gupta S, Korn J, Mermel C, Mesirov J, Monti S, Nguyen H, Parkin M, Reich M, Stransky N, Weir BA, Garraway L, Golub T, Meyerson M, Chin L, Protopopov A, Zhang J, Perna I, Aronson S, Sathiamoorthy N, Ren G, Yao J, Wiedemeyer WR, Kim H, Kong SW, Xiao Y, Kohane IS, Seidman J, Park PJ, Kucherlapati R, Laird PW, Cope L, Herman JG, Weisenberger DJ, Pan F, Van den Berg D, Van Neste L, Yi JM, Schuebel KE, Baylin SB, Absher DM, Li JZ, Southwick A, Brady S, Aggarwal A, Chung T, Sherlock G, Brooks JD, Myers RM, Spellman PT, Purdom E, Jakkula LR, Lapuk AV, Marr H, Dorton S, Choi Y, Han J, Ray A, Wang V, Durinck S, Robinson M, Wang NJ, Vranizan K, Peng V, Van Name E, Fontenay GV, Ngai J, Conboy JG, Parvin B, Feiler HS, Speed TP, Gray JW, Brennan C, Socci ND, Olshen A, Taylor BS, Lash A, Schultz N, Reva B, Antipin Y, Stukalov A, Gross B, Cerami E, Wang WQ, Qin LX, Seshan VE, Villafania L, Cavatore M, Borsu L, Viale A, Gerald W, Sander C, Ladanyi M, Perou CM, Hayes DN, Topal MD, Hoadley KA, Qi Y, Balu S, Shi Y, Wu J, Penny R, Bittner M, Shelton T, Lenkiewicz E, Morris S, Beasley D, Sanders S, Kahn A, Sfeir R, Chen J, Nassau D, Feng L, Hickey E, Barker A, Gerhard DS, Vockley J, Compton C, Vaught J, Fielding P, Ferguson ML, Schaefer C, Zhang J, Madhavan S, Buetow KH, Collins F, Good P, Guyer M, Ozenberger B, Peterson J, Thomson E. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-1068.
- 35. Mischel PS, Nelson SF, Cloughesy TF. Molecular analysis of glioblastoma: pathway profiling and its implications for patient therapy. *Cancer Biol Ther.* 2003;2(3):242-247.
- 36. Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP. Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. *Cancer Res.* 2000;60(2):417-424.
- 37. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, Drappatz J, O'Rourke DM, Wong M, Hamilton MG, Finocchiaro G, Perry J, Wick W, Green J, He Y, Turner CD, Yellin MJ, Keler T, Davis TA, Stupp R, Sampson JH. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. *Lancet Oncol.* 2017;18(10):1373-1385.
- 38. Ichimura K, Schmidt EE, Goike HM, Collins VP. Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. *Oncogene*. 1996;13(5):1065-1072.
- Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE. High frequency of mutations of the PIK3CA gene in human cancers. *Science*. 2004;304(5670):554.
- 40. Liu Z, Roberts TM. Human tumor mutants in the p110alpha subunit of PI3K. *Cell Cycle*. 2006;5(7):675-677.
- Gallia GL, Rand V, Siu IM, Eberhart CG, James CD, Marie SK, Oba-Shinjo SM, Carlotti CG, Caballero OL, Simpson AJ, Brock MV, Massion PP, Carson BS, Sr., Riggins GJ. PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. *Mol Cancer Res*. 2006;4(10):709-714.
- 42. Hassler M, Seidl S, Fazeny-Doerner B, Preusser M, Hainfellner J, Rössler K, Prayer D, Marosi C. Diversity of cytogenetic and pathohistologic profiles in glioblastoma. *Cancer Genet Cytogenet.* 2006;166(1):46-55.

- 43. Rey JA, Bello MJ, de Campos JM, Kusak ME, Ramos C, Benitez J. Chromosomal patterns in human malignant astrocytomas. *Cancer Genet Cytogenet*. 1987;29(2):201-221.
- 44. Geisenberger C, Mock A, Warta R, Rapp C, Schwager C, Korshunov A, Nied AK, Capper D, Brors B, Jungk C, Jones D, Collins VP, Ichimura K, Bäcklund LM, Schnabel E, Mittelbron M, Lahrmann B, Zheng S, Verhaak RG, Grabe N, Pfister SM, Hartmann C, von Deimling A, Debus J, Unterberg A, Abdollahi A, Herold-Mende C. Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain. Acta Neuropathol. 2015;130(3):419-434.
- 45. Kim DH, Mohapatra G, Bollen A, Waldman FM, Feuerstein BG. Chromosomal abnormalities in glioblastoma multiforme tumors and glioma cell lines detected by comparative genomic hybridization. *Int J Cancer.* 1995;60(6):812-819.
- 46. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, Kratz A, Wefers AK, Huang K, Pajtler KW, Schweizer L, Stichel D, Olar A, Engel NW, Lindenberg K, Harter PN, Braczynski AK, Plate KH, Dohmen H, Garvalov BK, Coras R, Hölsken A, Hewer E, Bewerunge-Hudler M, Schick M, Fischer R, Beschorner R, Schittenhelm J, Staszewski O, Wani K, Varlet P, Pages M, Temming P, Lohmann D, Selt F, Witt H, Milde T, Witt O, Aronica E, Giangaspero F, Rushing E, Scheurlen W, Geisenberger C, Rodriguez FJ, Becker A, Preusser M, Haberler C, Bjerkvig R, Cryan J, Farrell M, Deckert M, Hench J, Frank S, Serrano J, Kannan K, Tsirigos A, Brück W, Hofer S, Brehmer S, Seiz-Rosenhagen M, Hanggi D, Hans V, Rozsnoki S, Hansford JR, Kohlhof P, Kristensen BW, Lechner M, Lopes B, Mawrin C, Ketter R, Kulozik A, Khatib Z, Heppner F, Koch A, Jouvet A, Keohane C, Mühleisen H, Mueller W, Pohl U, Prinz M, Benner A, Zapatka M, Gottardo NG, Driever PH, Kramm CM, Müller HL, Rutkowski S, von Hoff K, Frühwald MC, Gnekow A, Fleischhack G, Tippelt S, Calaminus G, Monoranu CM, Perry A, Jones C, Jacques TS, Radlwimmer B, Gessi M, Pietsch T, Schramm J, Schackert G, Westphal M, Reifenberger G, Wesseling P, Weller M, Collins VP, Blümcke I, Bendszus M, Debus J, Huang A, Jabado N, Northcott PA, Paulus W, Gajjar A, Robinson GW, Taylor MD, Jaunmuktane Z, Ryzhova M, Platten M, Unterberg A, Wick W, Karajannis MA, Mittelbronn M, Acker T, Hartmann C, Aldape K, Schuller U, Buslei R, Lichter P, Kool M, Herold-Mende C, Ellison DW, Hasselblatt M, Snuderl M, Brandner S, Korshunov A, von Deimling A, Pfister SM. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469-474.
- 47. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, Lehman N, Aldape K, Yung WK, Bogler O, Weinstein JN, VandenBerg S, Berger M, Prados M, Muzny D, Morgan M, Scherer S, Sabo A, Nazareth L, Lewis L, Hall O, Zhu Y, Ren Y, Alvi O, Yao J, Hawes A, Jhangiani S, Fowler G, San Lucas A, Kovar C, Cree A, Dinh H, Santibanez J, Joshi V, Gonzalez-Garay ML, Miller CA, Milosavljevic A, Donehower L, Wheeler DA, Gibbs RA, Cibulskis K, Sougnez C, Fennell T, Mahan S, Wilkinson J, Ziaugra L, Onofrio R, Bloom T, Nicol R, Ardlie K, Baldwin J, Gabriel S, Lander ES, Ding L, Fulton RS, McLellan MD, Wallis J, Larson DE, Shi X, Abbott R, Fulton L, Chen K, Koboldt DC, Wendl MC, Meyer R, Tang Y, Lin L, Osborne JR, Dunford-Shore BH, Miner TL, Delehaunty K, Markovic C, Swift G, Courtney W, Pohl C, Abbott S, Hawkins A, Leong S, Haipek C, Schmidt H, Wiechert M, Vickery T, Scott S, Dooling DJ, Chinwalla A, Weinstock GM, Mardis ER, Wilson RK, Getz G, Winckler W, Verhaak RG, Lawrence MS, O'Kelly M, Robinson J, Alexe G, Beroukhim R, Carter S, Chiang D, Gould J, Gupta S, Korn J, Mermel C, Mesirov J, Monti S, Nguyen H, Parkin M, Reich M, Stransky N, Weir BA, Garraway L, Golub T, Meyerson M, Chin L, Protopopov A, Zhang J, Perna I, Aronson S, Sathiamoorthy N, Ren G, Yao J, Wiedemeyer WR, Kim H, Kong SW, Xiao Y, Kohane IS, Seidman J, Park PJ, Kucherlapati R, Laird PW, Cope L, Herman JG, Weisenberger DJ, Pan F, Van den Berg D, Van Neste L, Yi JM, Schuebel KE, Baylin SB, Absher DM, Li JZ, Southwick A, Brady S, Aggarwal A, Chung T, Sherlock G, Brooks JD, Myers RM, Spellman PT, Purdom E, Jakkula LR, Lapuk AV, Marr H, Dorton S, Choi Y, Han J, Ray A, Wang V, Durinck S, Robinson M, Wang NJ, Vranizan K, Peng V, Van Name E, Fontenay GV, Ngai J, Conboy JG, Parvin B, Feiler HS, Speed TP, Gray JW, Brennan C, Socci ND, Olshen A, Taylor BS, Lash A, Schultz N, Reva B, Antipin Y, Stukalov A, Gross B, Cerami E, Wang WQ, Qin LX, Seshan VE, Villafania L, Cavatore M, Borsu L, Viale A, Gerald W, Sander C, Ladanyi M, Perou CM, Hayes DN, Topal MD, Hoadley KA, Qi Y, Balu S, Shi Y, Wu J, Penny R, Bittner M, Shelton T, Lenkiewicz E, Morris S, Beasley D, Sanders S, Kahn A, Sfeir R, Chen J, Nassau D, Feng L, Hickey E, Barker A, Gerhard DS, Vockley J, Compton C, Vaught J, Fielding P, Ferguson ML, Schaefer C, Zhang J, Madhavan S, Buetow KH, Collins F, Good P, Guyer M, Ozenberger B, Peterson J, Thomson E. Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2013;494(7438):506.
- Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LG, Huse JT, Mellinghoff IK, Chan TA. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. *Nature*. 2012;483(7390):479-483.
- 49. Mohme M, Neidert MC, Regli L, Weller M, Martin R. Immunological challenges for peptide-based immunotherapy in glioblastoma. *Cancer Treat Rev.* 2014;40(2):248-258.
- 50. Goodenberger ML, Jenkins RB. Genetics of adult glioma. *Cancer Genet.* 2012;205(12):613-621.
- 51. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. *Cancer Cell*. 2010;17(5):510-522.
- 52. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S,

Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. *Lancet Oncol.* 2009;10(5):459-466.

- 53. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. *N Engl J Med.* 2000;343(19):1350-1354.
- 54. Hegi ME, Diserens AC, Godard S, Dietrich PY, Regli L, Ostermann S, Otten P, Van Melle G, de Tribolet N, Stupp R. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. *Clin Cancer Res.* 2004;10(6):1871-1874.
- 55. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. *N Engl J Med*. 2005;352(10):997-1003.
- 56. Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J, Westphal M, Schackert G, Simon M, Tonn JC, Heese O, Krex D, Nikkhah G, Pietsch T, Wiestler O, Reifenberger G, von Deimling A, Loeffler M. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. *J Clin Oncol.* 2009;27(34):5743-5750.
- 57. Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ, Wick W, Hegi ME. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? *Nat Rev Neurol*. 2010;6(1):39-51.
- Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. *J Neurosurg*. 2001;95(2):190-198.
- 59. Walker MD, Green SB, Byar DP, Alexander E, Jr., Batzdorf U, Brooks WH, Hunt WE, MacCarty CS, Mahaley MS, Jr., Mealey J, Jr., Owens G, Ransohoff J, 2nd, Robertson JT, Shapiro WR, Smith KR, Jr., Wilson CB, Strike TA. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. *N Engl J Med.* 1980;303(23):1323-1329.
- 60. Villano JL, Seery TE, Bressler LR. Temozolomide in malignant gliomas: current use and future targets. *Cancer Chemother Pharmacol.* 2009;64(4):647-655.
- 61. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. *N Engl J Med.* 2005;352(10):987-996.
- 62. Weller M, Stupp R, Wick W. Epilepsy meets cancer: when, why, and what to do about it? *Lancet Oncol.* 2012;13(9):e375-382.
- 63. Rossetti AO, Stupp R. Epilepsy in brain tumor patients. *Curr Opin Neurol.* 2010;23(6):603-609.
- 64. Qiu ZK, Shen D, Chen YS, Yang QY, Guo CC, Feng BH, Chen ZP. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells. *Chin J Cancer*. 2014;33(2):115-122.
- 65. Bonavia R, Inda MM, Cavenee WK, Furnari FB. Heterogeneity maintenance in glioblastoma: a social network. *Cancer Res.* 2011;71(12):4055-4060.
- 66. Gorlia T, Stupp R, Brandes AA, Rampling RR, Fumoleau P, Dittrich C, Campone MM, Twelves CC, Raymond E, Hegi ME, Lacombe D, van den Bent MJ. New prognostic factors and calculators for outcome prediction in patients with recurrent glioblastoma: a pooled analysis of EORTC Brain Tumour Group phase I and II clinical trials. *Eur J Cancer*. 2012;48(8):1176-1184.
- 67. Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, Greenman C, Edkins S, Bignell G, Davies H, O'Meara S, Parker A, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Richardson D, Shepherd R, Small A, Solomon H, Tofts C, Varian J, West S, Widaa S, Yates A, Easton DF, Riggins G, Roy JE, Levine KK, Mueller W, Batchelor TT, Louis DN, Stratton MR, Futreal PA, Wooster R. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. *Cancer Res.* 2006;66(8):3987-3991.
- 68. Karran P, Offman J, Bignami M. Human mismatch repair, drug-induced DNA damage, and secondary cancer. *Biochimie*. 2003;85(11):1149-1160.
- 69. Hickman MJ, Samson LD. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. *Proc Natl Acad Sci U S A*. 1999;96(19):10764-10769.
- 70. Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, Cohen-Jonathan-Moyal E, Frappaz D, Henriksson R, Balana C, Chinot O, Ram Z, Reifenberger G, Soffietti R, Wick W. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. *Lancet Oncol.* 2014;15(9):e395-403.
- 71. Erdem-Eraslan L, van den Bent MJ, Hoogstrate Y, Naz-Khan H, Stubbs A, van der Spek P, Bottcher R, Gao Y, de Wit M, Taal W, Oosterkamp HM, Walenkamp A, Beerepoot LV, Hanse MC, Buter J, Honkoop AH, van der Holt B, Vernhout RM, Sillevis Smitt PA, Kros JM, French PJ. Identification of Patients with Recurrent Glioblastoma Who May Benefit from Combined Bevacizumab and CCNU Therapy: A Report from the BELOB Trial. *Cancer Res.* 2016;76(3):525-534.
- 72. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink KL, Barnett GH, Zhu JJ, Henson JW, Engelhard HH, Chen TC, Tran DD, Sroubek J, Tran ND, Hottinger AF, Landolfi J, Desai R, Caroli M, Kew Y, Honnorat J, Idbaih A, Kirson ED, Weinberg U, Palti Y, Hegi ME, Ram Z. Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. *Jama*. 2015;314(23):2535-2543.

- 73. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F, Dbalý V, Ram Z, Villano JL, Rainov N, Weinberg U, Schiff D, Kunschner L, Raizer J, Honnorat J, Sloan A, Malkin M, Landolfi JC, Payer F, Mehdorn M, Weil RJ, Pannullo SC, Westphal M, Smrcka M, Chin L, Kostron H, Hofer S, Bruce J, Cosgrove R, Paleologous N, Palti Y, Gutin PH. NovoTTF-100A versus physician's choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. *Eur J Cancer*. 2012;48(14):2192-2202.
- 74. Swanson KD, Lok É, Wong ET. An Overview of Alternating Electric Fields Therapy (NovoTTF Therapy) for the Treatment of Malignant Glioma. *Curr Neurol Neurosci Rep.* 2016;16(1):8.
- 75. Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of recurrent glioblastoma-are we there yet? *Neuro Oncol.* 2013;15(1):4-27.
- Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. *J Clin Oncol.* 2009;27(28):4733-4740.
- 77. Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, Park J, Albert PS, Fine HA. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. *J Clin Oncol.* 2009;27(5):740-745.
- 78. Miller JJ, Wen PY. Emerging targeted therapies for glioma. *Expert Opin Emerg Drugs*. 2016;21(4):441-452.
- 79. Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. *Cancer*. 2007;110(1):13-24.
- Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. *Cancer Cell*. 2007;11(1):83-95.
- 81. Waszak SM, Northcott PA, Buchhalter I, Robinson GW, Sutter C, Groebner S, Grund KB, Brugières L, Jones DTW, Pajtler KW, Morrissy AS, Kool M, Sturm D, Chavez L, Ernst A, Brabetz S, Hain M, Zichner T, Segura-Wang M, Weischenfeldt J, Rausch T, Mardin BR, Zhou X, Baciu C, Lawerenz C, Chan JA, Varlet P, Guerrini-Rousseau L, Fults DW, Grajkowska W, Hauser P, Jabado N, Ra YS, Zitterbart K, Shringarpure SS, De La Vega FM, Bustamante CD, Ng HK, Perry A, MacDonald TJ, Hernáiz Driever P, Bendel AE, Bowers DC, McCowage G, Chintagumpala MM, Cohn R, Hassall T, Fleischhack G, Eggen T, Wesenberg F, Feychting M, Lannering B, Schüz J, Johansen C, Andersen TV, Röösli M, Kuehni CE, Grotzer M, Kjaerheim K, Monoranu CM, Archer TC, Duke E, Pomeroy SL, Shelagh R, Frank S, Sumerauer D, Scheurlen W, Ryzhova MV, Milde T, Kratz CP, Samuel D, Zhang J, Solomon DA, Marra M, Eils R, Bartram CR, von Hoff K, Rutkowski S, Ramaswamy V, Gilbertson RJ, Korshunov A, Taylor MD, Lichter P, Malkin D, Gajjar A, Korbel JO, Pfister SM. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. *Lancet Oncol.* 2018;19(6):785-798.
- 82. Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P, Taylor MD, Pfister SM. Medulloblastomics: the end of the beginning. *Nat Rev Cancer*. 2012;12(12):818-834.
- 83. Hortal AM, Vermeulen JF, Van Hecke W, Bovenschen N. Oncogenic role of cytomegalovirus in medulloblastoma? *Cancer Lett.* 2017;408:55-59.
- 84. Barreda Costa C, Chu Revollar L, Herrera Alzamora A. Meduloblastoma and recurrent meningioma in association with colonic polyposis: an unusual presentation of Turcot syndrome. *Rev Gastroenterol Peru*. 2019;39(3):280-283.
- 85. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, Grobner S, Segura-Wang M, Zichner T, Rudneva VA, Warnatz HJ, Sidiropoulos N, Phillips AH, Schumacher S, Kleinheinz K, Waszak SM, Erkek S, Jones DTW, Worst BC, Kool M, Zapatka M, Jäger N, Chavez L, Hutter B, Bieg M, Paramasivam N, Heinold M, Gu Z, Ishaque N, Jäger-Schmidt C, Imbusch CD, Jugold A, Hübschmann D, Risch T, Amstislavskiy V, Gonzalez FGR, Weber UD, Wolf S, Robinson GW, Zhou X, Wu G, Finkelstein D, Liu Y, Cavalli FMG, Luu B, Ramaswamy V, Wu X, Koster J, Ryzhova M, Cho YJ, Pomeroy SL, Herold-Mende C, Schuhmann M, Ebinger M, Liau LM, Mora J, McLendon RE, Jabado N, Kumabe T, Chuah E, Ma Y, Moore RA, Mungall AJ, Mungall KL, Thiessen N, Tse K, Wong T, Jones SJM, Witt O, Milde T, Von Deimling A, Capper D, Korshunov A, Yaspo ML, Kriwacki R, Gajjar A, Zhang J, Beroukhim R, Fraenkel E, Korbel JO, Brors B, Schlesner M, Eils R, Marra MA, Pfister SM, Taylor MD, Lichter P. The whole-genome landscape of medulloblastoma subtypes. *Nature*. 2017;547(7663):311-317.
- 86. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158-d169.
- 87. Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F, Kool M, Dufour C, Vassal G, Milde T, Witt O, von Hoff K, Pietsch T, Northcott PA, Gajjar A, Robinson GW, Padovani L, André N, Massimino M, Pizer B, Packer R, Rutkowski S, Pfister SM, Taylor MD, Pomeroy SL. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. *Acta Neuropathol.* 2016;131(6):821-831.
- Perreault S, Ramaswamy V, Achrol AS, Chao K, Liu TT, Shih D, Remke M, Schubert S, Bouffet E, Fisher PG, Partap S, Vogel H, Taylor MD, Cho YJ, Yeom KW. MRI surrogates for molecular subgroups of medulloblastoma. *AJNR Am J Neuroradiol*. 2014;35(7):1263-1269.
- 89. Wilne S, Collier J, Kennedy C, Jenkins A, Grout J, Mackie S, Koller K, Grundy R, Walker D. Progression from first symptom to diagnosis in childhood brain tumours. *Eur J Pediatr.* 2012;171(1):87-93.
- 90. Martin AM, Raabe E, Eberhart C, Cohen KJ. Management of pediatric and adult patients with medulloblastoma. *Curr Treat Options Oncol.* 2014;15(4):581-594.

- 91. Spiegler BJ, Bouffet E, Greenberg ML, Rutka JT, Mabbott DJ. Change in neurocognitive functioning after treatment with cranial radiation in childhood. *J Clin Oncol.* 2004;22(4):706-713.
- 92. Mabbott DJ, Penkman L, Witol A, Strother D, Bouffet E. Core neurocognitive functions in children treated for posterior fossa tumors. *Neuropsychology*. 2008;22(2):159-168.
- 93. Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I, Packer RJ, Goldman S, Prados MD, Desjardins A, Chintagumpala M, Takebe N, Kaste SC, Rusch M, Allen SJ, Onar-Thomas A, Stewart CF, Fouladi M, Boyett JM, Gilbertson RJ, Curran T, Ellison DW, Gajjar A. Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. *J Clin Oncol.* 2015;33(24):2646-2654.
- 94. Phillips LE, Koepsell TD, van Belle G, Kukull WA, Gehrels JA, Longstreth WT, Jr. History of head trauma and risk of intracranial meningioma: population-based case-control study. *Neurology*. 2002;58(12):1849-1852.
- Riemenschneider MJ, Perry A, Reifenberger G. Histological classification and molecular genetics of meningiomas. *Lancet Neurol.* 2006;5(12):1045-1054.
- 96. Bickerstaff ER, Small JM, Guest IA. The relapsing course of certain meningiomas in relation to pregnancy and menstruation. *J Neurol Neurosurg Psychiatry*. 1958;21(2):89-91.
- 97. Koenig MA, Geocadin RG, Kulesza P, Olivi A, Brem H. Rhabdoid meningioma occurring in an unrelated resection cavity with leptomeningeal carcinomatosis. Case report. *J Neurosurg.* 2005;102(2):371-375.
- 98. Evans DG. Neurofibromatosis type 2. Handb Clin Neurol. 2015;132:87-96.
- 99. Kerr K, Qualmann K, Esquenazi Y, Hagan J, Kim DH. Familial Syndromes Involving Meningiomas Provide Mechanistic Insight Into Sporadic Disease. *Neurosurgery*. 2018;83(6):1107-1118.
- 100. Asgharian B, Chen YJ, Patronas NJ, Peghini PL, Reynolds JC, Vortmeyer A, Zhuang Z, Venzon DJ, Gibril F, Jensen RT. Meningiomas may be a component tumor of multiple endocrine neoplasia type 1. *Clin Cancer Res.* 2004;10(3):869-880.
- 101. Mortimer PS, Geaney DP, Liddell K, Dawber RP. Basal cell naevus syndrome and intracranial meningioma. *J* Neurol Neurosurg Psychiatry. 1984;47(2):210-212.
- 102. Yakubov E, Ghoochani A, Buslei R, Buchfelder M, Eyüpoglu IY, Savaskan N. Hidden association of Cowden syndrome, PTEN mutation and meningioma frequency. *Oncoscience*. 2016;3(5-6):149-155.
- 103. Goto M, Miller RW, Ishikawa Y, Sugano H. Excess of rare cancers in Werner syndrome (adult progeria). *Cancer Epidemiol Biomarkers Prev.* 1996;5(4):239-246.
- 104. Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, Hovland P, Davidorf FH. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. *J Med Genet*. 2011;48(12):856-859.
- 105. Leblanc R. Familial adenomatous polyposis and benign intracranial tumors: a new variant of Gardner's syndrome. *Can J Neurol Sci.* 2000;27(4):341-346.
- 106. Kanno H, Yamamoto I, Yoshida M, Kitamura H. Meningioma showing VHL gene inactivation in a patient with von Hippel-Lindau disease. *Neurology*. 2003;60(7):1197-1199.
- 107. Gerkes EH, Fock JM, den Dunnen WF, van Belzen MJ, van der Lans CA, Hoving EW, Fakkert IE, Smith MJ, Evans DG, Olderode-Berends MJ. A heritable form of SMARCE1-related meningiomas with important implications for follow-up and family screening. *Neurogenetics*. 2016;17(2):83-89.
- 108. Bacci C, Sestini R, Provenzano A, Paganini I, Mancini I, Porfirio B, Vivarelli R, Genuardi M, Papi L. Schwannomatosis associated with multiple meningiomas due to a familial SMARCB1 mutation. *Neurogenetics.* 2010;11(1):73-80.
- 109. Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjöld M, Collins VP, Dumanski JP, Rouleau GA. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. *Nat Genet*. 1994;6(2):180-184.
- 110. Bi WL, Greenwald NF, Abedalthagafi M, Wala J, Gibson WJ, Agarwalla PK, Horowitz P, Schumacher SE, Esaulova E, Mei Y, Chevalier A, Ducar M, Thorner AR, van Hummelen P, Stemmer-Rachamimov A, Artyomov M, Al-Mefty O, Dunn GP, Santagata S, Dunn IF, Beroukhim R. Genomic landscape of high-grade meningiomas. NPJ Genom Med. 2017;2.
- 111. Ruttledge MH, Xie YG, Han FY, Peyrard M, Collins VP, Nordenskjöld M, Dumanski JP. Deletions on chromosome 22 in sporadic meningioma. *Genes Chromosomes Cancer*. 1994;10(2):122-130.
- 112. Abedalthagafi M, Bi WL, Aizer AA, Merrill PH, Brewster R, Agarwalla PK, Listewnik ML, Dias-Santagata D, Thorner AR, Van Hummelen P, Brastianos PK, Reardon DA, Wen PY, Al-Mefty O, Ramkissoon SH, Folkerth RD, Ligon KL, Ligon AH, Alexander BM, Dunn IF, Beroukhim R, Santagata S. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. *Neuro Oncol.* 2016;18(5):649-655.
- 113. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, Ligon KL, Palescandolo E, Van Hummelen P, Ducar MD, Raza A, Sunkavalli A, Macconaill LE, Stemmer-Rachamimov AO, Louis DN, Hahn WC, Dunn IF, Beroukhim R. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. *Nat Genet*. 2013;45(3):285-289.
- 114. Shankar GM, Abedalthagafi M, Vaubel RA, Merrill PH, Nayyar N, Gill CM, Brewster R, Bi WL, Agarwalla PK, Thorner AR, Reardon DA, Al-Mefty O, Wen PY, Alexander BM, van Hummelen P, Batchelor TT, Ligon KL, Ligon AH, Meyerson M, Dunn IF, Beroukhim R, Louis DN, Perry A, Carter SL, Giannini C, Curry WT, Jr., Cahill DP, Barker FG, 2nd, Brastianos PK, Santagata S. Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. *Neuro Oncol.* 2017;19(4):535-545.
- 115. Goutagny S, Nault JC, Mallet M, Henin D, Rossi JZ, Kalamarides M. High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. *Brain Pathol.* 2014;24(2):184-189.

- 116. Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Özduman K, Avşar T, Li J, Murray PB, Henegariu O, Yilmaz S, Günel JM, Carrión-Grant G, Yilmaz B, Grady C, Tanrıkulu B, Bakırcıoğlu M, Kaymakçalan H, Caglayan AO, Sencar L, Ceyhun E, Atik AF, Bayri Y, Bai H, Kolb LE, Hebert RM, Omay SB, Mishra-Gorur K, Choi M, Overton JD, Holland EC, Mane S, State MW, Bilgüvar K, Baehring JM, Gutin PH, Piepmeier JM, Vortmeyer A, Brennan CW, Pamir MN, Kılıç T, Lifton RP, Noonan JP, Yasuno K, Günel M. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. *Science*. 2013;339(6123):1077-1080.
- 117. Clark VE, Harmanci AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, Ercan-Sencicek AG, Abraham BJ, Weintraub AS, Hnisz D, Simon M, Krischek B, Erson-Omay EZ, Henegariu O, Carrión-Grant G, Mishra-Gorur K, Durán D, Goldmann JE, Schramm J, Goldbrunner R, Piepmeier JM, Vortmeyer AO, Günel JM, Bilgüvar K, Yasuno K, Young RA, Günel M. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. *Nat Genet.* 2016;48(10):1253-1259.
- 118. Wilms G, Lammens M, Marchal G, Van Calenbergh F, Plets C, Van Fraeyenhoven L, Baert AL. Thickening of dura surrounding meningiomas: MR features. *J Comput Assist Tomogr.* 1989;13(5):763-768.
- 119. Wen M, Jung S, Moon KS, Pei J, Lee KH, Jin SG, Li SY, Ryu HH. Immunohistochemical profile of the dural tail in intracranial meningiomas. *Acta Neurochir (Wien)*. 2014;156(12):2263-2273.
- 120. Kessler RA, Garzon-Muvdi T, Yang W, Weingart J, Olivi A, Huang J, Brem H, Lim M. Metastatic Atypical and Anaplastic Meningioma: A Case Series and Review of the Literature. *World Neurosurg.* 2017;101:47-56.
- 121. Perry A, Scheithauer BW, Stafford SL, Lohse CM, Wollan PC. "Malignancy" in meningiomas: a clinicopathologic study of 116 patients, with grading implications. *Cancer*. 1999;85(9):2046-2056.
- 122. Ito K, Imagama S, Ando K, Kobayashi K, Shido Y, Go Y, Arima H, Kanbara S, Hirose T, Matsuyama Y, Nishida Y, Ishiguro N. Intraspinal meningioma with malignant transformation and distant metastasis. *Nagoya J Med Sci.* 2017;79(1):97-102.
- 123. van Alkemade H, de Leau M, Dieleman EM, Kardaun JW, van Os R, Vandertop WP, van Furth WR, Stalpers LJ. Impaired survival and long-term neurological problems in benign meningioma. *Neuro Oncol.* 2012;14(5):658-666.
- 124. Apra C, Peyre M, Kalamarides M. Current treatment options for meningioma. *Expert Rev Neurother*. 2018;18(3):241-249.
- 125. Hasan S, Young M, Albert T, Shah AH, Okoye C, Bregy A, Lo SS, Ishkanian F, Komotar RJ. The role of adjuvant radiotherapy after gross total resection of atypical meningiomas. *World Neurosurg*. 2015;83(5):808-815.
- 126. Patibandla MR, Lee CC, Sheehan J. Stereotactic Radiosurgery of Central Skull Base Meningiomas-Volumetric Evaluation and Long-Term Outcomes. *World Neurosurg.* 2017;108:176-184.
- 127. Patibandla MR, Lee CC, Tata A, Addagada GC, Sheehan JP. Stereotactic radiosurgery for WHO grade I posterior fossa meningiomas: long-term outcomes with volumetric evaluation. *J Neurosurg.* 2018;129(5):1249-1259.
- Durand A, Labrousse F, Jouvet A, Bauchet L, Kalamaridès M, Menei P, Deruty R, Moreau JJ, Fèvre-Montange M, Guyotat J. WHO grade II and III meningiomas: a study of prognostic factors. *J Neurooncol.* 2009;95(3):367-375.
- 129. Rapp C, Dettling S, Liu F, Ull AT, Warta R, Jungk C, Roesch S, Mock A, Sahm F, Schmidt M, Jungwirth G, Zweckberger K, Lamszus K, Gousias K, Kessler AF, Grabe N, Loehr M, Ketter R, Urbschat S, Senft C, Westphal M, Abdollahi A, Debus J, von Deimling A, Unterberg A, Simon M, Herold-Mende CC. Cytotoxic T Cells and their Activation Status are Independent Prognostic Markers in Meningiomas. *Clin Cancer Res.* 2019;25(17):5260-5270.
- 130. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM. Meningioma grading: an analysis of histologic parameters. *Am J Surg Pathol.* 1997;21(12):1455-1465.
- 131. Mason WP, Gentili F, Macdonald DR, Hariharan S, Cruz CR, Abrey LE. Stabilization of disease progression by hydroxyurea in patients with recurrent or unresectable meningioma. *J Neurosurg.* 2002;97(2):341-346.
- 132. Ji Y, Rankin C, Grunberg S, Sherrod AE, Ahmadi J, Townsend JJ, Feun LG, Fredericks RK, Russell CA, Kabbinavar FF, Stelzer KJ, Schott A, Verschraegen C. Double-Blind Phase III Randomized Trial of the Antiprogestin Agent Mifepristone in the Treatment of Unresectable Meningioma: SWOG S9005. *J Clin Oncol.* 2015;33(34):4093-4098.
- Graillon T, Romano D, Defilles C, Saveanu A, Mohamed A, Figarella-Branger D, Roche PH, Fuentes S, Chinot O, Dufour H, Barlier A. Octreotide therapy in meningiomas: in vitro study, clinical correlation, and literature review. *J Neurosurg.* 2017;127(3):660-669.
- 134. Graillon T, Defilles C, Mohamed A, Lisbonis C, Germanetti AL, Chinot O, Figarella-Branger D, Roche PH, Adetchessi T, Fuentes S, Metellus P, Dufour H, Enjalbert A, Barlier A. Combined treatment by octreotide and everolimus: Octreotide enhances inhibitory effect of everolimus in aggressive meningiomas. *J Neurooncol.* 2015;124(1):33-43.
- 135. Kaley TJ, Wen P, Schiff D, Ligon K, Haidar S, Karimi S, Lassman AB, Nolan CP, DeAngelis LM, Gavrilovic I, Norden A, Drappatz J, Lee EQ, Purow B, Plotkin SR, Batchelor T, Abrey LE, Omuro A. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. *Neuro Oncol.* 2015;17(1):116-121.
- 136. Nayak L, Iwamoto FM, Rudnick JD, Norden AD, Lee EQ, Drappatz J, Omuro A, Kaley TJ. Atypical and anaplastic meningiomas treated with bevacizumab. *J Neurooncol.* 2012;109(1):187-193.
- 137. Medzhitov R, Janeway C, Jr. Innate immune recognition: mechanisms and pathways. *Immunol Rev.* 2000;173:89-97.

- 138. Medzhitov R, Janeway CA, Jr. Innate immunity: impact on the adaptive immune response. *Curr Opin Immunol.* 1997;9(1):4-9.
- 139. Delves PJ, Roitt IM. The immune system. Second of two parts. N Engl J Med. 2000;343(2):108-117.
- 140. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. *J Immunol.* 1995;155(3):1151-1164.
- 141. MacLennan ICM, Gulbranson-Judge A, Toellner KM, Casamayor-Palleja M, Chan E, Sze DMY, Luther SA, Orbea HA. The changing preference of T and B cells for partners as T-dependent antibody responses develop. *Immunol Rev.* 1997;156:53-66.
- 142. Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med. 2000;343(1):37-49.
- 143. Boniface JJ, Davis MM. T-cell recognition of antigen. A process controlled by transient intermolecular interactions. *Ann N Y Acad Sci.* 1995;766:62-69.
- 144. Gruen JR, Weissman SM. Evolving views of the major histocompatibility complex. *Blood*. 1997;90(11):4252-4265.
- 145. Goldberg AC, Rizzo LV. MHC structure and function antigen presentation. Part 1. *Einstein (Sao Paulo)*. 2015;13(1):153-156.
- 146. Beck S, Trowsdale J. Sequence organisation of the class II region of the human MHC. *Immunol Rev.* 1999;167:201-210.
- 147. Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? *Nat Rev Immunol.* 2014;14(11):719-730.
- 148. Dengjel J, Nastke MD, Gouttefangeas C, Gitsioudis G, Schoor O, Altenberend F, Muller M, Kramer B, Missiou A, Sauter M, Hennenlotter J, Wernet D, Stenzl A, Rammensee HG, Klingel K, Stevanović S. Unexpected abundance of HLA class II presented peptides in primary renal cell carcinomas. *Clin Cancer Res.* 2006;12(14 Pt 1):4163-4170.
- 149. Neidert MC, Kowalewski DJ, Silginer M, Kapolou K, Backert L, Freudenmann LK, Peper JK, Marcu A, Wang SS, Walz JS, Wolpert F, Rammensee HG, Henschler R, Lamszus K, Westphal M, Roth P, Regli L, Stevanović S, Weller M, Eisele G. The natural HLA ligandome of glioblastoma stem-like cells: antigen discovery for T cell-based immunotherapy. *Acta Neuropathol.* 2018;135(6):923-938.
- 150. Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997;15:749-795.
- 151. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SG. The IPD and IMGT/HLA database: allele variant databases. *Nucleic Acids Res.* 2015;43(Database issue):D423-431.
- 152. Bhagavan NV, Ha C-E. Essentials of Medical Biochemistry: With Clinical Cases, 1 ed.: Waltham: Academic Press; 2011.
- 153. Goldberg AC, Rizzo LV. MHC structure and function antigen presentation. Part 2. *Einstein (Sao Paulo)*. 2015;13(1):157-162.
- 154. Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. *Annu Rev Biochem.* 2009;78:477-513.
- 155. Parcej D, Tampe R. ABC proteins in antigen translocation and viral inhibition. *Nat Chem Biol.* 2010;6(8):572-580.
- 156. Adiko AC, Babdor J, Gutierrez-Martinez E, Guermonprez P, Saveanu L. Intracellular Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation. *Front Immunol.* 2015;6:335.
- 157. Madden DR, Garboczi DN, Wiley DC. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. *Cell*. 1993;75(4):693-708.
- 158. Rammensee HG. Chemistry of peptides associated with MHC class I and class II molecules. *Curr Opin Immunol.* 1995;7(1):85-96.
- 159. Guo HC, Jardetzky TS, Garrett TP, Lane WS, Strominger JL, Wiley DC. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. *Nature*. 1992;360(6402):364-366.
- 160. Falk K, Rötzschke O, Stevanović S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. *Nature*. 1991;351(6324):290-296.
- 161. Rammensee HG, Friede T, Stevanović S. MHC ligands and peptide motifs: first listing. *Immunogenetics*. 1995;41(4):178-228.
- 162. Kobayashi KS, van den Elsen PJ. NLRC5: a key regulator of MHC class I-dependent immune responses. *Nat Rev Immunol.* 2012;12(12):813-820.
- 163. Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. *Nat Rev Immunol.* 2015;15(4):203-216.
- 164. Wolf PR, Ploegh HL. How MHC class II molecules acquire peptide cargo: biosynthesis and trafficking through the endocytic pathway. *Annu Rev Cell Dev Biol.* 1995;11:267-306.
- 165. Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. *Proc Natl Acad Sci U S A*. 2005;102(22):7922-7927.
- 166. Cresswell P. Assembly, transport, and function of MHC class II molecules. *Annu Rev Immunol*. 1994;12:259-293.
- 167. Lippolis JD, White FM, Marto JA, Luckey CJ, Bullock TN, Shabanowitz J, Hunt DF, Engelhard VH. Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets. *J Immunol.* 2002;169(9):5089-5097.

- 168. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. *Nature*. 1994;368(6468):215-221.
- 169. Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger JL. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. *J Exp Med.* 1993;178(1):27-47.
- 170. Rötzschke O, Falk K. Origin, structure and motifs of naturally processed MHC class II ligands. *Curr Opin Immunol.* 1994;6(1):45-51.
- 171. Sinigaglia F, Hammer J. Defining rules for the peptide-MHC class II interaction. *Curr Opin Immunol.* 1994;6(1):52-56.
- 172. Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. *Immunol Rev.* 2005;207:166-183.
- 173. Parish CR. Cancer immunotherapy: the past, the present and the future. *Immunol Cell Biol.* 2003;81(2):106-113.
- 174. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. *Nat Rev Cancer*. 2014;14(2):135-146.
- 175. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. *Am J Med Sci.* 1893;105:487-511.
- 176. Urban JL, Schreiber H. Tumor antigens. Annu Rev Immunol. 1992;10:617-644.
- 177. Freudenmann LK, Marcu A, Stevanović S. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. *Immunology*. 2018;154(3):331-345.
- 178. Weinzierl AO, Maurer D, Altenberend F, Schneiderhan-Marra N, Klingel K, Schoor O, Wernet D, Joos T, Rammensee HG, Stevanović S. A cryptic vascular endothelial growth factor T-cell epitope: identification and characterization by mass spectrometry and T-cell assays. *Cancer Res.* 2008;68(7):2447-2454.
- 179. Laumont CM, Daouda T, Laverdure JP, Bonneil É, Caron-Lizotte O, Hardy MP, Granados DP, Durette C, Lemieux S, Thibault P, Perreault C. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. *Nat Commun.* 2016;7:10238.
- 180. Cobbold M, De La Peña H, Norris A, Polefrone JM, Qian J, English AM, Cummings KL, Penny S, Turner JE, Cottine J, Abelin JG, Malaker SA, Zarling AL, Huang HW, Goodyear O, Freeman SD, Shabanowitz J, Pratt G, Craddock C, Williams ME, Hunt DF, Engelhard VH. MHC class I-associated phosphopeptides are the targets of memory-like immunity in leukemia. *Sci Transl Med.* 2013;5(203):203ra125.
- 181. Mishto M, Liepe J. Post-Translational Peptide Splicing and T Cell Responses. *Trends Immunol.* 2017;38(12):904-915.
- 182. Liepe J, Marino F, Sidney J, Jeko A, Bunting DE, Sette A, Kloetzel PM, Stumpf MP, Heck AJ, Mishto M. A large fraction of HLA class I ligands are proteasome-generated spliced peptides. *Science*. 2016;354(6310):354-358.
- 183. Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, Armstrong M, Powell RL, Reisdorph N, Kumar N, Elso CM, DeNicola M, Bottino R, Powers AC, Harlan DM, Kent SC, Mannering SI, Haskins K. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. *Science*. 2016;351(6274):711-714.
- 184. Duvallet É, Boulpicante M, Yamazaki T, Daskalogianni C, Prado Martins R, Baconnais S, Manoury B, Fahraeus R, Apcher S. Exosome-driven transfer of tumor-associated Pioneer Translation Products (TA-PTPs) for the MHC class I cross-presentation pathway. *Oncoimmunology*. 2016;5(9):e1198865.
- 185. Obeid J, Hu Y, Slingluff CL, Jr. Vaccines, Adjuvants, and Dendritic Cell Activators-Current Status and Future Challenges. *Semin Oncol.* 2015;42(4):549-561.
- 186. Ouspenskaia T, Law T, Clauser KR, Klaeger S, Sarkizova S, Aguet F, Li B, Christian E, Knisbacher BA, Le PM, Hartigan CR, Keshishian H, Apffel A, Oliveira G, Zhang W, Chow YT, Ji Z, Shukla SA, Bachireddy P, Getz G, Hacohen N, Keskin DB, Carr SA, Wu CJ, Regev A. Thousands of novel unannotated proteins expand the MHC I immunopeptidome in cancer. *bioRxiv*. 2020:2020.2002.2012.945840.
- 187. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. *Science*. 1991;254(5038):1643-1647.
- 188. Brichard V, Van Pel A, Wölfel T, Wölfel C, De Plaen E, Lethe B, Coulie P, Boon T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. *J Exp Med*. 1993;178(2):489-495.
- 189. Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL, Jr. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. *Science*. 1994;264(5159):716-719.
- 190. Topalian SL, Gonzales MI, Parkhurst M, Li YF, Southwood S, Sette A, Rosenberg SA, Robbins PF. Melanomaspecific CD4+ T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. J Exp Med. 1996;183(5):1965-1971.
- 191. Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: the 2013 update. *Cancer Immun.* 2013;13:15.
- 192. Klein G, Klein E. Immune surveillance against virus-induced tumors and nonrejectability of spontaneous tumors: contrasting consequences of host versus tumor evolution. *Proc Natl Acad Sci U S A*. 1977;74(5):2121-2125.
- 193. Levy JP, Leclerc JC. The murine sarcoma virus-induced tumor: exception or general model in tumor immunology? *Adv Cancer Res.* 1977;24:1-66.

- 194. van der Burg SH, Melief CJ. Therapeutic vaccination against human papilloma virus induced malignancies. *Curr Opin Immunol.* 2011;23(2):252-257.
- 195. Fisk B, Blevins TL, Wharton JT, Ioannides CG. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. *J Exp Med.* 1995;181(6):2109-2117.
- 196. Gouttefangeas C, Rammensee HG. Personalized cancer vaccines: adjuvants are important, too. *Cancer Immunol Immunother.* 2018;67(12):1911-1918.
- 197. Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. *J Exp Med.* 2004;199(2):155-166.
- 198. Ochs K, Ott M, Bunse T, Sahm F, Bunse L, Deumelandt K, Sonner JK, Keil M, von Deimling A, Wick W, Platten M. K27M-mutant histone-3 as a novel target for glioma immunotherapy. *Oncoimmunology*. 2017;6(7):e1328340.
- 199. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
- 200. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. *Immunity*. 2004;21(2):137-148.
- 201. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. *Annu Rev Immunol*. 2004;22:329-360.
- 202. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest. 2007;117(5):1167-1174.
- 203. Velcheti V, Schalper K. Basic Overview of Current Immunotherapy Approaches in Cancer. *Am Soc Clin Oncol Educ Book*. 2016;35:298-308.
- 204. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. *Science*. 2011;331(6024):1565-1570.
- 205. Domogalla MP, Rostan PV, Raker VK, Steinbrink K. Tolerance through Education: How Tolerogenic Dendritic Cells Shape Immunity. *Front Immunol.* 2017;8:1764.
- 206. Rozali EN, Hato SV, Robinson BW, Lake RA, Lesterhuis WJ. Programmed death ligand 2 in cancer-induced immune suppression. *Clin Dev Immunol.* 2012;2012:656340.
- 207. Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. *J Clin Oncol.* 2004;22(6):1136-1151.
- 208. Palena C, Schlom J. Vaccines against human carcinomas: strategies to improve antitumor immune responses. *J Biomed Biotechnol*. 2010;2010:380697.
- 209. Schaller TH, Sampson JH. Advances and challenges: dendritic cell vaccination strategies for glioblastoma. *Expert Rev Vaccines*. 2017;16(1):27-36.
- 210. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. *N Engl J Med.* 2010;363(5):411-422.
- 211. van der Burg SH, Kalos M, Gouttefangeas C, Janetzki S, Ottensmeier C, Welters MJ, Romero P, Britten CM, Hoos A. Harmonization of immune biomarker assays for clinical studies. *Sci Transl Med.* 2011;3(108):108ps144.
- 212. Rammensee HG, Weinschenk T, Gouttefangeas C, Stevanovic S. Towards patient-specific tumor antigen selection for vaccination. *Immunol Rev.* 2002;188:164-176.
- 213. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. *Nat Med.* 2004;10(9):909-915.
- 214. Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. *Expert Rev Vaccines*. 2002;1(1):111-118.
- 215. Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. *Ann Oncol.* 2007;18(2):226-232.
- 216. Speiser DE, Liénard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, Krieg AM, Cerottini JC, Romero P. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. *J Clin Invest.* 2005;115(3):739-746.
- 217. Rammensee HG, Wiesmüller KH, Chandran PA, Zelba H, Rusch E, Gouttefangeas C, Kowalewski DJ, Di Marco M, Haen SP, Walz JS, Gloria YC, Bödder J, Schertel JM, Tunger A, Müller L, Kiessler M, Wehner R, Schmitz M, Jakobi M, Schneiderhan-Marra N, Klein R, Laske K, Artzner K, Backert L, Schuster H, Schwenck J, Weber ANR, Pichler BJ, Kneilling M, la Fougère C, Forchhammer S, Metzler G, Bauer J, Weide B, Schippert W, Stevanović S, Löffler MW. A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. *J Immunother Cancer*. 2019;7(1):307.
- 218. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E, Melero I. Cytokines in clinical cancer immunotherapy. *Br J Cancer*. 2019;120(1):6-15.
- 219. Begley CG, Burton JD, Tsudo M, Brownstein BH, Ambrus JL, Jr., Waldmann TA. Human B lymphocytes express the p75 component of the interleukin 2 receptor. *Leuk Res.* 1990;14(3):263-271.
- 220. McNally A, Hill GR, Sparwasser T, Thomas R, Steptoe RJ. CD4+CD25+ regulatory T cells control CD8+ Tcell effector differentiation by modulating IL-2 homeostasis. *Proc Natl Acad Sci U S A*. 2011;108(18):7529-7534.
- 221. Herndon TM, Demko SG, Jiang X, He K, Gootenberg JE, Cohen MH, Keegan P, Pazdur R. U.S. Food and Drug Administration Approval: peginterferon-alfa-2b for the adjuvant treatment of patients with melanoma. *Oncologist.* 2012;17(10):1323-1328.

- 222. Spaapen RM, Leung MY, Fuertes MB, Kline JP, Zhang L, Zheng Y, Fu YX, Luo X, Cohen KS, Gajewski TF. Therapeutic activity of high-dose intratumoral IFN-beta requires direct effect on the tumor vasculature. *J Immunol.* 2014;193(8):4254-4260.
- 223. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. *Clin Cancer Res.* 2011;17(9):2619-2627.
- 224. Fioravanti J, Medina-Echeverz J, Ardaiz N, Gomar C, Parra-Guillén ZP, Prieto J, Berraondo P. The fusion protein of IFN-alpha and apolipoprotein A-I crosses the blood-brain barrier by a saturable transport mechanism. *J Immunol.* 2012;188(8):3988-3992.
- 225. Cauwels A, Van Lint S, Paul F, Garcin G, De Koker S, Van Parys A, Wueest T, Gerlo S, Van der Heyden J, Bordat Y, Catteeuw D, Rogge E, Verhee A, Vandekerckhove B, Kley N, Uzé G, Tavernier J. Delivering Type I Interferon to Dendritic Cells Empowers Tumor Eradication and Immune Combination Treatments. *Cancer Res.* 2018;78(2):463-474.
- 226. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CR, Brasel K, Morrissey PJ, Stocking K, Schuh JC, Joyce S, Peschon JJ. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med. 2000;191(5):771-780.
- 227. Di Scala M, Gil-Fariña I, Olagüe C, Vales A, Sobrevals L, Fortes P, Corbacho D, González-Aseguinolaza G. Identification of IFN-gamma-producing T cells as the main mediators of the side effects associated to mouse interleukin-15 sustained exposure. *Oncotarget*. 2016;7(31):49008-49026.
- 228. Marshall D, Sinclair C, Tung S, Seddon B. Differential requirement for IL-2 and IL-15 during bifurcated development of thymic regulatory T cells. *J Immunol.* 2014;193(11):5525-5533.
- 229. Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, Fleisher TA, Dubois SP, Perera LP, Stewart DM, Goldman CK, Bryant BR, Decker JM, Chen J, Worthy TA, Figg WD, Sr., Peer CJ, Sneller MC, Lane HC, Yovandich JL, Creekmore SP, Roederer M, Waldmann TA. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. *J Clin Oncol.* 2015;33(1):74-82.
- 230. Mortier E, Quéméner A, Vusio P, Lorenzen I, Boublik Y, Grötzinger J, Plet A, Jacques Y. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. *J Biol Chem.* 2006;281(3):1612-1619.
- 231. Ochoa MC, Melero I, Berraondo P. High-density lipoproteins delivering interleukin-15. *Oncoimmunology*. 2013;2(4):e23410.
- 232. Nobel Media AB 2019. NobelPrize.org. The Nobel Prize in Physiology or Medicine 2018. [Internet]. Available from: https://www.nobelprize.org/prizes/medicine/2018/summary/, accessed on 2019/11/21.
- 233. Greenfield EA, Nguyen KA, Kuchroo VK. CD28/B7 costimulation: a review. *Crit Rev Immunol.* 1998;18(5):389-418.
- 234. O'Day SJ, Hamid O, Urba WJ. Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. *Cancer*. 2007;110(12):2614-2627.
- 235. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP, Quezada SA. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. *J Exp Med*. 2013;210(9):1695-1710.
- 236. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. *Science*. 2008;322(5899):271-275.
- 237. Romano E, Kusio-Kobialka M, Foukas PG, Baumgaertner P, Meyer C, Ballabeni P, Michielin O, Weide B, Romero P, Speiser DE. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. *Proc Natl Acad Sci U S A*. 2015;112(19):6140-6145.
- 238. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH. Tissue expression of PD-L1 mediates peripheral T cell tolerance. *J Exp Med*. 2006;203(4):883-895.
- 239. Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, Lunceford J, Cheng J, Chow LQM, Seiwert TY, Handa M, Tomassini JE, McClanahan T. PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer. *Clin Cancer Res.* 2017;23(12):3158-3167.
- 240. Lesterhuis WJ, Steer H, Lake RA. PD-L2 is predominantly expressed by Th2 cells. *Mol Immunol.* 2011;49(1-2):1-3.
- 241. Buder-Bakhaya K, Hassel JC. Biomarkers for Clinical Benefit of Immune Checkpoint Inhibitor Treatment-A Review From the Melanoma Perspective and Beyond. *Front Immunol.* 2018;9:1474.
- 242. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, Dronca R, Gangadhar TC, Patnaik A, Zarour H, Joshua AM, Gergich K, Elassaiss-Schaap J, Algazi A, Mateus C, Boasberg P, Tumeh PC, Chmielowski B, Ebbinghaus SW, Li XN, Kang SP, Ribas A. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. *N Engl J Med.* 2013;369(2):134-144.
- 243. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122-133.
- 244. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia

GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. *N Engl J Med.* 2012;366(26):2443-2454.

- 245. Ferris RL, Blumenschein G, Jr., Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Iglesias Docampo LC, Haddad R, Rordorf T, Kiyota N, Tahara M, Monga M, Lynch M, Geese WJ, Kopit J, Shaw JW, Gillison ML. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. *N Engl J Med.* 2016;375(19):1856-1867.
- 246. McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, Powderly JD, Infante JR, Fasso M, Wang YV, Zou W, Hegde PS, Fine GD, Powles T. Atezolizumab, an Anti-Programmed Death-Ligand 1 Antibody, in Metastatic Renal Cell Carcinoma: Long-Term Safety, Clinical Activity, and Immune Correlates From a Phase Ia Study. *J Clin Oncol.* 2016;34(8):833-842.
- 247. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. *Nature*. 2014;515(7528):558-562.
- 248. Markham A, Duggan S. Cemiplimab: First Global Approval. Drugs. 2018;78(17):1841-1846.
- 249. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. *Mol Cancer*. 2019;18(1):155.
- 250. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. *Eur J Cancer*. 2016;52:50-66.
- 251. Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. *Blood.* 2018;131(1):49-57.
- 252. Zappasodi R, Sirard C, Li Y, Budhu S, Abu-Akeel M, Liu C, Yang X, Zhong H, Newman W, Qi J, Wong P, Schaer D, Koon H, Velcheti V, Hellmann MD, Postow MA, Callahan MK, Wolchok JD, Merghoub T. Rational design of anti-GITR-based combination immunotherapy. *Nat Med.* 2019;25(5):759-766.
- 253. Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. *Clin Cancer Res.* 2013;19(5):1035-1043.
- 254. Pastor F. Aptamers: A New Technological Platform in Cancer Immunotherapy. *Pharmaceuticals (Basel)*. 2016;9(4).
- 255. Hoffman LM, Gore L. Blinatumomab, a Bi-Specific Anti-CD19/CD3 BiTE® Antibody for the Treatment of Acute Lymphoblastic Leukemia: Perspectives and Current Pediatric Applications. *Front Oncol.* 2014;4:63.
- 256. Oates J, Hassan NJ, Jakobsen BK. ImmTACs for targeted cancer therapy: Why, what, how, and which. *Mol Immunol.* 2015;67(2 Pt A):67-74.
- 257. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. *J Immunother*. 2003;26(4):332-342.
- 258. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. *N Engl J Med.* 1988;319(25):1676-1680.
- 259. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, Morton KE, Laurencot CM, Steinberg SM, White DE, Dudley ME. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. *Clin Cancer Res.* 2011;17(13):4550-4557.
- 260. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg SA, Restifo NP. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. *J Exp Med*. 2005;202(7):907-912.
- 261. Williams KM, Hakim FT, Gress RE. T cell immune reconstitution following lymphodepletion. *Semin Immunol.* 2007;19(5):318-330.
- 262. Ng SSM, Nagy BA, Jensen SM, Hu X, Alicea C, Fox BA, Felber BK, Bergamaschi C, Pavlakis GN. Heterodimeric IL15 Treatment Enhances Tumor Infiltration, Persistence, and Effector Functions of Adoptively Transferred Tumor-specific T Cells in the Absence of Lymphodepletion. *Clin Cancer Res.* 2017;23(11):2817-2830.
- Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA. Cancer regression in patients after transfer of genetically engineered lymphocytes. *Science*. 2006;314(5796):126-129.
- 264. Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. *Immunol Rev.* 2014;257(1):107-126.
- 265. Zhao Z, Condomines M, van der Stegen SJC, Perna F, Kloss CC, Gunset G, Plotkin J, Sadelain M. Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. *Cancer Cell*. 2015;28(4):415-428.
- 266. Kuhn NF, Purdon TJ, van Leeuwen DG, Lopez AV, Curran KJ, Daniyan AF, Brentjens RJ. CD40 Ligand-Modified Chimeric Antigen Receptor T Cells Enhance Antitumor Function by Eliciting an Endogenous Antitumor Response. *Cancer Cell*. 2019;35(3):473-488.e476.
- 267. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. *Blood Rev.* 2019;34:45-55.
- 268. Orlando D, Miele E, De Angelis B, Guercio M, Boffa I, Sinibaldi M, Po A, Caruana I, Abballe L, Carai A, Caruso S, Camera A, Moseley A, Hagedoorn RS, Heemskerk MHM, Giangaspero F, Mastronuzzi A, Ferretti E,

Locatelli F, Quintarelli C. Adoptive Immunotherapy Using PRAME-Specific T Cells in Medulloblastoma. *Cancer Res.* 2018;78(12):3337-3349.

- 269. Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, Heslop HE, Spencer DM, Rooney CM. An inducible caspase 9 safety switch for T-cell therapy. *Blood*. 2005;105(11):4247-4254.
- 270. Kao RL, Truscott LC, Chiou TT, Tsai W, Wu AM, De Oliveira SN. A Cetuximab-Mediated Suicide System in Chimeric Antigen Receptor-Modified Hematopoietic Stem Cells for Cancer Therapy. *Hum Gene Ther.* 2019;30(4):413-428.
- Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. *Cancer Res.* 2004;64(24):9160-9166.
- 272. Lupton SD, Brunton LL, Kalberg VA, Overell RW. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. *Mol Cell Biol.* 1991;11(6):3374-3378.
- 273. Budde LE, Mardiros A, Chang W-C, Wang X, Berger C, Brown C, Riddell SR, Press OW, Forman SJ. Truncated Cell-Surface CD19 As a Conditional Suicide Switch For Adoptive T Cell Immunotherapy. *Blood*. 2013;122(21):1660-1660.
- 274. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. *Expert Opin Biol Ther.* 2015;15(8):1145-1154.
- 275. Chmielewski M, Abken H. CAR T Cells Releasing IL-18 Convert to T-Bet(high) FoxO1(low) Effectors that Exhibit Augmented Activity against Advanced Solid Tumors. *Cell Rep.* 2017;21(11):3205-3219.
- 276. Klinger M, Benjamin J, Kischel R, Stienen S, Zugmaier G. Harnessing T cells to fight cancer with BiTE® antibody constructs-past developments and future directions. *Immunol Rev.* 2016;270(1):193-208.
- 277. Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS. Oncolytic virus immunotherapy: future prospects for oncology. *J Immunother Cancer*. 2018;6(1):140.
- 278. Orange M, Reuter U, Hobohm U. Coley's Lessons Remembered: Augmenting Mistletoe Therapy. Integr Cancer Ther. 2016;15(4):502-511.
- 279. Bartlett DL, Liu Z, Sathaiah M, Ravindranathan R, Guo Z, He Y, Guo ZS. Oncolytic viruses as therapeutic cancer vaccines. *Mol Cancer*. 2013;12(1):103.
- 280. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. *Cancer Immunol Res.* 2014;2(4):295-300.
- 281. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, Milhem M, Cranmer L, Curti B, Lewis K, Ross M, Guthrie T, Linette GP, Daniels GA, Harrington K, Middleton MR, Miller WH, Jr., Zager JS, Ye Y, Yao B, Li A, Doleman S, VanderWalde A, Gansert J, Coffin RS. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. *J Clin Oncol.* 2015;33(25):2780-2788.
- 282. Alvarez-Breckenridge Ć, Kaur B, Chiocca EA. Pharmacologic and chemical adjuvants in tumor virotherapy. *Chem Rev.* 2009;109(7):3125-3140.
- 283. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30(7):658-670.
- 284. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. *Ann Surg Oncol.* 2010;17(3):718-730.
- 285. Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. *Br J Exp Pathol.* 1948;29(1):58-69.
- 286. Harling-Berg CJ, Park TJ, Knopf PM. Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. *J Neuroimmunol.* 1999;101(2):111-127.
- 287. Scheinberg LC, Kotsilimbas DG, Karpf R, Mayer N. Is the brain "an immunologically privileged site"? 3. Studies based on homologous skin grafts to the brain and subcutaneous tissues. *Arch Neurol.* 1966;15(1):62-67.
- 288. Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. *J Leukoc Biol.* 2006;80(4):797-801.
- 289. Tsugawa T, Kuwashima N, Sato H, Fellows-Mayle WK, Dusak JE, Okada K, Papworth GD, Watkins SC, Gambotto A, Yoshida J, Pollack IF, Okada H. Sequential delivery of interferon-alpha gene and DCs to intracranial gliomas promotes an effective antitumor response. *Gene Ther.* 2004;11(21):1551-1558.
- 290. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. *Nature*. 2015;523(7560):337-341.
- 291. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. *J Exp Med*. 2015;212(7):991-999.
- 292. Kulprathipanja NV, Kruse CA. Microglia phagocytose alloreactive CTL-damaged 9L gliosarcoma cells. *J Neuroimmunol.* 2004;153(1-2):76-82.
- 293. Carson MJ, Sutcliffe JG, Campbell IL. Microglia stimulate naive T-cell differentiation without stimulating T-cell proliferation. *J Neurosci Res.* 1999;55(1):127-134.
- 294. De Simone R, Giampaolo A, Giometto B, Gallo P, Levi G, Peschle C, Aloisi F. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. *J Neuropathol Exp Neurol*. 1995;54(2):175-187.
- 295. Aloisi F, Ria F, Penna G, Adorini L. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. *J Immunol*. 1998;160(10):4671-4680.
- 296. Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. *Science*. 1988;239(4837):290-292.

- 297. Lowe J, MacLennan KA, Powe DG, Pound JD, Palmer JB. Microglial cells in human brain have phenotypic characteristics related to possible function as dendritic antigen presenting cells. *J Pathol.* 1989;159(2):143-149.
- 298. Ulvestad E, Williams K, Bjerkvig R, Tiekotter K, Antel J, Matre R. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. *J Leukoc Biol.* 1994;56(6):732-740.
- 299. Gehrmann J, Banati RB, Kreutzberg GW. Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. *J Neuroimmunol*. 1993;48(2):189-198.
- 300. Williams K, Jr., Ulvestad E, Cragg L, Blain M, Antel JP. Induction of primary T cell responses by human glial cells. *J Neurosci Res.* 1993;36(4):382-390.
- 301. Masson F, Calzascia T, Di Berardino-Besson W, de Tribolet N, Dietrich PY, Walker PR. Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. *J Immunol.* 2007;179(2):845-853.
- 302. Sampson JH, Archer GE, Ashley DM, Fuchs HE, Hale LP, Dranoff G, Bigner DD. Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the "immunologically privileged" central nervous system. *Proc Natl Acad Sci U S A*. 1996;93(19):10399-10404.
- 303. Herrlinger U, Kramm CM, Johnston KM, Louis DN, Finkelstein D, Reznikoff G, Dranoff G, Breakefield XO, Yu JS. Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. *Cancer Gene Ther*. 1997;4(6):345-352.
- 304. Prins RM, Shu CJ, Radu CG, Vo DD, Khan-Farooqi H, Soto H, Yang MY, Lin MS, Shelly S, Witte ON, Ribas A, Liau LM. Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain. *Cancer Immunol Immunother*. 2008;57(9):1279-1289.
- 305. Ransohoff RM, Kivisakk P, Kidd G. Three or more routes for leukocyte migration into the central nervous system. *Nat Rev Immunol.* 2003;3(7):569-581.
- 306. Irani DN, Lin KI, Griffin DE. Regulation of brain-derived T cells during acute central nervous system inflammation. *J Immunol.* 1997;158(5):2318-2326.
- 307. Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. *J Neurosci Res.* 1991;28(2):254-260.
- 308. Hong JJ, Rosenberg SA, Dudley ME, Yang JC, White DE, Butman JA, Sherry RM. Successful treatment of melanoma brain metastases with adoptive cell therapy. *Clin Cancer Res.* 2010;16(19):4892-4898.
- 309. Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, Doolittle ND, Engelhardt B, Hallenbeck JM, Lonser RR, Ohlfest JR, Prat A, Scarpa M, Smeyne RJ, Drewes LR, Neuwelt EA. Immunologic privilege in the central nervous system and the blood-brain barrier. *J Cereb Blood Flow Metab.* 2013;33(1):13-21.
- 310. Engelhardt B, Coisne C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. *Fluids Barriers CNS*. 2011;8(1):4.
- 311. Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. *J Clin Invest*. 2010;120(5):1368-1379.
- 312. Wakim LM, Woodward-Davis A, Bevan MJ. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. *Proc Natl Acad Sci U S A*. 2010;107(42):17872-17879.
- 313. Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. *Biomed Res Int*. 2015;2015:320941.
- 314. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, Thor Straten P, Martínez-Ricarte F, Ponsati B, Okada H, Lassen U, Admon A, Ottensmeier CH, Ulges A, Kreiter S, von Deimling A, Skardelly M, Migliorini D, Kroep JR, Idorn M, Rodon J, Piró J, Poulsen HS, Shraibman B, McCann K, Mendrzyk R, Löwer M, Stieglbauer M, Britten CM, Capper D, Welters MJP, Sahuquillo J, Kiesel K, Derhovanessian E, Rusch E, Bunse L, Song C, Heesch S, Wagner C, Kemmer-Brück A, Ludwig J, Castle JC, Schoor O, Tadmor AD, Green E, Fritsche J, Meyer M, Pawlowski N, Dorner S, Hoffgaard F, Rössler B, Maurer D, Weinschenk T, Reinhardt C, Huber C, Rammensee HG, Singh-Jasuja H, Sahin U, Dietrich PY, Wick W. Actively personalized vaccination trial for newly diagnosed glioblastoma. *Nature*. 2019;565(7738):240-245.
- 315. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, Shukla SA, Hu Z, Li L, Le PM, Allesøe RL, Richman AR, Kowalczyk MS, Abdelrahman S, Geduldig JE, Charbonneau S, Pelton K, Iorgulescu JB, Elagina L, Zhang W, Olive O, McCluskey C, Olsen LR, Stevens J, Lane WJ, Salazar AM, Daley H, Wen PY, Chiocca EA, Harden M, Lennon NJ, Gabriel S, Getz G, Lander ES, Regev A, Ritz J, Neuberg D, Rodig SJ, Ligon KL, Suvà ML, Wucherpfennig KW, Hacohen N, Fritsch EF, Livak KJ, Ott PA, Wu CJ, Reardon DA. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. *Nature*. 2019;565(7738):234-239.
- 316. Bodey B, Siegel SE, Kaiser HE. Immunocytochemical detection of members of the caspase cascade of apoptosis in childhood medulloblastomas. *In Vivo*. 2005;19(4):749-760.
- 317. Vermeulen JF, Van Hecke W, Adriaansen EJM, Jansen MK, Bouma RG, Villacorta Hidalgo J, Fisch P, Broekhuizen R, Spliet WGM, Kool M, Bovenschen N. Prognostic relevance of tumor-infiltrating lymphocytes and immune checkpoints in pediatric medulloblastoma. *Oncoimmunology*. 2018;7(3):e1398877.
- 318. Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, Jiang T, Wu A. Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. *Br J Cancer*. 2014;110(10):2560-2568.

- 319. Pardridge WM. Drug transport across the blood-brain barrier. *J Cereb Blood Flow Metab.* 2012;32(11):1959-1972.
- 320. Geletneky K, Hajda J, Angelova AL, Leuchs B, Capper D, Bartsch AJ, Neumann JO, Schöning T, Husing J, Beelte B, Kiprianova I, Roscher M, Bhat R, von Deimling A, Brück W, Just A, Frehtman V, Löbhard S, Terletskaia-Ladwig E, Fry J, Jochims K, Daniel V, Krebs O, Dahm M, Huber B, Unterberg A, Rommelaere J. Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IIa Glioblastoma Trial. *Mol Ther.* 2017;25(12):2620-2634.
- 321. Galstyan A, Markman JL, Shatalova ES, Chiechi A, Korman AJ, Patil R, Klymyshyn D, Tourtellotte WG, Israel LL, Braubach O, Ljubimov VA, Mashouf LA, Ramesh A, Grodzinski ZB, Penichet ML, Black KL, Holler E, Sun T, Ding H, Ljubimov AV, Ljubimova JY. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. *Nat Commun.* 2019;10(1):3850.
- 322. Villaseñor R, Ozmen L, Messaddeq N, Grüninger F, Loetscher H, Keller A, Betsholtz C, Freskgård PO, Collin L. Trafficking of Endogenous Immunoglobulins by Endothelial Cells at the Blood-Brain Barrier. *Sci Rep.* 2016;6:25658.
- 323. Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, Rueger P, Stracke JO, Lau W, Tissot AC, Loetscher H, Ghosh A, Freskgård PO. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. *Neuron*. 2014;81(1):49-60.
- 324. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, van Buuren MM, van 't Veer L, Vincent-Salomon A, Waddell N, Yates LR, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. *Nature*. 2013;500(7463):415-421.
- 325. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA. Genetic basis for clinical response to CTLA-4 blockade in melanoma. *N Engl J Med.* 2014;371(23):2189-2199.
- 326. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. *Science*. 2015;348(6230):124-128.
- 327. Van Allen EM, Miao Ď, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MHG, Goldinger SM, Utikal J, Hassel JC, Weide B, Kaehler KC, Loquai C, Mohr P, Gutzmer R, Dummer R, Gabriel S, Wu CJ, Schadendorf D, Garraway LA. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. *Science*. 2015;350(6257):207-211.
- 328. Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wöhrer A, Dieckmann K, Filipits M, Brandstetter A, Weller M, Kurscheid S, Hegi ME, Zielinski CC, Marosi C, Hainfellner JA, Preusser M, Wick W. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. *Neuro Oncol.* 2015;17(8):1064-1075.
- 329. Johnson MD. PD-L1 expression in meningiomas. J Clin Neurosci. 2018;57:149-151.
- 330. Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, McBain C, Jefferies S, Jackson A, Stewart W, Lindner J, Kutscher S, Hilf N, McGuigan L, Peters J, Hill K, Schoor O, Singh-Jasuja H, Halford SE, Ritchie JW. A Cancer Research UK First Time in Human Phase I Trial of IMA950 (Novel Multipeptide Therapeutic Vaccine) in Patients with Newly Diagnosed Glioblastoma. *Clin Cancer Res.* 2016;22(19):4776-4785.
- 331. Publications listed in PubMed dealing with immunotherapy in glioblastoma, meningioma, or medulloblastoma. [Internet]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=glioblastoma+AND+immunotherapy, https://www.ncbi.nlm.nih.gov/pubmed/?term=medulloblastoma+AND+immunotherapy, and https://www.ncbi.nlm.nih.gov/pubmed/?term=meningioma+AND+immunotherapy, accessed on 2019/12/03.
 332. Clinical trials of immunotherapeutic intervention in glioblastoma, meningioma, or medulloblastoma registered
- 332. Clinical trials of immunotherapeutic intervention in glioblastoma, meningioma, or medulioblastoma registered at ClinicalTrials.gov. [Internet]. Available from: https://clinicaltrials.gov/ct2/results?cond=glioblastoma&term=&type=&rslt=&age_v=&gndr=&intr=immunother apy&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&lupd_s=&lupd_e=&sort=, https://clinicaltrials.gov/ct2/results?cond=medulloblastoma&term=&type=&rslt=&age_v=&gndr=&intr=immun otherapy&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&strd_s=&strd_e=&prcd_s=& prcd_e=&sfpd_s=&sfpd_e=&lupd_s=&lupd_e=&sort=, and https://clinicaltrials.gov/ct2/results?cond=meningioma&term=&type=&rslt=&age_v=&gndr=&intr=immun otherapy&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&strd_s=&strd_e=&prcd_s=& prcd_e=&sfpd_s=&sfpd_e=&lupd_s=&lupd_e=&sort=, and https://clinicaltrials.gov/ct2/results?cond=meningioma&term=&type=&rslt=&age_v=&gndr=&intr=immunother

apy&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&strd_s=&strd_e=&prcd_s=&prcd_e=&str

333. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, Ghazi A, Gerken C, Yi Z, Ashoori A, Wu MF, Liu H, Rooney C, Dotti G, Gee A, Su J, Kew Y, Baskin D, Zhang YJ, New P, Grilley B, Stojakovic M, Hicks J, Powell SZ, Brenner MK, Heslop HE, Grossman R, Wels

WS, Gottschalk S. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial. *JAMA Oncol.* 2017;3(8):1094-1101.

- 334. Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuno MA, Richardson JE, Fan X, Ji J, Chu RM, Bender JG, Hawkins ES, Patil CG, Black KL, Yu JS. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. *Cancer Immunol Immunother*. 2013;62(1):125-135.
- 335. Brown CE, Badie B, Barish ME, Weng L, Östberg JR, Chang WC, Naranjo A, Starr R, Wagner J, Wright C, Zhai Y, Bading JR, Ressler JA, Portnow J, D'Apuzzo M, Forman SJ, Jensen MC. Bioactivity and Safety of IL13Ralpha2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma. *Clin Cancer Res.* 2015;21(18):4062-4072.
- 336. Oji Y, Hashimoto N, Tsuboi A, Murakami Y, Iwai M, Kagawa N, Chiba Y, Izumoto S, Elisseeva O, Ichinohasama R, Sakamoto J, Morita S, Nakajima H, Takashima S, Nakae Y, Nakata J, Kawakami M, Nishida S, Hosen N, Fujiki F, Morimoto S, Adachi M, Iwamoto M, Oka Y, Yoshimine T, Sugiyama H. Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. *Int J Cancer*. 2016;139(6):1391-1401.
- 337. Freitas M, Malheiros S, Stavale JN, Biassi TP, Zamuner FT, de Souza Begnami M, Soares FA, Vettore AL. Expression of cancer/testis antigens is correlated with improved survival in glioblastoma. *Oncotarget*. 2013;4(4):636-646.
- 338. Liu G, Ying H, Zeng G, Wheeler CJ, Black KL, Yu JS. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. *Cancer Res.* 2004;64(14):4980-4986.
- 339. Komata T, Kanzawa T, Kondo Y, Kondo S. Telomerase as a therapeutic target for malignant gliomas. *Oncogene*. 2002;21(4):656-663.
- 340. Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. *Mol Cancer Res.* 2005;3(10):541-551.
- 341. Azad TD, Razavi SM, Jin B, Lee K, Li G. Glioblastoma antigen discovery-foundations for immunotherapy. J Neurooncol. 2015;123(3):347-358.
- 342. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M, Sawaya R, Aldape K. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. *Clin Cancer Res.* 2005;11(4):1462-1466.
- 343. Tang X, Zhao S, Zhang Y, Wang Y, Zhang Z, Yang M, Zhu Y, Zhang G, Guo G, Tong A, Zhou L. B7-H3 as a Novel CAR-T Therapeutic Target for Glioblastoma. *Mol Ther Oncolytics*. 2019;14:279-287.
- 344. Targeting IDH1R132H in WHO Grade III-IV IDH1R132H-mutated Gliomas by a Peptide Vaccine a Phase I Safety, Tolerability and Immunogenicity Multicenter Trial (NOA-16). [Internet]. Available from: https://clinicaltrials.gov/, NCT02454634, accessed on 2019/12/02.
- 345. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. *Acta Neuropathol.* 2008;116(6):597-602.
- 346. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tönjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu XY, Fontebasso AM, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann MU, van Meter T, Frühwald MC, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Dürken M, Kulozik AE, Madden J, Donson A, Foreman NK, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm CM, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth AM, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski PP, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor MD, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister SM. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. *Cancer Cell.* 2012;22(4):425-437.
- 347. PEP-CMV in Recurrent MEdulloblastoma/Malignant Glioma (PRiME). [Internet]. Available from: https://clinicaltrials.gov/, NCT03299309, accessed on 2019/12/02.
- 348. Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J, Liu R, Johnson LA, Weinhold K, Archer GE, Sampson JH, Mitchell DA. Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. *Clin Cancer Res.* 2014;20(10):2684-2694.
- 349. Ferguson SD, Srinivasan VM, Ghali MG, Heimberger AB. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope? *Immunotherapy*. 2016;8(4):413-423.
- 350. Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, Jones L, Crough T, Dasari V, Klein K, Smalley A, Alexander H, Walker DG, Khanna R. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. *Cancer Res.* 2014;74(13):3466-3476.
- 351. Oba-Shinjo SM, Caballero OL, Jungbluth AA, Rosemberg S, Old LJ, Simpson AJ, Marie SK. Cancer-testis (CT) antigen expression in medulloblastoma. *Cancer Immun.* 2008;8:7.
- 352. Phase I/II: Decitabine/Vaccine Therapy in Relapsed/Refractory Pediatric High Grade Gliomas/Medulloblastomas/CNS PNETs. [Internet]. Available from: https://clinicaltrials.gov/, NCT02332889, accessed on 2020/01/05.
- 353. HER2-specific CAR T Cell Locoregional Immunotherapy for HER2-positive Recurrent/Refractory Pediatric CNS Tumors. [Internet]. Available from: https://clinicaltrials.gov/, NCT03500991, accessed on 2019/12/03.
- 354. Bosse KR, Raman P, Zhu Z, Lane M, Martinez D, Heitzeneder S, Rathi KS, Kendsersky NM, Randall M, Donovan L, Morrissy S, Sussman RT, Zhelev DV, Feng Y, Wang Y, Hwang J, Lopez G, Harenza JL, Wei JS, Pawel B, Bhatti T, Santi M, Ganguly A, Khan J, Marra MA, Taylor MD, Dimitrov DS, Mackall CL, Maris JM.

Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. *Cancer Cell*. 2017;32(3):295-309.e212.

- 355. Kramer K, Pandit-Taskar N, Humm JL, Zanzonico PB, Haque S, Dunkel IJ, Wolden SL, Donzelli M, Goldman DA, Lewis JS, Lyashchenko SK, Khakoo Y, Carrasquillo JA, Souweidane MM, Greenfield JP, Lyden D, De Braganca KD, Gilheeney SW, Larson SM, Cheung NV. A phase II study of radioimmunotherapy with intraventricular (131) I-3F8 for medulloblastoma. *Pediatr Blood Cancer*. 2018;65(1).
- 356. EGFR806-specific CAR T Cell Locoregional Immunotherapy for EGFR-positive Recurrent or Refractory Pediatric CNS Tumors. [Internet]. Available from: https://clinicaltrials.gov/, NCT03638167, accessed on 2019/12/03.
- 357. Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, Rietberg SP, Linde MH, Xu P, Rota C, Sotillo E, Labanieh L, Lee DW, Orentas RJ, Dimitrov DS, Zhu Z, Croix BS, Delaidelli A, Sekunova A, Bonvini E, Mitra SS, Quezado MM, Majeti R, Monje M, Sorensen PHB, Maris JM, Mackall CL. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. *Clin Cancer Res*. 2019;25(8):2560-2574.
- 358. Blaeschke F, Paul MC, Schuhmann MU, Rabsteyn A, Schroeder C, Casadei N, Matthes J, Mohr C, Lotfi R, Wagner B, Kaeuferle T, Feucht J, Willier S, Handgretinger R, Stevanović S, Lang P, Feuchtinger T. Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy. *Cytotherapy*. 2019;21(9):973-986.
- 359. Deng J, Ma M, Wang D, Zhu H, Hua L, Sun S, Chen H, Cheng H, Qian ZR, Xie Q, Zhang T, Gong Y. Expression and Clinical Significance of Immune Checkpoint Regulator B7-H3 (CD276) in Human Meningioma. *World Neurosurg.* 2019.
- 360. Syed ON, Mandigo CE, Killory BD, Canoll P, Bruce JN. Cancer-testis and melanocyte-differentiation antigen expression in malignant glioma and meningioma. *J Clin Neurosci.* 2012;19(7):1016-1021.
- 361. T Cell Receptor Immunotherapy Targeting NY-ESO-1 for Patients With NY-ESO-1 Expressing Cancer. [Internet]. Available from: https://clinicaltrials.gov/, NCT01967823, accessed on 2019/12/03.
- 362. Baia GS, Caballero OL, Ho JS, Zhao Q, Cohen T, Binder ZA, Salmasi V, Gallia GL, Quinones-Hinojosa A, Olivi A, Brem H, Burger P, Strausberg RL, Simpson AJ, Eberhart CG, Riggins GJ. NY-ESO-1 expression in meningioma suggests a rationale for new immunotherapeutic approaches. *Cancer Immunol Res.* 2013;1(5):296-302.
- 363. Phase I Study of Cellular Immunotherapy for Recurrent/Refractory Malignant Glioma Using Intratumoral Infusions of GRm13Z40-2, An Allogeneic CD8+ Cytolitic T-Cell Line Genetically Modified to Express the IL 13-Zetakine and HyTK and to be Resistant to Glucocorticoids, in Combination With Interleukin-2. [Internet]. Available from: https://clinicaltrials.gov/, NCT01082926, accessed on 2019/12/03.
- 364. Katoh M, Wilmotte R, Belkouch MC, de Tribolet N, Pizzolato G, Dietrich PY. Survivin in brain tumors: an attractive target for immunotherapy. *J Neurooncol.* 2003;64(1-2):71-76.
- 365. Barresi V, Caffo M, Branca G, Vitarelli E, Tuccari G. The density of microvessels positive for Wilms' tumour-1 protein (WT-1) is an independent predictor of recurrence risk in meningiomas. *Brain Tumor Pathol.* 2015;32(3):202-209.
- 366. Sahin U, Koslowski M, Türeci O, Eberle T, Zwick C, Romeike B, Moringlane JR, Schwechheimer K, Feiden W, Pfreundschuh M. Expression of cancer testis genes in human brain tumors. *Clin Cancer Res.* 2000;6(10):3916-3922.
- 367. Lukas RV, Rodon J, Becker K, Wong ET, Shih K, Touat M, Fasso M, Osborne S, Molinero L, O'Hear C, Grossman W, Baehring J. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. *J Neurooncol.* 2018;140(2):317-328.
- 368. Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T, Voloschin A, Ramkissoon SH, Ligon KL, Latek R, Zwirtes R, Strauss L, Paliwal P, Harbison CT, Reardon DA, Sampson JH. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. *Neuro Oncol.* 2018;20(5):674-686.
- 369. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM, Kawaguchi ES, Du L, Li G, Yong WH, Gaffey SC, Cohen AL, Mellinghoff IK, Lee EQ, Reardon DA, O'Brien BJ, Butowski NA, Nghiemphu PL, Clarke JL, Arrillaga-Romany IC, Colman H, Kaley TJ, de Groot JF, Liau LM, Wen PY, Prins RM. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. *Nat Med.* 2019;25(3):477-486.
- 370. Immune Checkpoint Inhibitor Nivolumab in People With Select Rare CNS Cancers. [Internet]. Available from: https://clinicaltrials.gov/, NCT03173950, accessed on 2019/12/03.
- 371. Neoadjuvant Avelumab and Hypofractionated Proton Radiation Therapy Followed by Surgery for Recurrent Radiation-refractory Meningioma. [Internet]. Available from: https://clinicaltrials.gov/, NCT03267836, accessed on 2019/12/03.
- 372. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ, Jr., Mehta MP. A randomized trial of bevacizumab for newly diagnosed glioblastoma. *N Engl J Med*. 2014;370(8):699-708.
- 373. Aguilera D, Mazewski C, Fangusaro J, MacDonald TJ, McNall-Knapp RY, Hayes LL, Kim S, Castellino RC. Response to bevacizumab, irinotecan, and temozolomide in children with relapsed medulloblastoma: a multiinstitutional experience. *Childs Nerv Syst.* 2013;29(4):589-596.

- 374. Shih KC, Chowdhary S, Rosenblatt P, Weir AB, 3rd, Shepard GC, Williams JT, Shastry M, Burris HA, 3rd, Hainsworth JD. A phase II trial of bevacizumab and everolimus as treatment for patients with refractory, progressive intracranial meningioma. *J Neurooncol.* 2016;129(2):281-288.
- progressive intracranial meningioma. *J Neurooncol.* 2016;129(2):281-288. 375. The Breston Robert Tisch Brain Tumor Center - Pediatric Clinical Trials. [Internet]. Available from: https://tischbraintumorcenter.duke.edu/pediatric-clinical-trials, accessed on 2019/12/02.
- 376. Bota DA, Chung J, Dandekar M, Carrillo JA, Kong XT, Fu BD, Hsu FP, Schonthal AH, Hofman FM, Chen TC, Zidovetzki R, Pretto C, Strik A, Schijns VE, Stathopoulos A. Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: interim results and correlations with CD4(+) T-lymphocyte counts. CNS Oncol. 2018;7(3):Cns22.
- 377. Ishikawa E, Muragaki Y, Yamamoto T, Maruyama T, Tsuboi K, Ikuta S, Hashimoto K, Uemae Y, Ishihara T, Matsuda M, Matsutani M, Karasawa K, Nakazato Y, Abe T, Ohno T, Matsumura A. Phase I/IIa trial of fractionated radiotherapy, temozolomide, and autologous formalin-fixed tumor vaccine for newly diagnosed glioblastoma. *J Neurosurg.* 2014;121(3):543-553.
- 378. Chemotherapy and Vaccine Therapy Followed by Bone Marrow or Peripheral Stem Cell Transplantation and Interleukin-2 in Treating Patients With Recurrent or Refractory Brain Cancer. [Internet]. Available from: https://clinicaltrials.gov/, NCT00014573, accessed on 2019/12/03.
- 379. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, Heth JA, Salacz M, Taylor S, D'Andre SD, Iwamoto FM, Dropcho EJ, Moshel YA, Walter KA, Pillainayagam CP, Aiken R, Chaudhary R, Goldlust SA, Bota DA, Duic P, Grewal J, Elinzano H, Toms SA, Lillehei KO, Mikkelsen T, Walbert T, Abram SR, Brenner AJ, Brem S, Ewend MG, Khagi S, Portnow J, Kim LJ, Loudon WG, Thompson RC, Avigan DE, Fink KL, Geoffroy FJ, Lindhorst S, Lutzky J, Sloan AE, Schackert G, Krex D, Meisel HJ, Wu J, Davis RP, Duma C, Etame AB, Mathieu D, Kesari S, Piccioni D, Westphal M, Baskin DS, New PZ, Lacroix M, May SA, Pluard TJ, Tse V, Green RM, Villano JL, Pearlman M, Petrecca K, Schulder M, Taylor LP, Maida AE, Prins RM, Cloughesy TF, Mulholland P, Bosch ML. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. *J Transl Med.* 2018;16(1):142.
- 380. Buchroithner J, Erhart F, Pichler J, Widhalm G, Preusser M, Stockhammer G, Nowosielski M, Iglseder S, Freyschlag CF, Oberndorfer S, Bordihn K, von Campe G, Hoffermann M, Ruckser R, Rössler K, Spiegl-Kreinecker S, Fischer MB, Czech T, Visus C, Krumpl G, Felzmann T, Marosi C. Audencel Immunotherapy Based on Dendritic Cells Has No Effect on Overall and Progression-Free Survival in Newly Diagnosed Glioblastoma: A Phase II Randomized Trial. *Cancers (Basel)*. 2018;10(10).
- 381. Erhart F, Buchroithner J, Reitermaier R, Fischhuber K, Klingenbrunner S, Sloma I, Hibsh D, Kozol R, Efroni S, Ricken G, Wöhrer A, Haberler C, Hainfellner J, Krumpl G, Felzmann T, Dohnal AM, Marosi C, Visus C. Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables. *Acta Neuropathol Commun.* 2018;6(1):135.
- 382. Vaccination With Dendritic Cells Loaded With Brain Tumor Stem Cells for Progressive Malignant Brain Tumor. [Internet]. Available from: https://clinicaltrials.gov/, NCT01171469, accessed on 2019/12/02.
- 383. Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S, Wolff JE, Van Gool SW. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. *Pediatr Blood Cancer*. 2010;54(4):519-525.
- 384. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, Kurien A, Priceman SJ, Wang X, Harshbarger TL, D'Apuzzo M, Ressler JA, Jensen MC, Barish ME, Chen M, Portnow J, Forman SJ, Badie B. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med. 2016;375(26):2561-2569.
- 385. Genetically Modified T-cells in Treating Patients With Recurrent or Refractory Malignant Glioma. [Internet]. Available from: https://clinicaltrials.gov/, NCT02208362, accessed on 2020/01/02.
- 386. A Phase I Study to Investigate Tolerability and Efficacy of ALECSAT Administered to Glioblastoma Multiforme Patients (ALECSAT-GBM). [Internet]. Available from: https://clinicaltrials.gov/, NCT01588769, accessed on 2020/01/02.
- 387. Vaccine Immunotherapy for Recurrent Medulloblastoma and Primitive Neuroectodermal Tumor (Re-MATCH). [Internet]. Available from: https://clinicaltrials.gov/, NCT01326104, accessed on 2019/12/02.
- 388. Geletneky K, Huesing J, Rommelaere J, Schlehofer JR, Leuchs B, Dahm M, Krebs O, von Knebel Doeberitz M, Huber B, Hajda J. Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol. *BMC Cancer*. 2012;12:99.
- 389. Markert JM, Liechty PG, Wang W, Gaston S, Braz E, Karrasch M, Nabors LB, Markiewicz M, Lakeman AD, Palmer CA, Parker JN, Whitley RJ, Gillespie GY. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. *Mol Ther*. 2009;17(1):199-207.
- 390. Safety Study of Replication-competent Adenovirus (Delta-24-rgd) in Patients With Recurrent Glioblastoma. [Internet]. Available from: https://clinicaltrials.gov/, NCT01582516, accessed on 2019/12/09.
- 391. HSV G207 in Children With Recurrent or Refractory Cerebellar Brain Tumors. [Internet]. Available from: https://clinicaltrials.gov/, NCT03911388, accessed on 2019/12/02.
- 392. Phase 1b Study PVSRIPO for Recurrent Malignant Glioma in Children. [Internet]. Available from: https://clinicaltrials.gov/, NCT03043391, accessed on 2019/12/02.
- 393. Weinzierl AO, Lemmel C, Schoor O, Müller M, Krüger T, Wernet D, Hennenlotter J, Stenzl A, Klingel K, Rammensee HG, Stevanović S. Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. *Mol Cell Proteomics*. 2007;6(1):102-113.

- 394. Fortier MH, Caron É, Hardy MP, Voisin G, Lemieux S, Perreault C, Thibault P. The MHC class I peptide repertoire is molded by the transcriptome. *J Exp Med.* 2008;205(3):595-610.
- 395. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. *Mol Cell Proteomics*. 2015;14(3):658-673.
- 396. Shraibman B, Barnea E, Kadosh DM, Haimovich Y, Slobodin G, Rosner I, López-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. *Mol Cell Proteomics*. 2019;18(6):1255-1268.
- 397. Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J, Slotta-Huspenina J, Specht K, Martignoni ME, Werner A, Hein R, Busch DH, Peschel C, Rad R, Cox J, Mann M, Krackhardt AM. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. *Nat Commun.* 2016;7:13404.
- 398. Müller M, Gfeller D, Coukos G, Bassani-Sternberg M. 'Hotspots' of Antigen Presentation Revealed by Human Leukocyte Antigen Ligandomics for Neoantigen Prioritization. *Front Immunol.* 2017;8:1367.
- 399. Jappe EC, Kringelum J, Trolle T, Nielsen M. Predicted MHC peptide binding promiscuity explains MHC class I 'hotspots' of antigen presentation defined by mass spectrometry eluted ligand data. *Immunology*. 2018;154(3):407-417.
- 400. Pearson H, Daouda T, Granados DP, Durette C, Bonneil E, Courcelles M, Rodenbrock A, Laverdure JP, Côté C, Mader S, Lemieux S, Thibault P, Perreault C. MHC class I-associated peptides derive from selective regions of the human genome. *J Clin Invest*. 2016;126(12):4690-4701.
- 401. Murphy JP, Konda P, Kowalewski DJ, Schuster H, Clements D, Kim Y, Cohen AM, Sharif T, Nielsen M, Stevanovic S, Lee PW, Gujar S. MHC-I ligand discovery using targeted database searches of mass spectrometry data: Implications for T cell immunotherapies. *J Proteome Res.* 2017.
- 402. Stickel JS, Stickel N, Hennenlotter J, Klingel K, Stenzl A, Rammensee HG, Stevanović S. Quantification of HLA class I molecules on renal cell carcinoma using Edman degradation. *BMC Urol.* 2011;11:1.
- 403. Berlin C, Kowalewski DJ, Schuster H, Mirza N, Walz S, Handel M, Schmid-Horch B, Salih HR, Kanz L, Rammensee HG, Stevanović S, Stickel JS. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. *Leukemia*. 2015;29(3):647-659.
- 404. Walz S, Stickel JS, Kowalewski DJ, Schuster H, Weisel K, Backert L, Kahn S, Nelde A, Stroh T, Handel M, Kohlbacher O, Kanz L, Salih HR, Rammensee HG, Stevanović S. The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell-based immunotherapy. *Blood*. 2015;126(10):1203-1213.
- 405. Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L, Salih HR, Rammensee HG, Stevanovic S, Stickel JS. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). *Proc Natl Acad Sci U S A*. 2015;112(2):E166-175.
- 406. Kalaora S, Barnea E, Merhavi-Shoham E, Qutob N, Teer JK, Shimony N, Schachter J, Rosenberg SA, Besser MJ, Admon A, Samuels Y. Use of HLA peptidomics and whole exome sequencing to identify human immunogenic neo-antigens. *Oncotarget*. 2016;7(5):5110-5117.
- 407. Bassani-Sternberg M, Barnea E, Beer I, Avivi I, Katz T, Admon A. Soluble plasma HLA peptidome as a potential source for cancer biomarkers. *Proc Natl Acad Sci U S A*. 2010;107(44):18769-18776.
- 408. Synowsky SA, Shirran SL, Cooke FGM, Antoniou AN, Botting CH, Powis SJ. The major histocompatibility complex class I immunopeptidome of extracellular vesicles. *J Biol Chem.* 2017;292(41):17084-17092.
- 409. Löffler MW, Mohr C, Bichmann L, Freudenmann LK, Walzer M, Schroeder CM, Trautwein N, Hilke FJ, Zinser RS, Mühlenbruch L, Kowalewski DJ, Schuster H, Sturm M, Matthes J, Riess O, Czemmel S, Nahnsen S, Königsrainer I, Thiel K, Nadalin S, Beckert S, Bösmüller H, Fend F, Velic A, Maček B, Haen SP, Buonaguro L, Kohlbacher O, Stevanović S, Königsrainer A, Rammensee HG. Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. *Genome Med.* 2019;11(1):28.
- 410. Marcu A, Bichmann L, Kuchenbecker L, Backert L, Kowalewski DJ, Freudenmann LK, Löffler MW, Lübke M, Walz JS, Velz J, Moch H, Regli L, Silginer M, Weller M, Schlosser A, Kohlbacher O, Stevanović S, Rammensee H-G, Neidert MC. The HLA Ligand Atlas. A resource of natural HLA ligands presented on benign tissues. *bioRxiv*. 2019:778944.
- 411. Neidert MC, Schoor O, Trautwein C, Trautwein N, Christ L, Melms A, Honegger J, Rammensee HG, Herold-Mende C, Dietrich PY, Stevanović S. Natural HLA class I ligands from glioblastoma: extending the options for immunotherapy. *J Neurooncol.* 2013;111(3):285-294.
- Gfeller D, Guillaume P, Michaux J, Pak HS, Daniel RT, Racle J, Coukos G, Bassani-Sternberg M. The Length Distribution and Multiple Specificity of Naturally Presented HLA-I Ligands. *J Immunol.* 2018;201(12):3705-3716.
- 413. Barnstable CJ, Bodmer WF, Brown G, Galfre G, Milstein C, Williams AF, Ziegler A. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. *Cell*. 1978;14(1):9-20.
- 414. Shackelford DA, Lampson LA, Strominger JL. Separation of three class II antigens from a homozygous human B cell line. *J Immunol.* 1983;130(1):289-296.

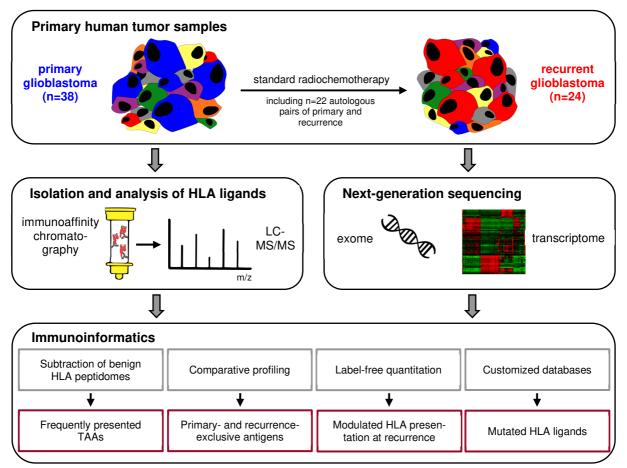
- 415. Ødum N, Ledbetter JA, Martin P, Geraghty D, Tsu T, Hansen JA, Gladstone P. Homotypic aggregation of human cell lines by HLA class II-, class Ia- and HLA-G-specific monoclonal antibodies. *Eur J Immunol*. 1991;21(9):2121-2131.
- 416. González-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, da Silva AL, Teles e Silva AL, Ghattaoraya GS, Alfirevic A, Jones AR, Middleton D. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. *Nucleic Acids Res.* 2015;43(Database issue):D784-788.
- 417. Hulsen T, de Vlieg J, Alkema W. BioVenn a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. *BMC Genomics*. 2008;9:488.
- 418. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA. COSMIC: the Catalogue Of Somatic Mutations In Cancer. *Nucleic Acids Res.* 2019;47(D1):D941-d947.
- 419. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc.* 2009;4(1):44-57.
- 420. Jiao X, Sherman BT, Huang da W, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. *Bioinformatics*. 2012;28(13):1805-1806.
- 421. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. *Nucleic Acids Res.* 2001;29(1):308-311.
- 422. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580-585.
- 423. Di Marco M, Schuster H, Backert L, Ghosh M, Rammensee HG, Stevanovic S. Unveiling the Peptide Motifs of HLA-C and HLA-G from Naturally Presented Peptides and Generation of Binding Prediction Matrices. *J Immunol.* 2017;199(8):2639-2651.
- 424. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope database (IEDB) 3.0. *Nucleic Acids Res.* 2015;43(Database issue):D405-412.
- 425. Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15:293.
- 426. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. *Clin Cancer Res.* 2009;15(17):5323-5337.
- 427. Almeida LG, Sakabe NJ, deOliveira AR, Silva MC, Mundstein AS, Cohen T, Chen YT, Chua R, Gurung S, Gnjatic S, Jungbluth AA, Caballero OL, Bairoch A, Kiesler E, White SL, Simpson AJ, Old LJ, Camargo AA, Vasconcelos AT. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. *Nucleic Acids Res.* 2009;37(Database issue):D816-819.
- 428. Rapin N, Hoof I, Lund O, Nielsen M. MHC motif viewer. Immunogenetics. 2008;60(12):759-765.
- 429. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. *Bioinformatics*. 2016;32(4):511-517.
- 430. Nielsen M, Andreatta M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. *Genome Med.* 2016;8(1):33.
- 431. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, Buus S, Nielsen M. NetMHCpan, a method for MHC class I binding prediction beyond humans. *Immunogenetics*. 2009;61(1):1-13.
- 432. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. *J Immunol.* 2017;199(9):3360-3368.
- 433. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. Human Protein Reference Database-2009 update. *Nucleic Acids Res.* 2009;37(Database issue):D767-772.
- 434. Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. *J Am Soc Mass Spectrom*. 1994;5(11):976-989.
- 435. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. *Bioinformatics*. 2010;26(7):966-968.
- 436. Rammensee HG, Bachmann J, Emmerich NP, Bachor OA, Stevanović S. SYFPEITHI: database for MHC ligands and peptide motifs. *Immunogenetics*. 1999;50(3-4):213-219.
- 437. Kowalewski DJ, Stevanovic S. Biochemical large-scale identification of MHC class I ligands. *Methods Mol Biol.* 2013;960:145-157.
- 438. Rötzschke O, Falk K, Wallny HJ, Faath S, Rammensee HG. Characterization of naturally occurring minor histocompatibility peptides including H-4 and H-Y. *Science*. 1990;249(4966):283-287.
- 439. Merck Millipore. [Internet]. Available from: http://www.merckmillipore.com/, accessed on 2017/03/30.
- 440. Zhang N, Li L. Effects of common surfactants on protein digestion and matrix-assisted laser desorption/ionization mass spectrometric analysis of the digested peptides using two-layer sample preparation. *Rapid Commun Mass Spectrom*. 2004;18(8):889-896.

CHAPTER 2

Multi-omics analysis identifies novel antigens for glioblastoma immunotherapy and delineates dynamics during progression from primary to recurrent disease

Lena Katharina Freudenmann (L.K.F.) planned and performed all HLA peptidome analyses excepting HLA-IP of ZH613, ZH616, ZH617, and ZH631, which had been part of a pilot experiment by Ana Marcu. L.K.F. analyzed the entire immunopeptidomic dataset and contributed all figures and texts. Acquisition and analysis of exome and transcriptome data including variant calling as well as calculation of allele frequencies and expression values was conducted at CeGaT GmbH and at the Quantitative Biology Center, University of Tübingen. Initial search for neo-antigens was performed by Leon Bichmann, whereas L.K.F. validated candidates and conducted all downstream analyses. HLA allotypes were determined by HistoGenetics or by the Quantitative Biology Center, University of Tübingen. Samples along with clinical metadata were provided by collaborating physicians and analyzed by L.K.F.

1 Abstract


Glioblastoma is the most aggressive and most frequent primary CNS tumor. Despite extensive research, patients have not sufficiently benefited from recent scientific developments including immune checkpoint inhibitors. However, glioblastoma has been shown to be vulnerable to T cells targeting non-mutated peptides presented on HLA molecules. Immunotherapeutic intervention is typically administered subsequent so standard radiochemotherapy contributing to potential hypermutation and clonal evolution perhaps drastically altering the antigenic repertoire. Thus, we have for the first time investigated the immunopeptidomic landscape of 24 recurrent glioblastomas in comparison with 38 primary tumors, including 22 autologous pairs of samples, to define tumor antigens robustly presented at both recurrent and primary disease, while addressing not only HLA class I- but also HLA class II-restricted peptides. Relative guantitation of HLA ligand abundances, comparative profiling, and functional annotation clustering further delineated antigenic profiles and features associated with primary or recurrent glioblastoma, respectively. Moreover, this multi-omics approach provides the first evidence for natural HLA presentation of two neo-antigenic peptides in human brain tumors. Taken together, we defined a set of glioblastoma-associated antigens representing prime candidates to be pursued in the development of future immunotherapies as being naturally, exclusively, and frequently presented on both primary and recurrent neoplasias. This may contribute to improve the therapeutic situation in recurrent glioblastoma lacking evidencebased protocols.

2 Introduction

Glioblastoma represents the most frequent and most aggressive primary CNS neoplasia accounting for a 5-year relative survival rate of only 6.8%.¹ Extensive research has been conducted, however, a sufficient translation of scientific knowledge into clinical benefit has so far stayed out. The standard-of-care still comprises surgery and adjuvant radiochemotherapy according to the Stupp protocol and evidence-based therapeutic regimens to manage disease recurrence do not exist.²⁻⁶ Glioblastoma recurrence is inevitable, as these diffusely growing tumors deeply infiltrate into surrounding benign brain tissue rendering complete surgical resection virtually impossible.^{2-4,7} Radio- and especially adjuvant and concomitant chemotherapy are expected to significantly alter the repertoire of potential targets by clonal evolution and, in a fraction of patients, by somatic hypermutation.^{8,9} Although few datasets investigating the antigenic landscape of glioblastoma have been published, none has so far addressed recurrent tumors despite this is the condition, in which experimental therapies are initially applied to be evaluated for clinical effectiveness. Likewise, HLA class II-restricted targets have been inadequately examined by previous studies.¹⁰⁻¹⁴

We employ a multi-omics aproach comprising HLA peptidome analyses, whole exome and transcriptome sequencing, and DNA methylation profiling. Comparison with a large dataset of benign immunopeptidomes enabled the definition of glioblastoma-associated antigens and peptides as candidate targets for cancer immunotherapy. Antigens were reviewed for CTA-like expression profiles by querying the GTEx database, which contains RNA expression data acquired across a large set of benign human tissues.¹⁵ This also allowed excluding such with

CNS-specific expression and to identify antigens not known to be expressed in any tissue. Moreover, exome sequencing of tumors and autologous blood cells may allow the identification of neo-antigenic HLA ligands, especially in hypermutated recurrent tumors, in a fully individualized setting or disprove the efficient translation of non-synonymous mutations into peptides naturally presented on HLA, as already done for several cancer entities including primary glioblastoma.^{12,16-19} Besides yielding candidate targets for immunotherapy, this study provides a deep insight into glioblastoma biology during progression from primary to recurrent disease. To adress this, we compared the immunopeptidomic landscape of primary and recurrent tumors in a predominantly autologous setting, whereby mutational, transcriptional, and DNA methylation profiling will follow.

Figure 8. Multi-omics analysis of glioblastoma with a particular focus on the similarities and differences between primary and recurrent disease. While the analysis of immunopeptidomic data has been completed, the investigation of whole exome and transcriptome data as well as integration with LC-MS/MS data has been performed for n=13 primary tumors and is currently being extended to all patients with paired primary and recurrent glioblastomas being available. The two middle panels of the figure were kindly provided by PD Dr. med. Marian Christoph Neidert.

3 Methods

Patient collective

Written informed consent of the 40 patients included in the present study was obtained in accordance with the Declaration of Helsinki protocol and the local review boards (Kantonale Ethikkommission Zürich / KEK-ZH-Nr. 2015-0163; Ethik-Kommission der Ärztekammer

Hamburg / PV4904) before surgery. Patients underwent surgery at the Department of Neurosurgery of the University Hospital Zürich or of the University Medical Center Hamburg-Eppendorf. Tissue samples were snap frozen in liquid nitrogen and stored at -80°C until use. All patients had histopathologically confirmed glioblastoma and specimens along with clinical metadata were kindly provided by PD Dr. med. Marian Christoph Neidert and Dr. med. Julia Velz (University Hospital Zürich, Department of Neurosurgery), Dr. Konstantina Kapolou (University Hospital and University of Zürich, Department of Neurology, Laboratory for Molecular Neuro-Oncology) as well as by Prof. Dr. med. Manfred Westphal and Dr. med. Malte Mohme (University Medical Center Hamburg-Eppendorf, Department of Neurosurgery).

All patients had histopathologically confirmed glioblastoma (all IDH1^{WT} excepting n=2 lacking IDH1-status and n=1 IDH1^{mut} at recurrence; n=17 MGMT⁺ / n=20 MGMT⁻ / n=3 lacking MGMT-status) with 38 and 24 samples obtained during surgery at primary or recurrent disease, respectively. The present study population had a female-to-male ratio of 4:5 and a median age of onset of 67 [33-86] years. Autologous primary and recurrent tumors enabling LFQ of relative HLA class I and II ligand abundances were available from 22 patients. The median amount of tissue subjected to HLA-IP accounted to 893 [119-2759] mg for primary and to 451 [35-5834] mg for recurrent glioblastomas. Individual patient and sample characteristics are given in Table 6 and Figure 9, whereby a closer look on HLA allotype frequencies in the study cohort is provided in CHAPTER 5.

Table 6. Study cohort comprising 40 glioblastoma patients (n=38 primary and n=24 recurrent tumors). Age of onset was defined as the age at initial diagnosis. The MGMT-status differentiates tumors into such with (+) and without (-) MGMT promoter methylation, whereas the IDH1-status distinguishes glioblastomas lacking a mutation of the IDH1 gene (WT) from those with mutant IDH1 (mut). HLA class II allotypes were only available for samples sequenced at HistoGenetics. Abbreviations not introduced in the text above: primary glioblastoma (P), recurrent glioblastoma (R), not determined (n.d.). #Sample mass not used for further calculations (part of sample lost during HLA-IP).

Internal sample ID	Gender Age of onset [years]	IDH1-status MGMT-status	PFS from primary [months]	Time from P to R surgery [months]	OS from primary [months]	HLA typing	Sample mass HLA-IP [mg] P / R	Direct injection P / R	Relative quantitation HLA class I / II
Autologous	pairs of pr	rimary ar	nd recurre	nt gliobla	stoma				
GBM2 P N1-06 R N162-06	් 67	WT +	n.d.	10	n.d.	A*02:01;A*03:01;B*07:02;B*15:01;C*07:02;C*03:04	978 526	-	+/+
GBM3 P N82-12 R N56-13	් 68	WT -	n.d.	11	n.d.	A*02:01;A*01:01;B*27:05;B*18:01;C*02:02;C*07:01	1862 174	_	-/+
GBM4 P N119-08	් 65	WT -	n.d.	10	n.d.	A*03:01;A*03:01;B*07:02;B*07:02;C*07:02;C*07:02	332	_	+ /
R N73-09 GBM5 P N12-05	⊊ 66	WT +	n.d.	12	n.d.	A*01:01;A*01:01;B*13:02;B*15:01;C*03:03;C*06:02	534 729	_	+/+
R N108-06 GBM6 P N156-08	⊊ 63	WT -	n.d.	12	n.d.	A*02:05;A*03:01;B*35:01;B*15:03;C*04:01;C*12:03	375 1258	_	+/-
R N146-09 GBM7 P N163-07	♀ 47	WT / mut	n.d.	46	n.d.	A*11:01;A*02:01;B*07:02;B*56:01;C*01:02;C*02:02	253 893	-	+/+
R N182-10 GBM8 P N122/07	ୁ 40	+ n.d. n.d.	n.d.	24	n.d.	A*68:01;A*03:01;B*07:02;B*44:02;C*07:02;C*07:04	566 119	- +	_/_
R N131/09 GBM9 P N45/14	⊊ 40	WT +	n.d.	7	n.d.	A*33:05;A*01:01;B*08:01;B*14:02;C*07:01;C*08:02	82 1471	+	+/+
R N203/14 GBM10	ð	n.d.	n.d.	60	n.d.	A*02:01;A*03:01;B*07:02;B*07:02;C*07:02;C*07:02	917	+	_/_
P N207/10 R N476/15	52	-					252 1167	+ +	

GBM11	3	WT	n.d.	20	n.d.	A*02:05;A*02:01;B*41:01;B*07:02;C*07:01;C*07:02			+/+
P N138/15	74	+					663	+	
R N546/15							310	+	
GBM12	3	WT	6	6	9	A*11:01;A*02:01;B*35:01;B*15:01;C*01:02;C*04:01			+/+
P ZH560	54	-					206	+	
R ZH588							5834	-	
GBM13	Ŷ	WT	15	15	n.d.	A*01:01;A*02:01;B*08:01;B*13:02;C*06:02;C*07:01			_/_
P ZH794	72	n.d.				DRB1*03:01;DRB1*07:01;DRB3*01:01;DRB4*01:01;	734	-	
R ZH917						DQB1*02:01;DQB1*02:01;DQA1*02:01;DQA1*05:01	546	+	
GBM14	3	WT	6	13	18	A*33:01;A*02:01;B*35:03;B*14:02;C*08:02;C*04:01			+/+
P ZH301	68	n.d.					250	+	
R ZH384							2784#	_	
GBM15	3	WT	5	16	n.d.	A*24:02;A*02:01;B*44:02;B*44:03;C*05:01;C*02:02			-/+
P ZH399	54	_					348	+	
R ZH535	-						95	+	
GBM16	3	WT	3	36	41	A*03:01;A*01:01;B*07:02;B*08:01;C*07:01;C*07:02			+/+
P ZH415	59	+	-				893	+	. , .
R ZH622	00	•					344	+	
GBM17	3	WT	9	10	19	A*01:01;A*03:01;B*44:03;B*57:01;C*04:01;C*06:02	0	•	_/_
P ZH746	72	_	-			DRB1*07:01;DRB1*13:05;DRB3*02:02;DRB4*01:01;	922	_	
R ZH855						DQB1*02:01;DQB1*03:01;DQA1*02:01;DQA1*05:01	735	+	
GBM18	Ŷ	WT	10	11	n.d.	A*03:01;A*11:01;B*07:02;B*08:01;C*07:01;C*07:02	100		_/_
P ZH813	57	_	10			DRB1*03:01;DRB1*04:04;DRB3*01:01;DRB4*01:01;	1655	_	,
R ZH895	57					DQB1*02:01;DQB1*03:02;DQA1*03:01;DQA1*05:01	2147	_	
GBM19	3	WT	11	11	n.d.	A*02:01;A*24:02;B*40:02;B*44:02;C*01:02;C*05:01	2147	_	-/-
P ZH818	о 68			11	n.u.	DRB1*01:01:DRB1*13:01:DRB3*02:02:DQB1*05:01;	660		_/_
R ZH904	00	-					662 40	_	
	0	WТ	19	23		DQB1*06:03;DQA1*01:03;DQA1*01:01	40	+	
GBM20	₽ CO		19	23	n.d.	A*29:02;A*02:01;B*44:03;B*44:02;C*05:01;C*16:01	1 40		+/+
P ZH669	69	-					140	+	
R ZH909	~	\A/T	00	00		Atoo of Atoo of Dtop on Dt// on Otio on Oto7 of	35	+	,
GBM21	Ŷ	WT	38	38	n.d.	A*02:01;A*02:01;B*35:03;B*44:02;C*12:03;C*07:04	010		-/+
P ZH561	33	+					310	+	
R ZH862	~		_	~~	~~		215	+	,
GBM22	Ŷ.,	WT	7	20	23	A*03:01;A*24:02;B*35:03;B*40:01;C*03:04;C*12:03			-/-
P ZH736	76	+				DRB1*09:01;DRB1*11:01;DRB3*02:02;DRB4*01:01;	1074	-	
R ZH736R						DQB1*03:03;DQB1*03:01;DQA1*03:01;DQA1*05:01	3714	-	
GBM23	P	WT	20	21	24	A*03:01;A*23:01;B*35:02;B*47:01;C*04:01;C*06:02			_ /_
P ZH763	70	+				DRB1*07:01;DRB1*11:04;DRB3*02:02;DRB4*01:01;	1981	-	
R ZH945						DQB1*02:01;DQB1*03:01;DQA1*02:01;DQA1*05:01	542	+	
Unpaired tur	mor sam	ples							-
P ZH613	8	WT	n.d.	n.d.	n.d.	A*02:05;A*31:01;B*51:01;B*58:01;C*05:01;C*07:01	840	-	
	74	_				DRB1*13:01;DRB1*13:02;DRB3*02:02;DRB3*03:01;			
						DQB1*06:09;DQB1*06:03;DQA1*01:03;DQA1*01:02			
P ZH616	Ŷ	WT	n.d.	n.d.	n.d.	A*02:01:A*29:02:B*07:02:B*44:02:C*05:01:C*07:02	1160	_	
1 20010	86	_		11.0.		DRB1*12:01;DRB1*15:01;DRB3*02:02;DRB5*01:01;	1100		
						Bribt 12.01,Bribt 10.01,Bribb 02.02,Bribb 01.01,			
						DOB1*03·01·DOB1*06·02·DOA1*01·02·DOA1*05·01			
D 74617		wт	nd	nd	nd	DQB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01	600		
P ZH617	Ŷ	WT	n.d.	n.d.	n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01	600	-	
P ZH617		WT +	n.d.	n.d.	n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01;	600	-	
	♀ 74	+				A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01		-	
P ZH617 P ZH631	ੂ 74 ਿੰ	+ WT	n.d. n.d.	n.d. n.d.	n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04	600 370	-	
	♀ 74	+				A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01;		-	
P ZH631	ൂ 74 റ് 60	+ WT +	n.d.	n.d.	n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01	370	-	
	ੂ 74 ੈ60 ੰ	+ WT + WT				A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01		_	
P ZH631	ൂ 74 റ് 60	+ WT +	n.d.	n.d.	n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01;	370	_	
P ZH631 P ZH645	ੂ 74 ਨੂੰ 60 ਨੂੰ 66	+ WT + WT -	n.d. n.d.	n.d. n.d.	n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01	370 1037	_	
P ZH631	ୁ 74 ି 60 ି 66 ି	+ WT + - WT	n.d.	n.d.	n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*02:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06	370	_	
P ZH631 P ZH645	ੂ 74 ਨੂੰ 60 ਨੂੰ 66	+ WT + WT -	n.d. n.d.	n.d. n.d.	n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01;	370 1037	-	
P ZH631 P ZH645 P ZH654	74 60 ී 66 72	+ WT + - WT +	n.d. n.d. n.d.	n.d. n.d. n.d.	n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01	370 1037 2759	-	
P ZH631 P ZH645	♀ 74 ී 60 ී 66 ී 72 ී	+ WT + - WT	n.d. n.d.	n.d. n.d.	n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;CQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02	370 1037		
P ZH631 P ZH645 P ZH654	74 60 ී 66 72	+ WT + - WT +	n.d. n.d. n.d.	n.d. n.d. n.d.	n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:01;B*51:01;C*01:02;C*07:01 DRB1*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*03:02;DRA1*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*01:01;A*11:01;B*51:01;C*06:02;C*15:02 DRB1*04:04;DRB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02;	370 1037 2759		
P ZH631 P ZH645 P ZH654 P ZH678	♀ 74 ° 60 ° 66 ° 72 ° 66	+ WT - WT + WT -	n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DCB1*04:02;DCB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*51:01;C*06:02;C*15:02 DRB1*01:01;A*11:01;DRB1*13:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;DRB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;DRB1*11:02;DQA1*02:02;DRB3*02:02; DRB1*11:01;DQB1*03:01;DQA1*05:01;DQA1*05:01	370 1037 2759 2619	-	
P ZH631 P ZH645 P ZH654	♀ 74 ° 60 ° 66 ° 72 ° 66 °	+ WT - WT + WT - WT	n.d. n.d. n.d.	n.d. n.d. n.d.	n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;QA1*03:01 A*02:01;A*11:01;B*51:01;DRB3*02:02;DQA1*03:01 A*02:01;A*11:01;DRB1*13:02;DQA1*02:02;DQA1*03:01 A*02:01;A*11:01;DRB1*03:02;DQA1*02:01;C*04:01;C*15:02 DRB1*03:03;DQB1*03:02;DQA1*05:01;DQA1*05:01 A*02:01;A*10;DRB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02	370 1037 2759		
P ZH631 P ZH645 P ZH654 P ZH678	♀ 74 ° 60 ° 66 ° 72 ° 66	+ WT - WT + WT -	n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*41:03;B*51:01;C*04:01;C*15:02 DRB1*104:04;DRB1*07:01;DRB4*01:01;C*06:02;C*15:02 DRB1*104:02;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*41:03;B*51:01;C*04:01;C*15:02 DRB1*10;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*11:01;DRB1*13:02;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:03;	370 1037 2759 2619		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681	♀ 74 ° 60 ° 66 ° 72 ° 66 ° 78	+ WT - WT + WT - WT +	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*03:02;DRA3*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*67:01;DRB4*01:03;DRB3*02:02; DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DRB1*03:01;DQB1*03:02;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*7:02 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRA4*01:03; DQB1*03:03;DQB1*06:04;DQA1*05:01;DQA1*02:01	370 1037 2759 2619 1244	-	
P ZH631 P ZH645 P ZH654 P ZH678	⊶ 74 ° 60 ° 66 ° 72 ° 66 ° 78 ° 78 ° °	+ WT - WT + WT - WT	n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DRB1*08:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*03:02;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*11:01;DRB1*13:02;DQA1*02:02;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:01;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03	370 1037 2759 2619		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681	♀ 74 ° 60 ° 66 ° 72 ° 66 ° 78	+ WT - WT + WT - WT +	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DCB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:02 DRB1*11:01;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*12:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*01:01;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*16*01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01;	370 1037 2759 2619 1244		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720	్ 74 ో 60 ో 66 ో 72 ో 66 ే 78 70	+ WT + WT + WT - WT + WT +	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DCB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;QA1*03:01 A*02:01;A*11:01;B*51:01;B*57:01;C*06:02;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*03:01;DQB1*03:02;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:01;DRB3*01:01; DQB1*03:03;DQB1*06:03;DQA1*01:03;DQA1*01:01;	370 1037 2759 2619 1244 960		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681	್. 74 ೆ 60 ೆ 66 ೆ 72 ೆ 66 ೆ 78 ್70 ♀	+ WT - WT + WT - WT +	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DQB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*104:02;DQB1*03:02;DQA1*05:01;DQA1*05:01 A*02:01;A*11:01;B*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:02;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*01:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*113:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:0	370 1037 2759 2619 1244		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720	్ 74 ో 60 ో 66 ో 72 ో 66 ే 78 70	+ WT + WT + WT - WT + WT +	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*01:02;DQB1*05:01; DQA1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DRB1*08:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*03:02;DRA1*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DRB1*13:01;DRB1*15;01;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DRB1*13:01;DRB1*13:02;DRB3*01:01;DRB3*01:01; DRB1*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*10;03;DQA1*01:03; DA1*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*10;03;DQA1*01:03; DA1*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*10;03;DQA1*01:03; DA1*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*10;03;DQA1*01:03; DA1*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*10;03;DQA1*01:03; DA1*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*10;03;DQA1*01:03; DA1*02;01;A*24:02;B*15:17;B*44:02;C*07:01;C*10;03;DQA1*01:03; DA1*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*10;03;DQA1*01:03; DA1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01;	370 1037 2759 2619 1244 960		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720	್. 74 ೆ 60 ೆ 66 ೆ 72 ೆ 66 ೆ 78 ್70 ♀	+ WT - WT - WT - WT - WT - WT -	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DQB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*104:02;DQB1*03:02;DQA1*05:01;DQA1*05:01 A*02:01;A*11:01;B*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:02;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*01:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*113:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03;DQA1*01:03; DQA1*06:03;DQB1*06:03;DQA1*01:0	370 1037 2759 2619 1244 960	-	
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720	್. 74 ೆ 60 ೆ 66 ೆ 72 ೆ 66 ೆ 78 ್70 ♀	+ WT + WT + WT - WT + WT +	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*01:02;DQB1*05:01; DQA1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DRB1*08:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*03:02;DRA1*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DA1*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*10;C*12:03 DRB1*13:01;DRB1*13:02;DRB3*01:01;DRB3*01:01;SPB3*03:01;SPB3*02:02;SPB3*03:01;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SPB3*03:00;SP3*03:00;SPB3*03:00;SPB3*03:00;SP3*03:00;SPB3*03:00;	370 1037 2759 2619 1244 960		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750	⊶ 74 ి 60 ి 66 ి 72 ి 66 ి 78 ి 70 ♀ 60	+ WT - WT - WT - WT - WT - WT -	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:01;DQB1*04:02;DQA1*05:01; DQA1*01:01;DQB1*08:04;DQA1*01:02;DQA1*02:01 DRB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*03:02;DQA1*02:01;DQA1*02:01; DA01*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:06 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*13:01;DRB3*01:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DRB1*11:01;DRB1*13:02;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DRB1*11:01;DRB1*13:02;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03;DQA1*01:03; DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:02;DQA1*05:01;DQA1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01;DQA1*05:01;DQA1*05:01;DQA1*05:01;DQA1*05:01;DQA1*05:01;DQA1*05:01;DQA1*05:01;DQA1*05:01;DQA1*05:01;DQA1*05:01;DQA1*05:01;DQA1*05:0	370 1037 2759 2619 1244 960 1019		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757	♀74 ° 60 ° 66 ° 72 ° 66 ° 78 ° 70 ♀ 60 °	+ WT - WT - WT - WT - WT - WT - WT -	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DCB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:01;DCB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:04;DQA1*01:02;DQA1*02:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*03:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:02 DRB1*11:01;DQB1*03:01;DQA1*02:02;DRB3*02:02; DQB1*03:01;DQB1*03:01;DQA1*05:01;QA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*151:01;DRB3*01:01;DQB1*03:01 DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*151:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:03;DQA1*01:03;DQA1*01:03 DQB1*03:03;DQB1*06:03;DQA1*01:03;DQA1*01:03 DRB1*11:01;DRB1*13:01;DRB3*01:01;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:03;DQB1*06:03;DQA1*01:02;DQA1*01:03 A*02:01;A*24:02;B*157:7;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:03;DQA1*01:02;DQA1*05:01 A*02:01;A*24:02;B*157:7;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:03;DQA1*01:02;DQA1*05:01 A*02:01;A*24:02;B*157:7;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:03;DQA1*01:02;DQA1*05:01 A*02:01;A*24:02;B*157:7;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*07:02	370 1037 2759 2619 1244 960 1019	-	
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750	♀74 ° 60 ° 66 ° 72 ° 66 ° 78 ° 70 ♀ 60 °	+ WT - WT - WT - WT - WT - WT -	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*002:03;DQB1*03:02;DQA1*02:01;QA1*03:01 A*02:01;A*11:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*06:04;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*13:01;DRB3*01:01;PDB4*01:03; DQB1*03:03;DQB1*06:03;DQA1*01:02;DQA1*02:01 A*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*12:03 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01;D DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03 A*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01;D DQB1*06:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01;D DQB1*03:01;DQB1*06:04;DQA1*01:03;DQA1*05:01 A*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01;D DQB1*03:01;DQB1*06:04;DQA1*01:03;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*07:02 DRB1*03:01;DQB1*06:04;DQA1*01:03;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*07:02 DRB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*07:02 DRB1*08:01;DRB1*15:01;DRB5*01:01;DQB1*04:02;	370 1037 2759 2619 1244 960 1019		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757	⊶ 74 ° 60 ° 66 ° 72 ° 66 ° 78 ° 70 ♀ 60 ° 70	+ WT - WT - WT - WT - WT - WT - WT -	n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:01;DQB1*04:02;DQA1*05:01; DQA1*01:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*06:04;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*17:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:02;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03 DQB1*06:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*12:03 DRB1*13:01;DRB1*13:02;DRB3*01:01;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*12:03 DRB1*13:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*06:03;DQB1*06:04;DQA1*01:02;DQA1*01:03 DRD1*13:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*7:02 DRB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:10;DRB3*01:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:10;DRB3*01:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:10;DRB3*02:02;DRB3*03:01; DQB1*06:02;DQA1*01:02;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*07:02 DRB1*08:01;DRB1*15:01;DRB5*01:01;DQB1*04:02; DQB1*06:02;DQA1*01:02;DQA1*04:01	370 1037 2759 2619 1244 960 1019 645		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757 P ZH761	⊶ 74 ° 60 ° 66 ° 72 ° 66 ° 78 ° 70 ° 60 ° 70 ° 70 ° ని	+ WT + WT - WT - WT - WT - WT - WT -	n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:01;DQB1*04:02;DQA1*05:01; DQA1*01:01;DQB1*08:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*02:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*111:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*102:01;B*44:03;B*51:01;C*06:02;C*17:02 DRB1*111:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DQB1*03:03;DQB1*06:03;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:02;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DA81*03:03;DQB1*06:03;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*07:02 DRB1*11:01;DRB1*13:01;DRB3*01:01;DRB3*03:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*07:02 DRB1*11:01;DRB1*13:01;DRB3*01:01;DRB3*03:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*07:02 DRB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:01;DRB5*01:01;DQB1*04:02; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;DRB1*13:01;DRB3*01:01;DQB1*04:02; DRB1*03:01;DRB1*15:01;DRB5*01:01;DQB1*04:02; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;B*44:02;B*51:26;C*01:02;C*16:01	370 1037 2759 2619 1244 960 1019 645		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757	⊶ 74 ° 60 ° 66 ° 72 ° 66 ° 78 ° 70 ° 60 ° 70 ° 70 ° ని	+ WT + WT - WT - WT - WT - WT - WT	n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:04;DQA1*01:02;DQA1*05:01 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*51:01;C*06:02;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:02;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*11:01;DRB1*11:01;DRB3*03:01;DQA1*05:01 A*02:01;A*02:01;B*151:01;C*07:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*17:02;B*57:01;C*06:02;C*07:02 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*151:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:03;DQA1*01:03;DQA1*01:03 DRB1*13:01;DRB1*13:02;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:02;DQA1*01:03 DRB1*13:01;DRB1*13:02;DRB3*01:01;DRB3*01:01; DQB1*03:01;DQB1*06:03;DQA1*01:02;DQA1*01:03 DRB1*13:01;DRB1*13:02;DRB3*01:01;DRB3*01:01; DQB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:05;C*01:02;C*07:02 DRB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:05;C*01:02;C*07:02 DRB1*03:01;DQB1*06:02;B*51:26;C*01:02;C*16:01 DRB1*03:01;DRB1*15:01;DRB5*01:01;DQB1*04:02; DQB1*06:02;DQA1*01:02;B*51:26;C*01:02;C*16:01 DRB1*03:01;DRB1*15:01;DRB5*01:01;DQB1*04:02;	370 1037 2759 2619 1244 960 1019 645		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757 P ZH761	⊶74 ో 60 ో 66 ో 72 ో 66 ో 78 ో 70 € 60 ో 70 80	+ WT + WT - WT - WT - WT - WT - WT -	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DCB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*08:04;DQA1*01:02;DQA1*02:01 A*01:01;A*02:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;B*57:01;C*06:02;C*15:02 DRB1*11:01;DQB1*06:04;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*51:01;B*57:01;C*06:02;C*15:02 DRB1*11:01;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;DB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*151:01;DRB3*01:01;DQA1*05:01 A*02:01;A*02:01;B*151:01;DRB3*01:01;DRB4*01:03; DQB1*03:03;DQB1*06:03;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*151:01;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*151:01;DRB3*01:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:03;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*07:02 DRB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*07:02 DRB1*08:01;DRB1*15:01;DRB3*01:01;DQB1*04:02; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*16:01 DRB1*03:01;DRB1*15:01;DRB3*01:01;DQB1*04:02; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*16:01 DRB1*03:01;DRB1*15:01;DRB3*01:01;DQB1*04:02; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;B*44:02;B*27:05;C*01:02;C*16:01 DRB1*03:01;DRB1*12:01;DRB3*02:02;DQB1*03:01; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;B*44:02;B*27:05;C*01:02;C*16:01 DRB1*01:01;DRB1*12:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQA1*01:01;DQA1*05:01	370 1037 2759 2619 1244 960 1019 645 1193		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757 P ZH761	⊶74 ് 60 ് 72 ് 66 ് 78 ് 70 60 ് 70 ് 80 ്	+ WT + WT - WT - WT - WT - WT - WT -	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:01;DQB1*04:02;DQA1*05:01; DQA1*01:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*101;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:02;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*173:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*13:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:02;DRB3*03:01;DRB3*01:01; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*18:01;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:02;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*07:02 DRB1*03:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DRB1*13:01;DRB3*01:01;DQB1*06:03;DQA1*01:03;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*16:01 A*02:01;A*02:02;DQA1*01:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;DRB3*02:02;DQB1*03:01; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;B*44:02;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQB1*06:04;DQA1*04:01 A*02:01;A*03:01;B*44:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;DQA1*05:01 A*02:01;A*04:01:01;DQA1*05:01 A*03:01;A*11:01;DRB3*12:01;DRB3*02:02;DQB1*03:01;	370 1037 2759 2619 1244 960 1019 645 1193		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757 P ZH761	⊶74 ് 60 ് 72 ് 66 ് 78 ് 70 60 ് 70 ് 80 ്	+ WT + WT - WT - WT - WT - WT - WT -	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*01:02;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*02:01;B*49:01;B*51:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*002:01;A*11:01;B*51:01;C*04:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:03;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*151:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:03;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*151:01;DRB3*01:01;DRB3*01:01; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*151:01;DRB3*01:01;DRB3*01:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*151:01;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*151:01;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*07:02 DRB1*03:01;DRB1*13:01;DRB3*01:01;DQB1*04:02; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;B*44:02;B*51:26;C*01:02;C*16:01 DRB1*01:01;DRB1*13:02;DRB3*02:02;DCB1*03:01; DQB1*05:01;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;B*44:02;B*51:26;C*01:02;C*16:01 DRB1*01:01;DRB1*12:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQA1*01:02;DQA1*04:01 A*03:01;A*11:01;B*07:02;B*31:302;C*06:02;C*07:02 DRB1*11:01;DRB1*12:01;DRB3*02:02;DCB1*03:01; DQB1*05:01;DQA1*01:01;DQA1*05:01	370 1037 2759 2619 1244 960 1019 645 1193		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757 P ZH761 P ZH791	⊶ 74 ి 60 ి 66 ి 72 ి 66 ి 78 ి 70 €0 ి 70 80 ి 63	+ WT + WT - WT - WT - WT - WT - WT - WT	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQA1*05:01; DQA1*01:01;DQB1*08:01;DQB1*04:02;DQA1*05:01; DQA1*01:01;DQB1*08:04;DQA1*01:02;DQA1*02:01 DRB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*17:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:02;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*17:02 DRB1*03:03;DQB1*06:04;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*17:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:03;DQA1*05:01;DRB4*01:03; DQB1*03:03;DQB1*06:03;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*12:03 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:01;DRB3*01:01;DQB1*06:02;DQA1*05:01 A*02:01;A*02:01;B*15:10;DRB3*01:01;DQB1*06:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;C*07:01;C*07:02;C*07:02 DRB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;C*05:01:02;C*16:01 DRB1*03:01;DRB1*15:01;DRB3*01:01;DQB1*04:02; DQB1*03:01;DRB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*03:01;DRB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*03:01;DRB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*03:01;DRB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*03:01;DRB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQA1*01:01;DQA1*05:01 A*03:01;A*111:01;B*07:02;B*13:02;C*06:02;C*07:02 DRB1*111:01;DRB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQA1*01:01;DQA1*05:01	370 1037 2759 2619 1244 960 1019 645 1193 751		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757 P ZH761 P ZH791	⊶74 ి 60 ి 66 ి 72 ి 66 ి 78 ి 70 € 60 ి 70 80 ి 63 ♀	+ WT + WT - WT - WT - WT - WT - WT - WT	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DCB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:04;DQA1*01:02;DQA1*02:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DRB1*08:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:01;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*167:02;B*57:01;C*06:02;C*07:02 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*02:01;A*02:01;B*151:11;B*39:10;C*07:01;C*12:03 DRB1*13:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:03;DQA1*01:03;DQA1*01:03 A*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:03;DQA1*01:02;DQA1*05:01 A*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:03;DQA1*01:02;DQA1*05:01 A*02:01;A*24:02;B*15:17;B*44:02;C*07:01;C*07:02 DRB1*03:01;DRB1*15:01;DRB5*01:01;DCB1*04:02; DQB1*06:02;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*127:05;C*01:02;C*16:01 DRB1*03:01;DQB1*12:01;DRB3*02:02;DQB1*03:01; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;B*44:02;B*51:26;C*01:02;C*16:01 DRB1*01:01;DRB1*12:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQB1*06:02;DQA1*04:01 A*03:01;A*11:01;B*07:02;B*13:02;C*06:02;C*07:02 DRB1*11:01;DRB1*15:01;DRB3*02:02;DQB5*01:01; DQB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*03:01;A*11:01;B*07:02;B*13:02;C*06:02;C*07:02 DRB1*11:01;DRB1*15:01;DRB3*02:02;DRB5*01:01; DQB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*03:01;A*11:01;B*07:02;B*13:02;C*06:02;C*07:02 DRB1*11:01;DRB1*15	370 1037 2759 2619 1244 960 1019 645 1193 751		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757 P ZH761 P ZH791	⊶74 ి 60 ి 66 ి 72 ి 66 ి 78 ి 70 € 60 ి 70 80 ి 63 ♀	+ WT + WT - WT - WT - WT - WT - WT - WT	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*03:03;C*07:04 DRB1*01:01;DRB1*08:01;DCB1*04:02;DQB1*05:01; DQA1*01:01;DQA1*04:01 A*01:01;A*02:01;B*49:01;B*51:01;C*01:02;C*07:01 DRB1*07:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*06:04;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:02 DRB1*11:01;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*07:01;DRB1*11:01;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*167:02;B*57:01;C*06:02;C*07:02 DRB1*07:01;DRB1*13:01;DRB3*01:01;DRB4*01:03; DQB1*03:03;DQB1*06:03;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*07:04 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*06:03;DQB1*06:03;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*07:02 DRB1*11:01;DRB1*13:01;DRB3*01:01;DQB1*06:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*07:02 DRB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*16:01 DRB1*03:01;DRB1*15:01;DRB3*01:01;DQB1*06:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*27:05;C*01:02;C*16:01 DRB1*03:01;DRB1*15:01;DRB3*02:02;DRB3*03:01; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;B*44:02;B*41:02;C*06:01:02;C*16:01 DRB1*03:01;DQB1*06:02;DQA1*04:01 A*02:01;A*03:01;B*14:02;B*41:02;C*06:01:02;C*16:01 DRB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*03:01;A*11:01;B*07:02;B*13:02;C*06:00;C*07:02 DRB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*03:01;A*11:01;B*07:02;B*13:02;C*06:01;C*07:02 DRB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*03:01;A*11:01;B*07:02;B*13:02;C*06:01;C*07:02 DRB1*04:04;DRB1*13:02;DRB3*03:01;DRB4*01:01;	370 1037 2759 2619 1244 960 1019 645 1193 751		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757 P ZH761 P ZH791 P ZH802	♀74 ී 60 ී 66 ී 72 ී 66 ී 78 ී 70 ♀ 60 ී 70 ී 80 ී 63 ♀70	+ WT + WT - WT - WT - WT - WT - WT - WT	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*01:02;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:02;DRB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*02:01;B*49:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB3*02:02;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*03:01 A*02:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*06:04;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*07:01;DRB1*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*151:71;B*44:02;C*07:01;C*12:03 DRB1*13:01;DRB1*13:01;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03 DQB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*151:71;B*44:02;C*07:01;C*12:03 DRB1*13:01;DRB1*13:02;DRB3*02:02;DRB3*03:01; DQB1*06:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*151:71;B*44:02;C*07:01;C*07:02 DRB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:05;C*01:02;C*07:02 DRB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;B*51:26;C*01:02;C*16:01 DRB1*03:01;DQB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*06:02;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;B*14:02;B*51:26;C*01:02;C*16:01 DRB1*01:01;DQB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQA1*01:02;DQA1*05:01 A*02:01;A*03:01;B*14:02;B*51:26;C*01:02;C*16:01 DRB1*01:01;DQB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQA1*01:02;DQA1*05:01 A*03:01;A*11:01;B*07:02;B*13:02;C*05:01;C*07:02 DRB1*11:01;DRB1*15:01;DRB3*02:02;DRB5*01:01; DQB1*03:01;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*31:01;A*33:01;B*144:02;B*51:26;C*05:01;C*08:02 DRB1*04:04;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*03:02;DQB1*06:04:01;DQA1*01:02;DQA1*05:01	370 1037 2759 2619 1244 960 1019 645 1193 751 1712		
P ZH631 P ZH645 P ZH654 P ZH678 P ZH681 P ZH720 P ZH750 P ZH757 P ZH761 P ZH791 P ZH802	♀74 ී 60 ී 66 ී 72 ී 66 ී 78 ී 70 ♀60 ී 70 ී 80 ී 63 ♀70 ♀	+ WT + WT - WT - WT - WT - WT - WT - WT	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	A*01:01;A*02:01;B*08:01;B*44:02;C*05:01;C*07:01 DRB1*03:01;DRB1*03:01;DRB3*01:01;DRB3*01:01; DQB1*02:01;DQB1*02:01;DQA1*05:01;DQA1*05:01 A*11:01;A*32:01;B*44:02;B*51:01;C*01:02;C*07:04 DRB1*01:01;DRB1*08:01;DQB1*04:02;DQB1*05:01; DQA1*01:01;DQB1*08:02;DQB3*03:01;DRB4*01:01; DQB1*02:01;DQB1*06:04;DQA1*01:02;DQA1*02:01 A*01:01;A*31:01;B*51:01;B*57:01;C*06:02;C*15:06 DRB1*04:04;DRB1*07:01;DRB4*01:03;DRB4*01:01; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*02:01 A*002:01;A*11:01;B*44:03;B*51:01;C*04:01;C*15:02 DRB1*11:01;DRB1*13:02;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:02;DQA1*02:01;DQA1*02:01; A*02:01;A*11:01;B*44:03;B*51:01;C*06:02;C*15:06 DRB1*11:01;DRB1*11:01;DRB3*02:02;DRB3*02:02; DQB1*03:03;DQB1*03:01;DQA1*05:01;DQA1*05:01 A*02:01;A*02:01;B*07:02;B*57:01;C*06:02;C*07:02 DRB1*03:03;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*13:02;DRB3*03:01;DRB4*01:03; DQB1*03:03;DQB1*06:03;DQA1*01:02;DQA1*02:01; A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*12:03 DRB1*13:01;DRB1*13:02;DRB3*01:01;DRB3*01:01; DQB1*06:03;DQB1*06:03;DQA1*01:03;DQA1*01:03; DAB1*13:01;DRB1*13:02;DRB3*01:01;CPGB3*03:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:17;B*44:02;C*07:01;C*07:02;C*07:02 DRB1*11:01;DRB1*13:01;DRB3*01:01;DQB1*04:02; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*02:01;B*15:10;DRB3*02:02;DRB3*03:01; DQB1*03:01;DQB1*06:04;DQA1*01:02;DQA1*05:01 A*02:01;A*03:01;B*44:02;B*51:26;C*01:02;C*16:01 DRB1*01:01;DRB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DRA1*15:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DRA1*15:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQA1*01:02;DQA1*04:01 A*02:01;A*03:01;B*44:02;B*51:26;C*01:02;C*16:01 DRB1*01:01;DRB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQA1*01:02;DQA1*04:01 A*02:01;A*11:01;B*07:02;B*13:02;C*06:02;C*07:02 DRB1*11:01;DRB1*15:01;DRB3*02:02;DQB1*03:01; DQB1*05:01;DQA1*01:02;DQA1*01:02;DQA1*05:01 A*31:01;A*133:01;B*144:02;B*44:02;C*05:01;C*08:02 DRB1*04:04;DRB1*13:02;DRB3*03:01;DRB4*01:01; DQB1*03:02;DQB1*06:02;DQA1*01:02;DQA1*05:01 A*24:02;A*24:02;B*44:03;B*57:01;C*06:02;	370 1037 2759 2619 1244 960 1019 645 1193 751 1712		

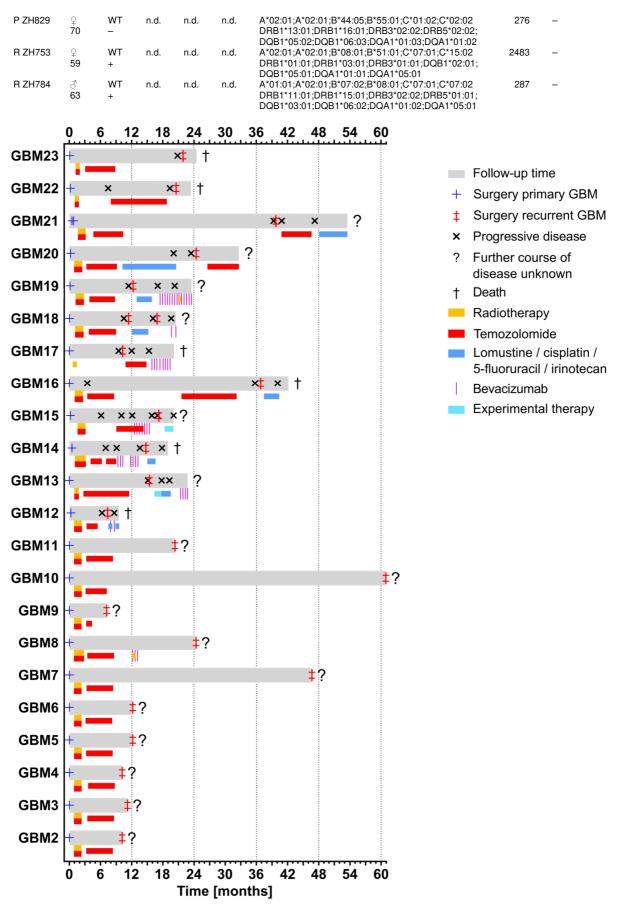


Figure 9. Clinical timeline for the 22 glioblastoma patients with both primary and recurrent tumors being analyzed. Median follow-up time accounted for 20 [7-61] months with patients 2-11

lacking clinical information subsequent to surgery for recurrent glioblastoma. All patients excepting GBM17 received radiochemotherapy and adjuvant temozolomide following surgical resection of primary glioblastoma. The time between surgery of primary and recurrent glioblastoma came up to 14 [6-60] months in median. Experimental therapies as part of clinical trials comprise the CDK2 / Janus kinase 2 (JAK2) / FMS-like tyrosine kinase 3 (FLT3) inhibitor TG02 (EORTC-1608; GBM13) and the fibroblast growth factor receptor inhibitor BGJ398 (CBGJ398X2201; GBM15). Prior to surgical resection of recurrent tumors, patients GBM4 and GBM10 were treated with an anti-EGFR antibody or bevacizumab (AVAglio study), respectively – precise dates of treatments were, however, not available.

HLA-IP and subsequent LC-MS/MS to identify HLA-presented peptides

HLA class I- and II-presented peptides were isolated from primary human tissue and analyzed by LC-MS/MS as described in 3.2. To handle the pronounced high degree of intratumoral heterogeneity characteristic of glioblastoma, a pool of frozen chopped tissue was created from which samples for HLA-IP, whole exome, and RNA sequencing were gathered. All peptide eluates were analyzed in three technical replicates each consuming 20% sample share on an Orbitrap Fusion Lumos. From autologous pairs of primary und recurrent tumors suitable for LFQ-MS, five adjusted technical replicates starting with 17% sample share in the dose-finding run were acquired. Two additional technical replicates consuming 17% sample share each were measured of samples heavily diluted for relative quantitation purposes. The maximum available number of LC-MS/MS runs were subjected to comparative profiling upon coprocessing. Direct injection of several peptide eluates was performed as indicated in Table 6.

HLA typing, whole exome, and RNA sequencing

HLA class I and II allotypes of all primary glioblastomas without autologous recurrent tumors being available as well as of ZH753, ZH784, and patients GBM13, 17, 18, 19, 22, and 23 were determined on 4-digit level by next-generation sequencing at HistoGenetics (New York, USA). For remaining patients, 4-digit HLA class I typing was retrieved from whole exome sequencing data of genomic DNA isolated from blood or PBMCs using the OptiType²⁰ algorithm by Marie Gauder and Dr. Stefan Czemmel (Quantitative Biology Center, University of Tübingen).

Whole exome and RNA sequencing was performed for all 22 patients with paired primary and recurrent glioblastoma as well as for ZH613, ZH616, ZH654, ZH681, ZH720, ZH750, ZH753, ZH757, and ZH802 at CeGaT GmbH (Tübingen). Genomic DNA was isolated from PBMCs using the DNeasy 96 Blood & Tissue Kit (Qiagen). For patients GBM2-11, isolated genomic DNA had already been provided by Dr. med. Malte Mohme. DNA and RNA were isolated from fresh frozen tumor tissue using the AllPrep DNA/RNA Mini Kit (Qiagen). Whole exome sequencing libraries were prepared from 50 ng DNA using the Twist Human Core Exome Kit (Twist Bioscience) and subsequent data acquisition was performed by paired-end sequencing and at 100 bp read length on a NovaSeg 6000 sequencing system (Illumina). For genomic DNA, 10 giga bases (Gb) were acquired per sample, whereas sequencing depth of tumor samples came up to 18 Gb. RNA was only isolated from tumor tissues. Following guality control for RNA integrity, sequencing libraries were prepared from 10 ng RNA using the SMARTer Stranded Total RNA-Seg Kit v2 - Pico Input Mammalian (Takara Bio), whereby ribosomal RNA was removed. Paired-end sequencing at 100 bp read length was performed for 10 Gb on a NovaSeg 6000. Sequencing reads were demultiplexed employing the Illumina bcl2fastg 2.19 followed by Adapter trimming with Skewer 0.2.2²¹ (exome sequencing) or cutadapt 1.12²² (RNA sequencing). FASTQ²³-formatted files were uploaded to qPortal²⁴ (Quantitative Biology Center, University of Tübingen) for further data analysis.

Variant calling and calculation of expression values at a time when only 13 primary tumors had been sequenced, was performed by Christopher Mohr and Silvia Morini (Quantitative Biology Center, University of Tübingen). BWA v0.7.17-r1188²⁵ was employed to map exomic reads to the human reference genome GRCh37 (Ensembl release 75). Somatic variants comprising insertions or deletions (indels) as well as single nucleotide variants (SNVs) were called separately by Strelka v2.9.3²⁶ with variants being annotated with SnpEff v4.3t²⁷. Variant allele frequencies (VAFs) representing the percentage of glioblastoma cells harboring the respective mutation were computed by division of the number of variant reads by the number of WT reads acquired from the same genomic region. Of note, this calculation assumes relatively high tumor cell content in the glioblastoma sample from which DNA was extracted.²⁸ Reported mutational loads (both indels and SNVs) refer to variants passing confidence filtering criteria of the variant caller Strelka v2.9.3 (filter 'PASS'). The probability p of an incorrect variant call is calculated from a phred-scale empirical variant scoring (EVS) step: $p = 10^{\frac{-somaticEVS}{10}}$. The EVS model is based on a supervised random forest classifier and provides a quality score for every variant.^{29,30} This quality score takes into account '(1) the genotype probability computed by the core variant probability model, (2) root-mean-square mapping quality, (3) strand bias, (4) the fraction of reads consistent with locus haplotype model, and (5) the complexity of the reference context as measured by metrics such as homopolymer length and compressibility²⁹. Applying the 'PASS' filter to variants excludes variants with a read depth < 2 in the glioblastoma sample and sets an EVS threshold of \geq 7 (equivalent to p < 20%) or of \geq 6 (equivalent to p < 25%) for SNVs and indels, respectively.^{29,30} Finer selection for confident somatic variants was based on filtering for mutations with an EVS \geq 13 corresponding to a probability of \leq 5% that the respective variant is incorrect.

Analysis of RNA data was based on the Nextflow pipeline release 1.3³¹ and the Sarek pipeline release 2.3³². Quality control of FASTQ files was accomplished by FASTQC³³, whereas MultiQC v1.73³⁴ aggregated the Bioinformatic workflow. Before read alignment to the human reference genome GRCh37 (Ensembl release 75) with STAR v2.6.1d³⁵, another adapter trimming step was conducted *via* Trim Galore v0.5.05³⁶. RNA sequencing data was evaluated using RSeQC v3.0.0³⁷ with features (transcripts) being counted by featureCounts v1.6.4³⁸. Besides reporting raw counts per gene, reads per kilobase per million mapped reads (RPKM) were calculated as a measure of expression strength³⁹ by (1) dividing the total number of reads in the respective sample by 1,000,000, (2) normalizing the read counts of a gene by the factor calculated in (1), and (3) dividing the result of (2) by the number of kilobases spanned by the respective gene.

For GBM 17, 18, 22, and 23, whole exome and RNA sequencing data of primary tumors and genomic DNA will be re-analyzed by Marie Gauder and Dr. Stefan Czemmel to ensure comparability with data obtained from autologous tumor recurrence.

Search for neo-antigenic HLA-presented peptides

From the initial unfiltered variant calling performed for 13 primary glioblastomas, FASTAformatted files were computed by translation of whole exome data with FRED 2⁴⁰. Patientspecific proteomes including mutated protein sequences arising from SNVs concatenated with a human reference proteome (Swiss-Prot release UP000005640, 20,416 reviewed protein sequences) as well as common laboratory contaminants served as database for annotation of MS² spectra using the MHCquant pipeline⁴¹. MHCquant was built within the OpenMS 2.4 framework⁴² employing the search engine Comet 2016.01 rev. 3⁴³ for peptide identification and Percolator 3.1.1⁴⁴ for FDR estimation. The FDR threshold was set to \leq 5% on peptide level and only the best sequence annotation (rank 1) was reported per fragment spectrum. Oxidation of methionine residues was the only permitted dynamic modification and no enzymatic restriction was set. Database search was performed at 5 ppm precursor ion and 0.02 Da fragment ion tolerance. HLA class I ligands were restricted to span 8 to 12 AA, to have a molecular weight of 800 to 2,500 Da, and to carry two or three positive charges. In contrast, the search space for HLA class II-restricted peptides was set to a length of 8 to 25 AA, a precursor mass of 800 to 5,000 Da, and a number of 2 to 5 positive charges. Identifications mapping to common laboratory contaminants were automatically excluded from reported peptide lists. Neo-antigenic peptides were predicted by shifting a window of 8 to 12 AA (HLA class I) or 8 to 25 AA (HLA class II) around the mutated amino acid, whereby no prediction of HLA binding probability was performed. Peptides identified by the MHCquant pipeline were designated as mutated when uniquely mapping to the list of predicted mutated 8- to 12-mers or 8- to 25-mers, respectively.

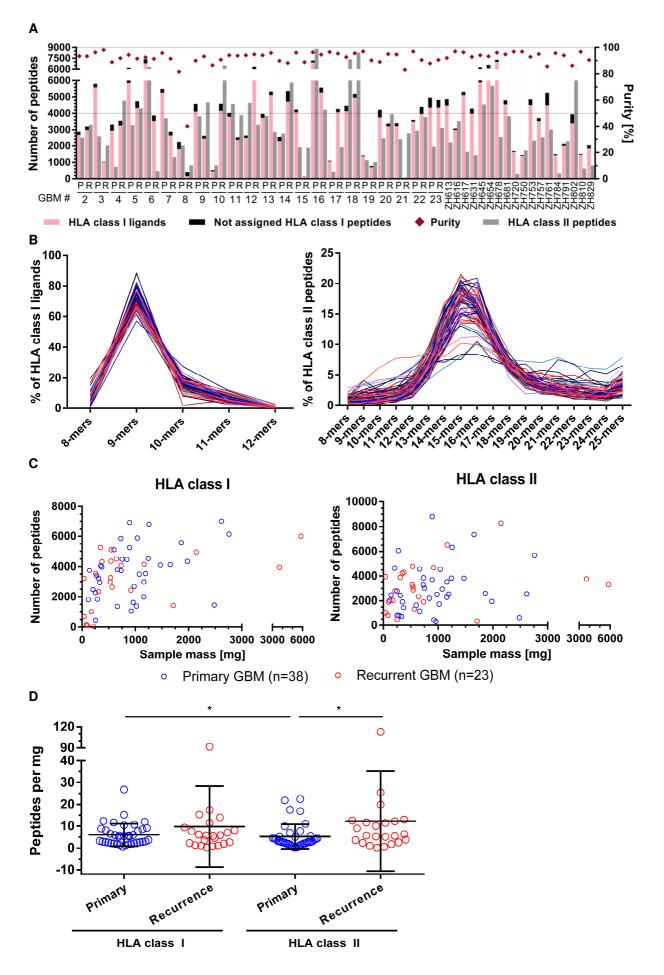
Potential neo-epitopes as identified by Leon Bichmann using the MHCquant pipeline underwent an in-house validation step by standard data processing with the SEQUEST search engine embedded in Proteome Discoverer 1.4 against patient-specific customized databases. This especially allowed assessing the spectral quality by viewing fragment spectra and corresponding scores. Moreover, a prediction of binding to the patient's HLA class I allotypes was performed as described in 3.2.2 and peptide sequences (with all possible exchanges of the isobaric AAs leucine and isoleucine) were queried against the UniProt⁴⁵ and dbSNP⁴⁶ databases to exclude that the identified peptide mapped to a WT sequence or a single nucleotide polymorphism. The VAF of the mutation-of-interest was reviewed with VAFs $\geq 5\%$ being considered as confident. In addition, the expression of the corresponding gene (independent of whether WT or variant transcripts were sequenced) was verified based on RNA data, whereby a minimum of 10 raw counts was set as threshold. Finally, heavy isotopelabeled peptides were synthesized by solid-phase peptide synthesis (Wirkstoffpeptidlabor, Department of Immunology, University of Tübingen), whereby heavy isotope-labeled isoleucine [I(¹³C₆; ¹⁵N)] was incorporated at one position each. Peptides were first completely dissolved in 100% DMSO, facilitated by vortexing, with subsequent addition of MS grade H₂O. Peptides were diluted with ALoad and spiked at ~100 fmol/µl into a complex matrix of HLA class I peptides eluted from JY cells. Following LC-MS/MS (standard HLA class I method as described in 3.2.2) on an Orbitrap Fusion Lumos, raw files were processed using a concatenated FASTA-formatted file consisting of the Swiss-Prot release from September 27th 2013 (20,279 reviewed protein sequences) and the mutant protein sequences. Heavy isotope labels (+7.017 Da) were permitted as additional dynamic modification for isoleucine residues and processing was otherwise performed as described in 3.2.2 for HLA class I peptidome data. Somatic mutations of confirmed HLA-presented neo-antigenic peptides were queried against the COSMIC database⁴⁷ to investigate whether these are recurrent or even known driver mutations. In addition, effects of these mutations on protein phosphorylation were assessed using the PhosphoMotif Finder of the Human Protein Reference Database⁴⁸. To search for threonine and tyrosine phosphorylation within the confirmed mutated peptide of ZH681, phosphorylation (+79.966 Da) was permitted as dynamic modification at these residues for standard data processing with the SEQUEST search engine against the patient-specific customized database.

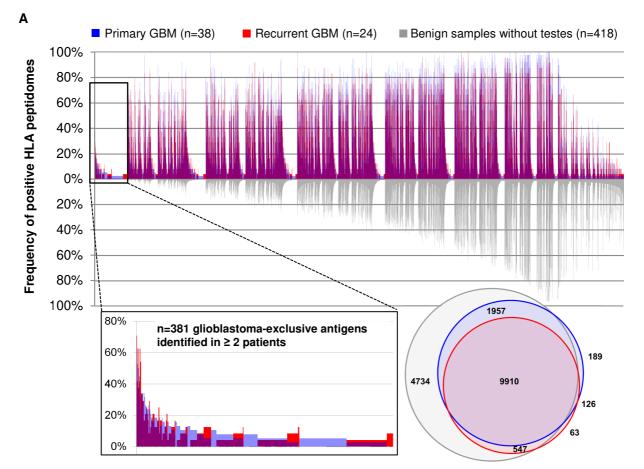
4 Results

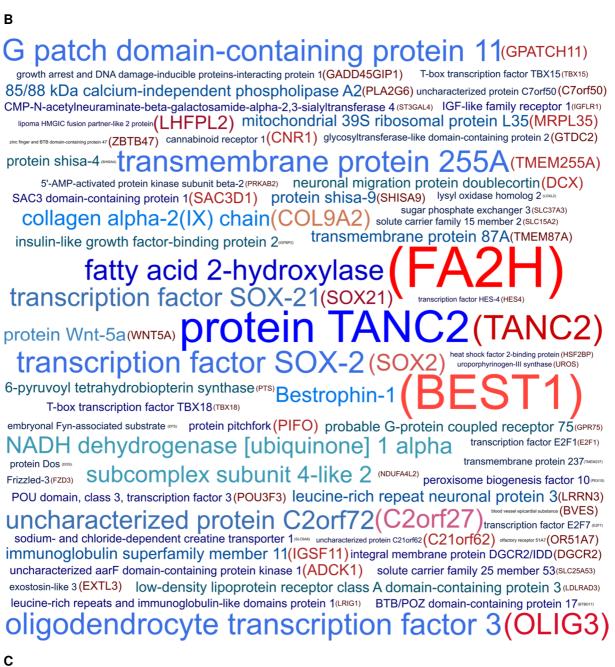
4.1 Peptide yields of HLA-IPs and HLA class I allotype coverage

To define candidate targets for glioblastoma immunotherapy naturally presented on HLA, we analyzed 38 primary and 24 recurrent tumor specimens derived from 40 different patients. The study cohort included 55 distinct HLA class I allotypes covering 99.95% of the world population, whereby 92.17% of all individuals are expected to be positive for at least three allotypes (Supplementary Figure 1). The most frequent allotypes among glioblastoma patients were HLA-A*02:01 (63%), -A*03:01 (28%), -A*01:01 (25%), -B*07:02 (33%), -B*44:02 (28%), -B*08:01 (15%), -B*51:01 (9%), -C*07:01 (30%), -C*07:02 (30%), -C*01:02 (20%), and -C*06:02 (20%) (Supplementary Table 1).

A median of 3742 [450-7007] and 3710 [65-6333] HLA class I ligands were identified from primary or recurrent glioblastomas, respectively. All HLA class I peptide eluates except that of GBM5R exhibited a purity of at least 80% and none of the samples were censored for low peptide yield or low percentage of HLA class I ligands. Concerning HLA class II, median peptide yields came up to 2527 [293-8812] and 3203 [333-8287]. The total number of unique HLA class I and II peptides, HLA class I ligands as well as the purity of HLA class I peptide eluates are given in Figure 10 A for every specimen. The length distribution of HLA class I ligands clearly peaked at 9 AA length, whereas HLA class II-presented peptides were typically 13- to 18-mers. A fraction of samples showed a broadened length distribution curve elevated either for shorter (≤ 12 AA) or longer (≥ 19 AA) peptides, whereby no difference between primary and recurrent tumors was observed (Figure 10 B). Taking tissue masses subjected to HLA-IP into account (Table 6), enabled us to investigate whether peptide yields correlate with sample quantities used. The amount of glioblastoma tissue correlated with the number of HLA class I ligand identifications, whereas this was not the case for HLA class II-presented peptides (Figure 10 C). Considering the relative number of identified unique peptides per one mg of tissue input revealed a slightly increased yield of HLA class I as compared with HLA class II peptides eluted from primary glioblastomas and of HLA class II-restricted peptides identified on recurrent versus primary tumors (Figure 10 D).




Figure 10. Number and length distribution of identified HLA class I- and II-presented peptides. (A) HLA class I and II peptide yields of primary and recurrent glioblastomas. Calculated purities refer to the proportion of HLA class I peptides annotated to an HLA allotype of the respective patient. (B) Length distribution of HLA class I ligands and HLA class II peptides. Across the entire dataset, 9-mers constituted 71% of HLA class I ligands, whereas 73% of HLA class II-presented peptides had a length between 13 and 18 AA. Each line represents data of one sample with primary and recurrent tumors being illustrated in blueish and redish shades, respectively. While the entire HLA class II dataset included 9% of peptides with \leq 12 AA and 19% of peptides with \geq 19 AA, these shares were distorted in a fraction of patients (GBM2R, GBM4P, GBM8P, GBM8R, GBM17R, ZH720, and ZH802: 16-28% 8- to 12-mers; GBM4P, GBM6R, GBM10P, ZH679, ZH720, and ZH829: 30-49% 19- to 25-mers). (C) Unique peptides per sample versus amount of tissue subjected to HLA-IP. The total amount of unique HLA class I ligands or HLA class II-restricted peptides was set in relation to the amount of tissue subjected to HLA-IP, whereby GBM14R was excluded owing to sample loss during HLA-IP. By non-linear regression (one-phase association) exponential functions with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. The goodness of fit was poor for all these models: R² = 0.13 (primary HLA class I) / 0.40 (recurrence HLA class I) / 0.02 (primary HLA class II) / 0.09 (recurrence HLA class II), However, a correlation analysis across normally distributed HLA class I ligand identifications (according to D'Agostino & Pearson omnibus normality test) identified a significant correlation of sample quantities used and the number of identified HLA class I-restricted peptides: two-tailed p-values = 0.0169 (primary) / 0.0222 (recurrence). In turn, HLA class II peptide yields were not found to correlate with sample masses subjected to HLA-IP: two-tailed p-values = 0.1854 (primary HLA class I; Spearman correlation for non-Gaussian data) / 0.2840 (recurrence HLA class I; Pearson correlation for parametric data). (D) Peptide yields normalized to one mg of tissue input. To investigate, whether the relative number of peptide identifications differs between primary and recurrent glioblastomas (21/23 recurrent samples are autologous to primary tumors) as well as between HLA class I- and II-IPs of the same sample, Wilcoxon matched-pairs signed rank tests were performed (normalized peptide yields - excepting recurrence HLA class II - did not have Gaussian distributions according to D'Agostino & Pearson omnibus normality test). Narrowly significant differences were observed between the number of HLA class I and II peptides eluted from primary tumors (two-tailed p-value = 0.0429) as well as between the number of HLA class IIpresented peptides on primary versus recurrent glioblastomas (two-tailed p-value = 0.0290). One outlier, GBM20R, showed both increased relative HLA class I and II peptide yields.


4.2 Definition of glioblastoma-associated antigens

By immunoaffinity chromatography and LC-MS/MS, the repertoire of HLA class I and II peptides and corresponding antigens naturally presented on 62 glioblastomas was mapped. To define glioblastoma-associated antigens and peptides, an in-house benign database comprising 30 distinct primary human organs (n=418 HLA class I and n=364 HLA class II datasets) was subtracted. The term glioblastoma-associated was assigned to peptides and antigens that were never identified on CNS-related tissues (brain, cerebellum, and spinal cord) and for which a maximum of one non-CNS-related sample was positive. Moreover, the robust presentation on both primary and recurrent tumors was defined as a prerequisite for all candidate immunotherapeutic targets reported herein. The frequency of positive primary human malignancies other than glioblastoma (n=824 samples for HLA class I; n=585 samples for HLA class II) encompassing 36 cancer entities was evaluated as well. As additional criterium to select targets for cancer immunotherapies, RNA expression data acquired across a large set of benign human tissues and deposited in the GTEx database¹⁵ was reported for every candidate antigen. Further, this allowed the identification of antigens not known to be expressed in any tissue (defined as less than ten transcripts per million (TPM) in any tissue), such with a classical CTA-like expression profile (not exceeding ten TPM in other organs than testis) as well as to exclude antigens with brain-specific expression representing the tissue of tumor origin.

Glioblastoma-associated HLA class I-presented antigens and peptides

HLA class I peptidome analyses of primary (n=38) and recurrent glioblastoma (n=24) allowed the identification of 12,182 and 10,646 distinct source proteins represented by HLA class I ligands on primary or recurrent tumor tissue, respectively. These represent between 92% (recurrence) and 96% (primary) of the estimated maximum attainable amount of distinct source proteins (Figure 11 C). Despite the vast overlap of glioblastomas with benign samples, 381 antigens were exclusively presented on tumors of at least two different patients (Figure 11 A). Following manual curation of the underlying peptides for HLA motifs as well as multi-mapping to several source proteins, a set of 62 glioblastoma-associated antigens and corresponding peptides naturally presented on 5-50% of primary as well as on 4-63% of recurrent tumors was created. Among these, TANC2, FA2H, and BEST1 were the most frequent ones. Despite being shared by primary and recurrent glioblastomas, several antigens were rather associated with primary tumors (e.g. SHISA4), while others were preferentially presented at disease recurrence (e.g. LHFPLS; Figure 11 B). Peptide sequences and their HLA restriction, a listing of positive samples, and the GTEx profile of the corresponding source protein can be retrieved from Supplementary Table 2. It is noteworthy that two of these tumor-associated HLA class I antigens (HSF2BP, E2F1) exhibited a CTA-like expression profile and were not listed in the CTDatabase⁴⁹.

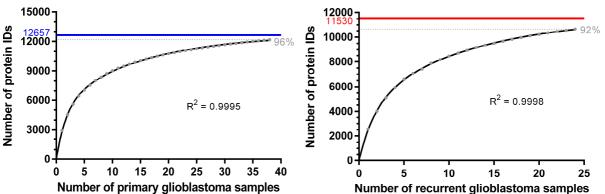
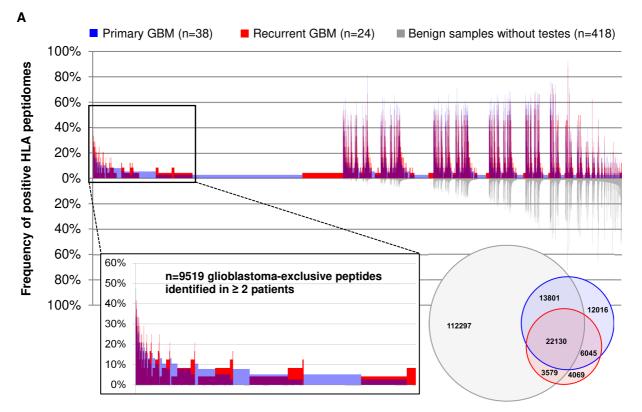



Figure 11. Definition of glioblastoma-associated antigens based on class I immunopeptidome analyses. (A) Comparative profiling of the HLA class I peptidome of glioblastoma *versus* an inhouse benign database. Each bar in this waterfall plot (associated with the x-axis) represents a single source protein, whereas the frequency of positive HLA peptidomes is shown on the y-axis, separately

for primary glioblastoma (n=38), recurrent glioblastoma (n=24), and benign samples without testes (n=418 covering 29 different human tissues). Those source proteins detected on a maximum of one non-CNS-related tissue were designated as glioblastoma-exclusive, whereby n=361 were identified on primary and/or recurrent tumors of at least two patients (highlighted as enlarged view on the left). The Venn diagram on the right illustrates the number of distinct HLA class I-presented antigens per group, however, the overlaps cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Word cloud of glioblastoma-associated antigens. Based on comparative profiling and subsequent guality control of underlying peptides (HLA motifs as well as multi-mapping to several source proteins), a set of 62 glioblastoma-associated antigens naturally presented on 5-50% of primary as well as on 4-63% of recurrent tumors was defined. The font size in the word cloud is proportional to the frequency of positive primary (blue) and recurrent (red) glioblastomas. (C) Saturation analysis for the identification of antigens represented by HLA class I ligands on primary or recurrent glioblastoma tissue. For each source count, the mean number of antigens was calculated by 1,000 random samplings. Using non-linear regression, exponential functions with a forced v-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. For both models, the goodness of fit was in the uppermost range ($R^2 = 0.9995$ and $R^2 = 0.9998$). Based on these curves, the maximum attainable number of distinct source proteins was estimated (highlighted as solid lines). With the available number of 38 primary and 24 recurrence samples, 96% or 92% of the estimated maximum attainable amount of unique HLA class I-presented proteins had been identified, respectively. Considering primary and recurrent tumors jointly as 62 glioblastomas, these achieve 98% coverage of the estimated maximum attainable number of distinct source proteins (Supplementary Figure 2).

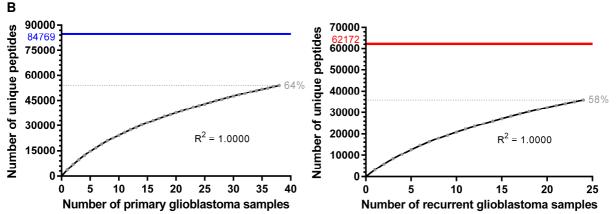
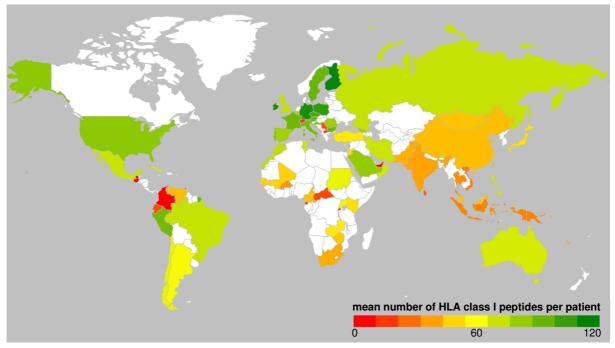



Figure 12, HLA class I peptidomics to define glioblastoma-associated peptides. (A) Comparative profiling of HLA class I ligands presented on glioblastoma versus an in-house benign database. Every peptide evaluated for tumor association is represented by a bar in the waterfall plot (associated with the x-axis), whereas the y-axis shows the frequency of positive HLA peptidomes, separately for primary glioblastoma (n=38), recurrent glioblastoma (n=24), and benign samples without testes (n=418 covering 29 different human tissues). Peptides were designated as glioblastoma-exclusive, when detected on a maximum of one non-CNS-related tissue, whereby n=9.519 were identified on primary and/or recurrent tumors of at least two patients (highlighted as enlarged view on the left). The number of distinct HLA class I ligands per group is illustrated by the Venn diagram on the right, whereby the overlaps cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Saturation analysis for the identification of HLA class I ligands in primary or recurrent glioblastoma tissue. For each source count, the mean number of peptides was calculated by 1,000 random samplings. Using non-linear regression, exponential functions with a forced v-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. For both models, the goodness of fit was in the uppermost range ($R^2 = 1.0000$). Based on these curves, the maximum attainable number of distinct peptides was estimated (highlighted as solid lines). With the available number of 38 primary and 24 recurrence samples, 64% and 58% of the estimated maximum attainable amount of unique HLA class I ligands had been identified, respectively. Considering primary and recurrent tumors jointly as 62 glioblastomas, these achieve 74% coverage of the estimated maximum attainable number of distinct peptides (Supplementary Figure 2).

On the peptide level, 53,992 and 35,823 distinct HLA class I ligands were eluted from primary (n=38) and recurrent glioblastoma (n=24), obtaining 64% and 58% of the estimated maximum attainable coverage, respectively (Figure 12 B). Comparative profiling identified 9,519 glioblastoma-exclusive peptides presented on primary and/or recurrent tumors of at least two different patients (Figure 12 A). Subsequent to manual curation, a set of 155 peptides derived from 158 antigens and presented on 16-55% of primary as well as on 17-46% of recurrent tumors was defined. Among these, HLA ligands derived from GFAP, CERS1, CARNS1, CHI3L2, and PTPRZ were the most frequent ones. Peptide sequences and their HLA restriction, a listing of positive samples, and the corresponding source protein are given in Supplementary Table 3.

Combining the list of peptides derived from HLA class I-presented glioblastoma-associated antigens (Supplementary Table 2) with that of HLA class I ligands designated as glioblastoma-associated (Supplementary Table 3) gave n=357 candidate target peptides for cancer immunotherapy. These cover 99.93% of the world population (Supplementary Figure 3), whereby an average of 84 peptides are expected to match per patient. The population coverage on a per-country basis is shown in Figure 13.

Figure 13. Population coverage of glioblastoma-associated HLA class I peptides. Using the population coverage tool provided by the IEDB Analysis Resource⁵⁰, the population coverage of the n=357 candidate target peptides for glioblastoma immunotherapy was calculated on a per-country basis. On average, 84 HLA class I peptides match per patient worldwide. For visualization of the United Kingdom, the individual values of England, Northern Ireland, Scotland, and Wales were multiplied with the relative area portion. Countries not included in the IEDB tool or not covered by the geographic heat map add-on of Microsoft Excel are colorless.

Glioblastoma-associated HLA class II antigens

HLA class II peptidome analyses of primary (n=38) and recurrent tumors (n=24) allowed the identification of 7,792 and 7,225 distinct source proteins giving rise to HLA class II-restricted peptides on glioblastoma tissue, respectively. These represent between 72% (recurrent glioblastoma) and 79% (primary glioblastoma) of the estimated maximum attainable amount of distinct source proteins (Figure 14 C). Despite the vast overlap of glioblastomas with benign samples, 413 antigens were exclusively presented on primary and/or recurrent tumors of at least two different patients (Figure 14 A). Following manual curation of the underlying peptides for peptide length and the presence of length variants as well as multi-mapping to several source proteins, a set of 26 glioblastoma-associated antigens and corresponding peptides naturally presented on 5-32% of primary as well as on 4-46% of recurrent tumors was created. Among these, GPC5, COLGALT2, NOP16, ESCO1, and BBOX1 were the most frequent ones. Despite being shared by primary and recurrent glioblastomas, several antigens were rather associated with primary tumors (e.g. NOP16), while others were preferentially presented at disease recurrence (e.g. CDC26; Figure 14 B). Peptide sequences, a listing of positive patients, and the GTEx profile of the corresponding source protein can be retrieved from Supplementary Table 2. Of note, one of these glioblastoma-associated HLA class II antigens (RAD51) exhibited a CTA-like expression profile and was not listed in the CTDatabase⁴⁹.

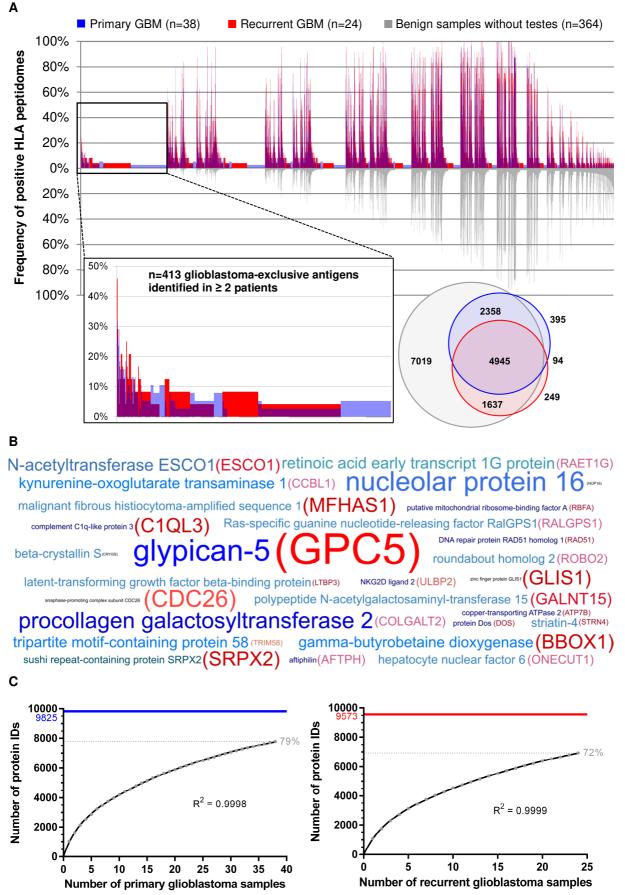


Figure 14. Definition of glioblastoma-associated antigens based on class II immunopeptidome analyses. (A) Comparative profiling of the HLA class II peptidome of glioblastoma *versus* an in-

house benign database. Each bar in this waterfall plot (associated with the x-axis) represents a single source protein, whereas the frequency of positive HLA peptidomes is shown on the y-axis, separately for primary glioblastoma (n=38), recurrent glioblastoma (n=24), and benign samples without testes (n=364 covering 30 different human tissues). Those source proteins detected on a maximum of one non-CNS-related tissue were designated as glioblastoma-exclusive, whereby n=413 were identified on primary and/or recurrent tumors of at least two patients (highlighted as enlarged view on the left). The Venn diagram on the right illustrates the number of distinct HLA class II-presented antigens per group, however, the overlaps cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Word cloud of glioblastoma-associated antigens. Based on comparative profiling and subsequent guality control of underlying peptides (peptide length and/or presence of length variants as well as multi-mapping to several source proteins), a set of 26 glioblastoma-associated antigens naturally presented on 5-32% of primary as well as on 4-46% of recurrent tumors was defined. The font size in the word cloud is proportional to the frequency of positive primary (blue) and recurrent (red) glioblastomas. (C) Saturation analysis for the identification of antigens represented by HLA class II peptides on primary or recurrent glioblastoma tissue. For each source count, the mean number of antigens was calculated by 1,000 random samplings. Using non-linear regression, exponential functions with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology. University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. For both models, the goodness of fit was in the uppermost range ($R^2 = 0.9998$ and $R^2 = 0.9999$). Based on these curves, the maximum attainable number of distinct source proteins was estimated (highlighted as solid lines). With the available number of 38 primary and 24 recurrence samples, 79% or 72% of the estimated maximum attainable amount of distinct HLA class II-presented proteins had been identified, respectively. Considering primary and recurrent tumors jointly as 62 glioblastomas, these achieve 83% coverage of the estimated maximum attainable number of distinct source proteins (Supplementary Figure 2).

On the peptide level, 48,149 and 40,375 distinct HLA class II-presented peptides were eluted from primary (n=38) and recurrent glioblastoma (n=24), obtaining 59% (primary) and 47% (recurrence) of the estimated maximum attainable coverage (Figure 15 B). Subsequent to comparative profiling, all antigens represented by at least one glioblastoma-exclusive HLA class II-presented peptide were subjected to hotspot analysis (Figure 15 A). Glioblastoma-associated HLA class II presentation hotspots were defined to have a minimum length of eight AA and to be covered by peptides identified in at least six primary as well as four recurrent tumors of a minimum of eight different patients, while not having matching sequences in benign samples. This identified a set of 21 antigens harboring regions uniquely presented on malignant tissue with peptide-specific frequencies reaching up to 39% and 29% of positive HLA peptidomes for primary and recurrent glioblastomas, respectively. Peptide sequences, a listing of positive patients, and the corresponding source protein are given in Supplementary Table 4.

Comparing glioblastoma-associated HLA class I- (n=62) and II-presented antigens (n=26) as well as glioblastoma-associated HLA class I- (n=158 source proteins) and II-restricted peptides (n=21 source proteins) delineated seven antigens (DOS, COLGALT2, PTPRZ1, NRCAM, LRP1, TNC, and CHI3L1) represented on both HLA class I and II molecules. Remaining glioblastoma-associated candidate target antigens and peptides were uniquely identified *via* either HLA class I or II peptidome analysis.

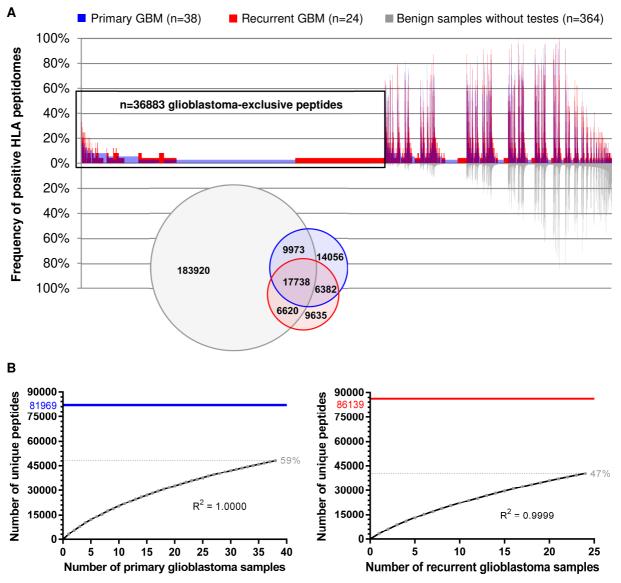
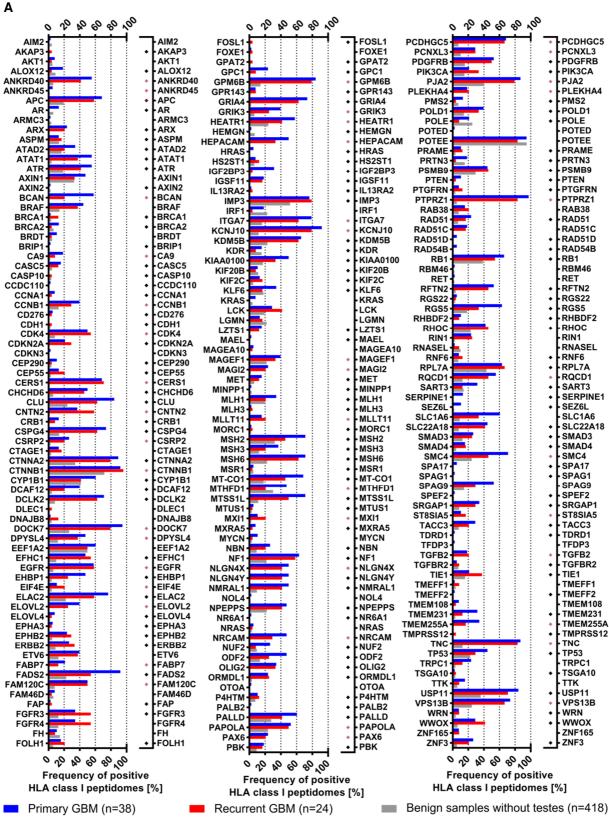



Figure 15. HLA class II peptidomics to define glioblastoma-associated peptides (A) Comparative profiling of HLA class II peptides presented on glioblastoma versus an in-house benign database. Every peptide evaluated for tumor association is represented by a bar in the waterfall plot (associated with the x-axis), whereas the y-axis shows the frequency of positive HLA peptidomes, separately for primary glioblastoma (n=38), recurrent glioblastoma (n=24), and benign samples without testes (n=364 covering 30 different human tissues). Being detected on a maximum of one non-CNSrelated tissue, n=36,883 peptides were designated as glioblastoma-exclusive. Corresponding source proteins were subjected to hotspot analysis. The number of distinct HLA class II-restricted peptides per group is illustrated by the Venn diagram on the left, whereby the overlaps cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Saturation analysis for the identification of HLA class II-presented peptides in primary or recurrent glioblastoma tissue. For each source count, the mean number of peptides was calculated by 1,000 random samplings. Using non-linear regression, exponential functions with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. For both models, the goodness of fit was in the uppermost range ($R^2 = 1.0000$ and $R^2 = 0.9999$). Based on these curves, the maximum attainable number of distinct peptides was estimated (highlighted as solid lines). With the available number of 38 primary and 24 recurrence samples, 59% or 47% of the estimated maximum attainable amount of unique HLA class II-presented peptides had been identified, respectively. Considering primary and recurrent tumors jointly as 62 glioblastomas, these achieve 63% coverage of the estimated maximum attainable number of distinct peptides (Supplementary Figure 2).

HLA ligands derived from established CTAs and TAAs

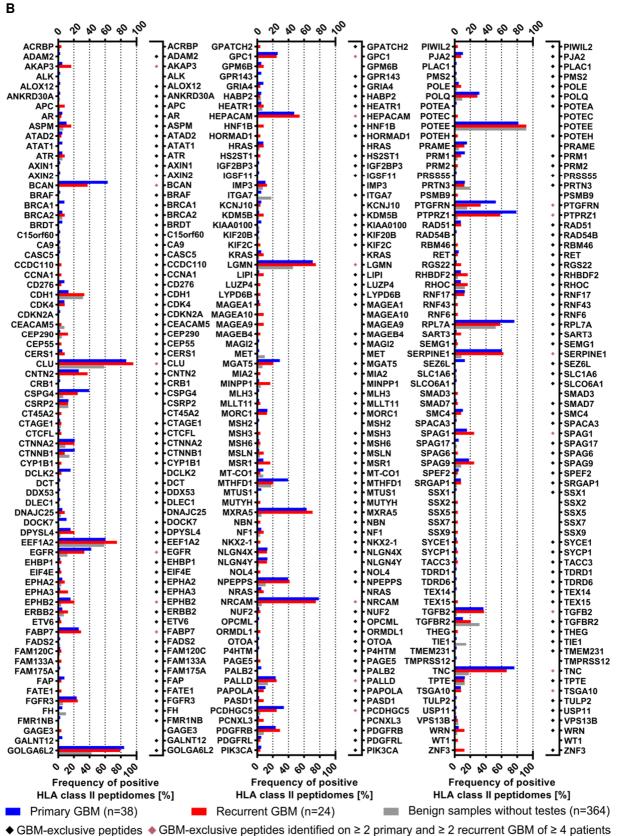


Figure 16. Identification of established TAAs, CTAs, and glioblastoma-associated antigens across the present HLA peptidome dataset. While peptides mapping to multiple source proteins were considered to calculate the frequency of positive HLA peptidomes, these were excluded to report the representation by glioblastoma-exclusive peptides. CTAs and TAAs exclusively identified on benign samples were not listed. (A) CTAs and TAAs naturally presented on HLA class I molecules of

human primary and/or recurrent glioblastoma tissue. The present immunopeptidomic dataset included HLA class I ligands derived from 217 TAAs and CTAs, with 44 sharing tumor-exclusive peptides in a minimum of two primary and two recurrent glioblastomas of at least four different patients (highlighted with red diamonds). The frequency of positive HLA peptidomes was assessed based on HLA class I ligands for tumor samples, whereby benign hits were reported independent of HLA binding probabilities of the underlying peptide identifications. (B) TAAs and CTAs represented in the HLA class II peptidomes of primary and/or recurrent glioblastoma tissue. Among 216 naturally presented CTAs and TAAs, 19 were represented by glioblastoma-exclusive peptides on at least two primary as well as two recurrent tumors of a minimum of four different patients (highlighted with red diamonds).

Considering a total number of 366 established CTAs and TAAs (3.2.1) as well as 83 antigens reported to be associated with glioblastoma (2.3.2; n=16 overlapped with the general list of CTAs and TAAs), the present HLA peptidome dataset acquired from primary and recurrent tumors was screened for previously published tumor antigens. Of these, n=217 and n=216 were represented by HLA class I ligands and HLA class II-presented peptides, respectively. Despite these high identification rates, presentation frequencies of CTAs and TAAs were in general low, especially of those exclusively identified on malignant tissues. Among 16 HLA class I-presented TAAs and CTAs fulfilling the aforementioned criteria to be designated as glioblastoma-exclusive antigen, OLIG2, TMEM255A, and PAX6 were the most frequent ones (24-34% positive primary as well as 17-33% positive recurrent tumors). 41 additional TAAs and CTAs were represented by tumor-exclusive HLA class I ligands on at least two primary as well as on two recurrent glioblastomas obtained from a minimum of four different patients (Figure 16 A, Supplementary Table 5). On HLA class II, 44 antigens were exclusively identified in the peptidome of glioblastomas, with FABP7, CDK4, RAD51, and CERS1 being the most frequent ones (5-26% positive primary as well as 5-29% positive recurrent tumors). 18 further CTAs and TAAs were represented by glioblastoma-exclusive HLA class II-restricted peptides eluted from at least two primary as well as two recurrent neoplastic specimens originating from a minimum of four different patients (Figure 16 B, Supplementary Table 5).

4.3 The HLA peptidome of primary versus recurrent glioblastoma

Primary- and recurrence-exclusive antigens

Using the same HLA class I and II peptidome datasets as in 4.2 while applying a different evaluation enabled the identification of fundamental differences of the antigenic landscape of glioblastoma presented at primary or recurrent disease, respectively. A total of 2,146 HLA class I- and 2,753 HLA class II-presented antigens were identified in primary tumors only, whereas these numbers came up to 610 and 1,886 recurrence-exclusive antigens, respectively (Figure 17 A and B). It was striking that the number of primary- and recurrence-exclusive antigens was inverse for HLA class I and II: at a frequency threshold of 17%, a total of three (HLA class I) and 15 (HLA class II) recurrence-exclusive antigens were identified while 20 (HLA class I) and five (HLA class II) antigens were exclusively presented on \ge 18% of primary glioblastomas. This distorted ratio was maintained at lower thresholds (e.g. \ge 13% of positive HLA peptidomes: 19/52 recurrence-exclusive and 122/29 primary-exclusive HLA class I/II antigens). Subsequent to manual curation of the corresponding peptides including multi-mapping to multiple source proteins, HLA class I binding motifs as well as the length and the presence of length variants of HLA class II-restricted peptides, a set of 19/5 and 3/14 HLA

class I/II antigens associated with primary or recurrent disease in glioblastoma was defined. PDZD2, ROBO1, and PTPRG constituted the most frequent primary-associated antigens, whereas THY1 and HEATR3 were highly associated with recurrent glioblastoma (Supplementary Table 6).

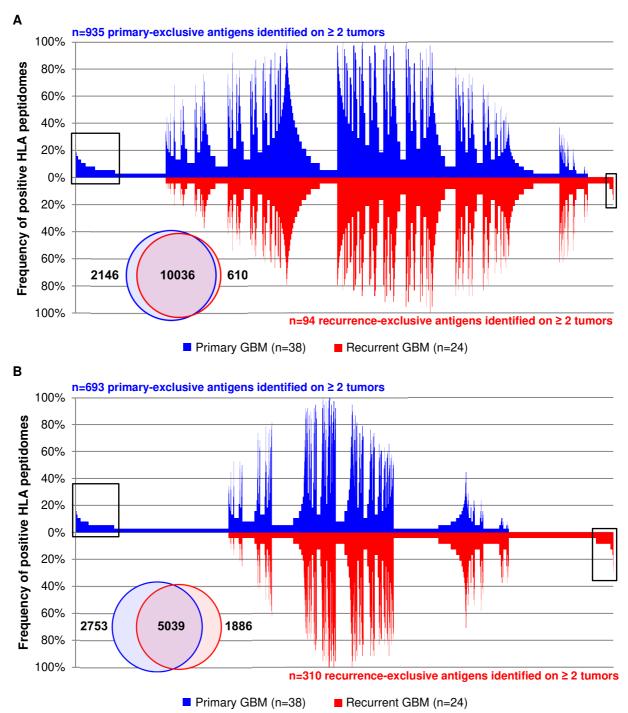
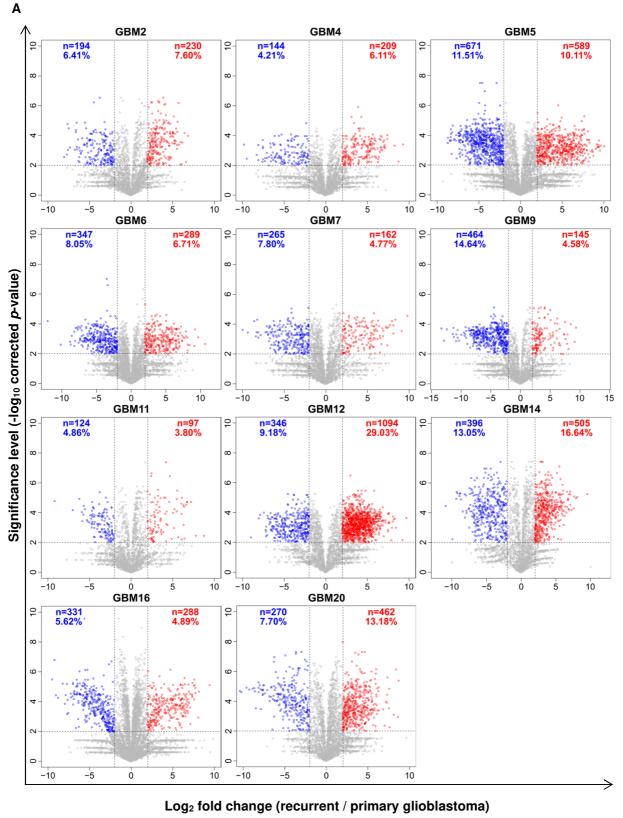
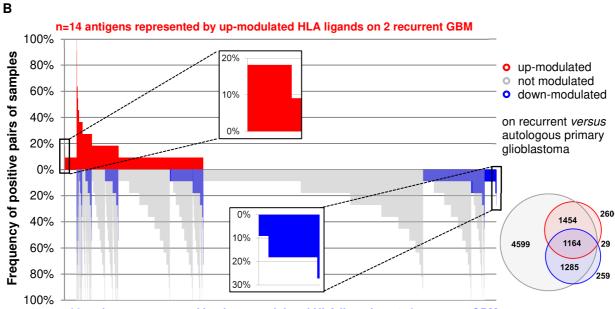



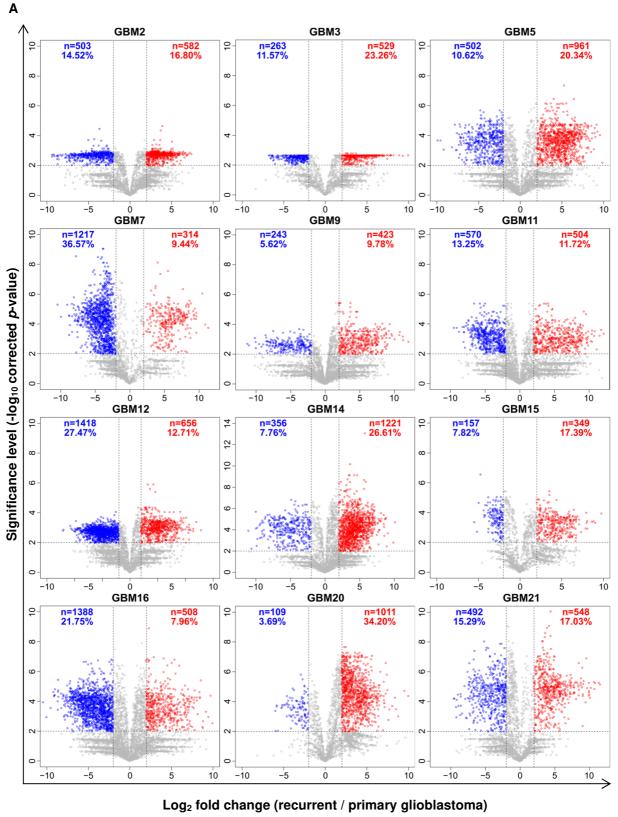
Figure 17. (A) HLA class I- and (B) HLA class II-presented antigens associated with primary or recurrent disease in glioblastoma. Each protein evaluated by comparative profiling is represented by a bar in the waterfall plots, whereas the frequency of positive HLA peptidomes is shown on the y-axis, separately for primary (n=38; blue) and recurrent glioblastoma (n=24; red). Primary- and recurrence-exclusive antigens detected on at least two tumors each are highlighted with boxes. The Venn diagrams in the left lower corner of the waterfall plots illustrate the number of unique antigens per group and the overlap between the two groups.

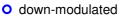
Relative HLA ligand abundances on primary versus recurrent glioblastoma


LFQ-MS to identify HLA class I ligands significantly up- and down-modulated at disease recurrence was possible for eleven glioblastoma patients and based on a mean number of $3,809 \pm 1,056$ peptides evaluated for relative abundance per patient. On average, $9.76 \pm 7.19\%$ and $8.46 \pm 3.21\%$ of the patients' HLA class I peptidomes were subject to significant up- and down-modulation, respectively (Figure 18 A). Comparative profiling to identify common patterns of modulated HLA presentation was performed on source protein level. In total, 260 and 259 antigens were exclusively represented by up- or down-modulated peptides, respectively. Following manual curation of the underlying peptides for HLA motifs as well as multi-mapping to several source proteins, a set of nine antigens represented by up-modulated peptides on recurrent *versus* primary glioblastoma in two out of eleven of patients was defined. Conversely, 21 proteins were under-represented in the HLA class I peptidome acquired from recurrent as compared with autologous primary disease (18-27% of patients). Among these, SEZ6 was the most frequent one (Figure 18 B, Supplementary Table 7).

• down-modulated

not modulated


o up-modulated



n=22 antigens represented by down-modulated HLA ligands on ≥ 2 recurrent GBM

Figure 18. Patterns of modulated HLA class I presentation in glioblastoma across eleven patients. (A) Volcano plots of relative HLA ligand abundances on recurrent versus autologous primary glioblastoma. By LFQ-MS, relative abundances of HLA class I ligands, each of which is represented by a dot, were compared. The x-axis indicates changes of abundance as log_2 fold change and corresponding significance levels (after BH correction for multiple testing) are associated with the y-axis. Significant modulation was defined by a corrected *p*-value ≤ 0.01 and a fold change of mean AUC in (recurrence / primary) ≥ 4 or ≤ 0.25 regarding up- (highlighted in red) or down-modulated (highlighted in blue) peptides, respectively. The total number of up- and down-modulated peptides as well as their proportion in the patient's HLA class I peptidome are indicated in quadrants of each Volcano plot. (B) Comparative profiling of antigens corresponding to peptides displayed in Volcano plots. Each bar in this waterfall plot (associated with the x-axis) represents a single protein, whereas the frequency of positive pairs of samples is shown on the y-axis. Comparing the source proteins of peptides underlying significant up- or down-modulation as well as of those not being modulated allowed the identification of exclusively and recurrently over- (n=14) or under-represented (n=22) antigens across eleven LFQ datasets acquired from primary and autologous recurrent glioblastoma.

In twelve glioblastoma patients, a mean number of $3,894 \pm 1,202$ HLA class II-presented peptides were evaluated for relative abundance on recurrent *versus* primary tumors by LFQ-MS. On average, $14.66 \pm 9.22\%$ and $17.27 \pm 7.50\%$ of the patients' HLA class II peptidomes were subject to significant up- or down-modulation, respectively (Figure 19 A). Comparative profiling to identify common patterns of modulated HLA presentation was performed on source protein level, since length variants with common core sequences cannot be adequately addressed across patients. In total, n=194 and n=256 antigens were exclusively represented by up- or down-modulated peptides, respectively. Subsequent to manual curation of multi-mapping peptides, 8 and 12 antigens were found to be over-represented in the HLA class II peptidome of recurrent or primary glioblastoma (Figure 19 B, Supplementary Table 7).

not modulated

O up-modulated

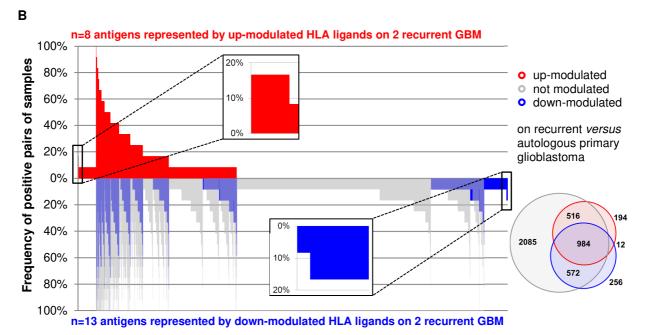


Figure 19. Patterns of modulated HLA class II presentation in glioblastoma across twelve patients. (A) Volcano plots of relative HLA class II-presented peptide abundances on recurrent versus autologous primary glioblastoma. By LFQ-MS, relative abundances of HLA class II-restricted peptides, each of which is represented by a dot, were compared. The x-axis indicates changes of abundance as log₂ fold change and corresponding significance levels (after BH correction for multiple testing) are associated with the v-axis. Significant modulation was defined by a corrected p-value ≤ 0.01 and a fold change of mean AUC in (recurrence / primary) \geq 4 or \leq 0.25 regarding up- (highlighted in red) or down-modulated (highlighted in blue) peptides, respectively. The total number of up- and downmodulated peptides as well as their proportion in the patient's HLA class II peptidome are indicated in quadrants of each Volcano plot. (B) Comparative profiling of antigens corresponding to peptides displayed in Volcano plots. Each bar in this waterfall plot (associated with the x-axis) represents a single protein, whereas the frequency of positive pairs of samples is shown on the y-axis. Comparing the source proteins of peptides underlying significant up- or down-modulation as well as of those not being modulated allowed the identification of exclusively and recurrently over- (n=8) or underrepresented (n=13) antigens across twelve LFQ datasets acquired from primary and autologous recurrent glioblastoma.

Functional annotation of antigens associated with primary and recurrent disease

All proteins exclusively identified on primary or recurrent tumors as well as antigens exclusively represented by down- or up-modulated peptides at disease recurrence were subjected to functional annotation clustering, separately for HLA class I and II. Top three clusters associated with primary disease comprised amino acid transport, metal ion transport, and intraspecies interaction for antigens presented on HLA class I as well as organelle organization, microtubule cytoskeleton organization, and histone H4 acetylation for antigens presented on HLA class II molecules. Conversely, source proteins associated with tumor recurrence were mainly involved in the negative regulation of fatty acid metabolism, humoral immune response, and lipid metabolism or in the positive regulation of hydrolase activity, gene expression, and mitotic cell cycle considering HLA class I- or II-presented antigens, respectively.

Α

intraspecies interaction action potential transmission response to alkaloid synaptic transmission quinone biosynthesis adaptive thermogenesis negative regulation of molecular function citrulline biosynthesis

amino acid transport mRNA catabolism

protein complex disassembly coenzyme biosynthesis azole transport respiratory chain complex IV assembly postsynaptic transmission insemination tRNA modification protein folding metal ion transport

В

chromatin organization regulation of cell cycle process protein localization to microtubule cytoskeleton neural precursor cell proliferation histone modification negative regulation of cyclin-dependent protein kinase activity neuronal stem cell division blastocyst development cell projection assembly positive regulation of NF-kappaB transcription factor activity regulation of translation positive regulation of GTPase activity microtubule cytoskeleton organization regulation of TOR signaling negative regulation of proteasomal protein catabolism rRNA modification sensory organ development positive regulation of stress-activated MAPK cascade smoothened signaling pathway Organelle organization positive regulation of MAPK cascade regulation of cytoskeleton organization mitotic sister chromatid cohesion stress fiber assembly negative regulation of cell cycle transition due to DNA damage mRNA splicing regulation of mRNA splicing via spliceosome positive regulation of RNA biosynthesis positive regulation of cellular component biogenesis DNA-templated transcription positive regulation of megakaryocyte differentiation protein ubiquitination leptin-mediated signaling pathway ribonucleoprotein complex assembly G2M DNA damage checkpoint hematopoietic stem cell proliferation nonmotile primary cilium assembly cell differentiation embryonic morphogenesis histone deacetylation phosphatidylcholine biosynthesis neural tube formation histone H4 acetylation

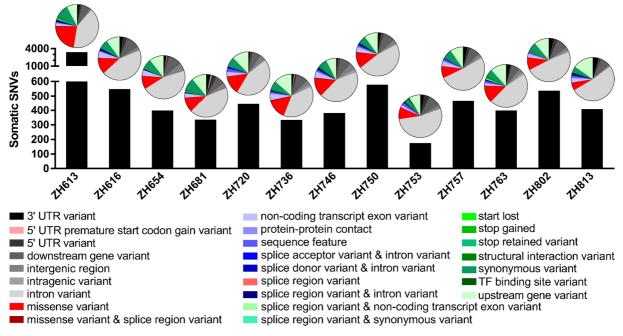
Figure 20. Functional annotation of (A) HLA class I- and (B) HLA class II-presented antigens associated with primary (blue) and recurrent disease (red). All proteins exclusively identified on primary or recurrent tumors as well as antigens exclusively represented by down- or up-modulated peptides at disease recurrence were subjected to functional annotation clustering. Enrichment scores are proportional to the font size in the word clouds.

4.4 Natural HLA presentation of neo-antigens

Mutational burden of primary glioblastomas

From a total of 13 primary glioblastomas, somatic variants comprising insertions, deletions, and single nucleotide alterations were determined. Primary glioblastomas carried a median of 409 [175-3,417] SNVs as well as 1 [0-8] indels. Intronic variants constituted the majority of SNVs, which is why the median number of non-synonymous mutations was drastically smaller than that of SNVs (52 [16-772]; Figure 21). All indels were located up- or downstream of genes, in intergenic regions or introns, as well as in splice regions of non-coding transcripts.

One patient, ZH613, with strongly elevated mutational load was found to carry a missense mutation affecting the MMR protein MLH1 (ENST00000231790 / ENSG00000076242 c.1643A>G; ENSP00000231790 p.548 Y>C). The COSMIC database included two entries of missense mutations affecting the identical AA position (glioblastoma: c.1643A>T / p.548 Y>F; endometrioid carcinoma c.1643A>G / p.548 Y>C).


isoprenoid metabolism amino acid catabolism unsaturated fatty acid humoral immune response negative regulation of fatty

cellular process heme metabolism acid metabolism ion transport intermediate filament organization glutamate secretion drug catabolism drug metabolism glutamate biosynthesis lipid metabolism

> cerebellum morphogenesis activation of phospholipase activity regulation of metaphase/anaphase transition positive regulation of pri-miRNA transcription DNA repair mitotic cell cycle triglyceride metabolism proton-transporting ATP synthase complex assembly

positive regulation of

hydrolase activity negative regulation of DNA-templated transcription polyketide metabolism **Gene expression** chromatin organization behavioral defense response positive regulation of G1/S phase transition negative regulation of muscle cell differentiation response to xenobiotic stimulus

Figure 21. Composition of SNVs in primary glioblastomas. While the majority of SNVs affected noncoding regions such as introns, non-synonymous mutations (5' UTR premature start codon gain variants, splice region variants, missense variants, missense and splice region variants; marked in red) constituted on average only 13 \pm 4% of SNVs. The SNV load of ZH613 (3,417 SNVs) was eightfold increased as compared with the average number of SNVs in ZH616-813 (417 SNVs).

Identification of mutated HLA ligands

Unfiltered SNVs served as base to search immunopeptidomic data for neo-antigenic HLA ligands. For HLA class I, this search yielded one candidate each for patient ZH613 and ZH681 - two samples with pronounced high peptide yields (4,474 and 4,546 annotated ligands). The HLA-A*02:05 ligand NVITDGVTSV derived from the SZT2 subunit of KICSTOR complex (ENST00000562955 / ENSG00000198198 c.779T>A; ENSP00000457168 p.260I>N) had promising spectrum-specific scores (based on SEQUEST and MHCquant database search; 0.1 - 1.5% FDR) and middle-range spectral quality by means of manual assessment (Figure 22 A). Further, the mutation had a pronounced high VAF of 71.90% and the gene was expressed at 10.97 RPKM (5,568 raw counts). A total of five (four by both search engines) WT HLA class I ligands derived from other positions within the source protein SZT2 were detected within the immunopeptidome of this patient: SSNPALALR (HLA-A*31:01), RLFNEHLVSA (HLA-A*02:05), GQAGPEITDEL (annotated to HLA-A*02:05), FQPEIYVTI (HLA-A*02:05), and YQSLIKVLL (HLA-A*02:05). The HLA-B*57:01 ligand RAYTPPRISW arising from mutant PDGFRα (ENST00000257290 / ENSG00000134853 c.1027C>A; ENSP00000257290 p.343P>T) was identified at 2.5% FDR using the MHCquant pipeline, but at > 20% FDR by SEQUEST. Despite poor spectral quality according to SEQUEST scores and manual assessment (Figure 22 B), this peptide underwent validation by a synthetic heavy isotopelabeled peptide due to strong expression (35,434 raw counts equivalent to 98.65 RPKM) and a VAF of 15.27%. Moreover, eight HLA class I-presented non-mutated peptides derived from PDGFRa were identified within the same sample both by MHCquant and SEQUEST: KYSDIQRSL (HLA-C*07:02), TRSYVILSF (HLA-C*06:02; -C*07:02), SQLEAVNLHEV (annotated to HLA-A*02:01), KQADTTQYV (HLA-A*02:01), STFLPVKW (HLA-B*57:01), GSTFLPVKW (HLA-B*57:01), TLIENLTEI (HLA-A*02:01), and RPASYKKKSML (HLA-B*07:02). Both candidates were included in filtered high confidence somatic variant lists and were validated by searching the dbSNP database and querying the sequences (with all possible exchanges of the isobaric AAs leucine and isoleucine) against the UniProt database. Synthesis of heavy isotope-labeled peptides spiked into a complex matrix of HLA class I peptides eluted from JY cells and subsequent LC-MS/MS finally proved the neo-antigenic sequence identity by comparison of experimental and synthetic peptide fragment spectra (Figure 22).

Interestingly, the position 343 of PDGFRa was found to be affected by recurrent mutations in glioblastoma. Two different patients were listed with p.343P>S mutations in the COSMIC database, whereby the mutation to serine generates - like the mutation to threonine of patient ZH681 – a phosphorylatable AA. Both mutations were found to alter the phosphorylation state of PDGFRa by generating one neo-phosphorylation motif each for tyrosine residues as well as eight (p.343P>T) or 13 (p.343P>S) neo-phosphorylation motifs for serine or threonine residues. As a consequence, both the mutated AAs themselves and the tyrosine residue at p.342 may become phosphorylated creating binding motifs for protein domains. One and two neo-phospho-serine/threonine binding motifs recognized by WW or 14-3-3 domains were identified for p.343P>T and p.343P>S, respectively. Remarkably, the two neo-phosphotyrosine binding motifs identified in both protein variants represent binding sites for Src homology 2 (SH2) domains of the Crk adapter molecule and for the C-terminal SH2 domain of the Ras GTPase activating protein (RasGAP; Supplementary Table 9). RAYTPPRISW, the neo-antigenic HLA-B*57:01 ligand verified in ZH681, was not found to carry a tyrosine or threonine phosphorylation. The SZT2 p.260I>N variant was neither listed in the COSMIC database nor found to have a direct impact on SZT2 protein phosphorylation.

For HLA class II, а single candidate was identified patient ZH750: in SARGPSTPGVLSNCTSPLPG derived from autophagy-related protein 9 (ATG9B) ENST00000377974 / ENSG00000181652 c.2294A>G; UPI00015E055A p.756E>G. However, this peptide did not undergo further validation, since the fragment spectrum was annotated with better scores to another WT protein by SEQUEST (Supplementary Figure 5).

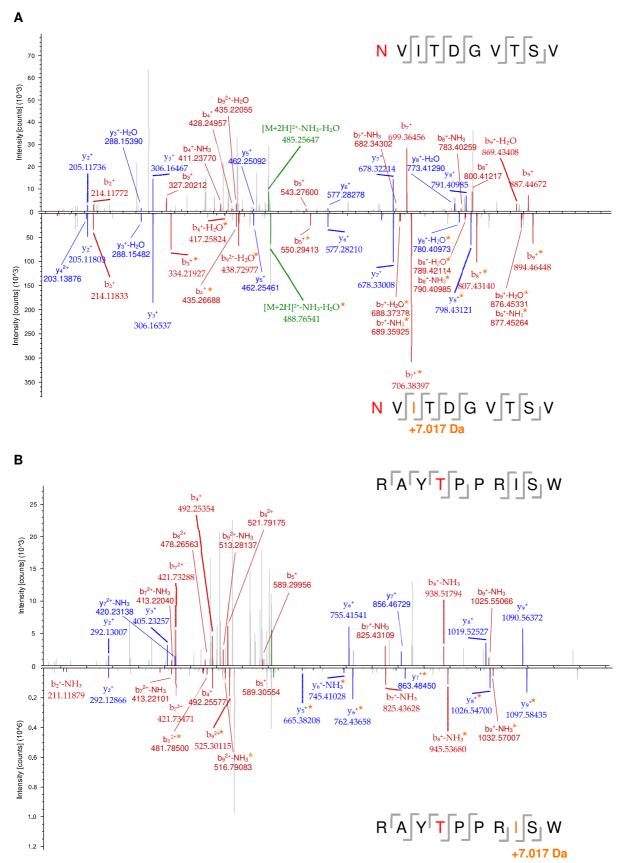
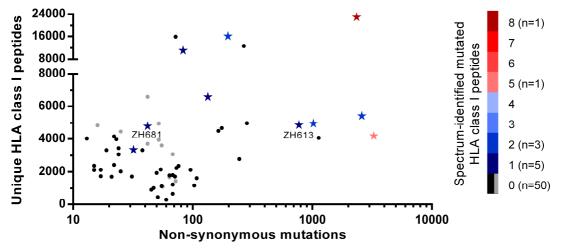



Figure 22. Fragment spectra of neo-antigenic HLA class I ligands identified in primary glioblastomas. The upper spectrum per panel was acquired from glioblastoma tissue, whereas the lower one represents the validation spectrum of a heavy isotope-labeled synthetic peptide. Mutated amino acids are marked in red within the sequence, b and y ions are indicated as red and blue peaks

in fragment spectra, and fragments harboring heavy isotope-labeled isoleucine (+7.017 Da) are marked with an orange asterisk. (A) HLA-A*02:05-restricted peptide derived from SZT2 subunit of KICSTOR complex (ENST00000562955 / ENSG00000198198 c.779T>A; ENSP00000457168 p.260I>N) detected in ZH613. NVITDGVTSV was identified at -1.2 ppm precursor mass deviation, 1.5% FDR (g value = 0.015; MHCquant: 0.1% FDR / g value = 0.001), and a cross-correlation of theoretical and measured spectrum of 1.44 (XCorr = 1.44). Despite several interfering signals, the entire sequence was covered by a sufficient number of both b and y ions. The second-best sequence annotated to this spectrum by SEQUEST scored 38.89% worse (dScore = 0.3889). The experimental fragment spectrum is mirrored by that of the synthetic peptide with most peaks being shared. (B) HLA-B*57:01-restricted peptide arising from mutant PDGFRα (ENST00000257290 / ENSG00000134853 c.1027C>A; ENSP00000257290 p.343P>T) detected in patient ZH681. RAYTPPRISW was identified at 2.41 ppm precursor mass deviation, 21.3% FDR (g value = 0.213; MHCguant: 2.5% FDR / g value = 0.025), and poor spectral correlation (XCorr = 0.96). Despite poor signal-to-noise ratio, more than ten b and y ions contributed to sequence annotation. The next-best sequence annotation by SEQUEST fitted only 8.33% worse (dScore 0.0833). The experimental fragment spectrum is mirrored by that of the synthetic peptide with most peaks being shared.

The number of unique HLA class I peptides, non-synonymous mutational loads, and the amount of validated neo-antigenic peptide identifications obtained from 13 primary glioblastomas were supplemented with comparable published HLA class I peptidome datasets. Taking all samples presented in Figure 23 into account, one neo-antigenic peptide identification resulted on average from 5.7×10⁵ unique HLA class I peptides and 1.2×10³ non-synonymous mutations, respectively. For the calculation of mutated peptides in relation to the number of non-synonymous mutations, 15 glioblastoma patients of the GAPVAC-101 trial¹² were considered additionally. From these, no neo-antigenic peptides could be verified with mutational loads being available while lacking peptide yields.

Figure 23. Identification of neo-antigenic peptides naturally presented on HLA class I by LC-MS/MS. The number of unique HLA class I peptides was plotted against the number of non-synonymous mutations on a per-sample basis (n=60). Data as shown in Freudenmann *et al.*⁵¹ was complemented by that of the 13 glioblastoma patients presented herein (marked in grey), by hepatocellular carcinomas (n=16) published by Löffler *et al.*¹⁶, as well as by colorectal cancer organoids (n=5) analyzed by Newey *et al.*⁵² Color-coded stars depict validated mutated peptide identifications, whereby those samples with more than one neo-antigenic peptide are clearly separated from those devoid of mutated HLA ligands.

5 Discussion

Glioblastoma is the most aggressive and most frequent malignant brain tumor accounting for an average annual incidence of almost 12,000 cases in the US. Despite extensive research, prognosis has remained poor with a 5-year relative survival rate of only 6.8%.¹ Cancer immunotherapy may meet the urgent demand for innovative treatments.²⁻⁶ Few studies addressing the naturally presented antigenic landscape of glioblastoma have already been published, however, none has focused on disease recurrence. Likewise, HLA class IIrestricted targets have not been covered sufficiently.¹⁰⁻¹⁴ Herein, we present a large-scale multi-omics study with immunopeptidomics as core element examining the similarities and differences of primary and recurrent glioblastomas and defining candidate targets for immunotherapeutic intervention compatible with both disease conditions.

The present study population comprising 40 glioblastoma patients had a representative age distribution from 33 to 86 years with a median age of onset of 67 years and a slightly increased proportion of females (male : female ratio of 1.22).¹ The cohort included 55 distinct HLA class I allotypes covering 99.95% of the world population, whereby 92.17% of all individuals are expected to be positive for at least three allotypes. HLA class I and II ligands were isolated in considerable numbers from a total of 38 primary and 24 recurrent - almost exclusively IDH1^{WT} – tumors. This large immunopeptidomic dataset strongly refutes significant downregulation or even loss of HLA expression to be a common phenomenon in glioblastoma, which is in line with findings in many other cancer entities.^{10,51,53-55} Nevertheless, there were two recurrent tumor specimens (GBM15R, GBM21R) with low HLA class I ligand identifications while yielding remarkable numbers of HLA class II-restricted peptides. In these selected cases, reduced HLA expression appears plausible, since technical artefacts affecting lysate preparation, peptide purification, or mass spectrometry can be ruled out. We observed marginally increased yields of HLA class I as compared with HLA class II peptides eluted from primary glioblastomas and of HLA class II-restricted peptides identified on recurrent versus primary tumors. The fact that the two compared groups had overlapping error bars each, however, weakens the confidence of the underlying statistical calculation. High numbers of HLA class II peptide identifications can originate from tumor cells themselves, but also from infiltrating macrophages and microglia.^{10,56-58} The latter have been postulated to constitute 30-50% of bulk tumor mass in glioma^{56,58-60} and to be tumor-supportive by creating an immunosuppressive microenvironment, releasing cytokines and growth factors thus promoting glioma cell migration, proliferation, and survival.56,57,61-63

On the basis of the present dataset comprising 38 primary and 24 recurrent tumors with 22 representing autologous pairs gathered from the same patient, we have learned that the HLA peptidome of glioblastoma undoubtedly underlies significant dynamics during the progression from primary to recurrent disease. At recurrence, 20-30% of the patients' HLA class I and II peptidomes were subject to modulated HLA presentation as compared with autologous primary disease. Moreover, almost 5,000 and 2,500 antigens including tumor-exclusive ones were only presented on primary or recurrent neoplasms, respectively. Thus, we draw the conclusion that radiochemotherapy and clonal evolution during disease progression^{8,9} drastically alter the antigenic landscape, which has to be considered when defining targets for glioblastoma immunotherapy. Consequently, we focused on those antigens and peptides

exhibiting robust and frequent presentation independent of disease state. This not only renders them broadly applicable to a large number of patients, but also reduces the risk of lacking clinical efficacy when targeting antigens lost following initial surgical resection and radiochemotherapy.

We found glioblastoma to be a pronounced rich source of candidate targets for cancer immunotherapy. With the currently available number of 23 benign brain and cerebellum samples, we expect to achieve less than 100% saturation of HLA class I and II protein identifications. Transcriptome data acquired from a large set of benign human tissues were therefore integrated as orthogonal level into target selection to exclude antigens with a highly CNS-associated expression profile. This way, we aim at minimizing on-target off-tumor toxicities, which is of utmost importance as antigen-specific T cells directed against glioblastoma cross the blood-brain barrier.⁶⁴⁻⁶⁷ Nevertheless, all candidate targets reported herein require a strict immunological validation process to warrant a good safety profile. Despite selecting tumor-exclusive antigens with a non-CNS-specific expression profile, it is conceivable that antigens such as GFAP – a prominent astrocytic marker⁶⁸ – may not be unrestrictedly specific for malignant cells. The search for glioblastoma-associated antigens frequently and robustly presented on both primary and recurrent neoplasms uncovered 62 and 26 for HLA class I and II, respectively. Among these, TANC2, FA2H, BEST1, GPC5, COLGALT2, NOP16, ESCO1, and BBOX1 were the most frequent ones. TANC2 has been described as driver gene amplified and overexpressed in breast cancer. In such cells, TANC2 knockdown induces cell cycle arrest resulting in halving of cell viability.⁶⁹ The synthesis of sphingolipids including 2-hydroxy fatty acids, which are ubiquitous in the CNS as they are an essential component of myelin, is catalyzed by FA2H.^{70,71} Upregulation of FA2H and aberrant sphingolipid composition have been reported for several cancer entities including ovarian and lung carcinoma, neuroblastoma, and schwannoma.^{70,72-74} In the latter, a cell cycle inhibitory function has been attributed to FA2H, but the tumor-promoting function of this enzyme has so far not been clarified.^{70,72} The calcium-activated chloride channel BEST1 is expressed in epithelial and nervous cells.⁷⁵⁻⁷⁸ Besides fulfilling physiological functions, BEST1 is also involved in tumorigenesis by promoting EMT and cancer cell proliferation upon overexpression.⁷⁶⁻⁷⁹ Glioma cells hijack the calcium-chloride axis via BEST1 to induce regulatory volume decrease as survival mechanism and to promote infiltration.⁸⁰ Glypicans (GPC1-6) are cell surface-resident heparan sulfate proteoglycans with multifaceted roles in growth factor signaling and neoplastic cell proliferation.^{81,82} Members of the glypican family have already been identified as oncoproteins and suggested as targets for glioblastoma (GPC1), neuroblastoma (GPC2), and hepatocellular carcinoma (GPC3) immunotherapy.^{10,83,84} COLGALT2 accomplishes glycosylation of collagen⁸⁵ and is strongly expressed in glioma, but also in healthy brain tissue.⁸⁶ Extracellular matrix modification is a key process in the course of cancer progression facilitating tumor cell migration and proliferation as well as establishment of a tumor-protective niche.⁸⁷ Little is known about the nucleolar protein 16 (five PubMed entries⁸⁸), which exhibits estrogen- and c-Myc-responsive expression and is associated with poor prognosis in breast cancer.^{86,89} Glioblastoma cells may benefit from expressing the acetyltransferase ESCO1 at high levels, as it promotes DNA replication by establishing sister chromatid cohesion.⁹⁰⁻⁹² BBOX1 catalyzes L-carnitine synthesis, which is essential for fatty acid oxidation.93,94 Besides that, BBOX1 antisense RNA 1 binds and inhibits the tumorsuppressive microRNA miR-3940-3p resulting in up-regulation of Survivin thus inhibiting apoptosis and enhancing proliferation.⁹⁵ Of note, this set of HLA class I- and II-presented antigens comprised three with CTA-like expression profiles (HSF2BP, E2F1, RAD51), which had so far not been listed in the CTDatabase⁴⁹. When targeting glioblastoma-associated proteins by peptide-specific immunotherapy, one would – if possible – preferentially select such peptides presented on both primary and recurrent tumors or in accordance with the patient's indication (e.g. APFDGSRLVF derived from FA2H was eluted from recurrent glioblastomas only).

Apart from defining targets being tumor-exclusive on the level of the entire protein, we have also focused on glioblastoma-associated peptides which are shared by specimens gathered at primary and recurrent disease and potentially arise from differential antigen processing in malignant cells. This unveiled a set of 155 HLA class I ligands derived from 158 antigens presented on 16-55% of primary as well as on 17-46% of recurrent tumors and of 21 antigens harboring glioblastoma-associated HLA class II presentation hotspots giving rise to peptides naturally presented on up to 15 primary and seven recurrent malignant samples. Taking together glioblastoma-associated antigens and peptides presented on HLA class I molecules (n=357 candidate target peptides), these achieve a world population coverage of 99.93% with an average number of 84 peptides matching per patient. Assuming that two third of these candidates will be excluded during the course of immunogenicity testing, which appears overestimated according to our previous experience with immunopeptidomics-based target definition approaches,⁹⁶ the number of peptides would still be enough to achieve sufficient coverage of the world population. Overlapping glioblastoma-associated HLA class I- and IIpresented antigens as well as glioblastoma-associated HLA class I- and II-restricted peptides with each other, it become evident that each HLA class presents a unique repertoire of tumor antigens to T cells. This warrants HLA class I and II to be considered as equal partners in comprehensive target definition approaches. The present immunopeptidomic dataset comprising 62 primary human glioblastoma samples has, moreover, demonstrated once more that established TAAs and CTAs are not prime targets for cancer immunotherapy as being either broadly presented across both malignant and benign tissues or lacking frequent presentation on HLA molecules.⁹⁶ Hereby, we did not observe a fundamental difference between primary and recurrent glioblastomas.

Neo-epitopes arising from mutant proteins are designated as ideal tumor antigens offering maximum tumor specificity.^{51,97,98} However, proving these to be naturally presented on HLA in native human tumor tissue has remained a major obstacle questioning their clinical relevance when contributing in amounts below the detection limit of modern highly resolving LC-MS/MS systems to the tumor HLA peptidome.^{12,16,17,51} In a recent clinical trial, GAPVAC-101, tissues of 15 primary glioblastomas were evaluated for naturally presented neo-antigens – without any hit.¹² We performed whole exome sequencing from 13 primary glioblastomas unveiling a mutational burden comparable to that of the GAPVAC-101 patients with the exception of one patient, ZH613, with strongly elevated mutational load reasoned by a mutation of the MMR protein MLH1. Indeed, we here provide the first evidence of two neo-antigenic HLA class I ligands to be naturally presented on glioblastoma cells: NVITDGVTSV (HLA-A*02:05) derived from SZT2 subunit of KICSTOR complex (p.260I>N) in ZH613 and RAYTPPRISW (HLA-

B*57:01) derived from PDGFRa (p.343P>T) in ZH681. From both antigens, we also eluted five (SZT2) or eight (PDGFRa) different WT sequence peptides, which might be a general indicator for the presence of mutated peptides in malignancies ensuring presentability of the antigen of interest. Remarkably, the position 343 of PDGFRa was found to be recurrently mutated in glioblastoma creating both a neo-phosphorylation site and neo-phosphorylation motifs within this growth factor receptor. This allows the presumption that the p.343P>T and p.343P>S mutations take part in rendering the growth factor receptor constitutively active thus promoting tumor cell proliferation.^{47,48} PDGFRa is known to drive glioblastoma cell proliferation and small molecules for the treatment of PDGFRa-activated glioblastoma are currently being developed.^{8,99-101} Hence, we speculate that we might even have detected a mutated peptide suitable not only for fully individualized application but for a larger number of patients carrying the respective mutation. Immunological characterization of both neo-antigenic peptides including T-cell priming and/or IFN-y enzyme-linked immunospot assay (ELISpot) employing PBMCs and TILs of the patients and - if possible - killing assays with autologous tumor cell lines is currently being performed by Dr. med. Julia Velz and Gioele Medici in the Laboratory for Molecular Neuro-Oncology at the University of Zürich. Despite proving natural HLA presentation of mutated peptides in brain tumors for the first time, we conclude that the translation of non-synonymous mutations into neo-antigenic HLA ligands remains inefficient. Considering 60 class I immunopeptidome datasets acquired from various cancer entities, one neo-antigenic peptide identification resulted on average from 5.7×10⁵ unique HLA class I peptides and 1.2×10³ non-synonymous mutations. Thus, we are convinced that, for the large majority of glioblastoma patients, detection of neo-epitopes remains impossible rendering nonmutated antigens the first choice for antigen-specific immunotherapies.

Once analysis of RNA and whole exome sequencing as well as DNA methylation data has been completed for all patients with both primary and recurrent tumors being available, we aim to evaluate expression levels of defined candidate target antigens, to screen the cohort for tumors exhibiting a hypermutation phenotype following radiochemotherapy, and to search for neo-antigenic HLA ligands in this extended dataset. A pilot dataset acquired from GBM3 on a meanwhile obsolete sequencing system indicated a vast increase in the proportion of missense mutations in the hypermutated recurrent as compared with the autologous primary tumor (GBM3P: n=21 / 6%; GBM3R: n=4,569 / 38%; data not shown). This might identify a small subset of patients in which the search for mutated peptides is more promising paving the way for stratified target discovery and treatment attempts in recurrent glioblastoma. Most importantly, these data will provide a deeper insight into clonal evolution and transcriptional changes during glioblastoma progression. We aim to map quantitative changes in primary versus recurrent glioblastoma with a special focus on immunobiological markers (e.g. CTLA4, PD1/PDL1, FOXP3, CD3, CD4, CD8, CD68, CD70, CD163)¹⁰² as well as the entire antigen processing machinery. Transcriptional, mutational, and DNA methylation phenotypes as well as the repertoire of presented antigens will be evaluated for correlation with each other and with clinical parameters (e.g. MGMT promotor methylation, progression-free or overall survival).

Herein, we investigated the immunopeptidomic landscape of glioblastoma in an unprecedented depth addressing for the first time both primary and recurrent tumors as well

as HLA class I- and II-presented targets. We defined a large, novel set of non-mutated tumor antigens robustly presented at primary and recurrent disease and provide the first evidence for two neo-antigens naturally presented on HLA molecules of brain tumor cells. This study paves the way for future antigen-specific immunotherapies including DC or peptide vaccination as well as T cell-based concepts which may contribute to meet the urgent need for therapeutic options to manage disease recurrence and to improve dismal survival rates.

6 References

- 1. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. *Neuro Oncol.* 2019;21(Supplement_5):v1-v100.
- 2. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol.* 2014;25 Suppl 3:iii93-101.
- 3. Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. *Pharmacol Ther*. 2015;152:63-82.
- 4. Mohme M, Neidert MC, Regli L, Weller M, Martin R. Immunological challenges for peptide-based immunotherapy in glioblastoma. *Cancer Treat Rev.* 2014;40(2):248-258.
- Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, Cohen-Jonathan-Moyal E, Frappaz D, Henriksson R, Balana C, Chinot O, Ram Z, Reifenberger G, Soffietti R, Wick W. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. *Lancet Oncol.* 2014;15(9):e395-403.
- Erdem-Eraslan L, van den Bent MJ, Hoogstrate Y, Naz-Khan H, Stubbs A, van der Spek P, Bottcher R, Gao Y, de Wit M, Taal W, Oosterkamp HM, Walenkamp A, Beerepoot LV, Hanse MC, Buter J, Honkoop AH, van der Holt B, Vernhout RM, Sillevis Smitt PA, Kros JM, French PJ. Identification of Patients with Recurrent Glioblastoma Who May Benefit from Combined Bevacizumab and CCNU Therapy: A Report from the BELOB Trial. *Cancer Res.* 2016;76(3):525-534.
- 7. Gorlia T, Stupp R, Brandes AA, Rampling RR, Fumoleau P, Dittrich C, Campone MM, Twelves CC, Raymond E, Hegi ME, Lacombe D, van den Bent MJ. New prognostic factors and calculators for outcome prediction in patients with recurrent glioblastoma: a pooled analysis of EORTC Brain Tumour Group phase I and II clinical trials. *Eur J Cancer.* 2012;48(8):1176-1184.
- McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, 8. Lehman N, Aldape K, Yung WK, Bogler O, Weinstein JN, VandenBerg S, Berger M, Prados M, Muzny D, Morgan M, Scherer S, Sabo A, Nazareth L, Lewis L, Hall O, Zhu Y, Ren Y, Alvi O, Yao J, Hawes A, Jhangiani S, Fowler G, San Lucas A, Kovar C, Cree A, Dinh H, Santibanez J, Joshi V, Gonzalez-Garay ML, Miller CA, Milosavljevic A, Donehower L, Wheeler DA, Gibbs RA, Cibulskis K, Sougnez C, Fennell T, Mahan S, Wilkinson J, Ziaugra L, Onofrio R, Bloom T, Nicol R, Ardlie K, Baldwin J, Gabriel S, Lander ES, Ding L, Fulton RS, McLellan MD, Wallis J, Larson DE, Shi X, Abbott R, Fulton L, Chen K, Koboldt DC, Wendl MC, Meyer R, Tang Y, Lin L, Osborne JR, Dunford-Shore BH, Miner TL, Delehaunty K, Markovic C, Swift G, Courtney W, Pohl C, Abbott S, Hawkins A, Leong S, Haipek C, Schmidt H, Wiechert M, Vickery T, Scott S, Dooling DJ, Chinwalla A, Weinstock GM, Mardis ER, Wilson RK, Getz G, Winckler W, Verhaak RG, Lawrence MS, O'Kelly M, Robinson J, Alexe G, Beroukhim R, Carter S, Chiang D, Gould J, Gupta S, Korn J, Mermel C, Mesirov J, Monti S, Nguyen H, Parkin M, Reich M, Stransky N, Weir BA, Garraway L, Golub T, Meyerson M, Chin L, Protopopov A, Zhang J, Perna I, Aronson S, Sathiamoorthy N, Ren G, Yao J, Wiedemeyer WR, Kim H, Kong SW, Xiao Y, Kohane IS, Seidman J, Park PJ, Kucherlapati R, Laird PW, Cope L, Herman JG, Weisenberger DJ, Pan F, Van den Berg D, Van Neste L, Yi JM, Schuebel KE, Baylin SB, Absher DM, Li JZ, Southwick A, Brady S, Aggarwal A, Chung T, Sherlock G, Brooks JD, Myers RM, Spellman PT, Purdom E, Jakkula LR, Lapuk AV, Marr H, Dorton S, Choi Y, Han J, Ray A, Wang V, Durinck S, Robinson M, Wang NJ, Vranizan K, Peng V, Van Name E, Fontenay GV, Ngai J, Conboy JG, Parvin B, Feiler HS, Speed TP, Gray JW, Brennan C, Socci ND, Olshen A, Taylor BS, Lash A, Schultz N, Reva B, Antipin Y, Stukalov A, Gross B, Cerami E, Wang WQ, Qin LX, Seshan VE, Villafania L, Cavatore M, Borsu L, Viale A, Gerald W, Sander C, Ladanyi M, Perou CM, Hayes DN, Topal MD, Hoadley KA, Qi Y, Balu S, Shi Y, Wu J, Penny R, Bittner M, Shelton T, Lenkiewicz E, Morris S, Beasley D, Sanders S, Kahn A, Sfeir R, Chen J, Nassau D, Feng L, Hickey E, Barker A, Gerhard DS, Vockley J, Compton C, Vaught J, Fielding P, Ferguson ML, Schaefer C, Zhang J, Madhavan S, Buetow KH, Collins F, Good P, Guyer M, Ozenberger B, Peterson J, Thomson E. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-1068. Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, Greenman C, Edkins S, Bignell G, Davies 9. H, O'Meara S, Parker A, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Richardson D, Shepherd R, Small A, Solomon H, Tofts C, Varian J, West S, Widaa S, Yates A, Easton DF, Riggins G, Roy JE, Levine KK, Mueller W, Batchelor TT, Louis DN, Stratton MR, Futreal PA, Wooster R. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 2006;66(8):3987-3991.

- Neidert MC, Kowalewski DJ, Silginer M, Kapolou K, Backert L, Freudenmann LK, Peper JK, Marcu A, Wang SS, Walz JS, Wolpert F, Rammensee HG, Henschler R, Lamszus K, Westphal M, Roth P, Regli L, Stevanović S, Weller M, Eisele G. The natural HLA ligandome of glioblastoma stem-like cells: antigen discovery for T cellbased immunotherapy. *Acta Neuropathol.* 2018;135(6):923-938.
- based immunotherapy. *Acta Neuropathol.* 2018;135(6):923-938.
 Neidert MC, Schoor O, Trautwein C, Trautwein N, Christ L, Melms A, Honegger J, Rammensee HG, Herold-Mende C, Dietrich PY, Stevanović S. Natural HLA class I ligands from glioblastoma: extending the options for immunotherapy. *J Neurooncol.* 2013;111(3):285-294.
- 12. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, Thor Straten P, Martínez-Ricarte F, Ponsati B, Okada H, Lassen U, Admon A, Ottensmeier CH, Ulges A, Kreiter S, von Deimling A, Skardelly M, Migliorini D, Kroep JR, Idorn M, Rodon J, Piró J, Poulsen HS, Shraibman B, McCann K, Mendrzyk R, Löwer M, Stieglbauer M, Britten CM, Capper D, Welters MJP, Sahuquillo J, Kiesel K, Derhovanessian E, Rusch E, Bunse L, Song C, Heesch S, Wagner C, Kemmer-Brück A, Ludwig J, Castle JC, Schoor O, Tadmor AD, Green E, Fritsche J, Meyer M, Pawlowski N, Dorner S, Hoffgaard F, Rössler B, Maurer D, Weinschenk T, Reinhardt C, Huber C, Rammensee HG, Singh-Jasuja H, Sahin U, Dietrich PY, Wick W. Actively personalized vaccination trial for newly diagnosed glioblastoma. *Nature*. 2019;565(7738):240-245.
- 13. Shraibman B, Barnea E, Kadosh DM, Haimovich Y, Slobodin G, Rosner I, López-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. *Mol Cell Proteomics*. 2019;18(6):1255-1268.
- Dutoit V, Herold-Mende C, Hilf N, Schoor O, Beckhove P, Bucher J, Dorsch K, Flohr S, Fritsche J, Lewandrowski P, Lohr J, Rammensee HG, Stevanovic S, Trautwein C, Vass V, Walter S, Walker PR, Weinschenk T, Singh-Jasuja H, Dietrich PY. Exploiting the glioblastoma peptidome to discover novel tumourassociated antigens for immunotherapy. *Brain.* 2012;135(Pt 4):1042-1054.
- 15. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. *Nat Genet.* 2013;45(6):580-585.
- Löffler MW, Mohr C, Bichmann L, Freudenmann LK, Walzer M, Schroeder CM, Trautwein N, Hilke FJ, Zinser RS, Mühlenbruch L, Kowalewski DJ, Schuster H, Sturm M, Matthes J, Riess O, Czemmel S, Nahnsen S, Königsrainer I, Thiel K, Nadalin S, Beckert S, Bösmüller H, Fend F, Velic A, Maček B, Haen SP, Buonaguro L, Kohlbacher O, Stevanović S, Königsrainer A, Rammensee HG. Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. *Genome Med.* 2019;11(1):28.
- 17. Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J, Slotta-Huspenina J, Specht K, Martignoni ME, Werner A, Hein R, Busch DH, Peschel C, Rad R, Cox J, Mann M, Krackhardt AM. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. *Nat Commun.* 2016;7:13404.
- Khodadoust MS, Olsson N, Wagar LE, Haabeth OA, Chen B, Swaminathan K, Rawson K, Liu CL, Steiner D, Lund P, Rao S, Zhang L, Marceau C, Stehr H, Newman AM, Czerwinski DK, Carlton VE, Moorhead M, Faham M, Kohrt HE, Carette J, Green MR, Davis MM, Levy R, Elias JE, Alizadeh AA. Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. *Nature*. 2017;543(7647):723-727.
- 19. Singh-Jasuja H, Emmerich NP, Rammensee HG. The Tübingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. *Cancer Immunol Immunother*. 2004;53(3):187-195.
- 20. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA typing from next-generation sequencing data. *Bioinformatics*. 2014;30(23):3310-3316.
- 21. Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. *BMC Bioinformatics*. 2014;15:182.
- 22. Kechin A, Boyarskikh U, Kel A, Filipenko M. cutPrimers: A New Tool for Accurate Cutting of Primers from Reads of Targeted Next Generation Sequencing. *J Comput Biol.* 2017;24(11):1138-1143.
- 23. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. *Nucleic Acids Res.* 2010;38(6):1767-1771.
- 24. Mohr C, Friedrich A, Wojnar D, Kenar E, Polatkan AC, Codrea MC, Czemmel S, Kohlbacher O, Nahnsen S. qPortal: A platform for data-driven biomedical research. *PLoS One*. 2018;13(1):e0191603.
- 25. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*. 2009;25(14):1754-1760.
- 26. Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. *Bioinformatics*. 2012;28(14):1811-1817.
- 27. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. *Fly (Austin)*. 2012;6(2):80-92.
- 28. Sallman DA, Padron E. Integrating mutation variant allele frequency into clinical practice in myeloid malignancies. *Hematol Oncol Stem Cell Ther.* 2016;9(3):89-95.
- 29. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, Chen X, Kim Y, Beyter D, Krusche P, Saunders CT. Strelka2: fast and accurate calling of germline and somatic variants. *Nat Methods*. 2018;15(8):591-594.
- 30. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. *Genome Res.* 1998;8(3):186-194.

- 31. Nextflow pipeline. [Internet]. Available from: https://github.com/nf-core/rnaseq.
- 32. Sarek pipeline. [Internet]. Available from: https://github.com/SciLifeLab/Sarek.
- 33. Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. [Internet]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010.
- 34. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. *Bioinformatics*. 2016;32(19):3047-3048.
- 35. Dobin A, Davis ČA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. 2013;29(1):15-21.
- 36. Krueger F. Trim Galore: A Wrapper Tool Around Cutadapt and Fastqc to Consistently Apply Quality and Adapter Trimming to Fastq Files, with Some Extra Functionality for Mspi-Digested Rrbs-Type (Reduced Representation Bisufite-Seq) Libraries. [Internet]. Available from:
 - http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/, accessed on 2016/04/28. 2012.
- 37. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. *Bioinformatics*. 2012;28(16):2184-2185.
- 38. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics*. 2014;30(7):923-930.
- 39. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat Methods*. 2008;5(7):621-628.
- 40. Schubert B, Walzer M, Brachvogel HP, Szolek A, Mohr C, Kohlbacher O. FRED 2: an immunoinformatics framework for Python. *Bioinformatics*. 2016;32(13):2044-2046.
- Bichmann L, Nelde A, Ghosh M, Heumos L, Mohr C, Peltzer A, Kuchenbecker L, Sachsenberg T, Walz JS, Stevanović S, Rammensee HG, Kohlbacher O. MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics. *J Proteome Res.* 2019;18(11):3876-3884.
- 42. Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich HC, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS, Malmstrom L, Aebersold R, Reinert K, Kohlbacher O. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. *Nat Methods*. 2016;13(9):741-748.
- 43. Eng JK, Hoopmann MR, Jahan TA, Egertson JD, Noble WS, MacCoss MJ. A deeper look into Cometimplementation and features. *J Am Soc Mass Spectrom*. 2015;26(11):1865-1874.
- 44. The M, MacCoss MJ, Noble WS, Käll L. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. *J Am Soc Mass Spectrom*. 2016;27(11):1719-1727.
- 45. UniProt: the universal protein knowledgebase. *Nucleic Acids Res.* 2017;45(D1):D158-d169.
- 46. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. *Nucleic Acids Res.* 2001;29(1):308-311.
- 47. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA. COSMIC: the Catalogue Of Somatic Mutations In Cancer. *Nucleic Acids Res.* 2019;47(D1):D941-d947.
- 48. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. Human Protein Reference Database-2009 update. *Nucleic Acids Res.* 2009;37(Database issue):D767-772.
- 49. Almeida LG, Sakabe NJ, deOliveira AR, Silva MC, Mundstein AS, Cohen T, Chen YT, Chua R, Gurung S, Gnjatic S, Jungbluth AA, Caballero OL, Bairoch A, Kiesler E, White SL, Simpson AJ, Old LJ, Camargo AA, Vasconcelos AT. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. *Nucleic Acids Res.* 2009;37(Database issue):D816-819.
- 50. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope database (IEDB) 3.0. *Nucleic Acids Res.* 2015;43(Database issue):D405-412.
- 51. Freudenmann LK, Marcu A, Stevanović S. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. *Immunology*. 2018;154(3):331-345.
- 52. Newey A, Griffiths B, Michaux J, Pak HS, Stevenson BJ, Woolston A, Semiannikova M, Spain G, Barber LJ, Matthews N, Rao S, Watkins D, Chau I, Coukos G, Racle J, Gfeller D, Starling N, Cunningham D, Bassani-Sternberg M, Gerlinger M. Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment. J Immunother Cancer. 2019;7(1):309.
- 53. Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L, Salih HR, Rammensee HG, Stevanovic S, Stickel JS. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). *Proc Natl Acad Sci U S A*. 2015;112(2):E166-175.
- 54. Stickel JS, Stickel N, Hennenlotter J, Klingel K, Stenzl A, Rammensee HG, Stevanović S. Quantification of HLA class I molecules on renal cell carcinoma using Edman degradation. *BMC Urol.* 2011;11:1.
- 55. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, Shukla SA, Hu Z, Li L, Le PM, Allesøe RL, Richman AR, Kowalczyk MS, Abdelrahman S, Geduldig JE, Charbonneau S, Pelton K, Iorgulescu JB, Elagina L, Zhang W, Olive O, McCluskey C, Olsen LR, Stevens J, Lane WJ, Salazar AM, Daley H, Wen PY, Chiocca EA, Harden M, Lennon NJ, Gabriel S, Getz G, Lander ES,

Regev A, Ritz J, Neuberg D, Rodig SJ, Ligon KL, Suvà ML, Wucherpfennig KW, Hacohen N, Fritsch EF, Livak KJ, Ott PA, Wu CJ, Reardon DA. Neoantigen vaccine generates intratumoral T cell responses in phase lb glioblastoma trial. *Nature*. 2019;565(7738):234-239.

- 56. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. *Nat Neurosci.* 2016;19(1):20-27.
- 57. Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. *Neuro Oncol.* 2012;14(8):958-978.
- 58. Rossi ML, Hughes JT, Esiri MM, Coakham HB, Brownell DB. Immunohistological study of mononuclear cell infiltrate in malignant gliomas. *Acta Neuropathol.* 1987;74(3):269-277.
- 59. Morantz RA, Wood GW, Foster M, Clark M, Gollahon K. Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. *J Neurosurg.* 1979;50(3):305-311.
- 60. Badie B, Schartner JM. Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. *Neurosurgery*. 2000;46(4):957-961; discussion 961-952.
- Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, Franciszkiewicz K, Chouaib S, Kaminska B. Microglia-derived TGF-beta as an important regulator of glioblastoma invasion-an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. *Oncogene*. 2008;27(7):918-930.
- 62. Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, Sliwa M, Lehmann S, Kälin R, van Rooijen N, Holmbeck K, Heppner FL, Kiwit J, Matyash V, Lehnardt S, Kaminska B, Glass R, Kettenmann H. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. *Proc Natl Acad Sci U S A*. 2009;106(30):12530-12535.
- 63. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. *Mol Med.* 2012;18(1):519-527.
- 64. Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. *J Clin Invest*. 2010;120(5):1368-1379.
- 65. Dettori P, Bradac GB, Scialfa G. Selective angiography of the external and internal carotid arteries in the diagnosis of supra-tentorial meningiomas. *Neuroradiology*. 1970;1(3):166-172.
- 66. Manaka H, Sakata K, Tatezuki J, Shinohara T, Shimohigoshi W, Yamamoto T. Safety and Efficacy of Preoperative Embolization in Patients with Meningioma. *J Neurol Surg B Skull Base*. 2018;79(Suppl 4):S328-s333.
- 67. Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. *Biomed Res Int*. 2015;2015:320941.
- 68. Middeldorp J, Hol EM. GFAP in health and disease. *Prog Neurobiol.* 2011;93(3):421-443.
- 69. Mahmood SF, Gruel N, Chapeaublanc E, Lescure A, Jones T, Reyal F, Vincent-Salomon A, Raynal V, Pierron G, Perez F, Camonis J, Del Nery E, Delattre O, Radvanyi F, Bernard-Pierrot I. A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. *Carcinogenesis*. 2014;35(3):670-682.
- 70. Alderson NL, Hama H. Fatty acid 2-hydroxylase regulates cAMP-induced cell cycle exit in D6P2T schwannoma cells. *J Lipid Res.* 2009;50(6):1203-1208.
- 71. Eckhardt M, Yaghootfam A, Fewou SN, Zöller I, Gieselmann V. A mammalian fatty acid hydroxylase responsible for the formation of alpha-hydroxylated galactosylceramide in myelin. *Biochem J.* 2005;388(Pt 1):245-254.
- 72. Lemay AM, Courtemanche O, Couttas TA, Jamsari G, Gagné A, Bossé Y, Joubert P, Don AS, Marsolais D. High FA2H and UGT8 transcript levels predict hydroxylated hexosylceramide accumulation in lung adenocarcinoma. *J Lipid Res.* 2019;60(10):1776-1786.
- 73. Ladisch S, Sweeley CC, Becker H, Gage D. Aberrant fatty acyl alpha-hydroxylation in human neuroblastoma tumor gangliosides. *J Biol Chem*. 1989;264(20):12097-12105.
- 74. Kiguchi K, Takamatsu K, Tanaka J, Nozawa S, Iwamori M, Nagai Y. Glycosphingolipids of various human ovarian tumors: a significantly high expression of I3SO3GalCer and Lewis antigen in mucinous cystadenocarcinoma. *Cancer Res.* 1992;52(2):416-421.
- 75. Sun H, Tsunenari T, Yau KW, Nathans J. The vitelliform macular dystrophy protein defines a new family of chloride channels. *Proc Natl Acad Sci U S A*. 2002;99(6):4008-4013.
- 76. Barro Soria R, Spitzner M, Schreiber R, Kunzelmann K. Bestrophin-1 enables Ca2+-activated Cl- conductance in epithelia. *J Biol Chem.* 2009;284(43):29405-29412.
- 77. Spitzner M, Martins JR, Soria RB, Ousingsawat J, Scheidt K, Schreiber R, Kunzelmann K. Eag1 and Bestrophin 1 are up-regulated in fast-growing colonic cancer cells. *J Biol Chem*. 2008;283(12):7421-7428.
- 78. Oh SJ, Lee CJ. Distribution and Function of the Bestrophin-1 (Best1) Channel in the Brain. *Exp Neurobiol*. 2017;26(3):113-121.
- 79. Aldehni F, Spitzner M, Martins JR, Barro-Soria R, Schreiber R, Kunzelmann K. Bestrophin 1 promotes epithelial-to-mesenchymal transition of renal collecting duct cells. *J Am Soc Nephrol.* 2009;20(7):1556-1564.
- 80. Saberbaghi T, Wong R, Rutka JT, Wang GL, Feng ZP, Sun HS. Role of Cl(-) channels in primary brain tumour. *Cell Calcium.* 2019;81:1-11.
- 81. Filmus J, Capurro M, Rast J. Glypicans. Genome Biol. 2008;9(5):224.
- 82. Matas-Rico E, van Veen M, Leyton-Puig D, van den Berg J, Koster J, Kedziora KM, Molenaar B, Weerts MJ, de Rink I, Medema RH, Giepmans BN, Perrakis A, Jalink K, Versteeg R, Moolenaar WH.

Glycerophosphodiesterase GDE2 Promotes Neuroblastoma Differentiation through Glypican Release and Is a Marker of Clinical Outcome. *Cancer Cell.* 2016;30(4):548-562.

- Bosse KR, Raman P, Zhu Z, Lane M, Martinez D, Heitzeneder S, Rathi KS, Kendsersky NM, Randall M, Donovan L, Morrissy S, Sussman RT, Zhelev DV, Feng Y, Wang Y, Hwang J, Lopez G, Harenza JL, Wei JS, Pawel B, Bhatti T, Santi M, Ganguly A, Khan J, Marra MA, Taylor MD, Dimitrov DS, Mackall CL, Maris JM. Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. *Cancer Cell*. 2017;32(3):295-309.e212.
- 84. Gao W, Tang Z, Zhang YF, Feng M, Qian M, Dimitrov DS, Ho M. Immunotoxin targeting glypican-3 regresses liver cancer via dual inhibition of Wnt signalling and protein synthesis. *Nat Commun.* 2015;6:6536.
- 85. Hennet T. Collagen glycosylation. Curr Opin Struct Biol. 2019;56:131-138.
- 86. Smith RN, Aleksic J, Butano D, Carr A, Contrino S, Hu F, Lyne M, Lyne R, Kalderimis A, Rutherford K, Stepan R, Sullivan J, Wakeling M, Watkins X, Micklem G. InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data. *Bioinformatics*. 2012;28(23):3163-3165.
- 87. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. *EMBO Rep.* 2014;15(12):1243-1253.
- 88. Publications listed in PubMed dealing with the nucleolar protein 16. [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=NOP16, accessed on 2020/05/29.
- 89. Butt AJ, Sergio CM, Inman CK, Anderson LR, McNeil CM, Russell AJ, Nousch M, Preiss T, Biankin AV, Sutherland RL, Musgrove EA. The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome. *Breast Cancer Res.* 2008;10(2):R28.
- Zhang J, Shi X, Li Y, Kim BJ, Jia J, Huang Z, Yang T, Fu X, Jung SY, Wang Y, Zhang P, Kim ST, Pan X, Qin J. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. *Mol Cell*. 2008;31(1):143-151.
- 91. Rivera-Colón Ý, Maguire A, Liszczak GP, Olia AS, Marmorstein R. Molecular Basis for Cohesin Acetylation by Establishment of Sister Chromatid Cohesion N-Acetyltransferase ESCO1. *J Biol Chem.* 2016;291(51):26468-26477.
- 92. Terret ME, Sherwood R, Rahman S, Qin J, Jallepalli PV. Cohesin acetylation speeds the replication fork. *Nature.* 2009;462(7270):231-234.
- 93. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. *Eur J Biochem*. 1997;244(1):1-14.
- 94. Rigault C, Le Borgne F, Demarquoy J. Genomic structure, alternative maturation and tissue expression of the human BBOX1 gene. *Biochim Biophys Acta*. 2006;1761(12):1469-1481.
- 95. Yang Y, Yu Q, Li B, Guan R, Huang C, Yang X. BBOX1-AS1 Accelerates Gastric Cancer Proliferation by Sponging miR-3940-3p to Upregulate BIRC5 Expression. *Dig Dis Sci.* 2020.
- 96. Bilich T, Nelde A, Bichmann L, Roerden M, Salih HR, Kowalewski DJ, Schuster H, Tsou CC, Marcu A, Neidert MC, Lübke M, Rieth J, Schemionek M, Brümmendorf TH, Vucinic V, Niederwieser D, Bauer J, Märklin M, Peper JK, Klein R, Kohlbacher O, Kanz L, Rammensee HG, Stevanović S, Walz JS. The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. *Blood.* 2019;133(6):550-565.
- 97. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. *Nat Rev Cancer*. 2014;14(2):135-146.
- 98. Urban JL, Schreiber H. Tumor antigens. Annu Rev Immunol. 1992;10:617-644.
- Sang Y, Hou Y, Cheng R, Zheng L, Alvarez AA, Hu B, Cheng SY, Zhang W, Li Y, Feng H. Targeting PDGFRαactivated glioblastoma through specific inhibition of SHP-2-mediated signaling. *Neuro Oncol.* 2019;21(11):1423-1435.
- 100. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O'Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. *Cancer Cell.* 2010;17(1):98-110.
- 101. Tan FH, Putoczki TL, Stylli SS, Luwor RB. Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. *Onco Targets Ther.* 2019;12:635-645.
- 102. Rahman M, Kresak J, Yang C, Huang J, Hiser W, Kubilis P, Mitchell D. Analysis of immunobiologic markers in primary and recurrent glioblastoma. *J Neurooncol.* 2018;137(2):249-257.

CHAPTER 3

HLA peptidome analysis of medulloblastoma uncovers potential targets for cancer immunotherapy

Lena Katharina Freudenmann (L.K.F.) planned and performed all HLA peptidome analyses, analyzed the entire immunopeptidomic dataset, and contributed all figures and texts. Acquisition and analysis of RNA sequencing data including HLA typing was conducted at CeGaT GmbH and at the Quantitative Biology Center, University of Tübingen. Samples along with clinical metadata were provided by collaborating physicians.

1 Abstract

Neoplasms of the brain and CNS are the most common pediatric tumors - with medulloblastoma representing the malignant entity with the highest incidence – and the leading cause of cancer-related mortality in children. Multimodal therapy achieves cure rates of up to 75%, whereas recurrent medulloblastoma remains largely incurable. Conversely, those patients surviving face severe long-term sequelae in consequence of irradiation of the developing brain. Cancer immunotherapy may contribute to the development of innovative therapeutic regimens, whereby the definition of appropriate targets represents a fundamental pillar. Herein, we present the first investigation of the immunopeptidomic landscape of 28 medulloblastomas for target antigens and peptides naturally presented on HLA class I and II molecules. While established tumor-associated and cancer-testis antigens did not fulfill the requirement of both frequent and tumor-exclusive presentation, immunopeptidome analysis unveiled a novel set medulloblastoma-associated antigens and peptides. Remarkably, a significant fraction was shared by childhood and adult medulloblastomas and, most importantly, identified across WNT-activated, non-WNT/non-SHH, and SHH-activated tumors. In conclusion, we defined a set of tumor-associated antigens and peptides characterized by natural, frequent, and exclusive HLA presentation on native medulloblastoma tissue. These represent prime candidates for application in antigen-specific immunotherapeutic approaches, which may replace radiotherapy in multimodal therapeutic regimens and represent an option for the management of disease recurrence.

2 Introduction

Brain and CNS tumors are the most common pediatric neoplasms, the leading cause of death due to pediatric cancer, and the seventh most common cause of child mortality in general.^{1,2} Medulloblastoma is per se graded with WHO grade IV and constitutes the most frequent intracranial malignancy in children, whereas only around 7% of total cases occur in adults older than 40 years.^{1,3} Therapeutic regimens for medulloblastomas are guided by both the age and the present subgroup, whereby radiotherapy is standard-of-care in patients older than three to five years and in infants suffering from high- or very high-risk tumors.^{4,5} Overall, multimodal therapy comprising surgical resection, chemotherapy, and radiotherapy - when indicated achieves good cure rates of 70-75%.⁴⁻⁶ Management of disease recurrence is still an open question and recurrent medulloblastoma has remained largely incurable.^{4,7} Those patients surviving face long-term sequelae predominantly caused by irradiation of the developing brain. These comprise neurological, developmental, psychosocial, and neuroendocrine deficits, or even secondary neoplasms such as glioblastoma or meningioma.^{4-6,8,9} Hence, the development of novel therapies offering therapeutic options for recurrent medulloblastomas and, most importantly, replacing radiotherapy in the treatment of primary tumors is urgently required.

The antigenic landscape of medulloblastoma has never been investigated and this tumor entity is characterized by a profound lack of potential targets for cancer immunotherapy. Consequently, we aimed to define tumor-associated peptides and antigens that are naturally presented on HLA class I or II molecules of primary medulloblastomas, but not on benign

human tissues. In addition, candidate target antigens were queried against the GTEx database containing RNA expression data acquired across a large set of benign human tissues in order to examine whether they exhibit CTA-like expression profiles, to exclude such with brain- or cerebellum-specific expression, and to identify antigens not known to be expressed in any tissue.¹⁰

3 Methods

Patient collective

Written informed consent of the 28 patients included in the present study and/or their legal representative was obtained in accordance with the Declaration of Helsinki protocol and the local review boards (Kantonale Ethikkommission Zürich / KEK-ZH-Nr. 2015-0163; Ethik-Kommission der Ärztekammer Hamburg / PV4904; authorized vote-free usage of residual tissue collected for other purposes in Sankt Augustin and Würzburg) before surgery. Patients underwent surgery at the Department of Neurosurgery of the University Hospital Zürich, Asklepios Hospital Sankt Augustin, Altona Children's Hospital, or at the University Children's Hospital Würzburg. Tissue samples were snap frozen in liquid nitrogen, Bambanker medium, or Tissue-Tek[®] O.C.T.[™] and stored at -80°C until use. Medulloblastoma specimens along with clinical metadata were kindly provided by PD Dr. med. Marian Christoph Neidert and Dr. med. Julia Velz (University Hospital Zürich, Department of Neurosurgery), Prof. Dr. med. Matthias Eyrich (University Children's Hospital Würzburg, Department of Pediatric Oncology), Prof. Dr. med. Manfred Westphal and Dr. med. Malte Mohme (University Medical Center Hamburg-Eppendorf, Department of Neurosurgery) as well as by Prof. Dr. med. Martina Messing-Jünger, PD Dr. med. Harald Reinhard, and Dr. med. Andreas Röhrig (Asklepios Hospital Sankt Augustin). All patients had histopathologically confirmed medulloblastoma, whereby the collective comprised tumors of all subgroups: n=4 WNT-activated, n=7 SHH-activated, n=2 Group 3, n=2 Group 4, n=8 non-WNT/non-SHH (not differentiated into Group 3 and Group 4), and n=5 without annotation to a subgroup. Two samples were obtained during surgery at disease recurrence. The present study population had a female-to-male ratio of 2:3 and a median age of onset of 8 [1-37] years including two cases of adolescent and adult medulloblastoma each. The median available amount of tissue for HLA-IP accounted to 320 [120-1511] mg. Individual patient and sample characteristics are listed in Table 7, whereby a closer look on HLA allotype frequencies in the study cohort is provided in CHAPTER 5.

Table 7. Clinical and experimental metadata of the 28 medulloblastoma patients included in the present study. Letters in internal sample IDs indicate the location, where patients underwent surgery: HH – Altona Children's Hospital, SA – Asklepios Hospital Sankt Augustin, Wü – University Children's Hospital Würzburg, ZH – University Hospital Zürich. Age of onset was defined as the age at initial diagnosis, whereby two cases of adolescent and adult medulloblastoma each were included in the study cohort (marked in grey). Several Non-WNT/non-SHH tumors were not differentiated into Group 3 and Group 4 medulloblastomas. Abbreviation not introduced in the text above: not determined (n.d.). #Sample mass contains few Bambanker medium or Tissue-Tek[®] O.C.T.™ and is considered separately for calculations of e.g. median amount of available tissue or relative peptide yields.

Internal sample ID	Gender Age of onset [years]		HLA typing	Sample mass HLA-IP [mg]
HH-01	♀ 7	SHH	A*02:01;A*32:01;B*13:02;B*27:02;C*02:02;C*06:02	345

HH-02	් 13	Group 3	A*02:05;A*11:01;B*35:03;B*50:01;C*06:02;C*12:03	207
HH-03	් 4	Non-WNT/non-SHH	A*02:01;A*68:01;B*51:01;B*51:01;C*14:02;C*15:02	209
HH-04	3	WNT	A*03:01;A*24:02;B*07:02;B*44:02;C*07:02;C*16:04	167
HH-05	12 ♀	WNT	A*11:01;A*24:02;B*35:01;B*44:02;C*04:01;C*05:01	178
HH-06	11 ្តិ	Non-WNT/non-SHH	A*11:01;A*68:01;B*41:02;B*52:01;C*12:02;C*17:01	386
SA1 Tissue from 1 st recurrence at 4 years after initial diagnosis	5 ♀ 4	Most likely Non-WNT/non-SHH	A*02:01;A*68:01;B*15:01;B*51:01;C*03:03;C*15:02	186
SA2	් 7	n.d.	A*01:01;A*11:01;B*07:02;B*08:01;C*07:01;C*07:02	290
SA3 Tissue from 1 st recurrence at 1 year after initial diagnosis	♀ 8	n.d.	A*02:01;A*32:01;B*57:01;B*40:02;C*02:02;C*06:02	222
SA4	් 9	n.d.	A*01:01;A*02:01;B*07:02;B*37:01;C*06:02;C*07:02	120
SA5	5 ♀ 1	n.d.	A*11:01;A*26:01;B*15:08;B*27:05;C*01:02;C*02:02	295
Wü-N391/17	් 19	n.d.	A*02:01;A*02:11;B*41:01;B*52:01;C*07:01;C*12:02	776#
Wü-N526/17	♀ 12	Group 4	A*03:01;A*26:01;B*44:03;B*50:01;C*04:01;C*06:02	513#
Wü-N998/13	් 2	WNT	A*03:01;A*29:02;B*44:03;B*51:01;C*14:02;C*16:01	1066#
ZH513	් 8	Non-WNT/non-SHH	A*03:01;A*11:01;B*27:05;B*35:01;C*01:02;C*04:01	1461
ZH680	♀ 7	Non-WNT/non-SHH	A*25:01;A*31:01;B*15:18;B*27:05;C*01:02;C*07:04	1554#
ZH703	් 4	Group 4	A*02:02;A*03:01;B*13:02;B*18:01;C*06:02;C*07:04	1302
ZH713	් 3	Group 3	A*03:01;A*26:01;B*38:01;B*49:01;C*07:01;C*12:03	932#
ZH718	් 1	SHH/TP53 ^{WT}	A*02:01;A*25:01;B*44:02;B*18:01;C*05:01;C*05:01	823#
ZH732	් 5	Non-WNT/non-SHH	A*03:01;A*80:01;B*40:02;B*58:01;C*02:02;C*07:01	607
ZH741	⊊ 8	WNT	A*02:01;A*24:02;B*18:01;B*44:05;C*02:02;C*07:01	1668#
ZH859	් 16	SHH/TP53 ^{mut}	A*03:01;A*24:02;B*35:01;B*35:02;C*04:01;C*04:01	863
ZH868	♀ 2	SHH/TP53 ^{WT}	A*01:01;A*02:01;B*44:02;B*57:01;C*05:01;C*06:02	1165
ZH872	් 6	SHH/TP53 ^{mut}	A*03:01;A*68:02;B*44:02;B*57:01;C*06:02;C*07:04	1511
ZH890	♀ 9	Non-WNT/non-SHH	A*01:01;A*31:01;B*08:01;B*35:03;C*04:01;C*07:01	3218#
ZH913	් 29	SHH/TP53 ^{WT}	A*29:02;A*68:01;B*44:02;B*44:03;C*07:04;C*16:01	869
ZH919	29 ♀ 8	Non-WNT/non-SHH	A*02:01;A*02:01;B*35:08;B*51:01;C*04:01;C*15:02	402
ZH937	ං ී 37	Most likely SHH/TP53 ^{WT}	A*02:01;A*30:01;B*13:02;B*44:02;C*05:01;C*06:02	278

HLA typing and RNA sequencing

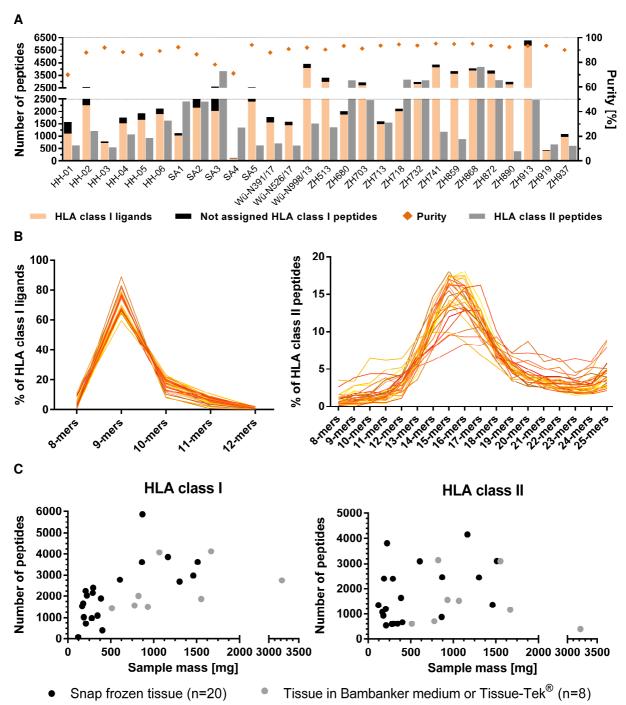
HLA class I allotypes were retrieved from whole RNA sequencing using the OptiType¹¹ algorithm by Dr. Gurpreet Kaur, whereas HLA class II allotypes are currently being determined by Marie Gauder and Dr. Stefan Czemmel (Quantitative Biology Center, University of Tübingen).

RNA sequencing was performed for all 28 patients at CeGaT GmbH (Tübingen). Since genomic DNA was not available, we forwent whole exome or genome sequencing. However, DNA was isolated from tumor tissue as well for future DNA methylation profiling. RNA and DNA were isolated from fresh frozen tumor tissue ($\geq 20 \text{ mg}$) – containing residual Bambanker medium or Tissue-Tek[®] O.C.T.TM in some cases – using the AllPrep DNA/RNA Mini Kit (Qiagen). Following quality control for RNA integrity, sequencing libraries were prepared from

78 ng RNA using the KAPA RNA HyperPrep Kit with RiboErase (HMR; Roche), whereby ribosomal RNA was depleted. Paired-end sequencing at 100 bp read length was performed on a NovaSeq 6000 sequencing system (Illumina). Sequencing reads were demultiplexed employing the Illumina bcl2fastq 2.20 and untrimmed FASTQ¹²-formatted files were uploaded to qPortal¹³ (Quantitative Biology Center, University of Tübingen) for further evaluation. Analysis of transcriptome data beyond HLA typing has not yet been completed, but is currently being performed by Marie Gauder and Dr. Stefan Czemmel (Quantitative Biology Center, University of Tübingen).

HLA-IP and subsequent LC-MS/MS to identify HLA-presented peptides

HLA class I- and II-presented peptides were isolated from primary human tissue and analyzed by LC-MS/MS as described in 3.2. As far as possible, Tissue-Tek[®] O.C.T.[™] and Bambanker medium were cut off from embedded samples, while keeping specimens frozen during this step. Both HLA-IP and RNA sequencing were performed from cleaned up tissue to reduce interferences with embedding material during experimental sample processing. All peptide eluates were analyzed in four technical replicates each consuming 14% sample share on an Orbitrap Fusion Lumos. Direct injection was performed for all samples excepting HH-01, HH-02, ZH513, ZH680, ZH703, ZH718, and ZH732.

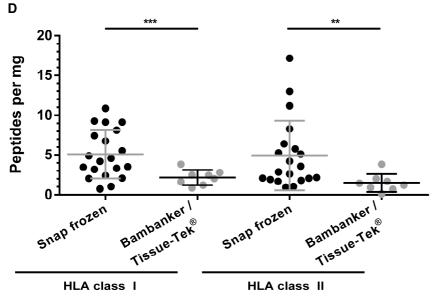

4 Results

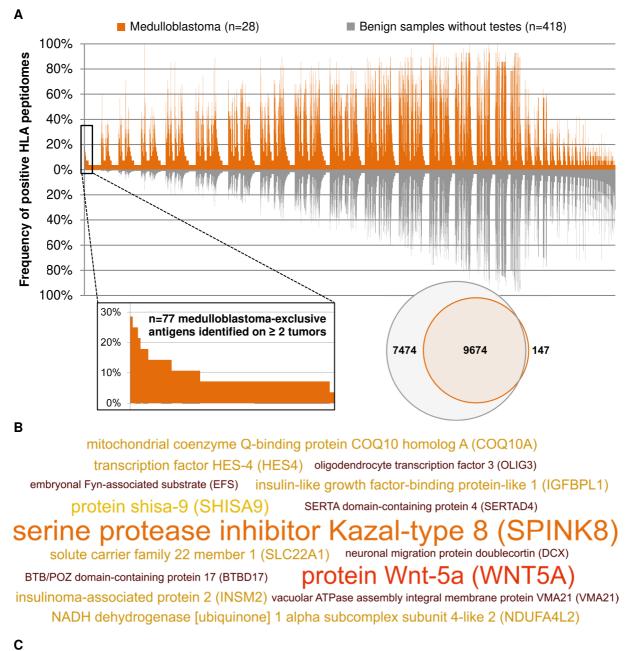
4.1 HLA class I allotype coverage and peptide yields of HLA-IPs

Aimed at defining medulloblastoma-associated antigens naturally presented on HLA as candidate targets for cancer immunotherapy, 28 primary tumors were analyzed. The study cohort comprised 60 different HLA class I allotypes with HLA-A*02:01 (39%), -A*03:01 (32%), -A*11:01 (21%), -B*44:02 (25%), -B*51:01 (14%), -B*07:02 (11%), -B*13:02 (11%), -B*18:01 (11%), -B*27:05 (11%), -B*35:01 (11%), -B*44:03 (11%), -B*57:01 (11%), -C*06:02 (32%), -C*04:01 (21%), -C*07:01 (21%), and -C*02:02 (18%) being the most frequent ones (Supplementary Table 10). All HLA class I allotypes cover 99.95% of the world population, whereby 92.08% of all individuals are expected to be positive for at least three allotypes (Supplementary Figure 6).

A median of 2016 [88-5867] HLA class I ligands and 1347 [400-4164] HLA class II-presented peptides were identified from medulloblastoma samples. HLA class I peptide eluates exhibited a purity of at least 70% and none of the samples were censored for low peptide yield or low percentage of HLA class I ligands. It was striking that the average purity of samples collected in Zürich (93.3 \pm 1.6%; n=14) was superior compared to tissue specimens received from Hamburg (85.6 \pm 7.2%; n=6) or Sankt Augustin (84.4 \pm 8.8%; n=5) and slightly increased in comparison with tissues from Würzburg (90.3 \pm 1.8%; n=3). The total number of unique HLA class I and II peptides, HLA class I ligands as well as the purity of HLA class I peptide eluates are given in Figure 24 A for every specimen. The length distribution of HLA class I ligands clearly peaked at 9 AA length, whereas HLA class II-presented peptides were typically 13- to 18-mers. A fraction of patients showed a broadened length distribution curve elevated either for shorter (\leq 12 AA) or longer (\geq 19 AA) peptides (Figure 24 B). Taking tissue masses

subjected to HLA-IP into account (Table 7), enabled us to investigate whether peptide yields correlate with sample quantities used. This revealed a significant or indicated correlation of the amount of snap frozen medulloblastoma tissue with the number of identified HLA class I ligands or HLA class II-restricted peptides, respectively. In turn, no correlation of employed sample quantities and peptide yields was observed for tissues that had previously been embedded in Bambanker medium or Tissue-Tek[®] O.C.T.[™] (Figure 24 C). Considering the relative number of identified unique peptides per one mg of tissue input revealed a significantly increased yield of HLA class I and HLA class II peptides eluted from snap frozen *versus* embedded tissues (Figure 24 D).




Figure 24. Number and length distribution of identified HLA class I- and II-presented peptides. (A) HLA class I and II peptide yields obtained from medulloblastoma tissue. Calculated purities refer to the proportion of HLA class I peptides annotated to an HLA allotype of the respective patient. (B) Length distribution of HLA class I ligands and HLA class II peptides. Across the entire dataset. 9-mers constituted 71% of HLA class I ligands, whereas 67% of HLA class II-presented peptides had a length between 13 and 18 AA. Each line represents data of a single sample. While the entire HLA class II dataset included 9% of peptides with ≤ 12 AA and 24% of peptides with ≥ 19 AA, these shares were distorted in a fraction of patients (HH-02, Wü-N998/13, ZH713, and ZH937; 13-26% 8- to 12-mers; HH-04, HH-05, and ZH919: 39-48% 19- to 25-mers). (C) Unique peptides per sample versus amount of tissue subjected to HLA-IP. The total amount of unique HLA class I ligands or HLA class II-restricted peptides identified by analyzing four technical replicates was set in relation to the amount of tissue subjected to HLA-IP. For this purpose, samples were differentiated into snap frozen tissues and such embedded in Bambanker medium or Tissue-Tek® O.C.T.™. By non-linear regression (one-phase association) exponential functions with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. However, the goodness of fit was poor for all models with the exception of HLA class I ligands eluted from snap frozen tissue: R² = 0.5527 (snap frozen HLA class I) / 0.2888 (embedded HLA class I) / 0.1328 (snap frozen HLA class II) / 0.03929 (embedded HLA class II). A correlation analysis across these normally distributed data (according to D'Agostino & Pearson omnibus normality test) identified a significant correlation of snap frozen sample quantities and the number of identified HLA class I ligands (two-tailed pvalue = 0.0011) and an indicated correlation with the number of HLA class II-restricted peptides not reaching statistical significance (two-tailed p-value = 0.0639). The amount of tissue obtained after cutting off Tissue-Tek® O.C.T.[™] and removing Bambanker medium as far as possible did neither correlate with the number HLA class I nor with HLA class II peptide identifications: two-tailed p-values = 0.3662 (HLA class I) / 0.5748 (HLA class II). (D) Peptide yields normalized to one mg of tissue input. It was intended to investigate, whether the relative number of peptide identifications differs between snap frozen samples and tissues embedded in Bambanker medium or Tissue-Tek® O.C.T.™ as well as between HLA class I- and II-IPs. An unpaired t test (normalized HLA class I ligand yields had Gaussian distributions according to D'Agostino & Pearson omnibus normality test) with Welch's correction for unequal standard deviation (according to F test, p-value = 0.0042) revealed a significant difference between relative HLA class I ligand yields obtained from snap frozen versus embedded tissues (twotailed p-value = 0.0007). Likewise, a significantly increased number of HLA class II peptides was isolated from snap frozen in comparison to embedded tissues (two-tailed p-value = 0.0026), as identified by Mann-Whitney testing for unpaired non-parametric data. In turn, no significant differences were observed between relative HLA class I and II peptide yields obtained from the same type of sample: two-tailed p-values = 0.2774 (snap frozen tissues) / 0.2500 (embedded tissues); Wilcoxon matchedpairs signed rank tests for paired non-Gaussian data (according to D'Agostino & Pearson omnibus normality test).

4.2 Identification of medulloblastoma-associated antigens

Employing immunoaffinity chromatography and subsequent LC-MS/MS, we mapped the antigenic repertoire naturally presented on HLA class I and II molecules of 28 medulloblastomas. To define medulloblastoma-associated antigens and peptides, an in-house benign database comprising 30 distinct primary human organs (n=418 HLA class I and n=364 HLA class II datasets) was subtracted. The term medulloblastoma-associated was assigned to peptides and antigens that were never identified on CNS-related tissues (brain, cerebellum, and spinal cord) and for which a maximum of one non-CNS-related sample was positive. Moreover, the frequency of positive primary human malignancies other than medulloblastoma (n=874 samples for HLA class I; n=626 samples for HLA class II) encompassing 37 cancer entities was evaluated. As additional criterium to select targets for cancer immunotherapies, RNA expression data acquired across a large set of benign human tissues and deposited in the GTEx database¹⁰ was reported for every candidate antigen. Further, this allowed the identification of antigens not known to be expressed in any tissue (defined as less than ten TPM in any tissue), such with a classical CTA-like expression profile (not exceeding ten TPM in other organs than testis) as well as to exclude antigens specifically expressed in the brain and/or cerebellum, which represent the tissue of tumor origin.

Medulloblastoma-associated HLA class I-presented antigens and peptides

HLA class I peptidome analysis of medulloblastoma (n=28) allowed the identification of 9,821 distinct source proteins represented by HLA class I ligands on native tumor tissue. These represent 91% of the estimated maximum attainable amount of distinct source proteins (Figure 25 C). Despite the vast overlap of medulloblastomas with benign samples, 77 antigens were exclusively presented on at least two neoplasms (Figure 25 A). Following manual curation of the underlying peptides for HLA motifs as well as multi-mapping to several source proteins, a set of 15 medulloblastoma-associated antigens and corresponding peptides naturally presented on 11-29% of tumors was created. Among these, SPINK8, WNT5A, and SHISA9 were the most frequent ones (Figure 25 B). We found a total of seven medulloblastomaassociated antigens to be presented by both childhood and adult tumors (WNT5A, INSM2, NDUFA4L2, OLIG3, BTBD17, EFS, SERTAD4) as well as five presented across all subgroups (SPINK8, WNT5A, NDUFA4L2, BTBD17, EFS). Three antigens were exclusively identified in the non-WNT/non-SHH subgroup, whereas five and two ones were shared by non-WNT/non-SHH and SHH-activated (INSM2, HES4, IGFBPL1, DCX, OLIG3) or by WNT- and SHHactivated neoplasms (VMA21, SERTAD4), respectively. Peptide sequences and their HLA restriction, a listing of positive patients, and the GTEx profile of the corresponding source protein can be retrieved from Supplementary Table 11. Of note, none of these medulloblastoma-associated HLA class I antigens exhibited a CTA-like expression profile.

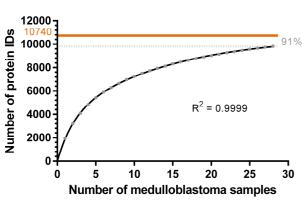
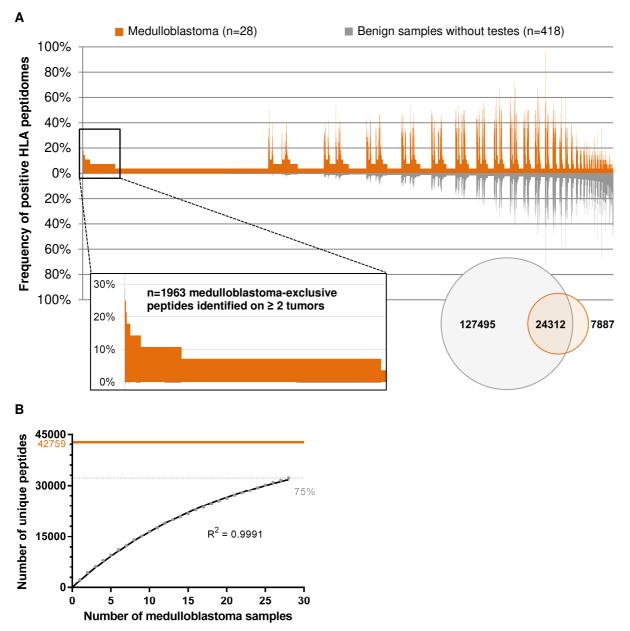
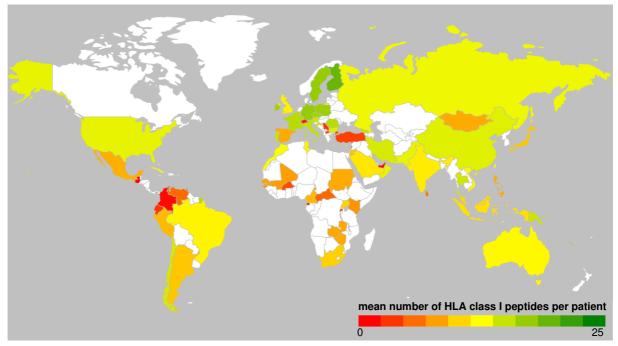


Figure 25. Definition of medulloblastoma-associated antigens based on class I immunopeptidome analyses. (A) Comparative profiling of the HLA class I peptidome of medulloblastoma versus an in-house benign database. Each bar in this waterfall plot (associated with the x-axis) represents a single source protein, whereas the frequency of positive HLA peptidomes is shown on the y-axis, separately for medulloblastoma (n=28) and benign samples without testes

(n=418 covering 29 different human tissues). Those source proteins detected on a maximum of one non-CNS-related tissue were designated as medulloblastoma-exclusive, whereby n=77 were identified on at least two tumors (highlighted as enlarged view on the left). The Venn diagram on the right illustrates the number of distinct HLA class I-presented antigens per group, however, the overlap cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Word cloud of medulloblastoma-associated antigens. Based on comparative profiling and subsequent quality control of underlying peptides (HLA motifs as well as multi-mapping to several source proteins), a set of 15 medulloblastoma-associated antigens naturally presented on 11-29% of tumors was defined. The font size in the word cloud is proportional to the frequency of positive specimens. (C) Saturation analysis for the identification of antigens represented by HLA class I ligands on medulloblastoma tissue. For each source count, the mean number of antigens was calculated by 1,000 random samplings. Using non-linear regression, an exponential function with a forced v-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) was fitted. The goodness of fit was in the uppermost range ($R^2 = 0.9999$). Based on this curve, the maximum attainable number of distinct source proteins was estimated (highlighted as solid line). With the available number of 28 medulloblastoma samples, 91% of the estimated maximum attainable amount of distinct HLA class I-presented proteins had been identified.

On the peptide level, 32,199 distinct HLA class I ligands were eluted from medulloblastomas (n=28), obtaining 75% of the estimated maximum attainable coverage (Figure 26 B). Although the HLA class I peptidome of medulloblastoma showed a pronounced high overlap with that of benign samples, 1,963 medulloblastoma-exclusive peptides presented on at least two tumors were identified (Figure 26 A). Subsequent to manual curation, a set of 34 peptides derived from 38 antigens and presented on 18-29% of tumors was defined. Among these, HLA ligands derived from GFAP, HNRNPK, SNX14, AGRN, DNMT3A, KIF1A, and GABRG2 were the most frequent ones. Although only two adults were part of the cohort, twelve medulloblastoma-associated peptides were eluted from both childhood and adult tumors. Considering the different subgroups, 13 peptides proved to be pan-medulloblastoma targets, whereas WNT-and SHH-activated or WNT-activated and non-WNT/non-SHH shared two peptides each. One HLA class I ligand was exclusively part of the immunopeptidome of non-WNT/non-SHH medulloblastomas. Peptide sequences and their HLA restriction, a listing of positive patients, and the corresponding source protein are given in Supplementary Table 12.

Combining the list of peptides derived from HLA class I-presented medulloblastomaassociated antigens (Supplementary Table 11) with that of HLA class I ligands designated as medulloblastoma-associated (Supplementary Table 12) gave n=66 candidate target peptides for cancer immunotherapy. These cover 98.64% of the world population (Supplementary Figure 7), whereby an average of 14 peptides are expected to match per patient. The population coverage on a per-country basis is shown in Figure 27.

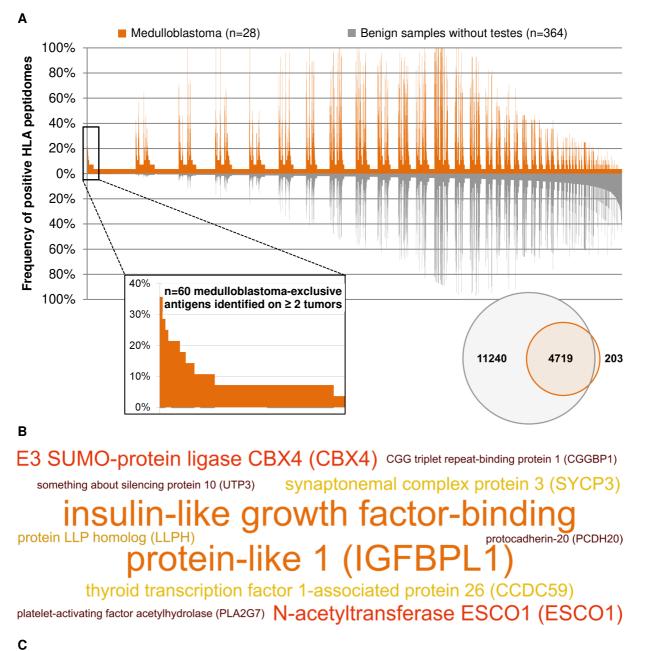

Figure 26. HLA class I peptidomics to define medulloblastoma-associated peptides. (A) Comparative profiling of HLA class I ligands presented on medulloblastoma versus an inhouse benign database. Every peptide evaluated for tumor association is represented by a bar in the waterfall plot (associated with the x-axis), whereas the y-axis shows the frequency of positive HLA peptidomes, separately for medulloblastoma (n=28) and benign samples without testes (n=418 covering 29 different human tissues). Peptides were designated as medulloblastoma-exclusive, when detected on a maximum of one non-CNS-related tissue, whereby n=1,963 were identified on at least two neoplasms (highlighted as enlarged view on the left). The number of distinct HLA class I ligands per group is illustrated by the Venn diagram on the right, whereby the overlap cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Saturation analysis for the identification of HLA class I ligands in medulloblastoma tissue. For each source count, the mean number of peptides was calculated by 1,000 random samplings. Using non-linear regression, an exponential function with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) was fitted. The goodness of fit was in the uppermost range $(R^2 = 0.9991)$. Based on this curve, the maximum attainable number of distinct peptides was estimated (highlighted as solid lines). With the available number of 28 medulloblastoma samples, 75% of the estimated maximum attainable amount of distinct HLA class I ligands had been identified.

Figure 27. Population coverage of medulloblastoma-associated HLA class I peptides. Using the population coverage tool provided by the IEDB Analysis Resource¹⁴, the population coverage of the n=66 candidate target peptides for medulloblastoma immunotherapy was calculated on a per-country basis. On average, 14 HLA class I peptides match per patient worldwide. For visualization of the United Kingdom, the individual values of England, Northern Ireland, Scotland, and Wales were multiplied with the relative area portion. Countries not included in the IEDB tool or not covered by the geographic heat map add-on of Microsoft Excel are colorless.

Medulloblastoma-associated HLA class II antigens

HLA class II peptidome analyses of medulloblastoma allowed the identification of 4,922 distinct source proteins giving rise to HLA class II-restricted peptides. These represent 71% of the estimated maximum attainable amount of distinct antigens (Figure 28 C). Although medulloblastomas largely overlapped with benign samples, 60 antigens were exclusively presented by at least two tumors (Figure 28 A). Following manual curation of the underlying peptides for peptide length and the presence of length variants as well as multi-mapping to several source proteins, a set of ten medulloblastoma-associated antigens and corresponding peptides naturally presented on 11-36% of tumors was created. Among these, IGFBPL1, CBX4, ESCO1, SYCP3, and CCDC59 were the most frequent ones (Figure 28 B). Three of the medulloblastoma-associated antigens were identified across all subgroups (CBX4, ESCO1, LLPH) and five ones were shared by non-WNT/non-SHH and SHH-activated tumors (IGFBPL1, SYCP3, PLA2G7, PCDH20, CGGBP1). WNT- and SHH-activated neoplasias or WNT-activated and non-SHH/non-WNT tumors had one antigen each in common. Six out of ten tumor-associated antigens were found to be presented on HLA class II in both adult und childhood medulloblastomas (IGFBPL1, CBX4, ESCO1, CCDC59, PCDH20, CGGBP1), although the present study population included only two adults. Peptide sequences, a listing of positive patients, and the GTEx profile of the corresponding source protein can be retrieved from Supplementary Table 11. It is noteworthy that one of these tumor-associated HLA class II antigens (SYCP3) exhibited a CTA-like expression profile with the related SYCP1 being listed in the CTDatabase¹⁵.

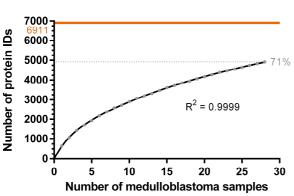


Figure 28. Definition of medulloblastoma-associated antigens based on class II immunopeptidome analyses. (A) Comparative profiling of the HLA class II peptidome of medulloblastoma *versus* an in-house benign database. Each bar in this waterfall plot (associated with the x-axis) represents a single source protein, whereas the frequency of positive HLA peptidomes is shown on the y-axis, separately for medulloblastoma (n=28) and benign samples without testes

(n=364 covering 30 different human tissues). Those source proteins detected on a maximum of one non-CNS-related tissue were designated as medulloblastoma-exclusive, whereby n=60 were identified on at least two neoplasms (highlighted as enlarged view on the left). The Venn diagram on the right illustrates the number of distinct HLA class II-presented antigens per group, however, the overlap cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Word cloud of medulloblastoma-associated antigens. Based on comparative profiling and subsequent quality control of underlying peptides (peptide length and/or presence of length variants as well as multimapping to several source proteins), a set of ten tumor-associated antigens naturally presented on 11-36% of medulloblastomas was defined. The font size in the word cloud is proportional to the frequency of positive tumors. (C) Saturation analysis for the identification of antigens represented by HLA class II peptides on medulloblastoma tissue. For each source count, the mean number of antigens was calculated by 1,000 random samplings. Using non-linear regression, an exponential function with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) was fitted. The goodness of fit was in the uppermost range ($R^2 = 0.9999$). Based on this curve, the maximum attainable number of distinct source proteins was estimated (highlighted as solid line). With the available number of 28 medulloblastoma samples, 71% of the estimated maximum attainable amount of distinct HLA class II-presented proteins had been identified.

On the peptide level, 25,076 distinct HLA class II-presented peptides were eluted from medulloblastomas (n=28), obtaining 66% of the estimated maximum attainable coverage (Figure 29 B). Subsequent to comparative profiling, all antigens represented by at least one tumor-exclusive HLA class II-presented peptide were subjected to hotspot analysis (Figure 29 A). Medulloblastoma-associated HLA class II presentation hotspots were defined to have a minimum length of eight AA and to be covered by peptides identified in at least five patients, while not having matching sequences in benign samples. This identified a set of eleven antigens harboring regions uniquely presented on tumor tissue with peptide-specific frequencies reaching up to 43% of positive HLA peptidomes. Half of these hotspot targets were represented within the immunopeptidome of all medulloblastoma subgroups or of both adult und childhood tumors, respectively. One hotspot target each was exclusively presented by non-SHH/non-WNT and SHH-activated tumors each, whereas non-SHH/non-WNT and SHHactivated medulloblastomas had two proteins harboring HLA class II presentation hotspots in common. Furthermore, SHH- and WNT-activated or non-SHH/non-WNT and WNT-activated neoplasms shared one protein with hotspot-derived peptides each, respectively. Peptide sequences, a listing of positive patients, and the corresponding source protein are given in Supplementary Table 13.

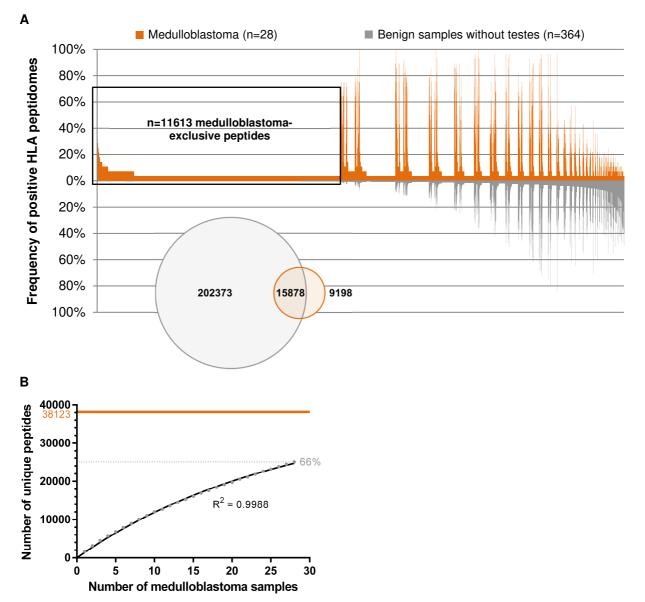


Figure 29. HLA class II peptidomics to define medulloblastoma-associated peptides (A) Comparative profiling of HLA class II peptides presented on medulloblastoma versus an inhouse benign database. Every peptide evaluated for tumor association is represented by a bar in the waterfall plot (associated with the x-axis), whereas the y-axis shows the frequency of positive HLA peptidomes, separately for medulloblastoma (n=28) and benign samples without testes (n=364 covering 30 different human tissues). Being detected on a maximum of one non-CNS-related tissue, n=11,613 peptides were designated as medulloblastoma-exclusive. Corresponding source proteins were subjected to hotspot analysis. The number of distinct HLA class II-restricted peptides per group is illustrated by the Venn diagram on the left, whereby the overlap cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Saturation analysis for the identification of HLA class II-presented peptides in medulloblastoma tissue. For each source count, the mean number of peptides was calculated by 1,000 random samplings. Using non-linear regression, an exponential function with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) was fitted. The goodness of fit was in the uppermost range ($R^2 = 0.9988$). Based on this curve, the maximum attainable number of distinct peptides was estimated (highlighted as solid line). With the available number of 28 malignant samples. 66% of the estimated maximum attainable amount of distinct HLA class II-presented peptides had been identified.

Comparing medulloblastoma-associated HLA class I- (n=15) and II-presented antigens (n=10) as well as medulloblastoma-associated HLA class I- (n=38 source proteins) and II-restricted peptides (n=11 source proteins), revealed a largely unique antigenic repertoire inherent to HLA class I and II peptidomes. However, IGFBPL1, INSM1, and INSM2 yielded both HLA class I- and II-presented target peptides.

Established CTAs and TAAs naturally presented on medulloblastoma

Considering a total number of 366 established CTAs and TAAs (3.2.1) as well as 16 antigens reported to be associated with medulloblastoma (2.3.2; n=15 overlapped with the general list of CTAs and TAAs), the present HLA peptidome dataset acquired from medulloblastomas was screened for previously published tumor antigens. Of these, n=117 and n=84 were represented by HLA class I ligands and HLA class II-presented peptides, respectively. Although identification rates were comparatively high, CTAs and TAAs were basically presented at low frequency, especially those exclusively identified on medulloblastoma. While none of the HLA class I-presented TAAs and CTAs fulfilling the aforementioned criteria to be designated as tumor-exclusive antigen were identified on more than one specimen, 16 ones were represented by medulloblastoma-exclusive HLA class I ligands on at least two and a maximum of four tumors. On HLA class II, 13 antigens were exclusively identified in the peptidome of medulloblastomas, with RAD51 and GPC2 being the only ones reaching a total of two positive tumors. Eight further CTAs and TAAs were represented by tumor-exclusive HLA class II-presented peptides on 7-14% of neoplasms (Figure 30, Supplementary Table 14).

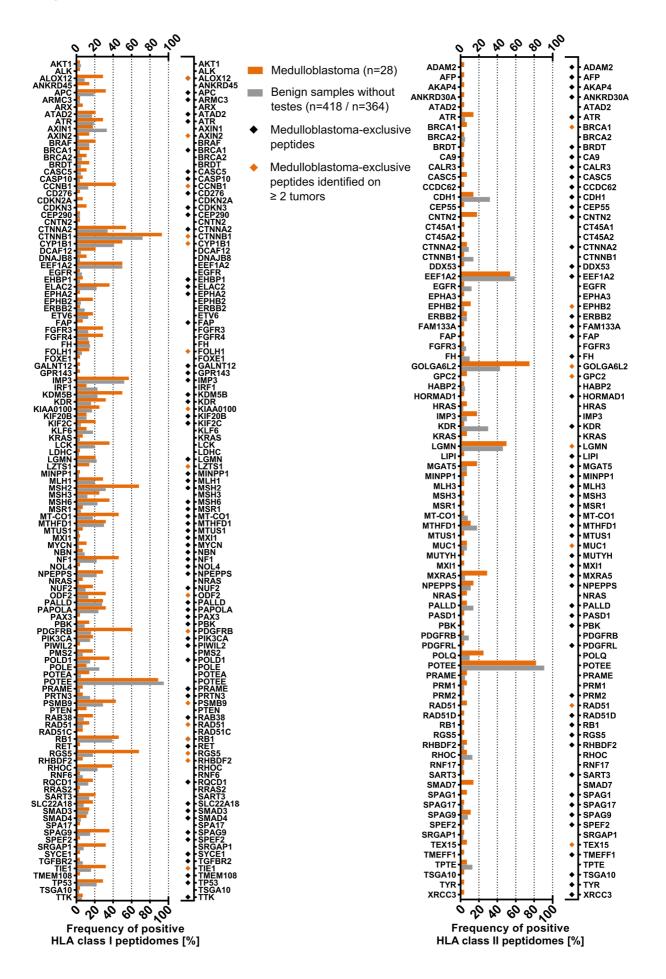


Figure 30. Identification of established TAAs, CTAs, and medulloblastoma-associated antigens across the present HLA peptidome dataset. The present immunopeptidomic dataset included HLA class I ligands derived from 116 TAAs and CTAs (left panel), with 16 being represented by medulloblastoma-exclusive peptides on at least two tumors (highlighted with orange diamonds). The frequency of positive HLA peptidomes was assessed based on HLA class I ligands for tumor samples, whereby benign hits were reported independent of HLA binding probabilities of the underlying peptide identifications. Concerning HLA class II (right panel), a total of 85 TAAs and CTAs were found to be naturally presented on medulloblastoma. Among these, eight yielded tumor-exclusive peptides attaining a presentation frequency of \geq 7% (highlighted with orange diamonds). While peptides mapping to multiple source proteins were considered to calculate the frequency of positive HLA peptidomes, these were excluded to report the representation by medulloblastoma-exclusive peptides. CTAs and TAAs exclusively identified on benign samples were not listed.

5 Discussion

Medulloblastoma is the most common pediatric malignancy of the CNS, which represents the top-ranking localization of childhood tumors and the leading cause of death due to cancer in children.¹⁻³ Surgery, chemotherapy, and radiotherapy achieve cure rates of up to 75%, however, radiation of the developing brain causes severe long-term sequelae and recurrent medulloblastoma has remained largely incurable.⁴⁻⁹ Cancer immunotherapy may replace radiotherapy in multimodal therapeutic regimens and represent an option to manage disease recurrence. Herein, we present the first investigation of the immunopeptidomic landscape of medulloblastoma to define HLA class I- and II-restricted candidate targets.

Both HLA class I- and II-presented peptides were eluted in considerable amounts from 28 primary medulloblastoma samples proving this cancer entity to be well suitable for studies of the HLA peptidome. Expression of HLA molecules and presentation of a manifold repertoire of peptides, which seems to apply for medulloblastoma, does also represent a prerequisite for immunotherapeutic intervention. This result was actually not expected, since several components of the antigen processing machinery (e.g. HLA-A, -B, and -C, calnexin, $\beta_2 m$, LMP2, LMP7) have previously been reported to be down-regulated in medulloblastoma.¹⁶ We could only observe the apparent down-modulation of HLA expression when analyzing the medulloblastoma cell lines MM8A, D341, D283 Med, and DAOY (800-2,200 µl cell pellet volumes) vielding 32-772 HLA class I and 98-354 HLA class II peptides when acquiring two technical replicates consuming 14% sample share each on an Orbitrap Fusion Lumos (data not shown). This again emphasizes that the use of cell lines represents an inferior substitute for primary human tumor samples.¹⁷ Nevertheless, there were obvious hints of reduced HLA class I expression in specimen SA4. We ruled out poor quality of the tissue lysate or W6/32 antibody, failure during ZipTipc18[®] purification, and technical issues during LC-MS/MS, as HLA class II peptide yields were fine, the identical W6/32 batch passed quality control and was employed for several samples with high numbers of HLA class I peptide identifications, direct injection was performed, and as the HLA class I peptide eluate was measured prior to that of HLA class II, while the LC-MS/MS system ran at good performance. This presumption will be validated, once analysis of RNA expression data has been completed. Relative HLA class I and II peptide yields obtained from fresh frozen tissue were significantly higher as compared with samples previously embedded in Bambanker medium or Tissue-Tek[®]O.C.T.[™]. This may, on the one hand, be reasoned by remnants of embedding material falsifying determined sample weights and, on the other hand, by interferences to antibody binding efficiency during HLA-IP and/or also during MS. The latter appears very plausible as samples previously embedded in Tissue-Tek[®] O.C.T.[™] showed a large number of interfering peaks in the total ion chromatogram (from minute 80 of the LC gradient) comparable in height to the typical CHAPS peak observed around minute 105 to 110. It turned out that these were series of peaks of the positively charged PEG with a distance of 44 m/z. PEG is – like CHAPS – known to cause ion suppression (and isobaric interference) in LC-MS/MS.¹⁸⁻²⁰ A different average purity of HLA class I peptide eluates was observed across the four different institutions, which can be reasoned by discrepancies in sample collection. In Zürich, sample collection for immunopeptidomics has been a well-established routine process since many years, whereas surgical staff in Hamburg, Sankt Augustin, and Würzburg has far less experience with sample requirements for HLA peptidomics. This problem could be addressed by transferring standard operating procedures of sample collection with the purpose to isolate HLA ligands from Zürich, providing samples with the best purities, to other institutions.

The present study population having a female-to-male ratio of 2:3 and a median age of onset of eight years constituted a representative cohort of medulloblastoma patients.¹ In total, n=4 WNT-activated (14%), n=7 SHH-activated (25%), n=2 Group 3, n=2 Group 4, n=8 non-WNT/non-SHH (not differentiated into Group 3 and Group 4), and n=5 without annotation to a subgroup were analyzed including two cases of adult medulloblastoma. The 60 distinct HLA class I allotypes cover 99.95% of the world population, whereby 92.08% of all individuals are expected to be positive for at least three allotypes. We found medulloblastoma to be a – albeit rather sparse – source of candidate targets for cancer immunotherapy. Antigens appearing tumor-exclusive in the analysis but showing a highly CNS-associated expression profile were excluded since we do not expect to achieve 100% saturation of HLA class I and II protein identifications with the currently available number of 23 benign brain and cerebellum samples. Thus, it is conceivable that brain-specific proteins appear as false-positive tumor-exclusive antigens in comparative profiling. In contrast to other tumors including meningioma, T cells targeting medulloblastoma cross the blood-brain barrier and may then cause on-target offtumor toxicities in cells presenting CNS-specific antigens.²¹⁻²⁴ The search for frequently presented medulloblastoma-associated antigens uncovered 15 and ten for HLA class I and II, respectively. Among these, IGFBPL1 (36%), SPINK8 (29%), WNT5A (25%), CBX4 (21%), ESCO1 (21%), SHISA9 (18%), SYCP3 (18%), and CCDC59 (18%) were the most frequent ones. The neurotrophic insulin-like growth factor axis has a prominent role in regulating CNS development and promoting the growth of tumor cells, including medulloblastoma, ependymoma, meningioma, and glioma, via anti-apoptotic and mitogenic peptides.²⁵⁻²⁸ Several members of the insulin-like growth factor binding protein family have been associated with ependymomas and medulloblastomas by being elevated in comparison with control cerebella and indicating poor prognosis when expressed at high levels.²⁹ SPINK8, spanning only 97 AA,³⁰ is not expressed above background levels (10 TPM) in benign human tissues and has been suggested to be epididymis-specific.^{10,31,32} Other Kazal-type serine peptidase inhibitors such as SPINK1, also called secretory tumor-associated trypsin inhibitor, have been found to be over-expressed in various cancer entities, to promote tumor progression, and to correlate with adverse prognosis.³³⁻³⁷ In colorectal carcinoma, SPINK1 has been suggested to act by inhibiting Metallothionein tumor suppressors.³⁴ A member of the oncogenic WNT protein family was identified with WNT5A, which is renowned for tumor-associated elevated expression.^{38,39} WNT5A was, however, not specific for tumors of the WNT-activated subgroup, but identified in SHH-activated and non-WNT/non-SHH medulloblastomas as well. Furthermore, HLA class I-presented peptides derived from WNT5A were identified in 51 malignant samples other than medulloblastoma. An oncogenic function exerted by activation of Notch1 signaling has also been attributed to CBX4.40 Moreover, CBX4-mediated sumoylation activates the oncogenic DNA repair protein BMI-1, which has been implied for targeted therapy in pediatric diffuse intrinsic pontine glioma.⁴¹⁻⁴⁵ Besides promoting cell cycle progression as well as cancer cell migration and metastasis,^{40,41,45} CBX4 is also angiogenic by promoting VEGF expression and governing the hypoxia-inducible factor $1-\alpha$.⁴⁶ The acetyltransferase ESCO1 accomplishes sister chromatid cohesion during the S phase of DNA replication facilitating and speeding the traverse of replication forks - a beneficial feature for malignant cells.⁴⁷⁻⁴⁹ In turn, little is known about SHISA9 (seven PubMed entries⁵⁰), which is not expressed with more than 7 TPM in any benign human tissue.¹⁰ SHISA9, also named CKAMP44, is a subunit of synaptic glutamatergic α -amino-3-hydroxy-5-methyl-4isoxazolepropionic acid (AMPA) receptors with regulatory functions in neurotransmission and synaptic plasticity.⁵¹⁻⁵³ SYCP3 did not only exhibit a CTA-like expression profile,¹⁰ but is also described as testis-specific protein regulating sister chromosome segregation during meiosis with aberrant expression in malignant – including brain tumor – cells.⁵⁴⁻⁵⁸ Since the related SYCP1 is listed in the CTDatabase,¹⁵ it appears obvious that SYCP3 represents a novel CTA naturally presented on HLA class II molecules. CCDC59, referred to as thyroid transcription factor 1-associated protein 26, is a poorly studied protein (seven PubMed entries⁵⁹) with reported function in the regulation of surfactant protein synthesis in the lung.⁶⁰⁻⁶²

Investigating acquired immunopeptidomic data for medulloblastoma-associated peptides unveiled a set of 34 HLA class I ligands derived from 38 antigens presented on 18-29% of tumors as well as of eleven antigens harboring medulloblastoma-associated HLA class II presentation hotspots giving rise to naturally presented peptides across at least five patients. It was conspicuous that the two most frequent medulloblastoma-associated HLA class I ligands were 10-mers, which is not the typical length of HLA class I-presented peptides, annotated to multiple HLA allotypes not perfectly matching the motif. Moreover, we observed a large number of HLA-A*25:01 and -A*26:01 ligands among both medulloblastoma-associated and CTA- or TAA-derived tumor-exclusive peptides. A total of 17 samples included in the benign dataset were positive for HLA-A*25:01 and/or -A*26:01 with none of them representing a CNS-related tissue. This implies an insufficient coverage of the tissue of tumor origin regarding these HLA allotypes and all tumor-exclusive peptides binding to HLA-A*25:01 or -A*26:01 were consequently excluded from candidate target lists. Conversely, the benign dataset of CNSrelated samples covered twelve HLA-A allotypes (A*01:01, A*02:01, A*02:05, A*03:01, A*11:01, A*23:01, A*24:02, A*30:01, A*32:01, A*68:01, A*68:02, A*69:01), 16 HLA-B allotypes (B*07:02, B*08:01, B*13:02, B*14:02, B*15:01, B*27:05, B*35:01, B*35:03, B*35:08, B*37:01, B*40:02, B*44:02, B*45:01, B*49:01, B*50:01, B*58:01), and 10 HLA-C allotypes (C*02:02, C*03:03, C*03:04, C*04:01, C*06:02, C*07:01, C*07:02, C*07:04, C*08:02, C*16:01). Medulloblastoma-exclusive peptide hits were only pursued when the corresponding HLA class I allotype was contained in the CNS subset of the benign reference peptidome database. It was striking that overlapping medulloblastoma-associated HLA class I- and II-presented

antigens (n=10) as well as tumor-associated HLA class I- and II-restricted peptides, revealed a largely unique antigenic repertoire inherent to HLA class I and II peptidomes with only three antigens (IGFBPL1, INSM1, INSM2) yielding both HLA class I- and II-presented target peptides. This underlines the necessity to respect both HLA classes on both antigen and peptide level for comprehensive target discovery approaches. Besides that, we found a significant proportion of candidate targets to be pan-medulloblastoma peptides or antigens as being coincidently eluted from WNT-activated, non-WNT/non-SHH, and SHH-activated neoplasms (n=5 / n=13 HLA class I antigen / peptide targets, n=3 / n=5 HLA class II antigen / hotspot targets). Likewise, almost half of all medulloblastoma-associated antigens and peptides was shared by childhood and adult tumors (n=7 / n=12 HLA class I antigen / peptide targets, n=6 / n=6 HLA class II antigen / hotspot targets). In this context, it should be added that the number of targets presented independent of patient age is expected to be even higher, as only two cases of adult medulloblastoma were included in the present cohort. This allows the conclusion that medulloblastoma subgroups exhibit a common antigenic signature promising that defined targets are broadly applicable in medulloblastoma immunotherapy. Combining the list of medulloblastoma-associated antigens and peptides presented on HLA class I (n=66 candidate target peptides for cancer immunotherapy), these achieve a world population coverage of 98.64% whereby an average of 14 peptides are expected to match per patient. Established CTAs and TAAs failed to fulfil the requirements of frequent and tumorexclusive presentation as being either anecdotally detected in very few tumors or being broadly identified on both malignant and benign tissues. Considering these turned out to be no valuable contribution to defining candidate targets for medulloblastoma immunotherapy. This strongly advises against basing target discovery approaches solely on RNA expression, protein, or immunohistochemistry data, as the HLA peptidome represents an autonomous layer molded by the antigen processing machinery.^{17,63-66}

Once analysis of transcriptome and DNA methylation profiling data has been completed, we aim to investigate whether an imprint of the present subgroup manifests at these levels. Moreover, we selected a set of 15 HLA class I-restricted peptides covering 14 antigens and common HLA allotypes (HLA-A*01, -A*02, -A*03, -A*11, -A*68, -B*35) to undergo immunogenicity testing. This will include priming of naïve T cells from healthy donors and – if possible – medulloblastoma patients and will be performed by Dr. med. Julia Velz and Gioele Medici in the Laboratory for Molecular Neuro-Oncology at the University of Zürich.

In conclusion, the data presented demonstrate that medulloblastoma is eligible for immunotherapeutic intervention. We mapped the antigenic landscape of medulloblastoma in an unprecedented depth unveiling a novel set of canonical non-mutated tumor-associated peptides and antigens with natural and frequent presentation on HLA class I and II molecules. These may guide the development of peptide-specific immunotherapies such as vaccination with DCs and peptides or T cell-based strategies which may eventually represent an option to manage disease recurrence and replace radiotherapy in multimodal therapeutic regimens.

6 References

- 1. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. *Neuro Oncol.* 2019;21(Supplement_5):v1-v100.
- 2. de Blank PM, Ostrom QT, Rouse C, Wolinsky Y, Kruchko C, Salcido J, Barnholtz-Sloan JS. Years of life lived with disease and years of potential life lost in children who die of cancer in the United States, 2009. *Cancer Med.* 2015;4(4):608-619.
- Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. *Acta Neuropathol.* 2016;131(6):803-820.
- 4. Massimino M, Biassoni V, Gandola L, Garre ML, Gatta G, Giangaspero F, Poggi G, Rutkowski S. Childhood medulloblastoma. *Crit Rev Oncol Hematol.* 2016;105:35-51.
- 5. Martin AM, Raabe E, Eberhart C, Cohen KJ. Management of pediatric and adult patients with medulloblastoma. *Curr Treat Options Oncol.* 2014;15(4):581-594.
- 6. Johnsen JI, Kogner P, Albihn A, Henriksson MA. Embryonal neural tumours and cell death. *Apoptosis*. 2009;14(4):424-438.
- 7. Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, Bayer L, LaFond D, Donahue BR, Marymont MH, Muraszko K, Langston J, Sposto R. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. *J Clin Oncol.* 2006;24(25):4202-4208.
- 8. Spiegler BJ, Bouffet E, Greenberg ML, Rutka JT, Mabbott DJ. Change in neurocognitive functioning after treatment with cranial radiation in childhood. *J Clin Oncol.* 2004;22(4):706-713.
- 9. Mabbott DJ, Penkman L, Witol A, Strother D, Bouffet E. Core neurocognitive functions in children treated for posterior fossa tumors. *Neuropsychology*. 2008;22(2):159-168.
- 10. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580-585.
- 11. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA typing from next-generation sequencing data. *Bioinformatics*. 2014;30(23):3310-3316.
- 12. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. *Nucleic Acids Res.* 2010;38(6):1767-1771.
- 13. Mohr C, Friedrich A, Wojnar D, Kenar E, Polatkan AC, Codrea MC, Czemmel S, Kohlbacher O, Nahnsen S. qPortal: A platform for data-driven biomedical research. *PLoS One*. 2018;13(1):e0191603.
- 14. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope database (IEDB) 3.0. *Nucleic Acids Res.* 2015;43(Database issue):D405-412.
- Almeida LG, Sakabe NJ, deOliveira AR, Silva MC, Mundstein AS, Cohen T, Chen YT, Chua R, Gurung S, Gnjatic S, Jungbluth AA, Caballero OL, Bairoch A, Kiesler E, White SL, Simpson AJ, Old LJ, Camargo AA, Vasconcelos AT. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. *Nucleic Acids Res.* 2009;37(Database issue):D816-819.
- Raffaghello L, Nozza P, Morandi F, Camoriano M, Wang X, Garrè ML, Cama A, Basso G, Ferrone S, Gambini C, Pistoia V. Expression and functional analysis of human leukocyte antigen class I antigen-processing machinery in medulloblastoma. *Cancer Res.* 2007;67(11):5471-5478.
- 17. Freudenmann LK, Marcu A, Stevanović S. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. *Immunology*. 2018;154(3):331-345.
- 18. Zhang N, Li L. Effects of common surfactants on protein digestion and matrix-assisted laser desorption/ionization mass spectrometric analysis of the digested peptides using two-layer sample preparation. *Rapid Commun Mass Spectrom*. 2004;18(8):889-896.
- 19. Temesi D, Law B, Howe N. Synthesis and evaluation of PEG414, a novel formulating agent that avoids analytical problems associated with polydisperse vehicles such as PEG400. *J Pharm Sci.* 2003;92(12):2512-2518.
- 20. Tong XS, Wang J, Zheng S, Pivnichny JV, Griffin PR, Shen X, Donnelly M, Vakerich K, Nunes C, Fenyk-Melody J. Effect of signal interference from dosing excipients on pharmacokinetic screening of drug candidates by liquid chromatography/mass spectrometry. *Anal Chem.* 2002;74(24):6305-6313.
- 21. Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. *J Clin Invest.* 2010;120(5):1368-1379.
- 22. Dettori P, Bradac GB, Scialfa G. Selective angiography of the external and internal carotid arteries in the diagnosis of supra-tentorial meningiomas. *Neuroradiology*. 1970;1(3):166-172.
- Manaka H, Sakata K, Tatezuki J, Shinohara T, Shimohigoshi W, Yamamoto T. Safety and Efficacy of Preoperative Embolization in Patients with Meningioma. *J Neurol Surg B Skull Base*. 2018;79(Suppl 4):S328s333.
- 24. Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. *Biomed Res Int*. 2015;2015:320941.
- 25. Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. *Endocr Rev.* 2005;26(7):916-943.

- Wang JY, Del Valle L, Gordon J, Rubini M, Romano G, Croul S, Peruzzi F, Khalili K, Reiss K, Activation of the 26. IGF-IR system contributes to malignant growth of human and mouse medulloblastomas. Oncogene. 2001;20(29):3857-3868.
- 27
- Zumkeller W, Westphal M. The IGF/IGFBP system in CNS malignancy. *Mol Pathol.* 2001;54(4):227-229. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: 28. overview and recent insights. Endocr Rev. 2007;28(1):20-47.
- 29. de Bont JM, van Doorn J, Reddingius RE, Graat GH, Passier MM, den Boer ML, Pieters R. Various components of the insulin-like growth factor system in tumor tissue, cerebrospinal fluid and peripheral blood of pediatric medulloblastoma and ependymoma patients. Int J Cancer. 2008;123(3):594-600.
- UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158-d169. 30.
- 31. Jalkanen J, Kotimäki M, Huhtaniemi I, Poutanen M. Novel epididymal protease inhibitors with Kazal or WAP family domain. Biochem Biophys Res Commun. 2006;349(1):245-254.
- Jeong J, Lee B, Kim J, Kim J, Hong SH, Kim D, Choi S, Cho BN, Cho C. Expressional and functional analyses 32. of epididymal SPINKs in mice. Gene Expr Patterns. 2019;31:18-25.
- Marshall A, Lukk M, Kutter C, Davies S, Alexander G, Odom DT. Global gene expression profiling reveals 33. SPINK1 as a potential hepatocellular carcinoma marker. PLoS One. 2013;8(3):e59459.
- Tiwari R, Pandey SK, Goel S, Bhatia V, Shukla S, Jing X, Dhanasekaran SM, Ateeq B. SPINK1 promotes 34. colorectal cancer progression by downregulating Metallothioneins expression. Oncogenesis. 2015;4:e162.
- 35. Kelloniemi E, Rintala E, Finne P, Stenman UH. Tumor-associated trypsin inhibitor as a prognostic factor during follow-up of bladder cancer. Urology. 2003;62(2):249-253.
- Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, Demichelis F, Helgeson BE, Laxman B, 36. Morris DS, Cao Q, Cao X, Andrén O, Fall K, Johnson L, Wei JT, Shah RB, Al-Ahmadie H, Eastham JA, Eggener SE, Fine SW, Hotakainen K, Stenman UH, Tsodikov A, Gerald WL, Lilja H, Reuter VE, Kantoff PW, Scardino PT, Rubin MA, Bjartell AS, Chinnaiyan AM. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell. 2008;13(6):519-528.
- Paju A, Vartiainen J, Haglund C, Itkonen O, von Boguslawski K, Leminen A, Wahlström T, Stenman UH. 37. Expression of trypsinogen-1, trypsinogen-2, and tumor-associated trypsin inhibitor in ovarian cancer: prognostic study on tissue and serum. Clin Cancer Res. 2004;10(14):4761-4768.
- Howng SL, Wu CH, Cheng TS, Sy WD, Lin PC, Wang C, Hong YR. Differential expression of Wnt genes, 38. beta-catenin and E-cadherin in human brain tumors. Cancer Lett. 2002;183(1):95-101.
- 39. Smalley MJ, Dale TC. Wnt signalling in mammalian development and cancer. Cancer Metastasis Rev. 1999;18(2):215-230.
- 40. Zeng JS, Zhang ZD, Pei L, Bai ZZ, Yang Y, Yang H, Tian QH. CBX4 exhibits oncogenic activities in breast cancer via Notch1 signaling. Int J Biochem Cell Biol. 2018;95:1-8.
- Hu C, Zhang Q, Tang Q, Zhou H, Liu W, Huang J, Liu Y, Wang Q, Zhang J, Zhou M, Sheng F, Lai W, Tian J, 41. Li G, Zhang R. CBX4 promotes the proliferation and metastasis via regulating BMI-1 in lung cancer. J Cell Mol Med. 2020;24(1):618-631.
- Kumar SS, Sengupta S, Lee K, Hura N, Fuller C, DeWire M, Stevenson CB, Fouladi M, Drissi R. BMI-1 is a 42. potential therapeutic target in diffuse intrinsic pontine glioma. Oncotarget. 2017;8(38):62962-62975.
- 43. Ismail IH, Gagné JP, Caron MC, McDonald D, Xu Z, Masson JY, Poirier GG, Hendzel MJ. CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucleic Acids Res. 2012;40(12):5497-5510.
- 44. Qiu M, Liang Z, Chen L, Tan G, Liu L, Wang K, Chen H, Liu J. MicroRNA-200c suppresses cell growth and metastasis by targeting Bmi-1 and E2F3 in renal cancer cells. Exp Ther Med. 2017;13(4):1329-1336.
- Zhang Z, Bu X, Chen H, Wang Q, Sha W. Bmi-1 promotes the invasion and migration of colon cancer stem 45. cells through the downregulation of E-cadherin. Int J Mol Med. 2016;38(4):1199-1207.
- 46. Li J, Xu Y, Long XD, Wang W, Jiao HK, Mei Z, Yin QQ, Ma LN, Zhou AW, Wang LS, Yao M, Xia Q, Chen GQ. Cbx4 governs HIF-1alpha to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell. 2014;25(1):118-131.
- 47. Zhang J, Shi X, Li Y, Kim BJ, Jia J, Huang Z, Yang T, Fu X, Jung SY, Wang Y, Zhang P, Kim ST, Pan X, Qin J. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell. 2008;31(1):143-151.
- 48. Rivera-Colón Y, Maguire A, Liszczak GP, Olia AS, Marmorstein R. Molecular Basis for Cohesin Acetylation Establishment of Sister Chromatid Cohesion N-Acetyltransferase ESCO1. J Biol Chem. bv 2016;291(51):26468-26477.
- 49. Terret ME, Sherwood R, Rahman S, Qin J, Jallepalli PV. Cohesin acetylation speeds the replication fork. Nature. 2009;462(7270):231-234.
- Publications listed in PubMed dealing with the protein shisa-9. [Internet]. Available from: 50 https://www.ncbi.nlm.nih.gov/pubmed/?term=shisa9, accessed on 2020/04/04.
- Kunde SA, Rademacher N, Zieger H, Shoichet SA. Protein kinase C regulates AMPA receptor auxiliary protein 51. Shisa9/CKAMP44 through interactions with neuronal scaffold PICK1. FEBS Open Bio. 2017;7(9):1234-1245.
- Karataeva AR, Klaassen RV, Ströder J, Ruiperez-Alonso M, Hjorth JJ, van Nierop P, Spijker S, Mansvelder 52. HD, Smit AB. C-terminal interactors of the AMPA receptor auxiliary subunit Shisa9. PLoS One. 2014;9(2):e87360.
- 53. von Engelhardt J, Mack V, Sprengel R, Kavenstock N, Li KW, Stern-Bach Y, Smit AB, Seeburg PH, Monyer H. CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus. Science. 2010;327(5972):1518-1522.

- 54. Mobasheri MB, Jahanzad I, Mohagheghi MA, Aarabi M, Farzan S, Modarressi MH. Expression of two testisspecific genes, TSGA10 and SYCP3, in different cancers regarding to their pathological features. *Cancer Detect Prev.* 2007;31(4):296-302.
- 55. Parra MT, Viera A, Gómez R, Page J, Benavente R, Santos JL, Rufas JS, Suja JA. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. *J Cell Sci.* 2004;117(Pt 7):1221-1234.
- 56. Aarabi M, Modarressi MH, Soltanghoraee H, Behjati R, Amirjannati N, Akhondi MM. Testicular expression of synaptonemal complex protein 3 (SYCP3) messenger ribonucleic acid in 110 patients with nonobstructive azoospermia. *Fertil Steril*. 2006;86(2):325-331.
- 57. Niemeyer P, Türeci Ö, Eberle T, Graf N, Pfreundschuh M, Sahin U. Expression of serologically identified tumor antigens in acute leukemias. *Leuk Res.* 2003;27(7):655-660.
- 58. Yuan L, Pelttari J, Brundell E, Björkroth B, Zhao J, Liu JG, Brismar H, Daneholt B, Höög C. The synaptonemal complex protein SCP3 can form multistranded, cross-striated fibers in vivo. *J Cell Biol.* 1998;142(2):331-339.
- 59. Publications listed in PubMed dealing with the thyroid transcription factor 1-associated protein 26. [Internet]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=ccdc59 and https://www.ncbi.nlm.nih.gov/pubmed/?term=thyroid+transcription+factor+1-associated+protein+26, accessed on 2020/04/04.
- 60. Yang YS, Yang MC, Wang B, Weissler JC. BR22, a novel protein, interacts with thyroid transcription factor-1 and activates the human surfactant protein B promoter. *Am J Respir Cell Mol Biol.* 2001;24(1):30-37.
- 61. Yang MC, Guo Y, Liu CC, Weissler JC, Yang YS. The TTF-1/TAP26 complex differentially modulates surfactant protein-B (SP-B) and -C (SP-C) promoters in lung cells. *Biochem Biophys Res Commun.* 2006;344(2):484-490.
- 62. Boggaram V, Chandru H, Gottipati KR, Thakur V, Das A, Berhane K. Transcriptional regulation of SP-B gene expression by nitric oxide in H441 lung epithelial cells. *Am J Physiol Lung Cell Mol Physiol*. 2010;299(2):L252-262.
- 63. Weinzierl AO, Lemmel C, Schoor O, Müller M, Krüger T, Wernet D, Hennenlotter J, Stenzl A, Klingel K, Rammensee HG, Stevanović S. Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. *Mol Cell Proteomics*. 2007;6(1):102-113.
- 64. Fortier MH, Caron É, Hardy MP, Voisin G, Lemieux S, Perreault C, Thibault P. The MHC class I peptide repertoire is molded by the transcriptome. *J Exp Med*. 2008;205(3):595-610.
- 65. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. *Mol Cell Proteomics*. 2015;14(3):658-673.
- 66. Shraibman B, Barnea E, Kadosh DM, Haimovich Y, Slobodin G, Rosner I, López-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. *Mol Cell Proteomics*. 2019;18(6):1255-1268.

CHAPTER 4

The immunopeptidome of meningioma reveals candidate targets for immunotherapies and delineates modulated presentation of HLA ligands in comparison with autologous dura

Lena Katharina Freudenmann (L.K.F.) planned and performed all HLA peptidome analyses, whereby Lena Mühlenbruch supported HLA-IP of 14/42 samples during the training period in the course of her master thesis. L.K.F. analyzed the entire immunopeptidomic dataset and contributed all figures and texts. HLA allotypes were determined by HistoGenetics and Nagarajan Paramasivam and samples along with clinical metadata were provided by collaborating physicians.

1 Abstract

Meningiomas are the most common neoplasms of the brain and CNS. Tumor localization and disease recurrence exacerbate the therapeutic situation with surgery and radiotherapy representing the only established therapy regimens. Cancer immunotherapy may meet the high demand for contemporary treatments, however, little is known about the antigens to be targeted. Herein, we present the first investigation of the immunopeptidomic landscape of 33 meningiomas for naturally presented target antigens for application in antigen-specific immunotherapeutic approaches. Meningeal neoplasias proved to be a rich source of novel tumor-associated peptides and antigens presented on HLA class I and II molecules. Remarkably, a large fraction were pan-meningioma targets presented across all WHO grades. Established cancer-testis and tumor-associated antigens, however, lacked frequent and/or meningioma-exclusive HLA presentation. In a subset of patients with autologous tumor-free dura being available, relative quantitation of HLA class I- and II-restricted peptide abundances delineated common patterns of modulated peptide presentation. In conclusion, the defined set of meningioma-associated antigens and peptides provides prime candidates to be pursued in the development of future immunotherapies as being naturally, exclusively, and frequently presented on native meningioma tissue. This may contribute to overcome the lack of therapeutic options for non-resectable and recurrent, especially high-grade, meningiomas.

2 Introduction

Meningeal tumors constitute the most frequent brain and CNS neoplasms accounting for an average annual incidence of 30,551 in the US. Despite being diagnosed as non-malignant in almost 99% of cases, these tumors nevertheless cause severe health issues including, among others, seizures and focal neurological deficits.¹⁻⁴ Complete surgical resection of meningiomas localized at the skull base, which is rich in neurovascular structures and where 38% of WHO grade I tumors arise, can be challenging and tumor recurrence of those meningiomas with a more malignant behavior despite multiple resections and radiotherapy is a common clinical problem. Poor progression-free and overall survival rates in particular affect those patients with subtotal resection.^{5,6} So far, no chemotherapy with meningioma as indication has been approved by the FDA and no standard-of-care for the management of recurrent meningiomas has been established.^{5,7} Consequently, there is a high demand for contemporary treatment strategies supplementing surgery and radiotherapy – a demand that could be elegantly serviced by cancer immunotherapy.

One additional reason for investigating T cell-based immunotherapy in meningioma is the fact that the tumor is supplied by vascular branches of the external carotid artery.^{8,9} This is a major difference to the other brain tumor entities discussed previously (glioblastoma and medulloblastoma) which arise within the brain parenchyma itself. The latter (so-called intra-axial) lesions are supplied by branches of the internal carotid artery.¹⁰⁻¹² Within this vascular territory, the actively controlled and dynamic blood-brain barrier (neurovascular unit) creates a partially immunoprivileged niche within the brain parenchyma, but also within the tumor niche and thereby counteracts the entrance of T cells.¹³⁻¹⁵

Potenital T-cell targets are underinvestigated in meningiomas and no studies have been conducted to investigate the antigenic repertoire naturally presented on native tumor tissue. We employed an immunopeptidome-centric approach to define meningioma-associated peptides and antigens. For comparative profiling, the in-house benign HLA peptidome database was complemented with autologous tumor-free dura, which was available from nine patients and represents the tissue of tumor origin. Moreover, relative quantitation of HLA class I and II ligand abundances on tumor *versus* autologous non-neoplastic dura was performed delineating HLA ligands with either significant over- or under-representation in tumor HLA peptidomes. Candidate target antigens were queried against the GTEx database, in which RNA expression data acquired across a large set of benign human tissues are made publicly available, to identify such with a CTA-like expression profile as well as proteins with no confirmed expression in any tissue.¹⁶

3 Methods

Patient collective

Written informed consent of the 33 patients included in the present study was obtained in accordance with the Declaration of Helsinki protocol and the local review board (Kantonale Ethikkommission Zürich; KEK-ZH-Nr. 2015-0163) before surgery. All patients underwent surgery at the Department of Neurosurgery of the University Hospital Zürich, whereby tissue samples were snap frozen in liquid nitrogen and stored at -80°C until use. Meningioma and autologous tumor-free dura specimens along with clinical metadata were kindly provided by Dr. med. Julia Velz, Dr. med. Sophie Shi-Yüng Wang, and PD Dr. med. Marian Christoph Neidert (University Hospital Zürich, Department of Neurosurgery).

All patients had histopathologically confirmed meningioma (n=22 WHO grade I, n=9 WHO grade II, and n=2 WHO grade III) with three samples obtained during surgery at disease recurrence. The present study population had a female-to-male ratio of 2:1 and a median age of onset of 59 [34-83] years. Autologous tumor-free dura supplementing the in-house benign HLA peptidome dataset with the tissue of tumor origin to define meningioma-associated antigens was available from nine patients. Further, this enabled LFQ of relative HLA class I and II ligand abundances on meningioma *versus* autologous dura for five or six patients, respectively. The median available amount of tissue for HLA-IP accounted to 1448 [249-3372] mg for meningioma and to 974 [300-2355] mg for dura samples. Individual patient and sample characteristics are listed in Table 8, whereby a closer look on HLA allotype frequencies in the study cohort is provided in CHAPTER 5.

Table 8. Clinical and experimental metadata of the 33 meningioma patients included in the present study. Age of onset was defined as the age at initial diagnosis. HLA class II allotypes were only available for those samples sequenced at HistoGenetics. Nine meningiomas with available autologous tumor-free dura are marked in grey.

Internal sample ID	Gender Age of onset [years]		HLA typing	Sample mass Relative HLA-IP [mg] quantitation HLA class I / II
MNG1 Tissue from 1 st recurrence at 4.7 years after initial diagnosis	우 68	II	A*24:02;A*29:02;B*18:01;B*44:03;C*16:01;C*07:01	1075
MNG2	♀ 57	I	A*30:01;A*03:01;B*13:02;B*07:02;C*07:02;C*06:02	684
MNG3	우 46	I	A*01:01;A*68:01;B*40:01;B*57:01;C*03:04;C*06:02	1002
MNG4	우 81	I	A*01:01;A*03:01;B*07:02;B*51:08;C*16:02;C*07:02	3683
MNG5	♀ 43	I	A*01:01;A*24:02;B*08:01;B*13:02;C*06:02;C*07:01	1275
MNG6	♀ 67	I	A*02:01;A*68:01;B*18:01;B*35:03;C*04:01;C*07:01	1536
MNG7	♀ 78	I	A*30:02;A*01:01;B*08:01;B*07:02;C*07:01;C*07:01	1530
MNG499	් 69	I	A*11:01;A*68:01;B*51:01;B*51:02;C*15:02;C*15:02 DRB1*04:04;DRB1*04:04;DRB4*01:01;DRB4*01:01; DQB1*03:02;DQB1*03:02;DQA1*03:01;DQA1*03:01	1827
MNG501	♀ 72	II	A*02:01;A*02:01;B*15:01;B*51:01;C*03:03;C*15:02 DRB1*13:01;DRB1*15:01;DRB3*02:02;DRB5*01:01; DQB1*06:02;DQB1*06:03;DQA1*01:03;DQA1*01:02	1355
MNG612 Tissue from 2 nd recurrence at 10.9 years after initial diagnosis	♀ 34	III	A*32:01;A*02:01;B*51:01;B*27:05;C*14:02;C*01:02	4858
MNG623 MNG623 Dura	우 64	I	A*29:02;A*31:01;B*18:01;B*44:03;C*07:01;C*16:01 DRB1*07:01;DRB1*11:04;DRB3*02:02;DRB4*01:01; DQB1*02:01;DQB1*03:01;DQA1*02:01;DQA1*05:01	522 – 300 –
MNG624	⊊ 74	I	A*01:01;A*01:01;B*08:01;B*35:01;C*04:01;C*07:01 DRB1*01:01;DRB1*03:01;DRB3*01:01;DQB1*02:01; DQB1*05:01;DQA1*01:01;DQA1*05:01	581
MNG628 MNG628 Dura	ී 65	II	A*02:01;A*24:02;B*18:01;B*35:01;C*04:01;C*12:03 DRB1*11:04;DRB1*14:01;DRB3*02:01;DRB3*02:02; DQB1*03:01;DQB1*05:03;DQA1*01:01;DQA1*05:01	1167 – 473 –
MNG632	് 42	I	A*30:02;A*68:01;B*35:01;B*35:01;C*04:01;C*04:01	1637
MNG634 Tissue from 1 st recurrence at 7.3 years after initial diagnosis	ੈ 49	I	A*24:02;A*31:01;B*13:02;B*55:01;C*06:02;C*01:02	915
MNG635	♀ 59	II	A*24:02;A*31:01;B*13:02;B*55:01;C*06:02;C*01:02	249
MNG636	우 59	I	A*03:01;A*33:01;B*38:01;B*44:03;C*02:02;C*12:03	1613
MNG637	♀ 37	I	A*02:01;A*02:01;B*18:01;B*55:01;C*03:03;C*12:03	3021
MNG638	♀ 57	II	A*24:02;A*02:01;B*18:01;B*14:02;C*08:02;C*07:01	1171
MNG641	♀ 59	II	A*02:01;A*03:01;B*07:02;B*41:01;C*07:02;C*17:01 DRB1*11:04;DRB1*16:01;DRB3*02:02;DRB5*02:02; DQB1*03:01;DQB1*05:02;DQA1*01:02;DQA1*05:01	3372
MNG642	් 56	II	A*11:01;A*34:01;B*15:35;B*51:01;C*04:01;C*07:02 DRB1*04:05;DRB1*15:02;DRB4*01:01;DRB5*01:01; DQB1*04:01;DQB1*05:02;DQA1*01:02;DQA1*03:01	1769
MNG646	⊊ 63	I	A*01:01;A*03:01;B*08:01;B*40:02;C*02:02;C*07:01 DRB1*03:01;DRB1*04:01;DRB3*01:01;DRB4*01:01; DQB1*02:01;DQB1*03:02;DQA1*03:01;DQA1*05:01	3025
MNG661 MNG661 Dura	් 42	I	A*24:02;A*30:02;B*18:01;B*49:01;C*03:03;C*12:03 DRB1*04:05;DRB1*11:04;DRB3*02:02;DRB4*01:01; DQB1*03:01;DQB1*03:02;DQA1*03:01;DQA1*05:01	1454 – 974 –
MNG666	♀ 67	I	A*02:01;A*03:01;B*07:02;B*39:01;C*07:02;C*12:03 DRB1*11:01;DRB1*13:01;DRB3*02:02;DRB3*02:02; DQB1*03:01;DQB1*06:03;DQA1*01:03;DQA1*05:01	2339
MNG673	♀ 44	I	A*02:01;A*29:02;B*44:03;B*57:01;C*03:04;C*16:01 DRB1*07:01;DRB1*13:01;DRB3*02:02;DRB4*01:01; DQB1*02:01;DQB1*06:03;DQA1*01:03;DQA1*02:01	2658
MNG679 MNG679 Dura	우 49	I	A*23:01;A*29:02;B*44:03;B*44:03;C*04:01;C*16:01 DRB1*07:01;DRB1*07:01;DRB4*01:01;DRB4*01:01; DQB1*02:01;DQB1*02:01;DQA1*02:01;DQA1*02:01	1135 + 605 +
MNG682	♀ 72	I	A*26:01;A*29:02;B*15:01;B*35:01;C*04:01;C*04:01 DRB1*01:01;DRB1*14:01;DRB3*02:02;DQB1*05:03; DQB1*05:01;DQA1*01:01;DQA1*01:01	1346

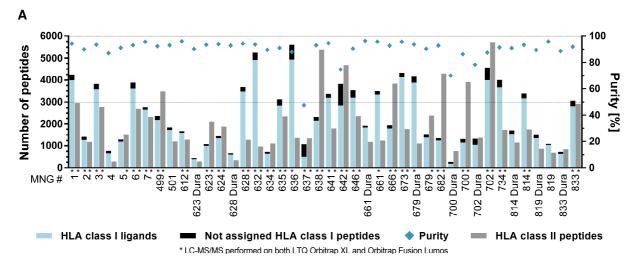
MNG700 MNG700 Dura	് 44	I	A*02:01;A*32:01;B*27:05;B*44:02;C*02:02;C*05:01 DRB1*04:01;DRB1*09:01;DRB4*01:01;DRB4*01:01; DQB1*03:01;DQB1*03:03;DQA1*03:01;DQA1*03:01	874 380	 +
MNG702 MNG702 Dura	് 41	I	A*01:01;A*02:01;B*37:01;B*51:01;C*02:02;C*06:02 DRB1*11:01;DRB1*13:01;DRB3*01:01;DRB3*02:02; DQB1*03:01;DQB1*06:03;DQA1*01:03;DQA1*05:01	1441 2355	+ +
MNG734	් 54	III	A*02:01;A*66:01;B*39:31;B*40:02;C*02:02;C*12:03 DRB1*12:01;DRB1*16:02;DRB3*02:02;DRB5*02:02; DQB1*03:01;DQB1*05:02;DQA1*01:02;DQA1*05:01	1259	
MNG814 MNG814 Dura	් 83	II	A*03:01;A*68:01;B*07:02;B*07:02;C*07:02;C*07:02 DRB1*14:01;DRB1*04:04;DRB3*02:02;DRB4*01:01; DQB1*03:02;DQB1*05:03;DQA1*01:01;DQA1*03:01	896 1324	+ +
MNG819 MNG819 Dura	♀ 70	I	A*02:01;A*23:01;B*15:01;B*50:01;C*03:03;C*06:02 DRB1*03:01;DRB1*04:01;DRB3*02:02;DRB4*01:01; DQB1*02:01;DQB1*03:02;DQA1*03:01;DQA1*05:01	1543 988	+ +
MNG833 MNG833 Dura	് 63	II	A*24:02;A*24:02;B*35:01;B*51:01;C*01:02;C*04:01 DRB1*11:01;DRB1*13:01;DRB3*02:02;DRB3*02:02; DQB1*03:01;DQB1*06:03;DQA1*01:03;DQA1*05:01	1735 1689	+ +

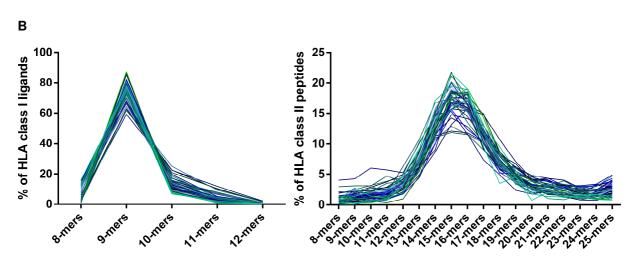
HLA typing

HLA class I and II allotypes of MNG499, MNG501, MNG623, MNG624, MNG628, MNG641, MNG642, MNG646, MNG661, MNG666, MNG673, MNG679, MNG682, MNG700, MNG702, MNG734, MNG814, MNG819, and MNG833 were determined on 4-digit level by nextgeneration sequencing of tumor tissue at HistoGenetics (New York, USA). For remaining patients, 4-digit HLA class I typing was kindly provided by Nagarajan Paramasivam (German Cancer Research Center, Division of Theoretical Bioinformatics and Heidelberg Center for Personalized Oncology) as retrieved from whole genome sequencing using the Polysolver¹⁷ algorithm. A detailed description on whole genome sequencing of meningioma and matched blood as control was performed can be retrieved from Paramasivam *et al.*¹⁸

HLA-IP and subsequent LC-MS/MS to identify HLA-presented peptides

HLA class I- and II-presented peptides were isolated from primary human tissue and analyzed by LC-MS/MS as described in 3.2. All peptide eluates were analyzed on an LTQ Orbitrap XL, whereby residual sample volume was subjected to measurement on an Orbitrap Fusion Lumos. For those samples acquired on both devices (Figure 31 A), peptide and protein lists were merged manually with peptide-specific scores being reported for every LC-MS/MS system.


4 Results


4.1 Peptide yields of HLA-IPs and HLA class I allotype coverage

To define candidate targets for meningioma immunotherapy naturally presented on HLA, we analyzed 33 primary tumor and nine autologous tumor-free dura specimens. The meningioma cohort included 58 distinct HLA class I allotypes covering 99.98% of the world population, whereby 94.60% of all individuals are expected to be positive for at least three allotypes (Supplementary Figure 8). The most frequent allotypes among meningioma patients were HLA-A*02:01 (20%), -A*03:01 (12%), -A*01:01 (11%), -A*24:02 (11%), -B*18:01 (11%), -B*07:02 (9%), -B*35:01 (9%), -B*51:01 (9%), -C*04:01 (14%), -C*07:01 (12%), and -C*06:02 (11%) (Supplementary Table 15).

A median of 2649 [505-4939] and 1038 [185-3891] HLA class I ligands were identified from meningioma or dura samples, respectively. All HLA class I peptide eluates except that of

MNG637 exhibited a purity of at least 70% and none of the samples were censored for low peptide yield or low percentage of HLA class I ligands. Concerning HLA class II, median peptide yields came up to 1882 [301-5720] and 852 [283-1371]. The total number of unique HLA class I and II peptides, HLA class I ligands as well as the purity of HLA class I peptide eluates are given in Figure 31 A for every specimen. The length distribution of HLA class I ligands clearly peaked at 9 AA length, whereas HLA class II-presented peptides were typically 13- to 18-mers. All investigated samples had comparable length distribution profiles independent of dignity or peptide yield (Figure 31 B). Taking tissue masses subjected to HLA-IP into account (Table 8), enabled us to investigate whether peptide yields correlate with sample quantities used. However, the amount of dura or meningioma tissue did neither correlate with the number of HLA class I nor with the number HLA class II peptide identifications per technical replicate (Figure 31 C). Considering the relative number of identified unique peptides per technical replicate and per one mg of tissue input revealed a significantly increased yield of HLA class I as compared with HLA class II peptides eluted from meningioma tissues (Figure 31 D).

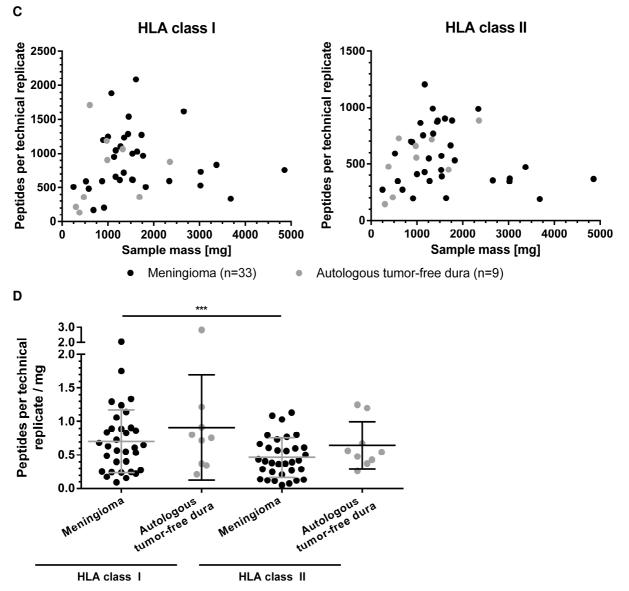


Figure 31. Number and length distribution of identified HLA class I- and II-presented peptides. (A) HLA class I and II peptide yields of meningioma and autologous tumor-free dura tissue. Calculated purities refer to the proportion of HLA class I peptides annotated to an HLA allotype of the respective patient. Asterisks indicate data acquisition on both LC-MS/MS systems. (B) Length distribution of HLA class I ligands and HLA class II peptides. Across the entire dataset, 9-mers constituted 72% of HLA class I ligands, whereas 71% of HLA class II-presented peptides had a length between 13 and 18 AA. Each line represents data of one sample with tumors being illustrated in blueish and dura samples in greenish shades. (C) Unique peptides per sample and technical replicate versus amount of tissue subjected to HLA-IP. To exclude device artefacts, only measurements acquired on an LTQ Orbitrap XL were evaluated. Likewise, only technical replicates consuming 20% sample share each were considered and such diluted for relative quantitation of peptide abundances in paired meningioma and tumor-free dura were excluded from this analysis. By non-linear regression (one-phase association) exponential functions with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. However, the goodness of fit was poor for all these models: $R^2 = 0.08$ (meningioma HLA class I) / 0.20 (dura HLA class I) / 0.05 (meningioma HLA class II) / 0.50 (dura HLA class II). Similarly, a correlation analysis across these normally distributed data (according to D'Agostino & Pearson omnibus normality test) did not identify a significant correlation of sample quantities used and the number of peptides identified: two-tailed p-values = 0.8875 (meningioma HLA class I) / 0.6039 (dura HLA class I) / 0.2862 (meningioma

HLA class II) / 0.0542 (dura HLA class II). (D) Peptide yields per technical replicate normalized to one mg of tissue input. To investigate, whether the relative number of peptide identifications differs between meningioma and autologous tumor-free dura as well as between HLA class I- and II-IPs of the same sample, Wilcoxon matched-pairs signed rank tests were performed (normalized peptide yields did not have Gaussian distributions according to D'Agostino & Pearson omnibus normality test). The only significant difference was observed between the number of HLA class I and II peptides eluted from meningeal tumors (two-tailed *p*-value = 0.0001).

4.2 Definition of meningioma-associated antigens

By immunoaffinity chromatography and LC-MS/MS, the repertoire of HLA class I and II peptides and corresponding antigens naturally presented on 33 meningiomas was mapped. To define meningioma-associated antigens and peptides, an in-house benign database comprising 30 distinct primary human organs (n=418 HLA class I and n=364 HLA class II peptidome datasets) supplemented with nine autologous tumor-free dura samples representing the tissue of tumor origin was subtracted. The term meningioma-associated was assigned to peptides and antigens that were never identified on CNS-related tissues (brain, cerebellum, spinal cord, and dura) and for which a maximum of one non-CNS-related sample was positive. Moreover, the frequency of positive primary non-meningeal human malignancies (n=841 samples for HLA class I; n=593 samples for HLA class II) encompassing 36 cancer entities was evaluated. As additional criterium to select targets for cancer immunotherapies. RNA expression data acquired across a large set of benign human tissues and deposited in the GTEx database¹⁶ was reported for every candidate antigen. Further, this allowed the identification of antigens not known to be expressed in any tissue (defined as less than ten TPM in any tissue) as well as such with a classical CTA-like expression profile (not exceeding ten TPM in other organs than testis).

Meningioma-associated HLA class I-presented antigens and peptides

HLA class I peptidome analyses of meningioma (n=33) and autologous tumor-free dura (n=9) allowed the identification of 10,431 and 5,242 distinct source proteins represented by HLA class I ligands on neoplastic or tumor-free meningeal tissue, respectively. These represent between 82% (dura) and 93% (meningioma) of the estimated maximum attainable amount of distinct source proteins (Figure 32 C). Despite the vast overlap of meningiomas with benign samples and/or autologous tumor-free dura, 98 antigens were exclusively presented by at least two meningeal tumors (Figure 32 A). Following manual curation of the underlying peptides for HLA motifs as well as multi-mapping to several source proteins, a set of 28 meningiomaassociated antigens and corresponding peptides naturally presented on 9-30% of tumors was created. Among these, NMNA2, WNT5A, TBX15/18, and OSR1 were the most frequent ones (Figure 32 B). Despite only two WHO grade III tumors being included in the present dataset, seven of the meningioma-associated antigens were identified across all WHO grades (NMNA2, TBX15/18, XXLT1, SLC25A44, RHOD, CREBL2, PLCD4) and one each was shared by WHO grade I and III (NINJ2) or WHO grade II and III tumors (TMEM87A), respectively. WHO grade I and II meningiomas had 16 antigens in common and three antigens were exclusively part of the immunopeptidome of WHO grade I meningeal neoplasias (TC1D2, B4GALT4, MTU1). Peptide sequences and their HLA restriction, a listing of positive patients. and the GTEx profile of the corresponding source protein can be retrieved from Supplementary

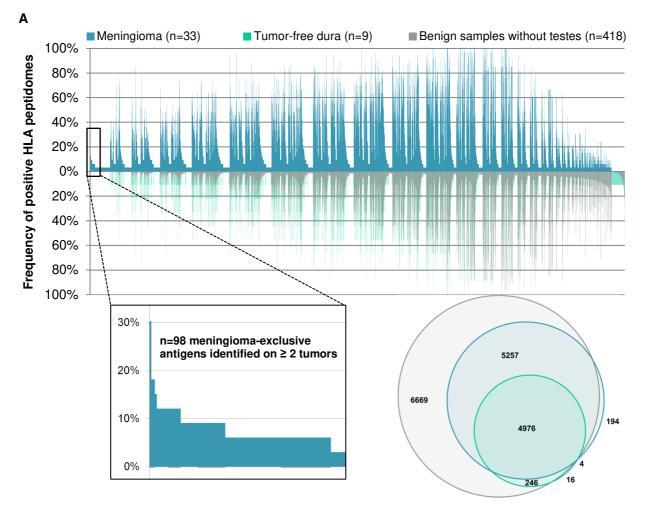


Table 16. Of note, none of these meningioma-associated HLA class I antigens exhibited a CTA-like expression profile.

В

protein Wnt-5a (WNT5A) forkhead box protein (FOX) E3, D4-like 1/2/3/5/6 insulin-like growth factor-binding protein 6 (IGFBP6) folate receptor gamma (FOLR3) sterol O-acyltransferase 2 (SOAT2) Rho-related GTP-binding protein RhoD (RHOD) protein odd-skipped-related 1 (OSR1) solute carrier family 25 member 44 (SLC25A44) cAMP-responsive element-binding protein-like 2 (CREBL2) transmembrane protein 87A (TMEM87A) NKG2-C type II integral membrane protein (NKG2C) / NKG2-E type II integral membrane protein (NKG2E) otinamide mononucleotide protein SSX5/9 (SSX5/9) protein AF-9 (AF-9) cadherin-3 (CDH3) ninjurin-2 (NINJ2) adenylyltransferase 2 (NMNA2) Frizzled-7 (FZD7) globoside alpha-1,3-N-acetylgalactosaminyltransferase 1 (GBGT1) mitochondrial tRNA-specific 2-thiouridylase 1 (MTU1) 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-4 (PLCD4) beta-1,4-galactosyltransferase 4 (B4GALT4) E3 ubiquitin-protein ligase ZNRF2 (ZNRF2) paraneoplastic antigen Ma2 (PNMA2) xyloside xylosyltransferase 1 (XXLT1) transmembrane protein 255B (TMEM255B) Tctex1 domain-containing protein 2 (TC1D2) uncharacterized protein C8orf34 (C8orf34) T-box transcription factor TBX15/18 (TBX15/18)

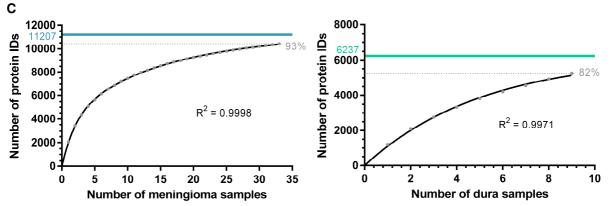
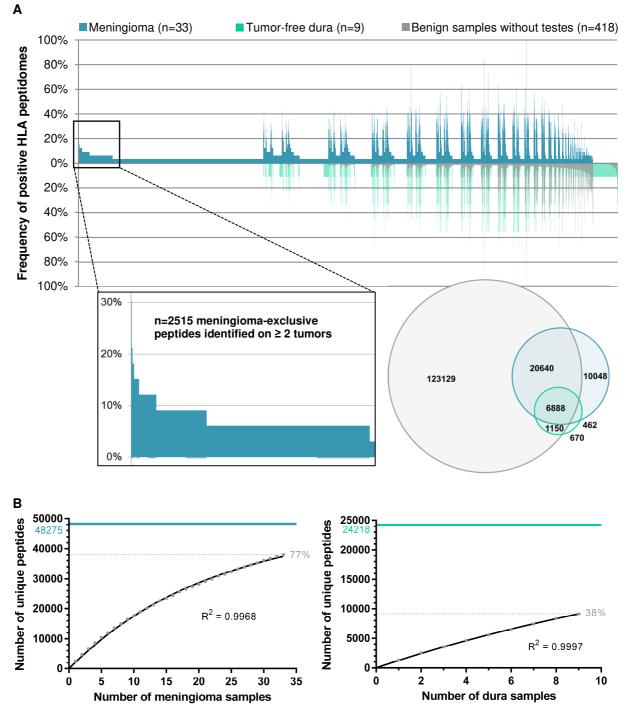



Figure 32. Definition of meningioma-associated antigens based on class I immunopeptidome analyses. (A) Comparative profiling of the HLA class I peptidome of meningioma versus an inhouse benign database complemented by tumor-free dura. Each bar in this waterfall plot (associated with the x-axis) represents a single source protein, whereas the frequency of positive HLA peptidomes is shown on the y-axis, separately for meningioma (n=33), tumor-free dura (n=9), and benign samples without testes (n=418 covering 29 different human tissues). Those source proteins detected on a maximum of one non-CNS-related tissue were designated as meningioma-exclusive, whereby n=98 were identified on at least two meningeal tumors (highlighted as enlarged view on the left). The Venn diagram on the right illustrates the number of distinct HLA class I-presented antigens per group, however, the overlaps cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Word cloud of meningioma-associated antigens. Based on comparative profiling and subsequent quality control of underlying peptides (HLA motifs as well as multimapping to several source proteins), a set of 28 meningioma-associated antigens naturally presented on 9-30% of meningeal tumors was defined. The font size in the word cloud is proportional to the frequency of positive meningeal tumors. (C) Saturation analysis for the identification of antigens represented by HLA class I ligands on meningioma or tumor-free dura tissue. For each source count, the mean number of antigens was calculated by 1,000 random samplings. Using non-linear regression, exponential functions with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. For both models, the goodness of fit was in the uppermost range ($R^2 = 0.9998$ and $R^2 = 0.9971$). Based on these curves, the maximum attainable number of distinct source proteins was estimated (highlighted as solid lines). With the available number of 33 meningioma and nine tumor-free dura samples, 93% or 82% of the estimated maximum attainable amount of distinct HLA class I-presented proteins had been identified, respectively.

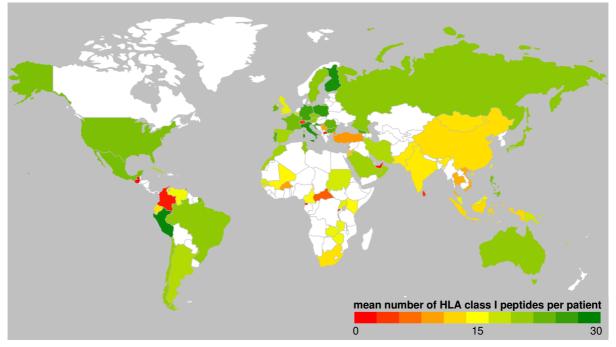

On the peptide level, 38,038 and 9,170 distinct HLA class I ligands were eluted from meningeal neoplasms (n=33) and tumor-free dura (n=9), obtaining 77% (meningioma) and 38% (dura) of the estimated maximum attainable coverage (Figure 33 B). Although the HLA class I peptidome of meningioma showed a pronounced high overlap with that of benign samples and/or autologous tumor-free dura, 2,515 meningioma-exclusive peptides presented on at least two tumors were identified (Figure 33 A). Subsequent to manual curation, a set of 74 peptides derived from 68 antigens and presented on 15-30% of tumors was defined. Among these, HLA ligands derived from OGN, FOXC2, and IFI44L were the most frequent ones. Overall, 31 peptides were presented across all WHO grades, 36 were shared by WHO grade I and II tumors, and two peptides were eluted from both WHO grade I and III meningiomas. One and four peptides were exclusively identified from WHO grade III or I meningeal neoplasms, respectively. Peptide sequences and their HLA restriction, a listing of positive patients, and the corresponding source protein are given in Supplementary Table 17.

Figure 33. HLA class I peptidomics to define meningioma-associated peptides. (A) Comparative profiling of HLA class I ligands presented on meningioma versus an in-house benign database supplemented with tumor-free dura. Every peptide evaluated for tumor association is represented by a bar in the waterfall plot (associated with the x-axis), whereas the y-axis shows the frequency of positive HLA peptidomes, separately for meningioma (n=33), tumor-free dura (n=9), and benign samples without testes (n=418 covering 29 different human tissues). Peptides were designated as meningioma-exclusive, when detected on a maximum of one non-CNS-related tissue, whereby n=2,515 were identified on at least two meningeal tumors (highlighted as enlarged view on the left). The number of distinct HLA class I ligands per group is illustrated by the Venn diagram on the right, whereby the overlaps cannot map the permission of one positive non-CNS-related sample within the benign dataset. **(B) Saturation analysis for the identification of HLA class I ligands in meningioma or tumor-free dura tissue.** For each source count, the mean number of peptides was calculated by 1,000 random samplings. Using non-linear regression, exponential functions with a forced y-intercept of 0 (internal

data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. For both models, the goodness of fit was in the uppermost range ($R^2 = 0.9968$ and $R^2 = 0.9997$). Based on these curves, the maximum attainable number of distinct peptides was estimated (highlighted as solid lines). With the available number of 33 meningioma and nine tumor-free dura samples, 77% or 38% of the estimated maximum attainable amount of distinct HLA class I ligands had been identified, respectively.

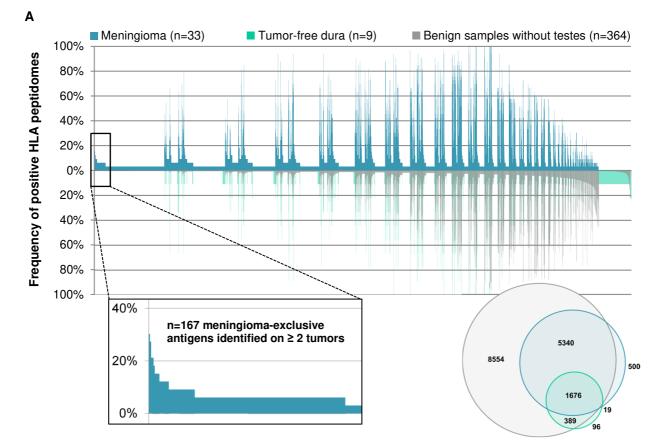

Combining the list of peptides derived from HLA class I-presented meningioma-associated antigens (Supplementary Table 16) with that of HLA class I ligands designated as meningioma-associated (Supplementary Table 17) gave n=141 candidate target peptides for cancer immunotherapy. These cover 99.57% of the world population (Supplementary Figure 9), whereby an average of 21 peptides are expected to match per patient. The population coverage on a per-country basis is shown in Figure 34.

Figure 34. Population coverage of meningioma-associated HLA class I peptides. Using the population coverage tool provided by the IEDB Analysis Resource¹⁹, the population coverage of the n=141 candidate target peptides for meningioma immunotherapy was calculated on a per-country basis. On average, 21 HLA class I peptides match per patient worldwide. For visualization of the United Kingdom, the individual values of England, Northern Ireland, Scotland, and Wales were multiplied with the relative area portion. Countries not included in the IEDB tool or not covered by the geographic heat map add-on of Microsoft Excel are colorless.

Meningioma-associated HLA class II antigens

HLA class II peptidome analyses of meningioma (n=33) and autologous tumor-free dura (n=9) allowed the identification of 7,535 and 2,180 distinct source proteins giving rise to HLA class IIrestricted peptides on neoplastic or tumor-free meningeal tissue, respectively. These represent between 70% (dura) and 72% (meningioma) of the estimated maximum attainable amount of distinct source proteins (Figure 35 C). Despite the vast overlap of meningiomas with benign samples and/or autologous tumor-free dura, 167 antigens were exclusively presented by at least two meningeal tumors (Figure 35 A). Following manual curation of the underlying peptides for peptide length and the presence of length variants as well as multi-mapping to several source proteins, a set of 37 meningioma-associated antigens and corresponding peptides naturally presented on 9-30% of tumors was created. Among these, PRSS35, A4GALT, FBN2, and SNED1 were the most frequent ones (Figure 35 B). Six of the meningioma-associated antigens were identified across all WHO grades (A4GALT, FBN2, SNED1, MPP6, PCED1B, ANGEL2) and 24 ones were shared by WHO grade I and II tumors. Six antigens were exclusively part of the immunopeptidome of WHO grade I meningeal neoplasias (CAPN14, KIR2DS4, TIMM44, ECD, CD86, RFWD3), whereas WHO grade I and III meningiomas had one antigen in common (KLC2). Peptide sequences, a listing of positive patients, and the GTEx profile of the corresponding source protein can be retrieved from Supplementary Table 16. Of note, three of these meningioma-associated HLA class II antigens (C1orf112, SIRPD, TTLL6) exhibited a CTA-like expression profile and were not listed in the CTDatabase²⁰.

- 155 -

В

MAGUK p55 subfamily member 6 (MPP6) serine/threonine-protein kinase Sgk3 (SGK3) lactosylceramide 4-alpha-uncharacterized protein KIAA1586 (KIAA1586) highly divergent homeobox (HDX) calpain-14 (CAPN14) galactosyltransferase (A4GAL probable allantoicase (ALLC) nucleoporin GLE1 (GLE1) bone morphogenetic protein 5 (BMP5) nuclear factor of activated T-cells, cytoplasmic 2 (NFATC2) fibrillin-2 (FBN2) methylenetetrahydrofolate reductase (MTHFR) transcription factor SOX-6 (SOX6) uncharacterized protein C1orf112 (C1orf112) PC-esterase domain-containing protein 1B (PCED1B) T-lymphocyte activation antigen CD86 (CD86) protein SGT1 (ECD) active serine protease 35 ວ mucin-4 (MUC4) melanoma-associated antigen 10 (MAGEA10) mitochondrial import inner membrane translocase subunit TIM44 (TIMM44) N-acetyltransferase ESCO1 (ESCO1) zinc finger E-box-binding homeobox 2 (ZEB2) tubulin polyglutamylase TTLL6 (TTLL6) ZAR1-like protein (ZAR1L) killer cell immunoglobulin-like receptor 2DS4 (KIR2DS4) calcium-binding protein 39-like (CAB39L) protein angel homolog 2 (ANGEL2) dorsal root ganglia homeobox protein (DRGX) signal-regulatory protein delta (SIRPD) G protein-regulated inducer of neurite outgrowth 2 (GPRIN2) meteorin-like protein (METRNL) kinesin light chain 2 (KLC2) signal transducer and activator of transcription 5B (STAT5B) E3 ubiquitin-protein ligase RFWD3 (RFWD3) ubiquitin conjugation factor E4 B (UBE4B) sushi, nidogen and EGF-like domain-containing protein 1 (SNED1)

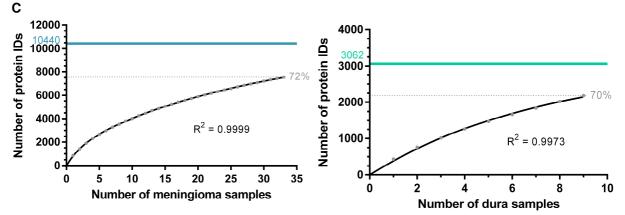
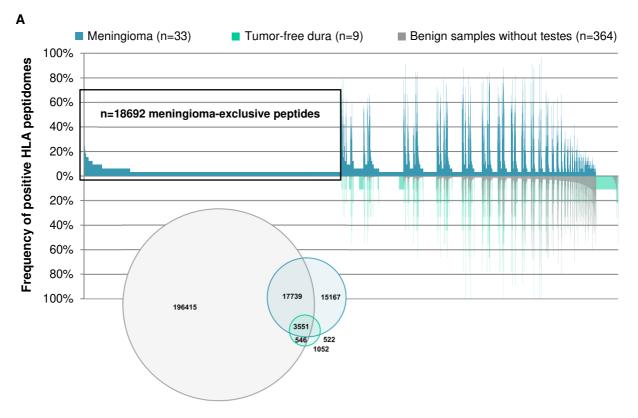



Figure 35. Definition of meningioma-associated antigens based on class II immunopeptidome analyses. (A) Comparative profiling of the HLA class II peptidome of meningioma versus an inhouse benign database supplemented with tumor-free dura. Each bar in this waterfall plot (associated with the x-axis) represents a single source protein, whereas the frequency of positive HLA peptidomes is shown on the y-axis, separately for meningioma (n=33), tumor-free dura (n=9), and benign samples without testes (n=364 covering 30 different human tissues). Those source proteins detected on a maximum of one non-CNS-related tissue were designated as meningioma-exclusive. whereby n=167 were identified on at least two meningeal tumors (highlighted as enlarged view on the left). The Venn diagram on the right illustrates the number of distinct HLA class II-presented antigens per group, however, the overlaps cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Word cloud of meningioma-associated antigens. Based on comparative profiling and subsequent quality control of underlying peptides (peptide length and/or presence of length variants as well as multi-mapping to several source proteins), a set of 37 meningioma-associated antigens naturally presented on 9-30% of meningeal tumors was defined. The font size in the word cloud is proportional to the frequency of positive meningeal tumors. (C) Saturation analysis for the identification of antigens represented by HLA class II peptides on meningioma or tumor-free dura tissue. For each source count, the mean number of antigens was calculated by 1,000 random samplings. Using non-linear regression, exponential functions with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. For both models, the goodness of fit was in the uppermost range ($R^2 = 0.9999$ and $R^2 = 0.9973$). Based on these curves, the maximum attainable number of distinct source proteins was estimated (highlighted as solid lines). With the available number of 33 meningioma and nine tumor-free dura samples, 72% or 70% of the estimated maximum attainable amount of distinct HLA class II-presented proteins had been identified, respectively.

On the peptide level, 36,979 and 9,170 distinct HLA class II-presented peptides were eluted from meningeal neoplasms (n=33) and tumor-free dura (n=9), obtaining 54% (meningioma) and 50% (dura) of the estimated maximum attainable coverage (Figure 36 B). Subsequent to comparative profiling, all antigens represented by at least one meningioma-exclusive HLA class II-presented peptide were subjected to hotspot analysis (Figure 36 A). Meningiomaassociated HLA class II presentation hotspots were defined to have a minimum length of eight AA and to be covered by peptides identified in at least five patients, while not having matching sequences in benign samples. This identified a set of 44 antigens harboring regions uniquely presented on tumor tissue with peptide-specific frequencies reaching up to 45% of positive HLA peptidomes. A total of 15 proteins were represented with hotspot-derived peptides across all WHO grades, whereas presentation hotspots within 26 proteins were shared by WHO grade I and II tumors. Further, one meningioma-associated HLA class II presentation hotspot was exclusively detected in WHO grade I meningeal neoplasms, whereas WHO grade I and III tumors had two hotspot targets in common. Peptide sequences, a listing of positive patients, and the corresponding source protein are given in Supplementary Table 18.

Comparing meningioma-associated HLA class I- (n=36) and II-presented antigens (n=37) as well as meningioma-associated HLA class I- (n=68 source proteins) and II-restricted peptides (n=44 source proteins), revealed a unique antigenic repertoire inherent to HLA class I and II peptidomes. STAB1 represented the only shared antigen yielding both meningioma-associated HLA class I and II ligands.

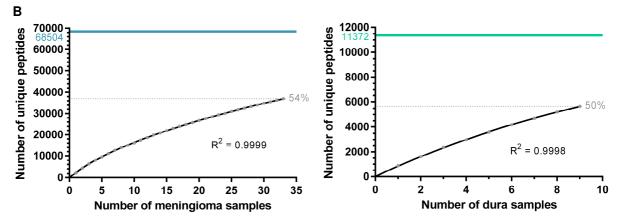
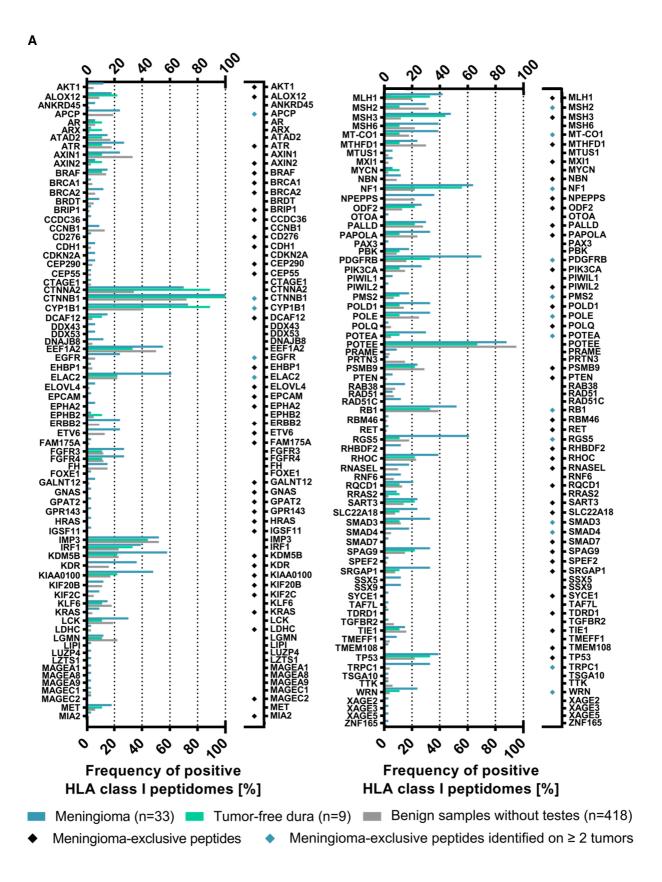
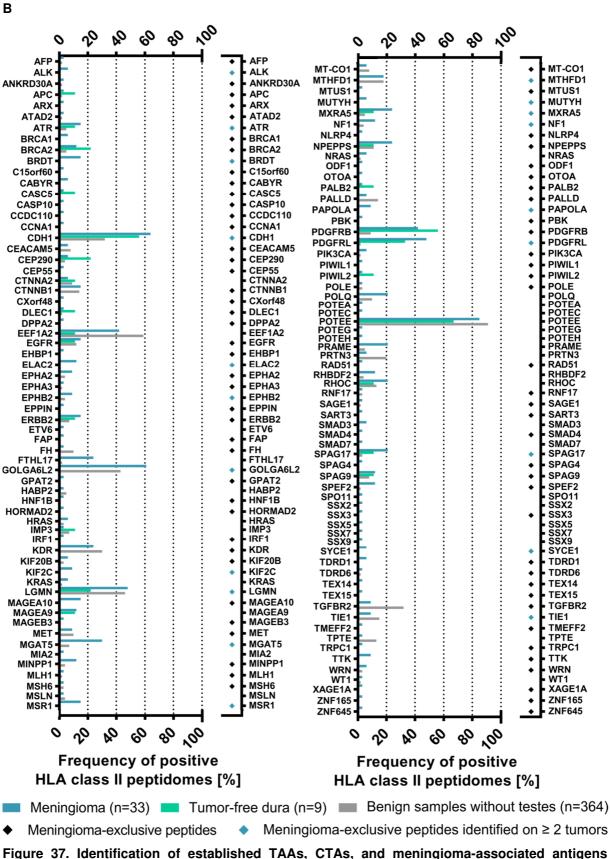
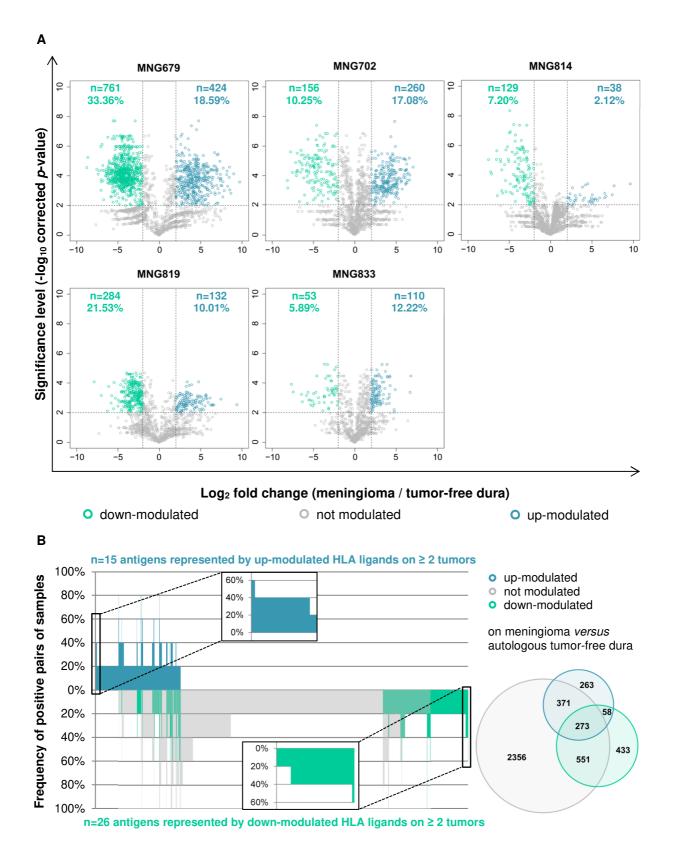




Figure 36. HLA class II peptidomics to define meningioma-associated peptides (A) Comparative profiling of HLA class II peptides presented on meningioma versus an in-house benign database supplemented with tumor-free dura. Every peptide evaluated for tumor association is represented by a bar in the waterfall plot (associated with the x-axis), whereas the y-axis shows the frequency of positive HLA peptidomes, separately for meningioma (n=33), tumor-free dura (n=9), and benign samples without testes (n=364 covering 30 different human tissues). Being detected on a maximum of one non-CNSrelated tissue, n=18,692 peptides were designated as meningioma-exclusive. Corresponding source proteins were subjected to hotspot analysis. The number of distinct HLA class II-restricted peptides per group is illustrated by the Venn diagram on the left, whereby the overlaps cannot map the permission of one positive non-CNS-related sample within the benign dataset. (B) Saturation analysis for the identification of HLA class II-presented peptides in meningioma or tumor-free dura tissue. For each source count, the mean number of peptides was calculated by 1,000 random samplings. Using non-linear regression, exponential functions with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. For both models, the goodness of fit was in the uppermost range ($R^2 = 0.9999$ and $R^2 = 0.9998$). Based on these curves, the maximum attainable number of distinct peptides was estimated (highlighted as solid lines). With the available number of 33 meningioma and nine tumor-free dura samples, 54% or 50% of the estimated maximum attainable amount of distinct HLA class II-presented peptides had been identified. respectively.

Natural HLA presentation of established CTAs and TAAs

Considering a total number of 366 established CTAs and TAAs (3.2.1) as well as 15 antigens reported to be associated with meningeal neoplasias (2.3.2; n=10 overlapped with the general list of CTAs and TAAs), the present HLA peptidome dataset acquired from meningiomas was screened for previously published tumor antigens. Of these, n=145 and n=126 were represented by HLA class I ligands and HLA class II-presented peptides, respectively. Despite these high identification rates, presentation frequencies of CTAs and TAAs were in general low, especially of those exclusively identified on meningeal tumors. Among 23 HLA class Ipresented TAAs and CTAs fulfilling the aforementioned criteria to be designated as meningioma-exclusive antigen, SSX5, SSX9, DDX43, and DDX53 were the most frequent ones (6-12% positive tumors). 18 additional TAAs and CTAs were represented by meningioma-exclusive HLA class I ligands on at least two and a maximum of four meningiomas (Figure 37 A, Supplementary Table 19). On HLA class II, 26 antigens were exclusively identified in the peptidome of meningiomas, with MAGEA10, MUTYH, and CABYR being the most frequent ones (6-15% positive tumors). 20 further CTAs and TAAs were represented by meningioma-exclusive HLA class II-presented peptides on at least two and a maximum of five neoplasms (Figure 37 B, Supplementary Table 19).

across the present HLA peptidome dataset. While peptides mapping to multiple source proteins were considered to calculate the frequency of positive HLA peptidomes, these were excluded to report the representation by meningioma-exclusive peptides. CTAs and TAAs exclusively identified on benign samples were not listed. (A) CTAs and TAAs naturally presented on HLA class I molecules of


human meningioma and/or tumor-free dura tissue. The present immunopeptidomic dataset included HLA class I ligands derived from 145 TAAs and CTAs, with 18 being represented by meningiomaexclusive peptides on at least two tumors (highlighted with blue diamonds). The frequency of positive HLA peptidomes was assessed based on HLA class I ligands for meningioma and dura samples, whereby benign hits were reported independent of HLA binding probabilities of the underlying peptide identifications. (B) TAAs and CTAs represented in the HLA class II peptidomes of human meningioma and/or tumor-free dura tissue. Among 126 naturally presented CTAs and TAAs, 20 were represented by meningioma-exclusive peptides on at least two tumors (highlighted with blue diamonds).

4.3 Relative HLA ligand abundances on meningioma versus dura

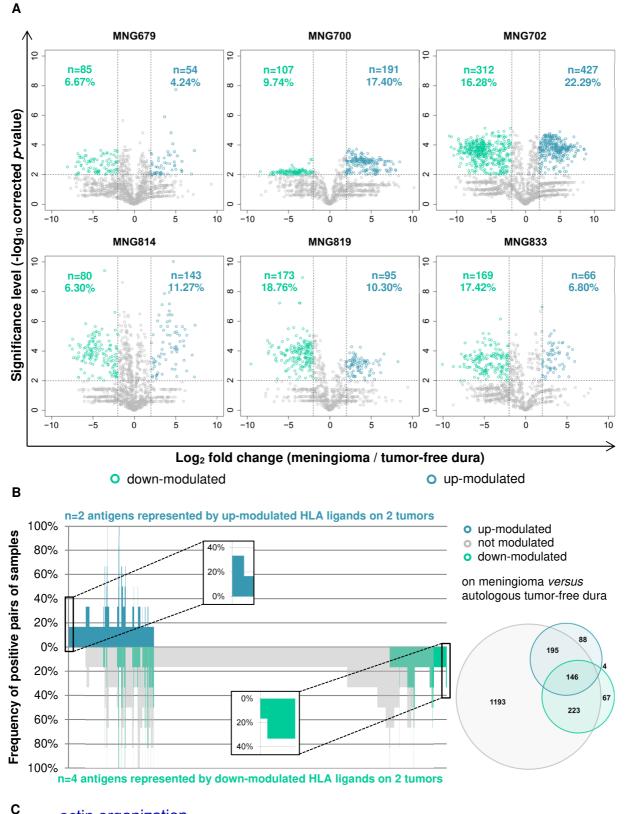
From nine meningioma patients not only tumor tissue, but also autologous tumor-free dura was available enabling relative quantitation of HLA ligand abundances. Significant modulation was defined by a corrected *p*-value ≤ 0.01 and a fold change of mean AUC in (meningioma / dura) ≥ 4 or ≤ 0.25 regarding up- or down-modulated peptides, respectively. To obtain a deeper insight into general patterns of modulated HLA presentation on meningioma *versus* non-neoplastic dura, significantly modulated peptides were assigned to the source proteins they originated from. These protein lists were combined for all patients and subjected to comparative profiling unveiling HLA class I and II antigens recurrently represented by up- or down-modulated peptides, respectively. Moreover, functional annotation clustering identified biological processes in which antigens underlying modulated HLA presentation across meningioma patients were involved.

Significantly modulated HLA class I ligands

LFQ-MS to identify significantly up- and down-modulated HLA class I ligands was possible for five meningioma patients and based on a mean number of 1,563 ± 462 HLA class I ligands evaluated for relative abundance per patient. On average, $12.00 \pm 5.85\%$ and $15.65 \pm 10.43\%$ of the patients' HLA class I peptidomes were subject to significant up- and down-modulation, respectively (Figure 38 A). Since these five patients shared a maximum of two HLA-A, -B, or -C allotypes, comparative profiling to identify common patterns of modulated HLA presentation was performed on source protein level. In total, 263 and 433 antigens were exclusively represented by up- or down-modulated peptides, respectively (Figure 38 B). Functional annotation clustering identified the up-modulated ones to be mainly involved in organelle organization, cellular protein localization, ribosome biogenesis, DNA-templated transcription, and histone modification, whereas the down-modulated ones play a role in antigen processing and presentation, intracellular signal transduction, negative regulation of signal transduction, membrane protein localization, and viral processes (Figure 38 C, Supplementary Table 21). Following manual curation of the underlying peptides for HLA motifs as well as multi-mapping to several source proteins, a set of 13 antigens represented by up-modulated peptides on meningioma versus autologous tumor-free dura in 40-60% of patients was defined. Among these, RLA2 was the most frequent one. Conversely, 18 proteins were under-represented in the HLA class I peptidome of meningioma as compared with autologous non-neoplastic dura (40-60% of patients). PRC2C was represented by down-modulated HLA-A*23:01 and -A*24:02 ligands on three out of five meningiomas (Figure 38 B, Supplementary Table 20).

cellular protein localization amide biosynthesis positive regulation of cell cycle membrane protein localization histone modification positive regulation of GTPase activity

ganelle organization


cellular component organization protein oligomerization ribonucleoprotein complex assembly ribosome biogenesis DNA-templated transcription amino acid biosynthesis nuclear protein import DNA damage response response to endogenous cyclic compound chromosome segregation intracellular protein transport

response to vitamin intracellular signal transduction inhibition of kinase activity cell-cell and cell-substrate adhesion regulation of organelle organization protein complex biogenesis protein complex biogenesis nucleosome organization histone acetylation ribosome biogenesis viral genome replication negative regulation of RNA transcription memb protein complex assembly membrane protein localization ribonucl neuron differentiation iron ion homeostasis apoptosis antigen processing iron ion homeostasis apoptosis antigen processing iron ion homeostasis response to steroid hommo negative regulation of TGF-B / bone morphogenetic protein signaling incrotubule-associated transport viral process and presentation regulation of cell proliferation cell physiology establishment or maintenance of cell polarity cellular protein localization T-cell activation cellular response to peptide hormone actin organization negative regulation of signal transduction on of MAPK ca cade EGFR signaling respiratory system development cytokine-mediated signaling

Figure 38. Patterns of modulated HLA class I presentation in meningioma across five patients. (A) Volcano plots of relative HLA ligand abundances on meningioma versus autologous tumorfree dura. By LFQ-MS, relative abundances of HLA class I ligands, each of which is represented by a dot, were compared. The x-axis indicates changes of abundance as log₂ fold change and corresponding significance levels (after BH correction for multiple testing) are associated with the y-axis. Significant modulation was defined by a corrected p-value \leq 0.01 and a fold change of mean AUC in (meningioma / dura) \geq 4 or \leq 0.25 regarding up- (highlighted in blue) or down-modulated (highlighted in green) peptides, respectively. The total number of up- and down-modulated peptides as well as their proportion in the patient's HLA class I peptidome are indicated in quadrants of each Volcano plot. Only four technical replicates were available from both dura and tumor tissue of patient MNG819. (B) Comparative profiling of antigens corresponding to peptides displayed in Volcano plots. Each bar in this waterfall plot (associated with the x-axis) represents a single protein, whereas the frequency of positive pairs of samples is shown on the y-axis. Comparing the source proteins of peptides underlying significant up- or down-modulation as well as of those not being modulated allowed the identification of exclusively and recurrently over- (n=15) or under-represented (n=26) antigens across five LFQ datasets acquired from meningioma and autologous tumor-free dura. (C) Functional annotation of antigens exclusively represented by up- or down-modulated peptides. Modulation-exclusive source proteins (n=263 over-represented antigens shown in the left and n=433 under-represented antigens shown in the right panel) were clustered for functional annotation with enrichment scores being proportional to the font size in the word clouds.

HLA class II-presented peptides with significant modulation

LFQ-MS to identify significantly up- and down-modulated HLA class II-restricted peptides was possible for six meningioma patients and based on a mean number of 1,242 ± 330 HLA class II-presented peptides evaluated for relative abundance per patient. On average, 12.05 ± 6.13% and 12.53 ± 5.13% of the patients' HLA class II peptidomes were subject to significant up- and down-modulation, respectively (Figure 39 A). Comparative profiling to identify common patterns of modulated HLA presentation was performed on source protein level, since length variants with common core sequences cannot be adequately addressed across patients. In total, n=88 and n=67 antigens were exclusively represented by up- or down-modulated peptides, respectively (Figure 39 B). Annotating these to biological functions did only identify three clusters for over-represented antigens (cell-cell adhesion, ribonucleoside metabolism, actin organization) and two clusters for under-represented antigens (response to oxidative stress, protein catabolism; Figure 39 C, Supplementary Table 21). No common signature of modulated HLA class II presentation was identified across the six patients, with only two (VQA1, QCR8) and four (CATF, ACH10, BROMI, NSF) antigens being represented by up- or down-modulated peptides in two patients, respectively (Figure 39 B, Supplementary Table 20).

actin organization Cell-cell adhesion ribonucleoside metabolism

protein catabolism response to oxidative stress

Figure 39. Patterns of modulated HLA class II presentation in meningioma across six patients. (A) Volcano plots of relative HLA class II-presented peptide abundances on meningioma *versus* autologous tumor-free dura. By LFQ-MS, relative abundances of HLA class II-restricted peptides,

each of which is represented by a dot, were compared. The x-axis indicates changes of abundance as log₂ fold change and corresponding significance levels (after BH correction for multiple testing) are associated with the y-axis. Significant modulation was defined by a corrected p-value ≤ 0.01 and a fold change of mean AUC in (meningioma / dura) \geq 4 or \leq 0.25 regarding up- (highlighted in blue) or downmodulated (highlighted in green) peptides, respectively. The total number of up- and down-modulated peptides as well as their proportion in the patient's HLA class II peptidome are indicated in guadrants of each Volcano plot. (B) Comparative profiling of antigens corresponding to peptides displayed in **Volcano plots.** Each bar in this waterfall plot (associated with the x-axis) represents a single protein, whereas the frequency of positive pairs of samples is shown on the y-axis. Comparing the source proteins of peptides underlying significant up- or down-modulation as well as of those not being modulated allowed the identification of exclusively and recurrently over- (n=2) or under-represented (n=4) antigens across six LFQ datasets acquired from meningioma and autologous tumor-free dura. (C) Functional annotation of antigens exclusively represented by up- or down-modulated peptides. Modulation-exclusive source proteins (n=88 over-represented antigens shown in the left and n=67 under-represented antigens shown in the right panel) were clustered for functional annotation with enrichment scores being proportional to the font size in the word clouds.

5 Discussion

Neoplasms of the meninges constitute more than one third of all brain and CNS tumors. Despite being largely non-malignant, meningiomas cause severe health issues and impossibility of complete surgical resection owing to localization and tumor recurrence despite surgery and radiation apply to a significant fraction.¹⁻⁶ Cancer immunotherapy may complement surgery and radiotherapy as well as meet the high demand for therapeutic regimens to manage disease recurrence.^{5,7} The natural presentation of candidate target antigens on HLA molecules has so far not been investigated. Herein, we present a large-scale immunopeptidomic study defining meningioma-associated HLA class I- and II-restricted peptides.

Meningioma proved to be suitable for HLA peptidomic efforts, yielding considerable numbers of HLA class I- and II-presented peptides from a total of 33 primary tumor samples. Furthermore, HLA expression and presentation of a manifold repertoire of peptides is a prerequisite for immunotherapeutic approaches. Likewise, several thousands of distinct HLA class I- and II-restricted peptides were eluted from autologous tumor-free dura being available from nine patients. Non-neoplastic dura was analyzed to supplement an in-house benign database already covering 30 distinct human tissues with that of tumor origin to define meningioma-associated antigens and peptides. There was no indication for decreased HLA expression on meningioma versus tumor-free dura yielding comparable amounts of HLA class I and II peptides per mg of tissue input. However, this comparison cannot delineate peptide identifications on tumor cells and such on stromal or infiltrating immune cells, which are part of bulk tumor tissue.²¹ Moreover, it is conceivable that cellular density varies between neoplastic and tumor-free meningeal tissue. A significant difference was observed between the relative number of HLA class I ligands and HLA class II-presented peptides identified per technical replicate and mg of meningioma tissue. The fact that the two compared groups had overlapping error bars, however, weakens the confidence of the underlying statistical calculation.

The present study population having a female-to-male ratio of 2:1 and a median age of onset of 59 constituted a representative cohort of meningioma patients.¹ In total, n=22 WHO grade I, n=9 WHO grade II, and n=2 WHO grade III tumors were analyzed. The 58 distinct HLA class I allotypes cover 99.98% of the world population, whereby 94.60% of all individuals are expected to be positive for at least three allotypes. The search for frequently presented meningiomaassociated antigens revealed 28 and 37 for HLA class I and II, respectively. Among these, NMNA2 (30%), PRSS35 (30%), A4GALT (27%), FBN2 (21%), SNED1 (21%) WNT5A (18%), TBX15/18 (18%), and OSR1 (15%) were the most frequent ones. NMNA2 catalyzes nicotinamide adenine dinucleotide biosynthesis reflecting high energy consumption, accelerating glycolysis, and promoting cancer cell survival.²²⁻²⁵ WNT5A is a member of the oncogenic WNT protein family, which is known to be expressed in meningioma and many other tumors.^{26,27} In turn, little is known about the inactive serine protease PRSS35 (twelve PubMed entries²⁸), which has been reported to be expressed in ovaries²⁹ as well as in the context of renal fibrosis.³⁰ oocyte maturation.³¹ and epithelial-to-mesenchymal transition (EMT) of ovarian cancer cells.³² The latter acts via activation of the SMAD pathway and can be induced by WNT proteins,^{32,33} which is in line with the detection of up-modulated SMAD2-derived HLA class I ligands on two out of five meningiomas, 16 unique (non-multi-mapping) HLA class I ligands originating from WNT1, WNT2B, WNT5A, WNT6, or wntless homolog in 19 out of 33 tumors, 30 HLA class I ligands derived from FZD1, FZD2, FZD4, FZD6, FZD7, FZD8, and secreted frizzled related protein 2 across 25 out of 33 meningiomas as well as 42 unique (non-multimapping) CTNNB1-derived HLA class I ligands presented on every of the 33 analyzed tumors. These findings may indicate that activation of WNT signaling pathways in meningeal neoplasms is reflected by the immunopeptidome. With A4GALT, a meningioma-associated antigen acting as key regulator of both epithelial-to-mesenchymal and mesenchymal-toepithelial transition of cancer cells was identified.³⁴ EMT can not only be induced by WNT, but also upon TGF-β stimulation.³³ Extracellular TGF-β is sequestered in microfibrils by FBN1 and FBN2, whereby the TGF-β capacity of FBN1 is higher. FBN1 has been reported to be downregulated in tumor endothelial cells shifting the FBN1/FBN2 ratio in microfibrils towards FBN2. This causes a locally increased concentration of active TGF-β in the tumor microenvironment promoting not only EMT of tumor cells, but also angiogenesis.^{33,35} SNED1 is described to be up-regulated in several tumor entities including meningioma³⁶, to promote tumor invasiveness and metastasis formation, and to correlate with poor outcomes of estrogen- and progesteronereceptor-negative breast cancer patients when expressed at high levels.³⁷ T-box transcription factors such as TBX15 and TBX18 play a pivotal role in embryonic development and are hijacked by tumor cells.³⁸⁻⁴¹ OSR1, a serine/threonine protein kinase of the WNK pathway, participates in increasing the metastatic potential and proliferation rate of tumor cells as well as in promoting angiogenesis by interfering with PI3K-AKT, TGF-β, and nuclear factor kappalight-chain-enhancer of activated B cells (NF-kB) signaling networks.^{42,43}

Besides meningioma-associated antigens, meningioma-associated peptides potentially arising from differential antigen processing in tumor cells were defined. The applied threshold of five positive samples for reported meningioma-exclusive HLA class I ligands is for certain biased towards the most frequent HLA class I allotypes within the cohort. However, this also increases the confidence of meningioma exclusivity by ensuring sufficient coverage by HLA peptidomes included in the benign dataset supplemented with tumor-free dura specimens. In

addition, meningioma-exclusive targets from frequent allotypes have the advantage of being relevant for a large proportion of the potential patient population. Searching acquired HLA class I and II peptidome data for meningioma-associated peptides unveiled a set of 74 HLA class I ligands derived from 68 antigens presented on 15-30% of tumors as well as 44 antigens harboring meningioma-associated HLA class II presentation hotspots giving rise to naturally presented peptides across at least five patients. Remarkably, comparison of meningiomaassociated HLA class I- and II-presented antigens as well as meningioma-associated HLA class I- and II-restricted peptides revealed a unique antigenic repertoire inherent to HLA class I and II peptidomes. Thus, it is inevitable to consider both HLA classes on both antigen and peptide level for comprehensive target discovery approaches. It is noteworthy that among the defined meningioma-associated peptides and proteins, seven HLA class I-presented antigens, 31 HLA class I ligands, six HLA class II-presented antigens, and 15 source proteins harboring hotspot regions proved to be pan-meningioma antigens or peptides presented across all WHO grades. Those tumor-associated antigens and peptides uniquely identified in tumors of the same WHO grade represented a clear minority within each of the four candidate target groups. This indicates that there are common antigenic signatures across differently graded meningiomas and promises broad application of defined targets for the immunotherapy of meningioma. Taking together meningioma-associated antigens and peptides presented on HLA class I molecules (n=141 candidate target peptides), these achieve a world population coverage of 99.57% with an average number of 21 peptides matching per patient. Assuming that half of these candidates will be excluded during the course of immunogenicity testing, which appears overestimated according to our previous experience with immunopeptidomicsbased target definition approaches,⁴⁴ the number of peptides would still be enough to achieve sufficient coverage of the world population.

The HLA class II dataset contained three meningioma-associated CTAs (C1orf112, SIRPD, TTLL6), which have so far not been listed in the CTDatabase²⁰, whereas none of the HLA class I-presented meningioma-associated antigens exhibited a CTA-like RNA expression profile. Screening the present HLA peptidomes for 369 established CTAs, TAAs, or antigens reported to be meningioma-associated resulted in high overall identification rates. However, most antigens were also presented on tumor-free dura or benign tissues. SSX5/SSX9 and MAGEA10 had already been identified as meningioma-associated antigens *via* comparative profiling. Remaining meningioma-exclusive antigens and peptides derived from established TAAs and CTAs were characterized by infrequent HLA presentation refuting these as prime targets for cancer immunotherapies. This again emphasizes that the immunopeptidome represents an autonomous layer strongly influenced by the antigen processing machinery and cannot be expected to mirror the proteome or even the transcriptome.⁴⁵⁻⁴⁹ Thus, target definition for immunotherapeutic approaches is not recommended to be solely based on immunohistochemistry, protein, or RNA expression data, but calls for investigating the antigenic repertoire naturally presented on HLA molecules instead.

Moreover, relative quantitation of HLA-presented peptide abundances on meningioma *versus* autologous tumor-free dura was performed. 13 antigens were recurrently and exclusively represented by up-modulated HLA class I ligands with the ribosomal protein RLA2³⁶ being the most frequent one (60% of patients). This is in line with the finding that source proteins of up-

modulated HLA class I ligands functionally clustered for involvement in anabolic processes, especially RNA transcription and protein biosynthesis. Likewise, 18 proteins were frequently under-represented in tumor HLA class I peptidomes. Among these, PRC2C, which is involved in hematopoietic cell differentiation,³⁶ was the most frequent one (60% of tumors). Antigen processing and presentation, the functional annotation of under-represented source proteins with the highest enrichment score, can, however, be designated as an artefact arising from few peptides mapping to a large number of protein accessions annotated to HLA class II molecules. Besides that, many antigens represented by down-modulated HLA class I ligands were associated with cellular signal transduction and protein localization. While proteins promoting cell cycle progression were over-represented, such involved in apoptosis or the regulation of cell proliferation were under-represented in the HLA class I peptidome of meningiomas. This may indicate that increased proliferative activity and concomitant inhibition of apoptosis are reflected by quantitative changes in the immunopeptidome. In turn, modulation of HLA class II peptide presentation did not show a common signature across patients, with only six antigens underlying the same modulation of presentation in two patients. Likewise, only few clusters of functional annotation were identified among over- and underrepresented antigens.

HLA-A*02:01 was not only the most frequent HLA class I allotype in the meningioma cohort, but also has a pronounced high allele frequency across the world (meningioma cohort: 23%; China: 13-19%; Germany: 12-27%; Japan 12%; Russia: 30%; USA: 4-28%).⁵⁰ Thus, all HLA-A*02:01-restricted peptides derived from meningioma-associated antigens as well as meningioma-associated HLA-A*02:01 ligands presented on at least 18% of tumors were selected for synthesis. Immunogenicity testing including priming of naïve T cells from healthy donors and – if possible – meningioma patients will be performed by Dr. med. Julia Velz and Gioele Medici in the Laboratory for Molecular Neuro-Oncology at the University of Zürich.

Taken together, our study demonstrates that meningioma is suited for immunotherapeutic intervention. The unprecedented investigation of the antigenic repertoire of meningeal neoplasms delineated a novel set of non-mutated meningioma-associated antigens and peptides naturally presented on HLA class I and II molecules. These enable developing peptide-specific immunotherapies such as peptide and DC vaccination or T cell-based approaches which may ultimately contribute to overcome the lack of therapeutic options for non-resectable and recurrent meningiomas.

6 References

- Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. *Neuro Oncol.* 2019;21(Supplement_5):v1-v100.
- 2. Riemenschneider MJ, Perry A, Reifenberger G. Histological classification and molecular genetics of meningiomas. *Lancet Neurol.* 2006;5(12):1045-1054.
- 3. Bickerstaff ER, Small JM, Guest IA. The relapsing course of certain meningiomas in relation to pregnancy and menstruation. *J Neurol Neurosurg Psychiatry*. 1958;21(2):89-91.
- 4. Koenig MA, Geocadin RG, Kulesza P, Olivi A, Brem H. Rhabdoid meningioma occurring in an unrelated resection cavity with leptomeningeal carcinomatosis. Case report. *J Neurosurg.* 2005;102(2):371-375.
- 5. Apra C, Peyre M, Kalamarides M. Current treatment options for meningioma. *Expert Rev Neurother*. 2018;18(3):241-249.

- 6. van Alkemade H, de Leau M, Dieleman EM, Kardaun JW, van Os R, Vandertop WP, van Furth WR, Stalpers LJ. Impaired survival and long-term neurological problems in benign meningioma. *Neuro Oncol.* 2012;14(5):658-666.
- 7. Kessler RÁ, Garzon-Muvdi T, Yang W, Weingart J, Olivi A, Huang J, Brem H, Lim M. Metastatic Atypical and Anaplastic Meningioma: A Case Series and Review of the Literature. *World Neurosurg.* 2017;101:47-56.
- 8. Dettori P, Bradac GB, Scialfa G. Selective angiography of the external and internal carotid arteries in the diagnosis of supra-tentorial meningiomas. *Neuroradiology*. 1970;1(3):166-172.
- Manaka H, Sakata K, Tatezuki J, Shinohara T, Shimohigoshi W, Yamamoto T. Safety and Efficacy of Preoperative Embolization in Patients with Meningioma. *J Neurol Surg B Skull Base*. 2018;79(Suppl 4):S328s333.
- Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. *Acta Neuropathol.* 2016;131(6):803-820.
- 11. Malhotra M, Toulouse A, Godinho BM, Mc Carthy DJ, Cryan JF, O'Driscoll CM. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. *Mol Biosyst.* 2015;11(10):2635-2657.
- Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO, Williams SM. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. The Blood Supply of the Brain and Spinal Cord. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11042/, accessed on 2020/03/31.
- 13. Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. *Biomed Res Int.* 2015;2015:320941.
- 14. Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. *J Clin Invest*. 2010;120(5):1368-1379.
- 15. Mohme M, Neidert MC, Regli L, Weller M, Martin R. Immunological challenges for peptide-based immunotherapy in glioblastoma. *Cancer Treat Rev.* 2014;40(2):248-258.
- 16. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580-585.
- Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, Stevens J, Lane WJ, Dellagatta JL, Steelman S, Sougnez C, Cibulskis K, Kiezun A, Hacohen N, Brusic V, Wu CJ, Getz G. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. *Nat Biotechnol.* 2015;33(11):1152-1158.
- Paramasivam N, Hübschmann D, Toprak UH, Ishaque N, Neidert M, Schrimpf D, Stichel D, Reuss D, Sievers P, Reinhardt A, Wefers AK, Jones DTW, Gu Z, Werner J, Uhrig S, Wirsching HG, Schick M, Bewerunge-Hudler M, Beck K, Brehmer S, Urbschat S, Seiz-Rosenhagen M, Hänggi D, Herold-Mende C, Ketter R, Eils R, Ram Z, Pfister SM, Wick W, Weller M, Grossmann R, von Deimling A, Schlesner M, Sahm F. Mutational patterns and regulatory networks in epigenetic subgroups of meningioma. *Acta Neuropathol.* 2019;138(2):295-308.
- 19. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope database (IEDB) 3.0. *Nucleic Acids Res.* 2015;43(Database issue):D405-412.
- Almeida LG, Sakabe NJ, deOliveira AR, Silva MC, Mundstein AS, Cohen T, Chen YT, Chua R, Gurung S, Gnjatic S, Jungbluth AA, Caballero OL, Bairoch A, Kiesler E, White SL, Simpson AJ, Old LJ, Camargo AA, Vasconcelos AT. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. *Nucleic Acids Res.* 2009;37(Database issue):D816-819.
- Murphy JP, Konda P, Kowalewski DJ, Schuster H, Clements D, Kim Y, Cohen AM, Sharif T, Nielsen M, Stevanovic S, Lee PW, Gujar S. MHC-I ligand discovery using targeted database searches of mass spectrometry data: Implications for T cell immunotherapies. *J Proteome Res.* 2017.
- 22. Jayaram HN, Kusumanchi P, Yalowitz JA. NMNAT expression and its relation to NAD metabolism. *Curr Med Chem.* 2011;18(13):1962-1972.
- 23. Qi J, Cui C, Deng Q, Wang L, Chen R, Zhai D, Xie L, Yu J. Downregulated SIRT6 and upregulated NMNAT2 are associated with the presence, depth and stage of colorectal cancer. *Oncol Lett.* 2018;16(5):5829-5837.
- 24. Buonvicino D, Mazzola F, Zamporlini F, Resta F, Ranieri G, Camaioni E, Muzzi M, Zecchi R, Pieraccini G, Dölle C, Calamante M, Bartolucci G, Ziegler M, Stecca B, Raffaelli N, Chiarugi A. Identification of the Nicotinamide Salvage Pathway as a New Toxification Route for Antimetabolites. *Cell Chem Biol.* 2018;25(4):471-482.e477.
- 25. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85-95.
- 26. Howng SL, Wu CH, Cheng TS, Sy WD, Lin PC, Wang C, Hong YR. Differential expression of Wnt genes, beta-catenin and E-cadherin in human brain tumors. *Cancer Lett.* 2002;183(1):95-101.
- 27. Smalley MJ, Dale TC. Wnt signalling in mammalian development and cancer. *Cancer Metastasis Rev.* 1999;18(2):215-230.
- 28. Publications listed in PubMed dealing with the inactive serine protease 35. [Internet]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=prss35, accessed on 2020/03/17.
- 29. Miyakoshi K, Murphy MJ, Yeoman RR, Mitra S, Dubay CJ, Hennebold JD. The identification of novel ovarian proteases through the use of genomic and bioinformatic methodologies. *Biol Reprod.* 2006;75(6):823-835.
- 30. LeBleu VS, Teng Y, O'Connell JT, Charytan D, Müller GA, Müller CA, Sugimoto H, Kalluri R. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. *Nat Med.* 2013;19(2):227-231.
- 31. Li SH, Lin MH, Hwu YM, Lu CH, Yeh LY, Chen YJ, Lee RK. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. *Reprod Biol Endocrinol*. 2015;13:93.

- 32. Paullin T, Powell C, Menzie C, Hill R, Cheng F, Martyniuk CJ, Westerheide SD. Spheroid growth in ovarian cancer alters transcriptome responses for stress pathways and epigenetic responses. *PLoS One*. 2017;12(8):e0182930.
- 33. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. *Cancer Sci.* 2007;98(10):1512-1520.
- Jacob F, Alam S, Konantz M, Liang CY, Kohler RS, Everest-Dass AV, Huang YL, Rimmer N, Fedier A, Schötzau A, Lopez MN, Packer NH, Lengerke C, Heinzelmann-Schwarz V. Transition of Mesenchymal and Epithelial Cancer Cells Depends on alpha1-4 Galactosyltransferase-Mediated Glycosphingolipids. *Cancer Res.* 2018;78(11):2952-2965.
- 35. van Loon K, Yemelyanenko-Lyalenko J, Margadant C, Griffioen AW, Huijbers EJM. Role of fibrillin-2 in the control of TGF-beta activation in tumor angiogenesis and connective tissue disorders. *Biochim Biophys Acta Rev Cancer.* 2020;1873(2):188354.
- 36. Smith RN, Aleksic J, Butano D, Carr A, Contrino S, Hu F, Lyne M, Lyne R, Kalderimis A, Rutherford K, Stepan R, Sullivan J, Wakeling M, Watkins X, Micklem G. InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data. *Bioinformatics*. 2012;28(23):3163-3165.
- 37. Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. *Elife*. 2014;3:e01308.
- 38. Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. *Biochim Biophys Acta*. 2014;1846(2):380-391.
- 39. Douglas NC, Papaioannou VE. The T-box transcription factors TBX2 and TBX3 in mammary gland development and breast cancer. *J Mammary Gland Biol Neoplasia*. 2013;18(2):143-147.
- 40. Willmer T, Cooper A, Peres J, Omar R, Prince S. The T-Box transcription factor 3 in development and cancer. *Biosci Trends.* 2017;11(3):254-266.
- 41. Papaioannou VE. T-box genes in development: from hydra to humans. Int Rev Cytol. 2001;207:1-70.
- 42. Gallolu Kankanamalage S, Karra AS, Cobb MH. WNK pathways in cancer signaling networks. *Cell Commun Signal.* 2018;16(1):72.
- 43. Sie ZL, Li RY, Sampurna BP, Hsu PJ, Liu SC, Wang HD, Huang CL, Yuh CH. WNK1 Kinase Stimulates Angiogenesis to Promote Tumor Growth and Metastasis. *Cancers (Basel)*. 2020;12(3).
- 44. Bilich T, Nelde A, Bichmann L, Roerden M, Salih HR, Kowalewski DJ, Schuster H, Tsou CC, Marcu A, Neidert MC, Lübke M, Rieth J, Schemionek M, Brümmendorf TH, Vucinic V, Niederwieser D, Bauer J, Märklin M, Peper JK, Klein R, Kohlbacher O, Kanz L, Rammensee HG, Stevanović S, Walz JS. The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. *Blood.* 2019;133(6):550-565.
- 45. Weinzierl AO, Lemmel C, Schoor O, Müller M, Krüger T, Wernet D, Hennenlotter J, Stenzl A, Klingel K, Rammensee HG, Stevanović S. Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. *Mol Cell Proteomics*. 2007;6(1):102-113.
- 46. Fortier MH, Caron É, Hardy MP, Voisin G, Lemieux S, Perreault C, Thibault P. The MHC class I peptide repertoire is molded by the transcriptome. *J Exp Med*. 2008;205(3):595-610.
- 47. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. *Mol Cell Proteomics*. 2015;14(3):658-673.
- 48. Shraibman B, Barnea E, Kadosh DM, Haimovich Y, Slobodin G, Rosner I, López-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. *Mol Cell Proteomics*. 2019;18(6):1255-1268.
- 49. Freudenmann LK, Marcu A, Stevanović S. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. *Immunology*. 2018;154(3):331-345.
- 50. González-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, da Silva AL, Teles e Silva AL, Ghattaoraya GS, Alfirevic A, Jones AR, Middleton D. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. *Nucleic Acids Res.* 2015;43(Database issue):D784-788.

CHAPTER 5

A meta-analysis comparing the immunopeptidomic landscape of intracranial neoplasms

Lena Katharina Freudenmann created and analyzed all HLA peptidomic datasets as indicated in previous chapters, performed the meta-analysis, and contributed all figures and texts.

1 Abstract

Intracranial neoplasias are among the most common and most severe tumor diseases in both children and adults. We performed a large meta-analysis including 123 HLA class I and II peptidome datasets acquired from n=40 glioblastoma, n=28 medulloblastoma, and n=33 meningioma patients. Each of these neoplasms is characterized by a unique underlying cellular background suggesting that there might be – besides similarities – also profound differences in the antigenic landscape of these brain tumors. Specific HLA genotypes are associated with increased or decreased susceptibility to autoimmune and infectious diseases and have recently been found to coin response to cancer immunotherapy. This encouraged us to screen the three cohorts for altered HLA allotype frequencies. We found six HLA class I allotypes to be significantly enriched among patients suffering from intracranial neoplasias. Additionally, we identified WNT5A and ESCO1 as pan-brain tumor antigens, while other candidate targets for cancer immunotherapy exhibited largely entity-specific HLA presentation. Taken together, we demonstrated that immunopeptidomics-based target definition inevitably has to be performed for every tumor entity individually and that intracranial neoplasias are associated with cumulative occurrence of particular HLA allomorphs.

2 Introduction

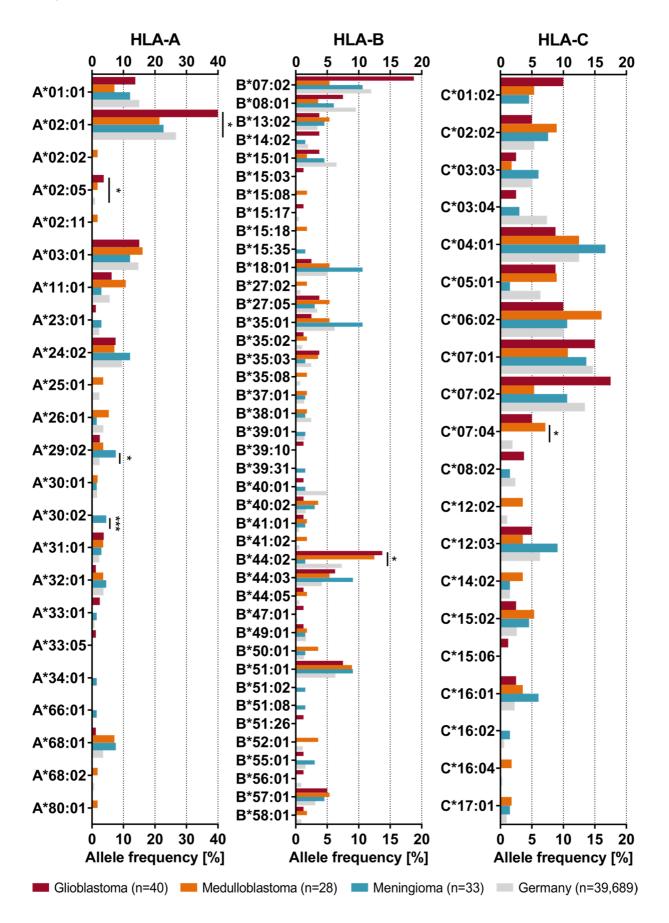
The intracranial neoplasms glioblastoma, medulloblastoma, and meningioma originate from different cell types, namely glial, embryonal neuroepithelial / cerebellar granule neural precursor, and meningeal cells.¹⁻⁵ To investigate, whether this difference in cellular origin is reflected by the antigenic landscape of these three tumors, the repertoires of HLA class I- and II-presented peptides were searched for similarities and differences. Linus Backert, a former colleague, tried to identify antigens shared between four hematological malignancies based on HLA peptidome data. However, multiple myeloma, acute myeloid, chronic myeloid, and chronic lymphocytic leukemias essentially had entity-specific tumor-associated antigens.⁶ The immunopeptidomic datasets acquired during the course of this thesis were searched for pan-brain tumor antigens shared between glioblastoma, medulloblastoma, and meningioma.

The development and course of various autoimmune and infectious diseases has been associated with specific HLA class I and II alleles.⁷⁻¹⁰ A cohort of 22 ependymoma patients has recently been found to have a significantly increased allotype frequency of HLA-A*26:01 as compared with the German population (internal data created by Lena Mühlenbruch at the Department of Immunology, University of Tübingen). Hence, the HLA class I allotype frequencies within the glioblastoma, medulloblastoma, and meningioma cohort were compared with the distribution in the German population.

3 Methods

Acquisition of HLA peptidome data and definition of candidate target antigens

Peptides presented on HLA class I and II molecules were isolated and analyzed as described previously (CHAPTER 1 / 3.2; CHAPTER 2-4 / 3). Definition of candidate targets for cancer immunotherapy was performed as reported in CHAPTER 2-4.


HLA class I allele frequencies

Tumor samples were collected during surgical resections performed in Switzerland and Germany and HLA typing was conducted as reported previously (CHAPTER 2-4 / 3). For each of the three patient cohorts, HLA class I allele frequencies were calculated (Supplementary Table 1, Supplementary Table 10, Supplementary Table 15). Owing to the poor data availability from Switzerland, allele frequencies calculated for each patient cohort were only set in relation to a large German reference population as retrieved from the Allele Frequency Net Database (Germany pop 8; n=39,689).¹¹ One-hit wonders (n=1 positive patient) were not considered for statistical evaluation employing Yates's continuity corrected χ^2 tests.

4 Results

4.1 HLA class I allotypes associated with intracranial neoplasia

We investigated the HLA class I allele frequencies observed among glioblastoma, medulloblastoma, or meningioma patients in comparison with a large German reference population. HLA-A*02:01, -A*02:05, and -B*44:02 were found to be significantly enriched in glioblastoma, whereas increased allele frequencies of HLA-C*07:04 or HLA-A*29:02 and -A*30:02 were identified among medulloblastoma and meningioma patients, respectively (Figure 40).

Tumor entity	HLA allotype	n alleles (allele frequency) in patient / reference cohort	Two-tailed <i>p</i> - value	χ2	OR (95% CI)
Glioblastoma	A*02:01	32 (40.0%) / 21,170 (26.7%)	0.0102	6.594	1.8 (1.2-2.9)
	A*02:05	3 (3.8%) / 738 (0.9%)	0.0412	4.166	4.2 (1.3-13.2)
	B*44:02	11 (13.8%) / 5,810 (7.3%)	0.0464	3.967	2.0 (1.1-3.8)
Medulloblastoma	C*07:04	4 (7.1%) / 1,524 (1.9%)	0.0184	5.560	3.9 (1.4-10.9)
Meningioma	A*29:02	3 (4.6%) / 437 (0.6%)	0.0187	5.532	3.3 (1.3-8.3)
	A*30:02	5 (7.6%) / 1,897 (2.4%)	0.0004	12.54	8.6 (2.7-27.5)

Figure 40. Association of HLA class I allotypes with intracranial neoplasias. Using the Yates's continuity corrected χ^2 test HLA class I allele frequencies among glioblastoma, medulloblastoma, and meningioma patients were compared with that of a large German population (upper panel). This identified a significantly increased allele frequency of three, one, and two HLA class I allotypes among glioblastoma, medulloblastoma, or meningioma patients, respectively (lower panel). Reference data for HLA-A*02:02, -A*66:02, and -C*01:02 were not available. Abbreviations not introduced in the text above: odds ratio (OR), confidence interval (CI).

4.2 The immunopeptidome of intracranial neoplasia in comparison

Considerable numbers of both HLA class I- and II-restricted peptides were eluted from glioblastomas (n=62), medulloblastomas (n=28), and meningiomas (n=33). Simple overlap analysis delineated only a small fraction of antigens to be entity-specific neither being identified in benign samples nor in any of the respective two other tumor types. The proportion of entity-specific proteins came up to 0.51-1.99% for HLA class I (Figure 41 A) and to 2.09-5.40% for HLA class II peptidomes (Figure 41 B) being highest for glioblastoma and lowest for medulloblastoma in each case. From a total of 12,792 HLA class I- and 9,678 HLA class II-presented antigens 260 ones were glioblastoma-associated on the peptide or protein level, respectively. For medulloblastoma, these numbers came up to 9,821 HLA class I- and 4,922 HLA class II- presented antigens comprising 71 tumor-associated ones. Immunopeptidome analysis of meningioma uncovered 10,431 and 7,535 proteins to be naturally presented on HLA class I and II molecules, whereby 184 yielded tumor-associated HLA ligands.

Comparing candidate targets of cancer immunotherapy defined for glioblastoma, medulloblastoma, and meningioma delineated an entity-specific repertoire of TAAs naturally presented on HLA molecules. However, WNT5A and ESCO1 proved to be pan-tumor antigens frequently and tumor-exclusively presented on all three intracranial neoplasms. Another 13 antigens each were shared by medulloblastomas and glioblastomas (OLIG3, NDUFA4L2, SHISA9, DCX, BTBD17, EFS, HES4, GFAP, PTPRZ1, KIF1A, CRMP1, AKAP9, NCAM1) or by meningiomas and glioblastomas (TMEM87A, TBX15, TBX18, SESN3, LRP1, FMNL2, STAB1, GRAMD3, OSGIN2, SERPINC1, FN1, COL5A2, SCG2), respectively (Figure 41 C, Supplementary Table 2-4, Supplementary Table 11-13, Supplementary Table 16-18).

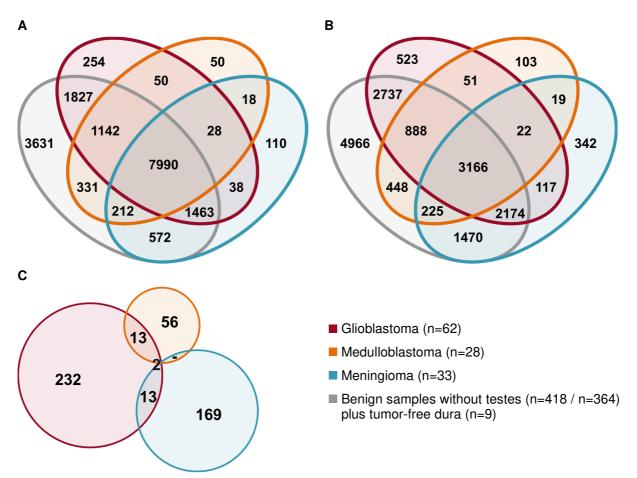


Figure 41. Similarities and differences of the immunopeptidomic landscape of glioblastoma, medulloblastoma, and meningioma. Overlap of (A) HLA class I- and (B) HLA class II-presented antigens. It should be noted that Venn diagrams cannot illustrate that tumor-exclusive proteins were permitted to be identified in one non-CNS-related sample within the benign dataset. (C) Identification of shared and unique brain tumor antigens. Combining the lists of HLA class I- and II-presented candidate targets for each tumor uncovered a small but notable overlap between the three entities. While 26 source proteins were tumor-exclusive or yielded tumor-associated peptides in two tumor types each, all investigated intracranial neoplasias had two tumor-associated antigens in common: WNT5A and ESCO1.

5 Discussion

Glial, embryonal neuroepithelial / cerebellar granule neural precursor, and meningeal cells represent the cellular origin of glioblastomas, medulloblastomas, and meningiomas.¹⁻⁵ We aimed at investigating whether the immunopeptidome and, most importantly, the repertoire of candidate targets for immunotherapy is imprinted by the cell lineage from which neoplastic transformation once started. Besides that, we evaluated the three patient cohorts presented herein for an association of intracranial neoplasias with specific HLA class I allomorphs.

Genetic predisposition represents a common element of multifactorial disease development. This encloses, among many others, the individual composition of HLA class I and II alleles. Autoimmune disorders, for instance, have a long history of HLA association including, for instance, ankylosing spondylitis (HLA-B*27), type 1 diabetes (HLA-DRB1*04:01– DQB1*03:02), narcolepsy (HLA-DQB1*06:02), and celiac disease (HLA-DQA1*05:01– DQB1*02:01 or HLA-DQA1*03:01–DQB1*03:02).⁷ The individual HLA genotype does not only

influence the observed immune phenotype, the susceptibility for, and the course of autoimmune and infectious diseases, but also the response to cancer immunotherapy.7-10,12 Maximal heterozygosity of HLA-A, -B, and -C alleles has been found to favor response to checkpoint inhibition thereby improving overall survival. In turn, HLA-B*15:01 has been suggested to impair neo-antigen-directed CD8⁺ T-cell responses.¹² Moreover, a cohort of 22 ependymoma patients has recently been found to have a significantly increased allotype frequency of HLA-A*26:01 as compared with the German population (internal data created by Lena Mühlenbruch at the Department of Immunology, University of Tübingen). Hence, the HLA class I allotype frequencies within the glioblastoma, medulloblastoma, and meningioma cohort were compared with the distribution in the German population. A significant fraction of tumor samples originated from surgeries performed in Switzerland, however, hardly any data on HLA allele frequencies had been available from this country. Assuming that the ethnic background and composition of the Swiss population is comparable to that of the German population, we used solely data from Germany for the comparison of HLA class I allotype frequencies. We found HLA-A*02:01, -A*02:05, and -B*44:02 to be significantly enriched among glioblastoma patients. The heavily elevated allele frequency of HLA-A*02:01 (40.0% versus 26.7%) might reason why previous immunotherapeutic efforts have focused on this allotype¹³⁻¹⁵ representing not only an overall common HLA allomorph, but being naturally enriched in glioblastoma patient collectives. Conversely, increased allele frequencies of HLA-C*07:04 or HLA-A*29:02 and -A*30:02 were identified within the cohort of medulloblastoma or meningioma patients, respectively. Once HLA class II allotypes have been successfully imputed from whole exome and RNA sequencing data, we aim to investigate whether there are also HLA class II alleles associated with intracranial neoplasias.

The immunopeptidomic datasets acquired during the course of this thesis were compared with each other and searched for pan-brain tumor antigens shared between glioblastoma, medulloblastoma, and meningioma. Despite high peptide yields per sample as well as a large total amount of unique peptide and protein identifications, the number of candidate targets defined for medulloblastoma (n=71) was considerably smaller as compared with the other two tumor types (glioblastoma: n=260 / meningioma: n=184). This may indicate that the antigenic landscape of medulloblastomas resembles that of benign tissues more than meningeal tumors and glioblastomas do. We found the repertoire of HLA-presented antigens, especially of those with tumor association, to be shaped by the cellular origin of neoplastic cells. Apart from WNT5A and ESCO1 proven to be pan-brain tumor antigens, candidate targets exhibited entity-specific HLA presentation. This is in line with previous findings in hematological malignancies, namely multiple myeloma, acute myeloid, chronic myeloid, and chronic lymphocytic leukemia, strongly encouraging and requiring immunopeptidomic studies to be performed for every tumor entity individually.⁶

The yield of HLA class I and II peptides per mg of tissue is representative of the cellular density, HLA expression, and to some extent also of the degree of immune infiltration.¹⁶⁻¹⁹ For both glioblastoma and medulloblastoma RNA sequencing was performed, which permits comparing the expression of all components of the antigen processing machinery including HLA class I and II molecules between these two tumor types. Subsequent to completion of transcriptome analysis, we aim to compare the number of peptide identifications relative to the amount of

tissue input and HLA expression between these two intracranial neoplasias. Including the meningioma dataset in this analysis is, however, not possible, as RNA sequencing data is lacking and data acquisition on another less sensitive LC-MS/MS system would introduce a technical bias.

In conclusion, we found six HLA class I allotypes to be associated with intracranial neoplasias as being significantly enriched among glioblastoma, medulloblastoma, or meningioma patients. Comparison of naturally presented candidate targets for cancer immunotherapy unveiled a unique repertoire of HLA-presented peptides inherent to every tumor entity as well as two pan-brain tumor antigens: WNT5A and ESCO1.

6 References

- Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. *Neuro Oncol.* 2019;21(Supplement_5):v1-v100.
- Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. *Acta Neuropathol.* 2016;131(6):803-820.
- 3. Jäkel S, Dimou L. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. *Front Cell Neurosci.* 2017;11:24.
- 4. Johnsen JI, Kogner P, Albihn A, Henriksson MA. Embryonal neural tumours and cell death. *Apoptosis*. 2009;14(4):424-438.
- Schüller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, Huillard E, Sun T, Ligon AH, Qian Y, Ma Q, Alvarez-Buylla A, McMahon AP, Rowitch DH, Ligon KL. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. *Cancer Cell*. 2008;14(2):123-134.
- Backert L, Kowalewski DJ, Walz S, Schuster H, Berlin C, Neidert MC, Schemionek M, Brummendorf TH, Vucinic V, Niederwieser D, Kanz L, Salih HR, Kohlbacher O, Weisel K, Rammensee HG, Stevanovi AS, Walz JS. A meta-analysis of HLA peptidome composition in different hematological entities: Entity-specific dividing lines and "pan-leukemia" antigens. *Oncotarget*. 2017.
- 7. Caillat-Zucman S. Molecular mechanisms of HLA association with autoimmune diseases. *Tissue Antigens*. 2009;73(1):1-8.
- 8. Trachtenberg E, Korber B, Sollars C, Kepler TB, Hraber PT, Hayes E, Funkhouser R, Fugate M, Theiler J, Hsu YS, Kunstman K, Wu S, Phair J, Erlich H, Wolinsky S. Advantage of rare HLA supertype in HIV disease progression. *Nat Med.* 2003;9(7):928-935.
- 9. The International HIV Controllers Study. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. *Science*. 2010;330(6010):1551-1557.
- 10. Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM. Common west African HLA antigens are associated with protection from severe malaria. *Nature*. 1991;352(6336):595-600.
- 11. González-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, da Silva AL, Teles e Silva AL, Ghattaoraya GS, Alfirevic A, Jones AR, Middleton D. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. *Nucleic Acids Res.* 2015;43(Database issue):D784-788.
- Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, Kuo F, Kendall SM, Requena D, Riaz N, Greenbaum B, Carroll J, Garon E, Hyman DM, Zehir A, Solit D, Berger M, Zhou R, Rizvi NA, Chan TA. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. *Science*. 2018;359(6375):582-587.
- 13. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, Thor Straten P, Martínez-Ricarte F, Ponsati B, Okada H, Lassen U, Admon A, Ottensmeier CH, Ulges A, Kreiter S, von Deimling A, Skardelly M, Migliorini D, Kroep JR, Idorn M, Rodon J, Piró J, Poulsen HS, Shraibman B, McCann K, Mendrzyk R, Löwer M, Stieglbauer M, Britten CM, Capper D, Welters MJP, Sahuquillo J, Kiesel K, Derhovanessian E, Rusch E, Bunse L, Song C, Heesch S, Wagner C, Kemmer-Brück A, Ludwig J, Castle JC, Schoor O, Tadmor AD, Green E, Fritsche J, Meyer M, Pawlowski N, Dorner S, Hoffgaard F, Rössler B, Maurer D, Weinschenk T, Reinhardt C, Huber C, Rammensee HG, Singh-Jasuja H, Sahin U, Dietrich PY, Wick W. Actively personalized vaccination trial for newly diagnosed glioblastoma. *Nature*. 2019;565(7738):240-245.

- 14. Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuno MA, Richardson JE, Fan X, Ji J, Chu RM, Bender JG, Hawkins ES, Patil CG, Black KL, Yu JS. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. *Cancer Immunol Immunother*. 2013;62(1):125-135.
- Dutoit V, Herold-Mende C, Hilf N, Schoor O, Beckhove P, Bucher J, Dorsch K, Flohr S, Fritsche J, Lewandrowski P, Lohr J, Rammensee HG, Stevanovic S, Trautwein C, Vass V, Walter S, Walker PR, Weinschenk T, Singh-Jasuja H, Dietrich PY. Exploiting the glioblastoma peptidome to discover novel tumourassociated antigens for immunotherapy. *Brain*. 2012;135(Pt 4):1042-1054.
- 16. Rossi ML, Hughes JT, Esiri MM, Coakham HB, Brownell DB. Immunohistological study of mononuclear cell infiltrate in malignant gliomas. *Acta Neuropathol.* 1987;74(3):269-277.
- 17. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. *Nat Neurosci.* 2016;19(1):20-27.
- 18. Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. *Neuro Oncol.* 2012;14(8):958-978.
- Neidert MC, Kowalewski DJ, Silginer M, Kapolou K, Backert L, Freudenmann LK, Peper JK, Marcu A, Wang SS, Walz JS, Wolpert F, Rammensee HG, Henschler R, Lamszus K, Westphal M, Roth P, Regli L, Stevanović S, Weller M, Eisele G. The natural HLA ligandome of glioblastoma stem-like cells: antigen discovery for T cellbased immunotherapy. *Acta Neuropathol.* 2018;135(6):923-938.

CHAPTER 6

Implementation of a mix of ten synthetic heavy isotope-labeled peptides as retention time standard

Lena Katharina Freudenmann (L.K.F.) planned and performed mass spectrometry and data analysis for all titration experiments. Standardized HLA class I peptide eluates of JY cells were prepared by L.K.F. and Lena Mühlenbruch (JY17#3 and JY17#4) and by Jens Bauer (JY19#1), whereby ready-to-use RT peptides as well as JY19#1 with spiked RT peptides were frozen by L.K.F. and Jens Bauer. Data acquisition for performance monitoring using JY19#1 was conducted as routine procedure by the mass spectrometry team of the Department of Immunology at the University of Tübingen (Jens Bauer, L.K.F., Ana Marcu, Lena Mühlenbruch, and Annika Nelde) with data being analyzed and presented by L.K.F. Samples for the comparison of five LC-MS/MS systems were prepared by Ana Marcu and L.K.F. and measured by the respective companies or collaborators, respectively. These data were analyzed by Ana Marcu and Bruker Daltonics. Figure 49 was adapted from Ana Marcu's presentation of the data. All texts and remaining figures were contributed by L.K.F.

1 Abstract

Synthetic peptide spike-ins have been established as part of good proteomic practice, but have so far not been implemented for immunopeptidomics. These offer tremendous potential not only for constant monitoring of chromatographic and mass spectrometric performance, but also for contemporary data acquisition strategies and guantitative approaches with enhanced identification and reproducibility rate, which depend on retention time (RT) alignment between measurements to be compared with each other. We implemented a set of ten heavy isotopelabeled RT peptides that are compatible with immunopeptidomic requirements. Following titration to determine the optimal concentration for each peptide, these served as base for performance monitoring of two liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) systems over half a year. During the course of a procurement measure, the mix of ten RT peptides was used to compare five LC-MS/MS systems - especially regarding sensitivity - thus guiding device selection. Moreover, these RT peptides will enable deeper exploration of immunopeptidomes by data-independent acquisition and more accurate quantification strategies. Further, they will represent an essential tool in method development including optimization of collision energies for new LC-MS/MS systems used for immunopeptidomic research.

2 Introduction

Observed peptide retention times (RT) vary not only across different chromatographic systems, but also within the same system over time. Main influencing factors are solvent composition and solvent exchanges (mobile phase), flow rate, gradient settings, column material and column exchanges (stationary phase), and the volume comprised by the LC system. A standardized set of synthetic spike-in peptides enables indexing of RTs, monitoring of chromatographic performance, as well as comparison and calibration of collision energies between two mass spectrometers.¹ In relation to spike-in peptide RTs, peptide-specific RT indexes are calculated, represented by the dimensionless variable iRT, to align multiple LC-MS/MS runs.² RT alignment of LC-MS/MS measurements is of utmost importance when performing data-independent acquisition (DIA). Here, not only the most intense precursor ions are selected for fragmentation (as in case of DDA), but comprehensive sampling and fragmentation of peptide features is performed. This increases the identification rate as well as the reproducibility and quantifiability by eliminating the semi-stochastic process of peptide selection inherent to DDA. However, this results in chimeric fragment spectra that are difficult to demultiplex and impede assigning the correct chromatographic peak, which can be facilitated by spike-in RT standard peptides.^{1,3-6}

Previous attempts employing iRT peptides (Biognosys)² had failed, as these proteomic RT standards were not compatible with immunopeptidomic LC-MS/MS methods (internal data created at the Department of Immunology, University of Tübingen). ProteomeTools Calibration Standard (PROCAL) was developed by JPT Peptide Technologies for proteomic purposes with tryptic digests as analyte as well. However, several of the contained peptides lie as doubly or triply positive precursor ions within the m/z window applied for HLA peptidome analyses.¹ After a pilot experiment using the entire mix of 40 peptides, the ten best peptides were synthesized

in-house. The PROCAL sequences are arbitrary and do not occur in any proteome according to present knowledge. However, when facing the emerging field of cryptic and neo-antigenic peptides with many sequences having remained unknown so far, we decided to use heavy isotope labels nevertheless. These ten RT peptides were titrated for optimal concentration in both LC-MS/MS systems currently operated at the Department of Immunology, University of Tübingen for immunopeptidomic studies.

3 Methods

LC-MS/MS to detect PROCAL spike-in peptides

The commercially available PROCAL kit containing 40 RT peptides (JPT Peptide Technologies; Table 9) was dissolved in 100 μ l A_{Load} followed by vortexing and sonicating for 60 and 30 s, respectively. This yielded a stock solution containing 100 fmol/peptide/ μ l that was subsequently serially diluted with A_{Load} (1:2 / 1:4 / 1:8) to a concentration of 50 / 25 / 12.5 fmol/peptide/ μ l. Synthetic peptides were diluted 1:5 with a standardized HLA class I peptide eluate prepared from JY cells (JY17#3) so that spike-in peptides had a concentration of 20 / 10 / 5 / 2.5 fmol/peptide/ μ l (equivalent to 100 / 50 / 25 / 12.5 fmol/peptide/measurement). Data were acquired on an Orbitrap Fusion Lumos with the standard method for HLA class I peptides (3.2.2) For data base search, a concatenated FASTA-formatted file consisting of the Swiss-Prot release from September 27th 2013 (20,279 reviewed protein sequences) and 40 PROCAL sequences was used.

Table 9. PROCAL peptides with annotation of molecular weight and m/z values of doubly and triply positively charged precursor ions. Precursor ions not detectable with the standard HLA class I LC-MS/MS method covering a mass range of 400-650 m/z are marked in red. Information were retrieved from Zolg *et al.*¹

	Accession	Sequence	M [Da = g/mol]	[M+2H] ⁺⁺ [M+3H] ⁺⁺⁺	Accession	Sequence	M [Da = g/mol]	[M+2H] ⁺⁺ [M+3H] ⁺⁺⁺
	RT0001	YSAHEEHHYDK	1414.5902	708.30	RT0021	HFALFSTDVTK	1264.6452	633.33
				472.54				422.56
	RT0002	HEHISSDYAGK	1242.5629	622.29	RT0022	TFTGTTDSFFK	1250.5819	626.30
				415.19				417.87
	RT0003	TFAHTESHISK	1256.6149	629.31	RT0023	VSGFSDISIYK	1214.6183	608.32
				419.88				405.88
	RT0004	ISLGEHEGGGK	1082.5356	542.28	RT0024	TFGTETFDTFK	1292.5925	647.30
				361.85				431.87
	RT0005	LSSGYDGTSYK	1176.5299	589.27	RT0025	TSIDSFIDSYK	1274.6030	638.31
				393.18				425.87
	RT0006	FGTGTYAGGEK	1086.4982	544.26	RT0026	ASDLLSGYYIK	1228.6339	615.32
				363.17				410.55
	RT0007	VGASTGYSGLK	1038.5346	520.27	RT0027	FLFTGYDTSVK	1276.6339	639.32
				347.19				426.55
	RT0008	TASGVGGFSTK	1010.5033	506.26	RT0028	GIFGAFTDDYK	1232.5713	617.29
				337.84				411.86
	RT0009	SYASDFGSSAK	1118.4880	560.25	RT0029	VYAETLSGFIK	1226.6547	614.33
				373.84	57000			409.89
	RT0010	LYSYYSSTESK	1326.5980	664.31	RT0030	GFVIDDGLITK	1176.6390	589.33
	DTOOLA			443.21	DTOOOL			393.22
	RT0011	LYTGAGYDEVK	1214.5819	608.30	RT0031	GASDFLSFAVK	1140.5815	571.30
				405.87				381.20

RT0012	TLIAYDDSSTK	1212.5874	607.30 405.20	RT0032	FFLTGTSIFVK	1258.6961	630.36 420.57
RT0013	HLTGLTFDTYK	1294.6557	648.34 432.56	RT0033	VSSIFFDTFDK	1304.6289	<mark>653.32</mark> 435.88
RT0014	FLASSEGGFTK	1142.5608	572.29 381.86	RT0034	GDFTFFIDTFK	1336.6339	669.32 446.55
RT0015	GFLDYESTGAK	1186.5506	594.28 396.52	RT0035	LFISALVDFFK	1298.7274	650.37 433.92
RT0016	ALFSSITDSEK	1196.5925	599.30 399.87	RT0036	SLFFIIDGFVK	1284.7118	643.36 429.24
RT0017	FVGTEYDGLAK	1198.5870	600.30 400.54	RT0037	IDVYILALLLK	1272.8057	637.41 425.28
RT0018	YALDSYSLSSK	1232.5925	617.30 411.87	RT0038	SILAFLYLYFK	1376.7744	689.39 459.93
RT0019	HDTVFGSYLYK	1328.6401	665.33 443.89	RT0039	SLIFFLSTLLK	1280.7744	641.39 427.93
RT0020	YFGYTSDTFGK	1284.5663	643.29 429.20	RT0040	FLISLLEEYFK	1400.7591	427.93 701.39 467.93

Selection of RT peptides for in-house synthesis

Mean RTs from up to four LC-MS/MS runs (2.5-20 fmol/peptide/µl) were calculated for each PROCAL peptide. The 90 min LC gradient was divided up into bins of 10 min, whereby between one and two RT peptides were chosen per bin. Criteria for RT peptide selection were (1) detection at 2.5-5 fmol/µl and (2) one labelable amino acid that is shared with all other RT peptides. The latter is important to reduce the number of dynamic modifications in raw data processing thus preventing an increase in FDR. In total, a set of twelve peptides were subjected to solid-phase peptide synthesis (Wirkstoffpeptidlabor, Department of Immunology, University of Tübingen), whereby heavy isotope-labeled leucine [L($^{13}C_6$; ^{15}N)] was incorporated at one position each. The synthesis of RT005 and RT0030 failed for three times, thus reducing the set of RT peptides to ten.

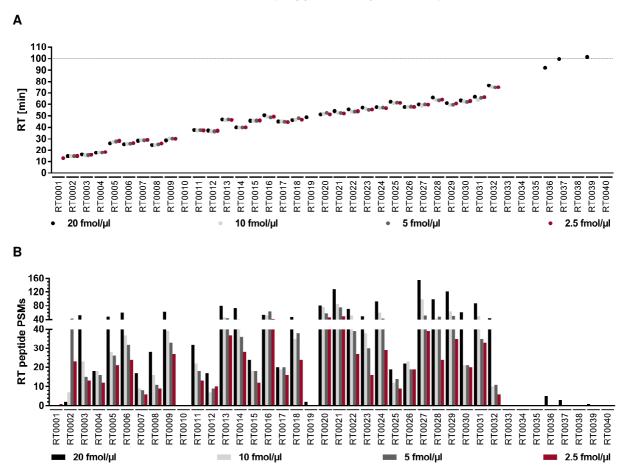
Titration of RT peptide mixes for two LC-MS/MS systems

To avoid overdosing of spike-in peptides which may interfere with detection of (low abundant) native peptides and to establish a sensitive performance monitoring method, RT peptides were titrated for each LC-MS/MS system. Synthetic peptides were weighed in and dissolved at 1 mg/ml. For this purpose, peptides were first completely dissolved in 100% DMSO, facilitated by vortexing, with subsequent addition of MS grade H₂O. Peptides were diluted with A_{Load} to a concentration of 10 pmol/µl. The dilution factor (Table 10) was calculated from the peptidespecific molecular weight, the peptide purity as determined by analytical high-performance liquid chromatography (HPLC), and a peptide content of 75%, which is a reference value obtained by nitrogen determination (20% TFA and 5-10% H₂O content in peptide powders produced in-house; internal data of the Wirkstoffpeptidlabor, Department of Immunology, University of Tübingen). By serial dilution with A_{Load} , peptides were adjusted to 50 / 10 / 5 / 2.5 / 1 / 0.5 / 0.1 fmol/peptide/µl followed by 1:10 dilution with JY-derived HLA class I peptides (Orbitrap Fusion Lumos JY17#3; LTQ Orbitrap XL: JY17#4). Data acquisition was performed with standard LC-MS/MS methods for HLA class I peptides (400-650 m/z), whereby the highest (5 fmol/peptide/µl) and lowest (0.01 fmol/peptide/µl) concentration was only measured on the LTQ Orbitrap XL or the Orbitrap Fusion Lumos, respectively. For data analysis, heavy isotope labels (+7.017 Da) were permitted as additional dynamic modification for leucine residues and the Swiss-Prot release from September 27th 2013 (20,279 reviewed protein sequences) concatenated with ten RT peptide sequences was used as reference database.

Table 10. Ten heavy isotope-labeled peptides synthesized as RT standard. M/z values of doubly and triply positively charged precursor ions were retrieved from Skyline. Precursors not detectable with the standard HLA class I LC-MS/MS method covering a mass range of 400-650 m/z are marked in red. The penultimate column gives molarities of peptide solutions obtained by dissolving 1 mg peptide powder in 1 ml solvent; calculated from molecular weight, synthetic peptide purity, and a peptide content of 75%. Dilution factors to adjust peptide solutions to 10 pmol/µl are given in the last column.

Accession	Sequence	M [Da = g/mol]	[M+2H] ⁺⁺ [M+3H] ⁺⁺⁺	Peptide purity [%]	1 mg/ml = X nmol/µl	Dilution factor > 10 pmol/µl
RT0004	IS[L(¹³ C ₆ ; ¹⁵ N)]GEHEGGGK	1089.5357	545.7837 <mark>364.1915</mark>	87.18	0.6001	60.01
RT0007	VGASTGYSG[L(¹³ C ₆ ; ¹⁵ N)]K	1045.5346	523.7831 <mark>349.5245</mark>	86.83	0.6229	62.29
RT0012	T[L(¹³ C ₆ ; ¹⁵ N)]IAYDDSSTK	1219.5874	610.8096 407.5421	65.67	0.4038	40.38
RT0014	F[L(¹³ C ₆ ; ¹⁵ N)]ASSEGGFTK	1149.5608	575.7963 <mark>384.1999</mark>	83.18	0.5427	54.27
RT0015	GF[L(¹³ C ₆ ; ¹⁵ N)]DYESTGAK	1193.5507	597.7912 <mark>398.8632</mark>	88.7	0.5574	55.74
RT0016	$A[L(^{13}C_6; ^{15}N)]FSSITDSEK$	1203.5925	602.8121 402.2105	88.78	0.5532	55.32
RT0021	HFA[L(¹³ C ₆ ; ¹⁵ N)]FSTDVTK	1271.6452	636.8385 424.8947	82.68	0.4876	48.76
RT0029	VYAET[L(¹³ C ₆ ; ¹⁵ N)]SGFIK	1233.6547	617.8432 412.2310	81.54	0.4957	49.57
RT0031	GASDF[L(¹³ C ₆ ; ¹⁵ N)]SFAVK	1147.5816	574.8066 383.5402	67.51	0.4412	44.12
RT0032	FF[L(¹³ C ₆ ; ¹⁵ N)]TGTSIFVK	1265.6962	633.8639 422.9117	71.08	0.4212	42.12

Comparison of five LC-MS/MS systems


During the course of a procurement measure for a new LC-MS/MS system, standardized samples of JY-derived HLA class I peptides and ten heavy isotope-labeled RT peptides were measured on five devices coming into question. For this purpose, equimolar concentrations of ten heavy isotope-labeled RT peptides were spiked into a complex matrix of HLA class I peptides eluted from JY cells. Following serial 1:2 dilution from 0.2 fmol/peptide/µl to 0.1 / 0.05 / 0.025 / 0.0125 fmol/peptide/µl, samples were acquired on an Orbitrap Fusion Lumos (Thermo Fisher Scientific; Department of Immunology, University of Tübingen; 90 min gradient), an Orbitrap Fusion (Thermo Fisher Scientific; Immatics Biotechnologies GmbH; 70 min gradient), a Q Exactive HF (Thermo Fisher Scientific; Proteome Center Tübingen, University of Tübingen; 90 min gradient), a TimsTOF Pro with Parallel Accumulation Serial Fragmentation acquisition (Bruker Daltonics; 30 / 60 / 100 min gradient), and on a TripleTOF 6600 (AB SCIEX; 90 min gradient). M/z windows and gradient designs were attuned to immunopeptidomic demands as far as possible. Data was analyzed by Bruker Daltonics (TimsTOF Pro) and by Ana Marcu (Department of Immunology, University of Tübingen) employing the PEAKS 8.5 software (Bioinformatics Solutions Inc.), as this was compatible with all raw file formats. In brief, the fragmentation type was set to CID and database search against the Swiss-Prot release from September 27th 2013 (20,279 reviewed protein sequences)

concatenated with the sequences of ten RT peptides was performed at a precursor mass tolerance of 5 (Thermo Fisher Scientific instruments) or 10 ppm (TripleTOF 6600), a fragment mass tolerance of 0.02 (Thermo Fisher Scientific instruments) or 0.5 Da (TripleTOF 6600), and a FDR of 5% estimated by target-decoy database search ('decoy-fusion'). A maximum number of three variable modifications, comprising oxidation of methionine (+15.995 Da) and heavy isotope-labeled leucine (+7.017 Da), were permitted per peptide.

4 Results

4.1 Compatibility of PROCAL peptides with immunopeptidomics

PROCAL peptides were spiked at 20 / 10 / 5 / 2.5 fmol/peptide/ μ l into a matrix of HLA class I peptides eluted from JY cells and acquired on an Orbitrap Fusion Lumos. 34 out of 40 peptides were detectable in full length in at least one measurement, whereby the limit of detection was not reached with 2.5 fmol/ μ l for 29 peptides (Figure 42). These were distributed across the entire 90 min gradient (Figure 42 A). Of note, spike-in PROCAL peptides did not severely impede the detection of JY-derived peptides as visible by a constant number of unique peptide identifications across the titration series (Supplementary Table 22).

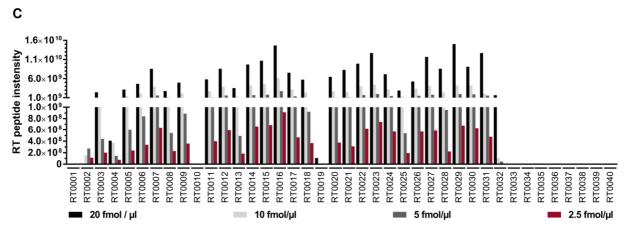
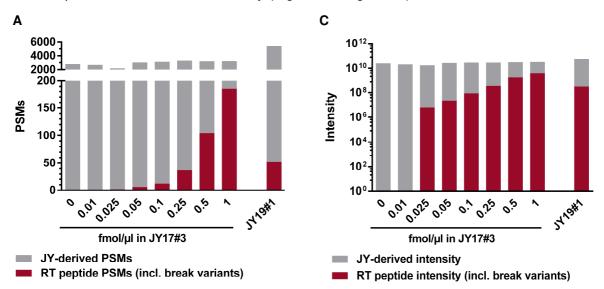



Figure 42. Identification of PROCAL peptides titrated in a complex matrix of HLA class I peptides [2.5-20 fmol/peptide/µl]. RT peptide intensities (AUC), PSMs, and RTs were reported for the best scoring PSM detected in full length. Of note, the number of break variants increased with mounting peptide concentration. (A) Observed RTs of RT0001-RT0040. The dashed line indicates the end of the 90 min gradient. (B) Number of PSMs identified per RT peptide and (C) RT peptide intensities. RT0036, RT0037, and RT0039 eluted at the end of or after the 90 min gradient and had very low intensities < 8×10^5 at 20 fmol/µl. RT0010, RT0033, RT0034, RT0035, RT0038, and RT0040 were not detected at all.

4.2 Titration of in-house heavy isotope-labeled RT peptides

Heavy isotope-labeled RT peptides were spiked at 0.01-1 fmol/peptide/ μ l or at 0.025-5 fmol/peptide/ μ l in a complex matrix of HLA class I ligands for the Orbitrap Fusion Lumos (Figure 43, Figure 44) and the LTQ Orbitrap XL (Figure 45, Figure 46), respectively. As already observed for PROCAL peptides, high concentrations of spike-in RT peptides did not affect the number of unique peptide identifications (Supplementary Table 22). Criteria to determine optimal concentrations were \geq 2 PSMs (Figure 43, Figure 45) and an AUC comparable to JY-derived precursors of medium intensity (Figure 44, Figure 46).

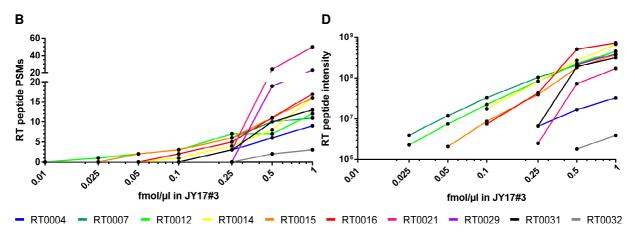
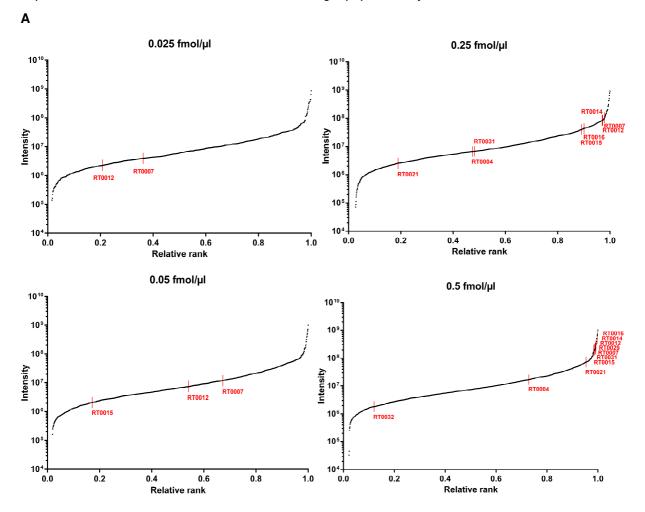



Figure 43. Titration of RT peptides in JY17#3 for the Orbitrap Fusion Lumos. Panel (A) and (C) include PSMs and intensities of both full-length and break variants, whereas (B) and (D) report dose-dependent PSM numbers and intensities for full-length peptides only.

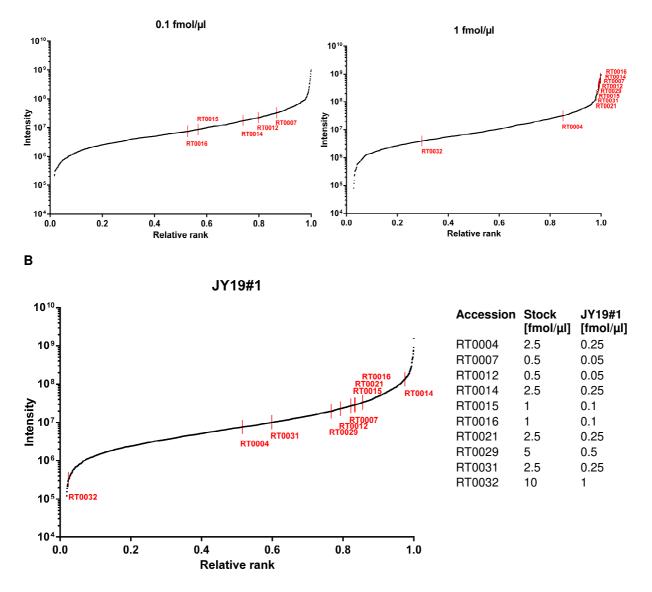


Figure 44. Relative rank of full-length RT peptides in comparison with JY17#3-derived peptides (Orbitrap Fusion Lumos). Best scoring PSMs were sorted by intensities and ranked according to their AUCs. RT peptides are marked in red for (A) titration series and (B) titrated RT peptide mix spiked into the newly synthesized LC-MS/MS standard JY19#1. RT peptide concentrations of ready-to-use stocks (to be diluted 1:10 with sample of interest) and in JY19#1 are listed on the right.

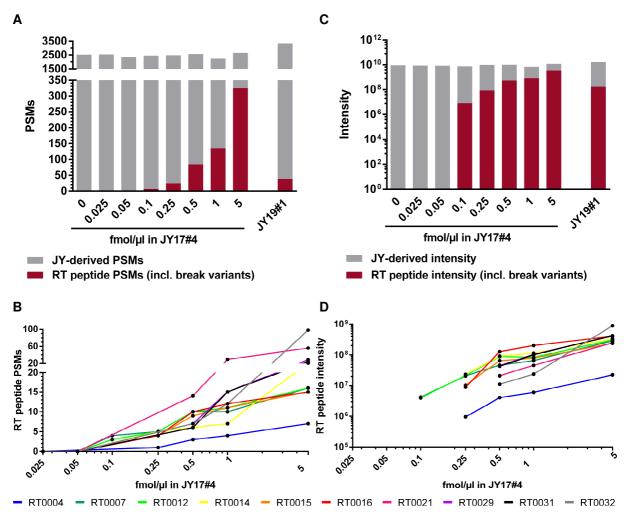
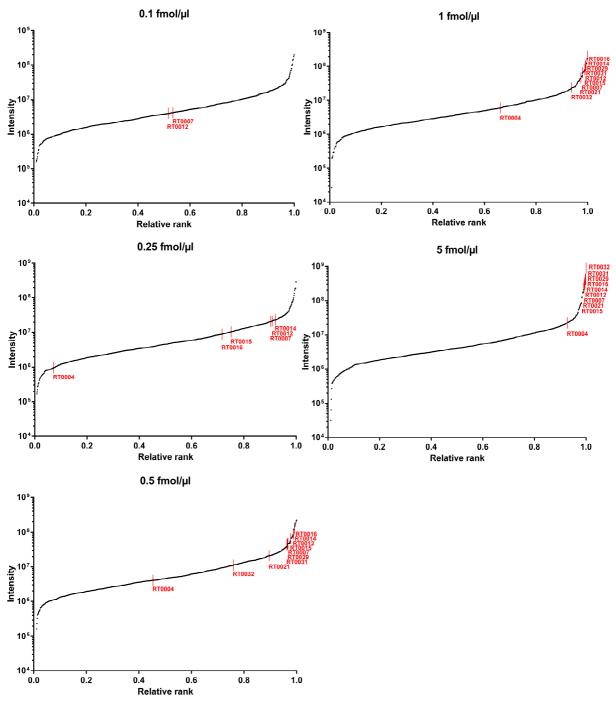



Figure 45. Titration of RT peptides in JY17#4 for the LTQ Orbitrap XL. Panel (A) and (C) include PSMs and intensities of both full length and break variants, whereas (B) and (D) report dose-dependent PSM numbers and intensities for full length peptides only.

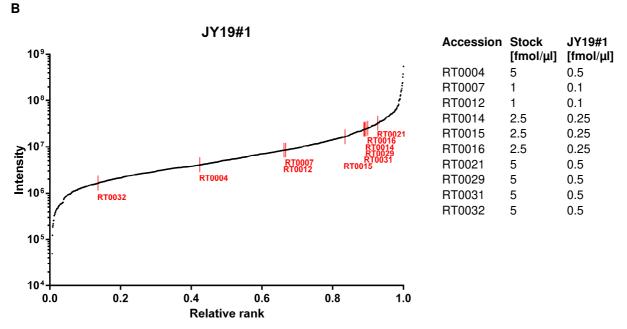


Figure 46. Relative rank of full-length RT peptides in comparison with JY17#4-derived peptides (LTQ Orbitrap XL). Best scoring PSMs were sorted by intensities and ranked according to their AUCs. RT peptides are marked in red for (A) titration series and (B) titrated RT peptide mix spiked into the newly synthesized LC-MS/MS standard JY19#1. RT peptide concentrations of ready-to-use stocks (to be diluted 1:10 with sample of interest) and in JY19#1 are listed on the right.

The LC-MS/MS standard JY19#1 composed of HLA class I ligands eluted from JY cells was prepared by Jens Bauer (Department of Immunology, University of Tübingen). Upon spike-in of ten RT peptides almost 500 vials of the lower concentrated and 300 vials of the higher concentrated standard each containing 25 μ I sample (5 technical replicates) were filled for the Orbitrap Fusion Lumos and the LTQ Orbitrap XL, respectively. Moreover, almost 200 ready-to-use aliquots of 1000 μ I RT peptide mix to be diluted 1:10 with sample were frozen for each LC-MS/MS system. Highly concentrated stocks of 1 mg/mI are available for every single RT peptide as well.

4.3 Performance monitoring of LC-MS/MS systems by RT peptides

The performance of the two LC-MS/MS systems at the Department of Immunology, University of Tübingen is constantly monitored by means of standardized HLA class I peptide eluates. Since implementation of RT peptides and manufacturing of the JY19#1 standard containing ten RT peptides, performance monitoring was significantly improved. RTs were largely stable over time and only changed upon technical intervention. In contrast, RT peptides and JY-derived peptides were subject to strong fluctuations on the level of both PSMs and intensities that could not be explained. Renewal of solvents (mobile phase), trapping and/or separation columns (stationary phase) were identified as major factors influencing the performance of both the Orbitrap Fusion Lumos (Figure 47) and the LTQ Orbitrap XL (Figure 48). Detection of RT0032 evolved as marker of top performance for both devices, as this peptide was only present when the other nine were as well.

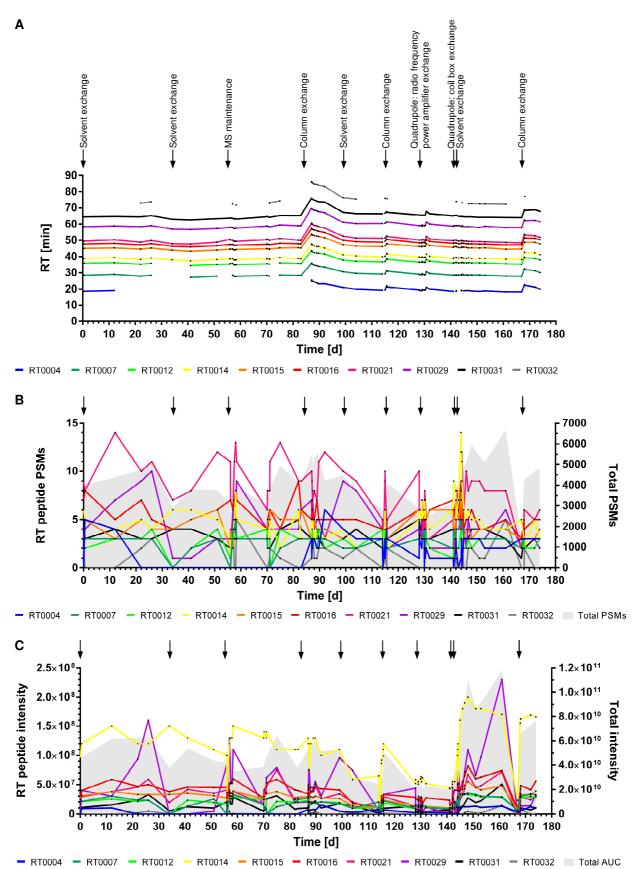
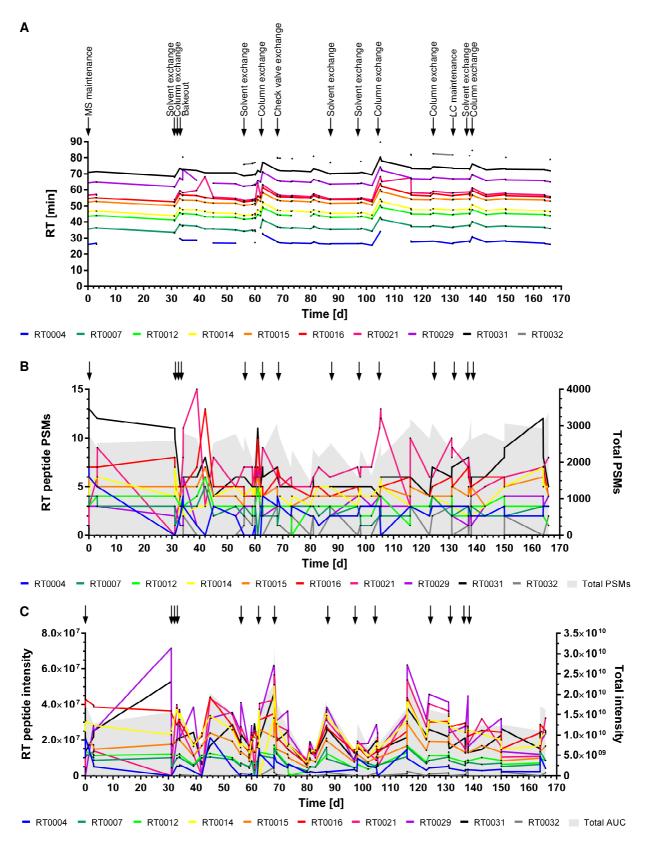
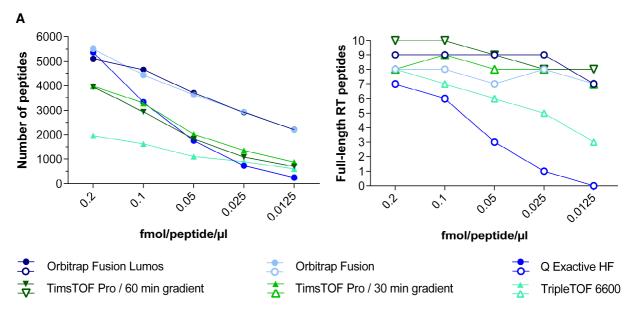
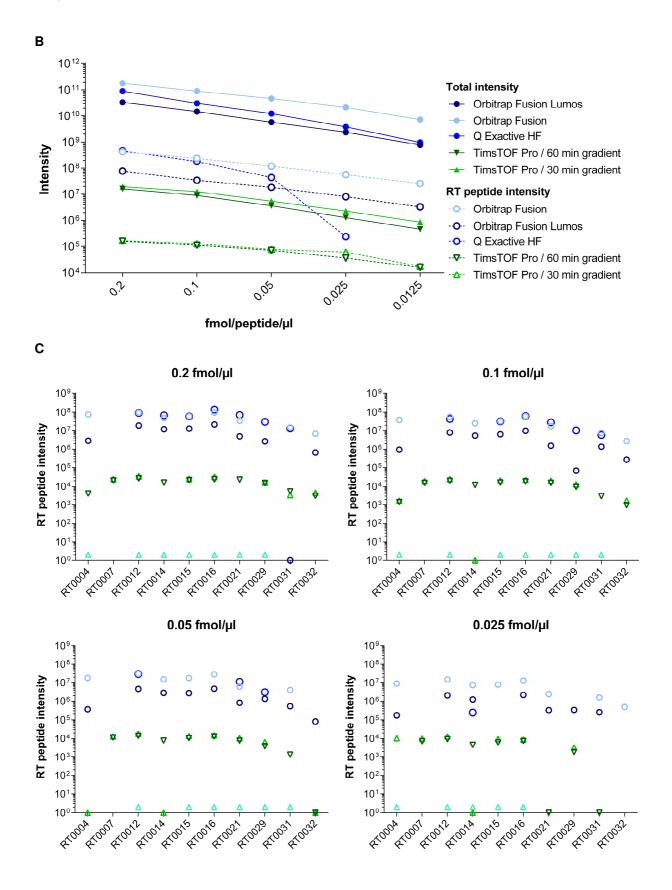
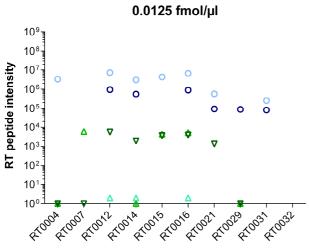


Figure 47. Performance of the Orbitrap Fusion Lumos. LC-MS/MS performance was monitored over almost half a year (19.06.2019 – 09.12.2019) by analyzing (A) RTs of spike-in peptides, (B) total and RT peptide-derived PSMs, and (C) intensities of RT peptides and summed AUC of all peptide identifications. Reported RTs and intensities refer to the best scoring PSM each.


Figure 48. Performance of the LTQ Orbitrap XL. LC-MS/MS performance was monitored over almost half a year (14.06.2019 – 27.11.2019) by analyzing (A) RTs of spike-in peptides, (B) total and RT peptide-derived PSMs, and (C) intensities of RT peptides and summed AUC of all peptide identifications. Reported RTs and intensities refer to the best scoring PSM each.

4.4 Comparison of LC-MS/MS systems for a procurement measure

In the course of a procurement measure for a new LC-MS/MS system, standardized samples of JY-derived HLA class I peptides and ten heavy isotope-labeled RT peptides were measured on five devices coming into guestion. The highest concentrated sample contained 0.2 fmol/peptide/µl and was serially diluted with A_{Load} to 0.1 / 0.05 / 0.025 / 0.0125 fmol/peptide/µl. Data acquisition was performed on an Orbitrap Fusion Lumos, an Orbitrap Fusion, a Q Exactive HF, a TimsTOF Pro with Parallel Accumulation Serial Fragmentation acquisition, and on a TripleTOF 6600. Overall, the Orbitrap Fusion Lumos and the Orbitrap Fusion, which are both operated in immunopeptidomic laboratories, performed best for the titration series. On the level of unique peptide identifications, data generated by the Q Exactive HF or by the TimsTOF Pro were comparable, whereby RT peptides were identified more reliably by the TimsTOF Pro (all 10 RT peptides at the two highest and 8 RT peptides at the two lowest concentration). The sensitivity of the Orbitrap Fusion was similar to the Orbitrap Fusion Lumos, both detecting 7 RT peptides at 12.5 amol/µl (Figure 49 A). From the third titration stage, the Q Exactive HF showed a clear decline in performance. The TripleTOF 6600 performed relatively well in RT peptide detection at high concentrations, whereas JY-derived HLA class I ligand identification and annotation of peptide intensities was severely impaired or even impossible. Peptide intensities were highest for the three Orbitrap instruments and reported reliably up to the lowest concentration stage (Figure 49 B and C).

- Orbitrap Fusion Lumos
- Orbitrap Fusion
- O Q Exactive HF
- ▼ TimsTOF Pro / 60 min gradient
- △ TimsTOF Pro / 30 min gradient
- △ TripleTOF 6600

Figure 49. Performance of five LC-MS/MS systems with immunopeptidomic samples. LC-MS/MS systems coming into question in the course of a procurement measure were evaluated by data acquisition from a standardized titration series of RT peptides spiked into a matrix of HLA class I peptides eluted from JY cells. Raw data were kindly analyzed by Ana Marcu (Department of Immunology, University of Tübingen) and by Bruker Daltonics (TimsTOF Pro) using the PEAKS software. Overall, the Orbitrap Fusion Lumos and the Orbitrap Fusion, which are both operated in immunopeptidomic laboratories, performed best for the titration series. (A) Total number of unique peptide identifications and number of identified RT peptides. Even at the highest concentration, the TripleTOF 6600 reached less than 40% of the peptide identification rate achieved by Thermo Fisher Scientific instruments. Of note, gradient duration hardly affected the peptide yields achieved by the TimsTOF Pro, whereas RT peptide identification benefited from using the longer gradient. Intensities (B) summed for all peptides or RT peptides and (C) of every individual RT peptide across all concentration stages. Recorded intensities were largely comparable for the three Orbitrap instruments, followed by the TimsTOF Pro. At the lowest concentration of 12.5 amol/µl, the detection rate of the TimsTOF Pro was best, whereby the Orbitrap Fusion and the Orbitrap Fusion Lumos were superior regarding annotation of peptide intensities. Since corresponding peptide intensities could not be retrieved from TripleTOF 6600 data, intensities were not reported in (B) and with a value of 2 in (C).

5 Discussion

Synthetic peptide spike-ins have a wide range of applications including constant monitoring of chromatographic and mass spectrometric performance, contemporary data acquisition strategies and quantitative approaches with enhanced identification and reproducibility rates, as well as comparison and calibration of collision energies between two mass spectrometers.^{1,3,4,6} However, such standardized peptide mixtures have so far not been introduced to immunopeptidomics. PROCAL, a mix of 40 synthetic peptides, was developed for proteomic purposes with tryptic digests as analyte. We found 34 of these peptides to be detectable with our LC-MS/MS method for HLA class I ligands. According to the manufacturer's instructions, the six most hydrophobic peptides elute at 33.7-39.9% AcN from the columns. Thus, these were not expected to elute over the course of the applied 90 min gradient ranging from 3 to 40% nano pump solvent B (equal to 2.4-32% AcN), but only during the wash peak reaching 95% solvent B (76% AcN) in min 106. In addition, the manufacturer's instructions claim that dissolution of the peptide mix in aqueous solvents other than 100% DMSO or 30% AcN results in loss of the six most hydrophobic peptides.¹ To evaluate the compatibility of PROCAL peptides with immunopeptidomic LC-MS/MS data acquisition, we deliberately

dissolved the peptides in A_{Load} , the standard solvent for HLA ligand extracts. Hence, this represents another reason for losing some of the PROCAL peptides. However, failure to detect RT0010 and (almost) RT0019 can neither be explained by inadequate dissolution nor by an insufficient AcN content of nano pump solvents. Both of these peptides were not within the applied mass window of 400-650 m/z when having two positive charges. This allows the presumption that present solvent compositions in combination with the peptide's ability to take up protons did not favor the formation of detectable triply positively charged precursor ions.

Based on this pilot experiments employing PROCAL peptides, 12 sequences were selected for in-house synthesis with heavy isotope-labeled leucine. Two of these were not synthesizable reducing the number to ten RT peptides. These were titrated for both LC-MS/MS systems currently operated at the Department of Immunology at the University of Tübingen. Following titration, ready-to-use standards composed of a complex matrix of HLA class I peptides eluted from JY cells as well as ten spike-in RT peptides were manufactured. These standards are constantly used to monitor chromatographic and mass spectrometric performance and are sufficient for a total of 2,500 and 1,500 standard injections on the Orbitrap Fusion Lumos or the LTQ Orbitrap XL, respectively. During the course of almost half a year, LC-MS/MS performance was shown to be significantly influenced by renewal of solvents (mobile phase) as well as of trapping and/or separation columns (stationary phase). However, major fluctuations affecting peptide intensities and the number of PSMs, but not retention times, appeared independent of any technical intervention on both devices and can so far not be explained. Besides performance monitoring, RT peptides are of great value for troubleshooting by revealing e.g. retention time shifts, selective loss of peptide identifications at a specific retention time, reduced peptide intensities, impaired fragmentation quality, or a decrease in mass accuracy.

During the course of a procurement measure, the mix of ten RT peptides was used to compare five LC-MS/MS systems coming into question – especially regarding sensitivity – thus guiding device selection. Overall, the Orbitrap Fusion Lumos and the Orbitrap Fusion performed best for the entire dilution series of HLA class I ligands eluted from JY cells with spike-in RT peptides at equal concentration. These results are to some extent biased, as both machines were operated in immunopeptidomic laboratories with highly optimized LC-MS/MS methods for the detection of HLA-presented peptides. Assuming that the performance of nonimmunopeptidomic LC-MS/MS systems can be enhanced by optimizing methods to this special kind of analytes, the TimsTOF Pro offers promising prospects by introducing the trapped ion mobility separation-based detection technology which is complementary to our present Orbitrap instruments.⁷ Regarding the detection of RT peptides, the TimsTOF Pro even outperformed all other LC-MS/MS systems with a detection limit of < 12.5 amol/µl for eight spike-in peptides. At the highest concentration, the number of unique peptide identifications achieved by the Q Exactive HF was comparable to the Orbitrap Fusion and the Orbitrap Fusion Lumos. For subsequent dilution stages, a clear decline in performance was observed, whereby technical issues during acquisition appear the most probable cause. The Q Exactive HF is nearly identical in construction with the Orbitrap Fusion and the Orbitrap Fusion Lumos, while being less expensive.⁸ Hence, it should be possible to push it at the same performance level by strictly optimizing both chromatographic and mass spectrometric parameters.

The implemented set of ten heavy isotope-labeled RT peptides represents an essential tool in method development including optimization of collision energies for these newly acquired LC-MS/MS systems used for immunopeptidomic research. Further, these RT peptides open up new avenues to innovative data acquisition strategies in the field of immunopeptidomics. Data-independent acquisition and more accurate quantification strategies will enable deeper explorations of immunopeptidomes comprising so far underrepresented species such as neo-antigenic or cryptic epitopes. RT peptides may also facilitate the transfer of spectral libraries required for the analysis of data-independently acquired MS/MS spectra from one to another platform by allowing a comparison of fragmentation characteristics.^{1,3,4,6} Of note, all RT peptides are also covered by the mass window applied to HLA class II peptide eluates.

6 References

- 1. Zolg DP, Wilhelm M, Yu P, Knaute T, Zerweck J, Wenschuh H, Reimer U, Schnatbaum K, Kuster B. PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration. *Proteomics*. 2017;17(21).
- 2. Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, MacCoss MJ, Rinner O. Using iRT, a normalized retention time for more targeted measurement of peptides. *Proteomics*. 2012;12(8):1111-1121.
- Amodei D, Egertson J, MacLean BX, Johnson R, Merrihew GE, Keller A, Marsh D, Vitek O, Mallick P, MacCoss MJ. Improving Precursor Selectivity in Data-Independent Acquisition Using Overlapping Windows. J Am Soc Mass Spectrom. 2019;30(4):669-684.
- 4. Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. *J Proteome Res.* 2011;10(4):1785-1793.
- 5. Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. *Nat Methods*. 2004;1(1):39-45.
- 6. Weisbrod CR, Eng JK, Hoopmann MR, Baker T, Bruce JE. Accurate peptide fragment mass analysis: multiplexed peptide identification and quantification. *J Proteome Res.* 2012;11(3):1621-1632.
- Bruker Daltonics TimsTOF Pro. [Internet]. Available from: https://www.bruker.com/products/massspectrometry-and-separations/lc-ms/o-tof/timstof-pro.html, accessed on 2020/02/02.
- Thermo Fisher Scientific Mass Spectrometers. [Internet]. Available from: https://www.thermofisher.com/search/browse/category/de/en/602508/Mass+Spectrometry+Systems+&, accessed on 2020/02/02.

CHAPTER 7

General discussion and perspective

1 General discussion and perspective

With the great success of checkpoint inhibitors, cancer immunotherapy has started to evolve as novel pillar in multimodal anti-tumor therapies.¹⁻⁴ Immune checkpoint blockade appears effective in metastatic melanoma or non-small cell lung carcinoma,⁵⁻⁸ while patients suffering from other types of tumors including intracranial neoplasia do not clinically benefit.^{9,10} The reason for this was found out later when response to checkpoint inhibition was shown to positively correlate with mutational burden,^{7,11,12} which is low among brain tumors excepting MMR-deficient ones and recurrent glioblastomas exhibiting a hypermutation phenotype¹³⁻¹⁶ Cancer immunotherapy aims at breaking immune evasion by provision of the (appropriate) antigen (1), supply of T-cell co-stimulation or blockade of T-cell co-inhibition (2), and transfer of effector cells (3).^{17,18} As the second strategy alone has shown to be ineffective in tumors with low mutational burden and lacking pre-existing immunity, one should go for providing the appropriate antigen activating the patient's T cells or directly providing (antigen-specific) effector cells. Combined with checkpoint inhibition this might then elicit clinically relevant antitumoral immune responses.^{2,17,19} In the case of glioblastoma, concomitant administration of anti-PD-1 or anti-PD-L1 antibodies might be promising, as PD-L1 is expressed in 72% of recurrent and 88% of primary glioblastomas.²⁰ Medulloblastomas and meningiomas, in turn, are rarely PD-L1 positive,^{21,22} suggesting to target the PD-1–PD-L1 axis only via PD-1 or to use other checkpoint antibodies blocking e.g. CTLA4, TIGIT, LAG-3, and VISTA on T cells or B7-H3 expressed on tumor cells.^{2,23,24}

Immunopeptidomics has proven as state-of-the art and method of choice to define candidate targets for cancer immunotherapy as it offers an unbiased and comprehensive view on the pathophysiologically relevant antigenic landscape.²⁵ We proved glioblastoma and, most importantly, also medulloblastoma and meningioma to be compatible with HLA peptidomecentric target definition yielding both HLA class I- and II-restricted peptides in considerable numbers. Remarkably, even with scarce amounts of tissue being available (less than 100 mg), we achieved several thousand peptide identifications (e.g. GBM20R: 3,213 HLA class I ligands and 3,957 HLA class II-restricted peptides isolated from 35 mg of tissue) using an optimized protocol including consequent avoidance of sample loss during lysate preparation and HLA-IP as well as direct injection for LC-MS/MS. Future approaches may even encompass the analysis of circulating neoplastic cells as well as brain tumor-derived soluble HLA-peptide complexes and extracellular vesicles isolated from blood or CSF. Besides representing a substitute when patient-derived tumor tissue is not available or facilitating the investigation of subclones and their effusions, these may serve as liquid biopsy to diagnose and monitor disease or even as predictive biomarker for response to therapy and prognosis.²⁵⁻³³ The repertoire of HLA-presented antigens, which have so far been exploited for immunotherapeutic approaches comprises viral antigens, non-mutated differentiation antigens, TAAs, and CTAs as well as neo-antigens arising from non-synonymous mutations.^{25,34-41} Epitopes derived from oncogenic viruses or mutation-bearing proteins represent prime candidates for antigenspecific immunotherapies as they offer maximum tumor specificity and do not underlie central tolerance to self-antigens that has to be overcome for anti-tumor responses.⁴² A viral etiology of common intracranial neoplasms has, however, remained under controversial discussion.43-⁴⁶ Although we succeeded in proving two neo-antigenic peptides to be naturally presented on HLA molecules of glioblastoma cells for the first time, the verification of mutated peptides by LC-MS/MS has remained anecdotally – even in tumors with higher mutational burden as compared with brain tumors. In addition to extremely low confirmation rates of predicted neoepitopes, around 99% of somatic mutations are not being recognized by T cells greatly supporting to target non-mutated tumor-associated and tumor-specific antigens by immunotherapy instead.^{14,25,47-51}

During the course of this thesis, I analyzed 123 brain tumor specimens gaining a deep insight into the immunopeptidomic landscape of intracranial neoplasms. We identified a total of 485 candidate target antigens exploitable for immunotherapeutic efforts. Among these, two proved to be pan-brain tumor antigens (WNT5A and ESCO1) characterized by frequent and tumorexclusive HLA presentation on glioblastomas, medulloblastomas, and meningiomas. This is in line with previous findings in hematological malignancies (multiple myeloma, acute myeloid, chronic myeloid, and chronic lymphocytic leukemia)⁵² and strongly emphasizes that the repertoire of naturally presented tumor antigens is highly entity-specific encouraging and requiring immunopeptidomic studies of every tumor type individually. In turn, we found a large fraction of meningioma-associated antigens and peptides to be presented across all WHO grades as well as candidate targets for medulloblastoma to be shared by WNT-activated, non-WNT/non-SHH, and SHH-activated as well as by childhood and adult tumors. Moreover, the data presented herein demonstrate that established TAAs and CTAs - independent of whether these are published as pan-tumor or entity-specific antigens - are not recommended for immunotherapeutic purposes as being either broadly presented on both benign and neoplastic tissues or exhibiting infrequent albeit tumor-exclusive HLA presentation. While meningiomas are supplied by vascular branches of the external carotid artery,^{53,54} the blood supply of glioblastomas and medulloblastomas arising within the brain parenchyma itself is accomplished by branches of the internal carotid artery.⁵⁵⁻⁵⁷ Targeting such intra-axial lesions located beyond the blood-brain barrier (neurovascular unit) inevitably requires epitopes to be tumor-specific and not to be presented on other CNS cells.⁵⁸⁻⁶⁰ Although our target discovery approach focused on tumor-exclusively presented antigens lacking CNS-associated expression, an intense validation process is required to warrant an excellent safety profile of selected antigens excluding on-target off-tumor effects within the CNS. This is particularly important as the benign HLA peptidome dataset subtracted during the course of comparative profiling comprising n=12 brains, n=11 cerebella, and n=1 spinal cord neither covers all HLA allotypes nor achieves 100% saturation of the benign CNS peptidome.

Apart from the aforementioned TAAs and TSAs there is another class of HLA ligands, which has so far not been exploited for immunotherapeutic efforts: cryptic peptides. These arise from antisense transcripts, novel unannotated open reading frames, non-coding regions (5' and 3' UTRs, introns, intergenic regions), non-canonical reading frames of protein-coding regions, or unconventional (proteasomal) splicing events. They have been proven to be immunogenic and estimated to contribute with 6.5-13% to the entirety of HLA-presented peptides.^{25,61-64} Thus, the chance to identify tumor-associated cryptic peptides appears a lot more promising than the search for neo-antigenic HLA ligands arising from non-synonymous mutations.⁶⁵⁻⁶⁸ However, cryptic peptides may also be neo-antigenic with the majority of somatic mutations affecting non-coding regions (Figure 21).^{25,64,69} Data-independent acquisition and more accurate

quantification strategies - enabled by the use of retention time standard peptides presented herein - as well as the development and usage of technically complementary LC-MS/MS systems, innovative bioinformatic algorithms, and computational tools will foster deeper explorations of tumor and benign immunopeptidomes.⁶⁵⁻⁶⁸ I am convinced that cryptic peptides will be subject of future target discovery approaches for cancer immunotherapy.^{25,69,70} Addressing non-mutated cryptic peptides in intracranial neoplasias is possible by re-analyzing the acquired LC-MS/MS data using the *de novo* sequencing workflow Peptide-PRISM, which is currently being developed for immunopeptidomic datasets by the group of Andreas Schlosser at the University of Würzburg (unpublished data by Erhard et al., manuscript submitted 2020). In addition, one could re-measure remaining peptide eluates employing more sophisticated protocols such as data-independent acquisition with spiked RT peptides possibly using multiple complementary LC-MS/MS systems to maximize the number of unique peptide identifications per sample. A comprehensive search for mutation-bearing cryptic peptides, however, requires whole genome sequencing.⁶⁴ This is possible for a large fraction of the glioblastoma cohort, while germline DNA essential for somatic variant calling is not available from medulloblastoma and meningioma patients.

As recently shown in the GAPVAC-101 trial, only one out of six WT antigens employed in APVAC2 was immunogenic. This strongly argues against the use of naturally presented tumorassociated peptides without prior evaluation of immunogenicity for vaccination approaches.¹⁴ For a selected set of glioblastoma-, medulloblastoma-, and meningioma-associated peptides presented herein, these experiments are currently being performed by Dr. Konstantina Kapolou, Dr. med. Julia Velz, and Gioele Medici in the Laboratory for Molecular Neuro-Oncology at the University of Zürich. These include IFN-y ELISpots, naïve T-cell primings, and killing assays - if possible, in an autologous setting using TILs or PBMCs and an established tumor cell line from the same patient. Immunological characterization of TILs isolated from fresh glioblastoma tissue further comprises mass cytometry and ultra-deep TCR sequencing. A research group from the Washington University School of Medicine headed by Robert Schreiber has recently postulated that effective anti-tumor immune responses induced by immunotherapies require one MHC class I- and class II-presented (neo-)antigen each. Of note, this is even the case for MHC class II-negative tumors. In an ideal scenario of peptide vaccination, long peptides harboring both an immunogenic CD8 and CD4 epitope are applied inducing T-cell activation at the site of disease in the TME.⁷¹ However, this conclusion was drawn from a monoclonal sarcoma model, while naturally grown human tumors are constituted of several subclonal populations of neoplastic cells.^{60,71,72} Against the background of intratumoral heterogeneity – which is particularly high in glioblastoma^{60,72} – it is not possible to elicit clinically relevant anti-tumor responses by targeting a single antigen. Instead, a mix of targetable CD4 and CD8 epitopes is required.^{2,71,73} Herein, we provide such a mixture of both HLA class I- and II-restricted candidate target peptides for glioblastoma, medulloblastoma, and meningioma immunotherapy.

Besides target specificity, adaptability and durability of anti-tumor immune responses are crucial for clinical efficacy.⁷⁴ To not only prime, but also amplify tumor-directed immunity, (peptide) vaccines should be administered several times, whereby the exact dosage schedule is subject of ongoing research.⁷³ Moreover, the use of an appropriate adjuvant and

administration route have a decisive impact on the induction of clinically relevant responses which have stayed out in 95% of cancer vaccine administrations.^{73,75,76} The treatment of intraaxial neoplasms represents a prime example of needed co-stimulation as T cells have to be empowered to enter the neurovascular unit in addition.⁵⁸⁻⁶⁰ Besides the application of vaccine adjuvants, great potential is seen for the development of combination therapies complementing each other and unleashing synergistic effects. Radiotherapy, for instance, disrupts the blood-brain barrier, induces local neuroinflammation and antigen release thus guiding immune effector cells to the site of disease.⁷⁷⁻⁸⁰ For peptide vaccination in glioblastoma, it has recently been shown that concomitant medication such as dexamethasone shapes and can even impede the response to immunotherapy.⁸¹ Likewise, checkpoint blockade is of different effectiveness when administered in an adjuvant or neoadjuvant setting. It has been suggested that the larger degree of antigenic diversity before surgery for recurrent glioblastoma favors the expansion of (polyclonal) anti-tumor T cells upon checkpoint inhibition.⁸² Consequently, not only the composition, dosage, and timing of antigen-specific immunotherapeutic agents themselves, but also of concomitant medication and therapies have a decisive impact on patient outcomes and should therefore be subject of in-depth investigations.

In conclusion, there is tremendous potential for the implementation of cancer immunotherapy as additional pillar of multimodal therapies for intracranial neoplasias. Being convinced that non-mutated antigens will coin peptide-specific approaches with immunopeptidomics-based target definition in the short to medium term, we defined a large set of naturally, frequently, and tumor-exclusively presented antigens and peptides for glioblastoma, medulloblastoma, and meningioma immunotherapy. Apart from peptide vaccination, these may also guide the development of DC- and T cell-based strategies. With antigen-specific immunotherapy for intracranial neoplasms, we envision to replace radiotherapy in the treatment of childhood tumors thus reducing long-term sequelae, to offer therapeutic options for the management of disease recurrence, and to improve patient outcomes.

2 References

- 1. Nobel Media AB 2019. NobelPrize.org. The Nobel Prize in Physiology or Medicine 2018. [Internet]. Available from: https://www.nobelprize.org/prizes/medicine/2018/summary/, accessed on 2019/11/21.
- 2. Velcheti V, Schalper K. Basic Overview of Current Immunotherapy Approaches in Cancer. *Am Soc Clin Oncol Educ Book*. 2016;35:298-308.
- 3. Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. *J Clin Oncol.* 2004;22(6):1136-1151.
- 4. Parish CR. Cancer immunotherapy: the past, the present and the future. *Immunol Cell Biol.* 2003;81(2):106-113.
- Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. *N Engl J Med*. 2010;363(8):711-723.
- Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122-133.
- 7. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon

EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. *Science*. 2015;348(6230):124-128.

- Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320-330.
- Lukas RV, Rodon J, Becker K, Wong ET, Shih K, Touat M, Fasso M, Osborne S, Molinero L, O'Hear C, Grossman W, Baehring J. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol. 2018;140(2):317-328.
- Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T, Voloschin A, Ramkissoon SH, Ligon KL, Latek R, Zwirtes R, Strauss L, Paliwal P, Harbison CT, Reardon DA, Sampson JH. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. *Neuro Oncol.* 2018;20(5):674-686.
- Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189-2199.
- Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MHG, Goldinger SM, Utikal J, Hassel JC, Weide B, Kaehler KC, Loquai C, Mohr P, Gutzmer R, Dummer R, Gabriel S, Wu CJ, Schadendorf D, Garraway LA. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. *Science*. 2015;350(6257):207-211.
- 13. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, van Buuren MM, van 't Veer L, Vincent-Salomon A, Waddell N, Yates LR, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. *Nature*. 2013;500(7463):415-421.
- 14. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, Thor Straten P, Martínez-Ricarte F, Ponsati B, Okada H, Lassen U, Admon A, Ottensmeier CH, Ulges A, Kreiter S, von Deimling A, Skardelly M, Migliorini D, Kroep JR, Idorn M, Rodon J, Piró J, Poulsen HS, Shraibman B, McCann K, Mendrzyk R, Löwer M, Stieglbauer M, Britten CM, Capper D, Welters MJP, Sahuquillo J, Kiesel K, Derhovanessian E, Rusch E, Bunse L, Song C, Heesch S, Wagner C, Kemmer-Brück A, Ludwig J, Castle JC, Schoor O, Tadmor AD, Green E, Fritsche J, Meyer M, Pawlowski N, Dorner S, Hoffgaard F, Rössler B, Maurer D, Weinschenk T, Reinhardt C, Huber C, Rammensee HG, Singh-Jasuja H, Sahin U, Dietrich PY, Wick W. Actively personalized vaccination trial for newly diagnosed glioblastoma. *Nature*. 2019;565(7738):240-245.
- 15. Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, Greenman C, Edkins S, Bignell G, Davies H, O'Meara S, Parker A, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Richardson D, Shepherd R, Small A, Solomon H, Tofts C, Varian J, West S, Widaa S, Yates A, Easton DF, Riggins G, Roy JE, Levine KK, Mueller W, Batchelor TT, Louis DN, Stratton MR, Futreal PA, Wooster R. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. *Cancer Res.* 2006;66(8):3987-3991.
- McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, 16. Lehman N, Aldape K, Yung WK, Bogler O, Weinstein JN, VandenBerg S, Berger M, Prados M, Muzny D, Morgan M, Scherer S, Sabo A, Nazareth L, Lewis L, Hall O, Zhu Y, Ren Y, Alvi O, Yao J, Hawes A, Jhangiani S, Fowler G, San Lucas A, Kovar C, Cree A, Dinh H, Santibanez J, Joshi V, Gonzalez-Garay ML, Miller CA, Milosavljevic A, Donehower L, Wheeler DA, Gibbs RA, Cibulskis K, Sougnez C, Fennell T, Mahan S, Wilkinson J, Ziaugra L, Onofrio R, Bloom T, Nicol R, Ardlie K, Baldwin J, Gabriel S, Lander ES, Ding L, Fulton RS, McLellan MD, Wallis J, Larson DE, Shi X, Abbott R, Fulton L, Chen K, Koboldt DC, Wendl MC, Meyer R, Tang Y, Lin L, Osborne JR, Dunford-Shore BH, Miner TL, Delehaunty K, Markovic C, Swift G, Courtney W, Pohl C, Abbott S, Hawkins A, Leong S, Haipek C, Schmidt H, Wiechert M, Vickery T, Scott S, Dooling DJ, Chinwalla A, Weinstock GM, Mardis ER, Wilson RK, Getz G, Winckler W, Verhaak RG, Lawrence MS, O'Kelly M, Robinson J, Alexe G, Beroukhim R, Carter S, Chiang D, Gould J, Gupta S, Korn J, Mermel C, Mesirov J, Monti S, Nguyen H, Parkin M, Reich M, Stransky N, Weir BA, Garraway L, Golub T, Meyerson M, Chin L, Protopopov A, Zhang J, Perna I, Aronson S, Sathiamoorthy N, Ren G, Yao J, Wiedemeyer WR, Kim H, Kong SW, Xiao Y, Kohane IS, Seidman J, Park PJ, Kucherlapati R, Laird PW, Cope L, Herman JG, Weisenberger DJ, Pan F, Van den Berg D, Van Neste L, Yi JM, Schuebel KE, Baylin SB, Absher DM, Li JZ, Southwick A, Brady S, Aggarwal A, Chung T, Sherlock G, Brooks JD, Myers RM, Spellman PT, Purdom E, Jakkula LR, Lapuk AV, Marr H, Dorton S, Choi Y, Han J, Ray A, Wang V, Durinck S, Robinson M, Wang NJ, Vranizan K, Peng V, Van Name E, Fontenay GV, Ngai J, Conboy JG, Parvin B, Feiler HS, Speed TP, Gray JW, Brennan C, Socci ND, Olshen A, Taylor BS, Lash A, Schultz N, Reva B, Antipin Y, Stukalov A, Gross B, Cerami E, Wang WQ, Qin LX, Seshan VE, Villafania L, Cavatore M, Borsu L, Viale A, Gerald W, Sander C, Ladanyi M, Perou CM,

Hayes DN, Topal MD, Hoadley KA, Qi Y, Balu S, Shi Y, Wu J, Penny R, Bittner M, Shelton T, Lenkiewicz E, Morris S, Beasley D, Sanders S, Kahn A, Sfeir R, Chen J, Nassau D, Feng L, Hickey E, Barker A, Gerhard DS, Vockley J, Compton C, Vaught J, Fielding P, Ferguson ML, Schaefer C, Zhang J, Madhavan S, Buetow KH, Collins F, Good P, Guyer M, Ozenberger B, Peterson J, Thomson E. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. *Nature*. 2008;455(7216):1061-1068.

- 17. Freudenmann LK. Mapping the HLA Ligandome of Primary versus Recurrent Disease in Glioblastoma Multiforme by Mass Spectrometry. *Master Thesis, Master of Science in Molecular Medicine, Eberhard Karls Universität Tübingen, Faculty of Medicine.* 2017.
- 18. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest. 2007;117(5):1167-1174.
- Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, McBain C, Jefferies S, Jackson A, Stewart W, Lindner J, Kutscher S, Hilf N, McGuigan L, Peters J, Hill K, Schoor O, Singh-Jasuja H, Halford SE, Ritchie JW. A Cancer Research UK First Time in Human Phase I Trial of IMA950 (Novel Multipeptide Therapeutic Vaccine) in Patients with Newly Diagnosed Glioblastoma. *Clin Cancer Res.* 2016;22(19):4776-4785.
- Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wöhrer A, Dieckmann K, Filipits M, Brandstetter A, Weller M, Kurscheid S, Hegi ME, Zielinski CC, Marosi C, Hainfellner JA, Preusser M, Wick W. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. *Neuro Oncol.* 2015;17(8):1064-1075.
- 21. Vermeulen JF, Van Hecke W, Adriaansen EJM, Jansen MK, Bouma RG, Villacorta Hidalgo J, Fisch P, Broekhuizen R, Spliet WGM, Kool M, Bovenschen N. Prognostic relevance of tumor-infiltrating lymphocytes and immune checkpoints in pediatric medulloblastoma. *Oncoimmunology*. 2018;7(3):e1398877.
- 22. Johnson MD. PD-L1 expression in meningiomas. J Clin Neurosci. 2018;57:149-151.
- 23. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. *Mol Cancer.* 2019;18(1):155.
- Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, Rietberg SP, Linde MH, Xu P, Rota C, Sotillo E, Labanieh L, Lee DW, Orentas RJ, Dimitrov DS, Zhu Z, Croix BS, Delaidelli A, Sekunova A, Bonvini E, Mitra SS, Quezado MM, Majeti R, Monje M, Sorensen PHB, Maris JM, Mackall CL. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. *Clin Cancer Res*. 2019;25(8):2560-2574.
- 25. Freudenmann LK, Marcu A, Stevanović S. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. *Immunology*. 2018;154(3):331-345.
- 26. Bassani-Sternberg M, Barnea E, Beer I, Avivi I, Katz T, Admon A. Soluble plasma HLA peptidome as a potential source for cancer biomarkers. *Proc Natl Acad Sci U S A*. 2010;107(44):18769-18776.
- 27. Shraibman B, Barnea E, Kadosh DM, Haimovich Y, Slobodin G, Rosner I, López-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. *Mol Cell Proteomics*. 2019;18(6):1255-1268.
- 28. Synowsky SA, Shirran SL, Cooke FGM, Antoniou AN, Botting CH, Powis SJ. The major histocompatibility complex class I immunopeptidome of extracellular vesicles. *J Biol Chem.* 2017;292(41):17084-17092.
- 29. Campoli M, Ferrone S. Tumor escape mechanisms: potential role of soluble HLA antigens and NK cells activating ligands. *Tissue Antigens*. 2008;72(4):321-334.
- 30. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L. Malignant effusions and immunogenic tumour-derived exosomes. *Lancet*. 2002;360(9329):295-305.
- 31. Chistiakov DA, Chekhonin VP. Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma multiforme. *Exp Mol Pathol.* 2018;105(2):166-174.
- 32. Garzia L, Kijima N, Morrissy AS, De Antonellis P, Guerreiro-Stucklin A, Holgado BL, Wu X, Wang X, Parsons M, Zayne K, Manno A, Kuzan-Fischer C, Nor C, Donovan LK, Liu J, Qin L, Garancher A, Liu KW, Mansouri S, Luu B, Thompson YY, Ramaswamy V, Peacock J, Farooq H, Skowron P, Shih DJH, Li A, Ensan S, Robbins CS, Cybulsky M, Mitra S, Ma Y, Moore R, Mungall A, Cho YJ, Weiss WA, Chan JA, Hawkins CE, Massimino M, Jabado N, Zapotocky M, Sumerauer D, Bouffet E, Dirks P, Tabori U, Sorensen PHB, Brastianos PK, Aldape K, Jones SJM, Marra MA, Woodgett JR, Wechsler-Reya RJ, Fults DW, Taylor MD. A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. *Cell*. 2018;172(5):1050-1062.e1014.
- 33. Erkan EP, Ströbel T, Dorfer C, Sonntagbauer M, Weinhäusel A, Saydam N, Saydam O. Circulating Tumor Biomarkers in Meningiomas Reveal a Signature of Equilibrium Between Tumor Growth and Immune Modulation. *Front Oncol.* 2019;9:1031.
- 34. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. *Nat Rev Cancer*. 2014;14(2):135-146.
- 35. Urban JL, Schreiber H. Tumor antigens. Annu Rev Immunol. 1992;10:617-644.
- 36. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. *Science*. 1991;254(5038):1643-1647.
- 37. Brichard V, Van Pel A, Wölfel T, Wölfel C, De Plaen E, Lethe B, Coulie P, Boon T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. *J Exp Med.* 1993;178(2):489-495.

- 38. Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL, Jr. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. *Science*. 1994;264(5159):716-719.
- 39. Topalian SL, Gonzales MI, Parkhurst M, Li YF, Southwood S, Sette A, Rosenberg SA, Robbins PF. Melanomaspecific CD4+ T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. *J Exp Med*. 1996;183(5):1965-1971.
- 40. Klein G, Klein E. Immune surveillance against virus-induced tumors and nonrejectability of spontaneous tumors: contrasting consequences of host versus tumor evolution. *Proc Natl Acad Sci U S A*. 1977;74(5):2121-2125.
- 41. van der Burg SH, Melief CJ. Therapeutic vaccination against human papilloma virus induced malignancies. *Curr Opin Immunol.* 2011;23(2):252-257.
- 42. Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. *J Exp Med.* 2004;199(2):155-166.
- 43. Miller G. Brain cancer. A viral link to glioblastoma? Science. 2009;323(5910):30-31.
- 44. Chi J, Gu B, Zhang C, Peng G, Zhou F, Chen Y, Zhang G, Guo Y, Guo D, Qin J, Wang J, Li L, Wang F, Liu G, Xie F, Feng D, Zhou H, Huang X, Lu S, Liu Y, Hu W, Yao K. Human herpesvirus 6 latent infection in patients with glioma. *J Infect Dis.* 2012;206(9):1394-1398.
- 45. Poltermann S, Schlehofer B, Steindorf K, Schnitzler P, Geletneky K, Schlehofer JR. Lack of association of herpesviruses with brain tumors. *J Neurovirol*. 2006;12(2):90-99.
- 46. Holdhoff M, Guner G, Rodriguez FJ, Hicks JL, Zheng Q, Forman MS, Ye X, Grossman SA, Meeker AK, Heaphy CM, Eberhart CG, De Marzo AM, Arav-Boger R. Absence of cytomegalovirus in glioblastoma and other high-grade gliomas by real-time PCR, immunohistochemistry and in situ hybridization. *Clin Cancer Res.* 2016.
- 47. Löffler MW, Mohr C, Bichmann L, Freudenmann LK, Walzer M, Schroeder CM, Trautwein N, Hilke FJ, Zinser RS, Mühlenbruch L, Kowalewski DJ, Schuster H, Sturm M, Matthes J, Riess O, Czemmel S, Nahnsen S, Königsrainer I, Thiel K, Nadalin S, Beckert S, Bösmüller H, Fend F, Velic A, Maček B, Haen SP, Buonaguro L, Kohlbacher O, Stevanović S, Königsrainer A, Rammensee HG. Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. *Genome Med.* 2019;11(1):28.
- Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S, Robbins PF, Gartner JJ, Zheng Z, Li YF, Ray S, Wunderlich JR, Somerville RP, Rosenberg SA. Immunogenicity of somatic mutations in human gastrointestinal cancers. *Science*. 2015;350(6266):1387-1390.
- 49. Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J, Slotta-Huspenina J, Specht K, Martignoni ME, Werner A, Hein R, Busch DH, Peschel C, Rad R, Cox J, Mann M, Krackhardt AM. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. *Nat Commun.* 2016;7:13404.
- 50. Newey A, Griffiths B, Michaux J, Pak HS, Stevenson BJ, Woolston A, Semiannikova M, Spain G, Barber LJ, Matthews N, Rao S, Watkins D, Chau I, Coukos G, Racle J, Gfeller D, Starling N, Cunningham D, Bassani-Sternberg M, Gerlinger M. Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment. J Immunother Cancer. 2019;7(1):309.
- Khodadoust MS, Olsson N, Wagar LE, Haabeth OA, Chen B, Swaminathan K, Rawson K, Liu CL, Steiner D, Lund P, Rao S, Zhang L, Marceau C, Stehr H, Newman AM, Czerwinski DK, Carlton VE, Moorhead M, Faham M, Kohrt HE, Carette J, Green MR, Davis MM, Levy R, Elias JE, Alizadeh AA. Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. *Nature*. 2017;543(7647):723-727.
- 52. Backert L, Kowalewski DJ, Walz S, Schuster H, Berlin Č, Neidert MC, Schemionek M, Brümmendorf TH, Vucinic V, Niederwieser D, Kanz L, Salih HR, Kohlbacher O, Weisel K, Rammensee HG, Stevanović S, Walz JS. A meta-analysis of HLA peptidome composition in different hematological entities: entity-specific dividing lines and "pan-leukemia" antigens. *Oncotarget*. 2017;8(27):43915-43924.
- 53. Manaka H, Sakata K, Tatezuki J, Shinohara T, Shimohigoshi W, Yamamoto T. Safety and Efficacy of Preoperative Embolization in Patients with Meningioma. *J Neurol Surg B Skull Base*. 2018;79(Suppl 4):S328-s333.
- 54. Dettori P, Bradac GB, Scialfa G. Selective angiography of the external and internal carotid arteries in the diagnosis of supra-tentorial meningiomas. *Neuroradiology*. 1970;1(3):166-172.
- 55. Malhotra M, Toulouse A, Godinho BM, Mc Carthy DJ, Cryan JF, O'Driscoll CM. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. *Mol Biosyst.* 2015;11(10):2635-2657.
- Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. *Acta Neuropathol.* 2016;131(6):803-820.
- 57. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO, Williams SM. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. The Blood Supply of the Brain and Spinal Cord. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11042/, accessed on 2020/03/31.
- 58. Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. *Biomed Res Int*. 2015;2015:320941.
- 59. Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. *J Clin Invest*. 2010;120(5):1368-1379.

- 60. Mohme M, Neidert MC, Regli L, Weller M, Martin R. Immunological challenges for peptide-based immunotherapy in glioblastoma. *Cancer Treat Rev.* 2014;40(2):248-258.
- 61. Weinzierl AO, Maurer D, Altenberend F, Schneiderhan-Marra N, Klingel K, Schoor O, Wernet D, Joos T, Rammensee HG, Stevanović S. A cryptic vascular endothelial growth factor T-cell epitope: identification and characterization by mass spectrometry and T-cell assays. *Cancer Res.* 2008;68(7):2447-2454.
- 62. Laumont CM, Daouda T, Laverdure JP, Bonneil É, Caron-Lizotte O, Hardy MP, Granados DP, Durette C, Lemieux S, Thibault P, Perreault C. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. *Nat Commun.* 2016;7:10238.
- 63. Mishto M, Liepe J. Post-Translational Peptide Splicing and T Cell Responses. *Trends Immunol.* 2017;38(12):904-915.
- 64. Ouspenskaia T, Law T, Clauser KR, Klaeger S, Sarkizova S, Aguet F, Li B, Christian E, Knisbacher BA, Le PM, Hartigan CR, Keshishian H, Apffel A, Oliveira G, Zhang W, Chow YT, Ji Z, Shukla SA, Bachireddy P, Getz G, Hacohen N, Keskin DB, Carr SA, Wu CJ, Regev A. Thousands of novel unannotated proteins expand the MHC I immunopeptidome in cancer. *bioRxiv*. 2020:2020.2002.2012.945840.
- 65. Zolg DP, Wilhelm M, Yu P, Knaute T, Zerweck J, Wenschuh H, Reimer U, Schnatbaum K, Kuster B. PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration. *Proteomics*. 2017;17(21).
- 66. Amodei D, Egertson J, MacLean BX, Johnson R, Merrihew GE, Keller A, Marsh D, Vitek O, Mallick P, MacCoss MJ. Improving Precursor Selectivity in Data-Independent Acquisition Using Overlapping Windows. *J Am Soc Mass Spectrom.* 2019;30(4):669-684.
- 67. Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. *J Proteome Res.* 2011;10(4):1785-1793.
- 68. Weisbrod CR, Eng JK, Hoopmann MR, Baker T, Bruce JE. Accurate peptide fragment mass analysis: multiplexed peptide identification and quantification. *J Proteome Res.* 2012;11(3):1621-1632.
- 69. Laumont CM, Perreault C. Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy. *Cell Mol Life Sci.* 2018;75(4):607-621.
- Laumont CM, Vincent K, Hesnard L, Audemard É, Bonneil É, Laverdure JP, Gendron P, Courcelles M, Hardy MP, Côté C, Durette C, St-Pierre C, Benhammadi M, Lanoix J, Vobecky S, Haddad E, Lemieux S, Thibault P, Perreault C. Noncoding regions are the main source of targetable tumor-specific antigens. *Sci Transl Med.* 2018;10(470).
- 71. Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, Luoma AM, Meng W, Lichti CF, Esaulova E, Vomund AN, Runci D, Ward JP, Gubin MM, Medrano RFV, Arthur CD, White JM, Sheehan KCF, Chen A, Wucherpfennig KW, Jacks T, Unanue ER, Artyomov MN, Schreiber RD. MHC-II neoantigens shape tumour immunity and response to immunotherapy. *Nature*. 2019;574(7780):696-701.
- 72. Bonavia R, Inda MM, Cavenee WK, Furnari FB. Heterogeneity maintenance in glioblastoma: a social network. *Cancer Res.* 2011;71(12):4055-4060.
- 73. Gouttefangeas C, Rammensee HG. Personalized cancer vaccines: adjuvants are important, too. *Cancer Immunol Immunother*. 2018;67(12):1911-1918.
- 74. Weiss T, Weller M, Roth P. Immunotherapy for glioblastoma: concepts and challenges. *Curr Opin Neurol.* 2015;28(6):639-646.
- 75. Obeid J, Hu Y, Slingluff CL, Jr. Vaccines, Adjuvants, and Dendritic Cell Activators-Current Status and Future Challenges. *Semin Oncol.* 2015;42(4):549-561.
- 76. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. *Nat Med.* 2004;10(9):909-915.
- 77. Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. *Nat Rev Cancer*. 2020;20(1):26-41.
- 78. Warrington JP, Ashpole N, Csiszar A, Lee YW, Ungvari Z, Sonntag WE. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. *J Vasc Res.* 2013;50(6):445-457.
- 79. Teng F, Tsien CI, Lawrence TS, Cao Y. Blood-tumor barrier opening changes in brain metastases from pre to one-month post radiation therapy. *Radiother Oncol.* 2017;125(1):89-93.
- 80. Demaria S, Golden EB, Formenti SC. Role of Local Radiation Therapy in Cancer Immunotherapy. *JAMA Oncol.* 2015;1(9):1325-1332.
- Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, Shukla SA, Hu Z, Li L, Le PM, Allesøe RL, Richman AR, Kowalczyk MS, Abdelrahman S, Geduldig JE, Charbonneau S, Pelton K, Iorgulescu JB, Elagina L, Zhang W, Olive O, McCluskey C, Olsen LR, Stevens J, Lane WJ, Salazar AM, Daley H, Wen PY, Chiocca EA, Harden M, Lennon NJ, Gabriel S, Getz G, Lander ES, Regev A, Ritz J, Neuberg D, Rodig SJ, Ligon KL, Suvà ML, Wucherpfennig KW, Hacohen N, Fritsch EF, Livak KJ, Ott PA, Wu CJ, Reardon DA. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. *Nature*. 2019;565(7738):234-239.
- 82. Čloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM, Kawaguchi ES, Du L, Li G, Yong WH, Gaffey SC, Cohen AL, Mellinghoff IK, Lee EQ, Reardon DA, O'Brien BJ, Butowski NA, Nghiemphu PL, Clarke JL, Arrillaga-Romany IC, Colman H, Kaley TJ, de Groot JF, Liau LM, Wen PY, Prins RM. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. *Nat Med.* 2019;25(3):477-486.

Danksagung

Der Weg bis zum Doktortitel hängt einerseits von persönlichen Ressourcen wie Zielstrebigkeit, Fleiß, Durchhaltevermögen, Wissen und experimentellem Geschick ab. Andererseits leistet auch das wissenschaftliche Netzwerk einen essentiellen Beitrag, ohne den eine Doktorarbeit schlichtweg unmöglich wäre. Daher möchte ich mich zunächst bei meinen Doktorvätern Prof. Dr. Stefan Stevanović und Prof. Dr. Hans-Georg Rammensee dafür bedanken, dass ich meine Doktorarbeit in deren Arbeitsgruppe bzw. Abteilung absolvieren konnte. Ihre Begeisterung für die Immunologie ist unglaublich inspirierend und ich danke ihnen für die herausragende wissenschaftliche Leitung. Gemeinsam mit Prof. Dr. Jürgen Frank, Gerhard Hörr, Lynne Yakes, Carmen Höner und dem Deutschen Konsortium für Translationale Krebsforschung haben sie zudem die Finanzierung meiner Stelle, von Verbrauchsmaterial, Chemikalien und Geräten zu jeder Zeit gewährleistet sowie bürokratische und organisatorische Hürden für mich beseitigt. Die künstlerische Darstellung meines Promotionsthemas auf dem Titelbild dieser Arbeit verdanke ich meinem Patenonkel Martin Schatz.

Meine berufliche Entwicklung wurde entscheidend durch Daniel Kowalewski (inzwischen Immatics Biotechnologies GmbH), meinen Supervisor während der Bachelor- und Masterarbeit, geprägt. Durch ihn habe ich einen Zugang zu der faszinierenden Technologie der Massenspektrometrie gefunden und konnte jederzeit auf sein konstruktives Feedback, substanzielle Diskussionen und kreative Ideen zählen. Ebenso gilt mein Dank dem Massenspektrometrie-Team, unseren Bioinformatikern sowie ehemaligen Doktoranden: Ana Marcu, Dr. Annika Nelde, Daniel Kowalewski, Dr. Heiko Schuster, Jens Bauer, Lena Mühlenbruch, Leon Bichmann, Dr. Léon Kuchenbecker, Dr. Linus Backert, Michael Ghosh, Dr. Moreno DiMarco sowie den Mitarbeitern des QBiC rund um Dr. Sven Nahnsen. Ohne deren Arbeit zur Etablierung von Geräten und Messmethoden, Protokollen, Skripten und Auswertemethoden, dem qPortal und zur Erstellung unserer hausinternen HLA-Peptidom-Datenbank wäre eine Bearbeitung meiner Projekte in dieser Form nicht möglich gewesen. Darüber hinaus konnte ich stets auf ihren Rat zählen und sie haben gemeinsam mit allen anderen Tübinger Immunologen zu einer wirklich angenehmen und harmonischen Arbeitsatmosphäre beigetragen.

Nicht zuletzt möchte ich allen Patienten und deren Angehörigen danken, die trotz der schwierigen Lebenssitutation ein offenes Ohr für die Forschung hatten. Nur durch deren Einwilligung zu Gewebe- und Blutproben war es möglich, die Projekte im Rahmen meiner Promotion zu bearbeiten. Dies bedurfte auch der Arbeit gut funktionierender Teams aus Ärzten und Klinikpersonal, die geeignete Patienten gesucht, aufgeklärt und für eine korrekte Asservierung des Probenmaterials gesorgt haben. Besonders das Sammeln von Primär- und Rezidivtumoren der selben Patienten erforderte hierbei einen großen organisatorischen Aufwand. Für die Zusammenstellung des Glioblastom-Kollektivs möchte ich insbesondere Prof. Dr. med. Manfred Westphal (Universitätsklinikum Hamburg-Eppendorf, Klinik für Neurochirurgie), Dr. med. Malte Mohme und seinem Team (Universitätsklinikum Hamburg-Eppendorf, Klinik für Neurochirurgie), PD Dr. med. Marian Christoph Neidert (UniversitätsSpital Zürich, Klinik für Neurochirurgie), Konstantina Dr. Kapolou (UniversitätsSpital und Universität Zürich, Klinik für Neurologie, Labor für Molekulare Neuro-

Danksagung

Onkologie) und Dr. med. Julia Velz (UniversitätsSpital Zürich, Klinik für Neurochirurgie) danken. Dr. med. Sophie Shi-Yüng Wang und PD Dr. med. Marian Christoph Neidert (UniversitätsSpital Zürich, Klinik für Neurochirurgie) stellten freundlicherweise die Proben für das Meningeomprojekt zur Verfügung. Mein Dank gilt Dr. med. Julia Velz und PD Dr. med. Marian Christoph Neidert (UniversitätsSpital Zürich, Klinik für Neurochirurgie) für die Zusammenstellung der Medulloblastom-Kohorte in Zusammenarbeit mit dem Universitäts-Kinderspital und dem UniversitätsSpital Zürich, Prof. Dr. med. Manfred Westphal und Dr. med. Malte Mohme (Universitätsklinikum Hamburg-Eppendorf, Klinik für Neurochirurgie), Prof. Dr. med. Matthias Eyrich (Universitäts-Kinderklinik Würzburg) sowie Prof. Dr. med. Martina Messing-Jünger, PD Dr. med. Harald Reinhard und Dr. med. Andreas Röhrig (Asklepios Klinik Sankt Augustin). Zusätzlich bedanke ich mich bei allen bereits genannten Medizinern sowie bei Dr. med. Markus W. Löffler (Universitätsklinikum Tübingen, Klinik für Allgemeine, Viszeralund Transplantationschirurgie sowie Abteilung für Klinische Pharmakologie; Universität Tübingen, Interfakultäres Institut für Zellbiologie, Abteilung Immunologie) und Prof. Dr. med. Sebastian P. Haen (Universitätsklinikum Tübingen, Klinik für Innere Medizin, Abteilung für Onkologie, Hämatologie, Immunologie, Rheumatologie und Pulmologie; Interfakultäres Institut für Zellbiologie, Abteilung Immunologie; Universitätsklinikum Hamburg-Eppendorf) für die Bereitstellung klinischer Daten sowie für hilfreiche Erläuterungen und Hintergrundinformationen beispielsweise chirurgischen zum Prozedere oder zu Therapiekonzepten.

Darüber hinaus danke ich Claudia Falkenburger, Beate Pömmerl und Franziska Löwenstein für die Produktion von Antikörpern, die Bereitstellung von allgemeinem Verbrauchsmaterial sowie die Organisation der Spülküche. Für die Produktion synthetischer Peptide für unsere Patienten wie auch für Experimente möchte ich mich bei unserem GMP-Team (Camille Supper, Prof. Dr. Hans-Georg Rammensee, Julia Stuck, Prof. Dr. Jürgen Frank, Marina Martin, Marion Richter, Dr. med. Markus Löffler, Dr. Monika Denk, Michael Ghosh, Mirijam Bohn, Nicole Bauer, Patricia Hrstić, Prof. Dr. Stefan Stevanović, Ulrich Wulle) bedanken.

Letztendlich verdanke ich meinen beruflichen Erfolg aber nicht nur meinen Kollegen und Kooperationspartnern, sondern in ganz besonderer Weise auch meiner Familie und meinen engsten Freunden. Ihr habt mir in jeder Phase des Studiums und der Promotion den Rücken gestärkt, hattet immer ein offenes Ohr für die beruflichen wie persönlichen Höhen und Tiefen, habt meine Freizeit um unvergessliche Momente bereichert und mein Ziel in gewisser Weise auch zu Eurem eigenen gemacht. Ein erfülltes Privatleben mit Menschen, die man liebt, ist meiner Einschätzung nach die beste Voraussetzung, um beruflich erfolgreich zu sein. Möglicherweise würde ich jetzt nicht an diesem Punkt stehen, wenn ich Euch nicht hätte, und dafür möchte ich Euch von ganzem Herzen danken!

Appendix

Abbreviations

α-KG	α-ketoglutarate
AA	Amino acid
AAST	Anaplastic astrocytoma
AcN	Acetonitrile
ACTL8 / CT57	Actin-like protein 8
ADCC	Antibody-dependent cellular cytotoxicity
AIM2	Absent in melanoma 2
ALECSAT	Autologous Lymphoid Effector Cells Specific Against Tumour Cells
AMPA	α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ANR40	Ankyrin repeat domain-containing protein 40
APC	Antigen-presenting cell
ARF / p14 ^{ARF}	Alternative open reading frame
ARG1	Arginase-1
ARID1A/2	AT-rich interactive domain-containing protein 1A/2
ASPM	Abnormal spindle-like microcephaly-associated protein
ΑΤΑΤ	Alphatubulin N-acetyltransferase 1
ATG9B	Autophagy-related protein 9
ATRT	Atypical teratoid rhabdoid tumor
AUC	Area under the curve
β₂m	β ₂ microglobulin
B7-H3 / CD276	B7 homolog 3 protein
BAP1	BRCA-associated protein-1
B-FABP	Brain-type fatty acid-binding protein
BH	Benjamini-Hochberg
BIRC5	Baculoviral IAP repeat-containing protein 5 / survivin
BiTe	Bi-specific antibody for T-cell redirection and activation
BRCA2	Breast cancer type 2 susceptibility protein
BRPF1	Peregrin
BSG	Brain stem glioma
BTLA	B- and T-cell lymphocyte attenuator
CAR	Chimeric antigen receptor
CD	Cluster of differentiation
CD19t	Truncated CD19
CDK2/4/6	Cyclin-dependent kinase 4 / 6
CDKN2A / p16 ^{lnk4a}	Cyclin-dependent kinase inhibitor 2A
CDKN2B / p15 ^{lnk4b}	Cyclin-dependent kinase 4 inhibitor 2B
CerS1	Ceramide synthase 1
CGE	Cobalt gray equivalent
CHAPS	[(3-cholamidopropyl) dimethyl-ammonio]-1-propanesulfonate
CI	Confidence interval
CID	Collision-induced dissociation
CLIP	Class II-associated invariant chain peptide
CLUS	Clusterin
c-Met	Met proto-oncogene / hepatocyte growth factor receptor
CNBr	Cyanogen bromide
CNS	Central nervous system
	Catalogue Of Somatic Mutations In Cancer
CpG ODN CR	Deoxycytidyl-deoxyguanosin oligodeoxynucleotide
CREBBP	Complete response CREB-binding protein
CRUM1	Protein crumbs homolog 1
CSF	Cerebrospinal fluid
CSF1	Colony stimulating factor 1
CSI	Craniospinal irradiation
CSPG4	Chondroitin sulfate proteoglycan 4
CSPG7	Chondroitin sulfate proteoglycan 7 / brevican core protein
CSRP2	Cysteine and glycine-rich protein 2
CTA	Cancer-testis antigen

CTCFL / CT27	Transcriptional repressor CTCFL
CTL	Cytotoxic T lymphocyte
CTLA4	Cytotoxic T-lymphocyte-associated antigen 4
CTNNB1	Catenin beta-1
D2HG	D-2-hyroxyglutarate
DC	Dendritic cell
DCLK2	Serine/threonine-protein kinase DCLK2
DDA	Date-dependent acquisition
DDX3X	X-chromosomal ATP-dependent RNA helicase DEAD box protein 3
DJC25	DnaJ homolog subfamily C member 25
DMSO	Dimethyl sulfoxide
DOCK7	Dedicator of cytokinesis protein 7
DP2.5 / APC	Deleted in polyposis 2.5 / adenomatous polyposis coli protein
DPBS	Dulbecco's phosphate-buffered saline
DRP-4	Dihydropyrimidinase-related protein 4
DTH	Delayed-type hypersensitivity
EAA4	Excitatory amino acid transporter 4
EBV	Epstein-Barr Virus
EFHC1	EF-hand domain-containing protein 1
EGFR	Epidermal growth factor receptor
EGFRt	Truncated EGFR
EGFRvIII	Epidermal growth factor receptor variant III
elF4E	Eukaryotic translation initiation factor 4E
ELISpot	Enzyme-linked immunospot assay
ELOV2	Elongation of very long chain fatty acids protein 2
EMT	Epithelial-to-mesenchymal transition
EphA2	Ephrin type-A receptor 2
ER	Endoplasmic reticulum
ERAAP	ER aminopeptidase associated with antigen processing
EVS	Empirical variant scoring
F120C	Constitutive coactivator of PPAR-gamma-like protein 2
FA	Formic acid
FADS2	Acyl-CoA 6-desaturase
Fas	Fas cell surface death receptor
FasL	Fas ligand
FBXW7	F-box/WD repeat-containing protein 7
fc	Fold change
FDA	U.S. Food and Drug Administration
FDR	False discovery rate
FLT3	FMS-like tyrosine kinase 3
FPRP	Prostaglandin F2 receptor negative regulator
FTMS	Fourier Transform Mass Spectrometry (refers to Orbitrap detection)
GABA	Gamma-aminobutyric acid
GAGE-1 / CT4.1	G antigen 1
GAPVAC	The Glioma Actively Personalized VAccine Consortium
Gb	Giga base
GBM	Glioblastoma
G-CIMP	Glioma CpG island methylator phenotype
GITR	Glucocorticoid-induced tumor necrosis factor receptor
GluK3	lonotropic glutamate receptor kainate 3
GluR4	Glutamate receptor 4
GM-CSF	Granulocyte-macrophage colony-stimulating factor
GMP	Good manufacturing practice
GO	Gene Ontology
gp100	Melanocytes lineage-specific antigen gp100
GPC1/2	Glypican-1/2
GPM6B	Neuronal membrane glycoprotein M6-b
GSE1	Genetic suppressor element 1
GTEx	Genotype-Tissue Expression database
HCD	Higher-energy induced dissociation
HCMV	Human cytomegalovirus
HEAT1	HEAT repeat-containing protein 1

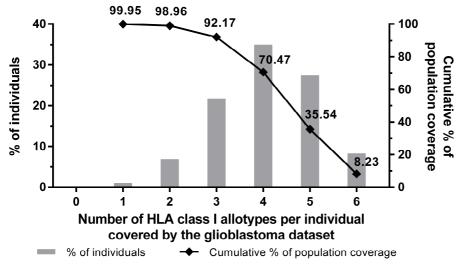
HEPACAM	Hepatocyte cell adhesion molecule
HER2	Receptor tyrosine-protein kinase erbB-2
HFE	Human hemochromatosis protein
HHV	Human herpesvirus
HLA	Human leukocyte antigen
HLA-IP	HLA-immunoprecipitation
HO-1	Heme oxygenase-1
HPLC	High-performance liquid chromatography
HS2ST	Heparan sulfate 2-O-sulfotransferase 1
НуТК	Hygromycin phosphotransferase-herpes simplex virus 1 thymidine kinase
i.d.	Intradermal
i.n.	Intranodal
i.t.	Intratumoral
i.v.	Intravenous
IDH1/2	Isocitrate dehydrogenase 1/2
IDH ^{mut}	Mutated IDH1/2 genes
IDH ^{WT}	Non-mutated / wild-type IDH1/2 genes
IDO1	Indoleamine 2,3-dioxygenase-1
IEDB	Immune Epitope Database
IF2BP3	Insulin-like growth factor 2 mRNA binding protein 3
IFN	Interferon
IFN-α	Interferon alpha / Type I interferon
li	Invariant chain
" IL13Rα2	IL-13 receptor alpha 2
IL-2/10/12/15/21	Interleukin 2/10/12/15/21
ILT	Inhibitory Ig-like transcript
ImmTAC	Immune-mobilizing monoclonal T-cell receptors against cancer
Indel	Insertion or deletion
iRT	Indexed retention time
ITA7	
JAK2	Integrin alpha-7 Janus kinase 2
JY	B-lymphoblastoid cell line
KANSL1	
KBTBD4	KAT8 regulatory NSL complex subunit 1
KCJ10	Kelch repeat and BTB domain-containing protein 4
	ATP-sensitive inward rectifier potassium channel 10
KDM6A KLF4	Lysine-specific demethylase 6A
	Krueppel-like factor 4
KMT2C/D	Histone-lysine N-methyltransferase 2C/2D
LAG-3	Lymphocyte activation gene-3
LC-MS/MS	(Reversed-phase) Liquid chromatography coupled with tandem mass spectrometry
LFQ	Label-free quantitation
LMP	Low molecular weight protein
LTQ	Linear trap quadrupole
LZTS1	Leucine zipper putative tumor suppressor 1
m/z	Mass-to-charge ratio
MAGE-A1 / CT1.1	Melanoma-associated antigen 1
MAGE-A3 / CT1.3	Melanoma-associated antigen 3
MAGE-A4 / CT1.4	Melanoma-associated antigen 4
MAGE-A6 / CT1.6	Melanoma-associated antigen 6
MAGE-C1 / CT7.1	Melanoma-associated antigen C1
MAGE-C2 / CT10	Melanoma-associated antigen C2
MAGE-F1	Melanoma-associated antigen F1
MAGI2	Membrane-associated guanylate kinase inverted 2
MAPK	Mitogen-activated protein kinase
MB	Medulloblastoma
MDM2	Mouse double minute 2 homolog
MDSC	Myeloid-derived suppressor cells
MGMT	O ⁶ -methylguanine-DNA methyltransferase
MHC	Major histocompatibility complex
MIC	MHC class I polypeptide-related sequence protein
MIC25	MICOS complex subunit MIC25
MIIC	Multivesicular late endosomal-lysosomal MHC class II antigen-processing compartment

MLH1	MutL homolog 1
MMR	Mismatch repair
MNG	Meningioma
MS	Mass spectrometry
MS/MS	Tandem mass spectrometry
MSH2/6	MutS homolog 2/6
MTSS2	Protein MTSS 2
n.a.	Not available
n.d.	Not determined
NF1/2	Neurofibromin-1/-2
NF-ĸB	Nuclear factor kappa-light-chain-enhancer of activated B cells
NIC	Nanoscale immunoconjugate
NK cell	Natural killer cell
NLGNX/Y	X-/Y-linked neuroligin-4
NMRL1	NmrA-like family domain-containing protein 1
NRCAM	Neuronal cell adhesion molecule
NY-ESO-1 / CT6.1	New York esophageal squamous cell carcinoma-1
OIP5 / CT86	Opa-interacting protein 5 / protein Mis18-beta
OLIG2	Oligodendrocyte transcription factor 2
OR	Odds ratio
ORML1	
-	ORM1-like protein 1
OS	Overall survival
P4HTM	Transmembrane prolyl 4hydroxylase
PAI1	Plasminogen activator inhibitor 1
PALB2	Partner and localizer of BRCA2
PAX6	Paired box protein Pax6
PBMCs	Peripheral blood mononuclear cell
PBS	Phosphate-buffered saline
PCDGM	Protocadherin gamma-C5
PCX3	Pecanex-like protein 3
PD	Progressive disease
PD-1	Programmed cell death protein 1
PDGFR / PDGFRα	Platelet-derived growth factor receptor / alpha
PD-L1 / PD-L2	Programmed cell death ligand 1 / 2
PEG	Polyethylene glycol
PFS	Progression-free survival
pfu	Plaque-forming units
PI3K	Phosphatidylinositol-3-OH kinase
PJA2	E3 ubiquitin-protein ligase Praja-2
PKHA4	Pleckstrin homology domain-containing family A member 4
PLC	Peptide-loading complex
PMS2	Postmeiotic segregation increased 2
PNET	Primitive neuroectodermal tumor
POLR2A	RNA polymerase II subunit A
Poly-ICLC	Polyinosinic-polycytidylic acid stabilized by polylysine and carboxymethylcellulose
PR	Partial response
PRAME	Melanoma antigen preferentially expressed in tumors
PRiME	PEP-CMV in Recurrent Medulloblastoma/Malignant Glioma
PROCAL	ProteomeTools Calibration Standard
PSM	Peptide spectrum match
PTCH1	Protein patched homolog 1
PTEN	Phosphatase and tensin homolog
PTM	Post-translational modification
PTPRZ	Receptor-type tyrosine-protein phosphatase zeta
RAD54B	DNA repair and recombination protein RAD54B
RasGAP	Ras GTPase activating protein
RFTN2	Raftlin-2
RIN1	Ras and Rab interactor 1
RL7A	60S ribosomal protein L7a
RPKM	Reads per kilobase per million mapped reads
rpm	Revolutions per minute
RR	Radiological response

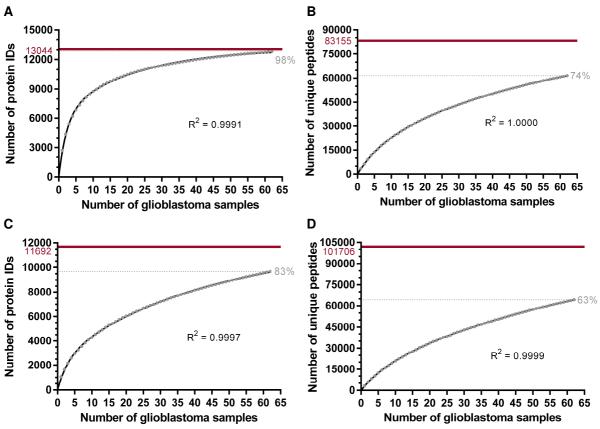
RT	Retention time
S	Svedberg unit
S.C.	Subcutaneous
S/N	Signal-to-noise ratio
SD	Stable disease
SE6L1	Seizure 6-like protein
SH2	Src homology 2
SHH	Sonic Hedgehog
SIA8E	Alpha-2,8-sialyltransferase 8E
Siglec-15	Sialic acid-binding immunoglobulin-like lectin 15
siRNA	Small interfering RNA
SMARCA4	ATP-dependent helicase SMARCA4
SMARCB1 / SMARCE1	SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B / E member 1
SMC4	Structural maintenance of chromosomes protein 4
SMO	Smoothened homolog
SNV	Single nucleotide variant
SO6A1 / CT48	Solute carrier organic anion transporter family member 6A1
SPA17 / CT22	
	Sperm autoangiogenic protein 17
SUFU	Suppressor of fused homolog
SV40	Simian virus 40
SYCP1 / CT8	Synaptonemal complex protein 1
T255A	Transmembrane protein 255A
ТАА	Tumor-associated antigen
TACC3	Transforming acidic coiled-coil-containing protein 3
TAP	Transporter associated with antigen processing
TCF4	Transcription factor 4
TCR	T-cell receptor
TERT	Telomerase reverse transcriptase
TET2	Tet methylcytosine dioxygenase 2
TFA	Trifluoroacetic acid
TGFB2	Transforming growth factor beta-2 proprotein
TGF-β	Transforming growth factor β
Th cell	CD4⁺ T helper cell
Th1 / Th2	Type 1 / Type 2 CD4⁺ T helper cell
TIGIT	T-cell immunoglobulin and ITIM domain
TILs	Tumor-infiltrating lymphocytes
TIM-3	T-cell immunoglobulin and mucin-domain containing-3
TLR1/2/3/7/8/9	Toll-like receptor 1/2/3/7/8/9
TM231	Transmembrane protein 231
ТМЕ	Tumor microenvironment
TMZ	Temozolomide
TN-C	Tenascin C
TNF / TNF-α	Tumor necrosis factor / alpha
TP53	Tumor suppressor p53
TRAF7	TNF receptor-associated factor 7
TRAIL	Tumor necrosis factor-related apoptosis inducing ligand
TRAILR	TRAIL receptor
Treg	CD4⁺CD25⁺ regulatory T cell
TRP2	Tyrosinase-related protein 2
TSA	
	Tumor-specific antigen
TTF	Tumor treating fields
TTP	Time to progression
TTRNA	Total tumor RNA
T-Vec	Talimogene laherparepvec
UBP11	Ubiquitin carboxyl-terminal hydrolase 11
US	United States
UTR	Untranslated region
VAF	Variant allele frequency
VEGF	Vascular endothelial growth factor
VEGFR	Vascular endothelial growth factor receptor
VISTA	V-domain immunoglobulin suppressor of T-cell activation
VP13B	Vacuolar protein sorting-associated protein 13B

WHO	World Health Organization
Wnt	Wingless and Int-1
WT	Wild-type
WT1	Wilms' tumor gene 1
XAGE3 / CT12.3	X antigen family member 3
xALT	Ex vivo expanded Autologous Lymphocyte Transfer
ZIC1	Zinc finger protein ZIC 1
ZMYM3	Zinc finger MYM-type protein 3
ZNF3	Zinc finger protein 3

Supplementary Figures and Tables


Supplement of CHAPTER 2

Supplementary Table 1. HLA class I allotype and allele frequencies in the glioblastoma collective comprising n=40 patients. The top three ranking HLA-A, -B, and -C allotypes within the study cohort are marked in bold.


HLA allotype	Positive patients	Allele frequency	HLA allotype	Positive patients	Allele frequency
A*01:01	25%	14%	B*41:01	3%	1%
A*02:01	63%	40%	B*44:02	28%	14%
A*02:05	8%	4%	B*44:03	13%	6%
A*03:01	28%	15%	B*44:05	3%	1%
A*11:01	13%	6%	B*47:01	3%	1%
A*23:01	3%	1%	B*49:01	3%	1%
A*24:02	13%	8%	B*51:01	15%	8%
A*29:02	5%	3%	B*51:26	3%	1%
A*31:01	8%	4%	B*55:01	3%	1%
A*32:01	3%	1%	B*56:01	3%	1%
A*33:01	5%	3%	B*57:01	10%	5%
A*33:05	3%	1%	B*58:01	3%	1%
A*68:01	3%	1%	C*01:02	20%	10%
B*07:02	33%	19%	C*02:02	10%	5%
B*08:01	15%	8%	C*03:03	5%	3%
B*13:02	8%	4%	C*03:04	5%	3%
B*14:02	8%	4%	C*04:01	18%	9%
B*15:01	8%	4%	C*05:01	18%	9%
B*15:03	3%	1%	C*06:02	20%	10%
B*15:17	3%	1%	C*07:01	30%	15%
B*18:01	5%	3%	C*07:02	30%	18%
B*27:05	8%	4%	C*07:04	10%	5%
B*35:01	5%	3%	C*08:02	8%	4%
B*35:02	3%	1%	C*12:03	10%	5%
B*35:03	8%	4%	C*15:02	5%	3%
B*39:10	3%	1%	C*15:06	3%	1%
B*40:01	3%	1%	C*16:01	5%	3%
B*40:02	3%	1%			

frequency of positive glioblastoma patients [%]

0	32	64

Supplementary Figure 1. HLA class I allotype population coverage. Using the population coverage tool provided by the IEDB Analysis Resource, the world population coverage of the 55 distinct HLA-A, -B, and -C allotypes was calculated. The percentage of individuals positive for a specific number of HLA class I allotypes (max. of 6) is indicated by bar charts (associated with the left y-axis). The line diagram (associated with the right y-axis) shows the cumulative percentage of population coverage. The HLA class I allotypes of the glioblastoma cohort cover 99.95% of the world population (first diamond on line diagram counted from the left) meaning that only 0.05% of all individuals are negative for all HLA-A, -B, and -C allotypes included in the present study (first bar counted from the left). 92.17% of all individuals are positive for at least three HLA class I allotypes (third diamond on line diagram counted from the left).

Supplementary Figure 2. Saturation analysis for the identification of HLA-presented antigens and peptides in glioblastoma tissue. For each source count, the mean number of (A) HLA class Ipresented antigens, (B) HLA class I ligands, (C) HLA class II-presented antigens, and (D) HLA class II-restricted peptides was calculated by 1,000 random samplings. Using non-linear regression,

exponential functions with a forced y-intercept of 0 (internal data created by Daniel Kowalewski at the Department of Immunology, University of Tübingen indicate that subjecting cell-free lysis buffer to HLA-IP does not result in peptide identifications) were fitted. For all models, the goodness of fit was in the uppermost range ($R^2 = 0.9991$, $R^2 = 1.0000$, $R^2 = 0.9997$ and $R^2 = 0.9999$). Based on these curves, the maximum attainable number of distinct source proteins and peptides was estimated (highlighted as solid lines). With the available number of 62 glioblastoma samples, 98% or 83% of the estimated maximum attainable amount of distinct HLA class I- and II-presented proteins as well as 74% or 63% of the estimated maximum attainable amount of distinct HLA class I- or II-restricted peptides had been identified, respectively.

Supplementary Table 2. Glioblastoma-associated HLA class I- and II-presented antigens identified on both primary and recurrent tumors of at least five different patients. GTEx profiles were assessed from all available datasets excepting EBV-transformed lymphocytes and cultured fibroblasts. Glioblastoma-exclusive antigens with a brain-specific expression profile > 10 TPM were not reported (HLA class I: n=29; HLA class II: n=6) as candidate targets. Color codes were defined as follows: ■ < 10 TPM in any tissue, ♦ > 10 TPM in testes and < 10 TPM in other tissues (CTA-like expression profile), = 10-20 TPM in any tissue, = 20-30 TPM in any tissue, = > 30 TPM in any tissue. The number of positive tumors other than glioblastoma was based on n=824 HLA class I and n=585 HLA class II peptidome datasets. HLA restrictions not passing manual assessment as quality control as well as one highly repetitive sequence annotated to IGFBP2 are indicated in italic. These peptides were excluded from downstream analyses such as calculation of peptides matching per patient worldwide. HLA class II-presented proteins neither identified with peptides exceeding a length of twelve AA nor with different sequences across patients were not considered for this listing of candidate target antigens. NOP16, ESCO1, MFHAS1, TRIM58, CDC26, ONECUT1, AFTPH, and RBFA were detected with only one HLA class II peptide sequence across all patients. Frequencies of positive tumors are given separately for n=38 primary (P) and n=24 recurrent (R) glioblastomas.

Antigen	Frequency of positive tumors	Peptide sequence	HLA restriction	UniProt accession GTEx profile	Positive non-GBM tumors
Glioblastoma-associated HI	A class I antigens				
Protein TANC2 (TANC2) 1 peptide multi-maps to non- GBM-exclusive TANC1 (Q9C0D5)	<u>50% P / 38% R</u> GBM3P GBM4P GBM4R GBM5P	ALMDKEGLTAL DEHIFQAI APYRPPDISL APYRPPDISL GIIATLTSY YAGESSKEL YSENVERTKY	A*02:01 B*18:01 B*07:02 B*07:02 B*15:01 C*03:03 A*01:01	Q9HCD6 -	62
	GBM5R GBM6P	GIIATLTSY AIISRLVAL LVPEFVHNV MKFPTQSSF	B*15:01 A*02:05 A*02:05 B*15:03		
	GBM7P GBM8P GBM9P	APYRPPDISL TTESVFVGR AIISRLVAL DLQAYILHR	B*07:02 A*68:01 B*08:01 A*33:05		
	GBM10R GBM11P	ALMDKEGLTAL APYRPPDISL RPSQGLPVI ALMDKEGLTAL	A*02:01 B*07:02 B*07:02 A*02:01		
		LVPEFVHNV	A*02:01; A*02:05		
	GBM12R GBM13P	GIIATLTSY AIISRLVAL	B*15:01 A*02:01; B*08:01		
	GBM16P	AIISRLVAL APYRPPDISL RPSQGLPVI	B*08:01 B*07:02 B*07:02		
	GBM16R	AIISRLVAL APYRPPDISL	B*08:01 B*07:02		
	GBM17R	NEAEFHKPDY SESGLTPLGY	B*44:03 B*44:03		
	GBM18R	AIISRLVAL APYRPPDISL	B*08:01 B*07:02		
	GBM22P GBM22R ZH613	SEIQNNISL SEIQNNISL LVPEFVHNV	B*40:01 B*40:01 A*02:05		

	ZH617	AIISRLVAL	A*02:01;		
		YSENVERTKY	B*08:01 A*01:01		
	ZH631	GQQQGVFKK	A*11:01		
	711054	KMIGKFPSW	A*32:01		
	ZH654	RTLPVAQAY YSENVERTKY	B*57:01 A*01:01		
	ZH678	GQQQGVFKK	A*11:01		
		NEAEFHKPDY	B*44:03		
	ZH681	ALMDKEGLTAL RTLPVAQAY	A*02:01 B*57:01		
	ZH753	AIISRLVAL	A*02:01;		
			B*08:01		
	ZH761 ZH802	NEAEFHKPDY DLQAYILHR	B*44:02 A*33:01		
Fatty acid 2-hydroxylase	2002 32% P / 63% R	DEQATIENT	A 33.01	Q7L5A8 🗖	13
(FA2H)	GBM2P	APAPPPAASF	B*07:02		15
	GBM2R	APAPPPAASF	B*07:02		
	GBM4P	RLFTSFTTEY APAPPPAASF	B*15:01 B*07:02		
	GBM4R	APAPPPAASF	B*07:02		
		APFDGSRLVF	B*07:02		
	GBM5P GBM5R	HMKPPSDSY HMKPPSDSY	B*15:01 B*15:01		
	GDIVION	RLFTSFTTEY	B*15:01		
	GBM6R	APAPPPAASF	B*35:01		
		APFDGSRLVF	B*35:01		
		FAQGNVRLF LPEAVGGTVF	C*12:03 B*35:01		
	GBM7P	APAPPPAASF	B*07:02		
		FAQGNVRLF	C*02:02		
	GBM7R GBM10R	APAPPPAASF APAPPPAASF	B*07:02 B*07:02		
	0.2	APFDGSRLVF	B*07:02		
	GBM11R	APAPPPAASF	B*07:02		
	GBM12R	APAPPPAASF APFDGSRLVF	B*35:01 B*35:01		
		HMKPPSDSY	B*15:01		
		LPEAVGGTVF	B*35:01		
	GBM16P	SPHKGSYLY APAPPPAASF	B*35:01 B*07:02		
	GBM16R	APAPPPAASF	B*07:02		
	0014170	APFDGSRLVF	B*07:02		
	GBM17R GBM18R	RTFAQGNVRLF APAPPPAASF	B*57:01 B*07:02		
	GBM22R	FAQGNVRLF	C*12:03		
	GBM23R	LPEAVGGTVF	B*35:02;		
	ZH613	RTFAQGNVR	<i>C*04:01</i> A*31:01		
	ZH654	RTFAQGNVR	A*31:01		
		RTFAQGNVRLF	B*57:01		
	ZH681	APAPPPAASF RTFAQGNVRLF	B*07:02 B*57:01		
	ZH753	FAHQKSGF	B*08:01;		
			C*15:02		
	ZH757 ZH761	APAPPPAASF FAQGNVRLF	B*07:02 C*16:01		
	ZH784	APAPPPAASF	B*07:02		
	ZH791	APAPPPAASF	B*07:02		
Postrophin 1 (PEST1)	ZH802	RTFAQGNVR	A*31:01	O76090 =	5
Bestrophin-1 (BEST1)	<u>24% P / 54% R</u> GBM2P	SPTNIHTTL	B*07:02	076090	5
	GBM2R	SPTNIHTTL	B*07:02		
	CDM4D		B*15:01		
	GBM4P GBM4R	SPTNIHTTL SPTNIHTTL	B*07:02 B*07:02		
	GBM5R	TQVVTVAVY	B*15:01		
	GBM7P	SPTNIHTTL	B*07:02		
	GBM7R GBM9R	SPTNIHTTL DAHAGIIGR	B*07:02 A*33:05		
	GBM10P	SPTNIHTTL	B*07:02		
	GBM10R	SPTNIHTTL	B*07:02		
	GBM11R GBM14R	SPTNIHTTL DAHAGIIGR	B*07:02 A*33:01		
	GBM16P	SPTNIHTTL	B*07:02		
	GBM16R	SPTNIHTTL	B*07:02		
	GBM18R GBM22R	SPTNIHTTL SPTNIHTTL	B*07:02 B*35:03		
	ZH616	SPTNIHTTL	B*07:02		
	ZH681	SPTNIHTTL	B*07:02		

	ZH753	ALMEHPEVSQV	A*02:01		
	ZH757	ALMEHPEVSQV	A*02:01		
		SPTNIHTTL	B*07:02		
	ZH784	SPTNIHTTL	B*07:02		
	ZH802		A*33:01		
	0.40% D / 000% D	RYANLGNVLILR	A*31:01		•
Oligodendrocyte transcription			D*07.00	Q7RTU3 🔳	3
factor 3 (OLIG3) Peptides multi-map to GBM-	GBM2R GBM4P	MPYAHGPSV MPYAHGPSV	B*07:02 B*07:02		
exclusive OLIG2 (Q13516)	GBM4R	MPYAHGPSV	B*07:02		
with brain-associated	GBM6R	MPYAHGPSV	B*35:01		
expression	GBM7P	MPYAHGPSV	B*07:02;		
	001/00		B*56:01		
	GBM7R	MPYAHGPSV	B*07:02; B*56:01		
	GBM8P	EVMPYAHGPSVR	A*68:01		
	GBM10R	MPYAHGPSV	B*07:02		
	GBM16P	MPYAHGPSV	B*07:02		
	GBM16R GBM18R	MPYAHGPSV MPYAHGPSV	B*07:02 B*07:02		
	ZH613	MPYAHGPSV	B*51:01		
	ZH631	MPYAHGPSV	B*51:01		
	ZH645	MPYAHGPSV	B*51:01		
	ZH654	MPYAHGPSV	B*51:01		
	ZH678	MPYAHGPSV	B*51:01		
	ZH681	MPYAHGPSV	B*07:02		
	ZH753	MPYAHGPSV	B*51:01		
	ZH757	MPYAHGPSV	B*07:02		
	ZH761	LARNYILML MPYAHGPSV	C*16:01 B*51:26		
	ZH829	MPYAHGPSV	B*55:01		
Transcription factor SOX-	34%/26% P		2 00.01	P48431 🔳	5
2/21 (SOX2/21)	29%/21% R			Q9Y651	3
4 peptides multi-map to	GBM14R	DEAKRLRAL (SOX1/2)	B*14:02		•
GBM-exclusive SOX1	GBM14R	KMAQENPKM (SOX1/2/14/21)	A*02:01		
(O00570) and to non-GBM-	GBM20R	SEISKRLGAEW (SOX1/2/14/21)	B*44:02		
exclusive SOX14 (O95416)	ZH654	ISKRLGAEW (SOX1/2/14/21)	B*57:01		
	ZH681	ISKRLGAEW (SOX1/2/14/21)	B*57:01		
	GBM4P	KMAQENPKM (SOX1/2/14/21)	A*02:01		
	GBM4P GBM4R	YPQHPGLNA (SOX2) YPQHPGLNA (SOX2)	B*07:02 B*07:02		
	GBM5P	AQMQPMHRY (SOX2)	B*15:01		
	GBM6P	AQMQPMHRY (SOX2)	B*15:03		
	GBM6R	AQMQPMHRY (SOX2)	B*15:03		
	GBM7P	HPGLNAHGA (SOX2)	B*56:01		
		QPMHRYDVSA (SOX2)	B*07:02;		
			B*56:01		
		YPQHPGLNA (SOX2)	B*07:02; B*56:01		
	GBM7R	QPMHRYDVSA (SOX2)	B*07:02;		
			B*56:01		
		YPQHPGLNA (SOX2)	B*07:02;		
			B*56:01		
	ZH616	YPQHPGLNA (SOX2)	B*07:02		
	ZH681	YPQHPGLNA (SOX2)	B*07:02		
	ZH757 ZH829	YPQHPGLNA (SOX2) YPQHPGLNA (SOX2)	B*07:02 B*55:01		
Uncharacterized protein	<u>29% P / 29% R</u>		D 33.01	A6NCS6	8
C2orf72 (C2orf72)	GBM2R	RPAEPPFQAL	B*07:02		0
	GBM4P	IRSPLVFVL	C*07:02		
	0.2	RPAEPPFQAL	B*07:02		
	GBM4R	IRSPLVFVL	C*07:02		
		RPAEPPFQAL	B*07:02		
	GBM7P	RPAEPPFQAL	B*07:02		
	GBM7R	RPAEPPFQAL	B*07:02		
	GBM10R GBM11P	RPAEPPFQAL RPAEPPFQAL	B*07:02 B*07:02		
	GBM13P	IRSPLVFVL	C*06:02;		
	abiirioi		C*07:01		
	GBM16P	IRSPLVFVL	C*07:01;		
			C*07:02		
		RPAEPPFQAL	B*07:02		
	GBM16R	IRSPLVFVL	C*07:01;		
			C*07:02		
	GBM18P	RPAEPPFQAL RPAEPPFQAL	B*07:02 B*07:02		
	GBM18R	IRSPLVFVL	C*07:01;		
			C*07:02		
		RPAEPPFQAL	B*07:02		
	ZH616	RPAEPPFQAL	B*07:02		

Transmembrane protein 255A (TMEM255A)	ZH654 ZH681 ZH720 ZH757 ZH784 <u>34% P / 17% R</u>	IRSPLVFVL RPAEPPFQAL RPAEPPFQAL RPAEPPFQAL RPAEPPFQAL	C*06:02 B*07:02 B*39:10 B*07:02 B*07:02	Q5JRV8 <mark>=</mark>	6
235A (TMEM255A)	GBM3P GBM4P GBM6P	YAHPQVASY YYPGVILGF ATILNIVGL	C*02:02 C*07:02 A*02:05; C*12:02		
	GBM7P GBM9P GBM14R GBM16P GBM16R GBM19P GBM22P GBM22R GBM23P GBM23R ZH613	YAHPQVASY YAHPQVASY DLKPLYANR DLKPLYANR YYPGVILGF YYPGVILGF YYPGVILGF YYPGVILGF YYPGVILGF YYPGVILGF YYPGVILGF ATILNIVGL	C*12:03 C*12:03 C*02:02 A*33:05 A*33:01 C*07:02 C*07:02 A*24:02 A*24:02 A*24:02 A*24:02 A*23:01 A*23:01 A*23:01 A*02:05; C*07:01		
	ZH750 ZH802	YYPGVILGF DLKPLYANR	A*24:02 A*33:01		
G patch domain-containing protein 11 (GPATCH11)	ZH810 <u>34% P / 17% R</u> GBM3P GBM6P GBM10R GBM11P	YYPGVILGF YMSDSFINV YMSDSFINV YMSDSFINV YMSDSFINV	A*24:02 A*02:01 A*02:05 A*02:01 A*02:01; A*02:05	Q8N954 🗕	15
	GBM11R	YMSDSFINV	A*02:01; A*02:05		
	GBM13P GBM13R GBM14R GBM15P	YMSDSFINV YMSDSFINV YMSDSFINV AEEKAAEQF	A*02:01 A*02:01 A*02:01 B*44:02; B*44:03		
	GBM16P GBM23P ZH617 ZH645 ZH681 ZH757 ZH829	NLKNRQKSL RDIGLKNAL YMSDSFINV YMSDSFINV YMSDSFINV YMSDSFINV AEEKAAEQF	B*08:01 B*47:01 A*02:01 A*02:01 A*02:01 A*02:01 B*44:05		
Collagen alpha-2(IX) chain (COL9A2)	24% P / 25% R GBM4P GBM4R GBM7P GBM10R GBM10R GBM16P GBM16R GBM18R ZH613 ZH654	SPRSLLVLLQ SPRSLLVLLQ SPRSLLVLLQ SPRSLLVLLQ SPRSLLVLLQ SPRSLLVLLQ SPRSLLVLLQ SPRSLLVLLQ TASPRSLLV TASPRSLLV	B*07:02 B*07:02 B*07:02 B*07:02 B*07:02 B*07:02 B*07:02 B*07:02 B*51:01 B*51:01; C*15:06	Q14055 •	17
	ZH678 ZH681 ZH753 ZH757 ZH784	TASPRSLLV SPRSLLVLLQ TASPRSLLV KMLQEQLAEV SPRSLLVLLQ SPRSLLVLLQ	C*15:02 B*07:02 C*15:02 A*02:01 B*07:02 B*07:02		
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2 (NDUFA4L2)	26% P / 8% R GBM18P GBM18R GBM20P GBM20R ZH613 ZH631	ASLGARFYR GSAALYLLR GASLGARFY GASLGARFYR ASLGARFYR DQYKFLAV DQYKFLAV	A*11:01 A*11:01 A*29:02 A*29:02 A*31:03 B*51:01 B*51:01	Q9NRX3	68
	ZH645 ZH654 ZH678 ZH761 ZH791 ZH802	DQYKFLAV DQYKFLAV DQYKFLAV DQYKFLAV GSAALYLLR AGASLGARFYR	B*51:01 B*51:01 B*51:01 B*51:01 A*51:01 A*11:01 A*31:01		

Protein Wnt-5a (WNT5A)	<u>21% P / 13% R</u>			P41221 🗖	42
	GBM2P	AMSSKFFLV	A*02:01		
	GBM3P	AMSSKFFLV	A*02:01		
	GBM10R	AMSSKFFLV	A*02:01		
	GBM11R	AMSSKFFLV	A*02:01		
	GBM14R	AMSSKFFLV	A*02:01		
	GBM20P	AMSSKFFLV	A*02:01		
	GBM20P GBM21P	AMSSKFFLV	A*02:01		
	-				
	ZH616	AMSSKFFLV	A*02:01		
	ZH617	AMSSKFFLV	A*02:01		
	ZH681	AMSSKFFLV	A*02:01		
	ZH757	AMSSKFFLV	A*02:01		
Immunoglobulin superfamily	<u>18% P / 17% R</u>			Q5DX21 🗖	3
member 11 (IGSF11)	GBM4P	SPQPRNIGL	B*07:02		
		VPAQSRAGSLV	B*07:02		
	GBM4R	SPQPRNIGL	B*07:02		
	GBM7P	SPQPRNIGL	B*07:02		
	GBM10R	VPAQSRAGSLV	B*07:02		
	GBM16R	SPQPRNIGL	B*07:02		
	GBM17R	EEGIPRPTY	B*44:03		
	ZH645	SESPGSIQV	B*49:01		
	ZH654	LPDIGGRNI	B*51:01		
	ZH678	EEGIPRPTY	B*44:03		
	2.107.0	SEEGIPRPTY	B*44:03		
	ZH761	SEEGIPRPTY	B*44:02		
	ZH802	KTLVVTANR	A*31:01		
			A 31.01	0011750	
Mitochondrial 39S ribosomal	<u>18% P / 17% R</u>			Q9NZE8 🗖	15
protein L35 (MRPL35)	GBM3P	YVDDPYQKY	A*01:01		
	GBM5P	YVDDPYQKY	A*01:01;		
			B*15:01		
	GBM5R	YVDDPYQKY	A*01:01;		
			B*15:01		
	GBM9P	YVDDPYQKY	A*01:01		
	GBM9R	YVDDPYQKY	A*01:01		
	GBM13P	YVDDPYQKY	A*01:01		
	GBM13R	YVDDPYQKY	A*01:01		
	GBM16P	YVDDPYQKY	A*01:01		
	GBM16R	YVDDPYQKY	A*01:01		
	ZH617	YVDDPYQKY	A*01:01		
	ZH654	YVDDPYQKY	A*01:01		
Transmombrane protein 974			/ 01.01		22
Transmembrane protein 87A	<u>18% P / 13% R</u>		D+07.00	Q8NBN3 🗖	33
(TMEM87A)	GBM7P	HPSPLSFFSA	B*07:02;		
			B*56:01		
	GBM7R	HPSPLSFFSA	B*07:02;		
			B*56:01		
	GBM15P	AELLSAVKR	B*44:03		
	GBM17R	FKAEEVELY	B*44:03 C*06:02		
			B*44:03		
	GBM17R	FKAEEVELY DAPYIFIV DAPYIFIV	B*44:03 C*06:02		
	GBM17R ZH613	FKAEEVELY DAPYIFIV	B*44:03 C*06:02 B*51:01		
	GBM17R ZH613 ZH645	FKAEEVELY DAPYIFIV DAPYIFIV	B*44:03 C*06:02 B*51:01 B*51:01		
	GBM17R ZH613 ZH645 ZH654	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01		
	GBM17R ZH613 ZH645 ZH654 ZH678	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01		
	GBM17R ZH613 ZH645 ZH654 ZH678 ZH753	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:01		
	GBM17R ZH613 ZH645 ZH654 ZH678 ZH753	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26;		
85/88 kDa calcium-	GBM17R ZH613 ZH645 ZH654 ZH654 ZH753 ZH761	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01	Q60733 •	3
85/88 kDa calcium- independent phospholipase	GBM17R ZH613 ZH645 ZH654 ZH678 ZH753 ZH761 <u>18% P / 13% R</u>	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26	O60733 •	3
independent phospholipase	GBM17R ZH613 ZH645 ZH654 ZH678 ZH753 ZH761 <u>18% P / 13% R</u> GBM3P	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01	O60733 •	3
	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761 <u>18% P / 13% R</u> GBM3P GBM7P	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01	O60733 •	3
independent phospholipase	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761 <u>18% P / 13% R</u> GBM3P GBM7P GBM7R	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01	O60733 •	3
independent phospholipase	GBM17R ZH613 ZH645 ZH654 ZH758 ZH753 ZH761 <u>18% P / 13% R</u> GBM3P GBM7P GBM7P GBM7R GBM13R	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01	O60733 •	3
independent phospholipase	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761 <u>18% P / 13% R</u> GBM3P GBM7P GBM7P GBM7R GBM13R GBM19P	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01	O60733 ■	3
independent phospholipase	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761 <u>18% P / 13% R</u> GBM3P GBM7P GBM7R GBM13R GBM19P GBM22P	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI LPFYESSPQVL	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 B*35:03	O60733 -	3
independent phospholipase	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761 <u>18% P / 13% R</u> GBM3P GBM7P GBM7R GBM13R GBM13R GBM19P GBM22P ZH750	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI LPFYESSPQVL ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 B*35:03 A*02:01	O60733 -	3
independent phospholipase	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761 18% P / 13% R GBM3P GBM7P GBM7P GBM7R GBM13R GBM13R GBM19P GBM22P ZH750 ZH750 ZH757	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI LPFYESSPQVL ALWETEVYI ALWETEVYI ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 B*35:03 A*02:01 A*02:01	O60733 •	3
independent phospholipase	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761 <u>18% P / 13% R</u> GBM3P GBM7P GBM7R GBM13R GBM19P GBM22P ZH750 ZH757 ZH784	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI LPFYESSPQVL ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 B*35:03 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01	O60733 •	3
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH654 ZH758 ZH753 ZH761 18% P / 13% R GBM3P GBM7P GBM7P GBM7P GBM7R GBM13R GBM19P GBM22P ZH750 ZH757 ZH784 ZH829	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI LPFYESSPQVL ALWETEVYI ALWETEVYI ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 B*35:03 A*02:01 A*02:01		
independent phospholipase	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761 18% P / 13% R GBM3P GBM7P GBM7P GBM7P GBM7P GBM7P GBM13R GBM19P GBM22P ZH750 ZH750 ZH757 ZH784 ZH829 18% P / 13% R	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01	O60733 • B4DS77 •	3
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI LPFYESSPQVL ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01		
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 B*35:03 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01		
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 B*35:03 A*02:01 B*35:03 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01		
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH645 ZH654 ZH753 ZH761 18% P / 13% R GBM3P GBM7P GBM7R GBM13R GBM19P GBM22P ZH750 ZH757 ZH784 ZH829 18% P / 13% R GBM7P GBM7P GBM10R GBM16P GBM16R	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI KVNDDFYTK KVNDDFYTK KVNDDFYTK	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26 C*16:01 B*51:26 A*02:01		
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*03:01 A*03:01;		
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI KVNDDFYTK KVNDDFYTK KVNDDFYTK KVNDDFYTK	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*03:01 A*03:		
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH645 ZH654 ZH753 ZH761 18% P / 13% R GBM3P GBM7P GBM7R GBM13R GBM19P GBM22P ZH750 ZH757 ZH784 ZH829 18% P / 13% R GBM7P GBM7P GBM10R GBM16P GBM16R	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI KVNDDFYTK KVNDDFYTK KVNDDFYTK	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 B*35:03 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01; A*11:01 A*03:01; A*03:01;		
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI KVNDDFYTK KVNDDFYTK KVNDDFYTK KVNDDFYTK	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*03:01 A*03:		
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI KVNDDFYTK KVNDDFYTK KVNDDFYTK KVNDDFYTK	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 B*35:03 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01; A*11:01 A*03:01; A*03:01;		
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI KVNDDFYTK KVNDDFYTK KVNDDFYTK KVNDDFYTK	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*11:01 A*11:01		
independent phospholipase A2 (PLA2G6)	GBM17R ZH613 ZH645 ZH654 ZH753 ZH761	FKAEEVELY DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV DAPYIFIV AAWLQVLPV DAPYIFIV ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI ALWETEVYI KVNDDFYTK KVNDDFYTK KVNDDFYTK KVNDDFYTK KVNDDFYTK	B*44:03 C*06:02 B*51:01 B*51:01 B*51:01 B*51:01 B*51:26; C*16:01 B*51:26 C*16:01 B*51:26 A*02:01 A*03:01; A*11:01 A*11:01 A*11:01		

Laucine -ich nepset neuronal 2 peptides mult-mag to non- GBM occlassive LRN1 (GBUXKS) ISE <u>P. / 13% R</u> GBM R GTESLPNL GTESLPNL GBM R A72.05 C12.03 C12.03 GTESLPNL		ZH791	KVNDDFYTK	A*03:01; A*11:01		
CBM socials/constraints CBMSR GTIESLPNL C12:03 C12:03 C12:03 C12:03 C12:03 C12:03 <t< td=""><td></td><td></td><td>GTIESLPNL</td><td></td><td>Q9H3W5 🗖</td><td>5</td></t<>			GTIESLPNL		Q9H3W5 🗖	5
GBMSP DMM.FR.HIVL P33.05 GBM16P DMFL.RIHVL B96.01 GBM16P DMFL.RIHVL B96.01 GBM16P LYPP.INLW A24.02 GBM16P LYPP.INLW A24.02 GBM27R LYPP.INLW A24.02 ZH617 DMPL.RIHVL A26.01 Protein pictor GBM2R LYPP.INLW A24.02 GBM28R LYPP.INLW A24.02 B96.01 Poplides multima to non- GBM-GAUsive Gubiecorin GBM13R VLTDITEAI A102.01 Jerkinse 17 (2000) GBM17R VLTDITEAI A102.01 Jerkinse 17 (2000) GBM14R VLTDITEAI A102.01 Jerkinse 17 (2000) ZH757 VLTDITEAI A102.01 Jerkinse 17 (2000) ZH757 VLTDITEAI A102.01 Jerkinse 17 (2000) ZH661 <td>GBM-exclusive LRRN1</td> <td>GBM6R</td> <td>GTIESLPNL</td> <td>A*02:05;</td> <td></td> <td></td>	GBM-exclusive LRRN1	GBM6R	GTIESLPNL	A*02:05;		
GBM16P DMFLRIHVL B*08.01 GBM16P LVPPLINLW A*24.02 A*24.02 GBM22P LVPPLINLW A*24.02 GBM16P UPDTEAL A*22.01 GBM22P TATEST A*22.01 GBM16P VLTDITEAL A*22.01 GBM16P VLTDITEAL A*22.01 GBM22P TATESFECVL B*35.02 GBM23P TATESFECVL B*35.02 ZH615 VLTDITEAL A*02.01 GBM23P TATESFECVL B*35.02 ZH631 VLTDITEAL A*02.01 ZH757 VLTDITEAL A*02.01 GBM23P TATESFECVL B*35.02 ZH616 VLTDITEAL A*02.01 GBM23P TATESFECVL B*35.02 GBM3P VLTDITEAL A*02.01 GBM4R RVX1SLYY A*03.01	(Q607K5)	GBM9P		A*33:05		
GBM22P 14617 LYPPLINL DMPLRIHVL A*24.02 A*24.02 B*0617 A*24.02 B*0617 Neuronal migration protein GBM.250(1) Peptides multi-map to non- GBM.350(1) GBM.15P UVDITEAI A*02.01; GBM.250(1) CF3.02 6 GBM.250(1) GBM.350		GBM16R GBM19P	DMPLRIHVL DMPLRIHVL LYPPLINLW	B*08:01 B*08:01 A*24:02		
ZH810 LYPPLINLW A*24:02 doublecontin (DCK) GBM 13P VLTDITEAI A*02:01; B*73:02 8 repides multi-map to non- GBM-socubsive doublecontin- like kinass 1/2 (DCLK1)2; O15075/GBN568) GBM 13P VLTDITEAI A*02:01; B*73:02 B*73:02		GBM22R	LYPPLINL	A*24:02 A*02:01;		
doublecontri (DCX) Peptides multi-map to non- GBM-seclusive doublecontin- (ike kinass 12 (DCLK1)2; O15075/GRN568)		ZH810	LYPPLINLW			
like kinase 1/2 (DCLK1/2; O15075/0280569) GBM14R (GBM23P (GBM23P) VLTDITEAI (TAUSPECVL) A*02-01 (B3:50-02) (GBM23P) Protein pitchfork (PIFO) GBM23P (GBM23P) TAHSFEOVL (TAHSFEOVL) B*35.02 (B3:50-02) (GBM23P) CATACATACATACATACATACATACATACATACATACAT	doublecortin (DCX) Peptides multi-map to non-	GBM10R		A*02:01;	O43602 ∎	8
GBM14R VLTDITEAI A12201 GBM23P TAHSFEOVL B'35.02 GBM23P TAHSFEOVL B'35.02 GBM23P VLTDITEAI A102.01 ZH635 VLTDITEAI A102.01 ZH757 VLTDITEAI A102.01 GBM3P VRFKPIOK B'27.05 GBM4R RVAYLSLYY A103.01 GBM16P RVAYLSLYY A103.01 GBM16P RVAYLSLYY A103.01 GBM17R TOISFSEAF B'15.01 GBM3P TOISFSEAF B'15.01 GBM3P DFGAVRVGR A'33.05 GBM17B LTEEFRLWY	like kinase 1/2 (DCLK1/2;	GBM13R	VLTDITEAI	A*02:01;		
GBM29R TAHSFEOVL B*35:02 2H645 VLTDITEAI A*02:01 2H757 VLTDITEAI A*02:01 2H761 VLTDITEAI A*02:01 Protein pitchfork (PIFO) 13% P / 17% R B*27:05 GBM3P VRFKPIOK B*27:05 GBM4P RVAYLSLYY A*03:01 GBM16P RVAYLSLYY A*03:01 GBM17P RVAYLSLYY A*03:01 GBM16P RVAYLSLYY A*03:01 GBM17P RVAYLSLYY A*03:01 GBM20P TOISFSEAF B*15:01 GBM3P DFGAVRVGR A*33:05 GBM18P DFGAVRVGR A*33:01 GBM18P DFGAVRVGR A*33:01 GBM4P KPRPPPSOL B*07:02 GBM4P	,					
ZH681 ZH757 VLTDITEAI VLTDITEAI A*02:01 A*02:01 ZH761 Constant Protein pitchfork (PIFO) Image: Constant Consta						
ZH757 ZH761 VLTDITEAI VLTDITEAI A'02:01 A'02:01 Protein pitchfork (PIFO) 13% P / 17% B GBM3P 08TCI5 1 GBM4P RVAFKPIOKEM B'27:05 B'27:05 1 GBM4R RVAVLSLYY A'03:01 GBM16R RVAVLSLYY A'03:01 A'03:01 GBM16R RVAVLSLYY A'03:01 GBM16R RVAVLSLYY A'03:01 GBM2P ZH616 AELSTDKDF B'44:02 ZH617 AELSTDKDF B'44:02 GBM5R ZH616 AELSTDKDF B'44:02 GBM5R TOISFSEAF B'15:01 GBM5R 17 GBM6P DFGAVRVGR A'33:05 GBM17R C'16:02 C'16:02 086TW2 1 17 GBM6P DFGAVRVGR A'33:05 GBM13R C'16:02 C'16:02 066W5 14:02 JH6P DFGAVRVGR A'33:05 GBM14R C'16:02 07:02 07:02 SAC3 domain-containing protein 1 (SAC3D1) GBM4P KPRPPPSOL B'07:02 GBM10R KPRPPPSOL B'07:02 GBM10R KPRPPPSOL B'07:02 GBM10R KPRPPPSOL B'07:02 GBM10R C'06:02 2 GBM10R KPRPPPSOL <td></td> <td>ZH645</td> <td>VLTDITEAI</td> <td>A*02:01</td> <td></td> <td></td>		ZH645	VLTDITEAI	A*02:01		
ZH761 VLTDITEAI A*02:01 Protein pitchfork (PIFO) 13% P / 17% B GBM3P 08TCI5 1 GBM3P VRFKPIOK WRFKPIOKEM B*27:05 WRFKPIOKEM 10 GBM4R RVAVLSLYY A*03:01 A*03:01 GBM16P A*03:01 RVAVLSLYY 10 GBM16P RVAVLSLYY A*03:01 GBM16P RVAVLSLYY A*03:01 A*03:01 GBM17R 10 GBM16P RVAVLSLYY A*03:01 GBM17R RVAVLSLYY A*03:01 A*03:01 GBM17R 10 VIncharacterized aarF 13% P / 17% R GBM5P TOISFSEAF B*15:01 GBM5P 17 domain-containing protein kinase 1 (ADCK1) 13% P / 17% R GBM3R TOISFSEAF B*15:01 GBM5P 17 GBM4P DFGAVRVGR A*33:05 GBM9R DFGAVRVGR A*33:05 GBM3R 16 GBM14B DFGAVRVGR A*33:01 GBM14B DFGAVRVGR A*33:01 GBM14B 14 GBM4P KPRPPSQL B*07:02 GBM16P RGAVRVGR A*33:01 GBM14B 14 GBM4P KPRPPPSQL B*07:02 GBM16P B*07:02 GBM16P B*07:02 GBM16P B*07:02 GBM16P 2 Contein'						
GBM3P VRFKPICK B*27.05 GBM4P RVAYLSLYY A'03.01 GBM4P RVAYLSLYY A'03.01 GBM1P RVAYLSLYY A'03.01 GBM1P RVAYLSLYY A'03.01 GBM1P RVAYLSLYY A'03.01 GBM1P RVAYLSLYY A'03.01 GBM17R RVAYLSLYY A'03.01 GBM20R AELSTDKDF B'44.02 ZH616 AELSTDKDF B'44.02 ZH617 AELSTDKDF B'44.02 Kinase 1 (ADCK1) GBM5P TOISFSEAF B'15.01 GBM9P DFGAVRVGR A'33.05 GBM18R LTEEFRLNY A'01.01 GBM18P LTEEFRLNY A'01.01 GBM18P LTEEFRLNY A'01.01 GBM4R KPRPPSOL B'07.02 GBM19P CFGAVRVGR B'07.02 GBM19P KPRPPPSOL B'07.02 GBM19P KPRPPPSOL B'07.02 GBM19P KPRPPPSOL B'07.02 GBM19P </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
GBM4P WFKPIOKEM B=27.05 GBM4P RVAYLSLYY A'03.01 GBM1P RVAYLSLYY A'03.01 GBM0P AELSTDKDF B'44.02 ZH616 AELSTDKDF B'44.02 ZH617 AELSTDKDF B'44.02 GBM5R TOISFSEAF B'15.01 GBM5R TOISFSEAF B'15.01 GBM5R D'FGAVRVGR A'33.05 GBM18P D'FGAVRVGR A'33.05 GBM18P L'TEEFRILNY A'01.01 GBM18P L'TEEFRILNY A'01.01 GBM18P L'TEEFRILNY A'01.01 GBM18P VPLPOISHL A'23.01 ZH602 D'FGAVRVGR A'33.06 GBM18P KPRPPPSQL B'07.02 GBM18P KPRPPPSQL B'07.02 GBM18P KPRPPPSQL	Protein pitchfork (PIFO)			B+07.05	Q8TCI5	1
GBM4P RVAYLSLYY A'03.01 GBM16P RVAYLSLYY A'03.01 GBM16P RVAYLSLYY A'03.01 GBM17R RVAYLSLYY A'03.01 GBM17R RVAYLSLYY A'03.01 GBM17R RVAYLSLYY A'03.01 GBM17R RVAYLSLYY A'03.01 GBM20R AELSTDKDF B'44.02 ZH617 AELSTDKDF B'44.02 ZH617 AELSTDKDF B'15.01 GBM5P TOISFSEAF B'15.01 GBM5P TOISFSEAF B'15.01 GBM9P DFGAVRVGR A'33.05 GBM18R LTEEFRLNY A'01.01 GBM18P TEEFRLNY A'01.01 GBM18P DFGAVRVGR A'33.05 GBM18P LTEEFRLNY A'01.01 GBM23P NYLPOISHL C'06.02 ZH802 D'GAVRVGR A'33.05 GBM18P KPRPPSOL B'07.02 GBM18R KPRPPSOL B'07.02 GBM4R KPRPPSOL		GBM3P				
GBM16P RVAYLSLYY A'03:01 GBM16R RVAYLSLYY A'03:01 GBM20R AELSTDKDF B'44:02 Harden B'44:02 B'44:02 Uncharacterized aarF 13% P / 17% B GBM5R CIOSSEAF domain-containing protein 13% P / 17% B B'44:02 17 domain-containing protein GBM5R TOISFSEAF B'15:01 GBM3P DFGAVRVGR A'33:05 17 GBM3P DFGAVRVGR A'33:05 16 GBM14R DFGAVRVGR A'33:05 16 GBM14R DFGAVRVGR A'33:05 17 GBM14R DFGAVRVGR A'33:05 17 GBM14R DFGAVRVGR A'33:05 14 GBM16P LTEEFRLNY A'01:01 14 GBM23P NYLPOISHL A'23:01 16 GBM4R KPRPPSQL B'07:02 14 GBM4R KPRPPSQL B'07:02 14 GBM4R KPRPPSQL B'07:02 16 <td></td> <td>GBM4P</td> <td></td> <td></td> <td></td> <td></td>		GBM4P				
GBM16R RVAYLSLYY A'03:01 GBM20R AELSTDKDF B'44:02; B'44:02 ZH616 AELSTDKDF B'44:02 ZH616 AELSTDKDF B'44:02 Juncharacterized aarF GBM5P TOISFSEAF B'15:01 GBMSP TOISFSEAF B'15:01 GBM5P GBMSP DFGAVRVGR A'33:05 A'33:05 GBM3R LTEEFRLNY A'01:01 A'33:05 GBM14R DFGAVRVGR A'33:05 C'06:02 GBM13R LTEEFRLNY A'01:01 C'06:02 JH602 DFGAVRVGR A'33:01 C'06:02 ZH602 DFGAVRVGR A'33:01 C'06:02 JH602 DFGAVRVGR B'07:02 A'6NKF1 14 SAC3 domain-containing TOS / 175 / 8 B'07:02 A'6NKF1 14 GBM4R KPRPPSOL B'07:02 B'07:02 B'07:02 B'07:02 GBM18R KPRPPSOL B'07:02 B'07:02 B'07:02 B'07:02 B'15:01 B'07:02 B'1						
GBM17R RVAVLSLYY A*03:01 GBM20R AELSTDKDF B*44:02 B*44:02 B*44:02 ZH616 AELSTDKDF B*44:02 Uncharacterized aarF 13% P / 17% R C086TW2 = 17 domain-containing protein GBM5R TQISFSEAF B*15:01 GBM9P DFGAVRVGR A*33:05 GBM9R DFGAVRVGR A*33:05 GBM13R LTEEFRLNY A*01:01 GBM2P DFGAVRVGR A*33:05 GBM14R DFGAVRVGR A*33:05 GBM17B LTEEFRLNY A*01:01 GBM2P DFGAVRVGR A*33:01 GBM14R DFGAVRVGR A*33:01 GBM2P LTEEFRLNY A*01:01 GBM2P RPRPPSOL B*07:02 ZH602 C*06:02 C*06:02 ZH602 GBM17P KPRPPPSOL B*07:02 GBM16R KPRPPPSOL B*07:02 GBM17P GBM16R KPRPPPSOL B*07:02 CH61 GBM16R KP						
ZH616 ZH617 AELSTDKDF B*44.02 Uncharacterized aarF 3% P / 17% R C86TW2 = 17 domain-containing protein GBMSP TQISFSEAF B*15.01 kinase 1 (ADCK1) GBMSR TQISFSEAF B*15.01 GBM9P DFGAVRVGR A*33.05 GBM18P DFGAVRVGR A*33.05 GBM18P DFGAVRVGR A*33.01 GBM18P LTEEFRLNY A*01.01 GBM18P DFGAVRVGR A*33.01 GBM18P DFGAVRVGR A*33.01 GBM2P DFGAVRVGR A*33.01 GBM2P DFGAVRVGR A*33.01 GBM2P DFGAVRVGR A*33.01 GBM2P DFGAVRVGR B*07.02 GBM4R KPRPPSQL B*07.02 GBM4P KPRPPSQL B*07.02 GBM10R KPRPPPSQL B*07.02 GBM10R KPRPPPSQL B*07.02 GBM18P KPRPPPSQL B*07.02 GBM18R KPRPPPSQL B*07.02 GBM16R		GBM17R				
ZH616 ZH617 ZH2ISTDKDF B*44:02 B*44:02 Uncharacterized aarF domain-containing protein kinase 1 (ADCK1) 13% P./17%, R GBMSP TOISFSEAF B*15:01 B*15:01 GBMSP 17 Minase 1 (ADCK1) 13% P./17%, R GBMSP TOISFSEAF B*15:01 B*15:01 GBMSP 17 GBMSP DFGAVRVGR A*33:05 GBM9P A*33:05 GBM9P A*33:01 GBM14R A*33:01 GBM14R A*33:01 GBM14R A*01:01 GBM14P LTEEFRLNY A*01:01 GBM12P A*08:02 A*06:02 A*06:02 ZH802 DFGAVRVGR A*33:01 GBM14P C*06:02 A*04:02 A*04:02 SAC3 domain-containing protein 1 (SAC3D1) 13% P./17%, R GBM4P KPRPPPSQL B*07:02 GBM16P 2* Low-density lipoprotein receptor class A domain- containing protein 3 (LDLRAD3) GBM5P ASEVGSPPSY A*01:01 2* GBM16P KPRPPPSQL B*07:02 GBM16P ASEVGSPPSY A*01:01 2* GBM16P <td></td> <td>GBM20R</td> <td>AELSTDKDF</td> <td></td> <td></td> <td></td>		GBM20R	AELSTDKDF			
ZH617 AELSTDKDF B*44:02 Uncharacterized aarF domain-containing protein kinase 1 (ADCK1) 13% P / 17% R GBM5P TQISFSEAF B*15:01 GBM5P TQISFSEAF B*15:01 A'33:05 GBM9P DFGAVRVGR A'33:05 GBM9R DFGAVRVGR A'33:05 GBM13R LTEEFRLNY A'01:01 GBM14R DFGAVRVGR A'33:01 GBM16P LTEEFRLNY A'01:01 GBM2P DFGAVRVGR A'33:01 GBM16P LTEEFRLNY A'01:01 GBM2P DFGAVRVGR A'33:01 GBM16P LTEEFRLNY A'01:01 GBM2P DFGAVRVGR A'33:01 GBM2P TOGSPEAR C'06:02 Drate T GBM2P C'06:02 GBM16P KPRPPSQL B'07:02 GBM16P GBM16P KPRPPSQL B'07:02 C'06:02 GBM16P KPRPPSQL B'07:02 Z'0681 GBM16P KPRPPSQL B'07:02 Z'0681 G		ZH616	AELSTDKDF			
domain-containing protein kinase 1 (ADCK1) GBM5P GBM5R TQISFSEAF TQISFSEAF B*15:01 B*15:01 GBM9P GBM9P DFGAVRVGR A*33:05 GBM9R DFGAVRVGR A*33:05 GBM18R GBM14R DFGAVRVGR A*33:01 GBM14R A*01:01 GBM23P A*01:01 C*06:02 DFGAVRVGR A*01:01 A*23:01 SAC3 domain-containing protein 1 (SAC3D1) 13% P / 17% R GBM14R KPRPPSQL B*07:02 B*07:02 GBM14R B*07:02 B*07:02 GBM14R B*07:02 KPRPPSQL B*07:02 B*07:02 GBM16R A6NKF1 = 14 Cw-density lipoprotein receptor class A domain- containing protein 3 (LDLRAD3) KPRPPSQL B*07:02 GBM18R KPRPPSQL B*07:02 B*07:02 GBM18R A*01:01 KPRPPSQL B*07:02 B*07:02 GBM18R A68YD5 = 2 Low-density lipoprotein receptor class A domain- containing protein 3 (LDLRAD3) 16% P / 8% R GBM5P ASEVGSPPSY A*01:01 LDQRPAWY A*01:01 A*01:01 A86YD5 = 2 GBM18R KPRPPSQL B*07:02 B*07:02 A86YD5 = 2 2 LDQRPAWY A*01:01 LDQRPAWY A*01:01 A*01:01 A*01:01 486YD5 = 2						
kinase 1 (ADCK1) GBM5R GBM9P TQISF5EAF DFGAVRVGR B*15:01 A*33:05 A*33:05 GBM9R GBM9R DFGAVRVGR A*33:05 A*33:01 GBM13R LTEEFRLNY A*01:01 A*01:01 GBM18P GBM18P DFGAVRVGR A*33:05 A*33:01 GBM18P LTEEFRLNY A*01:01 C*06:02 SAC3 domain-containing protein 1 (SAC3D1) 13% P / 17% R GBM4P KPRPPPSQL B*07:02 GBM18P A6NKF1 = 14 SAC3 domain-containing protein 1 (SAC3D1) 13% P / 17% R GBM4P KPRPPPSQL B*07:02 GBM18R KPRPPPSQL GBM18P KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL GBM18P KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R C GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R C GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R C GBM18R KPRPPPSQL B*07:02 GBM18R B*07:02 C GBM5P C GBM18R KPRPPPSQL B*07:02 C B*07:02 C GBM5P C 2 GBM16R <td< td=""><td></td><td></td><td></td><td></td><td>Q86TW2 -</td><td>17</td></td<>					Q86TW2 -	17
GBM9P DFGAVRVGR A*33:05 GBM9R DFGAVRVGR A*33:05 GBM13R LTEEFRLNY A*01:01 GBM14R DFGAVRVGR A*33:01 GBM16P LTEEFRLNY A*01:01 GBM2P NYLPQISHL A*23:01; GBM2P DFGAVRVGR A*33:01 GBM2P NYLPQISHL A*23:01; C*06:02 DFGAVRVGR A*33:01 GBM2P NYLPQISHL A*23:01; ZH802 DFGAVRVGR A*33:01 gBM2P NTPQISHL A*33:01 GBM2P KPRPPSQL B*07:02 GBM16R KPRPPPSQL B*07:02 GBM10R KPRPPPSQL B*07:02 GBM16F KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 ZH681 KPRPPPSQL B*07:02 GBM18R KPRPPSQL B*07:02 GBM18R KPRPPSQL						
GBM13R LTEEFRLNY A*01:01 GBM14P DFGAVRVGR A*33:01 GBM2P NYLPQISHL A*23:01; C*06:02 DFGAVRVGR A*33:01 DFGAVRVGR A*33:01 14 SAC3 domain-containing 0 B*07:02 protein 1 (SAC3D1) 13% P / 17% R F A6NKF1 • 14 GBM14P KPRPPSQL B*07:02 B*07:02 GBM16P KPRPPSQL B*07:02 B*07:02 GBM10R KPRPPSQL B*07:02 B*07:02 GBM16P KPRPPSQL B*07:02 B*07:02 GBM16P KPRPPSQL B*07:02 B*07:02 GBM16P KPRPPSQL B*07:02 B*07:02 GBM18R KPRPPPSQL B*07:02 B*07:02 GBM18R KPRPPPSQL B*07:02 B*07:02 GBM18R KPRPPPSQL B*07:02 B*07:02 GBM18R KPRPPPSQL B*07:02 B*07:02 LDW B*07:02 B*07:02 B*07:02 GBM18						
GBM14R DFGAVRVGR A*33:01 GBM16P LTEEFRLNY A*01:01 GBM23P NYLPQISHL A*23:01; C*06:02 DFGAVRVGR A*33:01 SAC3 domain-containing 13% P / 17% B C*06:02 protein 1 (SAC3D1) 13% P / 17% B A*33:01 GBM4P KPRPPPSQL B*07:02 GBM14R KPRPPPSQL B*07:02 GBM7P KPRPPPSQL B*07:02 GBM10R KPRPPPSQL B*07:02 GBM16P KPRPPPSQL B*07:02 GBM16P KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 ZH681 KPRPPPSQL B*07:02 ZH681 KPRPPPSQL B*07:02 GBM18R KPRPPSQL B*07:02 ZH681 KPRPPSQL B*07:02 GBM18R KPRPPSQL B*07:02 GBM19R ASEVGSPPSY A*01:01 <						
GBM16P GBM23P ZH802 LTEEFRLNY NYLPQISHL A*01:01 A*23:01; C*06:02 A*33:01 SAC3 domain-containing protein 1 (SAC3D1) 13% P / 17% B GBM4P MPRPPSQL B*07:02 B*07:02 GBM17P M6NKF1 • 14 GBM16P KPRPPPSQL B*07:02 GBM17P B*07:02 GBM10R B*07:02 B*07:02 GBM10P B*07:02 B*07:02 GBM16P B*07:02 GBM16P B*07:02 B*07:02 GBM18R B*07:02 C C						
ZH802 DFGAVRVGR C*06.02 A*33:01 SAC3 domain-containing protein 1 (SAC3D1) 13% P / 17% R GBM4P KPRPPPSQL B*07:02 GBM4R KPRPPPSQL B*07:02 GBM4R GBM4P GBM1P KPRPPPSQL B*07:02 GBM10R GBM10R GBM10P KPRPPPSQL B*07:02 GBM10R GBM10P GBM16P KPRPPPSQL B*07:02 GBM10R GBM10						
SAC3 domain-containing protein 1 (SAC3D1) 13% P / 17% R GBM4P KPRPPPSQL B*07:02 B*07:02 GBM4P KPRPPPSQL B*07:02 GBM7P KPRPPPSQL B*07:02 GBM10R KPRPPPSQL B*07:02 GBM10R KPRPPPSQL B*07:02 GBM16P KPRPPPSQL B*07:02 GBM16P KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18P KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18P KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPSQL B*07:02 Cow-density lipoprotein receptor class A domain- containing protein 3 (LDLRAD3) GBM5P ASEVGSPPSY A*01:01 GBM13R LLDQRPAWY A*01:01 HELDQRPAWY A*01:01 GBM13R LLDQRPAWY A*01:01 HELDQRPAWY A*01:01 GBM16P LLDQRPAWY A*01:01 HELDQRPAWY A*01:01			NYLPQISHL			
SAC3 domain-containing protein 1 (SAC3D1) 13% P / 17% R GBM4P KPRPPPSQL B*07:02 B*07:02 GBM4R A6NKF1 14 GBM4R KPRPPPSQL B*07:02 GBM10R KPRPPPSQL B*07:02 GBM10R KPRPPPSQL B*07:02 GBM10R KPRPPPSQL B*07:02 GBM16P KPRPPPSQL B*07:02 GBM18R Z <td></td> <td>2002</td> <td>DFGAVRVGR</td> <td></td> <td></td> <td></td>		2002	DFGAVRVGR			
GBM4R KPRPPPSQL B*07:02 GBM7P KPRPPPSQL B*07:02 GBM16P KPRPPPSQL B*07:02 GBM16P KPRPPPSQL B*07:02 GBM16P KPRPPPSQL B*07:02 GBM16R KPRPPPSQL B*07:02 GBM16R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 GBM18R KPRPPPSQL B*07:02 ZH681 KPRPPSQL B*07:02 ZH681 KPRPPSQL B*07:02 GBM13R KPRPPSQL B*07:02 GBM13R ASEVGSPPSY A*01:01 LLDQRPAWY A*01:01 LLDQRPAWY GBM16P ASEVGSPPSY A*01:01 LLDQRPAWY A*01:01	SAC3 domain-containing	<u>13% P / 17% R</u>			A6NKF1 🗕	14
GBM7P KPRPPSQL B*07:02 GBM10R KPRPPSQL B*07:02 GBM16P KPRPPSQL B*07:02 GBM16P KPRPPSQL B*07:02 GBM16R KPRPPSQL B*07:02 GBM18R KPRPPSQL B*07:02 GBM18R KPRPPSQL B*07:02 GBM18R KPRPPSQL B*07:02 ZH681 KPRPPSQL A*01:01 LDQRPAWY A*01:01 LDQRPAWY <td>protein 1 (SAC3D1)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	protein 1 (SAC3D1)					
GBM10RKPRPPPSQLB*07:02GBM16PKPRPPPSQLB*07:02GBM16RKPRPPPSQLB*07:02GBM18RKPRPPPSQLB*07:02GBM18RKPRPPPSQLB*07:02ZH681KPRPPPSQLB*07:02Low-density lipoprotein receptor class A domain- containing protein 3 (LDLRAD3)16% P / 8% R GBM13R2GBM19PASEVGSPPSY LLDQRPAWYA*01:01 B*15:01GBM19PASEVGSPPSY LLDQRPAWYA*01:01 CONDANTGBM19RASEVGSPPSY LLDQRPAWYA*01:01 CONDANTGBM16PASEVGSPPSY LLDQRPAWYA*01:01 CONDANTGBM16PASEVGSPPSY LLDQRPAWYA*01:01 CONDANTGBM16PASEVGSPPSY LLDQRPAWYA*01:01 CONDANTGBM16PASEVGSPPSY LLDQRPAWYA*01:01 CONDANTGBM16RLLDQRPAWY LLDQRPAWYA*01:01 CONDANTZH617ASEVGSPPSY ASEVGSPPSY A*01:01A*01:01 CONDANTZH645ASEVGSPPSY ASEVGSPPSY A*01:01A*01:01 CONDANT						
GBM16R GBM18PKPRPPPSQL KPRPPPSQLB*07:02 B*07:02 B*07:02Low-density lipoprotein receptor class A domain- containing protein 3 (LDLRAD3)16% P / 8% R GBM9P GBM18R GBM18PASEVGSPPSY ASEVGSPPSY LLDQRPAWYA*01:01 B*15:012GBM16R GBM16R LLDQRPAWYGBM16P LLDQRPAWYA*01:01 A*01:01 CGBM16P LLDQRPAWYA*01:01 A*01:013GBM16P LLDQRPAWYASEVGSPPSY A*01:01 LLDQRPAWYA*01:01 A*01:01 A*01:014*01:01 A*01:01GBM16P ZH617 ZH645ASEVGSPPSY ASEVGSPPSY ASEVGSPPSY A*01:01A*01:01 A*01:01 A*01:01		GBM10R	KPRPPPSQL			
GBM18PKPRPPPSQLB*07:02GBM18RKPRPPPSQLB*07:02ZH681KPRPPPSQLB*07:02Low-density lipoprotein receptor class A domain- containing protein 3 (LDLRAD3)16% P / 8% RQ86YD5 • 2GBM5PASEVGSPPSYA*01:01GBM9PASEVGSPPSYA*01:01; B*15:01GBM18RASEVGSPPSYA*01:01GBM18RASEVGSPPSYA*01:01GBM16PASEVGSPPSYA*01:01LLDQRPAWYA*01:01LLDQRPAWYGBM16PASEVGSPPSYA*01:01LLDQRPAWYA*01:01H101GBM16RLLDQRPAWYA*01:01ZH645ASEVGSPPSYA*01:01ZH645ASEVGSPPSYA*01:01;						
ZH681KPRPPPSQLB*07:02Low-density lipoprotein receptor class A domain- containing protein 3 (LDLRAD3)16% P / 8% R GBM5P2ASEVGSPPSY GBM13RA*01:01 LLDQRPAWYA*01:01; B*15:01GBM13R LLDQRPAWYASEVGSPPSY A*01:01A*01:01 B*15:01GBM16P LLDQRPAWYASEVGSPPSY A*01:01A*01:01 CBPAWYGBM16R ZH617 ZH617LLDQRPAWY ASEVGSPPSY A*01:01A*01:01 A*01:01GBM16R ZH617 ASEVGSPPSY ASEVGSPPSY A*01:01A*01:01 A*01:01						
Low-density lipoprotein receptor class A domain- containing protein 3 (LDLRAD3)16% P / 8% R GBM5PQ86YD5 • 2GBM5PASEVGSPPSY LLDQRPAWYA*01:01 B*15:01GBM9PASEVGSPPSY GBM13R LLDQRPAWYA*01:01 B*10101 LLDQRPAWYGBM16PASEVGSPPSY LLDQRPAWYGBM16PASEVGSPPSY LLDQRPAWYGBM16R ZH617 ZH645ASEVGSPPSY ASEVGSPPSY A*01:01GBM16R ZH645LLDQRPAWY ASEVGSPPSY A*01:01						
receptor class A domain- containing protein 3 (LDLRAD3) GBM9P ASEVGSPPSY A*01:01; B*15:01 GBM9P ASEVGSPPSY A*01:01 GBM13R ASEVGSPPSY A*01:01 LLDQRPAWY A*01:01 GBM16P ASEVGSPPSY A*01:01 GBM16R LLDQRPAWY A*01:01 GBM16R LLDQRPAWY A*01:01 ZH617 ASEVGSPPSY A*01:01; ZH645 ASEVGSPPSY B*44:02 A*01:01	Low-density linoprotein		KPRPPPSQL	B 07:02		2
(LDLRAD3) B*15:01 GBM9P ASEVGSPPSY A*01:01 GBM13R ASEVGSPPSY A*01:01 LLDQRPAWY A*01:01 GBM16P ASEVGSPPSY LLDQRPAWY A*01:01 GBM16R LLDQRPAWY ZH617 ASEVGSPPSY ZH645 ASEVGSPPSY A*01:01 A*01:01;			ASEVGSPPSY	A*01:01		2
GBM9P ASEVGSPPSY A*01:01 GBM13R ASEVGSPPSY A*01:01 LLDQRPAWY A*01:01 GBM16P ASEVGSPPSY A*01:01 LLDQRPAWY A*01:01 GBM16R LLDQRPAWY A*01:01 ZH617 ASEVGSPPSY A*01:01 ZH645 ASEVGSPPSY B*44:02 A*01:01			LLDQRPAWY			
GBM13RASEVGSPPSYA*01:01LLDQRPAWYA*01:01GBM16PASEVGSPPSYLLDQRPAWYA*01:01GBM16RLLDQRPAWYZH617ASEVGSPPSYZH645ASEVGSPPSYA*01:01ZH645ASEVGSPPSYA*01:01	(LULKAU3)	GBM9P	ASEVGSPPSY			
GBM16P ASEVGSPPSY A*01:01 LLDQRPAWY A*01:01 GBM16R LLDQRPAWY A*01:01 ZH617 ASEVGSPPSY A*01:01; ZH645 ASEVGSPPSY B*44:02 A*01:01 A*01:01 A*01:01			ASEVGSPPSY	A*01:01		
LLDQRPAWY A*01:01 GBM16R LLDQRPAWY A*01:01 ZH617 ASEVGSPPSY A*01:01; ZH645 ASEVGSPPSY B*44:02 A*01:01 A*01:01 A*01:01		GBM16P				
GBM16R LLDQRPAWY A*01:01 ZH617 ASEVGSPPSY A*01:01; ZH645 ASEVGSPPSY B*44:02 A*01:01 A*01:01 A*01:01						
ZH645 ASEVGSPPSY B*44:02 A*01:01			LLDQRPAWY	A*01:01		
A*01:01						
		ZH654	LLDQRPAWY	A*01:01		

6-pyruvoyl	<u>16% P / 8% R</u>			Q03393 🗖	39
tetrahydrobiopterin synthase	GBM3P	ETDNNIVVY	A*01:01		
(PTS)	GBM5R	ETDNNIVVY	A*01:01		
	GBM6P	QKVLPVGVLY	B*51:03		
	GBM13R	ETDNNIVVY	A*01:01		
	GBM15P GBM16P	GEIDPATGM ETDNNIVVY	B*44:02 A*01:01		
	ZH645	ETDNNIVVY	A*01:01		
	ZH654	ETDNNIVVY	A*01:01		
Probable G-protein coupled	16% P / 8% R			O95800 🔳	2
receptor 75 (GPR75)	GBM4P	TPAASRLQL	B*07:02	000000	-
	GBM4R	TPAASRLQL	B*07:02		
	GBM7P	TPAASRLQL	B*07:02		
	GBM16P	TPAASRLQL	B*07:02		
	GBM16R	TPAASRLQL	B*07:02		
	GBM18P ZH613	TPAASRLQL GLNPFIYSR	B*07:02 A*31:01		
	ZH613 ZH654	GLNPFIYSR	A*31:01		
POU domain, class 3,	13% P / 13% R	dentrion	A 01.01	P20264	6
transcription factor 3	GBM4P	NPYLPGNSL	B*07:02	1 20204	0
(POU3F3)	GBM4R	NPYLPGNSL	B*07:02		
1 peptide multi-maps to	GBM7P	SPTSIDKIAA	B*56:01		
GBM-exclusive POU3F2/4	GBM10R	LVRGDTPEL	A*02:01;		
(P20265/P49335)			B*07:02		
	0014400	NPYLPGNSL	B*07:02		
	GBM16P	NPYLPGNSL	B*07:02		
	GBM16R ZH613	NPYLPGNSL DVYSQVGTV	B*07:02 B*51:01		
	ZH631	DVYSQVGTV	B*51:01		
Integral membrane protein	<u>13% P / 13% R</u>	211041011	2 0	P98153 🗖	13
DGCR2/IDD (DGCR2)	GBM4P	VPKADSGAFL	B*07:02		10
	GBM4R	VPKADSGAFL	B*07:02		
	GBM10R	VPKADSGAFL	B*07:02		
	GBM16P	VPKADSGAFL	B*07:02		
	GBM16R	VPKADSGAFL	B*07:02		
	GBM23P	FYDPADDDAF	C*04:01		
	ZH654 ZH681	DPSHFHAVNV VPKADSGAFL	B*51:01 B*07:02		
Cannabinoid receptor 1	11% P / 17% R	I RADOGALE	D 07.02	P21554	2
(CNR1)	GBM5P	KLGGVTASF	B*15:01	121334	2
(ontro)	GBM12R	FPQKFPLTSF	B*35:01		
	GBM14R	FPHIDETYL	B*35:03		
		FPQKFPLTSF	B*35:03		
		STDTSAEAL	C*08:02		
		TVNPIIYAL	A*02:01; <i>C*08:02</i>		
	GBM16P	RPDQARMDIRL	B*07:02		
	GBM16R	RPDQARMDIRL	B*07:02		
	GBM22R	FPQKFPLTSF	B*35:03		
		FYNKSLSSF	A*24:02		
		TVNPIIYAL	C*03:04;		
	711070		C*12:03 A*02:01		
	ZH678 ZH720	SLAVADLLGSV FIGSLAVADL	A*02:01		
Lipoma HMGIC fusion		FIGSLAVADE		Q6ZUX7 🗖	12
partner-like 2 protein	<u>8% P / 21% R</u> GBM10R	SPEPYHPTL	B*07:02		12
(LHFPL2)	GBM14R	SPEPYHPTL	B*35:03;		
. ,			C*08:02		
	GBM16P	SPEPYHPTL	B*07:02		
	GBM16R	SPEPYHPTL	B*07:02		
	GBM18R	SPEPYHPTL	B*07:02		
	GBM21P GBM23P	SPEPYHPTL SPEPYHPTL	B*35:03 B*35:02		
	GBM23P GBM23R	IRNPGVQHF	C*06:02		
	GBM23R	SPEPYHPTL	B*35:02		
Insulin-like growth factor-	16% P / 4% R			P18065 🔳	8
binding protein 2 (IGFBP2)	GBM7P	LPLPPPPLLP	B*56:01		Ũ
	GBM12P	YPHPGSELPL	B*35:01		
	GBM16P	YPHPGSEL	B*07:02		
	GBM18R	YPHPGSEL	B*07:02		
	GBM21P GBM22P		B*35:03		
	GBM22P	YPHPGSEL	B*35:03; <i>C*03:04</i>		
		YPHPGSELPL	B*35:03		
	ZH645	AEYGASPEQV	B*49:01		
Protein shisa-4 (SHISA4)	<u>16% P / 4% R</u>			Q96DD7 🗖	6
. ,	GBM23R	YPYPQDPKA	B*35:02		
	ZH613	LAFSPKTI	B*51:01		
	ZH631	LAFSPKTI	B*51:01		

	ZH645	LAFSPKTI	B*51:01		
	ZH678 ZH757	LAFSPKTI AAPLTAIAL	B*51:01 C*01:02		
	ZH761	AAPLTAIAL	C*01:02		
IGF-like family receptor 1	<u>13% P / 8% R</u> GBM5P		C*0C.00	Q9H665 🗖	45
(IGFLR1)	GBM5P GBM5R	GRADALRVL GRADALRVL	C*06:02 C*06:02		
	GBM13P	GRADALRVL	C*06:02		
	GBM13R GBM23P	GRADALRVL GRADALRVL	C*06:02 C*06:02		
	ZH654	GRADALRVL	C*06:02		
	ZH681	GRADALRVL	C*06:02		
CMP-N-acetylneuraminate- beta-galactosamide-alpha-	<u>13% P / 8% R</u> GBM7P	SIPKNIQSL	C*01:02	Q11206 🗖	15
2,3-sialyltransferase 4	GBM18R	DLLLRVLAI	B*08:01		
(ST3GAL4)	GBM23R	RDQPIFLRL	B*47:01		
	ZH613 ZH678	SIPKNIQSL AITSSSIPK	A*02:05 A*11:01		
	ZH757	SIPKNIQSL	C*01:02		
Solute carrier family 25	ZH761 13% P / 8% R	SIPKNIQSL	C*01:02	Q5H9E4 🔳	7
member 53 (SLC25A53)	GBM7P	STFLTFPIYK	A*11:01		1
	GBM7R	STFLTFPIYK	A*11:01		
	GBM18P GBM18R	STFLTFPIYK STFLTFPIYK	A*11:01 A*11:01		
	ZH631	STFLTFPIYK	A*11:01		
	ZH654 ZH678	AVSEAVRQLW STFLTFPIYK	B*57:01 A*11:01		
Leucine-rich repeats and	13% P / 8% R	SHEITIK	A 11.01	Q96JA1 🗖	10
immunoglobulin-like domains	GBM3P	ARIHRKGWSF	B*27:05		
protein 1 (LRIG1)	GBM16P GBM16R	LPRLTQLDL RPVRGGLGA	B*07:02 B*07:02		
	GBM21P	FPEPDTHSV	B*35:03		
	GBM23P GBM23R	FPEPDTHSV FPEPDTHSV	B*35:02 B*35:02		
	ZH654	AALPGDLPSW	B*57:01		
		AFHPQPVSR	A*31:01		
Glycosyltransferase-like domain-containing protein 2	<u>11% P / 13% R</u> GBM7P	ILNEAELLL	A*02:01	Q8NAT1	12
(GTDC2)	GBM10R	AMLPGMDLQYV	A*02:01		
	GBM11P	AMLPGMDLQYV	A*02:01		
	GBM11R	LILNEAELL	A*02:01; A*02:05		
	GBM13R	AMLPGMDLQYV	A*02:01		
	ZH681	AMLPGMDLQYV ILNEAELLL	A*02:01 A*02:01		
	ZH757	AMLPGMDLQYV	A*02:01		
Growth arrest and DNA	<u>11% P / 13% R</u>		A+00.01	Q8TAE8	12
damage-inducible proteins- interacting protein 1	GBM7P GBM13R	SLWPSPEQL SLWPSPEQL	A*02:01 A*02:01		
(GADD45GIP1)	GBM14R	SLWPSPEQL	A*02:01		
	GBM20R	AEAQELLGY	B*44:02; B*44:03		
	ZH617	SLWPSPEQL	A*02:01		
	ZH681 ZH757	SLWPSPEQL SLWPSPEQL	A*02:01 A*02:01		
T-box transcription factor	11%/8% P		A 02.01	Q96SF7 🔳	18
TBX15/18 (TBX15/18)	13%/8% R			O95935	11
1 peptide multi-maps to non-	GBM3P GBM6P	GLDPHQQYY (TBX15/18) YQNQQITRL (TBX15/18)	A*01:01 <i>A*02:05</i> ;		
GBM-exclusive TBX20 (Q9UMR3)	CENTO		C*12:03		
(4000)	GBM9P	DIVPVDNKRYR (TBX15/18/20)	A*33:05		
	GBM9R	GLDPHQQYY (TBX15/18) GLDPHQQYY (TBX15/18)	A*01:01 A*01:01		
	GBM11R	YQNQQITRL (TBX15/18)	A*02:05;		
	GBM12R	KTFNFPETVF (TBX15)	B*41:01 B*15:01		
	ZH654	KTFNFPETVF (TBX15)	B*57:01		
Exostosin-like 3 (EXTL3)	<u>11% P / 13% R</u>		A*01-01	O43909 🗕	12
	GBM5P GBM13P	KSDTQNLLY KSDTQNLLY	A*01:01 A*01:01		
	GBM13R	KSDTQNLLY	A*01:01		
	GBM16P GBM16R	KSDTQNLLY KSDTQNLLY	A*01:01 A*01:01		
	ZH645	KSDTQNLLY	A*01:01		
Hardennestering (* 1917)	ZH753	LPYLNKVVV	B*51:01		10
Uncharacterized protein C7orf50 (C7orf50)	<u>11% P / 13% R</u> GBM10R	VPDEHFSTL	B*07:02	Q9BRJ6 =	12
(/	GBM16P	VPDEHFSTL	B*07:02		

	GBM16R GBM21P GBM23P	VPDEHFSTL VPDEHFSTL VPDEHFSTL	B*07:02 B*35:03 B*35:02;		
	GBM23R	VPDEHFSTL	C*04:01 B*35:03; C*04:01		
	ZH802	AYLEGLQGR	A*31:01		
Uncharacterized protein C21orf62 (C21orf62)	8% P / 17% R GBM6P GBM6R GBM10R GBM16P GBM22R GBM22R GBM23R ZH810	LPLAVERTSY LPLAVERTSY RTFPMPSNK SYNGHLTIWF RTFPMPSNK SYNGHLTIWF	B*35:01 B*35:01 A*03:01 A*03:01 A*24:02 A*03:01 A*24:02	Q9NYP8 ■	6
BTB/POZ domain-containing protein 17 (BTBD17)	<u>13% P / 4% R</u> GBM3P GBM4P GBM7R	DELELFHAL AVFDKFIRY AVFDKFIRY	B*18:01 A*03:01 A*11:01; C*02:02	A6NE02 ■	1
	ZH616 ZH631		A*29:02 A*11:01; A*32:01		
_	ZH654	NASDVVLRV RARPPPAVAER	B*51:01 A*31:01	0.00000	_
Peroxisome biogenesis factor 10 (PEX10)	<u>13% P / 4% R</u> GBM3P GBM6P	QRARKEWRL	B*27:05; C*07:01 B*15:03	O60683 =	7
	GBM18R ZH613 ZH654 ZH802	AVLPYLLDK RSLPGEDLRAR RSLPGEDLRAR RSLPGEDLRAR	A*11:01 A*31:01 A*31:01 A*31:01 A*31:01		
Sodium- and chloride- dependent creatine transporter 1 (SLC6A8)	<u>13% P / 4% R</u> GBM5P	LLDLLPASY	A*01:01; B*15:01	P48029 ■	20
1 peptide multi-maps to non- GBM-exclusive SLC6A6 (P31641)	GBM16P GBM16R ZH616 ZH631 ZH810	LLDLLPASY LLDLLPASY VVYYEPLVY IAYPRAVTL VWIDAGTQIFF	A*01:01 A*01:01 A*29:02 C*03:03 A*24:02		
5'-AMP-activated protein kinase subunit beta-2 (PRKAB2)	<u>11% P / 8% R</u> GBM6P	GTINNLIHV	A*02:05; C*12:03	O43741 🔳	9
1 peptide multi-maps to non- GBM-exclusive PRKAB1	GBM11P GBM14R	GTINNLIHV LPEPNHVML	A*02:05 B*35:03; C*04:01		
	GBM23P	LPEPNHVML	B*35:02; C*04:01		
	GBM23R		B*35:02; C*04:01		
Transcription factor E2F1	ZH613 <u>11% P / 8% R</u>	GTINNLIHV	A*02:05	Q01094 🔶	12
(E2F1)	GBM3P GBM13P GBM16P GBM16R GBM17R	DTDSQRLAY DTDSQRLAY DTDSQRLAY DTDSQRLAY DTDSQRLAY	A*01:01 A*01:01 A*01:01 A*01:01 A*01:01		
Solute carrier family 15 member 2 (SLC15A2)	ZH617 <u>11% P / 8% R</u> GBM4P GBM10R	DTDSQRLAY APSSMKSVL APSSMKSVL	A*01:01 B*07:02 B*07:02	Q16348 <mark>-</mark>	17
	GBM16P GBM23P GBM23R ZH681	APSSMKSVL VMFSVTGLEF VMFSVTGLEF APSSMKSVL	B*07:02 A*23:01 A*23:01 B*07:02		
Sugar phosphate exchanger 3 (SLC37A3)	11% P / 8% R GBM9P GBM10R GBM16P GBM16P ZH616 ZH761	DRLNLRWVL SPNDKSINAL SPNDKSINAL SPNDKSINAL SVLQYGYEY ALTEWLRFY	B*14:02 B*07:02 B*07:02 B*07:02 A*29:02 A*03:01	Q8NCC5	22
Frizzled-3 (FZD3)	<u>11% P / 8% R</u> GBM5P GBM13P GBM16P GBM16R	SRPDLILFL SRPDLILFL SRPDLILFL SRPDLILFL SRPDLILFL	C*16:01 C*06:02 C*06:02 C*07:02 C*07:02	Q9NPG1 -	8

	GBM23R	SRPDLILFL	C*06:02		
	ZH654	SRPDLILFL	C*06:02	0.0110.50	~
Protein Dos (DOS)	<u>11% P / 4% R</u> ZH613	LPPLKIVTI	B*51:01	Q8N350 🗖	0
	ZH613 ZH631	LPPLKIVTI	B*51:01		
	ZH654	LPPLKIVTI	B*51:01		
	ZH678	LPPLKIVTI	B*51:01		
	ZH753	LPPLKIVTI	B*51:01		
Embryonal Fyn-associated	<u>11% P / 4% R</u>		D*07.00.	O43281 🗖	16
substrate (EFS)	GBM7P	LPALPVPEA	B*07:02; B*56:01		
	GBM18R	IPRASGTQL	B*07:02		
	ZH616	IPRASGTQL	B*07:02		
	ZH678	STGDLQLLY AESPQELSF	A*29:02 B*44:03		
	ZH761	AESPQELSF	B*44:02;		
			B*44:03		
Transmembrane protein 17	<u>11% P / 4% R</u>			Q86X19 -	3
(TMEM17)	GBM11P		A*02:01		
	GBM14R ZH617	NLQEKVPEL NLQEKVPEL	A*02:01 A*02:01;		
	LINGT		B*08:01		
	ZH681	NLQEKVPEL	A*02:01		
	ZH761	NLQEKVPEL	A*02:01	0000	~
Transcription factor E2F7 (E2F7)	<u>11% P / 4% R</u> GBM7P	ISLDEVAVSL	A*02:01	Q96AV8 🛛	8
(EZF7)	GBM11P	ISLDEVAVSL	A*02:01		
	ZH617	ISLDEVAVSL	A*02:01;		
	ZH681		C*05:01		
	ZH753	ISLDEVAVSL ISLDEVAVSL	A*02:01 A*02:01;		
		ISLDEVAVSE	C*15:02		
Transmembrane protein 237	<u>11% P / 4% R</u>			Q96Q45 🗖	7
(TMEM237)	GBM5P	LAYPFQSLL	C*03:03		
	GBM6P	FQAADRSEL	A*02:05		
	GBM9P	LQPWIVVNL DVKPSWTTR	A*02:05 A*33:05		
	GBM14R	DVKPSWTTR	A*33:01		
	ZH802	DVKPSWTTR	A*33:01		
Lysyl oxidase homolog 2	<u>11% P / 4% R</u>			Q9Y4K0 🗖	26
Lysyl oxidase homolog 2 (LOXL2)	GBM6P	FGFPGERTY	C*12:03	Q9Y4K0 🔳	26
	GBM6P GBM15P	AEMVQQTTY	B*44:02	Q9Y4K0	26
	GBM6P			Q9Y4K0 =	26
	GBM6P GBM15P GBM18R	AEMVQQTTY RTYNTKVYKM	B*44:02 <i>A*03:01</i>	Q9Y4K0 =	26
(ĽOXL2) Heat shock factor 2-binding	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u>	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW	B*44:02 <i>A*03:01</i> C*12:03 B*58:01	Q9Y4K0 • O75031 •	26 13
(ĽOXL2)	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL	B*44:02 <i>A*03:01</i> C*12:03 B*58:01 A*02:01		
(ĽOXL2) Heat shock factor 2-binding	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM3P	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW	B*44:02 <i>A*03:01</i> C*12:03 B*58:01 A*02:01 A*02:01		
(ĽOXL2) Heat shock factor 2-binding	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM7P GBM12R GBM12R GBM13R	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL	B*44:02 <i>A*03:01</i> C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01		
(ĽOXL2) Heat shock factor 2-binding protein (HSF2BP)	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM7P GBM12R GBM12R GBM13R ZH750	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01	O75031 •	13
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM7P GBM7P GBM12R GBM12R GBM13R ZH750 <u>8% P / 8% R</u>	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL	B*44:02 <i>A*03:01</i> C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01		
(ĽOXL2) Heat shock factor 2-binding protein (HSF2BP)	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM7P GBM12R GBM12R GBM13R ZH750 <u>8% P / 8% R</u> GBM4P	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK	B*44:02 <i>A*03:01</i> C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01	O75031 •	13
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM7P GBM7P GBM12R GBM12R GBM13R ZH750 <u>8% P / 8% R</u>	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK	B*44:02 <i>A*03:01</i> C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01	O75031 •	13
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM7P GBM12R GBM12R GBM13R ZH750 <u>8% P / 8% R</u> GBM4P GBM4P GBM10R GBM16R GBM18P	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01	O75031 •	13
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4)	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM12R GBM13R ZH750 <u>8% P / 8% R</u> GBM4P GBM10R GBM16R GBM18P GBM18P GBM18P GBM23P	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK	B*44:02 <i>A*03:01</i> C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01	О75031 ◆ Q9HCC6 ■	13
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM12R GBM13R ZH750 <u>8% P / 8% R</u> GBM4P GBM10R GBM16R GBM18P GBM12R	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01	O75031 •	13
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4)	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM12R GBM13R ZH750 <u>8% P / 8% R</u> GBM4P GBM10R GBM16R GBM18P GBM18P GBM18P GBM23P	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01	О75031 ◆ Q9HCC6 ■	13
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM7P GBM12R GBM12R GBM12R GBM10R GBM4P GBM10R GBM18P GBM23P 8% P / 8% R GBM12R GBM18P GBM12R GBM12R GBM12R GBM12R GBM12R GBM12R GBM12R GBM17R ZH613	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK SLPSFSEKL	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05	О75031 ◆ Q9HCC6 ■	13
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM12R GBM12R GBM12R GBM10R GBM10R GBM16R GBM18P GBM12R GBM10R GBM18P GBM12R GBM18P GBM12R GBM12R GBM12R GBM12R GBM12R GBM17R ZH613 ZH645	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02	О75031 ◆ Q9HCC6 ■	13
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS)	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM12R GBM12R GBM12R GBM10R GBM10R GBM16R GBM23P BM10R GBM18P GBM12R GBM18P GBM12R ZH613 ZH613 ZH645 ZH761	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK SLPSFSEKL	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05	О75031 ↓ Q9HCC6 ■ P10746 ■	13 13 18
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS) Blood vessel epicardial	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM12R GBM12R GBM13R ZH750 8% P / 8% R GBM4P GBM10R GBM16R GBM18P GBM12R GBM16R GBM12R GBM16R GBM18P GBM12R GBM17R ZH613 ZH645 ZH761 5% P / 13% R	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02 C*01:02 C*01:02	О75031 ◆ Q9HCC6 ■	13
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS)	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM12R GBM12R GBM12R GBM10R GBM10R GBM16R GBM23P BM10R GBM18P GBM12R GBM18P GBM12R ZH613 ZH613 ZH645 ZH761	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02	О75031 ↓ Q9HCC6 ■ P10746 ■	13 13 18
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS) Blood vessel epicardial	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM7P GBM12R GBM13R ZH750 <u>8% P / 8% R</u> GBM4P GBM10R GBM10R GBM10R GBM12R GBM17R ZH645 ZH761 <u>5% P / 13% R</u> GBM5P GBM16R GBM5P GBM16R GBM16R GBM16R GBM16R GBM16R GBM18R	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK SLPSFSEKL IGPTTARAL IGPTTARAL IGPTTARAL IGPTTARAL SPEFRSTQM SPEFRSTQM	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02 C*01:02 C*01:02 C*01:02 C*03:03 B*07:02 B*07:02	О75031 ↓ Q9HCC6 ■ P10746 ■	13 13 18
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS) Blood vessel epicardial	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM7P GBM12R GBM12R GBM17P GBM12R GBM12R GBM10R GBM10R GBM10R GBM18P GBM12R GBM12R GBM12R GBM12R GBM12R GBM12R GBM17R ZH613 ZH645 ZH761 5% P / 13% R GBM5P GBM18R GBM22R	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK IGPTTARAL AESPTPQAL SLPSFSEKL IGPTTARAL IGPTTARAL IGPTTARAL IGPTTARAL	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02 C*01:02 C*01:02 C*01:02 C*03:03 B*07:02 B*07:02 C*03:04;	О75031 ↓ Q9HCC6 ■ P10746 ■	13 13 18
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS) Blood vessel epicardial	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM7P GBM12R GBM13R ZH750 <u>8% P / 8% R</u> GBM4P GBM10R GBM10R GBM10R GBM12R GBM17R ZH645 ZH761 <u>5% P / 13% R</u> GBM5P GBM16R GBM5P GBM16R GBM16R GBM16R GBM16R GBM16R GBM18R	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK SLPSFSEKL IGPTTARAL IGPTTARAL IGPTTARAL IGPTTARAL SPEFRSTQM SPEFRSTQM	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02 C*01:02 C*01:02 C*01:02 C*03:03 B*07:02 B*07:02	О75031 ↓ Q9HCC6 ■ P10746 ■	13 13 18
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS) Blood vessel epicardial substance (BVES)	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM7P GBM12R GBM12R GBM17P GBM12R GBM12R GBM10R GBM10R GBM10R GBM18P GBM12R GBM12R GBM12R GBM12R GBM12R GBM12R GBM17R ZH613 ZH645 ZH761 5% P / 13% R GBM5P GBM18R GBM22R	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02 C*01:02 C*01:02 C*01:02 B*07:02 B*0	О75031 ↓ Q9HCC6 ■ P10746 ■	13 13 18
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS) Blood vessel epicardial substance (BVES)	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM12R GBM12R GBM13R ZH750 8% P / 8% R GBM4P GBM10R GBM18P GBM12R GBM12R GBM12R GBM4P GBM12R GBM12R GBM12R GBM12R GBM12R GBM12R GBM12R GBM12R GBM18P GBM12R GBM17R ZH613 ZH645 ZH761 5% P / 13% R GBM2P GBM18R GBM22R ZH616	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK SLPSFSEKL IGPTTARAL SLPSFSEKL IGPTTARAL SPEFRSTQM SPEFRSTQM SPEFRSTQM CALIFICAL	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02 C*01:02 C*01:02 C*01:02 C*01:02 C*01:02 B*07:02 B*07:02 A*02:01	O75031 • Q9HCC6 • P10746 • Q8NE79 •	13 13 18 5
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS) Blood vessel epicardial substance (BVES)	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM12R GBM12R GBM13R ZH750 8% P / 8% R GBM4P GBM10R GBM16R GBM12P GBM16R GBM12R GBM16R GBM12P GBM16R GBM17R ZH645 ZH761 5% P / 13% R GBM5P GBM18R GBM2R ZH645 ZH616	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAX RINESLAX RINESLAX RINESLAX RINESLAX RINESLAX RINESLAX RINESLAX RINESLAX RINESLAX RINESLAX RINESLAX R	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02 C*01:02 C*01:02 C*01:02 C*03:03 B*07:02 B*07:02 A*02:01 A*02:01 A*02:01 A*02:01	O75031 • Q9HCC6 • P10746 • Q8NE79 •	13 13 18 5
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS) Blood vessel epicardial substance (BVES)	GBM6P GBM15P GBM18R GBM21P ZH613 <u>8% P / 8% R</u> GBM3P GBM7P GBM12R GBM13R ZH750 <u>8% P / 8% R</u> GBM10R GBM10R GBM10R GBM12R GBM18R GBM2P GBM18R GBM22R ZH616 5% P / 13% R GBM2P GBM13R GBM13R	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK SLPSFSEKL IGPTTARAL SLPSFSEKL IGPTTARAL SPEFRSTQM SPEFRSTQM SPEFRSTQM CALLARSI	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02 C*01:02 C*01:02 C*01:02 C*01:02 C*01:02 B*07:02 B*07:02 A*02:01	O75031 • Q9HCC6 • P10746 • Q8NE79 •	13 13 18 5
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS) Blood vessel epicardial substance (BVES)	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM12R GBM12R GBM12R GBM10R GBM10R GBM10R GBM18P GBM12R GBM17R ZH613 ZH645 ZH613 ZH645 ZH761 5% P / 13% R GBM5P GBM18R GBM2R ZH613 ZH645 ZH761 5% P / 13% R GBM12R GBM18R GBM2R ZH616 5% P / 13% R GBM2P GBM13R GBM16P GBM18R GBM16P GBM18R	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAX RINESLAQLK RINESLAX RINESLAX RINESLAX RINESLAX RINESLAX R	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02 C*01:02 C*01:02 C*03:03 B*07:02 B*07:02 B*07:02 A*02:01 A*02:01 A*02:01 B*08:01 B*08:01 B*08:01 B*08:01	O75031 • Q9HCC6 • P10746 • Q8NE79 •	13 13 18 5
(LOXL2) Heat shock factor 2-binding protein (HSF2BP) Transcription factor HES-4 (HES4) Uroporphyrinogen-III synthase (UROS) Blood vessel epicardial substance (BVES)	GBM6P GBM15P GBM18R GBM21P ZH613 8% P / 8% R GBM3P GBM12R GBM12R GBM17P GBM12R GBM12R GBM12R GBM12R GBM12R GBM10R GBM10R GBM12P GBM12R GBM12R GBM12R GBM12R GBM12R GBM12R GBM12R GBM17R ZH613 ZH645 ZH761 5% P / 13% R GBM18R GBM18R GBM22R ZH616 5% P / 13% R GBM2P GBM13R GBM13R GBM16P	AEMVQQTTY RTYNTKVYKM FGFPGERTY ASNAFQETW VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL VLLDTILQL RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK RINESLAQLK IGPTTARAL AESPTPQAL SLPSFSEKL IGPTTARAL IGPTTARAL IGPTTARAL SPEFRSTQM SPEFRSTQM GLILAIRSI ILAIRSILL	B*44:02 A*03:01 C*12:03 B*58:01 A*02:01 A*02:01 A*02:01 A*02:01 A*02:01 A*03:01 A*03:01 A*03:01 A*03:01 C*01:02 B*44:03 A*02:05 C*01:02 C*01:02 C*01:02 C*01:02 C*01:02 C*01:02 C*03:03 B*07:02 B*07:02 C*03:03 B*07:02 B*07:02 C*03:03 B*07:02 C*03:03 B*07:02 C*03:04; C*12:03 B*07:02 C*03:04; C*12:03 B*07:02 C*03:01 B*08:01 B*08:01 B*08:01	O75031 • Q9HCC6 • P10746 • Q8NE79 •	13 13 18 5

Zinc finger and BTB domain- containing protein 47 (ZBTB47)	<u>5% P / 13% R</u> GBM4P GBM12R GBM13R GBM14R	RPKPPPGVA FLLESELLL FLLESELLL FLLESELLL	B*07:02 A*02:01 A*02:01; <i>B*13:02</i> A*02:01	Q9UFB7 -	10
	GBM16P	RPKPPPGVA	B*07:02		
Glioblastoma-associated HL	A class II antigens.				
Glioblastoma-associated HL Glypican-5 (GPC5)	A class II antigens <u>32% P / 46% R</u> GBM2P GBM2P GBM6P GBM6R GBM7P GBM7R GBM10R GBM11P GBM11P GBM12P GBM12P GBM12P GBM12P GBM13P GBM13P GBM13P GBM19R GBM19R GBM19R GBM19R GBM12P	LFQWRLLGAVRGLPD KLFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD INSLRLYRSFYGGL FINSLRLYRSFYGGL INSLRLYRSFYGGL INSLRLYRSFYGGL INSLRLYRSFYGGL INSLRLYRSFYGGL INSLRLYRSFYGGL INSLRLYRSFYGGL INSLRLYRSFYGGL INSLRLYRSFYGGL INSLRLYRSFYGGL GIDPVINQIIDKLKH KLFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD DPVINQIIDKLKH FINSLRLYRSFYGGL VRKLFQWRLLGAVRGLPD IDPVINQIIDKLKH LFQWRLLGAVRGLPD GIDPVINQIIDKLKH LFQWRLLGAVRGLPD GIDPVINQIIDKLKH		P78333 -	1
Procollagen galactosyltransferase 2 (COLGALT2)	GBM22R GBM23R ZH616 ZH654 ZH753 ZH761 24% P / 13% R GBM5P GBM6P GBM7P GBM9R GBM10R GBM10R GBM10R GBM16P GBM20R ZH645 ZH678 ZH681 ZH757 ZH761	GIDPVINQIIDKLKH GIDPVINQIIDKLKH FINSLRLYRSFYGGLA INSLRLYRSFYGGLA GIDPVINQIIDKLKH IDPVINQIIDKLKH LFQWRLLGAVRGLPD LFQWRLLGAVRGLPD DLKAFSAEPLLIYPT DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPT DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH DLKAFSAEPLLIYPTH		Q8IYK4 •	4
Nucleolar protein 16 (NOP16)		PKAKGKTRRQKF PKAKGKTRRQKF PKAKGKTRRQKF PKAKGKTRRQKF		Q9Y3C1 =	10

	GBM18P ZH613 ZH617 ZH631 ZH645 ZH678 ZH681 ZH802	PKAKGKTRRQKF PKAKGKTRRQKF PKAKGKTRRQKF PKAKGKTRRQKF PKAKGKTRRQKF PKAKGKTRRQKF PKAKGKTRRQKF		
N-acetyltransferase ESCO1 (ESCO1)	<u>18% P / 17% R</u> GBM11R GBM12R GBM14P GBM15R GBM18P GBM18P GBM19P GBM22P ZH617 ZH645 ZH791	KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK	Q5FWF5 -	12
Gamma-butyrobetaine dioxygenase (BBOX1)	<u>16% P / 21% R</u> GBM5P GBM9P GBM9R GBM10R GBM11P GBM11R GBM13P	KLGKRMGFLYLTFYGHTWQVQDK KAEALDGAHLMQIL KAEALDGAHLMQIL HKIIELDDKGQVVR KAEALDGAHLMQIL KHKIIELDDKGQVVR KAEALDGAHLMQIL HKIIELDDKGQVVR KAEALDGAHLMQIL HKIIELDDKGQVVR SKHKIIELDDKGQVVR	O75936 ∎	10
	GBM13R GBM14R GBM16P GBM18P	SKHKIIELDDKGQVVR KAEALDGAHLMQIL HKIIELDDKGQVVR KAEALDGAHLMQIL KHKIIELDDKGQVVR SKHKIIELDDKGQVVR HKIIELDDKGQVVR KHKIIELDDKGQVVR		
Malignant fibrous histiocytoma-amplified sequence 1 (MFHAS1)	<u>13% P / 21% R</u> GBM2P GBM7P GBM7R GBM11R GBM13P GBM20P GBM20R GBM21R ZH753 ZH761	KLNLSHNQLPALPAQLGALAHL KLNLSHNQLPALPAQLGALAHL KLNLSHNQLPALPAQLGALAHL KLNLSHNQLPALPAQLGALAHL KLNLSHNQLPALPAQLGALAHL KLNLSHNQLPALPAQLGALAHL KLNLSHNQLPALPAQLGALAHL KLNLSHNQLPALPAQLGALAHL KLNLSHNQLPALPAQLGALAHL	Q9Y4C4 =	4
Polypeptide N- acetylgalactosaminyl- transferase 15 (GALNT15)	<u>13% P / 17% R</u> GBM4R GBM6P GBM10R GBM16P GBM16R GBM17R GBM18P	GGSYRLIKQPRRQD GGSYRLIKQPRRQDK GSYRLIKQPRRQDK RGGSYRLIKQPRRQDK RGGSYRLIKQPRRQD RGGSYRLIKQPRRQD RGGSYRLIKQPRRQD GGSYRLIKQPRRQD GGSYRLIKQPRRQD GGSYRLIKQPRRQDK GGSYRLIKQPRRQDK GGSYRLIKQPRRQDKE LPEVRHPLCLQQHPQ	Q8N3T1 ■	2
Kynurenine-oxoglutarate transaminase 1 (CCBL1)	ZH616 ZH757 <u>16% P / 13% R</u> GBM4R GBM5P GBM6P GBM7P GBM12R GBM18R ZH645 ZH654	RNRVRIAETWLGSFK GGSYRLIKQPRRQD GGSYRLIKQPRRQDK GGSYRLIKQPRRQD FPPPDFAVEAFQHAVSG FPPPDFAVEAFQHAVSG RDHMIRSLQSVGLKPIIP GLVAIPVSIFYSVPHQKHFDHYIRF LDPMELAGKFTSRTKALVLNTPNNP EQLLFRQPSSYFVQ FPPPDFAVEAFQHAVSG FPPPDFAVEAFQHAVSG	Q16773 -	11

Ras-specific guanine nucleotide-releasing factor RalGPS1 (RALGPS1)	<u>13% P / 13% R</u> GBM11R GBM17R GBM19P	PTPPVPRHRKSHS PTPPVPRHRKSHS KRTREYIRSLKMVP	Q5JS13 =	1
	ZH654	PTPPVPRHRKSH PTPPVPRHRKSHS		
	ZH750	PTPPVPRHRKSH PTPPVPRHRKSHS		
	ZH753	PTPPVPRHRKSH PTPPVPRHRKSHS		
	ZH802	PTPPVPRHRKSH		
	ZH829	PTPPVPRHRKSHS PTPPVPRHRKSHS		
Tripartite motif-containing protein 58 (TRIM58)	<u>16% P / 8% R</u> GBM12R GBM13P GBM16P GBM22P ZH645 ZH757 ZH761 ZH761 ZH784	KKTVIWKEKVEMQRQRFRLEFEKHR KKTVIWKEKVEMQRQRFRLEFEKHR KKTVIWKEKVEMQRQRFRLEFEKHR KKTVIWKEKVEMQRQRFRLEFEKHR KKTVIWKEKVEMQRQRFRLEFEKHR KKTVIWKEKVEMQRQRFRLEFEKHR KKTVIWKEKVEMQRQRFRLEFEKHR	Q8NG06 =	3
Anaphase-promoting complex subunit CDC26	<u>5% P / 25% R</u> GBM8P	AIGLSSDPKSRE	Q8NHZ8 -	1
(CDC26)	GBM8R GBM12P GBM14R GBM15R GBM15R GBM17R GBM19R GBM21R	AIGLSSDPKSRE AIGLSSDPKSRE AIGLSSDPKSRE AIGLSSDPKSRE AIGLSSDPKSRE AIGLSSDPKSRE AIGLSSDPKSRE AIGLSSDPKSRE		
NKG2D ligand 2 (ULBP2) /	<u>8%/11% P</u>		Q9BZM5	2
retinoic acid early transcript 1G protein (RAET1G) 2 peptides multi-map to GBM-exclusive retinoic acid early transcript 1L protein (RAET1L; Q5VY80)	<u>17%/13% R</u> GBM4P GBM4R GBM7R GBM8R GBM10R GBM13P ZH791 ZH791 ZH829	KAQNPVLREVVDILTEQLL (RAET1G/RAET1L) LILCCLLIILPCFILP (ULBP2/RAET1L) KLNVTTAWKAQNPVLREVVDILT (ULBP2/RAET1G) KLNVTTAWKAQNPVLREVVDILT (ULBP2/RAET1G) KLNVTTAWKAQNPVLREVVDILT (ULBP2/RAET1G) KLNVTTAWKAQNPVLREVVDILT (ULBP2/RAET1G) KLNVTTAWKAQNPVLREVVDILT (ULBP2/RAET1G)	Q6H3X3 =	3
Hepatocyte nuclear factor 6	<u>13% P / 13% R</u>		Q9UBC0	2
(ONECUT1)	GBM9R GBM11P GBM11R GBM13P GBM14P GBM16R GBM21P ZH802	KRKEQEHGKDRGNTPKKP KRKEQEHGKDRGNTPKKP KRKEQEHGKDRGNTPKKP KRKEQEHGKDRGNTPKKP KRKEQEHGKDRGNTPKKP KRKEQEHGKDRGNTPKKP KRKEQEHGKDRGNTPKKP KRKEQEHGKDRGNTPKKP		
Sushi repeat-containing protein SRPX2 (SRPX2)	<u>11% P / 21% R</u> GBM2P	IDRDRYMEPVTPEE	O60687 =	7
p	GBM9R GBM14P	APDPSNRYYKMQISMLQQST GEHVIRYTAYDR		
	GBM14R	GEHVIRYTAYDRAYN GEHVIRYTAYDR GEHVIRYTAYDRAY		
	GBM18R GBM20P GBM20R GBM21P	GEHVIRYTAYDRAYN IDRDRYMEPVTPEE APDPSNRYYKMQISMLQQST APDPSNRYYKMQISMLQQST EGEHVIRYTAYDRAY GEHVIRYTAYDR GEHVIRYTAYDR		
	GBM21R	GEHVIRYTAYDRAYN GEHVIRYTAYDRAYN GPEPGSHFPEGEHVIRYTAYDRAYN		
Complement C1q-like protein 3 (C1QL3)	<u>8% P / 21% R</u> GBM7P	EPGDEVYIKLDGGKAHG EPGDEVYIKLDGGKAHGGN	Q5VWW1 -	1
	GBM7R GBM12R GBM14R	EPGDEVYIKLDGGKAHGGN EPGDEVYIKLDGGKAHGGN TVPKIAFYAGLKRQHEG		
	GBM21P	VPKIAFYAGLKRQHEG TVPKIAFYAGLKRQHEG VPKIAFYAGLKRQH		

	GBM21R	TVPKIAFYAGLKRQH TVPKIAFYAGLKRQHEG VPKIAFYAGLKRQH		
	ZH616 ZH753	VPKIAFYAGLKRQHE VPKIAFYAGLKRQHEG KGEPGRQGLPGPPGAP EPGDEVYIKLDGGKAHG EPGDEVYIKLDGGKAHGGN		
Zinc finger protein GLIS1 (GLIS1)	5% P / 21% R GBM4 GBM9R GBM10R GBM11R GBM16P GBM16R ZH616	LPSKPSYPPFQSPPPPPLP LPSKPSYPPFQSPPPPPL LPSKPSYPPFQSPPPPPLP LPSKPSYPPFQSPPPPPLP LPSKPSYPPFQSPPPPPLP LPSKPSYPPFQSPPPPPLP LPSKPSYPPFQSPPPPPL	Q8NBF1 -	6
Roundabout homolog 2 (ROBO2)	<u>13% P / 13% R</u> GBM10R	KKDKVRIDDKEER	Q9HCK4 <	3
	GBM13P	KKDKVRIDDKEERISIR GRYDIKDDYTLRIKK		
	GBM13R	KKDKVRIDDKEERISIR KDKVRIDDKEERISIR KKDKVRIDDKEERIS KKDKVRIDDKEERISIR		
	GBM16P	WKKDKVRIDDKEERISIR KDKVRIDDKEERIS KKDKVRIDDKEER KKDKVRIDDKEERIS KKDKVRIDDKEERISIR WKKDKVRIDDKEERIS		
	GBM16R GBM18P ZH613 ZH654	WKKDKVRIDDKEERISIR KKDKVRIDDKEERISIR KKDKVRIDDKEERISIR LTDRPPPIILQGPANQTL RNEVVITENNNSIT		
Striatin-4 (STRN4)	13% P / 8% R GBM11P GBM14R GBM18P GBM18R ZH613 ZH654 ZH802	SGSHDCSLRLWSLDNK KGQENLKTD DDRGIRFLDNRTGKPV DDRGIRFLDNRTGKPV NSPLVWKEGRQLLR KGQENLKTD DDRGIRFLDNRTGKPV	Q9NRL3	4
Beta-crystallin S (CRYGS)	13002 1300 P / 4% R GBM16P GBM18P GBM20R ZH645 ZH681 ZH681 ZH802	RGRQYLLDKKEYRKPID GRQYLLDKKEYRKPID KITFYEDKNFQGRR GRQYLLDKKEYRKPID RGRQYLLDKKEYRKPID GRQYLLDKKEYRKPID GRQYLLDKKEYRKPID KGDFSGQMYETTED	P22914 -	1
Aftiphilin (AFTPH)	8% P / 13% R GBM9P GBM10R GBM17R GBM18P GBM18R ZH750	LYELTTSKLEISTSSL LYELTTSKLEISTSSL LYELTTSKLEISTSSL LYELTTSKLEISTSSL LYELTTSKLEISTSSL LYELTTSKLEISTSSL	Q6ULP2	1
Latent-transforming growth factor beta-binding protein (LTBP3)	<u>13% P / 8% R</u> GBM5P GBM13P	ESNSFWDTSPLLLGKPP ESNSFWDTSPLLLGKPP SNSFWDTSPLLLGKPP	Q9NS15 ■	3
	GBM13R GBM14P GBM14R ZH654 ZH681	ESNSFWDTSPLLLGKPP SNSFWDTSPLLLGKPP VQVHRIESSNAESAAPS ASVQVHRIESSNAESAAPS QVHRIESSNAESAAPS SVQVHRIESSNAESAAPS VQVHRIESSNAESAAPS ESNSFWDTSPLLLGKPP ESNSFWDTSPLLLGKPP		
DNA repair protein RAD51 homolog 1 (RAD51)	8% P / 8% R GBM4P GBM17P GBM18R GBM20P	SNSFWDTSFLLLGKPP SNSFWDTSPLLLGKPP KLVPMGFTTATEFHQRRSEII NDVKKLEEAGFHTV KLVPMGFTTATEFHQRRSEII	Q06609 •	2

	GBM22R	KTQICHTLAVTCQLPI		
Protein Dos (DOS)	<u>8% P / 8% R</u> GBM6P	KVKKWKLEPSQRAAS KVKKWKLEPSQRAASL	Q8N350 =	1
	GBM7P	KVKKWKLEPSQRAAS KVKKWKLEPSQRAASL		
	GBM10R GBM12P	RRDYSIDEKTDALFHEFLRHDP KVKKWKLEPSQRAAS KVKKWKLEPSQRAASL		
	GBM20R	KVKKWKLEPSQRAAS KVKKWKLEPSQRAASL VKKWKLEPSQRAAS		
Copper-transporting ATPase 2 (ATP7B)	<u>8% P / 8% R</u> GBM9P GBM10R GBM13P GBM18R ZH617	LMAGKAEIKYDPEVIQP KSIEDRISNLKGIIS KSIEDRISNLKGIIS GEDNLIIREEQVPME KGGKPLEMAHKIKTVMFDKTGTITH	P35670 -	4
Putative mitochondrial ribosome-binding factor A (RBFA)	<u>8% P / 8% R</u> GBM2P GBM3R GBM5P GBM6P GBM7R	KNWLKKFASKTKK KNWLKKFASKTKK KNWLKKFASKTKK KNWLKKFASKTKK KNWLKKFASKTKK	Q8N0V3	11

Supplementary Table 3. Glioblastoma-associated HLA class I ligands presented on at least six primary and four recurrent tumors of a minimum of eight different patients. Peptides already reported to derive from glioblastoma-associated antigens were excluded from this listing. In turn, some of those antigens not designated as glioblastoma-associated due to a CNS-associated expression profile are listed herein with glioblastoma-associated peptides. The number of positive tumors other than glioblastoma was based on n=824 HLA class I peptidome datasets. HLA restrictions not passing manual assessment as quality control are indicated in italic. These combinations of sequence and HLA restriction were excluded from downstream analyses such as calculation of peptides matching per patient worldwide. All peptides were restricted to at least one HLA allotype covered by the CNS-related subset (brain, cerebellum, and spinal cord) of the benign database. Frequencies of positive tumors are given separately for n=38 primary (P) and n=24 recurrent (R) glioblastomas.

cy gn

Peptide sequence	HLA restriction	Frequency o tumors	of positive	Antigen (UniProt accession)	Protein frequency on glioblastomas	Peptide-positive non-GBM tumors Protein frequency on non-GBM tumors	on benig samples
ALAAELNQL	A*02:01 A*02:05	55% P GBM2P GBM2R GBM3P GBM6P GBM6R GBM7P GBM7R GBM10P GBM10P GBM11P GBM12R GBM12R GBM13R GBM14P GBM14P GBM15P	42% R GBM20P GBM20R GBM21 ZH613 ZH616 ZH617 ZH645 ZH678 ZH681 ZH720 ZH750 ZH750 ZH757 ZH761 ZH784 ZH829	Glial fibrillary acidic protein (GFAP; P14136)	100% P 88% R	6 12%	16%
FLHDISDVQL	A*02:01 A*02:05	47% P GBM2P GBM2R GBM3P GBM6R GBM6R GBM7P GBM7R GBM10R GBM11P GBM11R GBM13P GBM13R GBM14P GBM14R	42% R GBM19P GBM20R GBM21P ZH613 ZH616 ZH616 ZH617 ZH645 ZH645 ZH681 ZH720 ZH753 ZH757 ZH761 ZH784	Ceramide synthase 1 (CERS1; P27544)	68% P 71% R	3 2%	2%

YVSSGEMMV	A*02:01 A*02:05 C*02:02 <i>C*04:01</i> <i>C*05:01</i> C*15:02 C*16:01	47% P GBM3P GBM6P GBM6R GBM7P GBM7R GBM10R GBM11P GBM12R GBM13P GBM13P GBM14P GBM14P GBM15P	42% R GBM21P GBM23R ZH613 ZH616 ZH617 ZH645 ZH678 ZH681 ZH753 ZH757 ZH761 ZH802 ZH829	Glial fibrillary acidic protein (GFAP; P14136)	100% P 88% R	2 12%	16%
GLLDGVFNV	A*02:01 <i>B*13:02</i>	45% GBM2P GBM2R GBM3P GBM5P GBM5P GBM7P GBM7R GBM10R GBM10R GBM12R GBM13P GBM13R GBM14P GBM14P GBM19P	46% GBM19R GBM21P GBM21R ZH617 ZH645 ZH678 ZH681 ZH720 ZH750 ZH750 ZH753 ZH757 ZH761 ZH784 ZH829	Carnosine synthase 1 (CARNS1; A5YM72)	63% P 71% R	13 2%	0%
YQDLLNVKL	A*02:01 A*02:05 B*13:02 C*02:02 C*02:02 C*05:01 C*05:01 C*05:02 C*15:02	47% P GBM3P GBM7P GBM7R GBM9P GBM9R GBM11P GBM11R GBM12R GBM12R GBM14P GBM14P GBM14P GBM15P GBM19P GBM19R	38% R GBM20P GBM20R ZH613 ZH616 ZH617 ZH678 ZH681 ZH720 ZH753 ZH757 ZH761 ZH784 ZH802	Glial fibrillary acidic protein (GFAP; P14136)	100% P 88% R	7 12%	16%
SLWAGVVVL	A*02:01	42% P GBM2P GBM2P GBM3P GBM7P GBM7R GBM10R GBM12P GBM12P GBM13R GBM13R GBM14P GBM14P GBM14P	42% R GBM19R GBM21P GBM21P GBM21R ZH617 ZH645 ZH681 ZH750 ZH750 ZH757 ZH761 ZH784 ZH829	Chitinase-3-like protein 2 (CHI3L2; Q15782)	63% P 67% R	2 2%	1%
ALVSNLYVI	A*02:01	42% P GBM2P GBM3P GBM1P GBM13P GBM13R GBM14R GBM15P GBM20P GBM20R	17% R GBM21P ZH617 ZH645 ZH678 ZH681 ZH720 ZH753 ZH757 ZH761 ZH829	Protein transport protein Sec61 subunit alpha isoform 1/2 (SEC61A1/2; P61619 / Q9H9S3)	97% / 97% P 100% / 100% R	31 60% / 51%	63% / 61%
ALIEVGEGVNL	A*02:01	37% P GBM2P GBM2R GBM7P GBM10R GBM11P GBM13P GBM13R GBM14R GBM19P	29% R GBM21P ZH617 ZH645 ZH681 ZH720 ZH753 ZH757 ZH761 ZH784	PNMA-like protein 1 (PNMAL1; Q86V59)	45% P 42% R	8 2%	0%

		GBM20P GBM20R	ZH829				
ILDHNTMQV	A*02:01 C*05:01	32% P GBM3P GBM7P GBM7R GBM10R GBM11R GBM12R GBM13P GBM13R GBM9R GBM9R	33% R ZH617 ZH645 ZH678 ZH681 ZH720 ZH753 ZH757 ZH761 ZH784 ZH784 ZH829	Pleckstrin homology domain-containing family H member 1 (PLEKHH1; Q9ULM0)	63% P 79% R	0 4%	2%
ALAQYLITA	A*02:01	34% P GBM2R GBM3P GBM7P GBM7R GBM10R GBM11P GBM11R GBM12R GBM13P GBM13R	29% R GBM20P ZH617 ZH645 ZH678 ZH681 ZH720 ZH753 ZH757 ZH761 ZH761 ZH829	Poly(rC)-binding protein 4 (PCBP4; P57723)	61% P 59% R	5 4%	11%
GLLDQIQAL	A*02:01	32% P GBM3P GBM7P GBM7R GBM10R GBM12R GBM14R GBM14P GBM14R GBM20R GBM21P	29% R ZH617 ZH678 ZH681 ZH720 ZH750 ZH753 ZH753 ZH757 ZH761 ZH829	Neuroligin-2/3 / X-/Y-linked neuroligin-4 (NLGN2/3/4X/4Y; Q8NFZ4 / Q9NZ94 / Q8N0W4 / Q8NFZ3)	34% / 61% / 50% / 50% P 29% / 54% / 42% / 42% R	7 2% / 3% / 2% / 2%	1% / 4% / 2% / 2%
VLDSHIHAY	A*01:01 A*03:01 B*15:01 <i>C*01:02</i> C*04:01 <i>C*07:01</i>	37% P GBM3P GBM4P GBM4R GBM5P GBM5R GBM6P GBM9P GBM9P GBM9R GBM10R GBM13P GBM13R GBM16P	38% R GBM16R GBM17P GBM17R GBM22R GBM22R GBM23R GBM23R ZH617 ZH645 ZH654 ZH761	Receptor-type tyrosine- protein phosphatase zeta (PTPRZ1; P23471)	97% P 83% R	6 6%	5%
KLTEENTTL	A*02:01 A*02:05 <i>B*13:02</i>	37% P GBM3P GBM7P GBM11P GBM12R GBM13P GBM14P GBM14R GBM15P GBM20P	17% R GBM20R GBM21P ZH616 ZH617 ZH678 ZH681 ZH753 ZH757 ZH757 ZH761	Retrotransposon- derived protein PEG10 (PEG10; Q86TG7)	66% P 46% R	18 10%	6%
YYTVRNFTL	A*23:01 A*24:02 C*06:02 C*07:02 <i>C*07:04</i>	34% P GBM2P GBM4P GBM4R GBM10R GBM10R GBM11P GBM11R GBM15P GBM16P GBM16R GBM18R	33% R GBM19P GBM19R GBM22P GBM22R GBM22R GBM23P ZH616 ZH681 ZH757 ZH784 ZH791	Receptor-type tyrosine- protein phosphatase zeta (PTPRZ1; P23471)	97% P 83% R	0 6%	5%
GLVEKVQAA	A*02:01 A*02:05	34% P GBM2R GBM3P GBM6P GBM7P GBM7R GBM10R GBM11P GBM11R	29% R GBM13R GBM15P GBM20P GBM20R GBM21P ZH613 ZH617 ZH645	Apolipoprotein E (APOE; P02649)	76% P 67% R	25 16%	12%

AIIDGVESV	A*02:01 A*02:05	GBM12R GBM13P <u>34% P</u> GBM7P GBM10R GBM11P GBM12P GBM12P GBM14P GBM14R GBM15P	ZH678 ZH681 <u>21% R</u> GBM20R GBM21P ZH617 ZH645 ZH678 ZH681 ZH753 ZH757 ZH761	Receptor-type tyrosine- protein phosphatase zeta (PTPRZ1; P23471)	97% P 83% R	0 6%	5%
SLPELVHAV	A*02:01 A*02:05	32% P GBM3P GBM6P GBM7P GBM7R GBM10R GBM11P GBM11R GBM12R GBM13P GBM13R	2H761 2 <u>9% R</u> GBM14R GBM21P ZH613 ZH617 ZH678 ZH681 ZH753 ZH757 ZH761	Sestrin-3 (SESN3; P58005)	42% P 42% R	19 12%	4%
LLWGNAIFL	A*02:01	34% P GBM2P GBM2R GBM3P GBM7P GBM7R GBM12R GBM13R GBM14P GBM19P	17% R GBM21P ZH616 ZH617 ZH678 ZH681 ZH750 ZH761 ZH829	Kinesin-like protein KIF1A (KIF1A; Q12756)	87% P 79% R	9 14%	15%
AIIGGMFTV	A*02:01 A*02:05	32% P GBM6P GBM10R GBM11P GBM11R GBM12R GBM13P GBM14P GBM14R GBM20P	29% R GBM20R GBM21P ZH613 ZH617 ZH681 ZH720 ZH753 ZH757 ZH761	Endoplasmic reticulum- Golgi intermediate compartment protein 3 (ERGIC3; Q9Y282)	71% P 63% R	22 39%	26%
KIGPVGAVV	A*02:01 A*02:05 <i>C*01:02</i> C*15:02	18% P GBM6R GBM7R GBM10R GBM11R GBM12R GBM13R GBM19R GBM21P	33% R ZH613 ZH678 ZH681 ZH720 ZH753 ZH757 ZH829	Myelin-associated glycoprotein (MAG; P20916)	50% P 63% R	0 0%	1%
ALQTIQLFL	A*02:01 <i>B*13:02</i>	32% P GBM2P GBM2P GBM3P GBM3P GBM3R GBM7P GBM13P GBM13P GBM14P GBM14R	29% R GBM15P GBM21P ZH617 ZH645 ZH681 ZH720 ZH753 ZH761 ZH784	Dystonin (DST; Q03001)	97% P 92% R	9 41%	55%
QLNEQVHSL	A*02:01 A*02:05	32% P GBM3P GBM10R GBM11P GBM13P GBM13R GBM14P GBM14R GBM20P GBM20R	21% R GBM21P ZH617 ZH678 ZH681 ZH753 ZH757 ZH761 ZH829	Microtubule-associated protein RP/EB family member 2 (MAPRE2; Q15555)	39% P 21% R	7 6%	9%
SLGLFLAQV	A*02:01	<u>29% P</u> GBM3P GBM3R GBM7P	<u>25% R</u> GBM20R GBM21P ZH617	Scavenger receptor class A member 3 (SCARA3; Q6AZY7)	53% P 38% R	10 4%	5%

		GBM7R GBM12R GBM13R GBM14R GBM15P GBM20P	ZH645 ZH678 ZH750 ZH757 ZH761				
ALLDGTVFEI	A*02:01	29% P GBM3P GBM3R GBM7P GBM10R GBM11P GBM13P GBM13R GBM14R GBM19P	25% R GBM20P GBM20R GBM21P ZH645 ZH681 ZH720 ZH727 ZH784	Protein DGCR6 / DGCR6L (DGCR6/6L; Q9BY27 / Q14129	34% / 34% P 33% / 33% R	24 7% / 6%	3% / 2%
ALSPNNHEV	A*02:01	29% P GBM3P GBM7P GBM7R GBM12R GBM13P GBM14R GBM20P GBM20R	21% R GBM21P ZH617 ZH678 ZH681 ZH753 ZH757 ZH761 ZH761 ZH829	Actin-related protein 2/3 complex subunit 1A (ARPC1A; Q92747)	29% P 21% R	9 7%	10%
KIPPVTPSI	A*02:01 A*02:05 C*01:02 C*02:02 <i>C*03:03</i> C*12:03 C*15:02	29% P GBM3P GBM5P GBM10R GBM11P GBM12R GBM12P GBM13P GBM13P GBM14P	21% R GBM14R GBM21P ZH617 ZH645 ZH678 ZH681 ZH753 ZH757	Arrestin domain- containing protein 4 (ARRDC4; Q8NCT1)	63% P / 50% R	12	12%
LLLDTVTSI	A*02:01	26% P GBM3P GBM7P GBM10R GBM13P GBM13R GBM14R GBM20P GBM20R	25% R GBM21P ZH681 ZH720 ZH753 ZH757 ZH761 ZH784 ZH829	Microtubule-associated protein 1A (MAP1A; P78559)	76% P 67% R	2	6%
GLLPSPLAV	A*02:01 <i>B*13:02</i>	26% P GBM3P GBM5P GBM5R GBM7P GBM10R GBM12R GBM13P GBM13R	25% R GBM14R GBM21P ZH617 ZH645 ZH678 ZH753 ZH761 ZH829	Zinc finger protein 385A (ZNF385A; Q96PM9)	71% P 67% R	25	15%
TLQEQLEKA	A*02:01 A*02:05	26% P GBM3P GBM7P GBM10R GBM11P GBM12R GBM13R GBM14P GBM14R	25% R GBM15P GBM20P GBM20R GBM21P ZH616 ZH617 ZH681 ZH753	Pinin (PNN; Q9H307)	63% P 42% R	21	21%
TLYEQEIEV	A*02:01	24% P GBM2P GBM2R GBM3P GBM7P GBM7R GBM10R GBM11P GBM11R	38% R GBM13P GBM13R GBM14R GBM20R ZH617 ZH678 ZH681 ZH753	Procollagen galactosyltransferase 2 (COLGALT2; Q8IYK4)	39% P 54% R	3	1%
GTLEIPVAQK	A*03:01 A*11:01	GBM12R 29% P GBM4P GBM4R GBM6P GBM6R GBM7P GBM7R GBM10R	ZH757 <u>25% R</u> GBM16P GBM17R GBM18P GBM22P GBM23P ZH631 ZH678	Neuronal cell adhesion molecule (NRCAM; Q92823)	47% P 29% R	0	1%

		GBM12P GBM12R	ZH791				
RVSLPSYPR	A*03:01 A*11:01 A*31:01	29% P GBM4P GBM6P GBM7P GBM7R GBM10R GBM16P GBM16R GBM17R	21% R GBM18P GBM22P GBM23P GBM23R ZH631 ZH654 ZH678 ZH802	Neurocan core protein (NCAN; O14594)	34% P 21% R	2	1%
ILNVDGLIGV	A*02:01	29% P GBM7P GBM10R GBM11P GBM13P GBM13R GBM14R GBM19P GBM20P	17% R GBM20R GBM21P ZH645 ZH681 ZH720 ZH757 ZH829	ATP-citrate synthase (ACLY; P53396)	89% P 63% R	11	30%
ILKDGIHNV	A*02:01 A*02:05	29% P GBM3P GBM11P GBM13P GBM13R GBM14R GBM20P GBM20P GBM20R GBM21P	17% R ZH616 ZH617 ZH645 ZH678 ZH681 ZH753 ZH761	Prolow-density lipoprotein receptor- related protein 1 (LRP1; Q07954)	74% P 71% R	14	38%
KLQEANAQL	A*02:01	26% P GBM3P GBM7P GBM7R GBM10R GBM11P GBM12R GBM14P GBM14R	25% R GBM20P GBM20R GBM21P ZH617 ZH678 ZH681 ZH753 ZH753 ZH757	Lethal(2) giant larvae protein homolog 1 (LLGL1; Q15334)	47% P 54% R	10	6%
QLNEKVAQL	A*02:01 B*08:01	26% P GBM9P GBM12R GBM13P GBM13R GBM14R GBM16P GBM20P GBM20R	21% R GBM21P ZH617 ZH678 ZH681 ZH753 ZH761 ZH829	Lanosterol 14-alpha demethylase (CYP51A1; Q16850)	82% P 58% R	32	31%
NIIPRFVQV	A*02:01 A*02:05 B*08:01 C*16:01	26% P GBM7P GBM11P GBM13R GBM14R GBM19P GBM20P GBM20R	<u>17% R</u> GBM21P ZH617 ZH678 ZH681 ZH753 ZH757 ZH761	SLIT-ROBO Rho GTPase-activating protein 2 / 2C (SRGAP2 / 2C; O75044 / P0DJJ0)	66% / 66% P 54% / 54% R	14 14% / 11%	15% / 14%
SLNGTIFTV	A*02:01	26% P GBM3P GBM7P GBM12R GBM13P GBM13R GBM14R GBM20P	17% R GBM21P ZH617 ZH678 ZH681 ZH753 ZH757 ZH761	Bromodomain and PHD finger-containing protein 3 (BRPF3; Q9ULD4)	29% P 21% R	11 3%	1%
VIFDLPTTV	A*02:01 A*02:05 C*12:03 C*16:01	26% P GBM3P GBM7P GBM10R GBM11P GBM13P GBM13R GBM14R	17% R GBM21P ZH617 ZH645 ZH678 ZH753 ZH757 ZH761	Uncharacterized protein KIAA0556 (KIAA0556; O60303)	39% P 29% R	17 8%	5%
ALDGKIYEL	A*02:01	26% P GBM3P GBM7P GBM10R GBM11P GBM13P GBM13R GBM14R	17% R GBM20R GBM21P ZH617 ZH681 ZH720 ZH757 ZH761	Rho GTPase-activating protein 5 (ARHGAP5; Q13017)	42% P 42% R	11 11%	13%

GLVAGGIIGA	A*02:01	26% P GBM3P GBM7P GBM10R GBM12R GBM13P GBM13R GBM14R	<u>17% R</u> GBM20P GBM21P ZH617 ZH678 ZH681 ZH757 ZH757 ZH761	Translocase of inner mitochondrial membrane domain- containing protein 1 (TIMMDC; Q9NPL8)	39% P 21% R	38 15%	10%
AVATFLQSV	A*02:01 A*02:05 C*15:02	24% P GBM6P GBM6R GBM10R GBM11P GBM11R GBM13R GBM14R GBM20P	29% R GBM20R GBM21P ZH613 ZH617 ZH678 ZH681 ZH753 ZH757	Ubiquitin-like modifier- activating enzyme 1 (UBA1; P22314)	87% P 83% R	8 48%	54%
YLWTDVYSA	A*02:01	24% P GBM2R GBM3P GBM7P GBM7R GBM10R GBM12R GBM13P GBM13R	29% R GBM19P GBM19R ZH617 ZH678 ZH681 ZH753 ZH757 ZH829	Protein-arginine deiminase type-2 (PADI2; P22314)	87% P 83% R	2 13%	6%
SLMGTVFLL	A*02:01	24% P GBM3P GBM7P GBM10R GBM11P GBM11R GBM12R GBM13R GBM14P	25% R GBM14R ZH645 ZH681 ZH720 ZH750 ZH753 ZH757	Sphingomyelin synthase-related protein 1 (SAMD8; Q96LT4)	55% P 50% R	21 8%	7%
GLIEIISNA	A*02:01 A*02:05	24% P GBM3P GBM6P GBM6R GBM7P GBM10R GBM11P GBM12R	21% R GBM13R GBM14R ZH613 ZH645 ZH678 ZH678 ZH681 ZH757	U5 small nuclear ribonucleoprotein 200 kDa helicase (SNRNP200; O75643)	100% P 88% R	14 72%	74%
NLLYPVPLV	A*02:01	21% P GBM3P GBM7P GBM7R GBM10R GBM12R GBM13R GBM21P	25% R ZH645 ZH678 ZH681 ZH750 ZH753 ZH757 ZH784	Kinesin-like protein KIF1A (KIF1A; Q12756)	87% P 79% R	2 14%	15%
TLSTVIATV	A*02:01 A*02:05	21% P GBM3P GBM6P GBM7P GBM10R GBM12R GBM13R GBM14R	21% R GBM21P ZH617 ZH681 ZH720 ZH753 ZH761	Atrophin-1 (ATN1; P54259)	68% P 71% R	10 12%	10%
SLLEQAIAL	A*02:01	18% P GBM2R GBM3P GBM7P GBM7R GBM10R GBM12R GBM13R	29% R ZH678 ZH681 ZH753 ZH757 ZH761 ZH784 ZH829	Suppression of tumorigenicity 18 protein (ST18; O60284)	21% P 29% R	0 0%	0%
APSGTRVVQV	B*07:02	29% P GBM2P GBM4P GBM4R GBM7P GBM7R GBM7R GBM10R GBM11P GBM11R	25% R GBM16P GBM16R GBM18P GBM18R ZH616 ZH681 ZH757 ZH791	Protocadherin gamma- C3 (PCDHGC3; Q9UN70)	66% P 63% R	2 8%	11%

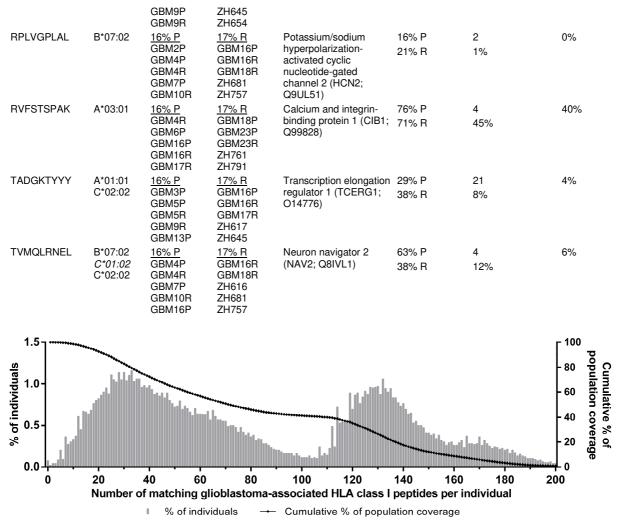
ALADLQEAV	A*02:01 A*02:05 <i>B*13:02</i>	29% P GBM3P GBM7P GBM7R GBM10R GBM11P GBM11R GBM13P GBM13R	21% R GBM14P GBM14R GBM21P ZH616 ZH617 ZH645 ZH681 ZH757	Protein TANC1 (TANC1; Q9C0D5)	63% P 54% R	12 7%	10%
КLАРРРККА	A*02:01	29% P GBM3P GBM7P GBM7R GBM14P GBM14R GBM20P GBM20P GBM21P	17% R ZH616 ZH617 ZH645 ZH678 ZH681 ZH753 ZH829	Astrocytic phosphoprotein PEA-15 (PEA15; Q15121)	76% P 58% R	22 28%	36%
SPYSKTLVL	B*07:02 B*14:02 B*35:03	26% P GBM4P GBM4P GBM7P GBM10R GBM11P GBM11R GBM14R GBM16P GBM16R	25% R GBM18P GBM18R GBM22P GBM22R ZH616 ZH681 ZH757 ZH791	E3 ubiquitin-protein ligase TRIM9 (TRIM9; Q9C026)	53% P 42% R	1 0%	0%
SPSGLRDSTV	B*07:02	26% P GBM2P GBM2R GBM4P GBM4R GBM7P GBM8P GBM10R GBM10P	21% R GBM16R GBM18P ZH616 ZH681 ZH757 ZH784 ZH791	ATP-sensitive inward rectifier potassium channel 10 (KCNJ10; P78508)	92% P 79% R	0 7%	12%
GVIESVVTI	A*02:01 A*02:05 B*13:02 C*02:02	26% P GBM3P GBM6P GBM6R GBM7P GBM11P GBM11R GBM12R GBM13P	<u>17% R</u> GBM13R GBM14R ZH613 ZH617 ZH681 ZH757 ZH761	Microtubule-associated protein 2 (MAP2; P11137)	66% P 50% R	1 4%	7%
GLLGGLPRL	A*02:01	26% P GBM7P GBM7R GBM12R GBM13P GBM13R GBM21P ZH678	29% R ZH681 ZH720 ZH750 ZH753 ZH757 ZH761 ZH829	Homeobox protein Nkx-6.2 (NKX6-2; Q9C056)	32% P 33% R	0 0%	1%
GLAPSIRTK	A*03:01 A*11:01	24% P GBM4P GBM4R GBM6P GBM6R GBM8P GBM10R GBM16P GBM16R GBM17R	33% R GBM18P GBM18R GBM22R GBM23P GBM23R ZH678 ZH761 ZH791	Tenascin (TNC; P24821)	87% P 83% R	11 14%	13%
RLFDEPQLA	A*02:01 <i>B*13:02</i>	24% P GBM3P GBM5P GBM5R GBM7P GBM10R GBM13R GBM14P	21% R GBM14R GBM21P ZH617 ZH681 ZH753 ZH757 ZH761	BTB/POZ domain- containing protein 1/2 (BTBD1/2; Q9H0C5 / Q9BX70)	74% / 74% P 58% / 67% R	8 34% / 38%	33% / 36%
SILDDVAMV	A*02:01	24% P GBM10R GBM12R GBM13P GBM13R GBM14P GBM20P	17% R ZH617 ZH678 ZH720 ZH753 ZH757 ZH761	RNA-binding protein 25 (RBM25; P49756)	50% P 33% R	31 17%	10%

		GBM21P					
IPKAKPLTL	B*07:02 B*08:01	21% P GBM4P GBM4R GBM7P GBM9P GBM9R GBM10R GBM13P GBM13R	33% R GBM16P GBM16R GBM18R ZH617 ZH681 ZH753 ZH757 ZH784	Stearoyl-CoA desaturase 5 (SCD5; Q86SK9)	68% P 58% R	4 6%	4%
GLDPQGDRSFL	A*02:01 <i>B*07:02</i> C*05:01	21% P GBM7P GBM7R GBM10R GBM13R GBM14R GBM20P GBM20R	25% R GBM21P ZH617 ZH678 ZH681 ZH753 ZH757 ZH757 ZH761	Protein LCHN (LCHN; A4D1U4)	29% P 29% R	24 5%	2%
GVIDFSMYL	A*02:01 C*02:02 C*15:02 C*16:01	21% P GBM7P GBM10R GBM12R GBM13P GBM13R ZH617 ZH681	21% R ZH720 ZH750 ZH753 ZH757 ZH761 ZH784	RUN and FYVE domain-containing protein 2/3 (RUFY2/3; Q8WXA3 / Q7L099)	42% / 34% 29% / 38% R	6 4% / 3%	2% / 0%
KMDENQFVAV	A*02:01	18% P GBM2P GBM10R GBM11P GBM13R GBM14R GBM20P GBM20R	25% R ZH617 ZH681 ZH720 ZH753 ZH757 ZH784	Dihydropyrimidinase- related protein 1/2/3 (CRMP1 / DPYSL2/3; Q14194 / Q16555 / Q14195	71% / 79% / 68% P 67% / 79% / 67% R	11 19% / 25% / 29%	30% / 41% / 33%
NLYEGQITV	A*02:01	18% P GBM10R GBM11P GBM11R GBM12R GBM13R GBM14R GBM21P	25% R ZH645 ZH678 ZH681 ZH753 ZH757 ZH761	ATP-binding cassette sub-family A member 3 (ABCA3; Q99758)	37% P 29% R	3 5%	4%
ALTPVVVTL	A*02:01	18% P GBM3P GBM7P GBM10R GBM12R GBM13R GBM14R	21% R GBM21P ZH681 ZH720 ZH753 ZH757 ZH757 ZH761	Cyclin-dependent kinase 4 (CDK4; P11802)	50% P 54% R	28 13%	8%
VLYEDSLSSQV	A*02:01	29% P GBM2P GBM3P GBM7P GBM7R GBM10P GBM10R GBM11P GBM11R	21% R GBM13P GBM13R GBM20P GBM20R ZH617 ZH678 ZH720 ZH757	Integral membrane protein 2C (ITM2C; Q9NQX7)	55% P 46% R	10 16%	18%
IAFPGDILM	B*35:02 C*01:02 C*02:02 C*03:03 C*03:04 C*05:01 C*08:02 C*12:03 C*15:06	26% P GBM3P GBM6P GBM6R GBM7P GBM7R GBM12R GBM12P GBM14P	25% R GBM21P GBM22P GBM22R GBM23P GBM23R ZH613 ZH631 ZH654	Excitatory amino acid transporter 2 (SLC1A2; P43004)	66% P 58% R	0 3%	4%
KPKPTPDYL	B*07:02	24% P GBM2R GBM4P GBM4R GBM7P GBM7R GBM10R GBM11P GBM11R	29% R GBM16P GBM16R GBM18P GBM18R ZH616 ZH681 ZH757 ZH791	Protein quaking (QKI; Q96PU8)	92% P 88% R	8 52%	58%

SPSEARQDVDL	B*07:02	24% P GBM2R GBM4P GBM4R GBM7P GBM7R GBM10R GBM10P GBM16P	25% R GBM16R GBM18P GBM18R ZH616 ZH681 ZH757 ZH791	Microtubule-associated protein 1B (MAP1B; P46821)	100% P 88% R	9 24%	29%
SLSSGPLTQK	A*03:01 A*11:01	21% P GBM2R GBM4P GBM4R GBM6P GBM6R GBM10R GBM16P GBM16R	29% R GBM17R GBM18P GBM23P GBM23R ZH631 ZH761 ZH791	Brain and acute leukemia cytoplasmic protein (BAALC; Q8WXS3)	45% P 54% R	2 2%	3%
SLDSTLHAV	A*02:01	21% P GBM3P GBM10R GBM11P GBM13P GBM13R GBM14R GBM20P	21% R GBM20R ZH616 ZH617 ZH645 ZH681 ZH753	Leucine-rich repeat and coiled-coil domain- containing protein 1 (LRRCC1; Q9C099)	39% P 21% R	11 4%	3%
ATYYGAFIK	A*03:01 A*11:01	21% P GBM4P GBM4R GBM7P GBM10R GBM16P GBM16R GBM17R	21% R GBM18R GBM23P ZH631 ZH678 ZH761 ZH791	Mitogen-activated protein kinase kinase kinase kinase 4 / misshapen-like kinase 1 / TRAF2 and NCK-interacting protein kinase (MAP4K4 / MINK1 / TNIK; O95819 / Q8N4C8 / Q9UKE5)	61% / 63% / 66% P 58% / 54% / 58% R	2 20% / 22% / 19%	22% / 23% / 23%
FLQGTIIAL	A*02:01	21% P GBM2P GBM2R GBM3P GBM7P GBM10R GBM12R	<u>17% R</u> ZH678 ZH681 ZH753 ZH757 ZH761 ZH829	Myelin regulatory factor (MYRF; Q9Y2G1)	47% P 63% R	1 1%	1%
KMLDEAVFQV	A*02:01	<u>18% P</u> GBM3P GBM7P GBM10R GBM11P GBM13R GBM14R	<u>17% R</u> ZH645 ZH681 ZH720 ZH757 ZH784	Neuron navigator 1 (NAV1; Q8NEY1)	53% P 38% R	12 10%	11%
VPRGFPSDTQL	B*07:02	18% P GBM2P GBM2R GBM4P GBM4R GBM7P GBM7P GBM7R GBM10R GBM11R	33% R GBM16P GBM16R GBM18R ZH681 ZH757 ZH784 ZH791	Chondroadherin-like protein (CHADL; Q6NUI6)	24% P 46% R	0 2%	0%
SVMSILPKI	A*02:01 C*15:02	<u>18% P</u> GBM3P GBM7P GBM7R GBM13R GBM14R ZH645	21% R ZH678 ZH681 ZH720 ZH753 ZH757 ZH784	Serine incorporator 1 (SERINC1; Q9NRX5)	39% P 59% R	29 7%	10%
HLDFISIMTY	A*01:01	24% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13P GBM13R GBM16P	25% R GBM16R GBM17P GBM17R ZH617 ZH645 ZH654 ZH784	Chitinase-3-like protein 1 (CHI3L1; P36222)	68% P 63% R	8 4%	3%
SPFLQGQAL	B*07:02	<u>26% P</u> GBM2P GBM2R	<u>25% R</u> GBM11P GBM11R	Adenomatous polyposis coli protein 2 (APC2; O95996)	58% P 54% R	0 2%	1%

		GBM4P GBM4R GBM7P GBM7R GBM10P GBM10R	GBM16P GBM16R GBM18P ZH616 ZH681 ZH681 ZH791				
FLDYGALSLY	A*01:01	24% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13P GBM13R GBM16P	25% R GBM16R GBM17P GBM17R ZH617 ZH645 ZH654 ZH784	Progestin and adipoQ receptor family member 6 (PAQR6; Q6TCH4)	32% P 29% R	1 1%	0%
GTEKLIETY	A*01:01	24% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13P GBM13R GBM16P	25% R GBM16R GBM17P GBM17R ZH617 ZH645 ZH654 ZH784	Myelin proteolipid protein (PLP1; P60201)	71% P 71% R	1 1%	10%
KPHSTPATL	B*07:02	24% P GBM2P GBM2R GBM4P GBM4R GBM7P GBM7R GBM7R GBM8P GBM10R	25% R GBM16P GBM16R GBM18P GBM18R ZH616 ZH681 ZH791	Transcription factor RFX4 (RFX4; Q33E94)	55% P 46% R	0 0%	0%
QLDHLSLYY	A*01:01	24% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13P GBM13R GBM16P	25% R GBM16R GBM17P GBM17R ZH617 ZH645 ZH654 ZH784	Electroneutral sodium bicarbonate exchanger 1 (SLC4A8; Q2Y0W8)	26% P 29% R	6 5%	3%
FPDNQRPLL	B*07:02 B*35:02 C*04:01	24% P GBM4P GBM4R GBM7P GBM8P GBM10R GBM11P GBM16P	21% R GBM16R GBM18P GBM18R GBM23P GBM23R ZH681 ZH757	ETS translocation variant 1 (ETV1; P50549)	47% P 33% R	7 5%	3%
MTDPSKNLGY	A*01:01	21% P GBM3P GBM5P GBM5R GBM9P GBM13P GBM13R GBM16P	21% R GBM16R GBM17R ZH617 ZH645 ZH654 ZH784	Protein FAM5B (FAM5B; Q9C0B6)	24% P 25% R	1 1%	1%
TMMSRPPVL	A*02:01 B*08:01 B*14:02 <i>C*01:02</i> <i>C*07:02</i> <i>C*12:03</i>	24% P GBM6P GBM10P GBM10R GBM11P GBM11R GBM14P GBM14R	17% R ZH616 ZH617 ZH678 ZH720 ZH753 ZH757	Protein wntless homolog OS=Homo sapiens (WLS; Q5T9L3)	76% P 58% R	9 12%	15%
VSDPKATMY	A*01:01	21% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13P GBM13R	25% R GBM16P GBM16R GBM17R ZH617 ZH645 ZH654 ZH654 ZH784	Gamma-aminobutyric acid receptor subunit beta-1 (GABRB1; P18505)	42% P 42% R	1 2%	4%
SYIGLGHIY	C*07:02	<u>21% P</u> GBM2P GBM2R GBM4P GBM4R	<u>25% R</u> GBM16P GBM16R GBM18P GBM18R	Chloride transport protein 6 (CLCN6; P51797)	26% P 33% R	14 3%	1%

		GBM8P GBM10R GBM11P	ZH681 ZH757 ZH784		0.494 5		404
VVDPSSNLYY	A*01:01	21% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13P GBM13R	25% R GBM16P GBM16R GBM17R ZH617 ZH645 ZH654 ZH654 ZH784	Cyclic nucleotide-gated cation channel alpha-3 (CNGA3; Q16281)	24% P 25% R	4 1%	1%
SSDKVTVNY	A*01:01	<u>21% P</u> GBM3P GBM5P GBM5R GBM9P GBM9R GBM13P GBM16P	21% R GBM16R GBM17R ZH617 ZH645 ZH654 ZH784	Protein-arginine deiminase type-2 (PADI2; Q9Y2J8)	87% P 83% R	22 13%	6%
YPHSGGSEL	B*07:02 B*35:01 B*35:02 B*35:03	<u>18% P</u> GBM2P GBM2R GBM4P GBM7P GBM12R GBM14P GBM14R	29% R GBM16R GBM18R GBM21P GBM22P GBM22R GBM23P GBM23R	T-box brain protein 1 (TBR1; Q16650)	18% P 33% R	0 2%	3%
SPVPATPIL	B*07:02 B*35:01 B*35:03	18% P GBM4P GBM4R GBM6P GBM7P GBM10R GBM14R GBM16P	25% R GBM16R GBM18P GBM18R GBM21P GBM22R ZH757	E3 ubiquitin-protein ligase TRIM9 (TRIM9; Q9C026)	53% P 42% R	0 0%	0%
ELDVVREIY	A*01:01 B*15:01	18% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13R GBM16P	25% R GBM16R GBM17R ZH617 ZH645 ZH654 ZH784	Formin-like protein 2 (FMNL2; Q96PY5)	58% P 71% R	18 17%	14%
FMVDKAIYL	A*02:01	<u>16% P</u> GBM10R GBM11P GBM11R GBM13R ZH645 ZH678	21% R ZH681 ZH720 ZH753 ZH757 ZH784	Ecto-NOX disulfide-thiol exchanger 1 (ENOX1; Q8TC92)	26% P 21% R	18	0%
LLQDRLVSV	A*02:01	<u>18% P</u> GBM3P GBM10R GBM11P GBM11R GBM13P GBM14R	21% R GBM20P GBM20R GBM21P ZH617 ZH681 ZH681 ZH753	Pleckstrin homology domain-containing family A member 4 (PLEKHA4; Q9H4M7)	18% P 21% R	7	1%
ALYGKTEVV	A*02:01	<u>18% P</u> GBM3P GBM10R GBM13P GBM13R GBM20R GBM21P	<u>21% R</u> ZH617 ZH645 ZH681 ZH753 ZH757	Caskin-2 (CASKIN2; Q8WXE0)	32% P 46% R	8	16%
LLYDQPLQV	A*02:01 <i>B*13:02</i>	<u>18% P</u> GBM10R GBM11P GBM13R GBM20P GBM20R GBM21P	<u>17% R</u> ZH645 ZH678 ZH681 ZH753 ZH757	Protein LAP2 (ERBB2IP; Q96RT1)	76% P 75% R	10 36%	35%
LLYEHQNNL	A*02:01	18% P GBM10R GBM13P GBM13R GBM14R GBM20P GBM21P	<u>17% R</u> ZH617 ZH678 ZH681 ZH753 ZH757	Growth arrest-specific protein 8 (GAS8; O95995)	21% P 17% R	14 4%	3%


LMYPYIYHV	A*02:01	<u>18% P</u> GBM10R GBM11P GBM13P GBM13R GBM19P GBM20R	<u>17% R</u> GBM21P ZH617 ZH681 ZH753 ZH757	Constitutive coactivator of PPAR-gamma-like protein 2 (FAM120C; Q9NX05)	50% P 50% R	3 8%	8%
YLDPRITVA	A*02:01	18% P GBM3P GBM7R GBM10R GBM20P GBM20R GBM21P	<u>17% R</u> ZH616 ZH617 ZH678 ZH681 ZH753	DNA topoisomerase 1 (TOP1; P11387)	53% P 50% R	12 32%	19%
FLDEKSGSFV	A*02:01 C*04:01 C*05:01	18% P GBM2P GBM10R GBM11P GBM14R GBM20P GBM20R	<u>17% R</u> ZH616 ZH617 ZH681 ZH753 ZH757	F-box only protein 32 (FBXO32; Q969P5)	63% P 63% R	12 16%	12%
YITEGQIYV	A*02:01 A*02:05	<u>18% P</u> GBM2R GBM7P GBM10R GBM11P GBM11R GBM20P	<u>17% R</u> ZH617 ZH645 ZH681 ZH753 ZH757	V-type proton ATPase subunit B, brain isoform (ATP6V1B2; P21281)	71% P 71% R	17 35%	29%
YLEDFYTRM	A*02:01 A*02:05 <i>C*01:02</i> C*02:02 C*05:01 C*08:02	<u>18% P</u> GBM3R GBM11P GBM13R GBM14R GBM19P GBM20P	<u>17% R</u> GBM20R GBM21P ZH617 ZH681 ZH757	Peroxisomal sarcosine oxidase (PIPOX; Q9P0Z9)	29% P 17% R	2 1%	3%
LLYPVPLVH	A*03:01	16% P GBM2R GBM4P GBM4R GBM6P GBM6R GBM8P GBM10R	33% R GBM16P GBM16R GBM17R GBM18P GBM18R GBM22R GBM22P	Kinesin-like protein KIF1A (KIF1A; Q12756)	87% P 79% R	11 14%	15%
LPASPSVSL	B*07:02 B*35:01 B*35:02 B*35:03	<u>16% P</u> GBM4P GBM7P GBM10R GBM12R GBM14R GBM16P GBM16R	29% R GBM18R GBM21P GBM22P GBM22R GBM23P GBM23R	Ectoderm-neural cortex protein 1 (ENC1; O14682)	89% P 75% R	15 23%	15%
VLLEGELIDV	A*02:01	<u>16% P</u> GBM2R GBM10R GBM11P GBM13P GBM13R GBM20R	21% R ZH645 ZH720 ZH753 ZH757 ZH829	UPF0552 protein C15orf38 (C15orf38; Q7Z6K5)	21% P 25% R	4 2%	2%
ALDASILNV	A*02:01 <i>B*13:02</i>	<u>16% P</u> GBM3P GBM5P GBM10R GBM12R GBM13R	<u>17% R</u> GBM14R GBM21P ZH645 ZH678 ZH757	Regulator of G-protein signaling 12 (RGS12; O14924)	26% P 17% R	11 8%	5%
GLLPLLREA	A*02:01	<u>16% P</u> GBM2R GBM3P GBM12R GBM14R GBM15P	<u>17% R</u> GBM20R GBM21P ZH617 ZH645 ZH678	Stabilin-1 (STAB1; Q9NY15)	82% P 63% R	34 34%	31%
VPWQGTMTL	B*07:02 B*35:01 B*35:03 B*39:10 B*56:01	<u>16% P</u> GBM4P GBM6P GBM7P GBM10R GBM14R	<u>17% R</u> GBM16P GBM18R GBM22P ZH720 ZH720 ZH784	Cystatin-C (CST3; P01034)	29% P 38% R	10 5%	7%

AVASVIIYR	A*03:01 A*11:01 A*31:01 A*68:01	21% P GBM4P GBM4R GBM6P GBM6R GBM8P GBM10R GBM12P	25% R GBM12R GBM16P GBM16R GBM18P GBM18R ZH631 ZH802	Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2; Q9HCU4)	50% P 63% R	2 10%	11%
ISDHGTVTY	A*01:01	21% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM9R GBM13P GBM13R	21% R GBM16P GBM16R GBM17R ZH617 ZH645 ZH654	Lysosome-associated membrane glyco- protein 2 (LAMP2; P13473)	39% P 46% R	27 16%	12%
VSESHGQLSY	A*01:01	21% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13P GBM13R	21% R GBM16P GBM16R GBM17R ZH617 ZH645 ZH654	OTU domain-containing protein 4 (OTUD4; Q01804)	26% P 21% R	35 6%	3%
AVFPEGALTK	A*03:01 A*11:01	21% P GBM4P GBM4R GBM7P GBM7R GBM10R GBM16P GBM16R	21% R GBM18P GBM18R GBM23P ZH631 ZH678 ZH791	Ankyrin-2 OS=Homo sapiens (ANK2; Q01484)	87% P 75% R	12 19%	33%
STEERTFQY	A*01:01	21% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13P GBM13R	21% R GBM16P GBM16R GBM17R ZH617 ZH645 ZH654	Peroxisomal carnitine O-octanoyltransferase (CROT; Q9UKG9)	37% P 29% R	13 7%	3%
LDSHIHAY	A*01:01	21% P GBM3P GBM5P GBM9P GBM9R GBM13P GBM13R	<u>17% R</u> GBM16P GBM16R GBM17R ZH617 ZH645 ZH654	Receptor-type tyrosine- protein phosphatase zeta (PTPRZ1; P23471)	97% P 83% R	6 6%	5%
SVPYFVTAL	A*02:05 C*01:02 <i>C*12:03</i>	21% P GBM6P GBM6R GBM7P GBM7R GBM11P GBM11R	17% R GBM12R ZH613 ZH645 ZH757 ZH761 ZH829	Transmembrane 6 superfamily member 1 (TM6SF1; Q9BZW5)	55% P 58% R	3 18%	23%
APSGLRSQVQF	B*07:02	18% P GBM2R GBM4P GBM4R GBM7P GBM7R GBM10R GBM11P	29% R GBM11R GBM16P GBM16R GBM18P GBM18R ZH681 ZH757	GRAM domain- containing protein 3 (GRAMD3; Q96HH9)	47% P 54% R	9 11%	13%
HTDMADIEQY	A*01:01	16% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13R	25% R GBM16P GBM16R GBM17R ZH617 ZH645 ZH784	N-acetylaspartate synthetase (NAT8L; Q8N9F0)	53% P 50% R	6 5%	5%
LLDPAQRTLY	A*01:01	18% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13P GBM13R	25% R GBM16P GBM16R GBM17R ZH617 ZH654 ZH784	Zinc finger protein 557/558 (ZNF557/558; Q8N988 / Q96NG5)	21% / 26% P 33% / 38% R	33 6% / 6%	2% / 1%

SPIERNEQL	B*07:02 B*08:01 B*35:02 B*35:03	18% P GBM4P GBM4R GBM10R GBM14P GBM14P GBM16P GBM18P	25% R GBM18R GBM21P GBM22R GBM23P GBM23R ZH681	Zinc finger protein 226 (ZNF226; Q9NYT6)	29% P 33% R	7 3%	2%
ISEELVQKY	A*01:01	18% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13R	21% R GBM16P GBM16R GBM17R ZH617 ZH645 ZH654	Reticulon-4 (RTN4; Q9NQC3)	79% P 75% R	34 32%	38%
KVQAGNSSL	B*07:02 <i>C*01:02</i> C*02:02 C*16:01	<u>18% P</u> GBM2R GBM4P GBM4R GBM7P GBM7R GBM10R	21% R GBM16P GBM16R GBM18P ZH616 ZH681 ZH681 ZH761	Phosphoserine aminotransferase (PSAT1; Q9Y617)	50% P 54% R	5 8%	9%
AVYDTNPAK	A*03:01 A*11:01	<u>18% P</u> GBM4P GBM4R GBM7P GBM16P GBM16R GBM17R	<u>17% R</u> GBM18P GBM23R ZH631 ZH761 ZH791	Glycolipid transfer protein (GLTP; Q9NZD2)	39% P 46% R	0 9%	8%
KIIDEDGLLNL	A*02:01 A*02:05	<u>18% P</u> GBM6P GBM6R GBM11P GBM11R GBM20R ZH613	<u>17% R</u> ZH617 ZH681 ZH720 ZH753 ZH757	Replication factor C subunit 1 (RFC1; P35251)	63% P 63% R	2 30%	17%
SRAPSTYTY	C*07:01 C*07:02	<u>18% P</u> GBM4P GBM4R GBM8P GBM10R GBM11P GBM16P	<u>17% R</u> GBM16R GBM18R ZH616 ZH681 ZH757	Radial spoke head protein 3 homolog (RSPH3; Q86UC2)	26% P 21% R	4 6%	4%
VLFDDELLM	A*02:01	<u>18% P</u> GBM10R GBM13P GBM13R GBM20P GBM20R ZH616	<u>17% R</u> ZH617 ZH681 ZH753 ZH757 ZH761	Non-syndromic hearing impairment protein 5 (DFNA5; O60443)	55% P 38% R	7 4%	7%
VVAEELENV	A*02:01 A*02:05	18% P GBM6P GBM10R GBM10R GBM11P GBM11R GBM14R	<u>17% R</u> GBM21P ZH613 ZH617 ZH681 ZH761	F-box only protein 22 (FBXO22; Q8NEZ5)	24% P 21% R	8 12%	6%
TLLLWPINK	A*03:01 A*11:01	18% P GBM4P GBM4R GBM6R GBM7P GBM16P GBM16R	<u>17% R</u> GBM17P GBM18R ZH631 ZH678 ZH761	1-acyl-sn-glycerol-3- phosphate acyltransferase delta (AGPAT4; Q9NRZ5)	34% P 33% R	3 4%	3%
ESDLYSLAHSY	A*01:01	<u>16% P</u> GBM3P GBM5P GBM5R GBM9R GBM13R GBM16P	<u>21% R</u> GBM16R ZH617 ZH645 ZH654 ZH784	Nuclear protein 1 (NUPR1; O60356)	18% P 21% R	32 5%	1%
GTDYINASY	A*01:01	<u>16% P</u> GBM3P GBM5P GBM5R GBM9R GBM13R GBM16P	21% R GBM16R GBM17R ZH617 ZH645 ZH654	Receptor-type tyrosine- protein phosphatase gamma/zeta (PTPRG / PTPRZ; P23470 / P23471	61% / 97% P 46% / 83% R	0 7% / 6%	12% / 5%

KTIEDTLMTV	A*02:01 A*02:05 C*16:01	<u>16% P</u> GBM6P GBM6R GBM10R GBM11P GBM11R GBM13R	<u>21% R</u> GBM20R ZH613 ZH617 ZH720 ZH757	Arfaptin-1 (ARFIP1; P53367)	47% P 38% R	15 14%	7%
RTDTALTNTY	A*01:01	16% P GBM3P GBM5P GBM5R GBM9R GBM13R GBM16P	21% R GBM16R GBM17R ZH617 ZH645 ZH654	Paired box protein Pax-6 (PAX6; P26367)	24% P 21% R	2 1%	0%
IPDRSGPEL	B*07:02 B*35:02 B*35:03	<u>16% P</u> GBM4R GBM7P GBM10R GBM16P GBM16R GBM18R	21% R GBM21P GBM23P GBM23R ZH616 ZH681	Progressive ankylosis protein homolog (ANKH; Q9HCJ1)	76% P 79% R	13 16%	12%
GLIDEQIL	A*02:01	<u>16% P</u> GBM7P GBM10R GBM13P GBM13R GBM14R	<u>17% R</u> ZH645 ZH678 ZH681 ZH753 ZH757	Dystonin (DST; Q03001)	97% P 92% R	8 41%	55%
KILDTSVAYV	A*02:01	<u>16% P</u> GBM10R GBM11P GBM13R GBM20P GBM20R	<u>17% R</u> GBM21P ZH617 ZH720 ZH753 ZH757	Kinesin-like protein KIF1B (KIF1B; O60333)	95% P 79% R	0 27%	26%
TAISRIYTV	A*02:01 A*02:05 B*08:01 B*51:01 C*12:03	21% P GBM6P GBM6R GBM9P GBM11P GBM11R GBM13P	<u>17% R</u> GBM16P GBM16R GBM18P GBM18R ZH613 ZH654	Carboxypeptidase E (CPE; P16870)	87% P 71% R	0 10%	14%
VTAQVVGTERY	A*01:01	18% P GBM5P GBM5R GBM9P GBM9R GBM13P GBM13R	21% R GBM16P GBM16R GBM17R ZH617 ZH645 ZH654	Phospholipase D2 (PLD2; O149399)	32% P 29% R	23 9%	8%
FPAGPPSHSL	B*07:02 B*35:02 B*35:03	18% P GBM4P GBM10R GBM16P GBM16R GBM18P GBM18R	21% R GBM21P GBM22P GBM22R GBM23P GBM23R ZH681	Peptidyl-prolyl cis-trans isomerase FKBP10 (FKBP10; Q96AY3)	42% P 25% R	11 9%	5%
RLKEGANINK	A*03:01	18% P GBM4P GBM4R GBM6P GBM6R GBM16P GBM16R	21% R GBM17R GBM18P GBM23P GBM23R ZH761 ZH791	Kinesin-like protein KIF1A/B/C (KIF1A/B/C; Q12756 / O60333 / O43896)	87% / 95% / 37% P 79% / 79% / 29% R	1 14% / 27% / 11%	15% / 26% / 9%
AVDPGLLGY	A*01:01 B*15:01	<u>18% P</u> GBM3P GBM5P GBM5R GBM9P GBM13P GBM13R	<u>17% R</u> GBM16P GBM16R GBM17R ZH617 ZH645	Atrophin-1 (ATN1; P54259)	68% P 71% R	17 12%	10%
FSSSHEGFSY	A*01:01 B*57:01 C*02:02	<u>18% P</u> GBM3P GBM5P GBM5R GBM9P GBM13P GBM13R	<u>17% R</u> GBM16P GBM16R GBM17R ZH617 ZH654	ETS translocation variant 5 (ETV5; P41161)	63% P 54% R	7 11%	8%

GQDGSVVQF	B*15:01 <i>C*04:01</i> C*05:01	<u>18% P</u> GBM2P GBM2R GBM5P GBM5R GBM12R GBM12P	<u>17% R</u> GBM20P GBM20R ZH616 ZH617 ZH802	Small ubiquitin-related modifier 2/3/4 (SUMO2/3/4; P61956 / P55854 / Q6EEV6)	26% / 34% / 18% P 29% / 38% / 17% R	27 24% / 21% / 7%	13% / 12% / 2%
LSSGPLTQK	A*03:01 A*11:01	<u>18% P</u> GBM4P GBM4R GBM6P GBM7P GBM7R GBM16P	<u>17% R</u> GBM16R GBM17R ZH631 ZH678 ZH791	Brain and acute leukemia cytoplasmic protein (BAALC; Q8WXS3)	45% P 54% R	2 2%	3%
VTDESIPSY	A*01:01	<u>18% P</u> GBM3P GBM5P GBM9P GBM9R GBM13P GBM13R	<u>17% R</u> GBM16P GBM16R GBM17R ZH617 ZH654	A-kinase anchor protein 9 OS=Homo sapiens GN=AKAP9; Q99996)	61% P 50% R	11 34%	32%
YRPLTVLTF	C*07:02	<u>16% P</u> GBM2P GBM4P GBM4R GBM10R GBM11P GBM11R	25% R GBM16P GBM16R GBM18P GBM18R ZH757 ZH784	Transmembrane and TPR repeat-containing protein 3/4 (TMTC3/4; Q6ZXV5 / Q5T4D3)	53% / 39% P 63% / 46% R	15 18% / 7%	18% / 7%
FLDPAQRDLY	A*01:01	<u>16% P</u> GBM5P GBM5R GBM9P GBM9R GBM13R GBM16P	<u>21% R</u> GBM16R GBM17R ZH617 ZH645 ZH654	Zinc finger protein 14 homolog (ZFP14; Q9HCL3)	18% P 25% R	13 4%	3%
TPASAGHVW	B*07:02 B*35:01	16% P GBM4P GBM4R GBM6P GBM7P GBM10R GBM12R	<u>21% R</u> GBM16R GBM18P GBM18R ZH681	Transcription factor SOX-9 (SOX9; P48436)	82% P 79% R	11 15%	7%
SVDSNLLSDY	A*01:01	16% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM13R	21% R GBM16P GBM16R GBM17R ZH617 ZH645	Oxidative stress- induced growth inhibitor 2 (OSGIN2; Q9Y236)	26% P 33% R	39 13%	7%
YADGESFLGY	A*01:01 C*02:02	16% P GBM3P GBM5P GBM5R GBM9P GBM9R GBM16P	<u>21% R</u> GBM16R GBM17R ZH617 ZH645 ZH784	Proteasome subunit beta type-4 (PSMB4; P28070)	58% P 42% R	19 28%	20%
AVAPQVPAL	A*02:01 A*02:05 <i>C*01:02</i> C*12:03 C*15:02	<u>16% P</u> GBM6P GBM6R GBM7P GBM10R GBM11P	<u>17% R</u> GBM11R ZH613 ZH681 ZH753 ZH757	Protein FAM118B (FAM118B; Q9BPY3)	18% P 21% R	2 2%	0%
MTEVLPNQRY	A*01:01	<u>16% P</u> GBM3P GBM5P GBM9P GBM9R GBM13R	<u>17% R</u> GBM16P GBM16R GBM17R ZH617 ZH645	SEC14-like protein 2 (SEC14L2; O76054)	32% P 25% R	2 1%	1%
NRYINIVAY	B*27:05 C*07:01 C*07:02	<u>16% P</u> GBM4P GBM4R GBM10R GBM11P GBM16P	<u>17% R</u> GBM16R GBM18R ZH616 ZH681 ZH757	Receptor-type tyrosine- protein phosphatase zeta (PTPRZ1; P23471)	97% P 83% R	0 6%	5%
FVDPYPVNKY	A*01:01 C*02:02	<u>16% P</u> GBM3P GBM5P GBM5R	<u>17% R</u> GBM16R GBM17R ZH617	Kelch-like protein 15 (KLHL15; Q96M94)	24% P 29% R	18 12%	15%

Supplementary Figure 3. Population coverage of glioblastoma-associated HLA-A, -B, and -C ligands. Using the population coverage tool provided by the IEDB Analysis Resource, the world population coverage of the 357 glioblastoma-associated peptides was calculated. The percentage of individuals with a specific number of matching peptides (max. of 235) is indicated by bar charts (associated with the left y-axis). The line diagram (associated with the right y-axis) shows the cumulative percentage of population coverage. The candidate target peptides cover 99.93% of the world population (first diamond on line diagram counted from the left) meaning that only 0.07% of all individuals are negative for all HLA-A, -B, and -C allotypes for which glioblastoma-associated peptides were defined. On average, 84 peptides are expected to match per patient worldwide.

Supplementary Table 4. Glioblastoma-exclusive HLA class II-presented peptides derived from glioblastoma-associated HLA presentation hotspots. Peptides already reported to derive from glioblastoma-associated antigens were excluded from this listing. In turn, some of those antigens not designated as glioblastoma-associated due to a CNS-associated expression profile are listed herein with glioblastoma-associated peptides. The number of positive tumors other than glioblastoma was based on n=585 HLA class II peptidome datasets. Frequencies of positive tumors are given separately for n=38 primary (P) and n=24 recurrent (R) glioblastomas.

Antigen (UniProt accession)	Protein frequency on glioblasto- mas	Peptide sequence	Frequency of tumors	positive	Protein frequency on non-GBM tumors Peptide-positive non-GBM tumors	Protein frequency on benigr samples (n=364)
Fatty acid-binding					1%	0%
protein, brain	29% R	DKVVIRTLSTFKN	3% P / 0% R	ZH616	0	
(FABP7;		GDKVVIRTLSTFKN	3% P / 0% R	ZH616	0	
O15540)		GDKVVIRTLSTFKNTE	3% P / 0% R	ZH616	0	

		KPTVIISQEGDKVVI	3% P / 5% R	GBM20P	1	
		KPTVIISQEGDKVVIR	GBM20R 24% P / 25% R GBM8P GBM12P GBM13R GBM15P GBM18R GBM20R	GBM5P GBM9R GBM13P GBM14R GBM18P GBM20P GBM22P	7	
		KPTVIISQEGDKVVIRT	GBM22R 8% P / 4% R GBM13P	ZH645 GBM12P GBM20P	0	
		VIRTLSTFKNTEISF	GBM20R 0% P / 4% R	GBM10R	0	
Antithrombin-III (SERPINC1;	89% P 83% R	ASMMYQEGKFRYRR	5% P / 4% R	GBM11P	50% 0	48%
P01008)		SASMMYQEGKFRYR SASMMYQEGKFRYRR	GBM17R 0% P / 4% R 18% P / 17% R GBM6P GBM11P GBM14P GBM21R	ZH681 GBM14R GBM4R GBM7P GBM11R GBM14R ZH616	0 5	
Fibronectin (FN1;	05% D	SASMMYQEGKFRYRRV	ZH757 3% P / 0% R	ZH791 GBM6P	0 54%	65%
P02751)	95% F 88% R	GQQMIFEEHGFRRTTPP	8% P / 8% R GBM14P	GBM6P GBM14R	54% 5	00%
		QMIFEEHGFRRTTPPT	GBM21P 5% P / 0% R	GBM21R GBM11P	0	
		QQMIFEEHGFRRTTPP	GBM14P 16% P / 21% R GBM10R GBM14R GBM16R GBM21R ZH791	GBM9R GBM14P GBM16P GBM21P ZH757 ZH757 ZH829	11	
- ···		VGQQMIFEEHGFRRTTPP VGQQMIFEEHGFRRTTPPT	3% P / 0% R 3% P / 0% R	GBM6P GBM16P	0 3	
Superoxide dismutase [Mn], mitochondrial (SOD2; P04179)	68% P 54% R	EHAYYLQYKNVRPD EHAYYLQYKNVRPDY GTTGLIPLLGIDVWEH	3% P / 0% R 3% P / 0% R 13% P / 13% R GBM7P GBM12R GBM12R GBM14R ZH753	ZH645 ZH645 GBM6P GBM12P GBM14P GBM19P	19% 0 0 9	23%
		GTTGLIPLLGIDVWEHA	11% P / 8% R GBM12P GBM14R	GBM6P GBM14P GBM19P	6	
		TGLIPLLGIDVWEH	ZH742 0% P / 8% R	GBM14R	3	
		TTGLIPLLGIDVWE	ZH753 3% P / 4% R ZH753	GBM19P	0	
		TTGLIPLLGIDVWEH	19% P / 21% R GBM2R GBM6R GBM12P GBM14P GBM15P ZH753	GBM2P GBM6P GBM7P GBM12R GBM14R GBM19P	15	
		TTGLIPLLGIDVWEHA	13% P / 8% R GBM7P GBM14P GBM19P	GBM6P GBM12P GBM14R ZH753	4	
		WEHAYYLQYKNVRP WEHAYYLQYKNVRPD	3% P / 0% R 5% P / 0% R ZH681	ZH645 ZH645	0 2	
Collogon sinks	240/ D	WEHAYYLQYKNVRPDY	3% P / 0% R	ZH645	2	2 0/
Collagen alpha- 2(V) chain (COL5A2; P05997)	34% P 29% R	ARLPIIDLAPVDVGGTD	11% P / 4% R GBM13P GBM18R	GBM5P GBM18P ZH645	12% 21	3%
·		GNVGKTVFEYRTQNVAR RLPIIDLAPVDVGG RLPIIDLAPVDVGGTD	0% P / 4% R 0% P / 4% R 13% P / 4% R GBM12P GBM18P ZH645	GBM14R GBM18R GBM5P GBM13P GBM18R	5 7 26	

Secretogranin-2 61% P (SCG2; P13521) 58% R

VARLPIIDLAPVDVGGTD VGKTVFEYRTQNVAR	0% P / 4% R 8% P / 13% R	GBM18R GBM11P	16 14
	GBM14P GBM16R GBM21R	GBM14R GBM21P	
DDVSKVIAYLKRL	3% P / 4% R	GBM3P	7% 0
DDVSKVIAYLKRLVNA	GBM23R 3% P / 4% R	GBM3P	1
DDVSKVIAYLKRLVNAA DDVSKVIAYLKRLVNAAG	GBM22R 3% P / 0% R 3% P / 4% R	GBM3P GBM3P	1 5
DDVSKVIAYLKRLVNAAGS DDVSKVIAYLKRLVNAAGSG	GBM22R 3% P / 0% R 3% P / 4% R GBM22R	GBM3P GBM3P	0 2
DVSKVIAYLKRL DVSKVIAYLKRLVNA	3% P / 0% R 3% P / 4% R	GBM3P GBM3P	0 0
DVSKVIAYLKRLVNAA	GBM22R 3% P / 4% R	GBM3P	5
DVSKVIAYLKRLVNAAG	GBM22R 11% P / 13% R GBM3R GBM22R	GBM3P GBM22P GBM23P	6
DVSKVIAYLKRLVNAAGSG	GBM23R 3% P / 4% R GBM22R	ZH810 GBM3P	0
KVIAYLKRLVNA KVIAYLKRLVNAA	0% P / 4% R 3% P / 4% R	GBM3R GBM3P	0 0
KVIAYLKRLVNAAG	GBM3R 3% P / 4% R	GBM3P	0
LSDDVSKVIAYLKRLVNAAG LSDDVSKVIAYLKRLVNAAGSG	GBM3R 0% P / 4% R 3% P / 4% R GBM22R	GBM22R GBM3P	0 1
SDDVSKVIAYLKRLVNAAG	3% P / 4% R GBM22R	GBM3P	2
SDDVSKVIAYLKRLVNAAGSG	3% P / 4% R GBM22R	GBM3P	1
SKVIAYLKRLVNA	3% P / 4% R GBM3R	GBM3P	0
SKVIAYLKRLVNAA	3% P / 8% R GBM3R	GBM3P GBM22R	1
SKVIAYLKRLVNAAG	3% P / 8% R GBM22R	GBM3P GBM23R	0
VSKVIAYLKRLVNA	5% P / 13% R GBM3R GBM22R	GBM22P GBM22R GBM23R	3
VSKVIAYLKRLVNAA	21% P / 21% R GBM3R GBM5R GBM22P GBM23R ZH750	GBM3P GBM5P GBM19P GBM22R ZH678 ZH784	11
VSKVIAYLKRLVNAAG	ZH791 21% P / 21% R GBM3R GBM5R GBM22R GBM22R GBM23R ZH750 ZH791	ZH810 GBM3P GBM5P GBM22P GBM23P ZH678 ZH784 ZH784 ZH810	11
VSKVIAYLKRLVNAAGSG FPNPYNQEKVLPRLP	0% P / 4% R 3% P / 4% R GBM11P	GBM23R GBM10R	0 0
FPNPYNQEKVLPRLPY	21% P / 21% R GBM6P GBM9P GBM10R GBM11R GBM16R ZH757	GBM4R GBM7P GBM9R GBM11P GBM16P ZH616 ZH791	4 0
FPNPYNQEKVLPRLPYG	21% P / 25% R GBM6P GBM9P GBM10R GBM11R GBM16R ZH616 ZH791	GBM4R GBM7P GBM9R GBM11P GBM16P GBM17R ZH757	4

		FPNPYNQEKVLPRLPYGA	11% P / 13% R GBM6P GBM11P	GBM4R GBM7P GBM11R	0
		FPNPYNQEKVLPRLPYGAG	GBM16P 3% P / 8% R	GBM16R GBM11P	1
		NPYNQEKVLPRLPYGAG	GBM11R 3% P / 4% R	GBM17R GBM11P	0
			GBM11R	0.01.400	
		TSYFPNPYNQEKVLPRLPYG YFPNPYNQEKVLPRLPYG	3% P / 0% R 8% P / 4% R GBM7P GBM16R	GBM6P GBM6P GBM16P	0 0
Neural cell	61% P	YFPNPYNQEKVLPRLPYGA	3% P / 0% R	GBM7P	0 5%
adhesion molecule 1	63% R	DVRFIVLSNNYLQ	8% P / 0% R GBM7P	GBM6P GBM12P	0
(NCAM1; P13591)		DVRFIVLSNNYLQIR	8% P / 4% R GBM7P ZH753	GBM6P GBM19P	1
		FIVLSNNYLQIRG KDVRFIVLSNNYLQ	3% P / 0% R 3% P / 4% R	ZH802 GBM14R	0 1
		KDVRFIVLSNNYLQIR	ZH761 5% P / 4% R GBM19P	GBM7R ZH761	0
		KDVRFIVLSNNYLQIRG	3% P / 0% R	GBM7P	0
		LSNNYLQIRGIKKTDE	13% P / 17% R	GBM4R	2
			GBM6P GBM7R	GBM7P GBM10R	
			GBM16P	GBM16R	
			ZH616	ZH757	
		LSNNYLQIRGIKKTDEG	5% P / 4% R	GBM4R	0
		NNYLQIRGIKKTDE	GBM16P 11% P / 8% R	ZH616 GBM4R	0
			GBM6P GBM10R	GBM7P GBM16P	-
			ZH616	711040	
		NYLQIRGIKKTDE SNNYLQIRGIKK	3% P / 0% R 5% P / 8% R	ZH616 GBM4R	0 0
			GBM7P ZH616	GBM10R	0
		SNNYLQIRGIKKT	11% P / 4% R GBM6P	GBM4R GBM7P	1
			GBM16P	ZH616	0
		SNNYLQIRGIKKTD	8% P / 4% R GBM10R ZH616	GBM7P GBM16P	0
		SNNYLQIRGIKKTDE	13% P / 21% R	GBM4R	0
			GBM6P	GBM7P	
			GBM9R GBM11P	GBM10R GBM11R	
			GBM16P ZH757	GBM16R	
		SNNYLQIRGIKKTDEG	8% P / 8% R GBM7P GBM16P	GBM4R GBM10R ZH616	0
		SNNYLQIRGIKKTDEGT	3% P / 0% R	ZH616	0
D		VRFIVLSNNYLQIR	3% P / 0% R	ZH802	0
Receptor-type tyrosine-protein	8% P 4% R	IDEDLTQVNVNLKKLKFQGW	3% P / 0% R	GBM19P	2% 0
phosphatase zeta		KQSPINIDEDLTQVN	0% P / 4% R	GBM10R	0
(PTPRZ1; P23471)		KQSPINIDEDLTQVNVN	5% P / 8% R GBM16P GBM20R	GBM10R GBM20P	1
		NSPKQSPINIDEDLTQVNVN NSPKQSPINIDEDLTQVNVNL	3% P / 0% R 5% P / 0% R GBM16P	GBM16P GBM13P	0 0
		QSPINIDEDLTQVN	21% P / 17% R GBM9R	GBM9P GBM10R	2
			GBM13P	GBM15P	
			GBM16P GBM18P	GBM16R GBM20R	
			ZH617	ZH654	
			ZH802	CDMOOD	0
		QSPINIDEDLTQVNV	5% P / 4% R ZH654	GBM20R ZH802	0

		QSPINIDEDLTQVNVN	18% P / 25% R GBM9R GBM13P GBM16P GBM18P GBM20R	GBM9P GBM10R GBM13R GBM16R GBM18R ZH617	2
		QSPINIDEDLTQVNVNL	ZH654 3% P / 4% R	ZH802 GBM10R	0
		SPINIDEDLTQVN	GBM16P 3% P / 4% R	GBM10R	0
		SPINIDEDLTQVNV	ZH802 3% P / 0% R	ZH802	0
		SPINIDEDLTQVNVN	16% P / 13% R GBM13P GBM16R GBM20R ZH654	GBM10R GBM16P GBM18P ZH617 ZH802	0
		SPINIDEDLTQVNVNL	5% P / 8% R GBM16R ZH802	GBM10R GBM18P	0
		SPKQSPINIDEDLTQVN	16% P / 17% R GBM9R GBM16P GBM18R ZH617 ZH802	GBM9P GBM10R GBM18P GBM20R ZH654	1
		SPKQSPINIDEDLTQVNV SPKQSPINIDEDLTQVNVN	0% P / 4% R 18% P / 17% R GBM9P GBM13P GBM16R GBM20P ZH617	GBM20R GBM8P GBM10R GBM16P GBM18R GBM20R ZH802	1 1
		SPKQSPINIDEDLTQVNVNL	5% P / 13% R GBM13P GBM16R GBM20R	GBM10R GBM16P GBM20R	1
Tenascin (TNC;	76% P	SPKQSPINIDEDLTQVNVNLK	0% P / 4% R	GBM10R	0 15%
P24821)	67% R	ARVATYLPAPEGLKFKS IPVSARVATYLPAPEGLKFKS RVATYLPAPEGLKFKS	3% P / 0% R 3% P / 0% R 8% P / 0% R	GBM16P GBM16P GBM6P	0 0 0
		VATYLPAPEGLKFK	GBM16P 8% P / 17% R GBM6P GBM10R	ZH616 GBM4R GBM9R GBM16P	1
		VATYLPAPEGLKFKS	GBM16R 16% P / 13% R GBM6P GBM10R GBM16P	ZH616 GBM4R GBM7P GBM11P GBM16R	2
		EPGQEYNVLLTAEKGRH	ZH616 11% P / 8% R GBM21R GBM22R	ZH757 GBM21P GBM22P ZH654	0
		EPGQEYNVLLTAEKGRHKS	ZH761 11% P / 8% R GBM21R GBM22R ZH761	GBM21P GBM22P ZH654	1
		NVLLTAEKGRHKSKPA	5% P / 8% R GBM6P GBM16P	GBM4R GBM10R	0
		QEYNVLLTAEKGRHK	5% P / 4% R GBM21R	GBM21P ZH654	0
	000/ B	YNVLLTAEKGRHKS	3% P / 0% R	GBM3P	0
Chitinase-3-like protein 1 (CHI3L1; P36222)	89% P 96% R	AEFIKEAQPGKK	3% P / 13% R GBM10R GBM16R	GBM4R GBM16P	8% 0
		AEFIKEAQPGKKQ	8% P / 8% R GBM6P GBM16P	GBM4R GBM10R ZH616	0
		AGKVTIDSSYDIA AGKVTIDSSYDIAK	0% P / 4% R 0% P / 4% R	GBM10R GBM10R	0 0
		AQPGKKQLLLSAALSAGKV	3% P / 0% R	ZH654	0
		DKQHFTTLIKEMK DKQHFTTLIKEMKA	3% P / 0% R 3% P / 4% R GBM17R	ZH791 GBM11P	0 0

DKQHFTTLIKEMKAE	13% P / 8% R	GBM11P	1
	GBM11R GBM17R	GBM17P ZH645	
DKQHFTTLIKEMKAEF	ZH681 3% P / 0% R	ZH802 GBM11P	0
DKQHFTTLIKEMKAEFIKEAQPG	11% P / 4% R	GBM3P	1
	GBM5P GBM22P	GBM11P GBM22R	
	ZH791	74654	0
EAQPGKKQLLLSAALSAGK EAQPGKKQLLLSAALSAGKV	3% P / 0% R 3% P / 0% R	ZH654 ZH654	0 0
EMKAEFIKEAQPGKKQ	3% P / 4% R GBM16P	GBM10R	0
FTTLIKEMKAEFIKE FTTLIKEMKAEFIKEA	0% P / 4% R 0% P / 4% R	GBM14R GBM14R	0 0
FTTLIKEMKAEFIKEAQPG	5% P / 8% R	GBM2R	1
	GBM12P GBM19P	GBM14R	
GKKQLLLSAALSAGKV IKEAQPGKKQLLLSAALSA	3% P / 0% R 3% P / 0% R	ZH654 ZH654	0 0
IKEAQPGKKQLLLSAALSA	5% P / 4% R	GBM20P	0
IKEMKAEFIKEA	GBM20R 0% P / 4% R	ZH654 GBM14R	0
IKEMKAEFIKEAQPG	5% P / 4% R GBM14R	GBM12P ZH654	1
KAEFIKEAQPGKK	0% P / 8% R	GBM4R	0
KAEFIKEAQPGKKQ	GBM10R 11% P / 13% R	GBM4R	0
	GBM6P GBM11P	GBM10R GBM16P	
	GBM16R	ZH616	
KEAQPGKKQLLLSAALSAGK LIKEMKAEFIKE	3% P / 0% R 0% P / 4% R	GBM12P GBM14R	0 0
LIKEMKAEFIKEA LIKEMKAEFIKEAQPG	0% P / 4% R 3% P / 4% R	GBM14R GBM12P	0 1
	GBM14R		
MKAEFIKEAQPGKK	5% P / 4% R GBM9P	GBM6P GBM10R	0
MKAEFIKEAQPGKKQ	8% P / 8% R GBM6P	GBM4R GBM9P	0
	GBM10R	GBM16P	
QPGKKQLLLSAALSAGK	3% P / 4% R ZH654	GBM20R	0
QPGKKQLLLSAALSAGKV	11% P / 8% R GBM20P	GBM5P GBM20R	0
	GBM23R	ZH645	
SAGKVTIDSSYDIAK	ZH654 0% P / 4% R	GBM10R	0
TLIKEMKAEFIK	5% P / 4% R GBM21P	GBM14R ZH616	0
TLIKEMKAEFIKE	8% P / 4% R GBM14R	GBM12P GBM21P	1
	ZH616		
TLIKEMKAEFIKEA	8% P / 8% R GBM12P	GBM2R GBM14P	1
TLIKEMKAEFIKEAQPG	GBM14R 16% P / 25% R	ZH616 GBM2R	3
	GBM6P	GBM7P	0
	GBM12P GBM14P	GBM12R GBM14R	
	GBM15P GBM21P	GBM15R GBM21R	
TTLIKEMKAEFIK	ZH753		0
TTLIKEMKAEFIKE	0% P / 4% R 5% P / 4% R	GBM14R GBM12P	0 0
TTLIKEMKAEFIKEA	GBM14P 5% P / 13% R	GBM14R GBM2R	0
	GBM12P GBM15P	GBM14R ZH753	-
TTLIKEMKAEFIKEAQPG	3% P / 17% R	GBM2R	1
	GBM12P GBM14R	GBM12R ZH753	
YPGRRDKQHFTTLIKEMKAE ATVHRILGQQVPYATKG	3% P / 0% R 3% P / 0% R	GBM11P ZH654	0 1
DDQESVKSKVQYLKDRQLAG	0% P / 4% R	GBM14R	0
DQESVKSKVQYLKDRQLAG ESVKSKVQYLKDRQ	0% P / 4% R 3% P / 4% R	GBM14R GBM18P	0 1
ESVKSKVQYLKDRQLAG	GBM18R 0% P / 4% R	GBM14R	0
GATVHRILGQQVPYATKG	5% P / 4% R	GBM20P	0
	GBM20R	ZH654	

		GNQWVGYDDQESVKS	0% P / 4% R	GBM20R	0
		KSKVQYLKDRQLA	3% P / 0% R	ZH654	0
		KSKVQYLKDRQLAG	0% P / 4% R	GBM10R	0
		SVKSKVQYLKDRQLAG	0% P / 4% R	GBM14R	0
		TVHRILGQQVPYA TVHRILGQQVPYAT	3% P / 0% R 3% P / 0% R	ZH654 ZH654	0 0
		TVHRILGQQVPYATK	3% P / 4% R	GBM18P	1
		T THE COOL TAIL	GBM20P	GBM20R	1
			ZH654	GEMEON	
		TVHRILGQQVPYATKG	11% P / 13% R	GBM9P	2
			GBM9R	GBM18P	
			GBM18R	GBM20P	
			GBM20R	ZH654	
		TVHRILGQQVPYATKGN	3% P / 0% R	ZH654	0
		TVHRILGQQVPYATKGNQ VHRILGQQVPYA	3% P / 0% R 3% P / 0% R	ZH654 ZH654	0 0
		VHRILGQQVPYAT	3% P / 0% R	ZH654	0
		VHRILGQQVPYATK	8% P / 0% R	GBM18P	Õ
			ZH654	ZH802	-
		VHRILGQQVPYATKG	11% P / 4% R	GBM18P	1
			GBM20P	GBM20R	
			ZH654	ZH802	-
		VKSKVQYLKDRQLA	3% P / 0% R	ZH654	0
		VKSKVQYLKDRQLAG	16% P / 21% R GBM6P	GBM4R GBM9P	3
			GBM9R	GBM10R	
			GBM11P	GBM14P	
			GBM14R	GBM16P	
			GBM16R	ZH791	
		VKSKVQYLKDRQLAGA	0% P / 4% R	GBM10R	0
		WVGYDDQESVKSK	5% P / 4% R	GBM9P	0
			GBM20P	GBM20R	
		WVGYDDQESVKSKVQ	5% P / 8% R GBM9R	GBM9P GBM20P	1
			GBM20R	GDIVIZUF	
		WVGYDDQESVKSKVQY	3% P / 0% R	GBM20P	0
		YDDQESVKSKVQYLKDRQLAG	0% P / 4% R	GBM14R	0
Transforming	37% P				4%
growth factor	38% R	AEFRVFRLQNPKAR	8% P / 0% R	GBM18P	2
beta-2 (TGFB2;			ZH654	ZH802	
P61812)		AEFRVFRLQNPKARVP	3% P / 0% R	ZH654	0
		AEFRVFRLQNPKARVPE	16% P / 8% R	GBM6P	4
			GBM10R	GBM16P	
			GBM18P ZH616	GBM18R ZH654	
			ZH810 ZH802	20034	
		AEFRVFRLQNPKARVPEQ	5% P / 0% R	ZH654	0
			ZH802		
		EFRVFRLQNPKAR	5% P / 0% R	ZH654	0
			ZH802		
		EFRVFRLQNPKARVP	3% P / 0% R	ZH654	0
		EFRVFRLQNPKARVPE	21% P / 13% R	GBM4R	3
			GBM6P GBM9P	GBM7P GBM10R	
			GBM11P	GBM16P	
			GBM16R	ZH616	
			ZH654	ZH802	
		FRVFRLQNPKARVP	0% P / 4% R	GBM10R	0
		FRVFRLQNPKARVPE	16% P / 13% R	GBM4R	1
			GBM6P	GBM7P	
			GBM10R GBM16P	GBM11P GBM16R	
			ZH616	ZH654	
Vasorin (VASN;	39% P		211010	211034	10%
Q6EMK4)	38% R	DNELRALPPLRLPR	8% P / 4% R	GBM4R	7
doemiti)	00/011		GBM6P	GBM12P	i.
			GBM16P		
		GKNRIRHIQPGAFD	3% P / 0% R	ZH616	0
		GKNRIRHIQPGAFDT	3% P / 0% R	ZH616	0
			3% P / 0% R	GBM3P	2
		KLQDNELRALPPLRLPR	11% P / 0% R	GBM6P	5
			GBM12P ZH616	GBM16P	
		KLQDNELRALPPLRLPRL	5% P / 0% R	GBM6P	1
			GBM16P		-
		LQDNELRALPPLRLPR	8% P / 4% R	GBM4R	7
			GBM6P	GBM12P	
			GBM16P	001405	•
		LQDNELRALPPLRLPRL	5% P / 0% R	GBM6P	2
			GBM16P		

		QDNELRALPPLRLPR	3% P / 8% R	GBM6P	13	
		QDNELRALPPLRLPRL	GBM10R 3% P / 4% R	ZH753 GBM6P	7	
		QPGAFDTLDRLLELK	GBM10R 5% P / 4% R GBM22P	GBM3P GBM22R	2	
Receptor expression- enhancing protein 4 (REEP4; Q9H6H4)	24% P 25% R	SLSRHEKEIDAYIVQAKERSYETV	24% P / 21% R GBM10R GBM13P GBM18P GBM23P ZH681 ZH761 ZH802	GBM7R GBM12R GBM13R GBM19R ZH678 ZH750 ZH791	1% 0	1%
Adseverin (SCIN;				ODMICD	4%	2%
Q9Y6U3)	42% R	AGLQVWRIEKLELVPVPQ	3% P / 4% R ZH757	GBM16R	0	
		GDFYVGDAYLVLHTA	3% P / 8% R GBM20R	GBM4R ZH791	0	
		GLQVWRIEKLELVPVPQ	13% P / 17% R GBM9P GBM10R GBM16R GBM21P	GBM6P GBM9R GBM16P GBM20R	1	
		LQVWRIEKLELVPVP LQVWRIEKLELVPVPQ	0% P / 4% R 13% P / 17% R		0 5	
			GBM9P GBM10R GBM16R ZH757	GBM9R GBM16P GBM20R ZH791		
		VPVPQSAHGDFYVGDAYLVLHTA DKPLIIYKNGTSK	0% P / 4% R 8% P / 21% R GBM9P GBM10R GBM11R	GBM20R GBM4R GBM9R GBM11P GBM16P	0 1	
		DKPLIIYKNGTSKK	GBM16R 16% P / 25% R GBM6P GBM9P GBM10R GBM11R GBM16R	GBM4R GBM7R GBM9R GBM11P GBM16P ZH757	3	
		DKPLIIYKNGTSKKG	ZH791 16% P / 21% R GBM6P GBM9R GBM11P GBM16P ZH757	GBM4R GBM9P GBM10R GBM11R GBM16R ZH791	2	
		DKPLIIYKNGTSKKGGQAPAPP	5% P / 4% R GBM10R	GBM6P GBM16P	0	
		FKDKPLIIYKNGTSKKG	3% P / 0% R	GBM6P	0	
		KDKPLIIYKNGTSK KDKPLIIYKNGTSKK	3% P / 0% R 16% P / 21% R GBM6P GBM9R GBM11P GBM16P ZH757	GBM6P GBM4R GBM9P GBM10R GBM11R GBM16R ZH791	0 1	
		KDKPLIIYKNGTSKKG	5% P / 4% R GBM10R	GBM6P GBM11P	0	
Converger	070/ D	KEPVHLLSLFKDKPLIIYKNGTSK	0% P / 4% R	GBM23R	0	100/
Scavenger receptor cysteine-rich type 1 protein M130	37% P 33% R	AAELISVSKFLPIS	8% P / 4% R GBM9R ZH616	GBM9P GBM16P	14% 11	12%
(CD163; Q86VB7)		AAELISVSKFLPISG	11% P / 4% R GBM9R ZH757	GBM9P ZH616 ZH791	5	
		AELISVSKFLPIS	5% P / 4% R GBM9R	GBM9P ZH791	10	
		AELISVSKFLPISG	18% P / 13% R GBM9P GBM12R GBM16P ZH681	GBM4R GBM9R GBM15P ZH616 ZH757	10	
		ELISVSKFLPIS	ZH791 5% P / 4% R GBM9R	GBM9P ZH791	1	

Brevican core protein (BCAN; Q96GW7)

	ELISVSKFLPISG	5% P / 4% R GBM15P	GBM9R ZH791	2
	ENSHESADFSAAELISVSKFLPIS HESADFSAAELISVSKFLPIS SAAELISVSKFLPIS	0% P / 4% R 3% P / 0% R 3% P / 4% R GBM15P	GBM12R GBM16P GBM12R	2 0 4
	SENSHESADFSAAELISVSKFLPIS	3% P / 4% R	GBM9R	0
	SHESADFSAAELISVSKFLPIS	GBM16P 8% P / 13% R GBM5R GBM9R	GBM3P GBM9P GBM12R	24
000/ D	SHESADFSAAELISVSKFLPISG	GBM16P 3% P / 4% R GBM16P	GBM9R	4
63% P 38% R	AEDLNGELFLGD	8% P / 4% R GBM10R ZH802	GBM5P ZH757	1% 0
	AEDLNGELFLGDPP	211002 32% P / 25% R GBM5P GBM6P GBM10R GBM10R GBM23P ZH616 ZH645 ZH678 ZH802	GBM4R GBM5R GBM7P GBM16P GBM17R GBM23R ZH631 ZH651 ZH681	1
	AEDLNGELFLGDPPE	2H002 39% P / 25% R GBM5P GBM6P GBM10R GBM16R GBM18P GBM23P ZH616 ZH645 ZH681 ZH802	GBM4R GBM5R GBM7P GBM16P GBM17R GBM19P GBM23R ZH631 ZH654 ZH757 ZH810	1
	DLNGELFLGDPP	3% P / 4% R	GBM5P	0
	DLNGELFLGDPPE	GBM10R 13% P / 8% R GBM6P GBM18P	GBM5P GBM10R GBM23P	0
	EDLNGELFLGDPP	GBM23R 21% P / 17% R GBM6P GBM16R GBM23P ZH631 ZH681 ZH802	ZH802 GBM5P GBM10R GBM17R GBM23R ZH645 ZH757	0
	EDLNGELFLGDPPE	11% P / 17% R GBM10R GBM17R GBM23R ZH802	GBM6P GBM16R GBM23P ZH757	0
	LNGELFLGDPP LNGELFLGDPPE YAEDLNGELFLGD YAEDLNGELFLGDPP	2H022 3% P / 0% R 3% P / 0% R 29% P / 0% R 29% P / 21% R GBM5P GBM6P GBM10R GBM23P ZH631 ZH654 ZH757 ZH810	ZH802 ZH802 GBM5P GBM4R GBM5R GBM7P GBM17R GBM23R ZH645 ZH681 ZH802	0 0 1
	YAEDLNGELFLGDPPE	2H810 37% P / 25% R GBM5P GBM6P GBM10R GBM10R GBM19P GBM23R ZH645 ZH645 ZH678 ZH678 ZH757 ZH810	GBM4R GBM5R GBM7P GBM16P GBM17R GBM23P ZH631 ZH654 ZH681 ZH802	0

		YAEDLNGELFLGDPPEK	3% P / 0% R	GBM23P	0	
Prolow-density	95% P		ZH757		51%	51%
lipoprotein receptor-related	96% R	DFHLSQSALYW	3% P / 8% R GBM22P	GBM12R GBM22R	0	
protein 1 (LRP1; Q07954)		HKGDYSVLVPGLRN	3% P / 4% R GBM10R	GBM6P	0	
Q0700+)		HKGDYSVLVPGLRNT	5% P / 8% R GBM6P ZH616	GBM4R GBM10R	1	
		HKGDYSVLVPGLRNTIA	0% P / 4% R	GBM10R	0	
		IALDFHLSQSAL IALDFHLSQSALY	0% P / 4% R 3% P / 0% R	GBM22R GBM22P	0 0	
		IALDFHLSQSALYW	5% P / 8% R GBM12R GBM22R	GBM12P GBM22P	0	
		IALDFHLSQSALYWT	5% P / 4% R GBM22P	GBM12P GBM22R	0	
		IALDFHLSQSALYWTD	3% P / 4% R GBM22R	GBM22P	0	
		KGDYSVLVPGLRN	0% P / 8% R	GBM4R	0	
		KGDYSVLVPGLRNT	GBM10R 3% P / 8% R	GBM4R	0	
		LDFHLSQSALYW	GBM6P 3% P / 4% R	GBM10R GBM22P	1	
		LDFHLSQSALYWT	GBM22R 3% P / 0% R	GBM22P	0	
		LRNTIALDFHLSQS	3% P / 0% R	GBM16P	0	
		LVPGLRNTIALDFHL	5% P / 8% R GBM5R	GBM5P GBM13P	2	
		VPGLRNTIALDFHL	GBM23R 3% P / 0% R	GBM13P	0	
Contactin-1	45% P			ODIAD	3%	4%
(CNTN1; Q12860)	46% R	KPIPTIRWLKNGYAYH	16% P / 21% R GBM6P	GBM4R GBM7P	2	
			GBM10R	GBM14P		
			GBM14R GBM18R	GBM18P ZH654		
			ZH753	ZH802		
		KPIPTIRWLKNGYAYHK	21% P / 29% R	GBM4R	1	
			GBM6P GBM7R	GBM7P GBM10R		
			GBM14R	GBM18P		
			GBM18R GBM23P	GBM21R ZH654		
			ZH753	ZH054 ZH757		
			ZH761	ZH802	0	
		KPIPTIRWLKNGYAYHKG	11% P / 13% R GBM6P	GBM4R GBM7P	2	
			GBM10R	GBM14R		
		KPIPTIRWLKNGYAYHKGE	GBM18P 3% P / 4% R	ZH761 GBM4R	0	
			GBM18P	GBMHT	0	
Serine protease	71% P	AYIIEVIPDTPAE	50/ D / 40/ D		29% 3	17%
HTRA1 (HTRA1; Q92743)	/ 170 N	ATTEVIEDTEAE	5% P / 4% R ZH654	GBM18R ZH802	3	
		AYIIEVIPDTPAEA	8% P / 4% R GBM18R	GBM18P ZH654	4	
			ZH802			
		AYIIEVIPDTPAEAG	8% P / 4% R GBM18R	GBM18P ZH654	4	
			ZH802			
		DVIISINGQSVVS	16% P / 4% R GBM7P	GBM6P GBM14P	11	
			GBM14R	GBM15P		
			GBM19P 8% P / 4% R	ZH761 GBM6P		
		DVIISINGQSVVSA	GBM14P	GBM14R	3	
			GBM19P	ODMOD		
		DVIISINGQSVVSAN	13% P / 8% R GBM7P	GBM6P GBM12P	3	
			GBM14P	GBM14R	-	
			GBM19P 0% P / 4% R	ZH753 GBM18R		
		DVIKRESTLNMVV	8% P / 4% R	GBM18P	1	
		DVIKRESTLNMVVR	GBM18R	ZH654	5	
		DVIKRESTLNMVVRR	ZH802 0% P / 4% R	GBM18R	1	
		DVIKRESTLNMVVRRG	0% P / 4% R	GBM13R	0	

Neuronal cell adhesion molecule (NRCAM; Q92823)

79% P 75% R

DVSDVIKRESTLNMVVR	8% P / 8% R GBM18R 7U054	GBM18P GBM20R	11
DVSDVIKRESTLNMVVRR	ZH654 5% P / 4% R	ZH802 GBM18P	5
ENDVIISINGQSVVS	GBM18R 16% P / 4% R	ZH802 GBM2P	20
	GBM6P	GBM7P	
	GBM14P GBM15P	GBM14R GBM19P	
ENDVIISINGQSVVSA	11% P / 8% R	GBM6P	5
	GBM7P GBM14P	GBM12P GBM14R	
	ZH753		
ENDVIISINGQSVVSAN	8% P / 13% R	GBM6P	4
	GBM7P GBM14R	GBM12R GBM19P	
	ZH753		
ENDVIISINGQSVVSAND GAYIIEVIPDTPAE	3% P / 0% R 0% P / 4% R	GBM6P GBM18R	1 1
GAYIIEVIPDTPAEA	3% P / 4% R	GBM18R	4
GAYIIEVIPDTPAEAG	ZH654 5% P / 4% R	GBM18P	4
	GBM18R	ZH654	
GLKENDVIISINGQSVVSA	3% P / 0% R 0% P / 4% R	GBM6P GBM10R	0 0
IIEVIPDTPAEA	3% P / 0% R	ZH654	3
IIEVIPDTPAEAG IIEVIPDTPAEAGGL	0% P / 4% R 3% P / 4% R	GBM18R GBM16P	1 3
	GBM16R	CEMITO	0
IKRESTLNMVVRRGNE KENDVIISINGQSVVS	0% P / 4% R 3% P / 8% R	GBM18R GBM14R	0 3
	GBM18R	ZH802	0
KENDVIISINGQSVVSA	5% P / 4% R GBM14R	GBM6P GBM19P	0
SDVIKRESTLNM	5% P / 4% R	GBM18R	3
SDVIKRESTLNMVV	ZH654 8% P / 4% R	ZH802 GBM18P	3
	GBM18R	ZH654	-
SDVIKRESTLNMVVR	ZH802 8% P / 4% R	GBM18P	4
	GBM18R	ZH654	-
SDVIKRESTLNMVVRR	ZH802 0% P / 4% R	GBM13R	0
VIISINGQSVV	3% P / 4% R	GBM18R	2
VIISINGQSVVS	ZH802 5% P / 0% R	ZH761	3
	ZH802		-
VIISINGQSVVSA VIKRESTLNMVV	0% P / 4% R 0% P / 4% R	ZH753 GBM18R	0 1
VIKRESTLNMVVR	3% P / 0% R	ZH802	1
VIPDTPAEAG VSDVIKRESTLNM	3% P / 0% R 0% P / 4% R	ZH802 GBM18R	0 1
VSDVIKRESTLNMVV	8% P / 8% R	GBM18P	5
	GBM18R GBM20R	GBM20P ZH654	
VSDVIKRESTLNMVVR	11% P / 13% R	GBM9R	16
	GBM18P GBM20P	GBM18R GBM20R	
	ZH654	ZH802	
VSDVIKRESTLNMVVRR	8% P / 0% R	GBM18P	1
YIIEVIPDTPAEA	ZH654 8% P / 4% R	ZH802 GBM18P	3
	GBM18R	ZH654	
YIIEVIPDTPAEAG	ZH802 8% P / 4% R	GBM18P	1
	GBM18R	ZH654	
	ZH802		5%
EKKILTFQGSKTHG	0% P / 4% R	GBM10R	0
EKKILTFQGSKTHGMLPG HIEKKILTFQGSKTHG	3% P / 0% R 3% P / 0% R	GBM12P ZH616	0 0
IEKKILTFQGSKTH	16% P / 13% R	GBM4R	0
	GBM6P GBM10R	GBM9P GBM16P	
	GBM16R	ZH616	
	ZH757	ZH791	

IEKKILTFQGSKTHG	18% P / 17% R GBM6P GBM9P GBM14R GBM16R	GBM4R GBM7P GBM10R GBM16P ZH616	1
IEKKILTFQGSKTHGM	ZH757 8% P / 8% R GBM6P	ZH791 GBM4R GBM10R	0
IEKKILTFQGSKTHGMLPG	ZH616 0% P / 8% R GBM10R	ZH791 GBM4R	0
ILTFQGSKTHGMLPG	3% P / 4% R GBM22R	GBM12P	0
KILTFQGSKTHGMLP KILTFQGSKTHGMLPG	3% P / 0% R 11% P / 8% R GBM12R GBM22R	GBM12P GBM12P GBM22P ZH645	0 0
KKILTFQGSKTHG	ZH681 3% P / 8% R	GBM10R	0
KKILTFQGSKTHGMLPG	GBM14R 3% P / 0% R	GBM16P GBM12P	0
EGLLPVITPMAGNQRVEDPA	3% P / 4% R	GBM14R	2% 0
GLLPVITPMAGNQRVEDPA	GBM21P 13% P / 8% R GBM14P GBM16P	GBM6P GBM14R GBM21P	1
LLPVITPMAGNQRVE	GBM21R 3% P / 4% R GBM14R	ZH616 GBM6P	0
LLPVITPMAGNQRVED LLPVITPMAGNQRVEDP	0% P / 4% R 3% P / 4% R GBM14R	GBM14R GBM6P	0 0
LLPVITPMAGNQRVEDPA	13% P / 13% R GBM6P GBM14R GBM21P ZH616	GBM4R GBM14P GBM16P GBM21R	2
LPVITPMAGNQR LPVITPMAGNQRVE	0% P / 4% R 8% P / 8% R GBM14R GBM21R	GBM14R GBM14P GBM21P ZH616	0 1
LPVITPMAGNQRVED LPVITPMAGNQRVEDP	0% P / 4% R 5% P / 13% R GBM14R GBM21R	GBM14R GBM10R GBM21P ZH616	0 2
LPVITPMAGNQRVEDPA	16% P / 17% R GBM6P GBM11P GBM14R GBM21P ZH616	GBM4R GBM10R GBM14P GBM16P GBM21R	3
PVITPMAGNQRVE PVITPMAGNQRVED PVITPMAGNQRVEDP PVITPMAGNQRVEDPA	0% P / 4% R 0% P / 4% R 0% P / 4% R 5% P / 13% R GBM10R GBM14R	GBM14R GBM14R GBM14R GBM6P GBM14P GBM21R	0 0 0
SEGLLPVITPMAGNQRVEDPA	3% P / 4% R GBM14R	GBM6P	0

Sodium-coupled neutral amino acid transporter 3 (SLC38A3; Q99624) Supplementary Table 5. Established TAAs and CTAs identified as glioblastoma-exclusive antigens on both primary and recurrent tumors or represented by glioblastoma-exclusive peptides on ≥ 2 primary as well as ≥ 2 recurrent neoplasms of a minimum of four different patients. HLA restrictions not passing manual assessment as quality control are indicated in italic. The number of positive tumors other than glioblastoma was based on n=824 HLA class I and n=585 HLA class II peptidome datasets. The frequency of positive benign HLA peptidomes was calculated from n=418 (HLA class I) or n=364 (HLA class II) benign human specimens. Glioblastoma exclusivity of HLA class II-restricted peptides was evaluated for the exact sequence match. Frequencies of positive tumors are given separately for n=38 primary (P) and n=24 recurrent (R) glioblastomas.

Peptide sequence	HLA restriction	Frequency of po	ositive tum	ors	Protein frequency on glioblastmas	Protein frequency on non-GBM tumors Peptide-positive non-GBM tumors	Protein frequency on benign samples
Glioblastoma-excl	usive HLA class I-p	presented antigen	s derived f	rom estab	lished TAAs and	CTAs	
,	inscription factor (OL	.IG2; Q13516)			34% P / 33% R	1%	0%
Supplementary Tab	ole 2						
EMKRLVSEI	B*08:01	0% P / 4% R	ZH753			0	
SIRPPHGLLK	A*03:01	3% P / 0% R	ZH761			0	
SLPGSGLPSV	A*02:01	3% P / 0% R	ZH757			0	
	otein 255A (TMEM2	55A; Q5JRV8)			34% P / 17% R	1%	0%
Supplementary Tab							
•	Pax-6 (PAX6; P2636	7)			24% P / 21% R	1%	0%
Supplementary Tab							
FTQEQIEAL	A*02:05; C*12:03	3% P / 0% R	GBM6P			1	
RYYETGSIRPR	A*31:01	8% P / 0% R	ZH613 ZH654	ZH802		3	
SALPPMPSF	C*12:03	3% P / 0% R	GBM6P			1	
	perfamily member 11	(IGSF11; Q5DX2	1)		18% P / 17% R	0%	0%
Supplementary Tab					100/ 0 / 010/ 0	00/	00/
Protein AF1q (MLL	. ,		00140	001445	16% P / 21% R		0%
APIASIHSF	B*07:02; B*35:01	8% P / 21% R		GBM4R GBM6R GBM16P GBM18R		7	
ATYKVKDSSVGK	A*03:01; A*11:01	5% P / 0% R	ZH631	ZH761		0	
NPEGDGLLEY	B*35:01	3% P / 0% R	GBM6P			1	
QEKNPEGDGL	B*44:02	3% P / 0% R	GBM15P			0	
CD276 antigen (CD	276; Q5ZPR3)				5% P / 4% R	4%	0%
AQLNLIWQL	A*02:01; B*13:02	5% P / 4% R	GBM5P GBM20P	GBM13R		6	
Interleukin-13 recep	otor subunit alpha-2 (IL13RA2; Q14627)		5% P / 4% R	0%	0%
LLDTNYNLFY	A*01:01	3% P / 0% R	GBM3P			0	
PLPPVYLTF	A*23:01	0% P / 4% R	GBM23R			0	
Glioblastoma-excl	usive HLA class I li	gands derived fro	om establis	shed TAAs	and CTAs		
Ankyrin repeat dom	ain-containing protei	n 40 (ANKRD40: C	Q6AI12)		55% P / 42% R	10%	6%
ELDRQELTY	A*01:01	18% P / 13% R	GBM3P GBM9P GBM13P	GBM5P GBM9R GBM13R GBM16R ZH645		12	
	oosis coli protein (AP	. ,			68% P / 58% R	15%	19%
LPSSSSSRGSL	B*07:02	16% P / 21% R		GBM16P GBM18P		24	
ELDTPINY	A*01:01	13% P / 17% R	GBM5P GBM9R GBM16P GBM17R ZH654	GBM9P GBM13R GBM16R ZH645		3	
KVMEEVSAI	A*02:01; C*02:02; C*15:02	11% P / 8% R	GBM3P GBM14R ZH678	GBM7R ZH617 ZH618		4	

Brevican core prote	in (BCAN; Q96GW7)				58% P / 21% R	1%	1%
YEVDTVLRY	B*18:01; B*44:03	8% P / 8% R	GBM3P GBM17R ZH720	GBM3R ZH678		0	
Carbonic anhydrase	e 9 (CA9; Q16790)				18% P / 8% R	3%	2%
SPRAAEPVQL	B*07:02	13% P / 8% R		GBM16R GBM18R ZH681		11	
Cyclin-dependent k	inase 4 (CDK4; P118	802)			50% P / 54% R	13%	8%
Supplementary Tab	ole 3	,					
Ceramide synthase	1 (CERS1; P27544)				68% P / 71% R	2%	2%
Supplementary Tab	, ,						
VLTGQVHEL	A*02:01	16% P / 13% R	GBM10R GBM14R ZH678 ZH753 ZH761	GBM11P ZH616 ZH681 ZH757		0	
Contactin-2 (CNTN	2: Q02246)				37% P / 58% R	0%	2%
IVRNGGTSM	B*07:02	11% P / 17% R	ZH681	GBM4R GBM7R GBM16R GBM17R		0	
TEADIGSNLRW	B*44:02; B*44:03	11% P / 8% R	GBM17P GBM19R ZH761	-		0	
Cysteine and glycin	e-rich protein 2 (CSF	RP2; Q16527)			26% P / 21% R	2%	3%
LTEKEGEIY	A*01:01	16% P / 17% R		GBM5P GBM9R GBM13R GBM16R ZH654		1	
Catenin beta-1 (CT	NNB1: P35222)				92% P / 96% R	75%	72%
ATVGLIRNL	A*02:01; A*02:05; B*13:02; B*57:01; C*03:03; C*06:02; C*07:01; C*12:03; C*15:06	21% P / 13% R		GBM5R GBM6R GBM13P GBM23P ZH681		18	
Dedicator of cytokir	nesis protein 7 (DOCI	<7; Q96N67)			95% P / 79% R	29%	27%
AMASIINRL	A*02:01; A*02:05	13% P / 8% R	GBM6P GBM11P ZH613 ZH757	GBM6R GBM11R ZH617		3	
ELKSSISAL	B*08:01	11% P / 13% R		GBM13R GBM16R ZH617		3	
Dihydropyrimidinas	e-related protein 4 (D	PYSL4; O14531)			47% P / 38% R	6%	12%
GLYDGPVHEV	A*02:01	13% P / 8% R	GBM7P GBM12P ZH616 ZH753	GBM7R GBM21P ZH681		0	
Epidermal growth fa	actor receptor (EGFR	; P00533)			58% P / 58% R	11%	6%
KITDFGLAK	A*03:01; A*11:01	11% P / 8% R	GBM6P GBM16R ZH631	GBM16P GBM17R ZH678		1	
SPSTSRTPLL	B*07:02	5% P / 17% R	GBM4R GBM16P ZH616	GBM10R GBM16R ZH784		0	
KLFGTSGQK	A*03:01	5% P / 13% R	GBM22R	GBM16P GBM17R		2	
QMDVNPEGKY	A*01:01	5% P / 8% R	GBM5P GBM17R	GBM16R ZH654		0	
	on initiation factor 4E	,			11% P / 21% R		4%
RLISKFDTV	A*02:01	5% P / 8% R	GBM3P GBM13R	GBM11P ZH753		2	

Elongation of very	long chain fatty acids	protein 2 (ELOVL2	2; Q9NXB9)	39% P / 25% R	2%	1%
YLPTFFLTV	A*02:01; A*02:05	26% P / 13% R	GBM13R	GBM6P GBM7R GBM13P GBM19P GBM21P ZH757		1	
Eatty acid-binding	orotein, brain (FABP7	015540)	211023		21% P / 13% R	10/	0%
EYMKALGVGF		11% P / 8% R	GBM22P	GBM19P GBM22R GBM23R	21/07/13/01	1	0 /6
Constitutive coactiv	vator of PPAR-gamma	a-like protein 2 (FA	M120C; Q	9NX05)	50% P / 50% R	8%	8%
Supplementary Tal	ole 3						
HAFSEDPML	<i>B*35:02</i> ; <i>B*35:03</i> ; C*03:04; C*12:03	8% P / 13% R	GBM22P	GBM21P GBM22R GBM23R		2	
Neuronal membrar	ne glycoprotein M6-b	GPM6G; Q13491)			84% P / 79% R	5%	14%
ATTYNYAVLK	A*11:01	11% P / 8% R	GBM7P GBM18P ZH631	GBM7R GBM18R ZH678		0	
Glutamate recepto	r ionotropic, kainate 3	(GRIK3; Q13003)			39% P / 25% R	2%	6%
LLYDAVHIV	A*02:01	11% P / 13% R		GBM11P GBM14R ZH681		2	
HEAT repeat-conta	aining protein 1 (HEAT	rr1; Q9H583)			58% P / 42% R	28%	24%
KMVEDLISV	A*02:01	5% P / 8% R	GBM3P GBM14R	GBM10R ZH617		11	
Hepatocyte cell ad	hesion molecule (HEF	PACAM; Q14CZ8)			50% P / 33% R	0%	1%
VPISRPQVL	B*07:02	11% P / 13% R	GBM4P GBM7P GBM10R ZH681	GBM4R GBM7R GBM16P		0	
Integrin alpha-7 (IT	GA7; Q13683)				79% P / 63% R	10%	16%
LLYPMQVEL	A*02:01; <i>C*01:02</i>	24% P / 13% R	GBM13P	GBM11P GBM13R GBM20R ZH617 ZH678 ZH757		4	
	ard rectifier potassium	channel 10 (KCNJ	J10; P7850	8)	92% P / 79% R	7%	12%
Supplementary Tal		00/ D / 100/ D				0	
RLNQVNVTF	A*32:01; B*15:01	8% P / 13% R	GBM2P GBM5P GBM12R	GBM2R GBM5R ZH631		0	
Melanoma-associa	ted antigen F1 (MAG	EF1; Q9HAY2)			39% P / 33% R	12%	22%
ALAAKALAR	A*03:01	5% P / 13% R	GBM4P GBM8P GBM23R	GBM4R GBM17R		3	
Membrane-associa protein 2 (MAGI2;	ated guanylate kinase. Q86UL8)	WW and PDZ dor	main-conta	ining	24% P / 21% R	1%	2%
AVAPGPWKV	A*02:01; C*15:02	11% P / 13% R	GBM13R ZH617 ZH681 ZH757	GBM14R ZH678 ZH753		2	
C-1-tetrahydrofolat	e synthase, cytoplasn	nic (MTHFD1; P11			47% P / 21% R	25%	30%
TTESEVMKY	A*01:01	18% P / 8% R	GBM3P GBM9P	GBM5P GBM13R GBM16R ZH645		17	
Max-interacting pro	otein 1 (MXI1; P50539				11% P / 21% R	3%	3%
FPSMPSPRL	B*07:02; B*35:03; B*56:01	8% P / 21% R	GBM16P	GBM7R GBM14R GBM16R GBM18R		11	
Neuroligin-4, X-link	ed (NLGN4X; Q8N0V	V4)			50% P / 42% R	2%	1%
NLDTLMTYV	A*02:01; C*05:01; <i>C*08:02</i>	21% P / 8% R				1	

	sion molecule (NRCA	AM; Q92823)			47% P / 29% R	1%	1%
Supplementary Tab SEPDNLVITW	ole 3 B*44:02; B*44:03	16% P / 8% R		GBM17R GBM20R ZH631 ZH761		0	
Poly(A) polymerase	e alpha (PAPOLA; P5	51003)			53% P / 50% R	25%	24%
KIPTPIVGV	A*02:01	8% P / 8% R	GBM14R ZH678 ZH753	GBM21P ZH681		3	
Protocadherin gam	ma-C5 (PCDHGC5;)	Q9Y5F6)			68% P / 67% R	5%	7%
VSSDGTLKY	A*01:01; <i>B*57:01</i>	16% P / 13% R	GBM5P GBM9P GBM13P ZH617 ZH654	GBM5R GBM9R GBM17R ZH645		1	
Pecanex-like protei	in (PCNXL3; Q9H6A	9)			29% P / 12% R	12%	10%
GVLENIFGV	A*02:01; C*16:01	24% P / 13% R	GBM14P	GBM7P GBM13R GBM14R GBM21P ZH678 ZH720		23	
E3 ubiquitin-protein	n ligase Praja-2 (PJA2	2; O43164)			87% P / 79% R	43%	40%
GSSPEQVVRPK	A*11:01	8% P / 8% R	GBM12R GBM18R ZH678	GBM18P ZH631		5	
(PLEKHA4; Q9H4Ň	,	family A member 4	ļ		18% P / 21% R	2%	1%
Supplementary Tak			000474		070/ D / 000/ D	69/	E9/
Supplementary Tak					97% P / 83% R		5%
EEFETLKEF	B*18:01; B*44:02; B*44:03	32% P / 8% R		GBM8P GBM19R GBM20R ZH616 ZH631 ZH720 ZH802		3	
KVFAGIPTV	A*02:01; A*02:05; A*32:01; <i>B*13:02</i> ; C*15:02	29% P / 13% R	GBM13P	GBM7P GBM11P GBM13R GBM21P ZH631 ZH681 ZH681 ZH761		2	
SENPETITY	B*18:01; B*44:02; B*44:03	26% P / 8% R	GBM3P GBM17R GBM21P ZH617 ZH678 ZH761	GBM8P GBM20R ZH616 ZH631 ZH750		1	
FLLPDTDGLTAL	A*02:01	26% P / 8% R	GBM3P GBM10R GBM21P ZH645 ZH753 ZH753 ZH761	GBM7P GBM19P ZH617 ZH678 ZH757 ZH829		1	
VVYDTMIEK	A*03:01; A*11:01	18% P / 13% R	GBM7 GBM12P	GBM10R GBM16P GBM17R ZH678 ZH791		0	
FPTEVTPHAF	B*07:02; B*35:03	16% P / 21% R		GBM10R GBM16P GBM22P		2	
SVDVYQVAK	A*11:01	13% P / 13% R	GBM7P GBM12R GBM18R ZH678	GBM7R GBM18P ZH631 ZH791		2	
FLYKVILSL	A*02:01; <i>B*13:02</i> ; C*03:03	13% P / 8% R	GBM5P	GBM13P GBM14R ZH750		1	

ALTTLMHQL	A*02:01; A*02:05	11% P / 17% R		GBM6R GBM11R GBM20R ZH757		0	
FPSKATSEL	B*07:02; B*35:03	11% P / 13% R	GBM4P GBM14R	GBM10R GBM16P GBM22P		0	
SPISKTFEL	B*07:02; B*08:01; B*35:01; B*35:03	8% P / 13% R	GBM6P GBM16P	GBM10R GBM16R GBM22R		0	
Cell differentiation	protein RCD1 homolo	q (RQCD1; Q9260			55% P / 46% R	17%	13%
LLDDTGLAY	A*01:01; B*15:01	8% P / 8% R	GBM5P	GBM9P GBM16P		5	
Structural maintena	ance of chromosomes	s protein 4 (SMC4;	Q9NTJ3)		71% P /46 % R	38%	24%
AVNPKEIASK	A*03:01	11% P / 17% R	GBM4P GBM6P GBM16R GBM23R	GBM4R GBM16P GBM17R ZH761		31	
Alpha-2,8-sialyltrar	nsferase 8E (ST8SIA5	5; O15466)			11% P / 17% R	1%	1%
NTDVSIRVKY	A*01:01	5% P / 8% R	GBM13R ZH617	GBM17R ZH654			
Transforming grow	th factor beta-2 (TGF	B2; P61812)			18% P / 21% R	3%	1%
RPYFRIVRF	B*07:02; B*08:01	11% P / 13% R	GBM4R GBM9P GBM16R GBM18R	GBM7P GBM16P GBM18P		10	
Tenascin (TNC; P2	24821)				87% P / 83% R	14%	13%
Supplementary Tal	ble 3						
GVLKKVIRH	A*03:01; A*11:01	13% P / 25% R	GBM17R	GBM4R GBM6R GBM16R GBM18P GBM23R		10	
ATEYEIELY	A*01:01	13% P / 17% R	GBM3P GBM5P GBM9R	GBM3R GBM9P GBM13R GBM16R		7	
SPRDLTATEV	B*07:02	5% P / 13% R	GBM4R GBM16P GBM18P	GBM10R GBM16R		0	
NRLLETVEY	C*07:01; C*07:02	5% P / 8% R	GBM4P	GBM10R GBM18R		0	
Vacuolar protein so	orting-associated prot	ein 13B (VPS13B;	Q7Z7G8)		74% P / 67% R	30%	25%
SLLQKQIML	A*02:01	11% P / 8% R	GBM10R GBM21P ZH753	GBM11P ZH681 ZH757		7	
Glioblastoma-exc	lusive HLA class II-p	presented antigen	s derived	from estab	blished TAAs an	d CTAs	
Fatty acid-binding	orotein, brain (FABP7	; 015540)			26% P / 29% R	1%	0%
Supplementary Tal							
, ,	kinase 4 (CDK4; P118	/			8% P / 8% R	1%	0%
DPHSGHFVALKS	VRVPN	5% P / 4% R	GBM7P GBM14R	GBM14P		6	
DPHSGHFVALKS	VRVPNG	8% P / 8% R	GBM7P GBM12P GBM14R	GBM7R GBM14P		3	
DPHSGHFVALKS	VRVPNGG	3% P / 4% R	GBM7P	GBM7R		4	
DPHSGHFVALKS		3% P / 0% R	GBM7P			0	
SGHFVALKSVRVF		3% P / 0% R	GBM7P			0	00/
	RAD51 homolog 1 (F	(AD51; Q06609)			8% P / 8% R	0%	0%
Supplementary Tal					E0/ D / 00/ D	09/	09/
DLREYDTAEAQSI	e 1 (CERS1; P27544) _KPS	5% P / 4% R	GBM6P	GBM12P	5% P / 8% R	0% 0	0%
			ZH753				
DLREYDTAEAQSI		5% P / 0% R	GBM6P	GBM12P		0	
GGSYHRLHALAAI		3% P / 0% R	GBM6P			0	
KVLYATSHCSLRT		0% P / 4% R	GBM2R			0	
		3% P / 0% R	GBM6P			0	
LREYDTAEAQSLK	NROK	3% P / 0% R	GBM6P			0	

I = 0.000						
Lipase member I (LIPI; Q6XZB0)				3% P / 8% R	0%	0%
FISFPCRSYKDYKT	0% P / 4% R	GBM5R			0	
KSIFSGIQFIKCNHQRAVHLFM	0% P / 4% R	GBM21R			0	
PDKTMMDGSFSFKLLNQLGMIEEP	3% P / 0% R	GBM13P			0	
Eukaryotic translation initiation factor 4E	: (EIF4E; P06730)			3% P / 4% R	1%	0%
IEPMWEDEKNKRGGR	0% P / 4% R	GBM10R			1	
QEVANPEHYIKHPLQNRWALWFFKN	3% P / 0% R	GBM16P			0	
Protein AF1q (MLLT11; Q13015)				3% P / 4% R	1%	0%
FWRAPIASIHSFEL	0% P / 4% R	GBM22R			1	
MRDPVSSQYSSFLF	3% P / 0% R	ZH802			2	
WRAPIASIHSFEL	0% P / 4% R	GBM22R			4	
WRAPIASIHSFELDLL	0% P / 4% R	GBM22R			3	
Kinetochore protein Nuf2 (NUF2; Q9BZ	D4)			3% P / 4% R	1%	0%
KTKIVDSPEKLKNYK	3% P / 4% R	GBM13R	GBM16P		0	
Transcription factor ETV6 (ETV6; P412	12)			3% P / 4% R	1%	0%
MPSPIMHPLILNP	0% P / 4% R	GBM5R			0	
PGQRLLFRFMKTPDEI	3% P / 0% R	GBM16P			0	
Melanoma-associated antigen 1 (MAGE	A1; P43355)			3% P / 4% R	1%	0%
APEEEIWEELSVMEVYDGREHSAY	3% P / 4% R	GBM10R	GBM16P		1	
Transcriptional repressor CTCFL (CTCF	⁻ L; Q8NI51)			3% P / 4% R	1%	0%
NQLLAERTKEQLF	3% P / 4% R	GBM18R	ZH654		1	
Glioblastoma-exclusive HLA class II-	restricted peptide	s derived f	rom estab	lished TAAs and	d CTAs	
A-kinase anchor protein 3 (AKAP3; O75	969)			5% P / 17% R	1%	1%
EPKVPEQPVKEDRKLCERPLASSPP	5% P / 13% R	GBM9R	GBM10R		0	
			GBM16R			
	`	ZH757		000/ D / 000/ D	40/	4.07
Brevican core protein (BCAN; Q96GW7)			63% P / 38% R	1%	1%
Supplementary Table 4	50/ D / 100/ D				0	
DAGWLSDQTVRYPIQ	5% P / 13% R		GBM13R GBM16R		2	
		ZH617	GDIVITOR			
EAYRFRVALPAYPA	32% P / 13% R	GBM4R	GBM5P		0	
		GBM5R	GBM6P		-	
		-	GBM10R			
		GBM11P GBM22P				
		ZH616	ZH678			
		ZH681	ZH757			
		ZH802				
RPRLRYEVDTVLRYR	8% P / 13% R		GBM13R		0	
			GBM16R			
	11% P / 13% R	GBM18P				
SPGWLADGSVRYPI					0	
		GBM10R GBM13B	GBM13P		0	
	,	GBM10R GBM13R GBM16R	GBM13P GBM16P		0	
		GBM13R	GBM13P GBM16P		0	
SPGWLADGSVRYPIV	8% P / 13% R	GBM13R GBM16R ZH617 GBM10R	GBM13P GBM16P GBM18P GBM13R		0	
SPGWLADGSVRYPIV		GBM13R GBM16R ZH617 GBM10R GBM16P	GBM13P GBM16P GBM18P GBM13R GBM16R			
	8% P / 13% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P	GBM13P GBM16P GBM18P GBM13R GBM16R ZH617		1	
SPGWLADGSVRYPIV SPGWLADGSVRYPIVT		GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R	GBM13P GBM16P GBM18P GBM13R GBM16R ZH617 GBM13R			
	8% P / 13% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R GBM10R	GBM13P GBM16P GBM18P GBM13R GBM16R ZH617 GBM13R GBM13R GBM16R		1	
SPGWLADGSVRYPIVT	8% P / 13% R 8% P / 13% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R GBM16P GBM18P	GBM13P GBM16P GBM18P GBM13R GBM16R ZH617 GBM13R GBM16R ZH617		1 0	
	8% P / 13% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R GBM10R	GBM13P GBM16P GBM18P GBM13R GBM16R ZH617 GBM13R GBM16R ZH617 GBM13P		1	
SPGWLADGSVRYPIVT	8% P / 13% R 8% P / 13% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R GBM18P GBM10R GBM13R GBM13R	GBM13P GBM16P GBM18P GBM18R ZH617 GBM13R GBM16R ZH617 GBM13P GBM16P		1 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS	8% P / 13% R 8% P / 13% R 11% P / 13% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R GBM18P GBM10R GBM13R GBM10R GBM13R GBM16R ZH617	GBM13P GBM16P GBM18P GBM13R GBM16R ZH617 GBM13R GBM16P GBM13P GBM16P GBM18P		1 0 0	
SPGWLADGSVRYPIVT	8% P / 13% R 8% P / 13% R	GBM13R GBM16R ZH617 GBM10P GBM16P GBM10P GBM10P GBM10P GBM10P GBM10P GBM10R GBM13R GBM16R ZH617 GBM5P	GBM13P GBM16P GBM18P GBM18R CH617 GBM13R GBM16P GBM13P GBM18P GBM11P		1 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS	8% P / 13% R 8% P / 13% R 11% P / 13% R	GBM13R GBM16R ZH617 GBM10P GBM16P GBM18P GBM10P GBM10P GBM10P GBM10P GBM10R GBM10R GBM10R GBM16R ZH617 GBM5P GBM17R	GBM13P GBM16P GBM18P GBM18R GBM16R ZH617 GBM13R GBM16P GBM18P GBM11P GBM11P GBM12P		1 0 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS	8% P / 13% R 8% P / 13% R 11% P / 13% R	GBM13R GBM16R ZH617 GBM10P GBM16P GBM10P GBM10P GBM10P GBM10P GBM10P GBM10R GBM13R GBM16R ZH617 GBM5P	GBM13P GBM16P GBM18P GBM18R GBM16R ZH617 GBM13R GBM16P GBM18P GBM11P GBM11P GBM12P		1 0 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS SPRVKWTFLSRGREA	8% P / 13% R 8% P / 13% R 11% P / 13% R 13% P / 8% R	GBM13R GBM16R ZH617 GBM10P GBM16P GBM18P GBM10R GBM10P GBM10P GBM10P GBM10P GBM10P GBM17P GBM5P GBM5P GBM5P GBM17R GBM52R ZH750	GBM13P GBM16P GBM18P GBM18R GBM16R ZH617 GBM13R GBM16P GBM13P GBM18P GBM11P GBM22P ZH678		1 0 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS	8% P / 13% R 8% P / 13% R 11% P / 13% R	GBM13R GBM16R ZH617 GBM10P GBM16P GBM18P GBM10R GBM10R GBM10R GBM10R GBM10R GBM10R GBM10R GBM17R GBM5P GBM17R GBM5P GBM17R GBM22R	GBM13P GBM16P GBM18P GBM18R GBM16R ZH617 GBM13R GBM16P GBM18P GBM11P GBM11P GBM12P		1 0 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS SPRVKWTFLSRGREA	8% P / 13% R 8% P / 13% R 11% P / 13% R 13% P / 8% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R GBM10R GBM17R GBM17R GBM17R GBM5P GBM17R GBM22R ZH750 GBM3P GBM5P GBM5P GBM5P GBM5P GBM5P	GBM13P GBM16P GBM18P GBM16R ZH617 GBM13R GBM16R ZH617 GBM13P GBM16P GBM18P GBM18P GBM11P GBM22P ZH678 GBM4R GBM5R GBM4R		1 0 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS SPRVKWTFLSRGREA	8% P / 13% R 8% P / 13% R 11% P / 13% R 13% P / 8% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R GBM10R GBM13R GBM16R ZH617 GBM5P GBM5P GBM5P GBM3P GBM3P GBM5P GBM6P GBM6P GBM10R	GBM13P GBM16P GBM18P GBM18R ZH617 GBM13R GBM16R ZH617 GBM13P GBM16P GBM16P GBM18P GBM11P GBM22P ZH678 GBM4R GBM4R GBM5R GBM4R		1 0 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS SPRVKWTFLSRGREA	8% P / 13% R 8% P / 13% R 11% P / 13% R 13% P / 8% R	GBM13R GBM16R ZH617 GBM10P GBM18P GBM10P GBM10P GBM10P GBM18P GBM10P GBM17R GBM17R GBM5P GBM5P GBM3P GBM3P GBM3P GBM3P GBM3P GBM3P GBM3P GBM3P GBM3P GBM3P GBM3P GBM3P GBM3P GBM3P	GBM13P GBM16P GBM18P GBM16R ZH617 GBM13R GBM16P GBM16P GBM16P GBM18P GBM18P GBM12P ZH678 GBM4R GBM4R GBM5R GBM7P GBM11P GBM22P		1 0 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS SPRVKWTFLSRGREA	8% P / 13% R 8% P / 13% R 11% P / 13% R 13% P / 8% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R GBM10R GBM13R GBM16R ZH617 GBM5P GBM5P GBM5P GBM3P GBM3P GBM5P GBM6P GBM6P GBM10R	GBM13P GBM16P GBM18P GBM16R ZH617 GBM13R GBM16P GBM16P GBM16P GBM18P GBM11P GBM22P ZH678 GBM4R GBM4R GBM5R GBM4R		1 0 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS SPRVKWTFLSRGREA	8% P / 13% R 8% P / 13% R 11% P / 13% R 13% P / 8% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R GBM10R GBM10R GBM10R GBM17R GBM5P GBM5P GBM5P GBM5P GBM5P GBM5P GBM5P GBM3P GBM5P GBM10R GBM10R GBM10R GBM10R GBM10R CBM10R CBM10B CBM10	GBM13P GBM16P GBM18P GBM16R ZH617 GBM13R GBM16P GBM16P GBM18P GBM18P GBM11P GBM22P ZH678 GBM4R GBM5R GBM5R GBM5R GBM5P GBM11P GBM22P ZH616		1 0 0	
SPGWLADGSVRYPIVT SPGWLADGSVRYPIVTPS SPRVKWTFLSRGREA	8% P / 13% R 8% P / 13% R 11% P / 13% R 13% P / 8% R	GBM13R GBM16R ZH617 GBM10R GBM16P GBM18P GBM10R GBM16P GBM18P GBM16R ZH617 GBM5P GBM5P GBM5P GBM5P GBM5P GBM5P GBM5P GBM5P GBM5P GBM5P GBM5P GBM6P ZH613 ZH645	GBM13P GBM16P GBM13R GBM16P CH617 GBM13R GBM16R ZH617 GBM13P GBM16P GBM11P GBM12P ZH678 GBM4R GBM5R GBM4R GBM5R GBM1P GBM11P GBM22P ZH616 ZH678		1 0 0	

Clusterin (CLU; P10909)			87% P / 96% R	53%	59%
· · · · · ·	1404 D (1004 D		87% P/96% R		59%
DNELQEMSNQGSK	11% P / 13% R	GBM9P GBM9R GBM18P GBM18R GBM20R ZH654 ZH802		24	
DNELQEMSNQGSKY	13% P / 13% R	GBM9P GBM9R GBM18P GBM18R GBM20P GBM20R ZH654 ZH802		23	
DQTVSDNELQEMSNQGSK	8% P / 13% R	GBM9R GBM18P GBM18R GBM20R ZH654 ZH802		8	
DQTVSDNELQEMSNQGSKY	11% P / 13% R	GBM9P GBM9R GBM18P GBM18R GBM20R ZH654 ZH802		14	
DQTVSDNELQEMSNQGSKYVN	8% P / 13% R	GBM9R GBM18P GBM18R GBM20R ZH654 ZH802		16	
DQTVSDNELQEMSNQGSKYVNK	11% P / 8% R	GBM9P GBM18P GBM18R GBM20R ZH654 ZH802		11	
DQTVSDNELQEMSNQGSKYVNKE	11% P / 13% R	GBM9P GBM9R GBM18P GBM18R GBM20R ZH654 ZH802		6	
DSDPITVTVPVEVSRKNPK	5% P / 17% R	GBM5R GBM13R GBM20R GBM23R ZH645 ZH654		9	
ERLTRKYNELLKSYQ	11% P / 8% R	GBM21P GBM21R GBM22P GBM22R ZH654 ZH761		1	
GVTEVVVKLFDSDPIT	5% P / 13% R	GBM4R GBM11P GBM14R GBM16P GBM16R		6	
NELQEMSNQGSK	8% P / 8% R	GBM18P GBM18R GBM20R ZH654 ZH802		14	
NELQEMSNQGSKY	11% P / 8% R	GBM9P GBM18P GBM18R GBM20R ZH654 ZH802		14	
SDNELQEMSNQGSK	16% P / 13% R	GBM9P GBM9R GBM15P GBM18P GBM18R GBM20P GBM20R ZH654 ZH802		35	
SDNELQEMSNQGSKYV	8% P / 13% R	GBM9R GBM18P GBM18R GBM20R ZH654 ZH802		16	
SDNELQEMSNQGSKYVNK	11% P / 8% R	GBM9P GBM18P GBM18R GBM20R ZH654		12	
TVSDNELQEMSNQGSK	11% P / 8% R	GBM9P GBM18P GBM18R GBM20R ZH654 ZH802		13	
TVSDNELQEMSNQGSKY	13% P / 13% R	GBM9P GBM9R GBM18P GBM18R GBM20P GBM20R ZH654 ZH802		17	
TVSDNELQEMSNQGSKYVNK	8% P / 8% R	GBM18P GBM18R GBM20R ZH654 ZH802		10	
VPSGVTEVVVKLFDSDPIT	8% P / 25% R	GBM4R GBM11P GBM11R GBM13P GBM14R GBM16P GBM16R GBM23R ZH753		17	
VSDNELQEMSNQGSK	11% P / 13% R	GBM9P GBM9R GBM18P GBM18R GBM20R ZH654 ZH802		12	

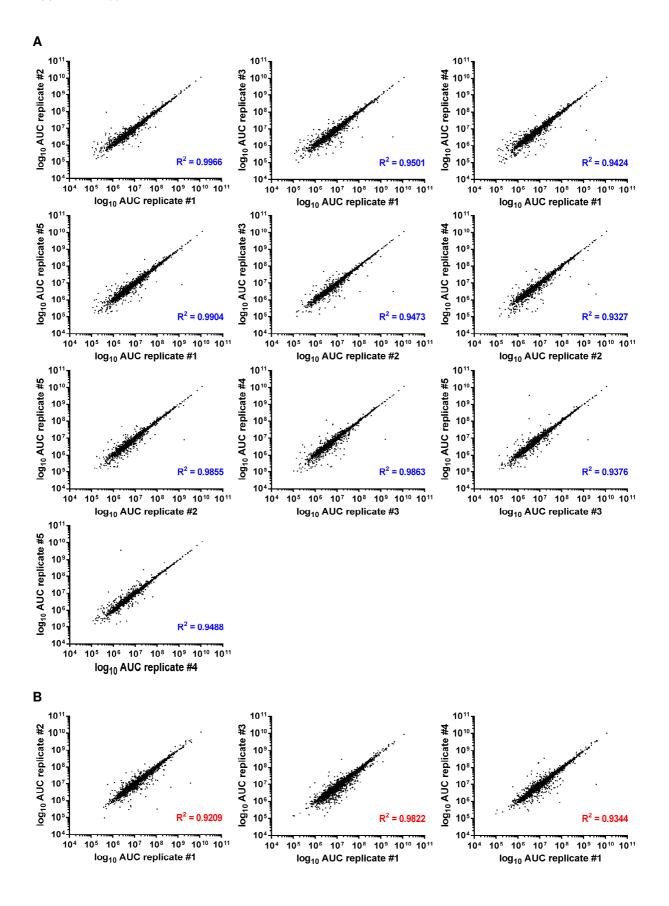
VSDNELQEMSNQGSKYVN	8% P / 8% R	GBM18P GBM20R ZH802	GBM18R ZH654		9	
VSDNELQEMSNQGSKYVNK	8% P / 8% R		GBM18R ZH654		9	
VSDNELQEMSNQGSKYVNKE	8% P / 8% R		GBM18P ZH654		4	
VTEVVVKLFDSDPIT	8% P / 17% R	GBM4R GBM14P	GBM11P GBM14R GBM23P		5	
Epidermal growth factor receptor (EGFF	R; P00533)			42% P / 33% R	9%	12%
LQRYSSDPTGALTEDS	5% P / 13% R		GBM13R GBM16R		2	
LRILKETEFKKIKV	8% P / 8% R	GBM6P GBM16P ZH631	GBM14R GBM16R		0	
Ephrin type-B receptor 2 (EPHB2; P293	23)			16% P / 21% R	3%	4%
TPGMKIYIDPFTYE	13% P / 17% R		GBM6P GBM7R GBM11P GBM16R		8	. /2
TPGMKIYIDPFTYEDP	5% P / 17% R	GBM4R GBM7R	GBM7P GBM10R GBM16R		5	
Glypican-1 (GPC1; P35052)				26% P / 25% R	4%	2%
IMQLKIMTNRLRSA	16% P / 8% R	GBM4R GBM7P GBM14R GBM21P	GBM6P GBM14P GBM16P ZH616		1	
Hepatocyte cell adhesion molecule (HE	PACAM; Q14CZ8)			47% P / 54% R	0%	1%
EPGPPGYSVSPAVPGRSPG	8% P / 17% R	GBM2R GBM7P	GBM6P GBM12P		0	
		GBM12R ZH753	GBM20R			
Legumain (LGMN; Q99538)		-	GBM20R	71% P / 75% R	29%	46%
Legumain (LGMN; Q99538) DVTPQNFLAVLRGDAEA	16% P / 13% R	ZH753 GBM3P	GBM20R GBM5R GBM22R ZH750 ZH791	71% P / 75% R	29% 8	46%
o (, , , , , , , , , , , , , , , , , ,	16% P / 13% R 11% P / 8% R	ZH753 GBM3P GBM22P ZH678 ZH784 ZH810 GBM3P	GBM5R GBM22R ZH750	71% P / 75% R		46%
DVTPQNFLAVLRGDAEA		ZH753 GBM3P GBM22P ZH678 ZH784 ZH810 GBM3P GBM22P ZH678 GBM3R GBM5R GBM5R GBM5R	GBM5R GBM22R ZH750 ZH791 GBM5R GBM22R ZH750 GBM5P GBM22P ZH678	71% P / 75% R	8	46%
DVTPQNFLAVLRGDAEA	11% P / 8% R	ZH753 GBM3P GBM22P ZH678 ZH784 ZH810 GBM3P GBM3P GBM22P ZH678 GBM3R GBM5R GBM22R ZH750 GBM3P	GBM5R GBM22R ZH750 ZH791 GBM5R GBM22R ZH750 GBM5P GBM22P ZH678 ZH791	71% P / 75% R	8	46%
DVTPQNFLAVLRGDAEA EDVTPQNFLAVLRGDAEAVKG GEDVTPQNFLAVLRGDAEAVK	11% P / 8% R 13% P / 13% R	ZH753 GBM3P GBM22P ZH678 ZH784 ZH810 GBM3P GBM3P GBM22P ZH678 GBM3R GBM5R GBM22R ZH750 GBM3P GBM22P ZH678 ZH791 GBM14P	GBM5R GBM22R ZH750 ZH791 GBM5R GBM22R ZH750 GBM5P GBM5P GBM5P GBM22P ZH678 ZH791 GBM5R GBM22R ZH750	71% P / 75% R	8 7 6	46%
DVTPQNFLAVLRGDAEA EDVTPQNFLAVLRGDAEAVKG GEDVTPQNFLAVLRGDAEAVK GEDVTPQNFLAVLRGDAEAVKG	11% P / 8% R 13% P / 13% R 16% P / 8% R	ZH753 GBM3P GBM22P ZH678 ZH784 ZH810 GBM3P GBM3P ZH678 GBM3P GBM22P ZH678 GBM3P GBM2P ZH750 GBM3P GBM2P ZH678 ZH791 GBM14P GBM16P GBM21R	GBM5R GBM22R ZH750 ZH791 GBM5R GBM22R ZH750 GBM5P GBM22P ZH678 ZH791 GBM5R GBM22R ZH791 GBM5R GBM2R CH750 ZH810 GBM14R GBM18R	71% P / 75% R	8 7 6 7	46%
DVTPQNFLAVLRGDAEA EDVTPQNFLAVLRGDAEAVKG GEDVTPQNFLAVLRGDAEAVK GEDVTPQNFLAVLRGDAEAVKG HLPDNINVYATTAANPRE	11% P / 8% R 13% P / 13% R 16% P / 8% R 5% P / 13% R	ZH753 GBM3P GBM22P ZH678 ZH784 ZH810 GBM3P GBM22P ZH678 GBM3R GBM5R GBM22R ZH750 GBM3P GBM22P ZH678 ZH750 GBM3P GBM22P ZH678 ZH791 GBM14P GBM16P GBM21R GBM16P GBM21R GBM16P GBM21R	GBM5R GBM22R ZH750 ZH791 GBM5R GBM22R ZH750 GBM5P GBM22P ZH678 ZH791 GBM5R GBM22R ZH750 ZH810 GBM14R GBM14R GBM14R GBM14R GBM14R CBM14R CBM14R	71% P / 75% R	8 7 6 7 24	46%
DVTPQNFLAVLRGDAEA EDVTPQNFLAVLRGDAEAVKG GEDVTPQNFLAVLRGDAEAVK GEDVTPQNFLAVLRGDAEAVKG HLPDNINVYATTAANPRE HLPDNINVYATTAANPRES	11% P / 8% R 13% P / 13% R 16% P / 8% R 5% P / 13% R 5% P / 8% R	ZH753 GBM3P GBM22P ZH678 ZH784 ZH810 GBM3P GBM22P ZH678 GBM3P GBM22R ZH750 GBM3P GBM22R ZH750 GBM3P GBM22R ZH791 GBM16P GBM21R GBM16P GBM21R GBM16P GBM21R GBM4R GBM16P GBM2R CBM16P GBM2R	GBM5R GBM22R ZH750 ZH791 GBM5R GBM22R ZH750 GBM5P GBM22P ZH678 ZH791 GBM5R GBM5R GBM5R GBM5R GBM14R GBM14R GBM18R ZH654 GBM9P GBM16P ZH616 GBM4R GBM4R GBM14R	71% P / 75% R	8 7 6 7 24 11	46%
DVTPQNFLAVLRGDAEA EDVTPQNFLAVLRGDAEAVKG GEDVTPQNFLAVLRGDAEAVKG HLPDNINVYATTAANPRE HLPDNINVYATTAANPRES INVYATTAANPRES	11% P / 8% R 13% P / 13% R 16% P / 8% R 5% P / 13% R 5% P / 8% R 11% P / 13% R	ZH753 GBM3P GBM22P ZH678 ZH784 ZH810 GBM3P GBM22P ZH678 GBM3R GBM5R GBM22R ZH750 GBM3P GBM22P ZH678 ZH750 GBM3P GBM22P ZH678 ZH791 GBM14P GBM16P GBM21R GBM16P GBM21R GBM16P GBM21R GBM16P GBM21R GBM16P ZH757 GBM2R GBM10R GBM10R GBM10P ZH631 GBM14P	GBM5R GBM22R ZH750 ZH791 GBM5R GBM22R ZH750 GBM5P GBM22P ZH678 ZH791 GBM5R GBM5R GBM5R GBM5R GBM14R GBM14R GBM18R ZH654 GBM9P GBM16P ZH616 GBM4R GBM4R GBM14R	71% P / 75% R	8 7 6 7 24 11 4	46%

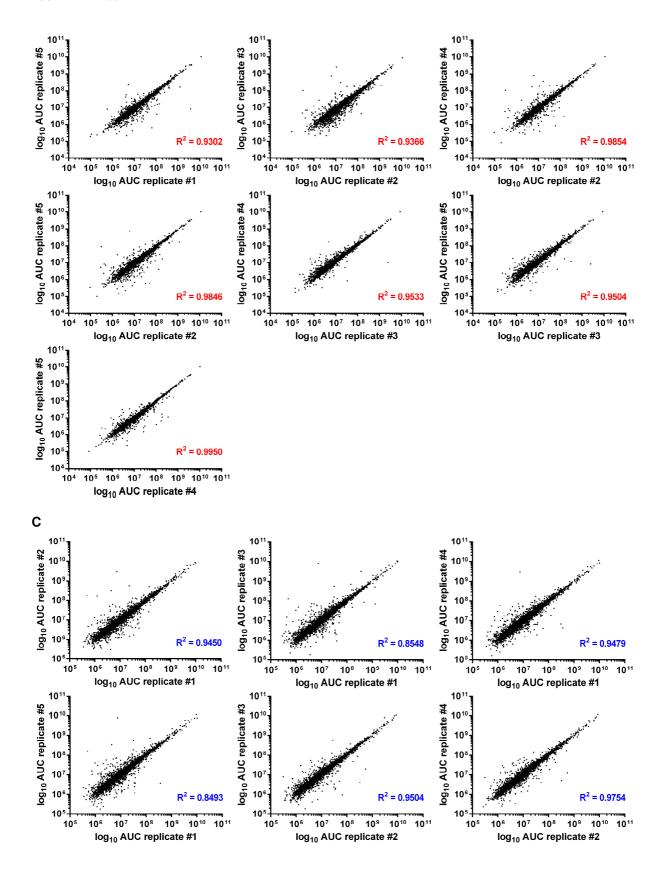
VTPQNFLAVLRGDAEA	16% P / 13% R	GBM3P GBM22P ZH678 ZH784 ZH810	GBM5R GBM22R ZH750 ZH791		8	
Neuronal cell adhesion molecule (NRCA	AM; Q92823)			79% P / 75% R	5%	6%
Supplementary Table 4						
ALGAIHHTISVRVKAA	13% P / 13% R	GBM5P GBM13R GBM23R ZH654	GBM13P GBM17R ZH645 ZH681		2	
AQLKLSPYVNYSFR	8% P / 8% R		GBM10R GBM16P		0	
EDGSFIGQYSGKKEKEPA	5% P / 8% R	GBM4R GBM10R			0	
GAIHHTISVRVKAAP	8% P / 8% R	GBM13P GBM17R ZH681	GBM13R ZH645		2	
GAIHHTISVRVKAAPY	13% P / 17% R		GBM5R GBM13R GBM23R ZH654		1	
NGVPIEIAPDDPSR	8% P / 8% R		GBM18R ZH654		1	
NGVPIEIAPDDPSRK	13% P / 8% R		GBM18R GBM20R ZH654		4	
SPLPTIEWFKGAKGSA	11% P / 13% R		GBM14R GBM21P		4	
VPIEIAPDDPSR	8% P / 8% R	GBM18P GBM20R ZH802	GBM18R ZH654		3	
Palladin (PALLD; Q8WX93)				24% P / 25% R	6%	14%
SPSPPPPPPPVFSPTAAFPVPDV	8% P / 8% R		GBM13R GBM23R		9	
Protocadherin gamma-C5 (PCDHGC5;	Q9Y5F6)			34% P / 25% R	2%	4%
KPSENHYSLLTSQPLDR	11% P / 8% R	GBM2P GBM7P GBM12R	GBM6P GBM12P ZH753		0	
KPSENHYSLLTSQPLDRE	11% P / 8% R	GBM2P GBM7P GBM12R	GBM6P GBM12P ZH753		0	
Prostaglandin F2 receptor negative regu		,		53% P / 33% R		16%
GSDAYRLSVSRALSA	8% P / 8% R		GBM13P GBM22R		8	
Receptor-type tyrosine-protein phospha Supplementary Table 4	tase zeta (PTPRZ	I; P23471)		79% P / 58% R	2%	4%
DSHIHAYVNALLIPG	8% P / 13% R	GBM4R GBM11P GBM16P	GBM10R GBM11R ZH791		0	
DSHIHAYVNALLIPGP	16% P / 21% R	GBM11P	GBM6P GBM10R GBM11R GBM16R ZH757		0	
IGTKYNEAKTNRSPTR	11% P / 8% R		GBM9P GBM15R GBM20R		1	
LDSHIHAYVNALLIPG	21% P / 21% R	GBM11P	GBM6P GBM9P GBM10R GBM11R GBM16R ZH757		0	

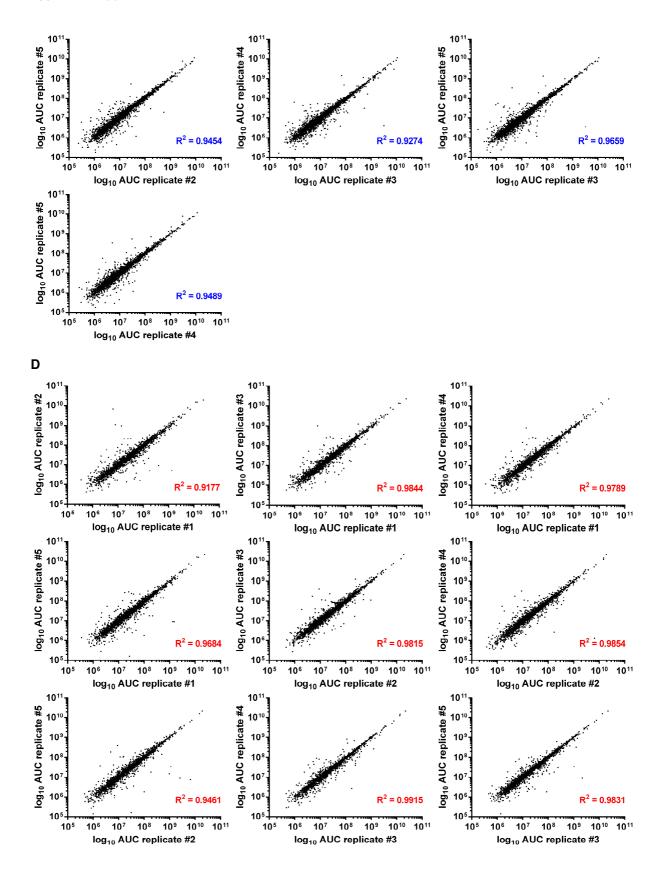
LDSHIHAYVNALLIPGP	21% P / 21% R	GBM4R GBM6P GBM7P GBM9P GBM9R GBM10F GBM11P GBM11F GBM16P GBM16F ZH616 ZH757 ZH791	1	0	
LDSHIHAYVNALLIPGPA	24% P / 21% R	GBM4R GBM6P GBM7P GBM9P GBM9R GBM10F GBM10R GBM11F GBM11R GBM16F GBM16R ZH616 ZH757 ZH791)	0	
THYNRIGTKYNEAKT	13% P / 8% R	GBM8P GBM21F GBM21R GBM22F GBM22R ZH654 ZH761		0	
THYNRIGTKYNEAKTN	13% P / 8% R	GBM8P GBM21F GBM21R GBM22F GBM22R ZH654 ZH761		0	
Plasminogen activator inhibitor 1 (SERF	PINE1; P05121)		61% P / 63% R	14%	9%
APEEIIMDRPFLFVVRHNP	8% P / 25% R	GBM3R GBM4R GBM11P GBM11F GBM14R GBM15F GBM15R GBM16F GBM16R)	3	
EIIMDRPFLFVVR	8% P / 13% R	GBM13P GBM16F GBM16R GBM18F ZH617 ZH753		9	
EIIMDRPFLFVVRHNPT	5% P / 8% R	GBM3R GBM4R		1	
TQQQIQAAMGFKIDDK	11% P / 25% R	GBM11P GBM16F GBM6P GBM12F GBM12R GBM13F GBM14P GBM14F GBM15R GBM22F GBM22R ZH753	2 } }	7	
TQQQIQAAMGFKIDDKG	8% P / 21% R	GBM22R 2H753 GBM12P GBM12F GBM14R GBM15F GBM20P GBM22F GBM22R ZH753	1	7	
Sperm-associated antigen 1 (SPAG1; C	07617)		16% P / 25% R	1%	1%
EIENSEDEEGKSGRKHED	8% P / 13% R	GBM4R GBM6P GBM10R GBM16F GBM16R ZH616		3	
ERRKIEIQEVNEGKEEPG	5% P / 8% R	GBM13R GBM18F GBM23R ZH645)	3	
Transforming growth factor beta-2 (TBF	B2; P61812)		37% P / 38% R	4%	3%
Supplementary Table 4					
STRDLLQEKASRRAA	8% P / 13% R	GBM6P GBM10F GBM14P GBM14F GBM21R ZH616	1	0	
Tenascin (TNC; P24821)			76% P / 67% R	15%	18%
Supplementary Table 4 DITGLREATEYEIEL	11% P / 8% R	GBM12P GBM18F GBM18R GBM19F GBM22P GBM22F)	1	
EPLEITLLAPERTRD	11% P / 8% R	GBM6P GBM7P GBM12P GBM14F GBM14R GBM15F		4	
GGWIVFLRRKNGREN	8% P / 13% R	GBM3P GBM3R GBM5P GBM22F GBM22R GBM23F		3	
GVIQGYRTPVLS	8% P / 8% R	GBM10R GBM14F GBM14R GBM16F		0	
GVIRGYRTPVL	18% P / 25% R	GBM14R GBM16F GBM4R GBM6P GBM7P GBM9P GBM9R GBM10F GBM11P GBM14F GBM16P GBM16F GBM21R ZH616 ZH791	1 1	4	

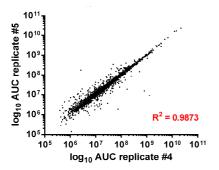
GVIRGYRTPVLS	21% P / 25% R	GBM4R GBM7P GBM9P GBM9R GM10R GBM11P GBM14R GBM16P GBM16R GBM21P GBM21R ZH616 ZH757 ZH791		3	
GVIRGYRTPVLSA	16% P / 17% R			0	
GVIRGYRTPVLSAE	24% P / 21% R	GBM4R GBM6P GBM7P GBM9P GBM9R GBM10R GBM11P GBM14P GBM14R GBM16P GBM16R GBM21P ZH616 ZH791		1	
GVIRGYRTPVLSAEA	11% P / 8% R	GBM4R GBM6P GBM7P GBM10R GBM16P ZH616		1	
GVIRGYRTPVLSAEASTAKEPE	11% P / 17% R	GBM4R GBM6P GBM7P GBM10R GBM14R GBM16P GBM16R ZH616		1	
ITGLREATEYEIEL	11% P / 8% R	GBM12P GBM18P GBM18R GBM19P GBM22P GBM22R		0	
IYGVIQGYRTPVLSAE	5% P / 8% R	GBM4R GBM10R GBM16P ZH616		0	
IYGVIRGYRTPVL	8% P / 8% R	GBM4R GBM6P GBM10R GBM16P ZH616		2	
IYGVIRGYRTPVLS	13% P / 21% R	GBM4R GBM6P GBM7P GBM9P GBM9R GBM10R GBM11P GBM14R GBM16P GBM16R		3	
IYGVIRGYRTPVLSA	11% P / 8% R	GBM4R GBM6P GBM7P GBM14R GBM16P ZH616		0	
IYGVIRGYRTPVLSAE	13% P / 8% R	GBM4R GBM6P GBM7P GBM10R GBM11P GBM16P ZH616		1	
IYGVIRGYRTPVLSAEA	5% P / 8% R	GBM4R GBM10R GBM16P ZH616		1	
SIYGVIQGYRTPVLSAE	5% P / 8% R	GBM4R GBM10R GBM16P ZH616		0	
TVDSYVISYTGEKVPE	13% P / 8% R	GBM4R GBM6P GBM7P GBM10R GBM11P GBM16P ZH616		1	
VDSYVISYTGEKVPE	11% P / 13% R	GBM4R GBM9P GBM9R GBM10R GBM11P GBM16P ZH616		4	
VDSYVISYTGEKVPEIT	18% P / 17% R	GBM4R GBM6P GBM7P GBM9P GBM9R GBM10R GBM11P GBM16P GBM16R ZH616 ZH791		3	
Testis-specific gene 10 protein (TSGA	,		8% P / 8% R	1%	1%
KLELITAEAEGNRLKEK	8% P / 8% R	GBM5P GBM6P GBM7P GBM9R GBM10R		1	

Supplementary Table 6. Primary and recurrence-exclusive antigens presented on HLA class I and II molecules. HLA class I restrictions not passing manual assessment as quality control are indicated in italic, whereas HLA class II-presented proteins neither identified with peptides exceeding a length of twelve AA nor with different sequences across patients were not considered for this listing. FTSJ3, TDRD12, and AMER1 were detected with only one HLA class II peptide sequence across all patients. Frequencies of positive tumors are given for n=38 primary (P) and n=24 recurrent (R) glioblastomas.


Antigen	Frequency of positive tumors	Peptide sequence	HLA restriction	UniProt accession
Primary glioblastoma-asso	ciated HLA class I-pr	esented antigens		
PDZ domain-containing protein 2 (PDZD2)	<u>29% P</u> GBM5P GBM13P	LLDDETLNQY GLFHKQVTV	A*01:01 A*02:01	O15018
	GBM15P GBM22P	NYSRNFSSF	A*24:02 A*24:02 A*24:02	
	ZH613 ZH631 ZH645	HTQPSPVSR ASQEYHIVK SEAPAANAV	A*31:01 A*11:01 B*49:01	
	ZH654 ZH678	HTQPSPVSR ASQEYHIVK SSLQTAIRK	A*31:01 A*11:01 A*11:01	
	ZH761	AEQEMSRSF GLFHKQVTV HLTENLPKA	B*44:02 A*02:01 A*02:01	
Roundabout homolog 1	ZH802 26% P	HTQPSPVSR	A*31:01	Q9Y6N7
(ROBO1) 1 peptide multi-maps to ROBO2 (Q9HCK4)	GBM3P GBM4P GBM7P	NSDSNLTTY NPRDPSSSSSM IPFLVPGIRY KPRDQVVAL	A*01:01 B*07:02 B*56:01	
	GBM16P GBM18P	NPRDQVVAL NPRDPSSSSSM NSDSNLTTY NPRDPSSSSSM	B*07:02 B*07:02 A*01:01 B*07:02	
	ZH613 ZH645	SSSSIEVHW AEGRPTPTI NSDSNLTTY	B*58:01 B*49:01 A*01:01	
	ZH681 ZH802 ZH829	NPRDPSSSSSM RQREQANVGR IPFLVPGIRY	B*07:02 A*31:01 B*55:01	
Sodium- and chloride- dependent glycine transporter 1 (SLC6A9)	<u>24% P</u> GBM3P GBM5P	VAYPEALTL VAYPEALTL	C*02:02 C*03:03	P48067
1 peptide multi-maps to SLC6A14/A7 (Q9UN76 / Q99884)	GBM6P GBM7P	EFVLTSVGY VAYPEALTL VAYPEALTLL GAFDGIMYY	<i>B*35:01</i> C*12:03 C*12:03 C*02:02	
	GBM12P GBM13P GBM19P GBM20P ZH654	EFVLTSVGY VAYPEALTL AFVAYPEALTL AFVAYPEALTL KSSGKVVYF	B*35:01 B*13:02 A*24:02 C*16:01 B*57:01	
Protein FAM65C (FAM65C)	<u>24% P</u> GBM6P	GKYPGQLEI	B*15:03	Q96MK2
	GBM8P GBM9P GBM10P GBM21P ZH617 ZH720 ZH757	DIADFFTTR DIADFFTTR RPLPPPSSL PLQEVLELL SLFGGSQGL PLQEVLELL RPLPPPSSL	A*68:01 A*33:05 B*07:02 A*02:01 A*02:01 A*02:01 B*07:02	
Centrosomal protein of 192 kDa (CEP192)	ZH791 <u>24% P</u>	RPLPPPSSL	B*07:02	Q8TEP8
192 NDA (021 192)	GBM3P GBM5P GBM6P GBM9P GBM11P GBM15P	DELLVTEVY SAAPFAQRY VLDFGDLTY DVLDFGDLTY VLDFGDLTY TQVELLTRL SAAPFAQRY	B*18:02 C*02:02 A*01:01; B*15:01 B*35:01 A*01:01 <i>A*02:05</i> C*02:02	
	GBM23P ZH654 ZH802	HYINMPVQF VRNPRITSL VRNPRITSL	A*23:01 C*06:02 B*14:02	
Actin-related protein 8 (ACTR8)	<u>21% P</u> GBM4P GBM5P	VIWSHAIQK IQSNFIIVI	A*03:01 B*13:02	Q9H981


	GBM7P		B*07:02	
	GBM16P	LPASIPHVIA VIWSHAIQK	B*07:02; B*56:01 A*03:01	
	ZH613	LPASIPHVI	B*51:01	
	ZH631	LPASIPHVI	B*51:01	
	ZH654	KSASKPIGF	B*57:01	
	711070	LPASIPHVI	B*51:01	
	ZH678	KQQGQPLYK	A*11:01	
Olizanterazia 1 (OBUNI)	010/ D	LPASIPHVI	B*51:01	000000
Oligophrenin-1 (OPHN1)	<u>21% P</u> GBM3P	DEINIAESF	B*18:01	O60890
	GBM6P	FQFDFIGDTL	C*04:01	
		LGISWVKYY	C*12:03	
	GBM15P	NYSSAVQKF	A*24:02	
	GBM22P	NYSSAVQKF	A*24:02	
	ZH613 ZH678	FQFDFIGDTL	A*02:05	
	ZH070 ZH720	RTVGSNIQVQK DEINIAESF	A*11:01 B*18:01	
	ZH720 ZH750	NYSSAVQKF	A*24:02	
Mitotic checkpoint	21% P			O60566
serine/threonine-protein	GBM3P	EEYEARENF	B*18:01	000000
kinase BUB1 beta (BUB1B)	GBM5P	SQKIPGMTL	B*13:02; B*15:01	
	GBM6P	GIADLAHLL	A*02:05	
		RAFEYEIRF	B*15:03; C*12:03	
	GBM20P GBM21P	YLHNQGIGV RAFEYEIRF	A*02:01 C*12:03	
	ZH613	GIADLAHLL	A*02:05	
	ZH617	YLHNQGIGV	A*02:01	
	ZH645	AELTVIKV	B*49:01	
Lymphocyte antigen 6	<u>21% P</u>			Q5SQ64
complex locus protein G6f	GBM2P	RVYDVLVLK	A*03:01	
(LY6G6F)	GBM18P	RVYDVLVLK	A*03:01	
	GBM20P GBM23P	AVLGQHHNY RVYDVLVLK	A*29:02 A*03:01	
	ZH616	AVLGQHHNY	A*29:02	
	ZH631	RVYDVLVLK	A*11:01	
	ZH678	RVYDVLVLK	A*11:01	
	ZH757	SPAAGSFTTL	B*07:02	
Nuclease-sensitive element-	<u>21% P</u>			P67809
binding protein 1 (YBX1)	GBM3P		B*27:05	
7 peptides multi-map to	CRMER	VRNGYGFINR (YBX1/2/3) SKYAADRNHY (YBX1)	B*27:05 B*15:03	
YBX2/3 (Q9Y2T7 / P16989)	GBM6P GBM9P	NVRNGYGFINR (YBX1/2/3)	A*33:05	
	ZH613	GTVKWFNVR (YBX1/2/3)	A*31:01	
	ZH645	GEKGAEAANV (YBX1/3)	B*49:01	
		GETVEFDVV (YBX1/2/3)	B*49:01	
	ZH654		B*57:01	
		GTVKWFNVR (YBX1/2/3) RNHYRRYPR (YBX1)	A*31:01 A*31:01	
		RYRRNFNYRRRR (YBX1)	A*31:01	
	ZH757	RRYRRNFNYRRR (YBX1)	B*27:05	
	ZH802	GTVKWFNVR (YBX1/2/3)	A*31:01	
		NVRNGYGFINR (YBX1/2/3)	A*33:01	
		RNHYRRYPR (YBX1) RYRRNFNYRRRR (YBX1)	A*31:01 A*31:01	
	100/ D	h I h h h h h h h h	A 31.01	075500
Tumor necrosis factor receptor superfamily	<u>18% P</u> GBM3P	SEREVAAF	B*18:01	O75509
member 21 (TNFRSF21)	GBM6P	RVIEEIPQA	A*02:05	
	GBM22P	VYSHLPDLL	A*24:02	
	ZH613	RVIEEIPQA	A*02:05	
	ZH617	GLMEDTTQL	A*02:01	
	ZH681 ZH761	RVIEEIPQA TSPSSSTAL	A*02:01 C*01:02	
L off right determination factor		ISF SSSTAL	0 01.02	O00292
Left-right determination factor 1/2 (LEFTY1/2)	GBM3P	SLIDSRLVSV	A*02:01	
1/2 (EEI 11 1/2)	GBM7P	SLIDSRLVSV	A*02:01	O75610
	GBM21P	SLIDSRLVSV	A*02:01	
	ZH617	SLIDSRLVSV	A*02:01	
	ZH645	SLIDSRLVSV	A*02:01	
	ZH681 ZH757	SLIDSRLVSV SLIDSRLVSV	A*02:01 A*02:01	
PHD finger protein 1 (PHF1)	18% P		1. 02.01	O43189
	GBM3P	WVDVAHLVLY	A*01:01	043109
	GBM5P	WVDVAHLVLY	A*01:01	
	GBM6P	VQFEDDSQFL	C*04:01	
	GBM9P	WVDVAHLVLY	A*01:01	
	GBM16		A*01:01	
	ZH613 ZH654	VQFEDDSQFL WVDVAHLVLY	<i>A*02:05</i> A*01:01	


tRNA (guanine-N(7)-)- methyltransferase subunit WDR4 (WDR4)	<u>18% P</u> GBM6P GBM7P GBM17P GBM18P ZH631 ZH678 ZH681	TFDNVTSYL ATFDNVTSYLK SSGDGTLRLW ATFDNVTSYLK ATFDNVTSYLK SSGDGTLRLW	C*04:01 A*11:01 B*57:01 A*11:01 A*11:01 B*57:01	P57081
5'-AMP-activated protein kinase subunit gamma-2 (PRKAG2) 2 peptides multi-map to PRKAG1 (P54619)	<u>18% P</u> GBM3P ZH613 ZH616 ZH645 ZH654 ZH750 ZH757	SLFDAVYSL DIYSKFDVI SESGVYMRF AEVHRLVVV DIYSKFDVI SLFDAVYSL SLFDAVYSL	A*02:01 B*51:01 B*44:02 B*49:01 B*51:01 A*02:01 A*02:01	Q9UGJ0
Bcl10-interacting CARD protein (C9orf89)	<u>18% P</u> GBM8P GBM23P ZH645 ZH654 ZH658 ZH757 ZH802	DTPFLTGHGR IILQLNRYY QEFYRALYI RYYPQILTNK RLVQDTPFL RLVQDTPFL RYYPQILTNK	A*68:01 A*03:01 B*49:01 A*31:01 A*02:01 A*02:01 A*31:01	Q96LW7
TBC1 domain family member 10B (TBC1D10B)	18% P GBM5P GBM7P ZH631 ZH645 ZH654 ZH654 ZH678 ZH750	AQAPVAAVL GTAPLVAPPR RTLPWASVL QEDFLVHEV RTLPWASVL GTAPLVAPPR RTLPWASVL	B*13:02 A*11:01 A*32:01; C*03:03 B*49:01 C*15:06 A*11:01 B*15:17; C*07:01	Q4KMP7
Asparagine synthetase domain-containing protein 1 (ASNSD1)	<u>18% P</u> GBM3P GBM7P GBM18P GBM23P ZH645 ZH654 ZH654 ZH678	EEKTMPTTF KTMPTTFNR KTMPTTFNR LPIWEKANLTL GEIFSGIKV KTMPTTFNR KTMPTTFNR	B*18:01 A*11:01 B*35:02 B*49:01 A*31:01 A*11:01	Q9NWL6
Platelet glycoprotein V (GP5)		AMIKIGQLF LPTNLTHIL SEAPVHPAL SEAPVHPAL ALLDKMVLL LPTNLTHI SEAPVHPAL TEVLLGHNSW DRLPNLSSL LRYLGVTL RTLPAAAFR SEAPVHPAL	B*15:01 B*35:03 B*44:02; B*44:03 B*40:01 A*02:01 B*51:01 B*44:03 B*14:02 B*14:02 B*14:02 A*31:01 B*44:05	P40197
Recurrence-associated HLA	A class I-presented an	tigens		
Hormone-sensitive lipase (LIPE)	<u>17% R</u> GBM10R GBM16R GBM17R ZH753	PLYSSPIVK PLYSSPIVK PLYSSPIVK RLSGVFAGV	A*03:01 A*03:01 A*03:01 A*02:01	Q05469
T-cell receptor beta-1/2 chain C region (TRBC1/2)	<u>17% R</u> GBM4R GBM12R GBM16R GBM18R	ilyeillgk Atilyeillgk Ilyeillgk Atilyeillgk Ilyeillgk	A*03:01 A*11:01 A*03:01 A*11:01 A*03:01	P01850 A0A5B9
Primary glioblastoma-asso	•	esented antigens		B00.170
Receptor-type tyrosine- protein phosphatase gamma (PTPRG)	29% P GBM5P GBM11P GBM13P GBM21P ZH613 ZH645	FVCLILLIAVLVYWRGCNKI SSNQLHSYVNSILIPG SSPRVVPNESIPIIPIPD KSVEYLRNNFRPQQ SSPRVVPNESIPIIPIP SSPRVVPNESIPIIPIPD SPRVVPNESIPIIPIP SSPRVVPNESIPIIPIP SSPRVVPNESIPIIPIPD		P23470


	ZH678	SSPRVVPNESIPIIPIP	
	ZH678 ZH681	SPRVVPNESIPIIPIP	
		SPRVVPNESIPIIPIPD SSPRVVPNESIPIIPIP	
	ZH750	SSPRVVPNESIPIIPIPD SPRVVPNESIPIIPIP	
	211/30	SSPRVVPNESIPIIPIP	
	ZH791	SSPRVVPNESIPIIPIPD SSNQLHSYVNSILIPG	
	ZH802	SPRVVPNESIPIIPIP SSPRVVPNESIPIIPIP	
Zinc finger protein 302	<u>18% P</u>	SSENVENESIEIEE	Q9NR11
(ZNF302)	GBM10P GBM11P	QRIHSMKKKYECNKCLKVFSSFSFL QRIHSMKKKYECNKCLKVFSSFSFL	
	GBM14P	QRIHSMKKKYECNKCLKVFSSFSFL	
	GBM16P ZH631	QRIHSMKKKYECNKCLKVFSSFSFL QRIHSMKKKYECNKCLKVFSSFSFL	
	ZH678 ZH761	QRIHSMKKKYECNKCLKVFSSFSFL QRIHSMKKKYECNKCLKVFSSFSFL	
Pre-rRNA processing protein	<u>18% P</u>		Q8IY81
FTSJ3 (FTSJ3)	GBM18P GBM23P	GKKGKVGKSRRDKFY GKKGKVGKSRRDKFY	
	ZH613	GKKGKVGKSRRDKFY	
	ZH631 ZH645	GKKGKVGKSRRDKFY GKKGKVGKSRRDKFY	
	ZH681 ZH761	GKKGKVGKSRRDKFY GKKGKVGKSRRDKFY	
Patatin-like phospholipase	<u>18% P</u>		Q6ZV29
domain-containing protein 7 (PNPLA7)	GBM13P GBM19P	PTPQYRFRKRDKVMFYGRKIMRKVT VFYGEEERLKKPPRLQESCDSD	
()	GBM20P	SFTDLAEIVSRIEPAK	
	ZH750 ZH757	PTPQYRFRKRDKVMFYGRKIMRKVT PTPQYRFRKRDKVMFYGRKIMRKVT	
	ZH761	SFTDLAEIVSRIEPAK SFTDLAEIVSRIEPAK	
	ZH802	PTPQYRFRKRDKVMFYGRKIMRKVT	
Maltase-glucoamylase, intestinal (MGAM)	<u>18% P</u> GBM6P	VVQEYLELIGRPALPS	O43451
1 peptide multi-maps to	GBM12P	KFAGFPALINRMKADG	
Putative inactive maltase- glucoamylase-like protein	GBM16P GBM18P	DTPEELCRRWMQLGAFYPFSRNHN TLMHKAHTEGVTVVRPLLH	
LOC93432 (Q2M2H8)	GBM19P ZH681	IDSQFLLGPAFLVSPV TIGGILDFYVFLGNTPEQ	
	ZH810	RKKLKKFTTLEIVLSVLLLVLFIIS	
Recurrence-associated HL	•	ntigens	077400
Thy-1 membrane glycoprotein (THY1)	<u>29% R</u> GBM2R	EIVLKYLSRFPT	Q7Z4Q2
	GBM3R GBM9R	EIVLKYLSRFPT EIVLKYLSRFPT	
	GBM11R	EIVLKYLSRFPT	
	GBM14R GBM16R	EIVLKYLSRFPT VSILGITGSVLAKEDG	
HEAT repeat-containing	GBM20R 25% R	WNLKDIIPCKSQAEII	P04216
protein 3 (HEATR3)	GBM5R	FSLTRETKKHVLFG	F04210
	GBM11R	LTRETKKHVLFG	
	GBM12R	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG	
	GBM12R GBM14R GBM16R	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE LTRETKKHVLFG	
Arf-GAP with SH3 domain	GBM12R GBM14R GBM16R GBM21R	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE	O8TDY4
Arf-GAP with SH3 domain, ANK repeat and PH domain-	GBM12R GBM14R GBM16R GBM21R <u>17% R</u> GBM9R	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE LTRETKKHVLFG LTRETKKHVLFG KAAQSLFPFIEKLAASVHA	Q8TDY4
	GBM12R GBM14R GBM16R GBM21R <u>17% R</u> GBM9R	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE LTRETKKHVLFG LTRETKKHVLFG	Q8TDY4
ANK repeat and PH domain-	GBM12R GBM14R GBM16R GBM21R <u>17% R</u> GBM9R GBM10R	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE LTRETKKHVLFG LTRETKKHVLFG KAAQSLFPFIEKLAASVHA PEQFSVAEFL KAAQSLFPFIEKLAASVHA KAAQSLFPFIEKLAASVHA	Q8TDY4
ANK repeat and PH domain- containing protein 3 (ASAP3) Tudor domain-containing	GBM12R GBM14R GBM16R GBM21R <u>17% R</u> GBM9R GBM10R GBM10R GBM18R GBM22R <u>17% R</u>	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE LTRETKKHVLFG LTRETKKHVLFG KAAQSLFPFIEKLAASVHA PEQFSVAEFL KAAQSLFPFIEKLAASVHA KAAQSLFPFIEKLAASVHA PEQFSVAEFL	Q8TDY4 Q587J7
ANK repeat and PH domain- containing protein 3 (ASAP3)	GBM12R GBM14R GBM16R GBM21R <u>17% R</u> GBM9R GBM9R GBM10R GBM18R GBM22R	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE LTRETKKHVLFG LTRETKKHVLFG KAAQSLFPFIEKLAASVHA PEQFSVAEFL KAAQSLFPFIEKLAASVHA KAAQSLFPFIEKLAASVHA	
ANK repeat and PH domain- containing protein 3 (ASAP3) Tudor domain-containing	GBM12R GBM14R GBM16R GBM21R <u>17% R</u> GBM9R GBM10R GBM18R GBM22R <u>17% R</u> GBM7R GBM7R GBM10R GBM10R GBM12R	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE LTRETKKHVLFG LTRETKKHVLFG KAAQSLFPFIEKLAASVHA PEQFSVAEFL KAAQSLFPFIEKLAASVHA KAAQSLFPFIEKLAASVHA PEQFSVAEFL KNIPVKSKNIRVVVESFM KNIPVKSKNIRVVVESFM KNIPVKSKNIRVVVESFM	
ANK repeat and PH domain- containing protein 3 (ASAP3) Tudor domain-containing	GBM12R GBM14R GBM16R GBM21R <u>17% R</u> GBM9R GBM10R GBM18R GBM22R <u>17% R</u> GBM7R GBM7R GBM10R	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE LTRETKKHVLFG LTRETKKHVLFG KAAQSLFPFIEKLAASVHA PEQFSVAEFL KAAQSLFPFIEKLAASVHA PEQFSVAEFL KNIPVKSKNIRVVVESFM KNIPVKSKNIRVVVESFM	
ANK repeat and PH domain- containing protein 3 (ASAP3) Tudor domain-containing protein 12 (TDRD12)	GBM12R GBM14R GBM16R GBM21R <u>17% R</u> GBM9R GBM10R GBM18R GBM22R <u>17% R</u> GBM7R GBM7R GBM10R GBM12R GBM12R GBM17R <u>17% R</u> GBM2R	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE LTRETKKHVLFG LTRETKKHVLFG KAAQSLFPFIEKLAASVHA PEQFSVAEFL KAAQSLFPFIEKLAASVHA KAAQSLFPFIEKLAASVHA PEQFSVAEFL KNIPVKSKNIRVVVESFM KNIPVKSKNIRVVVESFM KNIPVKSKNIRVVVESFM KNIPVKSKNIRVVVESFM GLVSALSSDSTSQDSLLEDSL	Q587J7
ANK repeat and PH domain- containing protein 3 (ASAP3) Tudor domain-containing protein 12 (TDRD12) Serine/threonine-protein	GBM12R GBM14R GBM16R GBM21R <u>17% R</u> GBM9R GBM10R GBM18R GBM22R <u>17% R</u> GBM7R GBM7R GBM10R GBM12R GBM12R GBM17R <u>17% R</u>	LTRETKKHVLFG LTRETKKHVLFG LTRETKKHVLFG YNMKVLYLSAFTSKDE LTRETKKHVLFG LTRETKKHVLFG KAAQSLFPFIEKLAASVHA PEQFSVAEFL KAAQSLFPFIEKLAASVHA KAAQSLFPFIEKLAASVHA PEQFSVAEFL KNIPVKSKNIRVVVESFM KNIPVKSKNIRVVVESFM KNIPVKSKNIRVVVESFM	Q587J7

Seipin (BSCL2)	<u>17% R</u> GBM5R	ENSYVPTTGAIIEIH	Q96G97
	GBM13R	ENSYVPTTGAILEIHS	
	GBM14R	SKRIQLYGAYLRIH	
	GBM23R	ENSYVPTTGAIIEIH ENSYVPTTGAIIEIHS	
APC membrane recruitment	<u>17% R</u>		Q5JTC6
protein 1 (AMER1)	GBM12R	QQEDSDEEDEEEEGEWSRDSPLSL	
	GBM14R GBM20R	QQEDSDEEDEEEEEGEWSRDSPLSL QQEDSDEEDEEEEEGEWSRDSPLSL	
	GBM21R	QQEDSDEEDEEEEGEWSRDSPLSL	
1-phosphatidylinositol 4,5-	<u>17% R</u>		Q9BRC7
bisphosphate phosphodiesterase delta-4	GBM10R GBM14R	EEAQIWMRGLQLLVDLVTSMDH EEAQIWMRGLQLLVDLVTSMDH	
(PLCD4)	GBM14R GBM15R	EEAQIWMRGLQLLVDLVTSMDH	
	ZH753	EEAQIWMRGLQLLVDLVTSMDH	
Cholecystokinin (CCK)	<u>17% R</u> GBM11R		P06307
	GBM14R	PAGSGLQRAEEAP GALLARYIQQARKA	
	GBM17R	PAGSGLQRAEEAP	
	GBM21R	GALLARYIQQARK GALLARYIQQARKA	
		GALLARYIQQARKAPS	
Treslin (TICRR)	<u>17% R</u>		Q7Z2Z1
	GBM3R GBM12R	DSEVPAAYQTPKKS KIPSGRTVDKLEDRGRTLRSSKPK	
	GBM14R	KSIAEVSQNLRQIEIPK	
	GBM18R	KDTVQEVTKVRRNLFNQELLSP	
Hematopoietic lineage cell- specific protein (HCLS1)	<u>17% R</u> GBM4R	KAKFESMAEEKRKRE	P14317
specific protein (nocon)	GBM8R	AVALGISAVAV	
	GBM10R	KAKFESMAEEKRKR	
		KAKFESMAEEKRKRE KAKFESMAEEKRKREE	
	ZH753	VNDISEKEQRWGAKTIEGSGRTEHI	
Proline-rich acidic protein 1	<u>17% R</u>		Q96NZ9
(PRAP1)	GBM4R	DQGEERPRLWVMPNHQVLLGPE EERPRLWVMPNHQVLLGPE	
		ERPRLWVMPNHQVL	
		ERPRLWVMPNHQVLL ERPRLWVMPNHQVLLG	
		ERPRLWVMPNHQVLLGPE	
	GBM16R	ERPRLWVMPNHQVLL	
	GBM18R	AWGARVVEPPEKDDQL WGARVVEPPEKDD	
		WGARVVEPPEKDDQ	
		WGARVVEPPEKDDQL WGARVVEPPEKDDQLV	
	GBM23R	WGARVVEPPEKDDQLV	
Proteolipid protein 2 (PLP2)	<u>17% R</u>		Q04941
	GBM3R GBM5R	PVRQPRHTAAPTDPADGPV PVRQPRHTAAPTDPADGPV	
	abilion	VTFPVRQPRHTAAPTDPADGPV	
	GBM14R	PVRQPRHTAAPTDPADGP PVRQPRHTAAPTDPADGPV	
	GBM21R	PVRQPRHTAAPTDPADGPV	
Complement factor D (CFD)	<u>17% R</u>		P00746
	GBM4R		
	GBM5R	GGVLVAEQWVLSAA GGVLVAEQWVLSAAH	
		KKPGIYTRVASYAAWI	
		KPGIYTRVASYAAW KPGIYTRVASYAAWI	
		KPGIYTRVASYAAWID	
		RPLPWQRVDRDVAPG VRPLPWQRVDRDVAPG	
	GBM18R	VRPLPWQRVDRDVAPG	
	GBM20R	GGVLVAEQWVLSAAH	
		VRPLPWQRVDRDVAPG	

Supplementary Figure 4. Reproducibility of precursor ion intensities across technical replicates exemplarily shown for GBM16. Scatter plots depicting raw MS¹ intensities prior to normalization in pairwise comparisons of technical replicates acquired from (A) HLA class I ligands eluted from primary glioblastoma, (B) HLA class I ligands identified at disease recurrence, (C) HLA class II-presented peptides eluted from primary glioblastoma, and (D) HLA class II-presented peptides identified at disease recurrence. Correlation coefficients were calculated by linear regression and amounted to > 0.92 except for HLA class II peptide intensity comparisons between replicate #1 and #5 as well as between replicate #1 and #3 acquired from primary glioblastoma.

Supplementary Table 7. Peptide sequences and level of modulation for antigens exclusively represented by up- or down-modulated HLA class I- and II-presented peptides on recurrent *versus* primary glioblastoma. Oxidized (m) and reduced (M) methionine were not treated equally in LFQ-MS and are listed separately. Multi-mapping peptides were censored when the second annotated protein diverged in assignment to groups of modulation according to comparative profiling. HLA restrictions not passing manual assessment as quality control are indicated in italic (HLA class I ligands not matching the motif of any of the patient's HLA allotypes; HLA class II-presented proteins neither identified with peptides exceeding a length of twelve AA nor with different sequences across samples). Abbreviation not introduced in the text above: fold change recurrence/primary (fc R/P).

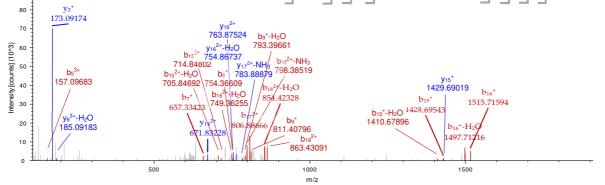
UniProt accession	Antigen	Patients with significant modulation	Peptide sequence	HLA restric- tion	Fc (R/P)	Corrected <i>p</i> - value
Antigens e	xclusively represented by HL	A class I liga	inds up-modulated at recurrence			
P02745	Complement C1q subcomponent subunit A (C1QA)	18% GBM4 GBM5	QPRPAFSAI GQVRRSLGF	B*07:02 <i>B*51:02</i>	173.79 30.26	0.00009 0.00044
P19878	Neutrophil cytosol factor 2 (NCF2)	18% GBM5 GBM20	SQVEALFSY VLYNIAFmY	<i>B*51:01</i> A*29:02	17.08 7.96	0.00432 0.00001
P26572	Alpha-1,3-mannosyl- glycoprotein 2-beta-N- acetylglucosaminyltrans- ferase (MGAT1)	18% GBM5 GBM6	FRFPAAVVV DASRPELLY	C*06:02 B*35:01; C*12:03	13.81 40.85	0.00021 0.00052
Q6P4A8	Phospholipase B-like 1 (PLBD1)	18% GBM5 GBM9	VTDTASMKY VTDTASmKY	A*01:01 A*01:01	54.44 5.01	0.00141 0.00406
Q7Z4Q2	HEAT repeat-containing protein 3 (HEATR3)	18% GBM5	IQIKLLSAL	B*13:02; <i>B*51:01</i>	10.06	0.00931
Q86Y82	Syntaxin-12 (STX12)	GBM14 18%	VLDNVKMNL	C*08:02	6.27	0.00002
0011710		GBM12 GBM14 18%	KLQENLQQL KLQENLQQL	A*02:01 A*02:01	7.09 4.28	0.00014 0.00117
Q8N7J2	APC membrane recruitment protein (AMER2)	GBM6	KKNPGVVAY SKKNPGVVAY	B*15:03 B*15:03	19.38 57.84	0.00010 0.00016
Q8WTW4	Nitrogen permease	GBM16 18% GBM12	VPGPGKPAL HPTLGPKITY	B*07:02 B*35:01	48.50 10.09	0.00002
Q96PV0	regulator 2-like protein (NPRL2) Ras/Rap GTPase-activating	GBM12 GBM20 18%	EEQSHPARLY	B*35:01 B*44:02	10.09 4.63	0.00003 0.00839
	protein SynGAP (SYNGAP1)		mLDEDEIHPL YPDEQTSRTL	A*02:01 B*35:03; C*08:02	16.18 4.56	0.00001 0.00025

Antigens exclusively represented by HLA class I ligands down-modulated at recurrence

Antigens e	exclusively represented by HI	LA class I lig	ands down-modulated at recurrence			
Q53EL9	Seizure protein 6 homolog	27%				
	(SEZ6)	GBM5 GBM9 GBM16	QSDPGTSVLGY QSDPGTSVLGY QSDPGTSVLGY	A*01:01 A*01:01	0.004	0.00002 0.00017
Q9Y2R0	Cytochrome c oxidase assembly protein 3 homolog.	18%	QSDPGTSVLGY AQWQKVLPR	A*01:01 A*03:01	0.001 0.02	0.000003 0.00697
Q9NPD8	mitochondrial (COA3) Ubiquitin-conjugating	GBM12 18%	RQAELAQWQK	A*11:01	0.18	0.00792
	enzyme E2 T (UBE2T)	GBM7 GBM14	ASQLVGIEK EPNPDDPLm	A*11:01 B*35:03	0.06 0.15	0.00007 0.00005
Q9H095	IQ domain-containing protein G (IQCG)	18% GBM5 GBM11	TTDQLSILNY SQNEYIANL	A*01:01 <i>A*02:01;</i> <i>A*02:05</i>	0.18 0.10	0.00604 0.00016
Q9BVV7	Mitochondrial import inner membrane translocase	18% GBM5	RSHPEVIGV	B*13:02	0.13	0.00046
Q96SC8	subunit Tim21 (TIMM21) Doublesex- and mab-3-	GBM12 18%	RQHVRFTEY	B*15:01	0.02	0.00020
Q8NI35	related transcription factor A2 (DMRTA2) InaD-like protein (INADL)	GBM5 GBM12 18%	GIIPPRPAY GIIPPRPAY	B*15:01 B*15:01	0.02 0.02	0.00707 0.00171
	,	GBM5 GBM16	AQGLVQLEI SPAGKTNAL	B*13:02 B*07:02	0.05 0.19	0.00009 0.00596
Q86YD5	Low-density lipoprotein receptor class A domain- containing protein 3	18% GBM5	LLDQRPAWY	A*01:01; B*15:01	0.04	0.00031
	(LDLRAD3)	GBM16	ASEVGSPPSY LLDQRPAWY	A*01:01 A*01:01	0.01 0.07	0.00006 0.00020
Q86VE9	Serine incorporator 5 (SERINC5)	18% GBM4 GBM20	AISPWVQNR ALSSKPAEV	A*03:01 A*02:01	0.01 0.06	0.00315 0.000001
Q6P499	NIPA-like protein 3 (NIPAL3)	18% GBM5	AVSEASFSY	B*15:01	0.08	0.00016
Q5VYS8		GBM7	APLSLIVPLSA	B*07:02; B*56:01	0.08	0.00327
Q3V130	Terminal uridylyltrans- ferase 7 (ZCCHC6)	18% GBM5 GBM20	GQVSLILDV LESFIRQDF	B*13:02 B*44:02	0.06 0.11	0.00383 0.00020
Q16538	Probable G-protein coupled receptor 162 (GPR162)	18% GBM7	TPREPGSFL	B*07:02	0.02	0.00023
P62244	40S ribosomal protein S15a (RPS15A)	GBM16 18% GBM4	TPREPGSFL VRmNVLADAL	B*07:02 C*07:02	0.02 0.07	0.00034 0.00055
P28562	Dual specificity protein	GBM20 18%	VLADALKSI	A*02:01	0.03	0.00002
P23743	phosphatase 1 (DUSP1) Diacylglycerol kinase alpha	GBM12 GBM20 18%	RAAQVFFLK KLDEAFEFV	A*11:01 A*02:01	0.03 0.05	0.00137 0.00004
	(DGKĂ)	GBM9 GBM16	DNVPRHLSL NPRQVFNLL	B*08:01 B*07:02	0.01 0.14	0.00017 0.00098
P18031	Tyrosine-protein phosphatase non-receptor type 1 (PTPN1)	18% GBM9	DIKSYYTVR YRFLFNSNT	A*33:05 <i>B*14:02</i>	0.06 0.04	0.00008 0.00075
P14780	Matrix metalloproteinase-9	GBM14 18%	DIKSYYTVR	A*02:01	0.07	0.00075
P02788	(MMP9) Lactotransferrin (LTF)	GBM9 GBM14 18%	DAFARAFAL DAFARAFAL	B*14:02 B*14:02	0.04 0.02	0.00034 0.00000
1 02/00		GBM12 GBM20	LLFKDSAIGF TLDGGFIYEA	B*15:01 A*02:01	0.06 0.02	0.00043 0.00003
O75832	26S proteasome non- ATPase regulatory subunit 10 (PSMD10)	18% GBM16 GBM11	LAYSGKLEEL LAYSGKLEEL	C*12:03 A*02:01	0.01 0.05	0.00005 0.00040
O15230	Laminin subunit alpha-5 (LAMA5)	GBM11 18% GBM5	SYSPLLREF	C*06:02	0.05	0.00019
	1 peptide multi-maps to LAMA3 (Q16787)		SSYGGTLRY	A*01:01; B*15:01	0.07	0.00014
Q9UQR1	Zinc finger protein 14 (ZNF148)	GBM16 18% GBM5	SPRPDLWVL QTISPLSTY	B*07:02 B*15:01	0.06 0.03	0.00004
	· · ·	GBM6	ALNVPISVK	A*03:01	0.07	0.00033
Antigens of O60293		LA class II-re 17%	stricted peptides up-modulated at recu	rrence		
000293	Zinc finger C3H1 domain- containing protein (ZFC3H1)		ENCVEETFEDLLLK ENCVEETFEDLLLK	Class II Class II	27.90 6.96	0.00549 0.00046

GBM7 ICKGK/DIKGVSE Class II 10.18 0.00002 QF7492 GGR1n-releasing peptide (GRP) GRM111 RGRAVPLPAG Class II 17.06 0.000013 QGTSU3 Rho GTPase-activating protein 21 (AFHCAP21) GBM7 WSGFFEQDDRRGICERPRQOEIHKS Class II 314.25 0.00013 QGZ222 Elongation factor Tu GTP- binding domain-containing Transmomene 7.% EAYSHLKNILEOINALTGT Class II 46.53 0.000003 QBND2 Transmomene GBM7 KNIFTPLLFRGLLSFLTWWIAA Class II 46.53 0.000071 QBND2 GBM7 KNIFTPLLFRGLLSFLTWWIAA Class II 44.65 0.00002 Q9UL33 RNA-binding protein NoB1 GBM7 KNIFTREVTERDKATR Class II 44.65 0.00002 Q9UL33 RNA-binding protein NoB1 GBM7 KNIFTREVTERDKATR Class II 10.02 0.00024 Q9UL33 RNA-binding protein NoB1 GBM7 KNIFTREVTERDKATR Class II 0.00 0.00015 QBM14 KINTREVTERDKATR Class II 0.00 0.00022	P07148	Fatty acid-binding protein, liver (FABP1)	17% GBM2	TITAGSKVIQNEF IVQNGKHFKF IQKGKDIKGVSE	Class II Class II Class II	18.38 14.19 4.76	0.00236 0.00175 0.00959
(GRP) Chi 1 GBM11 (BW14) RGRAVPLPAG (RAVPLPAG Class II 17.06 0.0000004 Q5T5U3 Protein 21 (ARLAPP21) (BM20) BW7 (BW20) WSGFTEQDDRGICERPROQEIHKS (SIPFIDEPTSPSIDH Class II 13.425 0.00017 Q72222 Elongation factor Tu GTP inding domain-containing (BW7) GBW7 (BW20) EAYSHLKNILEQINALTGT (Class II Class II 46.55 0.0000003 Q8ND26 Transmembrane protein f161 (TMEM161B) GBW12 KNIFTPLLFRGLLSFLTWWIAA (Class II Class II 46.55 0.000003 Q99767 Amyloid beta A4 precurso protein-binding family A (MOB1) GBW12 KNIFTPLLFRGLLSFLTWWIAA (Class II Class II 44.65 0.00002 Q99767 Amyloid beta A4 precurso protein-binding family A (MOB1) GBW74 KNIFTPLLFRGLLSFLTWWIAA (BW74) Class II 10.02 0.00224 Q9174 Amyloid beta A4 precurso protein-binding family A (BW74) GBW74 KNIFTPLLFRGLLSFLTWWIAA (BW74) Class II 10.02 0.00224 Q91143 FX GBW74 GBW74 KNIFTPLLFRGLLSFLTWWIAA (BW74) Class II 0.00 0.00104 Q91143 SGM74	P07/92	Gastrin-releasing pentide		IQKGKDIKGVSE	Class II	10.18	
protein 21 (ARHCAPP21) GBM7 (ARM20) WSGTFEQDDRGICERPROQEIHKS (Sas II 134.25 0.00762 (Class II 07222 Eiongation factor Tu GTP- binding domain-containing protein 1 (EFTUD1) GBM7 (EFTUD1) KWIFTPLLFRGLISFLTWWIAA (BM12) Class II 46.53 0.0000003 08ND25 Tramsmerbrane protein 118 (TMEM161B) GBM7 (BM12) KNIFTPLLFRGLISFLTWWIAA (BM16) Class II 44.65 0.00003 099767 Amyloid beta A4 precursor (NOB1) GBM7 (NOB1) KNIFTPLLFRGLISFLTWWIAA (GBM7 Class II 44.65 0.0002 09ULX3 RN-k-binding protein NOB1 T% (NOB1) GBM7 KNIRMMOAQEAVSRVKPmQKA (Class II Class II 44.65 0.0002 09ULX3 RN-k-binding protein NOB1 T% (NOB1) Class II 44.65 0.00019 Antigene oxclusively represented by HLA class IF-estricted petities down-modulated at recurrence Class II 9.020 0.00116 09469 Procollagon-typing-2- orcollagon-typing-2- protein (SDPR) GBM12 SPRKGWSFmHPGRLTH Class II 0.002 0.00116 09510 Serum deprivation-response (RAB13) GBM12 RELENNHAQLLRRNHFKVLIF Class II		(GRP)	GBM11 GBM14				
binding domain-containing GBM/2 Fransmembrane EAYSHLKNILEQINALTGT Class II 46.53 0.0000003 Q8ND26 Transmembrane protein-161B (TMEM161B) protein-161B (TMEM161B) protein (SDPR) GBM7 GBM12 protein-161B (TMEM161B) GBM12 protein-161B (TMEM161B) gBM12 protein-161B (TMEM161B) gBM14 protein-161B (TMEM161B) gB	Q515U3		GBM7				
Q8ND26 Transmembrane 17% protein 161B (TMEM161B) GBM12 KNIFTPLLFRGLLSFLTWWIAA Class II 688.01 0.00043 Q99767 Amyloid beta Ad precursor Frequence Class II 292.53 0.00071 Q99767 Amyloid beta Ad precursor GBM7 KNIFTPLLFRGLLSFLTWWIAA Class II 10.02 0.00024 Q9ULX3 RNA-binding protein NOB1 GBM7 KNIFMMQA0EAVSR Class II 10.02 0.00024 Q0ULX3 RNA-binding protein NOB1 T% KNIYTIREVYTEIRDKATR Class II 10.02 0.00024 Q00469 Procollagen-lysine.2- GRM7 KNIYTIREVYTEIRDKATR Class II 0.10 0.00422 GBM11 KNIYTIREVYTEIRDKATR Class II 0.02 0.00116 O95810 Serum deprivation-response protein (SDPR) GBM12 PARGWSFmH/GRLTH Class II 0.002 0.00170 GBM14 RLENNHAQLLRRNHFKVLIF Class II 0.005 0.00159 0.00170 GBM14 RLENNHAQLLRRNHFKVLIF Class II 0.006 0.00	Q7Z2Z2	binding domain-containing	GBM7				
Q99767 Amyloid beta A4 precursor member 2 (APBA2) 17% GBM1 KNIRMMQAQEAVSRVKRmQKA GBM1 Class II 44.65 0.00024 Q9ULX3 RNA-binding protein NOB1 GBM1 KNIRMMQAQEAVSR Class II 19.02 0.00248 Antigens exclusively represented by HLA class II-estricted peptides down-modulated at recurrence Uses II 265.85 0.00019 O0469 Procollagen-tysine.2- genase 2 (PLOD2) genase 2 (PLOD2) 17% GBM11 DASTFTINIALNIVG GBM12 Class II 0.10 0.00422 O95810 Serun deprivation-response protein (SDPR) GBM12 RLENNHAQLLRRNHFKVLIF Class II 0.005 0.00159 GBM14 RLENNHAQLLRRNHFKVLIF Class II 0.005 0.00170 GBM14 RLENNHAQLLRRNHFKVLIF Class II 0.008 0.00170 GBM15 GBM11 RLENNHAQLLRRNHFKVLIF Class II 0.008 0.00170 GBM15 GBM11 LPARIVYPDKLGYE Class II 0.00 0.00067 Q86UP2 Kinectin (KTN1) 17% GBM11 LPARIVYPDKLGYE Class II 0.01 0.00007 <t< td=""><td>Q8NDZ6</td><td>Transmembrane</td><td>17% GBM12</td><td>KNIFTPLLFRGLLSFLTWWIAA</td><td>Class II</td><td>688.01</td><td>0.00043</td></t<>	Q8NDZ6	Transmembrane	17% GBM12	KNIFTPLLFRGLLSFLTWWIAA	Class II	688.01	0.00043
Ogenutas member 2 (APBA2)* RNA-binding protein NOB1 GBM14 17% (NOB1) NPSKNIRMMQAQEAVSR Class II 10.02 0.00248 Antigens exclusively represented by HLA class II-restricted peptides down-modulated at recurrence Class II 193.58 0.000010 Antigens exclusively represented by HLA class II-restricted peptides down-modulated at recurrence Class II 0.010 0.00422 Oogenase 2 (PLOD2) GBM15 DASTETINIALNNVG Class II 0.00 0.00116 Opstanze 5 (PLOD2) GBM12 RLENNHAQLLRRNHFKVLIF Class II 0.005 0.00159 Opstanze 2 (PLOD2) GBM14 RLENNHAQLLRRNHFKVLIF Class II 0.005 0.00179 Opstanze 2 (RAB13) GBM12 RLENNHAQLLRRNHFKVLIF Class II 0.006 0.00004 Q5T447 E3 ubiquitin-protein ligase 17% GBM16 LPARIYIYPDKLGYE Class II 0.06 0.00098 Q86UP2 Kinectin (KTN1) 17% GBM16 LPARIYIYPDKLGYE Class II 0.11 0.00001 Q86WH5 Leucine-rich repeat 17% GBM16 LPARIYIYPDKLGYE C	Q99767		17%				
(NOB1) GBM7 GBM11 KINITTIREVTEIRDKATR KINITIREVTEIRDKATR Class II 193.58 (ass II 0.00009 (ass II Antigens exclusively represented by HLA class II-restricted peptides down-modulated at recurrence 000469 (modulated 5-diaxy- genase 2 (PLOD2) genase 2 (PLO2) genase		member 2 (APBA2)	GBM14				
000469 Procollagen-lysine,2- oxoglutarate 5-dioxy- genase 2 (PLOD2) 17% GBM12 DASTFTINIALNNVG SPRKGWSFmHPGRLTH Class II 0.10 0.00422 095810 Serum deprivation-response protein (SDPR) GBM12 RLENNHAQLLRRNHFKVLIF Class II 0.00 0.00116 0551153 Ras-related protein Rab-13 17% RLENNHAQLLRRNHFKVLIF Class II 0.003 0.000004 051147 E3 ubiquitin-protein ligas GBM12 RLENNHAQLLRRNHFKVLIF Class II 0.08 0.00170 051447 E3 ubiquitin-protein ligas GBM11 LPARIYIYPDKLGYE Class II 0.06 0.000067 0560492 Kinectin (KTN1) 17% GBM16 LPARIYIYPDKLGYE Class II 0.01 0.00017 0680492 Kinectin (KTN1) 17% GBM11 LPARIYIYPDKLGYE Class II 0.01 0.00009 0860415 Leucine-rich repeat GBM11 CLAQIQCFHSQIAAQT Class II 0.01 0.00001 081043 GBM16 GBM11 SGNEIEAFSGPSVFQ Class II 0.04 0.00045	QOLV2		GBM7				
oxoglutariate 5-dioxy- genase 2 (PLOD2) GBM5 Serum depivation-response protein (SDPR) DASTFTINIALNNVG GBM12 Class II 0.10 0.00422 095810 Serum depivation-response protein (SDPR) 17% RENNHAQLLRRNHFKVLIF Class II 0.005 0.00116 951153 Ras-related protein Rab-13 (RAB13) 17% RENNHAQLLRRNHFKVLIF Class II 0.005 0.00004 Q5T447 E3 ubiquitin-protein ligase HECTD3 (HECTD3) 17% GBM11 LPARIYIYPDKLGYE Class II 0.06 0.0007 Q86UP2 Kinectin (KTN1) 17% GBM16 LPARIYIYPDKLGYE Class II 0.06 0.00037 Q86UP2 Kinectin (KTN1) 17% GBM16 LAQIQQFHSQIAAQT KAQIQQFHSQIAAQT Class II 0.11 0.00037 Q86VH5 Leucine-rich repeat transmembrane neuronal protein 3 (LRRTM3) GBM11 SGNEIEAFSGPSVFQ Class II 0.14 0.0004 Q8NV3 Putative ribosome-binding protein 19 (WDR19) GBM11 SGNEIEAFSGPSVFQ Class II 0.05 0.00372 Q8NEZ3 WD repeat-containing 17% GBM16 QS	Antigens e	exclusively represented by HI	LA class II-res	stricted peptides down-modulated at red	currence		
genäse 2 (PLOD2)' Serum deprivation-response protein (SDPR) GBM12 (BM14 SPRKGWSFmHPGRLTH Class II 0.02 0.00116 095810 Serum deprivation-response protein (SDPR) 17% (BBM14 RLENNHAQLLRRNHFKVLIF Class II 0.003 0.000004 P51153 Ras-related protein Rab-13 17% (RAB13) 17% Class II 0.08 0.00170 Q5T447 E3 ubiquitin-protein ligase HECTD3 (HECTD3) 6BM16 LPARIYIYPDKLGYE Class II 0.05 0.00067 Q86UP2 Kinectin (KTN1) 17% HECTD3 (HECTD3) CBM16 LPARIYIYPDKLGYE Class II 0.11 0.00037 Q86UP2 Kinectin (KTN1) 17% GBM16 LKAQIQQFHSQIAAQT KAQIQQFHSQIAAQT Class II 0.11 0.00037 Q86VH5 Leucine-rich repeat transmembrane neuronal protein 3 (LRRTM3) GBM11 SGNEIEAFSGPSVFQ Class II 0.06 0.00010 Q8NV37 Putative ribosome-binding factor A, mitochondrial (RBFA) GBM2 KNWLKKFASKTKK Class II 0.05 0.00372 Q8NE23 WD repeat-containing protein 19 (WDR19) GBM11 QSVIRIYLDHLNNPE GBM16	O00469				0 1	0.40	0.00100
protein (SDPR) GBM12 GBM14 RLENNHAQLLRRNHFKVLIF RLENNHAQLLRRNHFKVLIF Class II 0.005 0.00159 P51153 Ras-related protein Rab-13 (RAB13) 17% GBM2 EHGIRFFETSAKSS GBM16 Class II 0.003 0.00004 Q5T447 E3 ubiquitin-protein ligase HECTD3 (HECTD3) 17% GBM16 EHGIRFFETSAKSS GBM16 Class II 0.21 0.00007 Q5EUP2 Kinectin (KTN1) 17% GBM16 LPARIYIYPDKLGYE GBM16 Class II 0.01 0.00037 Q86UP2 Kinectin (KTN1) 17% GBM16 LFARIYIYPDKLGYE Class II 0.01 0.000037 Q86VH2 Kinectin (KTN1) 17% GBM16 LFAQIQQFHSQIAAQT KAQIQQFHSQIAAQT Class II 0.01 0.000037 Q880V3 Leucine-rich repeat transmembrane neuronal factor A, mitochondrial factor A, mitochondrial forase subunit Q (PIGQ) for the Purbeta (PURB) GBM12 KNWLKKFASKTKK KNWLKKFASKTKK Class II 0.05 0.00024 Q96QR8 Transcriptional activator protein 19 (WDR19) GBM12 QSVIRIYLDHLNNPE GBM16 Clas	005810	genase 2 (PLOD2)	GBM12				
(RAB13) GBM2 GBM16 EHGIRFETSAKSS ISTIGIDFKIRTVD Class II 0.08 0.00170 Q5T447 E3 ubiquitin-protein ligase HECTD3 (HECTD3) 17% GBM16 LPARIYIYPDKLGYE Class II 0.05 0.00152 Q86UP2 Kinectin (KTN1) 17% GBM16 LPARIYIYPDKLGYE Class II 0.06 0.00037 Q86UP2 Kinectin (KTN1) 17% GBM7 LKAQIQQFHSQIAAQT Class II 0.11 0.000037 Q86VH5 Leucine-rich repeat transmembrane neuronal protein 3 (LRRTM3) GBM11 SGNEIEAFSGPSVFQ Class II 0.04 0.00045 Q8NV3 Putative ribosome-binding factor A, mitochondrial (RBFA) GBM2 KNWLKKFASKTKK Class II 0.05 0.00372 Q8NE23 WD repeat-containing protein 19 (WDR19) GBM11 QSVIRIYLDHLNNPE QBM16 Class II 0.05 0.0024 Q96QR8 Praspriptional activator protein Pur-beta (PURB) 17% GBM12 VKPSYRNAITVPFK Class II 0.01 0.00037 Q96QR8 Phosphatidylinositol N- acetylglucosaminyltrans- ferase subunit Q (PIGQ) 17% GBM12 VKPSYRNAITVPFK Class II 0.01		protein (SDPR)	GBM12 GBM14				
HECTD3 (HÉCTD3) GBM11 GBM16 GBM16 LPARIYIYPDKLGYE LPARIYIYPDKLGYE Class II 0.05 0.00152 0.00098 Q86UP2 Kinectin (KTN1) 17% GBM7 LKAQIQQFHSQIAAQT KAQIQQFHSQIAAQT Class II 0.11 0.00037 Q86VH5 Leucine-rich repeat transmembrane neuronal protein 3 (LRRTM3) GBM11 SGNEIEAFSGPSVFQ Class II 0.04 0.00045 Q86VH5 Leucine-rich repeat transmembrane neuronal protein 3 (LRRTM3) GBM13 SGNEIEAFSGPSVFQ Class II 0.04 0.00045 Q8NV3 Putative ribosome-binding factor A, mitochondrial (RBFA) GBM2 KNWLKKFASKTKK Class II 0.05 0.00372 Q8NEZ3 WD repeat-containing protein 19 (WDR19) GBM16 QDLYLASSCPIAALEMRRD Class II 0.09 0.00098 Q96QR8 Transcriptional activator protein Pur-beta (PURB) GBM16 GTSITVDSKRFFFDVG GTSITVDSKRFFFDVG Class II 0.01 0.00037 Q9BRB3 Phosphatidylinositol N- acetylglucosaminyltrans- ferase subunit Q (PIGQ) GBM17 ANTVASVLLDV Class II 0.04 0.00097 Q9H492 Microtubule-associated morotein 1/TBkipt chain 3A (MAP1LC3A)	P51153		GBM2				
Q86UP2 Kinectin (KTN1) 17% GBM7 LKAQIQQFHSQIAAQT KAQIQQFHSQIAAQT Class II 0.11 0.00037 Q86VH5 Leucine-rich repeat transmembrane neuronal protein 3 (LRRTM3) GBM116 SGNEIEAFSGPSVFQ Class II 0.01 0.00009 Q86VH5 Leucine-rich repeat transmembrane neuronal GBM111 SGNEIEAFSGPSVFQ Class II 0.04 0.00045 Q8N0V3 Putative ribosome-binding factor A, mitochondrial (RBFA) GBM2 KNWLKKFASKTKK Class II 0.05 0.00372 Q8NEZ3 WD repeat-containing protein 19 (WDR19) GBM11 QSVIRIYLDHLNNPE GBM16 Class II 0.05 0.0024 Q96QR8 Transcriptional activator protein Pur-beta (PURB) GBM12 VKPSYRNAITVPFK GBM16 Class II 0.01 0.00007 Q9BR33 Phosphatidylinositol N- acetylglucosaminyltrans- ferase subunit Q (PIGQ) 17% GBM17 ANTVASVLLDV ATTASTGGLAAVF Class II 0.01 0.000375 Q9H492 Microtubule-associated (MAP1LC3A) GBM3 SELVKIIRRRLQLNPT Class II 0.04 0.00097 Q9UPV9 Trafficking kinesin-binding protein 1 (TRAK1) GBM12	Q5T447		GBM11				
KAQIQQFHSQIAAQT (KAQIQQFHSQIAAQT) Class II 0.17 0.0001 Q86VH5 Leucine-rich repeat transmembrane neuronal protein 3 (LRRTM3) GBM11 SGNEIEAFSGPSVFQ Class II 0.04 0.00045 Q8N0V3 Putative ribosome-binding factor A, mitochondrial GBM2 KNWLKKFASKTKK Class II 0.05 0.00372 Q8NEZ3 WD repeat-containing protein 19 (WDR19) GBM11 QSVIRIYLDHLNNPE GBM16 Class II 0.09 0.00098 Q96QR8 Transcriptional activator protein Pur-beta (PURB) GBM12 VKPSYRNAITVPFK GBM16 Class II 0.09 0.00037 Q9BRB3 Phosphatidylinositol N- acetylglucosaminyltrans- ferase subunit Q (PIGQ) 17% GBM12 VKPSYRNAITVPFK ATTASTGGLAAVF Class II 0.09 0.00037 Q9H492 Microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A) GBM3 SELVKIIRRRLQLNPT Class II 0.04 0.00097 Q9UPV9 Trafficking kinesin-binding protein 1 (TRAK1) 17% SELVKIIRRRLQLNPT Class II 0.04 0.00097	Q86UP2	Kinectin (KTN1)	17%				
transmembrane neuronal protein 3 (LRRTM3)GBM11 GBM13SGNEIEAFSGPSVFQ SGNEIEAFSGPSVFQClass II Class II0.04 0.00450.00045 0.00010Q8N0V3Putative ribosome-binding factor A, mitochondrial (RBFA)GBM2 GBM5KNWLKKFASKTKKClass II Class II0.05 0.0070.00100Q8NEZ3WD repeat-containing protein 19 (WDR19)17% GBM11 GBM11QSVIRIYLDHLNNPE QDLYLASSCPIAALEMRRDClass II Class II0.09 0.0090.00098 0.00024Q96QR8Transcriptional activator protein Pur-beta (PURB)17% GBM16VKPSYRNAITVPFK GBM16Class II O.010.01 0.00070.000372 0.00024Q9BRB3Phosphatidylinositol N- acetylglucosaminyltrans- ferase subunit Q (PIGQ)17% GBM12ANTVASVLLDV ATTASTGGLAAVFClass II Class II 0.040.09 0.000375Q9H492Microtubule-associated motoulle-associated Traficking kinesin-binding protein 1 (TRAK1)17% GBM12SELVKIIRRRLQLNPT KAPVTLTSGILMGAKLSKClass II Class II 0.030.0013Q9UPV9Trafficking kinesin-binding protein 1 (TRAK1)17% GBM12SELVKIIRRRLQLNPTClass II Class II 0.030.00193				KAQIQQFHSQIAAQT	Class II	0.17	0.00001
Q8N0V3Putative ribosome-binding factor A, mitochondrial (RBFA)17% GBM2 GBM5KNWLKKFASKTKKClass II Class II0.05 0.0070.00372 0.00100Q8NEZ3WD repeat-containing protein 19 (WDR19)17% GBM11 GBM11QSVIRIYLDHLNNPE QDLYLASSCPIAALEMRRDClass II Class II0.09 0.0090.00098 0.00024Q96QR8Transcriptional activator protein Pur-beta (PURB)17% GBM16QSVIRIYLDHLNNPE GBM12 GBM16Class II OLYLASSCPIAALEMRRD0.05 Class II 0.050.00230 0.00024Q96QR8Transcriptional activator protein Pur-beta (PURB)17% GBM16VKPSYRNAITVPFK GTSITVDSKRFFFD ELPEGTSITVDSKRFFFDVG Class II Class II0.01 0.0007 0.00387Q9BRB3Phosphatidylinositol N- acetylglucosaminyltrans- ferase subunit Q (PIGQ) proteins 1A/1B light chain 3A (MAP1LC3A)17% GBM3ANTVASVLLDV ATTASTGGLAAVFClass II Class II 0.040.00097Q9UPV9Trafficking kinesin-binding protein 1 (TRAK1)17% GBM12SELVKIIRRRLQLNPT KAPVTLTSGILMGAKLSKClass II Class II0.03 0.00193	Q86VH5	transmembrane neuronal	GBM11				
(RBFA)GBM5KNWLKKFASKTKKClass II0.070.00100Q8NEZ3WD repeat-containing protein 19 (WDR19)17%QSVIRIYLDHLNNPEClass II0.090.00098Q96QR8Transcriptional activator protein Pur-beta (PURB)17%QSVIRIYLDHLNNPEClass II0.050.00230Q96QR8Transcriptional activator protein Pur-beta (PURB)17%VKPSYRNAITVPFKClass II0.010.00007GBM16GSM12VKPSYRNAITVPFKClass II0.010.000070.00387GBM7GSM16GTSITVDSKRFFFDVGClass II0.070.00387Q9BRB3Phosphatidylinositol N- acetylglucosaminyltrans- ferase subunit Q (PIGQ)17%ANTVASVLLDVClass II0.090.00003Q9H492Microtubule-associated proteins 1A/1B light chain 3AGBM3SELVKIIRRRLQLNPTClass II0.240.00215Q9UPV9Trafficking kinesin-binding protein 1 (TRAK1)GBM12KAPVTLTSGILMGAKLSKClass II0.030.00193	Q8N0V3	Putative ribosome-binding	17%				
protein 19 (WDR19)GBM11 GBM16QSVIRIYLDHLNNPE QDLYLASSCPIAALEMRRDClass II Class II0.09 0.0050.00098 0.00024Q96QR8Transcriptional activator protein Pur-beta (PURB)17% GBM12VKPSYRNAITVPFK GTSITVDSKRFFFD GTSITVDSKRFFFDVG GTSITVDSKRFFFDVGClass II Class II0.005 0.002300.000230 0.00007Q9BRB3Phosphatidylinositol N- acetylglucosaminyltrans- ferase subunit Q (PIGQ)17% GBM12ANTVASVLLDV ATTASTGGLAAVFClass II Class II 0.120.09 0.000375Q9H492Microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A)17% GBM12SELVKIIRRRLQLNPT SELVKIIRRRLQLNPTClass II Class II Class II0.24 0.0550.00215 0.000375Q9UPV9Trafficking kinesin-binding protein 1 (TRAK1)GBM12 GBM12KAPVTLTSGILMGAKLSKClass II Class II0.03 0.00193		(RBFA)	GBM5				
protein Pur-beta (PURB)GBM12 GBM16VKPSYRNAITVPFK GTSITVDSKRFFFD GTSITVDSKRFFFD GTSITVDSKRFFFDVG Class IIClass II 0.010.0007 0.00087 0.00387 Class IIQ9BRB3Phosphatidylinositol N- acetylglucosaminyltrans- ferase subunit Q (PIGQ)17% GBM12ANTVASVLLDV ATTASTGGLAAVFClass II 0.090.09 0.00003 0.00007Q9H492Microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A)17% GBM5SELVKIIRRRLQLNPT SELVKIIRRRLQLNPTClass II Class II 0.050.0230 0.0003 0.0003 Class II 0.04Q9UPV9Trafficking kinesin-binding protein 1 (TRAK1)17% GBM12KAPVTLTSGILMGAKLSKClass II Class II 0.030.00193	Q8NEZ3		GBM11				
Q9BRB3Phosphatidylinositol N- acetylglucosaminyltrans- ferase subunit Q (PIGQ)17% GBM7ANTVASVLLDVClass II0.09 Class II0.00003 0.00097Q9H492Microtubule-associated proteins 1A/1B light chain 3A17% GBM3SELVKIIRRRLQLNPTClass II0.240.00215 0.00493Q9UPV9Trafficking kinesin-binding protein 1 (TRAK1)17% GBM12KAPVTLTSGILMGAKLSKClass II0.030.00193	Q96QR8	•	GBM12	GTSITVDSKRFFFD GTSITVDSKRFFFDVG	Class II Class II	0.01 0.07	0.00007 0.00387
Q9H492Microtubule-associated17% proteins 1A/1B light chain 3AGBM3 GBM3SELVKIIRRRLQLNPTClass II0.240.00215(MAP1LC3A)GBM5SELVKIIRRRLQLNPTClass II0.050.00493Q9UPV9Trafficking kinesin-binding protein 1 (TRAK1)17% GBM12KAPVTLTSGILMGAKLSKClass II0.030.00193	Q9BRB3	acetylglucosaminyltrans-	GBM7	ANTVASVLLDV	Class II	0.09	0.00003
Q9UPV9 Trafficking kinesin-binding 17% protein 1 (TRAK1) GBM12 KAPVTLTSGILMGAKLSK Class II 0.03 0.00193	Q9H492	Microtubule-associated proteins 1A/1B light chain 3A	17% GBM3	SELVKIIRRRLQLNPT			0.00215
	Q9UPV9	Trafficking kinesin-binding	17% GBM12	KAPVTLTSGILMGAKLSK	Class II	0.03	0.00193

Supplementary Table 8. Functional annotation clustering of source proteins exclusively presented at recurrent or primary disease and/or represented by up- or down-modulated HLA class I- or II-restricted peptides on recurrent *versus* autologous primary glioblastoma. Clustering for biological processes was performed on the basis of Gene Ontology (GO) terms using DAVID Bioinformatic Resources 6.8 ('Homo sapiens' as background, medium classification stringency, GO BP_ALL). As recommended by Huang *et al.* (Ref. 419 CHAPTER 1), only clusters with an enrichment score \geq 1.0 were reported.


ss Ds				Enrichment sco	ore
ve antigens and pro	teins exclusively	y represented by H	ILA class I ligands	down-modulated	at recurrence
ort				3.11	
GO:1905039	GO:1903825	GO:0006865	GO:1902475	GO:0015804	GO:0015807
				2.32	
	GO:0098655	GO:0006811	GO:0034220		GO:0015672
					GO:0071805
					GO.0071805
	GO:0070838	GO:0072511	GO:0010959		
				1./6	
	GO:0035176				
				1.59	
GO:0009108	GO:0006732	GO:0051186			
				1.59	
GO:0000413	GO:0006457				
				1.56	
	GO:0098916	GO:0007268	GO:0050804		
	40.0000010	00.0007200	40.000004		
	00.000454	00.0000000	00.0000000		00.0004470
	GO:0009451	GO:0006399	GO:0008033		GO:0034470
	0.0.000			1.44	
	GO:0002021				
				1.33	
GO:0007271	GO:0035094	GO:0035095	GO:0043279		
complex IV assembly	,			1.31	
GO:0017004	GO:0033617	GO:0097034			
				1.29	
GO:0007620	GO:0007618				
	40.0007010			1 01	
	00.0005007	00.0040001	00.0010000	1.21	
	GO:0035637	GO:0042391	GO:0019226	1.00	
	0.0.000	00.00.00.00	00 /00 /00		
	GO:0006743	GO:0042181	GO:1901661		
GO:0070125	GO:0070126	GO:0006415	GO:0006414	GO:0043624	GO:0043241
GO:0022411					
				1.10	
	GO:0000288				
GO.0000201	GO.0000200			1.06	
CO:1002024	CO:0090700	CO:0006969	CO:0045117	1.00	
	GO.0089709	GO.0000000	60.0045117	1.01	
	00 0000505	00 0000 100	00 000015	1.01	
GO:0060079	GO:0099565	GU:2000463	GO:0098815		
usive antigens and	proteins exclus	ively represented	by HLA class I liga	nds up-modulated	at recurrence
U U	•			•	
		00.0050007	CO.0001000		CO:0000440
					GO:0009410
					GO:0006063
GO:0042573	GO:0019217	GO:0009812	GO:0045912	GO:0009813	GO:0045833
GO:0010565	GO:0042440	GO:0010675	GO:0042180	GO:0019216	GO:0006109
00.0010303					
00.0010303					
				3.16	
response	GO:0006956	GO:0016064	GO:0072376	3.16 GO:0002250	GO:0019724
response GO:0002455	GO:0006956	GO:0016064	GO:0072376	GO:0002250	GO:0019724
response GO:0002455 GO:0002460	GO:0038096	GO:0002433	GO:0002431	GO:0002250 GO:0038094	GO:0006959
response GO:0002455 GO:0002460 GO:0006909	GO:0038096 GO:0002757	GO:0002433 GO:0038095	GO:0002431 GO:0006898	GO:0002250 GO:0038094 GO:0050778	GO:0006959 GO:0002764
response GO:0002455 GO:0002460 GO:0006909 GO:0050776	GO:0038096 GO:0002757 GO:0002429	GO:0002433 GO:0038095 GO:0002376	GO:0002431 GO:0006898 GO:0006955	GO:0002250 GO:0038094 GO:0050778 GO:0002684	GO:0006959 GO:0002764
response GO:0002455 GO:0002460 GO:0006909	GO:0038096 GO:0002757	GO:0002433 GO:0038095	GO:0002431 GO:0006898	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584	GO:0006959 GO:0002764
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897	GO:0038096 GO:0002757 GO:0002429	GO:0002433 GO:0038095 GO:0002376	GO:0002431 GO:0006898 GO:0006955	GO:0002250 GO:0038094 GO:0050778 GO:0002684	GO:0006959 GO:0002764
response GO:0002455 GO:0002460 GO:0006909 GO:0050776	GO:0038096 GO:0002757 GO:0002429	GO:0002433 GO:0038095 GO:0002376	GO:0002431 GO:0006898 GO:0006955	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584	GO:0006959 GO:0002764 GO:0002768
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897	GO:0038096 GO:0002757 GO:0002429 GO:0038093	GO:0002433 GO:0038095 GO:0002376 GO:0002252	GO:0002431 GO:0006898 GO:0006955 GO:0016192	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03	GO:0006959 GO:0002764 GO:0002768
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752	GO:0038096 GO:0002757 GO:0002429 GO:0038093	GO:0002433 GO:0038095 GO:0002376 GO:0002252	GO:0002431 GO:0006898 GO:0006955 GO:0016192	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255	GO:0006959 GO:0002764 GO:0002768
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752 olism	GO:0038096 GO:0002757 GO:0002429 GO:0038093 GO:0043436	GO:0002433 GO:0038095 GO:0002376 GO:0002252 GO:0006082	GO:0002431 GO:0006898 GO:0006955 GO:0016192 GO:0032787	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255 3.05	GO:0006959 GO:0002764 GO:0002768 GO:0044281
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752 olism GO:0042573	GO:0038096 GO:0002757 GO:0002429 GO:0038093	GO:0002433 GO:0038095 GO:0002376 GO:0002252	GO:0002431 GO:0006898 GO:0006955 GO:0016192	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255	GO:0019724 GO:0006959 GO:0002764 GO:0002768 GO:0044281 GO:0034754
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752 olism	GO:0038096 GO:0002757 GO:0002429 GO:0038093 GO:0043436	GO:0002433 GO:0038095 GO:0002376 GO:0002252 GO:0006082	GO:0002431 GO:0006898 GO:0006955 GO:0016192 GO:0032787	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255 3.05 GO:0006720	GO:0006959 GO:0002764 GO:0002768 GO:0044281
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752 olism GO:0042573 GO:0010817	GO:0038096 GO:0002757 GO:0002429 GO:0038093 GO:0043436 GO:0001523	GO:0002433 GO:0038095 GO:0002376 GO:0002252 GO:0006082 GO:0006721	GO:0002431 GO:0006898 GO:0006955 GO:0016192 GO:0032787	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255 3.05	GO:0006959 GO:0002764 GO:0002768 GO:0044281
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752 olism GO:0042573 GO:0042573 GO:0010817	GO:0038096 GO:0002757 GO:0002429 GO:0038093 GO:0043436	GO:0002433 GO:0038095 GO:0002376 GO:0002252 GO:0006082	GO:0002431 GO:0006898 GO:0006955 GO:0016192 GO:0032787	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255 3.05 GO:0006720 2.69	GO:0006959 GO:0002764 GO:0002768 GO:0044281
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752 olism GO:0042573 GO:0010817	GO:0038096 GO:0002757 GO:0002429 GO:0038093 GO:0043436 GO:0001523	GO:0002433 GO:0038095 GO:0002376 GO:0002252 GO:0006082 GO:0006721	GO:0002431 GO:0006898 GO:0006955 GO:0016192 GO:0032787	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255 3.05 GO:0006720	GO:0006959 GO:0002764 GO:0002768 GO:0044281
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752 olism GO:0042573 GO:0010817 GO:0009698 esis	GO:0038096 GO:0002757 GO:0002429 GO:0038093 GO:0043436 GO:0001523 GO:0009804	GO:0002433 GO:0038095 GO:0002376 GO:0002252 GO:0006082 GO:0006721	GO:0002431 GO:0006898 GO:0006955 GO:0016192 GO:0032787	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255 3.05 GO:0006720 2.69	GO:0006959 GO:0002764 GO:0002768 GO:0044281
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752 olism GO:0042573 GO:0042573 GO:0010817	GO:0038096 GO:0002757 GO:0002429 GO:0038093 GO:0043436 GO:0001523	GO:0002433 GO:0038095 GO:0002376 GO:0002252 GO:0006082 GO:0006721	GO:0002431 GO:0006898 GO:0006955 GO:0016192 GO:0032787	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255 3.05 GO:0006720 2.69 1.98	GO:0006959 GO:0002764 GO:0002768 GO:0044281
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752 olism GO:0019752 olism GO:0042573 GO:0010817 GO:0009698 esis GO:1901607	GO:0038096 GO:0002757 GO:0002429 GO:0038093 GO:0043436 GO:0001523 GO:0009804 GO:0000052	GO:0002433 GO:0038095 GO:0002376 GO:0002252 GO:0006082 GO:0006721	GO:0002431 GO:0006898 GO:0006955 GO:0016192 GO:0032787	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255 3.05 GO:0006720 2.69	GO:0006959 GO:0002764 GO:0002768 GO:0044281
response GO:0002455 GO:0002460 GO:0006909 GO:0050776 GO:0006897 GO:0019752 olism GO:0042573 GO:0010817 GO:0009698 esis	GO:0038096 GO:0002757 GO:0002429 GO:0038093 GO:0043436 GO:0001523 GO:0009804	GO:0002433 GO:0038095 GO:0002376 GO:0002252 GO:0006082 GO:0006721	GO:0002431 GO:0006898 GO:0006955 GO:0016192 GO:0032787	GO:0002250 GO:0038094 GO:0050778 GO:0002684 GO:0048584 2.03 GO:0044255 3.05 GO:0006720 2.69 1.98	GO:0006959 GO:0002764 GO:0002768 GO:0044281
	ort GO:1905039 GO:0015711 rt GO:0006812 GO:0006813 GO:0006813 GO:0006816 action GO:00051703 thesis GO:0009108 GO:0009108 GO:00099537 GO:0006400 enesis GO:0007271 complex IV assembly GO:0007201 ansmission GO:0007620 ansmission GO:0007620 ansmission GO:0007620 ansmission GO:00070125 GO:00070125 GO:00022411 GO:0000291 GO:1902024 smission GO:0060079 usive antigens and	Sort GO:1905039 GO:1903825 GO:0015711 GO:0046942 rt GO:0006812 GO:0098655 GO:0006812 GO:0098655 GO:0006813 GO:0098660 GO:0006816 GO:0070838 action GO:00051703 GO:0005176 thesis GO:0009108 GO:0006457 GO:0009108 GO:0006457 sion GO:00099537 GO:00098916 GO:0006400 GO:0009451 enesis GO:0007271 GO:0002021 oid GO:0007271 GO:0033617 GO:0007271 GO:0033617 GO:0007620 GO:00033617 GO:0007620 GO:0007618 ansmission GO:00070126 GO:1901663 GO:00070126 GO:00070125 GO:0070126 GO:0002211 GO:0000288 GO:1902024 GO:00089709 smission GO:00099565 usive antigens and proteins exclus of fatty acid metabolism GO:1904224	Dort GO:1905039 GO:1903825 GO:0006865 GO:0015711 GO:0046942 GO:0006820 rt GO:0006812 GO:0098655 GO:0006811 GO:0006813 GO:0098660 GO:0034765 GO:0006816 GO:0070838 GO:0072511 action GO:00051703 GO:0035176 thesis GO:0006457 GO:0006457 sion GO:00099537 GO:0009451 GO:0006399 enesis GO:0006400 GO:0002021 GO:0006399 odd GO:0007271 GO:0035094 GO:0035095 complex IV assembly GO:0007618 GO:0007620 GO:0007618 ansmission GO:00070125 GO:00070126 GO:000415 GO:0000291 GO:00070126 GO:00042181 disassembly GO:0007618 GO:00006415 GO:0000729 GO:00070126 GO:00042391 esis GO:00006415 GO:0006415 GO:0000291 GO:00070126 GO:0006415 GO:0000291 GO:00006743 GO:0006415 <	Sport GO:1905039 GO:1903825 GO:0006865 GO:1902475 GO:0015711 GO:00046942 GO:0006820 GO:1902475 rt GO:0006812 GO:0098655 GO:0006811 GO:0034220 GO:0006813 GO:0098660 GO:0034765 GO:0043269 GO:0006816 GO:0070838 GO:0072511 GO:0010959 action GO:0009108 GO:0006732 GO:0051186 GO:0009108 GO:0006457 sion GO:0009537 GO:00098916 GO:0007268 GO:00050804 GO:0009537 GO:00090451 GO:0006399 GO:0008033 enesis GO:0006400 GO:0002021 GO:0017004 GO:00035094 GO:0035095 GO:0043279 complex IV assembly GO:0007620 GO:0007618 ansmission GO:0007620 GO:0007618 GO:00017026 GO:00070125 GO:00070125 GO:00007126 GO:0006415 GO:0006414 GO:00006414 GO:0000281 GO:00006415 GO:0006414 GO:0002411 GO:0000281 GO:10006414 GO:0000281 GO:00006415 GO:00045117 Smission	GC:1905039 GO:1903825 GO:0006865 GO:1902475 GO:0015804 GO:0015711 GO:0046942 GO:0006811 GO:0034220 GO:0030001 GO:0006813 GO:0098665 GO:0034765 GO:0043269 GO:0071804 GO:0006816 GO:0070838 GO:0072511 GO:001959 GO:1904062 action 1.76 GO:00010959 GO:1904062 GO:0019108 GO:0006732 GO:0051186 GO:0009108 GO:0006732 GO:0007268 GO:0050804 GO:0007267 1.49 GO:0009537 GO:0009451 GO:0006399 GO:0008033 GO:0001510 ensis GO:0009451 GO:0035095 GO:0043279 1.44 GO:0007271 GO:0033617 GO:0035095 GO:0043279 1.31 GO:0007620 GO:0007618 1.29 1.21 GO:0007620 GO:0007613 GO:0042391 GO:0019266 1.29 esis GO:0007613 GO:0042391 GO:0043279 1.21 GO:00070126 GO:0042391 GO:0042391 GO:0042180 1.21

glutamate biosynt		0.0.000000.0	00,400,4007	000000000	1.54	00 000507
GO:0009064	GO:1901605	GO:0009084	GO:1901607	GO:0006541	GO:0009065	GO:0006537
GO:0006520 amino acid catabo	GO:0043648	GO:0008652	GO:1901606	GO:0043650	GO:0006536 1.47	
GO:0016054	GO:1901606	GO:0009063			1.47	
	on of molecular functi				1.36	
GO:0043086	GO:0010563	GO:0045936	GO:0044092	GO:0032269	GO:0051248	GO:0051338
cellular process	00.0010300	GO.0040000	00.0044032	00.0002200	1.35	00.0001000
GO:0044699	GO:0044763	GO:0009987			1.00	
ion transport	40.0011100	40.0000001			1.22	
GO:0006814	GO:0006813	GO:0071804	GO:0071805	GO:0035725	GO:0030001	GO:0055085
GO:0006811	GO:0042391	GO:0098662	GO:0006812	GO:0098655	GO:0098660	GO:0015672
GO:0070588	GO:0034220	GO:0043269	GO:0034762	GO:0034765	GO:0006816	GO:0072511
GO:0070838						
fatty acid oxidatio					1.21	
GO:0016054	GO:0046395	GO:0016042	GO:0044282	GO:0072329	GO:0009062	GO:0044242
GO:0006635	GO:0019395	GO:0034440	GO:0030258			
unsaturated fatty					1.15	
GO:0019369	GO:0019373	GO:0001676	GO:0006690	GO:0033559		
heme metabolism					1.10	
GO:0042440	GO:0006787	GO:0033015	GO:0042167	GO:0046149	GO:0051187	GO:0006778
GO:0033013	GO:0042168					
glutamate secreti		00.000000	00.0015711	00.0040040	1.03	
GO:0014047	GO:0006835	GO:0006820	GO:0015711	GO:0046942	GO:0051966	
Primary-exclusiv	ve antigens and pro	teins exclusively	represented by H	LA class II peptide	s down-modulated	d at recurrence
organelle organiz	ation				2.51	
GÖ:0071840	GO:0006996	GO:0016043				
	keleton organization				2.27	
GO:0007017	GO:0000226	GO:0007010				
histone H4 acetyl					2.15	
GO:0043984	GO:0043981	GO:0043982	GO:0043967			
chromatin organiz					2.07	
GO:0016569	GO:0016570	GO:0018205	GO:0051276	GO:0006325		
cell projection ass		00 00 1 1700	00.0040004	00 000074	2.00	
GO:0070925	GO:0030031	GO:0044782	GO:0042384	GO:0060271	GO:0010927	
embryonic morph	•	00.0001701	00.000700	00.0040500	1.97	
GO:0043009	GO:0009792	GO:0001701	GO:0009790	GO:0048568	GO:0048598	
histone modificati GO:0016570	GO:0018205	GO:0018394	GO:0018393	GO:0016573	1.87 GO:0006475	GO:0006473
GO:0018570 GO:0043543	GO:0018205 GO:0043967	GO.0016594	GO.0010393	GO.0016575	GO.0006475	GO.0006473
cell differentiation					1.80	
GO:0044767	GO:0032502	GO:0048856	GO:0007275	GO:0044707	GO:0048731	GO:0007399
GO:0048513	GO:0048869	GO:0048468	GO:0032501	GO:0030154	40.0010701	40.0007000
regulation of TOR			0.010002001		1.79	
GO:0032006	GO:0031929	GO:0032008	GO:0032007			
neural precursor					1.76	
GO:0072089	GO:2000648	GO:0061351	GO:1902692	GO:0007405	GO:0002052	GO:0072091
GO:2000177	GO:2000179					
DNA-templated tr	anscription				1 74	
GO:0010468					1.74	
GO:0006807	GO:0051171	GO:0034645	GO:0010467	GO:0009059	GO:0090304	GO:0044260
	GO:0051171 GO:0060255	GO:0034641	GO:0031323	GO:0009059 GO:0016070	GO:0090304 GO:0044249	GO:0044260 GO:2000112
GO:1901576	GO:0051171				GO:0090304 GO:0044249 GO:0071704	GO:2000112 GO:0043170
GO:1901576 GO:0031326	GO:0051171 GO:0060255 GO:0019222 GO:1901360	GO:0034641 GO:0008152 GO:0009058	GO:0031323 GO:0044237 GO:0046483	GO:0016070 GO:0010556 GO:0044271	GO:0090304 GO:0044249 GO:0071704 GO:0080090	GO:2000112 GO:0043170 GO:0006351
GO:1901576 GO:0031326 GO:0006139	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0009889	GO:0034641 GO:0008152 GO:0009058 GO:0006725	GO:0031323 GO:0044237 GO:0046483 GO:0051252	GO:0016070 GO:0010556 GO:0044271 GO:0019219	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238	GO:2000112 GO:0043170 GO:0006351 GO:0006366
GO:1901576 GO:0031326 GO:0006139 GO:0006355	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0009889 GO:0097659	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506	GO:0031323 GO:0044237 GO:0046483	GO:0016070 GO:0010556 GO:0044271	GO:0090304 GO:0044249 GO:0071704 GO:0080090	GO:2000112 GO:0043170 GO:0006351
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006357	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:009889 GO:0097659 GO:0032774	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654	GO:0031323 GO:0044237 GO:0046483 GO:0051252	GO:0016070 GO:0010556 GO:0044271 GO:0019219	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130	GO:2000112 GO:0043170 GO:0006351 GO:0006366
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006357 positive regulation	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:009889 GO:0097659 GO:0032774 n of cellular compone	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69	GO:2000112 GO:0043170 GO:0006351 GO:0006366
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006357 positive regulation GO:0033043	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:009889 GO:0097659 GO:0032774 1 of cellular compone GO:0010638	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654	GO:0031323 GO:0044237 GO:0046483 GO:0051252	GO:0016070 GO:0010556 GO:0044271 GO:0019219	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130	GO:2000112 GO:0043170 GO:0006351 GO:0006366
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:009889 GO:0097659 GO:0032774 n of cellular compone GO:0010638 Il division	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68	GO:2000112 GO:0043170 GO:0006351 GO:0006366 GO:0019438
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:009889 GO:0097659 GO:0032774 n of cellular compone GO:0010638 Il division GO:0017145	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873	GO:2000112 GO:0043170 GO:0006351 GO:0006366
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097659 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846 MAPK cascade	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63	GO:2000112 GO:0043170 GO:0006351 GO:0006366 GO:0019438
GO:1901576 GO:0031326 GO:0006355 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097659 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846 MAPK cascade GO:0070302	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846 MAPK cascade	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63	GO:2000112 GO:0043170 GO:0006351 GO:0006366 GO:0019438
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0043410	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:0007257	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846 MAPK cascade GO:0070302 GO:0043507	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304 GO:0070304 GO:0043405	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0006139 GO:0006355 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0007254 GO:0043410 regulation of cyto:	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097859 GO:0097659 GO:0032774 n of cellular compone GO:0010638 Il division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:0007257 skeleton organizatior	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846 MAPK cascade GO:0070302 GO:0043507	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0006139 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0043410 regulation of cyto: GO:0051493	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:009889 GO:0097659 GO:0032774 n of cellular compone GO:0010638 Il division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:0007257 skeleton organizatior GO:0051493	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846 MAPK cascade GO:0070302 GO:0043507	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304 GO:0043405 1.57	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0006139 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0043410 regulation of cyto: GO:0051493 ribonucleoprotein	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:0007257 skeleton organizatior GO:0051493 complex assembly	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846 MAPK cascade GO:0070302 GO:0043507	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304 GO:0070304 GO:0043405	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0006139 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0043410 regulation of cytor GO:0051493 ribonucleoprotein GO:000245	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:009889 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:0007257 skeleton organization GO:0051493 complex assembly GO:0022618	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846 MAPK cascade GO:0070302 GO:0043507	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304 GO:0043405 1.57 1.54	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0043506 GO:0007254 GO:0051493 ribonucleoprotein GO:000245 phosphatidylcholi	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:009889 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:0007257 skeleton organizatior GO:0051493 complex assembly GO:0022618 ne biosynthesis	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846 MAPK cascade GO:0070302 GO:0043507	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304 GO:0043405 1.57	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006355 gO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0007255 GO:0007254 GO:0007254 GO:0007254 GO:0007254 GO:0007255 GO:000755 GO:	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:009889 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:0007257 skeleton organization GO:0051493 complex assembly GO:0022618	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0021846 MAPK cascade GO:0021846 MAPK cascade GO:0070302 GO:0043507	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493 GO:0022613	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304 GO:0043405 1.57 1.54	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006355 gO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0007255 GO:0007254 GO:0007254 GO:0007254 GO:0007254 GO:0007255 GO:000755 GO:	GO:0051171 GO:0060255 GO:019222 GO:1901360 GO:0097659 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:0007257 skeleton organizatior GO:0051493 complex assembly GO:0022618 ne biosynthesis GO:0006656	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0021846 MAPK cascade GO:0021846 MAPK cascade GO:0070302 GO:0043507	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493 GO:0022613	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0021873 1.63 GO:0070304 GO:0043405 1.57 1.54 1.50	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0006139 GO:0006355 GO:0006355 GO:0006355 GO:0003043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0007254 GO:0007254 GO:0007254 gO:0051493 ribonucleoprotein GO:000245 phosphatidylcholi GO:0006470 positive regulation GO:0051091	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097659 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:0007257 skeleton organizatior GO:0051493 complex assembly GO:0022618 ne biosynthesis GO:0006656 n of NF-kappaB trans	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0021846 MAPK cascade GO:0071826 GO:0051493 GO:0071826 GO:0097164 scription factor act GO:0051092	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493 GO:0022613	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0021873 1.63 GO:0070304 GO:0043405 1.57 1.54 1.50	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0006139 GO:0006355 GO:0006355 GO:0006355 GO:0003043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0007254 GO:0007254 GO:0007254 gO:0051493 ribonucleoprotein GO:000245 phosphatidylcholi GO:0006470 positive regulation GO:0051091	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097659 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:007257 skeleton organizatior GO:0051493 complex assembly GO:002618 ne biosynthesis GO:0026656 n of NF-kappaB trans GO:0051090	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0021846 MAPK cascade GO:0071826 GO:0051493 GO:0071826 GO:0097164 scription factor act GO:0051092	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493 GO:0022613	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304 GO:0043405 1.57 1.54 1.50 1.49 1.41	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0043506 GO:0043506 GO:0043506 GO:0043410 regulation of cyto: GO:0051493 ribonucleoprotein GO:000245 phosphatidylcholi GO:0046470 positive regulation GO:0051091 protein localizatio GO:0072698 blastocyst develo	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:009889 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:007257 skeleton organizatior GO:0051493 complex assembly GO:0022618 ne biosynthesis GO:002656 n of NF-kappaB trans GO:0051090 n to microtubule cyto GO:0044380 pment	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0021846 MAPK cascade GO:0070302 GO:0070302 GO:0071826 GO:0051493 GO:0051493 GO:0051493 GO:0071826 Sociption factor act GO:0097164 scription factor act GO:0051092 pskeleton GO:0035372	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493 GO:0022613 ivity	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304 GO:0070304 GO:0043405 1.57 1.54 1.50 1.49	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006355 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0043506 GO:0007254 GO:0051493 ribonucleoprotein GO:000245 phosphatidylcholi GO:0046470 positive regulation GO:0051091 protein localizatio GO:0072698 blastocyst develo GO:0001832	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097859 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:007257 skeleton organizatior GO:0051493 complex assembly GO:0022618 ne biosynthesis GO:002656 n of NF-kappaB trans GO:0051090 n to microtubule cyto GO:0044380 pment GO:001833	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0044087 GO:0021846 MAPK cascade GO:0070302 GO:0043507 GO:0051493 GO:0071826 GO:0097164 scription factor act GO:0051092 oskeleton	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493 GO:0022613 ivity	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0051128 GO:0055057 GO:0032874	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0021873 1.63 GO:0070304 GO:0043405 1.57 1.54 1.50 1.49 1.41 1.40	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0051403
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006355 gO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:0007254 GO:0007254 GO:0007254 GO:0007254 GO:0007254 GO:0007254 gO:000245 phosphatidylcholi GO:0046470 positive regulation GO:0051091 protein localizatio GO:007698 blastocyst develo GO:001832 stress fiber assen	GO:0051171 GO:0060255 GO:019222 GO:1901360 GO:0097859 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:007257 skeleton organizatior GO:0051493 complex assembly GO:0022618 ne biosynthesis GO:0026656 n of NF-kappaB trans GO:0051090 n to microtubule cyto GO:0051090 n to microtubule cyto GO:0044380 pment GO:0001833 nbly	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0021846 MAPK cascade GO:0021846 MAPK cascade GO:0071826 GO:0051493 GO:0051493 GO:0071826 GO:0097164 scription factor act GO:0097164 scription factor act GO:0035372 GO:0001824	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493 GO:0022613 ivity GO:0071539	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0055057 GO:0032874 GO:0080135	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0021873 1.63 GO:0070304 GO:0070304 GO:0043405 1.57 1.54 1.50 1.49 1.41 1.40 1.32	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0051403 GO:0043406
GO:1901576 GO:0001326 GO:0006139 GO:0006355 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043410 regulation of cyto: GO:007254 GO:007254 GO:007254 GO:007254 GO:0072698 phosphatidylcholii GO:0046470 positive regulation GO:0051091 protein localizatio GO:0072698 blastocyst develo GO:0071832 stress fiber assen GO:0051492	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:007257 skeleton organizatior GO:0051493 complex assembly GO:0022618 ne biosynthesis GO:0051090 n to microtubule cyto GO:0051090 n to microtubule cyto GO:0044380 pment GO:0001833 nbly GO:0030038	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0021846 MAPK cascade GO:0071826 GO:0051493 GO:0071826 GO:0097164 scription factor act GO:0097164 scription factor act GO:0035372 GO:0001824 GO:0001824 GO:0001824	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493 GO:0022613 ivity GO:0071539 GO:0032231	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0055057 GO:0032874 GO:0080135	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304 GO:0070304 GO:0043405 1.57 1.54 1.50 1.49 1.41 1.40 1.32 GO:0051496	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0051403 GO:0043406
GO:1901576 GO:0031326 GO:0006139 GO:0006355 GO:0006355 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043506 GO:007254 GO:0043506 GO:007254 GO:0043410 regulation of cyto: GO:0051493 ribonucleoprotein GO:000245 phosphatidylcholi GO:0046470 positive regulation GO:0051091 protein localizatio GO:0072698 blastocyst develo GO:0001832 stress fiber assen GO:0051017	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097659 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:0007257 skeleton organization GO:0051493 complex assembly GO:0022618 n biosynthesis GO:0006566 n of NF-kappaB trans GO:00051090 n to microtubule cyto GO:0044380 pment GO:0001833 nbly GO:0030038 GO:0030233	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0021846 MAPK cascade GO:0021846 MAPK cascade GO:0071826 GO:0051493 GO:0051493 GO:0071826 GO:0097164 scription factor act GO:0097164 scription factor act GO:0051092 pskeleton GO:0035372 GO:0001824	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493 GO:0022613 ivity GO:0071539	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0055057 GO:0032874 GO:0080135	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0021873 1.63 GO:0070304 GO:0070304 GO:0043405 1.57 1.54 1.50 1.49 1.41 1.40 1.32	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0051403 GO:0043406
GO:1901576 GO:0001326 GO:0006139 GO:0006355 GO:0006355 GO:0006357 positive regulation GO:0033043 neuronal stem ce GO:0048103 positive regulation GO:0043410 regulation of cyto: GO:007254 GO:007254 GO:007254 GO:007254 GO:0072698 phosphatidylcholii GO:0046470 positive regulation GO:0051091 protein localizatio GO:0072698 blastocyst develo GO:0071832 stress fiber assen GO:0051492	GO:0051171 GO:0060255 GO:0019222 GO:1901360 GO:0097659 GO:0032774 n of cellular compone GO:0010638 II division GO:0017145 n of stress-activated GO:0032872 GO:0031098 GO:007257 skeleton organizatior GO:0051493 complex assembly GO:0022618 ne biosynthesis GO:0051090 n to microtubule cyto GO:0051090 n to microtubule cyto GO:0044380 pment GO:0001833 nbly GO:0030038	GO:0034641 GO:0008152 GO:0009058 GO:0006725 GO:1903506 GO:0034654 ent biogenesis GO:0021846 MAPK cascade GO:0071826 GO:0051493 GO:0071826 GO:0097164 scription factor act GO:0097164 scription factor act GO:0051092 bskeleton GO:0035372 GO:0001824 GO:0001824	GO:0031323 GO:0044237 GO:0046483 GO:0051252 GO:2001141 GO:0044089 GO:0036445 GO:0046328 GO:0046330 GO:0051493 GO:0022613 ivity GO:0071539 GO:0032231	GO:0016070 GO:0010556 GO:0044271 GO:0019219 GO:1901362 GO:0055057 GO:0032874 GO:0080135	GO:0090304 GO:0044249 GO:0071704 GO:0080090 GO:0044238 GO:0018130 1.69 GO:0051130 1.68 GO:0021873 1.63 GO:0070304 GO:0070304 GO:0043405 1.57 1.54 1.50 1.49 1.41 1.40 1.32 GO:0051496	GO:2000112 GO:0043170 GO:0006351 GO:0019438 GO:0019438 GO:0048103 GO:0043406

	em cell proliferation	00.1000005			1.24	
GO:0071425	GO:1902033	GO:1902035			1.21	
GO:1903051	GO:1903363	GO:1901799	GO:0031330	GO:0032435	GO:0042177	GO:0032434
GO:0009895	00.1903003	uu.1301733	00.0031330	00.0002400	00.0042177	00.0032434
nonmotile primary	cilium assembly				1.20	
GO:0045724	GO:0035058	GO:1902855	GO:1902857			
sensory organ de					1.19	
GO:0007423	GO:0090596	GO:0043583	GO:0048839	GO:0001654	GO:0042471	GO:0042472
GO:0048562						
	on of cyclin-depender				1.17	
GO:0045736	GO:1904030	GO:0008054	GO:1904029	GO:0000079	GO:0071901	
neural tube forma		00.0001041	00.0001040	00.000000	1.17	00.0005140
GO:0021915 GO:0035239	GO:0014020 GO:0001838	GO:0001841 GO:0072175	GO:0001843 GO:0016331	GO:0060606	GO:0060562	GO:0035148
regulation of trans		GO.0072175	GO.0016331		1.16	
GO:0010608	GO:0006417	GO:0034248	GO:0006412	GO:0043043	GO:0043604	GO:0006518
GO:0043603	GO:1901564	GO:1901566	00.0000412	00.00+00+0	00.00+000+	00.0000010
	n of megakaryocyte o				1.14	
GO:0045654	GO:0045652	GO:0030219	GO:0045639			
mRNA splicing					1.13	
GO:0008380	GO:0008380	GO:0008380	GO:0008380	GO:0008380	GO:0008380	
rRNA modification					1.12	
GO:0000154	GO:0031167	GO:0001510	GO:0070475			
histone deacetyla		00.000500.1	00.0070000	00.000700	1.10	
GO:0016575	GO:0006476	GO:0035601	GO:0070932	GO:0098732	1.00	
GO:0043412	n of MAPK cascade GO:0044260	GO:0032874	GO:0070204	GO:0006468	1.09 GO:0006464	GO:0036211
GO:0043412 GO:0032268	GO:0044260 GO:0044267	GO:0032874 GO:0046330	GO:0070304 GO:0016310	GO:0006468 GO:0031399	GO:1006464 GO:1902531	GO:0036211 GO:0006793
GO:0051246	GO:0019220	GO:0040330	GO:0051174	GO:0006796	GO:0023014	GO:0000165
GO:0031240 GO:0043408	GO:00019220	GO:0009967	GO:0010647	GO:0023056	GO:0023014 GO:0051338	GO:00043549
GO:0071900	GO:00045859	GO:0019538	GO:0043405	GO:0023030 GO:0043406	GO:0043410	GO:0032270
GO:0051347	GO:0033674	GO:1902533	GO:0051247	GO:0031401	GO:0042327	GO:0045860
GO:0032147	GO:0001934	GO:0071902	GO:0045937	GO:0010562	GO:0000187	
	n of RNA biosynthesi				1.09	
GO:0031323	GO:0019222	GO:0051173	GO:0080090	GO:0006366	GO:0031328	GO:0009891
GO:0010628	GO:0010557	GO:0031325	GO:0045935	GO:0051254	GO:0009893	GO:0006357
GO:1902680	GO:1903508	GO:0045893	GO:0010604	GO:0048518	GO:0048522	GO:0045944
	NA splicing via splice		00 0050004	00 0000001	1.08	
GO:0043484	GO:1903311	GO:0048024	GO:0050684	GO:0000381	1.06	
smoothened signa GO:0045880	GO:0021904	GO:0007224	GO:0008589	GO:0060831	GO:0021532	GO:0009953
	n of GTPase activity	CO.0007224	00.0000000	40.000001	1.06	00.0000000
GO:0044093	GO:0043547	GO:0051345	GO:0043087	GO:0043085	GO:0051336	GO:0050790
GO:0065009						
protein ubiquitinat	tion				1.06	
GO:0070647	GO:0032446	GO:0016567				
leptin-mediated si	farme a literation and the construction				1.05	
GO:0044321						
	GO:0044320	GO:0033210				
negative regulation	GO:0044320 on of cell cycle transit	tion due to DNA da		00.1001007	1.02	00.0001570
negative regulation GO:0000075	GO:0044320 on of cell cycle transit GO:0007049	tion due to DNA da GO:0000278	GO:1903047	GO:1901987	GO:0010564	GO:0031570
negative regulatic GO:0000075 GO:0000077	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402	tion due to DNA da GO:0000278 GO:0045786	GO:1903047 GO:1901988	GO:0010389	GO:0010564 GO:0045930	GO:0044770
negative regulatio GO:0000075 GO:0000077 GO:0007093	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991	tion due to DNA da GO:0000278 GO:0045786 GO:0051726	GO:1903047 GO:1901988 GO:0044839	GO:0010389 GO:000086	GO:0010564 GO:0045930 GO:0044772	GO:0044770 GO:0007346
negative regulatic GO:0000075 GO:0000077 GO:0007093 GO:1901990	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331	tion due to DNA da GO:0000278 GO:0045786 GO:0051726 GO:0010948	GO:1903047 GO:1901988 GO:0044839 GO:0044773	GO:0010389 GO:0000086 GO:0042770	GO:0010564 GO:0045930 GO:0044772 GO:0044774	GO:0044770 GO:0007346 GO:0072395
negative regulatio GO:0000075 GO:0000077 GO:0007093	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991	tion due to DNA da GO:0000278 GO:0045786 GO:0051726	GO:1903047 GO:1901988 GO:0044839	GO:0010389 GO:000086	GO:0010564 GO:0045930 GO:0044772	GO:0044770 GO:0007346
negative regulatic GO:0000075 GO:0000077 GO:0007093 GO:1901990 GO:0030330	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401	tion due to DNA da GO:0000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422	GO:1903047 GO:1901988 GO:0044839 GO:0044773 GO:2000134	GO:0010389 GO:0000086 GO:0042770 GO:0044783	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977	GO:0044770 GO:0007346 GO:0072395 GO:1902807
negative regulatic GO:0000075 GO:0000077 GO:0007093 GO:1901990 GO:0030330 GO:1902403	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:1902400 GO:0044819	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0007050	GO:1903047 GO:1901988 GO:0044839 GO:0044773 GO:2000134 GO:0072413	GO:0010389 GO:0000086 GO:0042770 GO:0044783 GO:0072431	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:0030330 GO:1902403 GO:0031571 regulation of cell of GO:0010564	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:1902400 GO:0044819 cycle process GO:0090068	tion due to DNA da GO:0000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402	GO:1903047 GO:1901988 GO:0044839 GO:0044773 GO:2000134 GO:0072413	GO:0010389 GO:0000086 GO:0042770 GO:0044783 GO:0072431	GO:0010564 GO:0045930 GO:0044772 GO:00044774 GO:0006977 GO:1902806 GO:2000045 1.01	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:0030330 GO:1902403 GO:0031571 regulation of cell o GO:0010564 G2/M DNA damag	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:1902400 GO:0044819 cycle process GO:0090068 ge checkpoint	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0007050 GO:0045787	GO:1903047 GO:1901988 GO:0044839 GO:0044773 GO:2000134 GO:0072413 GO:0071158	GO:0010389 GO:0000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082	GO:0010564 GO:0045930 GO:0044772 GO:00044774 GO:0006977 GO:1902806 GO:2000045 1.01	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:0030330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 G2/M DNA damag GO:1902749	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:1902400 GO:0072401 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0007050	GO:1903047 GO:1901988 GO:0044839 GO:0044773 GO:2000134 GO:0072413	GO:0010389 GO:0000086 GO:0042770 GO:0044783 GO:0072431	GO:0010564 GO:0045930 GO:0044772 GO:00044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:0030330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 G2/M DNA damag GO:1902749 mitotic sister chro	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072331 GO:0072401 GO:0072401 GO:0072400 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 imatid cohesion	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0007050 GO:0045787 GO:0031572	GO:1903047 GO:1901988 GO:0044839 GO:0044773 GO:2000134 GO:0072413 GO:0071158	GO:0010389 GO:000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:030330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 G2/M DNA damag GO:1902749 mitotic sister chro GO:0007064	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:0072401 GO:0072400 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 matid cohesion GO:0007063	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0007050 GO:0045787 GO:0031572 GO:0045876	GO:1903047 GO:1901988 GO:0044839 GO:00448773 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072450 GO:1902750 GO:1902750	GO:0010389 GO:000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082 GO:0010972 GO:0034086	GO:0010564 GO:0045930 GO:0044772 GO:00044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:030330 GO:1902403 GO:031571 regulation of cell of GO:0010564 G2/M DNA damag GO:1902749 mitotic sister chro GO:0007064 GO:0034184	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:0072401 GO:0072400 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 matid cohesion GO:0007063 GO:0034093	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:000750 GO:0045787 GO:0031572 GO:0045876 GO:0051984	GO:1903047 GO:1901988 GO:0044839 GO:00448773 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072450 GO:1902750 GO:1902750 GO:0034088 GO:0051785	GO:0010389 GO:000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082 GO:0010972 GO:0010972 GO:0034086 GO:0045840	GO:0010564 GO:0045930 GO:0044772 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0034091	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156 GO:0044818 GO:0034182
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:030330 GO:1902403 GO:031571 regulation of cell of GO:0010564 G2/M DNA damag GO:1902749 mitotic sister chro GO:0007064 GO:0034184	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:0072401 GO:0072400 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 matid cohesion GO:0007063	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:000750 GO:0045787 GO:0031572 GO:0045876 GO:0051984	GO:1903047 GO:1901988 GO:0044839 GO:00448773 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072450 GO:1902750 GO:1902750 GO:0034088 GO:0051785	GO:0010389 GO:000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082 GO:0010972 GO:0010972 GO:0034086 GO:0045840	GO:0010564 GO:0045930 GO:0044772 GO:00044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0034091	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156 GO:0044818 GO:0034182
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:0030330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 GO:1902749 mitotic sister chro GO:0007064 GO:0034184 Recurrence-excl	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:0072401 GO:0072400 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 matid cohesion GO:0007063 GO:0034093	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0045787 GO:0045787 GO:0031572 GO:0045876 GO:0051984 proteins exclusion	GO:1903047 GO:1901988 GO:0044839 GO:00448773 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072450 GO:1902750 GO:1902750 GO:0034088 GO:0051785	GO:0010389 GO:000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082 GO:0010972 GO:0010972 GO:0034086 GO:0045840	GO:0010564 GO:0045930 GO:0044772 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0034091	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156 GO:0044818 GO:0034182
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:030330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 G2/M DNA damag GO:1902749 mitotic sister chro GO:0007064 GO:0034184 Recurrence-excl positive regulation GO:0043085	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:0072401 GO:0072401 GO:0072400 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 matid cohesion GO:0007063 GO:0034093 usive antigens and	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0072422 GO:0045787 GO:0045787 GO:0031572 GO:0045876 GO:0051984 proteins exclusion	GO:1903047 GO:1901988 GO:0044839 GO:00448773 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072450 GO:1902750 GO:1902750 GO:0034088 GO:0051785	GO:0010389 GO:000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082 GO:0010972 GO:0010972 GO:0034086 GO:0045840	GO:0010564 GO:0045930 GO:0044772 GO:00044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0034091	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156 GO:0044818 GO:0034182
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:003300 GO:1902403 GO:0031571 regulation of cell of GO:0010564 G2/M DNA damae GO:1902749 mitotic sister chro GO:0007064 GO:0034184 Recurrence-excl positive regulation GO:0043085 GO:0043087	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072331 GO:0072401 GO:1902400 GO:0072401 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 matid cohesion GO:0007063 GO:0034093 Iusive antigens and n of hydrolase activity	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:000750 GO:0045787 GO:0045787 GO:0045876 GO:0051984 proteins exclusivy	GO:1903047 GO:1901988 GO:0044839 GO:0044873 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072450 GO:1902750 GO:1902750 GO:0034088 GO:0051785 vely represented I	GO:0010389 GO:000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082 GO:0010972 GO:0010972 GO:0034086 GO:0045840 by HLA class II per	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0007095 1.01 GO:0034091 tides up-modulate 2.25 GO:0051336	GO:0044770 GO:007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156 GO:0044818 GO:0034182
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:003030 GO:1902403 GO:0031571 regulation of cell of GO:0010564 GO:0010564 GO:0010564 GO:00764 GO:00764 GO:00764 GO:0034184 Recurrence-excl positive regulation GO:0043085 GO:0043087 gene expression	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:1902400 GO:0072401 GO:0072401 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 imatid cohesion GO:0010389 imatid cohesion GO:0034093 usive antigens and n of hydrolase activity GO:0044093	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0007050 GO:0045787 GO:0031572 GO:0045876 GO:0051984 proteins exclusion y GO:0051345	GO:1903047 GO:1901988 GO:0044839 GO:0044773 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0050790	GO:0010389 GO:000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082 GO:0010972 GO:0034086 GO:0045840 by HLA class II pep GO:0065009	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0034091 tides up-modulate 2.25 GO:0051336 1.97	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156 GO:0044818 GO:0034182 GO:0034182 GO:0034182
negative regulatic GO:000075 GO:000077 GO:000793 GO:1901990 GO:1902403 GO:0030330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 GO:0010564 GO:01902749 mitotic sister chro GO:0007064 GO:0034184 Recurrence-excl positive regulation GO:0043085 GO:0043085 GO:0034641	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:0072401 GO:0072401 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 imatid cohesion GO:0007063 GO:0034093 usive antigens and n of hydrolase activity GO:0044093	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:000750 GO:0045787 GO:0045787 GO:0045876 GO:0045876 GO:0051984 I proteins exclusiv y GO:0051345	GO:1903047 GO:1901988 GO:0044839 GO:0044773 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0050790 GO:0006355	GO:0010389 GO:000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082 GO:0010972 GO:0034086 GO:0045840 by HLA class II pep GO:0065009 GO:2001141	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0034091 otides up-modulate 2.25 GO:0051336 1.97 GO:0090304	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156 GO:0044818 GO:0034182 GO:0034182 GO:0043547 GO:0044238
negative regulatic GO:000075 GO:000077 GO:000793 GO:1901990 GO:0030330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 GO:0010564 GO:1902749 mitotic sister chro GO:0007064 GO:0034184 Recurrence-excl positive regulation GO:0043085 GO:0043085 GO:0043085 GO:0043085	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:1902400 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 imatid cohesion GO:0007063 GO:0034093 usive antigens and of hydrolase activity GO:0044093	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0072422 GO:0045787 GO:0045787 GO:0031572 GO:0045876 GO:0051984 I proteins exclusion y GO:0051345	GO:1903047 GO:1901988 GO:0044839 GO:0044839 GO:0044773 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:00051785 vely represented I GO:0006355 GO:0006355 GO:0006725	GO:0010389 GO:000086 GO:0042770 GO:0044783 GO:0072431 GO:0000082 GO:0010972 GO:0034086 GO:0045840 by HLA class II pep GO:0065009 GO:2001141 GO:1901360	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0007095 1.01 GO:0034091 0tides up-modulate 2.25 GO:0051336 1.97 GO:0090304 GO:0071704	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156 GO:0044818 GO:0034182 GO:0034182 GO:0043547 GO:0044238 GO:0008152
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:0030330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 G2/M DNA damag GO:1902749 mitotic sister chro GO:0007064 GO:0034184 Recurrence-excl positive regulation GO:0043085 GO:0043087 gene expression GO:0034641 GO:0051252 GO:2000112	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072331 GO:0072401 GO:1902400 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 matid cohesion GO:0007063 GO:0034093 Usive antigens and n of hydrolase activity GO:0044093	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0072422 GO:0045787 GO:0045787 GO:0045787 GO:0045876 GO:0051984 proteins exclusiv y GO:0051345	GO:1903047 GO:1901988 GO:0044839 GO:0044839 GO:0072413 GO:0072413 GO:0072413 GO:007250 GO:1902750 GO:0034088 GO:0051785 vely represented I GO:0050790 GO:0006355 GO:0006355 GO:0006725 GO:0097659	GO:0010389 GO:000086 GO:0042770 GO:0042770 GO:0072431 GO:0000082 GO:0010972 GO:0034086 GO:0045840 by HLA class II per GO:0065009 GO:2001141 GO:1901360 GO:0044237	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0007095 1.01 GO:0034091 tides up-modulate 2.25 GO:0051336 1.97 GO:0090304 GO:0071704 GO:0051171	GO:0044770 GO:007346 GO:0072395 GO:1902807 GO:0044843 GO:0071156 GO:0044818 GO:0034182 GO:0034182 GO:0043547 GO:0043547 GO:00043547
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:0030330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 G2/M DNA damag GO:1902749 mitotic sister chro GO:0007064 GO:0034184 Recurrence-excl positive regulation GO:0043085 GO:0043085 GO:0043087 gene expression GO:0034641 GO:0034641 GO:0003457	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072331 GO:0072401 GO:1902400 GO:0044819 cycle process GO:0090068 ge checkpoint GO:0010389 matid cohesion GO:0007063 GO:0007063 GO:0007063 GO:0007063 GO:00044093	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:000750 GO:0045787 GO:0045787 GO:0045787 GO:0045876 GO:0051984 proteins exclusi y GO:0051345 GO:0006139 GO:0006139 GO:0006139 GO:0006351 GO:0006351 GO:0006351 GO:0006070	GO:1903047 GO:1901988 GO:0044839 GO:0044773 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:007250 GO:007250 GO:0034088 GO:0051785 vely represented I GO:0050790 GO:0006355 GO:0006355 GO:0006725 GO:0097659 GO:0097659 GO:00043170	GO:0010389 GO:000086 GO:0042770 GO:0042770 GO:0072431 GO:0072431 GO:0000082 GO:0010972 GO:0034086 GO:0045840 Dy HLA class II pep GO:0065009 GO:2001141 GO:1901360 GO:00044237 GO:0034654	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0007095 1.01 GO:0034091 tides up-modulate 2.25 GO:0051336 1.97 GO:0090304 GO:0071704 GO:0051171 GO:0060255	GO:0044770 GO:007346 GO:007345 GO:1902807 GO:0044843 GO:0071156 GO:0044818 GO:0034182 dat recurrence GO:0043547 GO:0044238 GO:0008152 GO:0008152 GO:0010468 GO:0032774
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:00330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 G2/M DNA damag GO:1902749 mitotic sister chro GO:0007064 GO:0034184 Recurrence-excl positive regulation GO:0043085 GO:0043085 GO:0043087 gene expression GO:0034641 GO:0051252 GO:2000112 GO:0006357 GO:0010467	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:1902400 GO:0072401 GO:0072401 GO:0072401 GO:0072401 GO:007068 ge checkpoint GO:0000688 ge checkpoint GO:0007063 GO:0034093 usive antigens and n of hydrolase activity GO:0044093 GO:1903506 GO:0046483 GO:0010556 GO:0006807 GO:0006807 GO:0006366	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1092402 GO:0045787 GO:0045787 GO:0045787 GO:0045876 GO:0051984 Proteins exclusiv GO:0051345 GO:0006139 GO:0006139 GO:0006351 GO:0016070 GO:0044271	GO:1903047 GO:1901988 GO:0044839 GO:004473 GO:2000134 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:007250 GO:0034088 GO:0051785 vely represented I GO:0050790 GO:0006355 GO:0006355 GO:000725 GO:0097659 GO:0097659 GO:0097659 GO:0097889	GO:0010389 GO:000086 GO:0042770 GO:0042770 GO:0072431 GO:0072431 GO:0000082 GO:0010972 GO:0034086 GO:0045840 by HLA class II pep GO:0065009 GO:2001141 GO:1901360 GO:0044237 GO:0034654 GO:0031326	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0007095 1.01 GO:0034091 tides up-modulate 2.25 GO:0051336 1.97 GO:0090304 GO:0071704 GO:0071704 GO:0051171 GO:0060255 GO:1901362	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0044818 GO:0034182 GO:0034182 GO:0043547 GO:0043547 GO:0008152 GO:0010468 GO:0032774 GO:0018130
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:003030 GO:1902403 GO:0031571 regulation of cell of GO:0010564 GO:0010564 GO:0010564 GO:007064 GO:0007064 GO:0034184 Recurrence-excl positive regulation GO:0043085 GO:0043087 gene expression GO:0034641 GO:0051252 GO:2000112 GO:0006357 GO:001467 GO:0044260	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:1902400 GO:0072401 GO:0072401 GO:0072401 GO:00044819 cycle process GO:0090068 ge checkpoint GO:0010389 imatid cohesion GO:0007063 GO:0004093 usive antigens and n of hydrolase activity GO:0044093 GO:1903506 GO:0044093 GO:1903506 GO:0046483 GO:0010556 GO:0006807 GO:0006807 GO:0006366 GO:0019438	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1902402 GO:0045787 GO:0045787 GO:0045787 GO:0045876 GO:0051984 Proteins exclusiv GO:0051345 GO:0006139 GO:0019219 GO:0006351	GO:1903047 GO:1901988 GO:0044839 GO:0044839 GO:000134 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0071158 GO:0071158 Vely represented I GO:0050790 GO:0006355 GO:0006725 GO:0097659 GO:0043170 GO:0009889 GO:0009889 GO:0019222	GO:0010389 GO:000086 GO:0042770 GO:0042770 GO:0072431 GO:0072431 GO:0000082 GO:0010972 GO:0034086 GO:0045840 by HLA class II pep GO:0065009 GO:2001141 GO:1901360 GO:0044237 GO:0034654 GO:0031326 GO:009058	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0034091 tides up-modulate 2.25 GO:0051336 1.97 GO:0090304 GO:0071704 GO:0071704 GO:0051171 GO:0060255 GO:1901362 GO:1901576	GO:0044770 GO:007346 GO:007395 GO:1902807 GO:0044843 GO:0044848 GO:0034182 GO:0034182 GO:0044818 GO:0034182 GO:0044238 GO:0044238 GO:00043547 GO:0044238 GO:00044238 GO:00043547 GO:0010468 GO:0032774 GO:0018130 GO:0031323
negative regulatic GO:000075 GO:000077 GO:0007093 GO:1901990 GO:00330 GO:1902403 GO:0031571 regulation of cell of GO:0010564 G2/M DNA damag GO:1902749 mitotic sister chro GO:0007064 GO:0034184 Recurrence-excl positive regulation GO:0043085 GO:0043085 GO:0043087 gene expression GO:0034641 GO:0051252 GO:2000112 GO:0006357 GO:0010467	GO:0044320 on of cell cycle transit GO:0007049 GO:0022402 GO:1901991 GO:0072331 GO:0072401 GO:1902400 GO:0072401 GO:0072401 GO:0072401 GO:0072401 GO:007068 ge checkpoint GO:0000688 ge checkpoint GO:0007063 GO:0034093 usive antigens and n of hydrolase activity GO:0044093 GO:1903506 GO:0046483 GO:0010556 GO:0006807 GO:0006807 GO:0006366	tion due to DNA da GO:000278 GO:0045786 GO:0051726 GO:0010948 GO:0072422 GO:1092402 GO:0045787 GO:0045787 GO:0045787 GO:0045876 GO:0051984 Proteins exclusiv GO:0051345 GO:0006139 GO:0006139 GO:0006351 GO:0016070 GO:0044271	GO:1903047 GO:1901988 GO:0044839 GO:004473 GO:2000134 GO:2000134 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:0072413 GO:007250 GO:0034088 GO:0051785 vely represented I GO:0050790 GO:0006355 GO:0006355 GO:000725 GO:0097659 GO:0097659 GO:0097659 GO:0097889	GO:0010389 GO:000086 GO:0042770 GO:0042770 GO:0072431 GO:0072431 GO:0000082 GO:0010972 GO:0034086 GO:0045840 by HLA class II pep GO:0065009 GO:2001141 GO:1901360 GO:0044237 GO:0034654 GO:0031326	GO:0010564 GO:0045930 GO:0044772 GO:0044774 GO:0006977 GO:1902806 GO:2000045 1.01 1.01 GO:0007095 1.01 GO:0007095 1.01 GO:0034091 tides up-modulate 2.25 GO:0051336 1.97 GO:0090304 GO:0071704 GO:0071704 GO:0051171 GO:0060255 GO:1901362	GO:0044770 GO:0007346 GO:0072395 GO:1902807 GO:0044843 GO:0044818 GO:0034182 GO:0034182 GO:0043547 GO:0043547 GO:0008152 GO:0010468 GO:0032774 GO:0018130

mitotic cell cycle					1.73	
GO:0022402	GO:0044772	GO:0044770	GO:1903047	GO:0000075	GO:1901990	GO:0007049
GO:0022402 GO:0000278	GO:10044772 GO:1901987	GO:0044770 GO:0010564	GO:1903047 GO:0007067	GO:0000075 GO:0000280	GO:1901990 GO:0048285	GO:0007049 GO:0000070
GO:0000278 GO:0000819	GO:0090068	GO:0010564 GO:0051726	GO:0007087 GO:0010948	GO:0000280 GO:0045787	GO:0048285 GO:0098813	GO:000070 GO:0007346
GO:0000819 GO:0007059	GO:0090088 GO:0045786	GO:1901991	GO:1901948 GO:1901988	GO:0045787 GO:0007093	GO:0098813 GO:0045930	GO:0007348 GO:0051301
GO:0007059 GO:0007062	GO.0045766	GO.1901991	GO.1901900	GO.0007093	GO.0045950	GO.0051301
response to xen	obiotio otimuluo				1.54	
GO:0006805	GO:0071466	GO:0009410			1.04	
	taphase/anaphase t				1.43	
GO:0030071	GO:1902099	GO:0010965	GO:0051784	GO:0051983	GO:0044784	GO:0045839
GO:0051306	GO:1902099 GO:0000070	GO:0000819	GO:0007091	GO:0031983 GO:0033047	GO:0044784 GO:0051304	GO:0043839 GO:0031577
GO:0007094	GO:0000070 GO:0045841	GO:0000819 GO:0071174	GO:2000816	GO:0033047 GO:0071173	GO:1902100	GO:0033048
GO:0007094 GO:0051783	GO:0043841 GO:0033045	GO:0033046	GO:0051985	GO:0007088	GO:1902100 GO:1901991	GO:1901988
GO:0007093	GO:0033045 GO:0033044	GO:0033040 GO:0010639	GO:2001251	GO.0007088	GO.1901991	GO.1901966
	on of G1/S phase tra		00.2001201		1.42	
GO:1901992	GO:0090068	GO:1901989	GO:1900087	GO:0007089	GO:1902808	GO:0045931
chromatin organ		GO.1901969	GO.1900087	GO.0007089	1.36	GO.0045951
GO:0016570	GO:0016569	GO:0051276	GO:0006325	GO:0018205	1.50	
cerebellum mor		00.0031270	00.0000323	00.0010203	1.32	
GO:0022037	GO:0030902	GO:0021549	GO:0021695	GO:0021696	GO:0021575	GO:0021587
GO:0022037	GO:0021697	GO:0021692	GO:0021033 GO:0021702	GO:0021694	GO:0021680	00.0021307
DNA repair	00.0021007	00.0021032	00.0021702	00.0021004	1.30	
GO:0006974	GO:0006259	GO:0006281			1.00	
polyketide metal		00.0000201			1.21	
GO:0071395	GO:0009753	GO:1901661	GO:0044598	GO:0044597	GO:0030638	GO:0030647
GO:0042448	GO:0016137	GO:0019748	GO:0008207	GO:0001523	40.0000000	40.000001/
triglyceride meta		40.0010710	GO.0000207	0.0.0001020	1.17	
GO:0006639	GO:0006638	GO:0006641	GO:0046486			
	ion of DNA-template		0.010010100		1.13	
GO:0006357	GO:0006366	GO:0000122	GO:0045934	GO:0051253	GO:1902679	GO:0051172
GO:1903507	GO:0009892	GO:0031327	GO:0045892	GO:0010558	GO:0010605	GO:0009890
GO:0031324	GO:0010629	GO:2000113				
proton-transport	ing ATP synthase c	omplex assembly			1.12	
GO:0043461	GO:0070272	GO:0070071				
activation of pho	spholipase activity				1.05	
GO:0007202	GO:0060193	GO:1900274	GO:0060191	GO:0010518	GO:0010863	GO:0010517
negative regulat	ion of muscle cell di	ifferentiation			1.04	
GO:0051153	GO:0051154	GO:0051148	GO:0051147	GO:0010832	GO:0010830	
behavioral defer	nse response				1.03	
GO:0042596	GO:0033555	GO:0001662	GO:0002209			
positive regulation	on of pri-miRNA trar	nscription			1.01	
GO:1902895	GO:1902893	ĠO:0061614				

SARGPSTPGVLSNCTSPLPG

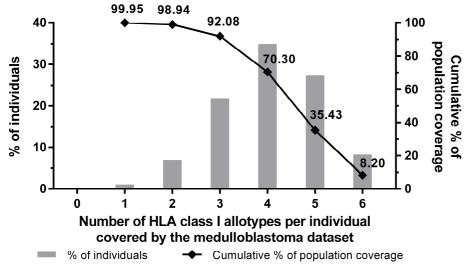
Supplementary Figure 5. Fragment spectrum of candidate neo-antigenic HLA class II-restricted peptide derived from mutant ATG9B (ENST0000377974 / ENSG00000181652 c.2294A>G; UPI00015E055A p.756E>G) detected in patient ZH750. The mutated amino acid is marked in red within the sequence, whereas b and y ions are indicated as red and blue peaks in the fragment spectrum, respectively. SARGPSTPGVLSNCTSPLPG was identified with 2.8% FDR (q value = 0.028) and on rank 1 by MHCquant, but annotated on rank 2 by SEQUEST and was therefore excluded from further validation steps.

Supplementary Table 9. Effect of the p.343P>T mutation in patient ZH681 on the phosphorylation state of PDGFRa. Using the PhosphoMotif Finder of the Human Protein Reference Database, the presence of phosphorylation motifs in PDGFRa was assessed for the WT sequence, the p.343P>T mutant version of patient ZH681, and the p.343P>S variant listed in the COSMIC database for two glioblastoma patients. Neo-phosphorylated tyrosine, threonine, and serine residues were subsequently investigated for being part of a neo-phosoho binding motif for proteins. Listed phosphorylation motifs and binding sites refer to mutated position 343 plus the first site before and after the mutation.

Position in PDGFRα	Sequence in PDGFRα Mutated AA in red	Corresponding motif Phosphorylated AA in blue	Features of motif
Tyrosine phosphoryl	ation motifs		
WT PDGFRα			
288-289	AE	pY[A/G/S/T/E/D]	Src kinase substrate motif
372-375	EIRY	[E/D]XX <mark>pY</mark>	ALK kinase substrate motif
ZH681 PDGFRα p.343	3P>T: 1 neo-phosphoryl	ation motif	
288-289	AE	pY[A/G/S/T/E/D]	Src kinase substrate motif
342-343	YT	pY[A/G/S/T/E/D]	Src kinase substrate motif
372-375	EIRY	[E/D]XX <mark>pY</mark>	ALK kinase substrate motif
COSMIC PDGFRα p.3	343P> <mark>S</mark> : 1 neo-phosphor	rylation motif	
288-289	AE	pY[A/G/S/T/E/D]	Src kinase substrate motif
342-343	Y <mark>S</mark>	pY[A/G/S/T/E/D]	Src kinase substrate motif
372-375	EIRY	[E/D]XX <mark>pY</mark>	ALK kinase substrate motif
Serine / threonine ph	osphorylation motifs		
WT PDGFRα			
322-325	SQLE	[pS/pT]XX[E/D]	Casein kinase II substrate motif
346-348	RIS	RX <mark>pS</mark>	PKA kinase substrate motif
ZH681 PDGFRα p.343	3P>T: 8 neo-phosphoryl	ation motifs	
322-325	SQLE	[<mark>pS/pT</mark>]XX[E/D]	Casein kinase II substrate motif
339-347	VRAYTPPRI	[M/V/L/I/F][R/K/H]XX[pS/pT]XXX[M/V/L/I/F]	AMP-activated protein kinase substrate motif
340-343	RAY <mark>T</mark>	RXX[pS/pT]	Calmodulin-dependent protein kinase II substrate motif
340-343	RAYT	[R/K]XX[<mark>pS/pT</mark>]	PKC kinase substrate motif
340-346	RAYTPPR	RXX[pS/pT]XXR	CLK1 kinase substrate motif
342-344	YTP	X[pS/pT]P	GSK-3, ERK1, ERK2, CDK5 substrate motif
343-346	TPPR	[pS/pT]PX[R/K]	CDK1, 2, 4, 6 kinase substrate motif
343-346	TPPR	[pS/pT]PX[R/K]	Growth associated histone HI kinase substrate motif
343-346	TPPR	[pS/pT]PX[R/K]	Cdc2 kinase substrate motif
346-348	RIS	RXpS	PKA kinase substrate motif
· · · ·	· · ·	orylation motifs, 1 neo-phosphatase motif	
322-325	SQLE	[pS/pT]XX[E/D]	Casein kinase II substrate motif
339-347	VRAY <mark>S</mark> PPRI	[M/L/V/I/F][R/K/H]XXSXXX[M/L/V/I/F]	HMGCoA reductase kinase substrate motif
339-347	VRAYSPPRI	[M/L/V/I/F][R/K/H]XX[pS/pT]XXX[M/L/V/I/F]	AMP-activated protein kinase substrate
340-343	RAYS	RXXpS	Calmodulin-dependent protein kinase I substrate motif
340-343	RAYS	RXXpS	PKA kinase substrate motif
340-343	RAY <mark>S</mark>	RXX[pS/pT]	Calmodulin-dependent protein kinase II substrate motif
340-343	RAY <mark>S</mark>	[R/K]XX[pS/pT]	PKC kinase substrate motif
340-346	RAY <mark>S</mark> PPR	RXX[pS/pT]XXR	CLK1 kinase substrate motif
341-344	AYSP	XX <mark>pS</mark> P	GSK-3, ERK1, ERK2, CDK5 substrate motif
342-344	Y S P	X[pS/pT]P	GSK-3, ERK1, ERK2, CDK5 substrate motif
343-344	SP	pSP	ERK1, ERK2 kinase substrate motif
343-346	SPPR	[pS/pT]PX[R/K]	CDK1, 2, 4, 6 kinase substrate motif
343-346	SPPR	[pS/pT]PX[R/K]	Growth associated histone HI kinase substrate motif
343-346	SPPR	[<mark>pS/pT</mark>]PX[R/K]	Cdc2 kinase substrate motif
343-347	SPPRI	pSPX[R/K]X	CDK kinase substrate motif
346-348	RIS	RX <mark>pS</mark>	PKA kinase substrate motif

Phospho-tyros	sine binding motifs		
WT PDGFRa:	o.342Y not phosphory	lated	
136-139	YLVI	pY[M/I/L/V]X[M/I/L/V]	GRB2, 3BP2, Csk, Fes, Syk C-terminal SH2 domain binding motif
555-557	YEI	pY [E/M/V][N/V/I]	3BP2 SH2 domain binding motif
ZH681 PDGFR	α p.343P> <mark>T</mark> : 2 neo-pho	ospho-tyrosine binding motifs	
136-139	YLVI	pY [M/I/L/V]X[M/I/L/V]	GRB2, 3BP2, Csk, Fes, Syk C-terminal SH2 domain binding motif
342-345	YTPP	pY XXP	Crk SH2 domain binding motif
342-345	YTPP	pYXXP	RasGAP C-terminal SH2 domain binding motif
555-557	YEI	pY[E/M/V][N/V/I]	3BP2 SH2 domain binding motif
COSMIC PDGF	⁻ Rα p.343P> <mark>S</mark> : 2 neo-p	bhospho-tyrosine binding motifs	
136-139	YLVI	pY [M/I/L/V]X[M/I/L/V]	GRB2, 3BP2, Csk, Fes, Syk C-terminal SH2 domain binding motif
342-345	Y <mark>S</mark> PP	pYXXP	Crk SH2 domain binding motif
342-345	Y <mark>S</mark> PP	pYXXP	RasGAP C-terminal SH2 domain binding motif
555-557	YEI	pY[E/M/V][N/V/I]	3BP2 SH2 domain binding motif
Phospho-serin	e / -threonine binding	motifs	
WT PDGFRa			
157-158	TP	[pS/pT]P	WW domain binding motif
374-377	RYRS	RXX <mark>pS</mark>	14-3-3 domain binding motif
ZH681 PDGFR	α p.343P> <mark>T</mark> : 1 neo-pho	ospho-threonine binding motif	
157-158	TP	[pS/pT]P	WW domain binding motif
343-344	TP	[pS/pT]P	WW domain binding motif
374-377	RYRS	RXX <mark>pS</mark>	14-3-3 domain binding motif
COSMIC PDGF	⁻ Rα p.343P> <mark>S</mark> : 2 neo-p	bhospho-serine binding motifs	
157-158	TP	[pS/pT]P	WW domain binding motif
340-343	RAYS	RXX <mark>pS</mark>	14-3-3 domain binding motif
343-344	SP	[pS/pT]P	WW domain binding motif
374-377	RYRS	RXX <mark>pS</mark>	14-3-3 domain binding motif

Supplement of CHAPTER 3


0

Supplementary Table 10. HLA class I allotype and allele frequencies in the medulloblastoma collective comprising n=28 patients. The top three ranking HLA-A, -B, and -C allotypes within the study cohort are marked in bold.

HLA allotype	Positive patients	Allele frequency	HLA allotype	Positive patients	Allele frequency
A*01:01	14%	7%	B*37:01	4%	2%
A*02:01	39%	21%	B*38:01	4%	2%
A*02:02	4%	2%	B*40:02	7%	4%
A*02:05	4%	2%	B*41:01	4%	2%
A*02:11	4%	2%	B*41:02	4%	2%
A*03:01	32%	16%	B*44:02	25%	13%
A*11:01	21%	11%	B*44:03	11%	5%
A*24:02	14%	7%	B*44:05	4%	2%
A*25:01	7%	4%	B*49:01	4%	2%
A*26:01	11%	5%	B*50:01	7%	4%
A*29:02	7%	4%	B*51:01	14%	9%
A*30:01	4%	2%	B*52:01	7%	4%
A*31:01	7%	4%	B*57:01	11%	5%
A*32:01	7%	4%	B*58:01	4%	2%
A*68:01	14%	7%	C*01:02	11%	5%
A*68:02	4%	2%	C*02:02	18%	9%
A*80:01	4%	2%	C*03:03	4%	2%
B*07:02	11%	5%	C*04:01	21%	13%
B*08:01	7%	4%	C*05:01	14%	9%
B*13:02	11%	5%	C*06:02	32%	16%
B*15:01	4%	2%	C*07:01	21%	11%
B*15:08	4%	2%	C*07:02	11%	5%
B*15:18	4%	2%	C*07:04	14%	7%
B*18:01	11%	5%	C*12:02	7%	4%
B*27:02	4%	2%	C*12:03	7%	4%
B*27:05	11%	5%	C*14:02	7%	4%
B*35:01	11%	5%	C*15:02	11%	5%
B*35:02	4%	2%	C*16:01	7%	4%
B*35:03	7%	4%	C*16:04	4%	2%
B*35:08	4%	2%	C*17:01	4%	2%
	frequen	cy of positive med	lulloblastoma p	patients [%]	•

20

40

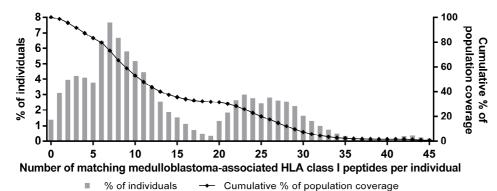
Supplementary Figure 6. HLA class I allotype population coverage. Using the population coverage tool provided by the IEDB Analysis Resource, the world population coverage of the 60 distinct HLA-A, -B, and -C allotypes was calculated. The percentage of individuals positive for a specific number of HLA class I allotypes (max. of 6) is indicated by bar charts (associated with the left y-axis). The line diagram (associated with the right y-axis) shows the cumulative percentage of population coverage. The HLA class I allotypes of the medulloblastoma cohort cover 99.95% of the world population (first diamond on line diagram counted from the left) meaning that only 0.05% of all individuals are negative for all HLA-A, -B, and -C allotypes included in the present study (first bar counted from the left). 92.08% of all individuals are positive for at least three HLA class I allotypes (third diamond on line diagram counted from the left).

Supplementary Table 11. Medulloblastoma-associated HLA class I- and II-presented antigens identified on at least three tumors. GTEx profiles were assessed from all available datasets excepting EBV-transformed lymphocytes and cultured fibroblasts. Medulloblastoma-exclusive antigens with a brain-specific expression profile > 10 TPM were not reported (HLA class I: n=13; HLA class II: n=6) as candidate targets. Color codes were defined as follows: < 10 TPM in any tissue, < > 10 TPM in testes and < 10 TPM in other tissues (CTA-like expression profile), = 10-20 TPM in any tissue, = 20-30 TPM in any tissue, **I** > 30 TPM in any tissue. The number of positive tumors other than medulloblastoma was based on n=874 HLA class I and n=626 HLA class II peptidome datasets. HLA restrictions not passing manual assessment as quality control are indicated in italic. These peptides were excluded from downstream analyses such as calculation of peptides matching per patient worldwide. HLA class IIpresented proteins neither identified with peptides exceeding a length of twelve AA nor with different sequences across patients were not considered for this listing of candidate target antigens. SYCP3 was detected with only one HLA class II peptide sequence across all patients. To indicate the distribution of antigens across subgroups and age classes, the following abbreviations were used: WNT-activated (W). SHH-activated (S), non-WNT/non-SHH (including those subclassified in Group 3 or Group 4; N), childhood medulloblastoma (\leq 15 years; C), adult medulloblastoma (\geq 25 years; A).

Antigen	Frequency of positive patients	Peptide sequence	HLA restriction	UniProt accession GTEx profile	Positive non-MB tumors
Medulloblastoma-associat	ed HLA class I antige	ns			
Serine protease inhibitor Kazal-type 8 (SPINK8)	29% / NSW / C HH-06 SA2 SA5 Wü-N998/13 ZH513 ZH713 ZH713 ZH732 ZH872	ILFEGLNITK ILFEGLNITK ILFEGLNITK ILFEGLNITK ILFEGLNITK ILFEGLNITK ILFEGLNITK ILFEGLNITK	A*11:01 A*11:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01 A*03:01	P0C7L1 ■	5

Protein Wnt-5a (WNT5A)	25% / NSW / AC			P41221 🗖	51
	HH-01	AMSSKFFLV	A*02:01		
	Wü-N391/17	AMSSKFFLV	A*02:01		
	ZH703	AMSSKFFLV	A*02:01		
	ZH718	AMSSKFFLV	A*02:01		
	ZH741	AMSSKFFLV	A*02:01		
	ZH868	AMSSKFFLV	A*02:01		
	ZH937	AMSSKFFLV	A*02:01		
Protein shisa-9 (SHISA9)	<u>18% / N / C</u>			B4DS77 🔳	11
	HH-02	KVNDDFYTK	A*11:01		
	HH-06 SA2	KVNDDFYTK KVNDDFYTK	A*11:01 A*11:01		
	ZH513	KVNDDFYTK	A*03:01;		
	211010	RUNDDITTR	A*11:01		
	ZH732	KMPPHPLAY	A*80:01		
Insulinoma-associated	14% / NS / AC		71 00.01	Q96T92 🔳	1
protein 2 (INSM2)	HH-06	STFFSSPGLTR	A*11:01	Q30132 	1
	SA2	STFFSSPGLTR	A*11:01		
	ZH872	ESFPGGAAAV	A*68:02		
	ZH913	STFFSSPGLTR	A*68:01		
Transcription factor HES-4	14% / NS / C			Q9HCC6	19
(HES4)	HH-06	LEKADILEM	B*41:02		
1 peptide multi-maps to non-	ZH703	RINESLAQLK	A*03:01		
MB-exclusive HES1	ZH872	RINESLAQLK	A*03:01		
(Q14469) and HES5	ZH890	SSKPVMEKR	A*31:01		
(Q5TA89)					
Solute carrier family 22	<u>14% / N / C</u>			O15245 🗖	7
member 1 (SLC22A1)	Wü-N526/17	RLIQGLVSK	A*03:01		
peptides multi-map to non-	ZH703	RLIQGLVSK	A*03:01		
MNG-exclusive SLC22A2	ZH513	RLLQGLVSK	A*03:01		
(O15244)	ZH732	RLLQGLVSK	A*03:01		
Insulin-like growth factor-	14% / NS / C			Q8WX77 🔳	24
binding protein-like 1	HH-02	FPAPDDRM	B*35:01		
(IGFBPL1)	ZH513	STVTVLDLSK	A*11:01		
	ZH859	FPAPDDRM	B*35:02		
	ZH872	RAVPTPVITW	B*57:01		
Mitochondrial coenzyme Q-	14% / N / C			Q96MF6	16
binding protein COQ10	HH-06	ATMFFDEVVK	A*11:01		
homolog A (COQ10A)	SA5	EVVSNVQEY	A*26:01		
	Wü-N526/17	EVVSNVQEY	A*26:01		
	ZH713	EVVSNVQEY	A*26:01		
NADH dehydrogenase	14% / NSW / AC			Q9NRX3 🗖	77
[ubiquinone] 1 alpha	Wü-N391/17	DQYKFLAV	B*52:01		
subcomplex subunit 4-like 2	Wü-N998/13	DQYKFLAV	B*51:01		
(NDUFA4L2)		GASLGARFY	A*29:02		
	ZH890	AGASLGARFY	A*01:01		
		AGASLGARFYR	A*31:01		
	711010	ASLGARFYR	A*31:01		
	ZH913	GASLGARFY	A*29:02		
Neuronal migration protein	<u>11% / NS / C</u>		A+11 01	O43602 🔳	13
doublecortin (DCX)	SA2	GTSSSQLSTPK	A*11:01		
1 peptide multi-maps to non- MB-exclusive doublecortin-	74709	SLDDSDSLGDSM LLADLTRSL	A*01:01		
like kinase 1/2 (DCLK1/2;	ZH703	LLADLINGL	A*02:02; <i>B*13:02</i>		
015075/Q8N568)	ZH859	TAHSFEQVL	B*35:02		
Oligodendrocyte transcription			_ 30.0L	Q7RTU3	20
factor 3 (OLIG3)	HH-06	EVMPYAHGPSVR	A*68:01	G/ TI US	20
1 peptide multi-maps to MB-	Wü-N526/17	RLSAESKDLLK	A*03:01		
exclusive OLIG2 (Q13516)	ZH913	EVMPYAHGPSVR	A*68:01		
with brain-associated					
expression					
BTB/POZ domain-containing	<u>11% / NSW / AC</u>			A6NE02 🔳	8
protein 17 (BTBD17)	HH-06	AVFDKFIRY	A*11:01		-
	Wü-N998/13	AVFDKFIRY	A*03:01;		
	-		A*29:02		
	ZH913	AVFDKFIRY	A*29:02		
Embryonal Fyn-associated	11% / NSW / AC			O43281 🗖	21
substrate (EFS)	Wü-N998/13	STGDLQLLY	A*03:01;		
· · ·			A*29:02		
	ZH732	STGDLQLLY	A*80:01;		
			C*02:02		
	ZH913	AESPQELSF	B*44:02;		
			B*44:03		
		STGDLQLLY	A*29:02		
Vacuolar ATPase assembly	<u>11% / SW / C</u>			Q3ZAQ7 <mark>-</mark>	18
integral membrane protein	Wü-N998/13	MSNRDSYFY	A*29:02		
VMA21 (VMA21)	ZH868	STLKTLLFF	B*57:01		
	ZH872	STLKTLLFF	B*57:01		

SERTA domain-containing protein 4 (SERTAD4)	<u>11% / SW / AC</u> Wü-N998/13	FYDYFETGY	A*29:02;	Q9NUC0 ■	18
	ZH872	GISNPITTSK	C*14:02 A*03:01		
Medulloblastoma-associate	ZH913	FYDYFETGY	A*29:02		
	3	-115		0914/277 -	7
Insulin-like growth factor- binding protein-like 1 (IGFBPL1)	<u>36% / NS / AC</u> HH-03	AVPTPVITWRKVTKSPE VPTPVITWRKVTKSPE VPTPVITWRKVTKSPEG		Q8WX77 ∎	7
	SA2	ATAWILINPLRKED ATAWILINPLRKEDE GPSDHEATAWILINPLRKEDE			
	SA3	GPSDHEATAWILINPLRKEDEG AVPTPVITWRKVTKSPEGTQ PTPVITWRKVTKSPEG TPVITWRKVTKSPEG TPVITWRKVTKSPEGTQ VPTPVITWRKVTKSPE VPTPVITWRKVTKSPEG VPTPVITWRKVTKSPEGT VPTPVITWRKVTKSPEGTQ			
	ZH513	VRAVPTPVITWRKVTKSPEGTQA AVPTPVITWRKVTKSPE AVPTPVITWRKVTKSPEG VPTPVITWRKVTKSPE VPTPVITWRKVTKSPEG			
	ZH713 ZH718 ZH732	VPTPVITWRKVTKSPE VPTPVITWRKVTKSPE AVPTPVITWRKVTKSPE AVPTPVITWRKVTKSPEG PTPVITWRKVTKSPE RAVPTPVITWRKVTKSPEG			
	ZH868	TPVITWRKVTKSPE VPTPVITWRKVTKSP VPTPVITWRKVTKSP VPTPVITWRKVTKSPE VPTPVITWRKVTKSPEG LLLPLLPPLSP			
	ZH872	DLSKYRSFHFPAPDD DLSKYRSFHFPAPDDR DLSKYRSFHFPAPDDR DLSKYRSFHFPAPDD LSKYRSFHFPAPDD LSKYRSFHFPAPDDR LSKYRSFHFPAPDDRM SHSTVTVLDLSKYRSFHFPAPDDRM SKYRSFHFPAPDDR SKYRSFHFPAPDDRM STVTVLDLSKYRSFHFPAPDDRM VLDLSKYRSFHFPAPDDRM VTVLDLSKYRSFHFPAPDDRM			
	ZH913	ATAWILINPLRKED GPSDHEATAWILINPLRKEDE GPSDHEATAWILINPLRKEDEG LPGDHVNIAVQVRGGPS			
E3 SUMO-protein ligase CBX4 (CBX4)	21% / NSW / AC HH-02 SA5 Wü-N998/13 ZH513 ZH718 ZH913	GIGGKMKIVKNKNKNGRIVIVMSKY RERQEQLMGYRKRGPK GIGGKMKIVKNKNKNGRIVIVMSKY IVKNKNKNGRIVIVMSKY GIGGKMKIVKNKNKNGRIVIVMSKY GIGGKMKIVKNKNKNGRIVIVMSKY		O00257 =	10
N-acetyltransferase ESCO1	21% / NSW / AC			Q5FWF5	17
(ESCO1)	HH-02 HH-05 ZH713 ZH718 ZH859 ZH937	KVLEVKSDSKEDENLVINEVINSPK WVFSMMRRKKIASRMIECLRSNFIY KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK			
Synaptonemal complex protein 3 (SYCP3)	<u>18% / NS / C</u> HH-02 Wü-N526/17 ZH713 ZH732 ZH859	KASLKTSNQKIEHVWKTQQDQRQKL KASLKTSNQKIEHVWKTQQDQRQKL KASLKTSNQKIEHVWKTQQDQRQKL KASLKTSNQKIEHVWKTQQDQRQKL KASLKTSNQKIEHVWKTQQDQRQKL		Q8IZU3 🔸	2


Thyroid transcription factor 1-associated protein 26 (CCDC59)	<u>18% / SW / AC</u> HH-01 SA2 Wü-N998/13	RKLKIQQSYKKLL RKLKIQQSYKKLL RKLKIQQSYKKLL RRKLKIQQSYKKLL VREGQGFAFRRKLKIQQSYKKLL	Q9P031 =	3
	ZH868 ZH913	RRKLKIQQSYKKLL RRKLKIQQSYKKLL		
Protein LLP homolog (LLPH)	<u>14% / NSW / C</u> HH-04 HH-05 SA1 ZH868	AKSLRSKWKRKMRAEKRKK AKSLRSKWKRKMRAEKRKK KNAPKEASRLKSILK KNAPKEASRLKSILK	Q9BRT6 ∎	5
Platelet-activating factor acetylhydrolase (PLA2G7)	<u>11% / NS / C</u> ZH680 ZH718 ZH919	KASLAFLQKHLGLHK KASLAFLQKHLGLHK NKASLAFLQKHLGLHK KASLAFLQKHLGLHK	Q13093 -	30
Protocadherin-20 (PCDH20)	<u>11% / NS / AC</u> ZH703 ZH913 ZH919	KGEKHPREDENLEVQIPLKGKIDLH KPMDYELQQFYEVAVVAWNSE IIKVIFRPPEIVPR	Q8N6Y1	5
Something about silencing protein 10 (UTP3)	<u>11% / NW / C</u> HH-02 SA1 Wü-N998/13	RRKKIDRNPRVKHREKFRRAKIRRR SGELSGIRAGVKKSIKLK SGELSGIRAGVKKSIKL	Q9NQZ2	5
CGG triplet repeat-binding protein 1 (CGGBP1)	<u>11% / NS / AC</u> SA2 ZH680 ZH913	ADHPAVRAFLSRHVKN DHPAVRAFLSRHVKN DHPAVRAFLSRHVKN	Q9UFW8 =	4

Supplementary Table 12. Medulloblastoma-associated HLA class I ligands presented on at least five tumors. Peptides already reported to derive from medulloblastoma-associated antigens were excluded from this listing. In turn, some of those antigens not designated as medulloblastoma-associated due to a CNS-associated expression profile are listed herein with medulloblastoma-associated peptides. The number of positive tumors other than medulloblastoma was based on n=874 HLA class I peptidome datasets. HLA restrictions not passing manual assessment as quality control are indicated in italic. These combinations of sequence and HLA restriction were excluded from downstream analyses such as calculation of peptides matching per patient worldwide. Peptides with an HLA restriction not covered by the CNS-related subset (brain, cerebellum, and spinal cord) of the benign database were excluded as well, since it is possible that these are false positive tumor-exclusive peptides arising owing to insufficient depth of the benign dataset (marked in grey). To indicate the distribution of antigens across subgroups and age classes, the following abbreviations were used: WNT-activated (W), SHH-activated (S), non-WNT/non-SHH (including those subclassified in Group 3 or Group 4; N), childhood medulloblastoma (< 15 years; C), adult medulloblastoma (> 25 years; A).

Peptide sequence	HLA restriction	Frequency or patients	f positive	Antigen (UniProt accession)	Protein frequency on medullo- blastomas	Peptide-positive non-MB tumors Protein frequency on non-MB tumors	Protein frequency on benign samples (n=418)
ASYQEALARL	A*24:02 C*02:02 <i>C*04:01</i> C*16:01 C*17:01	<u>29%</u> HH-04 HH-06 Wü-N526/17 ZH513	<u>NSW / C</u> HH-05 SA5 Wü-N998/13 ZH859	Glial fibrillary acidic protein (GFAP; P14136)	100%	20 17%	16%
GDRYDGMVGF	B*37:01 B*41:02 B*44:02 B*44:03 C*06:02 <i>C*07:01</i> C*07:02	<u>25%</u> HH-02 HH-05 SA2 Wü-N998/13	<u>NW / C</u> HH-04 HH-06 SA4	Heterogeneous nuclear ribonucleoprotein K (HNRNPK; P61978)	75%	2 68%	64%
SAASLLLNR	A*03:01 A*11:01 A*68:01	<u>25%</u> HH-03 SA2 ZH513 ZH913	<u>NSW / AC</u> HH-05 SA5 ZH872	Sorting nexin-14 (SNX14; Q9Y5W7)	39%	3 16%	16%
ALLDGRVQL	A*02:01	<u>25%</u> HH-01 SA3 ZH741 ZH937	<u>NSW / AC</u> SA1 ZH718 ZH868	Agrin (AGRN; O00468)	46%	43 19%	11%

GSLNVTLEH	A*03:01 A*11:01 <i>A*80:01</i>	<u>25%</u> HH-02 SA2 Wü-N998/13	<u>NW / C</u> HH-06 SA5 ZH513	DNA (cytosine-5)- methyltransferase 3A (DNMT3A; Q9Y6K1)	46%	8 11%	6%
LLYPVPLVH	A*03:01	ZH732 <u>25%</u> Wü-N526/17 ZH513 ZH732 ZH872	<u>NSW / C</u> Wü-N998/13 ZH703 ZH859	Kinesin-like protein KIF1A (KIF1A; Q12756)	57%	19 18%	15%
SVYSTPVFSQK	A*03:01 A*11:01	25% HH-06 Wü-N998/13 ZH713 ZH872	<u>NSW / C</u> SA2 ZH703 ZH732	Gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2; P18507)	25%	1 1%	0.5%
AAAGGAFPR	A*11:01 A*68:01	<u>21%</u> HH-02 HH-06 SA2	<u>N / C</u> HH-03 SA1 ZH513	Sortilin (SORT1; Q99523)	29%	6 6%	5%
ATFYSSPGLTR	A*03:01 A*11:01 A*68:01	<u>21%</u> HH-02 SA2 ZH872	<u>NS / AC</u> HH-06 ZH513 ZH913	Insulinoma-associated protein 1 (INSM1; Q01101)	21%	3 1%	0.2%
GLAEEVQRL	A*02:01 A*02:02 A*02:05 <i>B*13:02</i>	<u>21%</u> HH-02 Wü-N391/17 ZH718	<u>NS / C</u> HH-03 ZH703 ZH868	Alpha-internexin (INA; Q16352)	64%	6 27%	29%
KSYTHPSSLRK	A*03:01	<u>21%</u> Wü-N526/17 ZH703 ZH859	<u>NS / C</u> ZH513 ZH732 ZH872	Zinc finger protein ZIC 1/2/3/5 (ZIC1/2/3/5; Q15915 / O95409 / O60481 / Q96T25)	61% / 39% / 25% / 25%	7 4% / 5% / 2% / 6%	1% / 1% / 0% / 1%
MIMFPLFGK	A*03:01 A*11:01	<u>21%</u> HH-02 Wü-N998/13 ZH713	<u>N / C</u> SA2 ZH513 ZH732	Interphotoreceptor matrix proteoglycan 2 (IMPG2; Q9BZV3)	25%	0 1%	1%
AEIYVNSSFY	B*18:01 B*44:02 B*44:03	<u>18%</u> Wü-N526/17 ZH741 ZH913	<u>NSW / AC</u> ZH718 ZH872	ATP-binding cassette sub-family G member 2 (ABCG2; Q9UNQ0)	71%	3 8%	8%
FLDEPTTGL	A*02:01 C*05:01	<u>18%</u> HH-01 ZH718 ZH937	<u>S / AC</u> SA3 ZH868	ATP-binding cassette sub-family G member 2 (ABCG2; Q9UNQ0)	71%	0 8%	8%
AIFDDSYLGY	A*11:01 A*25:01 A*26:01	<u>18%</u> SA5 ZH680 ZH718	<u>NS / C</u> Wü-N526/17 ZH713	Integrin alpha-V (ITGAV; P06756)	89%	21 48%	41%
AILEQILSH	A*03:01 A*11:01	<u>18%</u> HH-06 ZH513 ZH872	<u>NS / C</u> SA2 ZH732	RUN domain-containing protein 3A/3B (RUNDC3A/3B; Q59EK9 / Q96NL0)	18% / 18%	1 0% / 0%	0% / 1%
ATYGLNVER	A*11:01 A*68:01	<u>18%</u> HH-02 SA2 ZH513	<u>N / C</u> HH-06 SA5	Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1/3 (AGAP1/3; Q9UPQ3 / Q96P47)	50% / 54%	6 9% / 11%	9% / 9%
GLYAGDPVSK	A*03:01	<u>18%</u> Wü-N526/17 ZH703 ZH872	<u>NSW / C</u> Wü-N998/13 ZH732	RNA pseudouridylate synthase domain- containing protein 1 (RPUSD1; Q9UJJ7)	21%	14 3%	4%
NIYEVVNPK	A*03:01 A*11:01 A*68:01	<u>18%</u> HH-02 SA5 ZH732	<u>N / C</u> HH-06 ZH513	Copine-5 (CPNE5; Q9HCH3)	46%	1 16%	16%
NLDPGAALYLY	A*01:01 A*29:02 A*80:01	<u>18%</u> SA2 ZH732 ZH913	<u>NSW / AC</u> Wü-N998/13 ZH868	BarH-like 1 homeobox protein (BARHL1; Q9BZE3)	18%	2 1%	0.5%
QEADEATLARL	B*40:02 B*44:02 B*44:03 B*44:05	<u>18%</u> Wü-N526/17 ZH732 ZH913	<u>NSW / AC</u> Wü-N998/13 ZH741	Glial fibrillary acidic protein (GFAP; P14136)	100%	8 17%	16%
RTYDPEGFK	A*03:01	<u>18%</u> Wü-N998/13 ZH732 ZH872	<u>NSW / C</u> ZH703 ZH859	Diphosphoinositol polyphosphate phosphohydrolase 3- alpha/beta (NUD10/11; Q8NFP7 / Q96G61)	36% / 36%	2 4% / 4%	4% / 4%

SVDVYQVAK	A*11:01	<u>18%</u> HH-02 SA2 ZH513	<u>N / C</u> HH-06 SA5	Receptor-type tyrosine- protein phosphatase zeta (PRPRZ1; P23471)	57%	7 11%	5%
VSLGTPIMK	A*11:01	<u>18%</u> HH-02 SA2 ZH513	<u>N / C</u> HH-06 SA5	Protein ECT2 (ECT2; Q9H8V3)	43%	8 19%	8%
YEAPVSYTF	B*18:01 B*40:02 B*44:02 B*44:03	<u>18%</u> SA3 ZH718 ZH913	<u>NSW / AC</u> ZH703 ZH741	Cingulin-like protein 1 (CGNL1; Q0VF96)	21%	6 12%	13%
YQDLLNVKL	B*13:02 B*38:01 <i>B*52:01</i> C*02:02 C*05:01	<u>18%</u> Wü-N391/17 ZH718 ZH937	<u>NSW / AC</u> ZH713 ZH741	Glial fibrillary acidic protein (GFAP; P14136)	100%	25 17%	16%
AVADFLFNV	A*02:01 A*68:02	<u>18%</u> Wü-N391/17 ZH741 ZH872	<u>SW / C</u> ZH718 ZH868	Chemokine-like receptor 1 (CMKKLR1; Q99788)	25%	10 6%	1%
DVIGTLSGF	A*25:01 A*26:01	<u>18%</u> SA5 ZH680 ZH718	<u>NS / C</u> Wü-N526/17 ZH713	Magnesium transporter NIPA2 (NIPA2; Q8N8Q9)	39%	27 11%	14%
EAIKIFNSL	A*25:01 <i>B*08:01</i> B*35:01 B*35:02 B*35:03	<u>18%</u> HH-02 ZH680 ZH890	<u>NS / C</u> ZH513 ZH859	Unconventional myosin- X (MYO10; Q9HD67)	64%	11 25%	17%
ETFPGVTALF	A*25:01 A*26:01 A*68:02 B*57:01	<u>18%</u> SA5 ZH680 ZH872	<u>NS / C</u> Wü-N526/17 ZH718	Major histocompatibility complex class I-related gene protein (MR1; Q95460)	25%	29 11%	5%
EVIFSLETY	A*25:01 A*26:01	<u>18%</u> SA5 ZH680 ZH718	<u>NS / C</u> Wü-N526/17 ZH713	Asparagine synthetase [glutamine-hydrolyzing] (ASNS; P08243)	36%	17 17%	17%
GSVSININR	A*11:01 A*68:01	<u>18%</u> HH-03 SA1 ZH913	<u>NS / AC</u> HH-06 SA2	A-kinase anchor protein 9 AKAP9; Q99996)	64%	5 35%	32%
QVIEEIEEM	<i>A*02:05</i> A*26:01 B*35:01	<u>18%</u> HH-02 Wü-N526/17 ZH859	<u>NS / C</u> SA5 ZH713	Fasciculation and elongation protein zeta- 1/2 (FEZ1/2; Q99689 / Q9UHY8)	29% / 39%	15 6% / 9%	7% / 9%
SGSFVVVQK	A*11:01 A*68:01	<u>18%</u> HH-03 SA2 ZH913	<u>NS / AC</u> HH-06 ZH513	Heterochromatin protein 1-binding protein 3 (HP1BP3; Q5SSJ5)	36%	16 35%	24%
SIYDDSYLGY	A*25:01 A*26:01	<u>18%</u> SA5 ZH680 ZH718	<u>NS / C</u> Wü-N526/17 ZH713	Integrin alpha-5 (ITGA5; P08648)	21%	19 10%	6%
STFSGFLVY	A*03:01 A*11:01 A*29:02 B*57:01 C*02:02	<u>18%</u> SA5 ZH513 ZH913	<u>NSW / AC</u> Wü-N998/13 ZH872	Complement C1q tumor necrosis factor-related protein 5 (C1QTBF5; Q9BXJ0)	21%	26 4%	1%
SVLATVQQV	A*02:01 A*02:11	<u>18%</u> HH-01 Wü-N391/17 ZH868	<u>SW / C</u> SA3 ZH741	Laminin subunit gamma-3 (LAMC3; Q9Y6N6)	43%	13 4%	4%
TVIIHIPQY	A*25:01 A*26:01	<u>18%</u> SA5 ZH680 ZH718	<u>NS / C</u> Wü-N526/17 ZH713	Integrin alpha-2 (ITGA2; P17301)	25%	23 7%	6%

Supplementary Figure 7. Population coverage of medulloblastoma-associated HLA-A, -B, and -C ligands. Using the population coverage tool provided by the IEDB Analysis Resource, the world population coverage of the 66 medulloblastoma-associated peptides was calculated. The percentage of individuals with a specific number of matching peptides (max. of 53) is indicated by bar charts (associated with the left y-axis). The line diagram (associated with the right y-axis) shows the cumulative percentage of population coverage. The candidate target peptides cover 98.64% of the world population (first diamond on line diagram counted from the left) meaning that only 1.36% of all individuals are negative for all HLA-A, -B, and -C allotypes for which medulloblastoma-associated peptides were defined. On average, 14 peptides are expected to match per patient worldwide.

Supplementary Table 13. Medulloblastoma-exclusive HLA class II-presented peptides derived from medulloblastoma-associated HLA presentation hotspots. Peptides already reported to derive from medulloblastoma-associated antigens were excluded from this listing. The number of positive tumors other than medulloblastoma was based on n=626 HLA class II peptidome datasets. To indicate the distribution of antigens across subgroups and age classes, the following abbreviations were used: WNT-activated (W), SHH-activated (S), non-WNT/non-SHH (including those subclassified in Group 3 or Group 4; N), childhood medulloblastoma (\leq 15 years; C), adult medulloblastoma (\geq 25 years; A).

Antigen (UniProt accession)	Protein frequency on medullo- blastomas	Peptide sequence	Frequency o patients	f positive	Protein frequency on non-MB tumors Peptide-positive non-MB tumors	Protein frequency on benign samples (n=364)
Zinc finger C3H1 domain- containing protein (ZFC3H1; O60293)	25%	ENCVEETFEDLLLK	NSW 25% HH-06 SA2 ZH703	<u>/ C</u> HH-04 SA1 Wü-N998/13 ZH718	3% 8	2%
Neural cell adhesion molecule 1 (NCAM1; P13591)	32%	KDVRFIVLSNNYLQIR KDVRFIVLSNNYLQIRG LSNNYLQIRGIKKTDE	<u>NS</u> 4% 4% 14% SA2 ZH913	<u>/ AC</u> ZH872 ZH872 SA1 ZH703	9% 3 1 8	6%
		LSNNYLQIRGIKKTDEG SNNYLQIRGIKKTDE SNNYLQIRGIKKTDEG	4% 18% SA1 ZH703 4%	SA2 HH-06 SA2 ZH913 ZH913	2 4 3	
Coxsackievirus and adenovirus receptor (CXADR; P78310)	18%	AIPVMIPAQSKDGSIV IPAQSKDGSIV	<u>N</u> 14% SA4 ZH919 4%	<u>/ C</u> SA2 ZH732 SA1	6% 0	3%
Follistatin-related protein 4 (FSTL4; Q6MZW2)	32%	PPVIRVYPESQAQEPGV THVLQVNVPPVIRVYPESQAQEPG VPPVIRVYPESQAQ VPPVIRVYPESQAQEPG	NSW 4% 4% 4% 14% ZH703 ZH872		2% 0 0 1 3	5%
Programmed cell death 6-interact- ing protein (PDCD6IP; Q8WUM4)	54%	AKQQKKFGEEIARLQH ARLQHAAELIKTV FGEEIARLQHAAELIKTV HAAELIKTV	NSW 4% 4% 11% SA2	/ <u>AC</u> SA3 SA1 SA1 SA1 SA3	18% 0 0 0 0	17%

		KFGEEIARLQHAA KFGEEIARLQHAAEL	4% 7%	SA1 SA1	0 0
		REGEEIARLQHAAEL	SA3	SAI	0
		KFGEEIARLQHAAELIK	4%	SA1	0
		KFGEEIARLQHAAELIKTV	43% HH-04	HH-03 HH-05	0
			SA1	SA2	
			SA3	SA4	
				Wü-N526/17	
			ZH913 ZH937	ZH919	
		KQQKKFGEEIARLQH	4%	SA3	1
		QQKKFGEEIARLQH	4%	SA3	2
Cadherin-related	46%		19/		0.5%
family member 1 (CDHR1;		ANDEAPRFIQEPYVAL ANDEAPRFIQEPYVALVPEDIPA	4% 7%	ZH680 ZH680	0 0
Q96JP9)			ZH741		-
		ANDEAPRFIQEPYVALVPEDIPAG ANDEAPRFIQEPYVALVPEDIPAGS	4% 6 4%	ZH680 ZH680	0 0
		APRFIQEPYVAL	4%	ZH680	0
		APRFIQEPYVALVPE	14%	ZH680	0
			ZH713 ZH741	ZH732	
		DANDEAPRFIQEPYVAL	4%	ZH680	0
		DANDEAPRFIQEPYVALVPE	4%	ZH680	0
		DANDEAPRFIQEPYVALVPED DANDEAPRFIQEPYVALVPEDIPA	4% 7%	ZH680 ZH680	0 0
			ZH713	211000	0
		DANDEAPRFIQEPYVALVPEDIPAG		ZH680	0
		DEAPRFIQEPYVAL	11% ZH713	ZH680 ZH732	0
		DEAPRFIQEPYVALVP	7%	ZH680	0
			ZH713		
		DEAPRFIQEPYVALVPE	18% ZH680	ZH513 ZH713	0
			ZH732	ZH741	
		DEAPRFIQEPYVALVPED	4%	ZH680	0
		DEAPRFIQEPYVALVPEDIP DEAPRFIQEPYVALVPEDIPA	4% 14%	ZH680 ZH680	0 0
			ZH713	ZH732	0
			ZH741		
		DEAPRFIQEPYVALVPEDIPAG DEAPRFIQEPYVALVPEDIPAGS	4% 4%	ZH680 ZH680	0 0
		DEAPRFIQEPYVALVPEDIPAGS	4%	ZH680	0
		EAPRFIQEPYVAL	14%	ZH680	0
			ZH713 ZH741	ZH732	
		EAPRFIQEPYVALVP	7%	ZH680	0
			ZH713		
		EAPRFIQEPYVALVPE	25% ZH513	Wü-N998/13 ZH680	1
			ZH713	ZH732	
			ZH741	ZH890	0
		EAPRFIQEPYVALVPED EAPRFIQEPYVALVPEDIPA	4% 14%	ZH680 ZH680	0 0
			ZH713	ZH732	Ū
			ZH741	711000	0
		EAPRFIQEPYVALVPEDIPAG GTPVKIEAIDEDAEEP	4% 4%	ZH680 HH-02	0 0
		GTPVKIEAIDEDAEEPN	18%	HH-02	0
			HH-06 SA5	SA1 ZH713	
		IQEPYVALVPEDIPA	3A5 4%	ZH/13 Wü-N998/13	0
		LGTPVKIEAIDEDAEEPN	4%	HH-02	0
		NDEAPRFIQEPYVALVPEDIPA TPVKIEAIDEDAEEPN	4% 21%	ZH680 HH-02	0 0
		IFVRIEAIDEDAEEFN	SA1	SA4	0
			SA5	ZH713	
Inculing ma	050/		ZH732		09/
Insulinoma- associated	25%	PRGFLVKRTKRTGGL	<u>NSW</u> 11%	<u>/ AC</u> SA3	0% 0
protein 2 (INSM2;			ZH868	ZH913	-
Q96T92)		PRGFLVKRTKRTGGLY	7%	HH-06	0
		PRGFLVKRTKRTGGLYRV	ZH913 4%	ZH913	0
		PRGFLVKRTKRTGGLYRVR	7%	Wü-N526/17	0
		PRGFLVKRTKRTGGLYRVRL	ZH913 21%	SA3	0
				SA3 Wü-N998/13	0
			ZH513	ZH868	

2%

1%

- 297 -

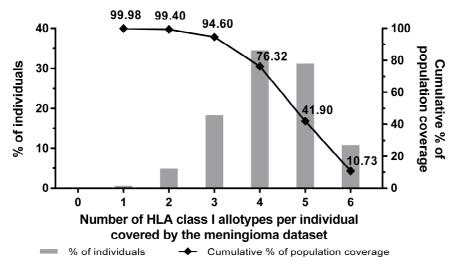
Insulinoma- associated	32%	PRGFLVKRSKKSTPVSY	32%	<u>/ AC</u> SA2 Wü-N998/13	0% 0	1%
protein 1 (INSM1; Q01101)			ZH513 ZH741 ZH868	ZH732 ZH859 ZH913		
Dihydropyrimi-	68%			<u>/ AC</u>	16%	14%
dinase-related protein 1		AADDFFQGTRAALVG AADDFFQGTRAALVGGT	4% 11%	SA3 SA3	0 2	
(CRMP1;		AADDFFQGTHAAEVGGT	SA4	ZH868	2	
Q14194)		AADDFFQGTRAALVGGTT	7% ZH868	SA3	1	
		ADDFFQGTRAALVGG	4%	SA3	0	
		ADDFFQGTRAALVGGT	11% SA4	SA3 ZH868	5	
		DDFFQGTRAALVGGT	3A4 14%	SA3	4	
		bbir danimizidar	ZH868 ZH937	ZH872		
		DDFFQGTRAALVGGTT	4%	SA3	0	
		DFFQGTRAALVGGT	11% ZH868	SA3 ZH872	2	
		DFFQGTRAALVGGTT	4%	SA3	0	
Nucleolar and	57%			<u>/ AC</u>	13%	2%
coiled-body phosphoprotein 1		KFTKGKSFRHEKTK	7% ZH741	Wü-N391/17	2	
(NOLC1;		KFTKGKSFRHEKTKK	18%	HH-05	1	
Q14978)			Wü-N391/17			
			ZH868	ZH913		
		KFTKGKSFRHEKTKKK	7% ZH913	ZH741	0	
Drebrin (DRBN1;	50%			<u>/ C</u>	11%	10%
Q16643)		FMESAEQAVL	4%	ZH513	0	
		MESAEQAVL	18% ZH513	SA2 ZH703	3	
			ZH513 ZH718	ZH703 ZH732		
		MESAEQAVLA	14%	SA2	2	
			ZH513 ZH872	ZH718		
		MFMESAEQAVLA	2H872 4%	SA2	1	

Supplementary Table 14. Established TAAs and CTAs identified as medulloblastoma-exclusive antigens or represented by medulloblastoma-exclusive peptides on \geq 2 tumors. HLA restrictions not passing manual assessment as quality control are indicated in italic. The number of positive neoplasias other than medulloblastoma was based on n=874 HLA class I and n=626 HLA class II peptidome datasets. The frequency of positive benign HLA peptidomes was calculated from n=418 (HLA class I) or n=364 (HLA class II) benign human specimens. Medulloblastoma exclusivity of HLA class II-restricted peptides was evaluated for the exact sequence match with none of the peptides arising from a tumor-associated presentation hotspot.

Peptide sequence	HLA restriction	Freq	uency of posi	itive patients	Protein frequency on medullo- blastomas	Protein frequency on non-MB tumors Peptide-positive non-MB tumors	Protein frequency on benign samples
Medulloblastoma	exclusive HLA class I	igand	s derived from	n established	TAAs and CTAs	;	
Regulator of G-pro	tein signaling 5 (RGS5; 0	D1553	9)		68%	31%	18%
KIKSPAKMAEK	A*03:01; A*30:01	14%	Wü-N998/13 ZH872	ZH732 ZH937		17	
KLLQNNYGL	A*02:01	11%	HH-01 ZH868	ZH718		18	
Catenin beta-1 (CT	NNB1; P35222)				93%	76%	72%
ATVGLIRNL	<i>A*02:01</i> ; A*32:01; <i>B*57:01</i> ; C*02:02; C*12:03	14%	HH-02 ZH868	SA3 ZH872		25	
IENIQRVAA	B*41:01; B*50:01	7%	HH-02	Wü-N391/17		9	
VNIMRTYTY	A*29:02	7%	Wü-N998/13	ZH913		6	
Retinoblastoma-as	sociated protein (RB1; P	06400)		46%	34%	39%
AETQATSAF	B*18:01; B*44:02; B*44:03; B*44:05	11%	ZH741 ZH913	ZH872		10	
GVLGGYIQK	A*11:01	7%	SA5	ZH513		10	

DNA repair protein	RAD51 homolog 1 (RAD	51; Q	06609)		14%	13%	7%
ESFGPQPISR	A*68:01	11%	HH-03 ZH913	HH-06		11	
Arachidonate 12-lip	ooxygenase, 12S-type (Al	_OX1	2; P18054)		29%	6%	9%
KRLDFEWTL	B*27:05	7%	ZH513	ZH680		2	
Axin-2 (AXIN2; Q9	Y2T1)				14%	5%	3%
ETVDSGYRSF	A*25:01	7%	ZH680	ZH718		16	
LTSDIYLEY	A*03:01; A*11:01;	7%	ZH513	ZH913		15	
	A*29:02						
G2/mitotic-specific	cyclin-B1 (CCNB1; P146	35)			43%	15%	13%
EEQAVRPKY	B*44:02; B*44:03	7%	Wü-N998/13	ZH868		13	
Cytochrome P450	1B1 (CYP1B1; Q16678)				50%	28%	41%
DTVVFVNQW	A*25:01	7%	ZH680	ZH718		9	
Glutamate carboxy	peptidase 2 (FOLH1; Q04	4609)			14%	6%	6%
DIVPPFSAF	A*25:01	,	ZH680	ZH718		4	
_	(IAA0100 (KIAA0100; Q14			2	25%	20%	17%
EVSTAKLTAF	A*25:01		ZH680	ZH718	2070	11	17 /0
	ative tumor suppressor 1			211/10	14%	3%	0.5%
SPESASHQL	B*35:01; B*35:02;	•	ZH859	ZH890	1470	8	0.578
SFESASHQL	В 35.01, В 35.02, В*35:03	1 70	20039	20090		0	
Outer dense fiber r	protein 2 (ODF2; Q5BJF6	`			32%	3%	13%
NVFGDGPYSTF	A*25:01		ZH680	ZH718	0276	8	1078
	owth factor receptor beta			20/10	61%	23%	16%
		•	,	74012	01%	4	10%
YMDLVGFSY	A*29:02		Wü-N998/13	ZH913	400/		000/
	it beta type-9 (PSMB9; P		,	711010	43%	35%	29%
AGVDHRVIL	C*07:04; C*16:01		ZH872	ZH913	70/	6	10/
	protein 2 (RHBDF2; Q6P	,			7%	5%	1%
ISSTVQRQL	B*57:01	7%	SA3	ZH868		7	
Tyrosine-protein ki	nase receptor Tie-1 (TIE1	; P35	590)		32%	10%	16%
SLFENFTYA	A*02:01	7%	HH-01	ZH868		1	
		1 /0					
	exclusive HLA class II-				established TA	As and CTAs	
Medulloblastoma	exclusive HLA class II-	orese	nted antigens				0%
Medulloblastoma DNA repair protein	•exclusive HLA class II- RAD51 homolog 1 (RAD	orese 51; Q	nted antigens 06609)	derived from	established TAA 7%	1%	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII	orese 51; Q	nted antigens		7%	1% 4	
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2)	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158)	orese 51; Q 7%	<mark>nted antigens</mark> 06609) HH-01	derived from ZH680		1% 4 0%	0% 0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL	exclusive HLA class II- RAD51 homolog 1 (RAD FHQRRSEII Q8N158)	orese 51; Q 7% 7%	nted antigens 06609) HH-01 ZH703	derived from	7%	1% 4 0% 0	
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) PPD	7% 7% 7% 7%	nted antigens 06609) HH-01 ZH703 ZH718	derived from ZH680	7%	1% 4 0% 0 0	
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) PPD LI	51; Q 51; Q 7% 7% 4% 4%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703	ZH680 ZH718	7%	1% 4 0% 0 0 0 0	
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA	exclusive HLA class II- RAD51 homolog 1 (RAD FHQRRSEII Q8N158) PPD LI LI	7% 7% 7% 4% 4% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703	derived from ZH680 ZH718 ZH718	7%	1% 4 0% 0 0 0 0 0	
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA	exclusive HLA class II- RAD51 homolog 1 (RAD HORRSEII Q8N158) PPD LI LIS LISG	51; Q 7% 7% 4% 4% 7% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703	ZH680 ZH718	7%	1% 4 0% 0 0 0 0 0 0 0	
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2: ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) PPD LI LIS LISG PALISGEHL	51; Q 7% 7% 4% 4% 7% 7% 4%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 ZH703 ZH703	c derived from ZH680 ZH718 ZH718 ZH718 ZH718	7%	1% 4 0% 0 0 0 0 0 0 0 0 0	
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA Medulloblastoma	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) EPPD LI LIS LISG PALISGEHL •exclusive HLA class II-	7% 51; Q 7% 4% 4% 7% 7% 4% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 ZH703 ZH703	c derived from ZH680 ZH718 ZH718 ZH718 derived from	7% 7% established TAA	1% 4 0% 0 0 0 0 0 0 0 0 0	
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA Medulloblastoma	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) PPD LI LIS LISG PALISGEHL	7% 51; Q 7% 4% 4% 7% 7% 4% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 ZH703 ZH703	c derived from ZH680 ZH718 ZH718 ZH718 derived from	7%	1% 4 0% 0 0 0 0 0 0 0 0 0	
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA Medulloblastoma Golgin subfamily A	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) EPPD LI LIS LISG PALISGEHL •exclusive HLA class II-	7% 51; Q 7% 4% 4% 7% 7% 4% 7% 4% cestric (GOL	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9V HH-06	c derived from ZH680 ZH718 ZH718 ZH718 derived from N4) SA2	7% 7% established TAA	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA VLGARGYSLNLIPPA GOIGIN SUDFAMILY GOIGIN SUDFAMILY A EEMWGQEKKMW	exclusive HLA class II- RAD51 homolog 1 (RAD FHQRRSEII Q8N158) FPPD LI LIS LISG PALISGEHL -exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE	7% 51; Q 7% 4% 4% 7% 7% 4% 7% 4% cestric (GOL	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9V HH-06 ZH680	c derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from W4) SA2 ZH872	7% 7% established TAA	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 8 s and CTAs 24% 2	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA Medulloblastoma Golgin subfamily A EEMWGQEKKMW	exclusive HLA class II- RAD51 homolog 1 (RAD FHQRRSEII Q8N158) EPPD LI LIS LISG PALISGEHL exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE	51; Q 7% 7% 4% 4% 7% 7% 4% estric (GOL4 14% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9V HH-06 ZH680 Wü-N391/17	c derived from ZH680 ZH718 ZH718 ZH718 derived from W4) SA2 ZH872 ZH872 ZH680	7% 7% established TAA	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA Medulloblastoma Golgin subfamily A EEMWGQEKKMW	exclusive HLA class II- RAD51 homolog 1 (RAD FHQRRSEII Q8N158) FPPD LI LIS LISG PALISGEHL -exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE	7% 51; Q 7% 4% 4% 7% 4% 7% 4% restric (GOL 14%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9V HH-06 ZH680	c derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from W4) SA2 ZH872	7% 7% established TAA 75%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA KLGARGYSLNLIPPA KLGARGYSLNLIPPA Medulloblastoma Golgin subfamily A EEMWGQEKKMW	exclusive HLA class II- RAD51 homolog 1 (RAD FHQRRSEII Q8N158) EPPD LI LIS LISG PALISGEHL exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE	51; Q 7% 7% 4% 4% 7% 7% 4% (GOL(14% 7% 7% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N90 HH-06 ZH680 Wü-N391/17 ZH718	c derived from ZH680 ZH718 ZH718 ZH718 derived from W4) SA2 ZH872 ZH872 ZH680	7% 7% established TAA	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA KLGARGYSLNLIPPA KLGARGYSLNLIPPA Medulloblastoma Golgin subfamily A EEMWGQEKKMW	exclusive HLA class II- RAD51 homolog 1 (RAD FHQRRSEII Q8N158) FPPD LI LIS LISG PALISGEHL exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E	51; Q 7% 7% 4% 4% 7% 7% 4% (GOL4 14% 7% 7% 8RCA	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N90 HH-06 ZH680 Wü-N391/17 ZH718	c derived from ZH680 ZH718 ZH718 ZH718 derived from W4) SA2 ZH872 ZH872 ZH680	7% 7% established TAA 75%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA VLGARGYSLNLIPPA KMWEQEKMREF QKMRDQEEKMREF QKMRDQEERMW Breast cancer type QPEVYKQSLPGS	exclusive HLA class II- RAD51 homolog 1 (RAD FHQRRSEII Q8N158) FPPD LI LIS LISG PALISGEHL exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E	51; Q 7% 7% 4% 4% 7% 7% 4% (GOL4 14% 7% 7% 8RCA	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9N HH-06 ZH680 Wü-N391/17 ZH718 1; P38398)	c derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from N4) SA2 ZH872 ZH872 ZH680 ZH741	7% 7% established TAA 75%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA VLGARGYSLNLIPPA KMWEQEKMREF QKMRDQEEKMREF QKMRDQEERMW Breast cancer type QPEVYKQSLPGS	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) PPD LI LIS LISG PALISGEHL •exclusive HLA class II- member 6-like protein 2 (RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E NCKHPEIKKQEY ptor 2 (EPHB2; P29323)	51; Q 7% 7% 4% 4% 7% 7% 4% (GOL4 14% 7% 7% 8RCA	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9N HH-06 ZH680 Wü-N391/17 ZH718 1; P38398)	c derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from N4) SA2 ZH872 ZH872 ZH680 ZH741	7% 7% established TAA 75% 7%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0% 43% 1%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA VLGARGYSLNLIPPA Medulloblastoma Golgin subfamily A EEMWGQEKKMW KMWEQEEKMREF QKMRDQEERMW Breast cancer type QPEVYKQSLPGS Ephrin type-B rece	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII 208N158) PPD LI LIS LISG PALISGEHL •exclusive HLA class II- member 6-like protein 2 (RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E NCKHPEIKKQEY ptor 2 (EPHB2; P29323)	51; Q 7% 7% 4% 4% 7% 7% 4% restric (GOL4 14% 7% 7% 8RCA 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N90 HH-06 ZH680 Wü-N391/17 ZH718 1; P38398) HH-01	c derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from N4) SA2 ZH872 ZH872 ZH680 ZH741 ZH732	7% 7% established TAA 75% 7%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0% 43% 1%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA VLGARGYSLNLIPPA Medulloblastoma Golgin subfamily A EEMWGQEKKMRE QKMRDQEERMW Breast cancer type QPEVYKQSLPGS Ephrin type-B rece HRPKFGQIVNTLE	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII 208N158) PPD LI LIS LISG PALISGEHL •exclusive HLA class II- member 6-like protein 2 (RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E NCKHPEIKKQEY ptor 2 (EPHB2; P29323))K Q99538)	51; Q 7% 7% 4% 4% 7% 7% 4% restric (GOL4 14% 7% 7% 8RCA 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N90 HH-06 ZH680 Wü-N391/17 ZH718 1; P38398) HH-01	c derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from N4) SA2 ZH872 ZH872 ZH680 ZH741 ZH732	7% 7% established TAA 75% 7% 11%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA BEAGUIOblastoma Golgin subfamily A EEMWGQEKKMW Breast cancer type QPEVYKQSLPGS Ephrin type-B rece HRPKFGQIVNTLD Legumain (LGMN; HLPDNINVYATTA	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII 208N158) PPD LI LIS LISG PALISGEHL exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E NCKHPEIKKQEY ptor 2 (EPHB2; P29323) K Q99538) ANPRE	51; Q 7% 4% 4% 7% 7% 4% estrid (GOL4 14% 7% 7% 7% 7% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9N HH-06 ZH680 Wü-N391/17 ZH718 1; P38398) HH-01 SA5 ZH868	e derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from N4) SA2 ZH872 ZH680 ZH732 ZH732 ZH732 ZH713 ZH713	7% 7% established TAA 75% 7% 11%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA WLGARGYSLNLIPPA Medulloblastoma Golgin subfamily A EEMWGQEKKMW Breast cancer type QPEVYKQSLPGS Ephrin type-B rece HRPKFGQIVNTLD Legumain (LGMN; HLPDNINVYATTA	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) PPD LI LIS LISG PALISGEHL exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E NCKHPEIKKQEY ptor 2 (EPHB2; P29323) K Q99538) ANPRE ANPRESS	51; Q 7% 4% 4% 7% 7% 4% estrid (GOLt 14% 7% 7% 7% 7% 7% 7% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9V HH-06 ZH680 Wü-N391/17 ZH718 1; P38398) HH-01 SA5 ZH868 ZH868 ZH868	e derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from N4) SA2 ZH872 ZH680 ZH732 ZH732 ZH732 ZH732 ZH713	7% 7% established TAA 75% 7% 11%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA Beast cancer type QPEVYKQSLPGS Ephrin type-B recee HRPKFGQIVNTLD Legumain (LGMN; HLPDNINVYATTA HLPDNINVYATTA	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) PPD LI LIS LISG PALISGEHL exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E NCKHPEIKKQEY ptor 2 (EPHB2; P29323) K Q99538) ANPRE ANPRESS JAYSEDNPTPG	51; Q 7% 4% 4% 7% 7% 4% estrid (GOL4 14% 7% 7% 7% 7% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9N HH-06 ZH680 Wü-N391/17 ZH718 1; P38398) HH-01 SA5 ZH868	e derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from N4) SA2 ZH872 ZH680 ZH732 ZH732 ZH732 ZH713 ZH713	7% 7% established TAA 75% 7% 11% 50%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0% 43% 43% 46%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA VLGARGYSLNLIPPA Medulloblastoma Golgin subfamily A EEMWGQEKKMW KMWEQEEKMREF QKMRDQEERMW Breast cancer type QPEVYKQSLPGS Ephrin type-B rece HRPKFGQIVNTLD Legumain (LGMN; HLPDNINVYATTA HLPDNINVYATTA IPDEQIVVMMYDD	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) PPD LI LIS LISG PALISGEHL exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E NCKHPEIKKQEY ptor 2 (EPHB2; P29323) K Q99538) ANPRE ANPRES NAYSEDNPTPG 15941)	51: Q 7% 4% 4% 7% 7% 7% 4% estrid (GOL0 14% 7% 7% 7% 7% 7% 7% 7% 7% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9V HH-06 ZH680 Wü-N391/17 ZH718 1; P38398) HH-01 SA5 ZH868 ZH868 ZH868 ZH680 HH-06	e derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from V4) SA2 ZH72 ZH732 ZH732 ZH732 ZH732 ZH732 ZH732 ZH872 ZH872 ZH868 ZH868 ZH868	7% 7% established TAA 75% 7% 11%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA Medulloblastoma Golgin subfamily A EEMWGQEKKMW Breast cancer type QPEVYKQSLPGS Ephrin type-B rece HRPKFGQIVNTLD Legumain (LGMN; HLPDNINVYATTA HLPDNINVYATTA HLPDNINVYATTA	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) PPD LI LIS LISG PALISGEHL exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E NCKHPEIKKQEY ptor 2 (EPHB2; P29323) K Q99538) ANPRE ANPRESS DIAYSEDNPTPG 15941) L	51: Q 7% 4% 4% 7% 7% 7% 4% estria (GOL0 14% 7% 7% 7% 7% 7% 7% 7% 7% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9V HH-06 ZH680 Wü-N391/17 ZH718 1; P38398) HH-01 SA5 ZH868 ZH868 ZH868 ZH680 HH-06	e derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from N4) SA2 ZH872 ZH680 ZH732 ZH732 ZH732 ZH732 ZH713	7% 7% established TAA 75% 7% 11% 50%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0% 43% 1% 4% 46%
Medulloblastoma DNA repair protein KLVPMGFTTATEF Glypican-2 (GPC2 ARGYSLNLIPPAL ERVFPLLHPQYSF GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA GARGYSLNLIPPA Medulloblastoma Golgin subfamily A EEMWGQEKKMW Breast cancer type QPEVYKQSLPGS Ephrin type-B rece HRPKFGQIVNTLD Legumain (LGMN; HLPDNINVYATTA HLPDNINVYATTA HLPDNINVYATTA	exclusive HLA class II- RAD51 homolog 1 (RAD HQRRSEII Q8N158) PPD LI LIS LISG PALISGEHL exclusive HLA class II- member 6-like protein 2 RQEKMREQEEEMRE QEEKMWRQEERLW EQDERLREKEERMR 1 susceptibility protein (E NCKHPEIKKQEY ptor 2 (EPHB2; P29323) K Q99538) ANPRE ANPRESS DAYSEDNPTPG 15941) L equence 15 protein (TEX	51: Q 7% 4% 4% 7% 7% 7% 4% estria (GOL0 14% 7% 7% 7% 7% 7% 7% 7% 7% 7%	nted antigens 06609) HH-01 ZH703 ZH718 ZH703 ZH703 ZH703 ZH703 Cted peptides GA6L2; Q8N9V HH-06 ZH680 Wü-N391/17 ZH718 1; P38398) HH-01 SA5 ZH868 ZH868 ZH868 ZH680 HH-06	e derived from ZH680 ZH718 ZH718 ZH718 ZH718 derived from V4) SA2 ZH72 ZH732 ZH732 ZH732 ZH732 ZH732 ZH732 ZH872 ZH872 ZH868 ZH868 ZH868	7% 7% established TAA 75% 7% 11% 50%	1% 4 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0% 43% 43% 46%

Supplement of CHAPTER 4


0

Supplementary Table 15. HLA class I allotype and allele frequencies in the study cohort comprising n=33 meningioma patients. The HLA-A, -B, and -C allotypes with the top three highest frequencies within the collective are marked in bold.

HLA allotype	Positive patients	Allele frequency	HLA allotype	Positive patients	Allele frequency
A*01:01	11%	12%	B*39:31	2%	2%
A*02:01	20%	23%	B*40:01	2%	2%
A*03:01	12%	12%	B*40:02	3%	3%
A*11:01	3%	3%	B*41:01	2%	2%
A*23:01	3%	3%	B*44:02	2%	2%
A*24:02	11%	12%	B*44:03	8%	9%
A*26:01	2%	2%	B*49:01	2%	2%
A*29:02	8%	8%	B*50:01	2%	2%
A*30:01	2%	2%	B*51:01	9%	9%
A*30:02	5%	5%	B*51:02	2%	2%
A*31:01	3%	3%	B*51:08	2%	2%
A*32:01	5%	5%	B*55:01	3%	3%
A*33:01	2%	2%	B*57:01	5%	5%
A*34:01	2%	2%	C*01:02	5%	5%
A*66:01	2%	2%	C*02:02	8%	8%
A*68:01	8%	8%	C*03:03	6%	6%
B*07:02	9%	11%	C*03:04	3%	3%
B*08:01	6%	6%	C*04:01	14%	17%
B*13:02	5%	5%	C*05:01	2%	2%
B*14:02	2%	2%	C*06:02	11%	11%
B*15:01	5%	5%	C*07:01	12%	14%
B*15:35	2%	2%	C*07:02	9%	11%
B*18:01	11%	11%	C*08:02	2%	2%
B*27:05	3%	3%	C*12:03	9%	9%
B*35:01	9%	11%	C*14:02	2%	2%
B*35:03	2%	2%	C*15:02	3%	5%
B*37:01	2%	2%	C*16:01	6%	6%
B*38:01	2%	2%	C*16:02	2%	2%
B*39:01	2%	2%	C*17:01	2%	2%
	frequ	ency of positive n	neningioma pat	tients [%]	_

				10					

20

Supplementary Figure 8. HLA class I allotype population coverage. Using the population coverage tool provided by the IEDB Analysis Resource, the world population coverage of the 58 distinct HLA-A, -B, and -C allotypes was calculated. The percentage of individuals positive for a specific number of HLA class I allotypes (max. of 6) is indicated by bar charts (associated with the left y-axis). The line diagram (associated with the right y-axis) shows the cumulative percentage of population coverage. The HLA class I allotypes of the meningioma cohort cover 99.98% of the world population (first diamond on line diagram counted from the left) meaning that only 0.02% of all individuals are negative for all HLA-A, -B, and -C allotypes included in the present study (first bar counted from the left). 94.60% of all individuals are positive for at least three HLA class I allotypes (third diamond on line diagram counted from the left).

Supplementary Table 16. Meningioma-associated HLA class I- and II-presented antigens identified on at least three tumors. GTEx profiles were assessed from all available datasets excepting EBV-transformed lymphocytes and cultured fibroblasts. Color codes were defined as follows: • < 10 TPM in any tissue, • > 10 TPM in testes and < 10 TPM in other tissues (CTA-like expression profile), • 10-20 TPM in any tissue, • 20-30 TPM in any tissue, • > 30 TPM in any tissue. The number of positive non-meningeal tumors was based on n=841 HLA class I and n=593 HLA class II peptidome datasets. HLA restrictions not passing manual assessment as quality control are indicated in italic. These peptides were excluded from downstream analyses such as calculation of peptides matching per patient worldwide. HLA class II-presented proteins neither identified with peptides exceeding a length of twelve AA nor with different sequences across patients were not considered for this listing of candidate target antigens. Eight of the listed HLA class II-presented antigens (DRGX, KIR2DS4, SGK3, PCED1B, STAT5B, ESCO1, ANGEL2, RFWD3) were detected with only one peptide in each case.

Antigen	Frequency of positive patients	Peptide sequence	HLA restriction	UniProt accession GTEx profile	Positive non- menin- geal tumors
Meningioma-associated HLA	A class I antigens				
Nicotinamide mononucleotide adenylyltransferase 2 (NMNA2)	30% / WHO I-III MNG1 MNG3 MNG6 MNG501 MNG636 MNG642 MNG661 MNG734 MNG814	EEIELRILL ENANLGTVMR ENANLGTVMR NANLGTVMR ENANLGTVMR IVSPVHDSY EEIELRILL SVLEHHRDLMK IVSPVHDSY SVVSSTKSR ENANLGTVMR	B*18:01 A*68:01 A*68:01 A*68:01 B*15:01 B*44:03 A*11:01 A*30:02 A*66:01 A*68:01	Q9BZQ4	8

Protein Wnt-5a (WNT5A)	<u>18% / WHO I+II</u>			P41221 🗖	43
	MNG6	AMSSKFFLV	A*02:01		
	MNG628	AMSSKFFLV	A*02:01		
	MNG637	NPVQMSEVY AMSSKFFLV	B*35:01 A*02:01		
	MNG638	AMSSKFFLV	A*02:01		
	MNG641	AMSSKFFLV	A*02:01		
	MNG702	AMSSKFFLV	A*02:01		
T-box transcription factor	<u>18% / WHO I-III</u>			Q96SF7 🗖	15
TBX15/18 (TBX15/18)	MNG7	GLDPHQQYY (TBX15/18)	A*01:01;	O95935 🗖	9
2 peptides multi-map to non-	MNG635	SQMSVHMV (TBX15)	A*30:02 B*13:02		
MNG-exclusive TBX20 (Q9UMR3) or to MNG-	MNG636	FHDIGTEMI (TBX15/22)	B*38:01		
exclusive TBX22 (Q9Y458)		THQGSYNTF (TBX18)	B*38:01		
		DIVPVDNKRYR (TBX15/18/20)	A*33:01		
		THQGSYNTF (TBX18)	B*38:01		
	MNG646 MNG682	GLDPHQQYY(TBX15/18) KTFNFPETVF (TBX15)	A*01:01 B*15:01		
	MNG734	GLDPHQQYYI (TBX15/18)	A*02:01		
		YQNQQITRL (TBX15/18)	C*02:02		
Protein odd-skipped-related	1 <u>15% / WHO I+II</u>			Q8TAX0 🗖	6
(OSR1)	MNG7	APVPIHPSL	B*07:02		
	MNG501	FPWFPHVI	B*51:01		
	MNG628 MNG641	SLVDARFQL SLVDARFQL	A*02:01 A*02:01;		
		SEVERIT GE	C*17:01		
	MNG814	APVPIHPSL	B*07:02		
Protein SSX5/9 (SSX5/9)	12% / WHO I+II			O60225 🔳	13
peptides multi-map to MNG-	MNG1	SEKIIYVY	B*18:01	Q7RTT3 🔳	12
exclusive obsolete UniProt	MNG623	SEKIIYVY	B*18:01		
IDs of SSX10 (A6NEJ1) and SSX11 (A6NNU9); not in	MNG673 MNG679	SEKILYVY SEKIIYVY	B*44:03 B*44:03		
GTEx	MINCO75	SERTITI	D 44.00		
Frizzled-7 (FZD7)	12% / WHO I+II			O75084 🗖	7
3 peptides multi-map to non-		HQFYPLVKV (FZD1/2/7)	B*13:02		
MNG-exclusive FZD1	MNG661	TYLVDMRRF (FZD1/7)	A*24:02		
(Q9UP38) or FZD2 (Q14332) MNG673	FSDDGYRTV (FZD7)	C*03:04;		
	MNG814	VPAVKTITI (FZD2/7)	C*16:01 B*07:02		
E3 ubiquitin-protein ligase	12% / WHO I+II	(1202.7)	D 07.02	Q8NHG8	8
E3 ubiquitin-protein ligase ZNRF2 (ZNRF2)	<u>12% / WHO I+II</u> MNG1	DEMDLHLVM	B*18:01	Q8NHG8 <mark>-</mark>	8
	MNG1 MNG6	DEMDLHLVM DEMDLHLVM		Q8NHG8 -	8
	MNG1 MNG6 MNG628	DEMDLHLVM DEMDLHLVM DEMDLHLVM	B*18:01 B*18:01 B*18:01	Q8NHG8 -	8
ZNRF2 (ZNRF2)	MNG1 MNG6 MNG628 MNG638	DEMDLHLVM DEMDLHLVM	B*18:01 B*18:01		-
ZNRF2 (ZNRF2)	MNG1 MNG6 MNG628 MNG638 1 <u>2% / WHO I</u>	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM	B*18:01 B*18:01 B*18:01 B*18:01	Q8NHG8 - Q8WW35 -	8 5
ZNRF2 (ZNRF2)	MNG1 MNG6 MNG628 MNG638	DEMDLHLVM DEMDLHLVM DEMDLHLVM	B*18:01 B*18:01 B*18:01		-
ZNRF2 (ZNRF2)	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG7	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02		-
ZNRF2 (ZNRF2)	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO 1</u> MNG7 MNG632 MNG661 MNG702	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02	Q8WW35 =	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor-	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG7 MNG632 MNG661 MNG702 <u>12% / WHO I+II</u>	DEMDLHLVM DEMDLHLVM DEMDLHLVM MEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 <i>C*06:02</i>		-
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2)	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1	DEMDLHLVM DEMDLHLVM DEMDLHLVM MEMDLHLVM KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 <i>C*06:02</i> B*18:01	Q8WW35 =	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor-	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG7 MNG632 MNG661 MNG702 <u>12% / WHO I+II</u>	DEMDLHLVM DEMDLHLVM DEMDLHLVM MEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 <i>C*06:02</i> B*18:01 B*18:01	Q8WW35 =	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor-	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1	DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 <i>C*06:02</i> B*18:01	Q8WW35 =	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor-	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG7 MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628	DEMDLHLVM DEMDLHLVM DEMDLHLVM MEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 <i>C*06:02</i> B*18:01 B*18:01 B*18:01 B*35:01	Q8WW35 =	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein	MNG1 MNG6 MNG628 MNG628 MNG628 MNG7 MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628 MNG661 MNG666 <u>12% / WHO I+II</u>	DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*18:01 B*18:01 B*07:02	Q8WW35 =	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6)	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG7 MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628 MNG661 MNG666	DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*18:01 B*35:01 B*07:02 B*51:01;	Q8WW35 • P24592 •	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628 MNG661 MNG666 <u>12% / WHO I+II</u> MNG499	DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*35:01 B*18:01 B*07:02 B*51:01; B*51:02	Q8WW35 • P24592 •	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628 MNG666 <u>12% / WHO I+II</u> MNG666 <u>12% / WHO I+II</u> MNG499 MNG635	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*18:01 B*35:01 B*18:01 B*18:01 B*18:01 B*5:02 B*51:02 B*55:02	Q8WW35 • P24592 •	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628 MNG661 MNG666 <u>12% / WHO I+II</u> MNG499	DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*35:01 B*18:01 B*07:02 B*51:01; B*51:02	Q8WW35 • P24592 •	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628 MNG661 MNG666 <u>12% / WHO I+II</u> MNG665 <u>12% / WHO I+II</u> MNG635 MNG642	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*18:01 B*35:01 B*18:01 B*07:02 B*51:01; B*51:02 B*55:02 B*51:01	Q8WW35 • P24592 •	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans-	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG7 MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG666 <u>12% / WHO I+II</u> MNG635 MNG642 MNG635 MNG642 MNG833 <u>12% / WHO I+II</u> MNG6	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*35:01 B*18:01 B*51:01; B*51:02 B*55:02 B*55:02 B*55:01 B*51:01 B*51:01 A*68:01	Q8WW35 • P24592 • Q49A92 •	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N-	MNG1 MNG6 MNG628 MNG628 MNG628 MNG628 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG666 <u>12% / WHO I+II</u> MNG666 <u>12% / WHO I+II</u> MNG635 MNG642 MNG635 MNG642 MNG833 <u>12% / WHO I+II</u> MNG6 MNG635	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*35:01 B*35:01 B*51:01; B*51:02 B*51:01; B*51:01 B*51:01 A*68:01 A*31:01	Q8WW35 • P24592 • Q49A92 •	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans-	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG7 MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG666 <u>12% / WHO I+II</u> MNG635 MNG642 MNG635 MNG642 MNG833 <u>12% / WHO I+II</u> MNG6	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV SEAEEFFMR AVFGGQVAR ESAEEFFMR	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*35:01 B*18:01 B*07:02 B*51:01; B*51:02 B*51:01 B*51:01 B*51:01 A*68:01 A*31:01 A*68:01	Q8WW35 • P24592 • Q49A92 •	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans-	MNG1 MNG6 MNG628 MNG628 MNG628 MNG628 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG666 <u>12% / WHO I+II</u> MNG666 <u>12% / WHO I+II</u> MNG635 MNG642 MNG635 MNG642 MNG833 <u>12% / WHO I+II</u> MNG6 MNG635	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*35:01 B*35:01 B*51:01; B*51:02 B*51:01; B*51:01 B*51:01 A*68:01 A*31:01	Q8WW35 • P24592 • Q49A92 •	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans-	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG7 MNG632 <u>MNG661</u> MNG702 <u>12% / WHO I+II</u> MNG668 <u>12% / WHO I+II</u> MNG666 <u>12% / WHO I+II</u> MNG635 MNG635 MNG635 MNG635 MNG635 MNG633	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL VPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV SEAEEFFMR AVFGGQVAR ESAEEFFMR RPTQLLTL	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*35:01 B*35:01 B*07:02 B*51:01; B*51:02 B*51:01 B*51:02 B*51:01 B*51:	Q8WW35 • P24592 • Q49A92 •	5
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans- ferase 1 (GBGT1)	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG7 MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG628 MNG661 MNG666 <u>12% / WHO I+II</u> MNG499 MNG635 MNG642 MNG635 MNG642 MNG833 <u>12% / WHO I+II</u> MNG6 MNG635 MNG835 MNG814 MNG833 <u>12% / WHO I-III</u> MNG3	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV SAEEFFMR AVFGGQVAR ESAEEFFMR RPTQLLTL KYTHFIQSF	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*18:01 B*35:01 B*18:01 B*07:02 B*51:02 B*51:01 B*51:01 B*51:01 B*51:01 A*68:01 A*68:01 B*07:02 A*24:02 A*68:01	Q8WW35 • P24592 • Q49A92 • Q8N5D6 •	5 2 3 26
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans- ferase 1 (GBGT1) Xyloside xylosyltransferase	MNG1 MNG628 MNG628 MNG628 MNG628 MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628 MNG661 MNG666 <u>12% / WHO I+II</u> MNG635 MNG642 MNG635 MNG642 MNG635 MNG635 MNG635 MNG635 MNG642 MNG833 <u>12% / WHO I+III</u> MNG833 <u>12% / WHO I-III</u> MNG3 MNG642	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV ESAEEFFMR AVFGGQVAR ESAEEFFMR RPTQLLTL KYTHFIQSF ETFSSATKR	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*18:01 B*35:01 B*51:01 B*51:02 B*51:01 B*51:01 B*51:01 A*68:01 A*31:01 A*68:01 A*24:02 A*68:01 A*34:01	Q8WW35 • P24592 • Q49A92 • Q8N5D6 •	5 2 3 26
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans- ferase 1 (GBGT1) Xyloside xylosyltransferase	MNG1 MNG628 MNG628 MNG628 MNG628 MNG61 MNG7 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628 MNG661 MNG666 <u>12% / WHO I+II</u> MNG499 MNG635 MNG642 MNG833 <u>12% / WHO I+II</u> MNG6 MNG635 MNG833 <u>12% / WHO I-III</u> MNG8 MNG833 <u>12% / WHO I-III</u> MNG8 MNG833	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV SAEEFFMR AVFGGQVAR ESAEEFFMR RPTQLLTL KYTHFIQSF ETFSSATKR ETFSSATKR	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*18:01 B*35:01 B*51:01 B*51:02 B*51:01 B*51:01 B*51:01 A*68:01 A*31:01 A*68:01 A*34:01 A*66:01	Q8WW35 • P24592 • Q49A92 • Q8N5D6 •	5 2 3 26
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans- ferase 1 (GBGT1) Xyloside xylosyltransferase 7 (XXLT1)	MNG1 MNG628 MNG628 MNG628 MNG628 MNG61 MNG7 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628 MNG661 MNG666 <u>12% / WHO I+II</u> MNG642 MNG833 <u>12% / WHO I+II</u> MNG6 MNG635 MNG635 MNG642 MNG833 <u>12% / WHO I-III</u> MNG8 MNG635 MNG833 MNG642 MNG734 MNG734 MNG833	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV ESAEEFFMR AVFGGQVAR ESAEEFFMR RPTQLLTL KYTHFIQSF ETFSSATKR	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*18:01 B*35:01 B*51:01 B*51:02 B*51:01 B*51:01 B*51:01 A*68:01 A*31:01 A*68:01 A*24:02 A*68:01 A*34:01	Q8WW35 = P24592 = Q49A92 = Q8N5D6 =	5 2 3 26 13
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans- ferase 1 (GBGT1) Xyloside xylosyltransferase 7 (XXLT1) Solute carrier family 25	MNG1 MNG628 MNG628 MNG628 MNG628 MNG61 MNG7 MNG661 MNG702 <u>12% / WHO I+II</u> MNG1 MNG628 MNG661 MNG666 <u>12% / WHO I+II</u> MNG499 MNG635 MNG642 MNG833 <u>12% / WHO I+II</u> MNG6 MNG635 MNG833 <u>12% / WHO I-III</u> MNG8 MNG833 <u>12% / WHO I-III</u> MNG8 MNG833	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPGQKV ESAEEFFMR RPTQLLTL KYTHFIQSF ETFSSATKR ETFSSATKR ETFSSATKR	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*35:01 B*18:01 B*35:01 B*51:02 B*51:01; B*51:02 B*51:01 B*51:01 B*51:01 A*68:01 A*31:01 A*68:01 A*34:01 A*34:01 A*66:01 A*24:02	Q8WW35 • P24592 • Q49A92 • Q8N5D6 •	5 2 3 26
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans- ferase 1 (GBGT1) Xyloside xylosyltransferase 7 (XXLT1)	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO 1</u> MNG7 MNG632 MNG661 MNG702 <u>12% / WHO 1+11</u> MNG666 <u>12% / WHO 1+11</u> MNG635 MNG635 MNG635 MNG635 MNG635 MNG635 MNG635 MNG635 MNG635 MNG633 <u>12% / WHO 1+111</u> MNG8 MNG633 <u>12% / WHO 1-1111</u>	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV SAEEFFMR AVFGGQVAR ESAEEFFMR RPTQLLTL KYTHFIQSF ETFSSATKR ETFSSATKR	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*18:01 B*35:01 B*51:01 B*51:02 B*51:01 B*51:01 B*51:01 A*68:01 A*31:01 A*68:01 A*34:01 A*66:01	Q8WW35 = P24592 = Q49A92 = Q8N5D6 =	5 2 3 26 13
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans- ferase 1 (GBGT1) Xyloside xylosyltransferase 7 (XXLT1) Solute carrier family 25	MNG1 MNG628 MNG628 MNG638 <u>12% / WHO 1</u> MNG7 MNG632 MNG661 MNG702 <u>12% / WHO 1+11</u> MNG666 <u>12% / WHO 1+11</u> MNG666 <u>12% / WHO 1+11</u> MNG635 MNG642 MNG635 MNG642 MNG635 MNG642 MNG833 <u>12% / WHO 1+111</u> MNG8 MNG635 MNG641 MNG7 MNG641 MNG702	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL TPHRLLPPL DEAPLRAL TPHRLLPPL YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV ESAEEFFMR AVFGGQVAR ESAEEFFMR RPTQLLTL KYTHFIQSF ETFSSATKR ETFSSATKR ETFSSATKR ETFSSATKRL YYSDSIFFL ILQADGLRGFY SLVAQSITV	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*18:01 B*35:01 B*51:01; B*51:02 B*55:02 B*55:02 B*55:02 B*51:01 B*51:01 A*68:01 A*68:01 A*68:01 A*68:01 A*24:02 A*01:01 A*02:01 A*02:01	Q8WW35 = P24592 = Q49A92 = Q8N5D6 =	5 2 3 26 13
ZNRF2 (ZNRF2) Tctex1 domain-containing protein 2 (TC1D2) Insulin-like growth factor- binding protein 6 (IGFBP6) Uncharacterized protein C8orf34 (C8orf34) Globoside alpha-1,3-N- acetylgalactosaminyltrans- ferase 1 (GBGT1) Xyloside xylosyltransferase 7 (XXLT1) Solute carrier family 25	MNG1 MNG6 MNG628 MNG638 <u>12% / WHO I</u> MNG7 MNG632 MNG661 MNG702 <u>12% / WHO I+II</u> MNG666 <u>12% / WHO I+II</u> MNG666 <u>12% / WHO I+II</u> MNG635 MNG635 MNG635 MNG635 MNG814 MNG833 <u>12% / WHO I-III</u> MNG3 MNG642 MNG833 <u>12% / WHO I-III</u> MNG3 MNG642 MNG74 MNG7 MNG641	DEMDLHLVM DEMDLHLVM DEMDLHLVM DEMDLHLVM KLKEMGFDRY KLKEMGFDRY KLKEMGFDRY LSENIKDKL DEAPLRAL DEAPLRAL DEAPLRAL TPHRLLPPL VPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV YPAEPQAKV IESAEEFFMR RVFGGOVAR ESAEEFFMR RPTQLLTL KYTHFIQSF ETFSSATKR ETFSSATKR ETFSSATKR ETFSSATKR ETFSSATKRL YYSDSIFFL ILQADGLRGFY SLVAQSITV	B*18:01 B*18:01 B*18:01 B*18:01 A*30:02 A*30:02 A*30:02 C*06:02 B*18:01 B*18:01 B*35:01 B*35:01 B*51:02 B*51:02 B*51:01 B*51:02 B*51:01 B*51:01 A*68:01 A*31:01 A*68:01 A*34:01 A*68:01 A*34:01 A*66:01 A*24:02 A*01:01 A*02:01	Q8WW35 = P24592 = Q49A92 = Q8N5D6 =	5 2 3 26 13

Forkhead box protein (FOX) E3, D4-like 1/2/3/5/6 peptides multi-map to FOXB2 (Q5VYV0) and to non-MNG- exclusive FOXD1 (Q16676), FOXD2 (O60548), FOXD3 (Q9UJU5), FOXD4 (Q12950), FOXB1 (Q99853), FOXC1 (Q12948), FOXC2 (Q99958), FOXE1 (O00358), FOXG1 (P55316), FOXL1 (Q12951), FOXI2 (Q6ZQN5), FOXI3 (A8MTJ6), FOXJ1 (Q92949), FOXK1 (P85037), FOXK2 (Q01167), FOXL1 (Q12952), FOXL2 (P58012), FOXS1 (O43638)	MNG646 MNG814	DMFDNGSFLR QNSLRHNL QNSLRHNL DMFDNGSFLR	A*68:01 B*08:01 B*08:01 A*68:01	Q13461 = Q9NU39 = Q6VB85 = Q6VB84 = Q5VV16 = Q3SYB3 =	6 5 4 5 4
Sterol O-acyltransferase 2 (SOAT2) 2 peptides multi-map to non- MNG-exclusive SOAT1 (P35610)	<u>9% / WHO I+II</u> MNG501 MNG624 MNG833	YPVMLILFL NAFAEMLRF NAFAEMLRF	B*51:01 B*35:01 B*35:01	O75908 ■	7
Cadherin-3 (CDH3)	<u>9% / WHO I+II</u> MNG641 MNG666 MNG814	LPRGPLASLL LPRGPLASLL LPRGPLASLL	B*07:02 B*07:02 B*07:02	P22223	17
Folate receptor gamma (FOLR3) peptides multi-map to non- MNG-exclusive FOLR2	<u>9% / WHO I+II</u> MNG635 MNG646 MNG661	SYFPTPAAL FESYFPTPAA SYFPTPAAL	C*06:02 B*40:02 A*24:02	P41439 =	9
Transmembrane protein 87A (TMEM87A)	<u>9% / WHO II+III</u> MNG642 MNG635 MNG734	DAPYIFIV HPSPLSFFSA AAWLQVLPV	B*51:01 B*55:01 C*12:03	Q8NBN3	41
Transmembrane protein 255B (TMEM255B)	<u>9% / WHO I+II</u> MNG632 MNG819 MNG833	NPAQQILAY YYPGIILGF YYPGIILGF	B*35:01 A*23:01 A*24:02	Q8WV15 -	16
Ninjurin-2 (NINJ2)	<u>9% / WHO I+III</u> MNG7 MNG632 MNG734	EQGPSSHYY EQGPSSHYY NEVEKQWRL	A*30:02 A*30:02 B*40:02	Q9NZG7 ∎	13
Rho-related GTP-binding protein RhoD (RHOD)	<u>9% / WHO I-III</u> MNG3 MNG642 MNG734	EVALSSRGR EVALSSRGR EVALSSRGR	A*68:01 A*34:01 A*66:01	O00212 ■	7
Beta-1,4- galactosyltransferase 4 (B4GALT4)	<u>9% / WHO I</u> MNG673 MNG679 MNG682	FNLTFHLSY FNLTFHLSY FNLTFHLSY	A*29:02 A*29:02 A*29:02	O60513 <mark>-</mark>	6
cAMP-responsive element- binding protein-like 2 (CREBL2)	<u>9% / WHO I-III</u> MNG6 MNG638 MNG734	IPSEIKALL LRYQYLEEL LRYQYLEEL	B*35:03 C*07:01 B*39:31	O60519 =	19
Mitochondrial tRNA-specific 2-thiouridylase 1 (MTU1)	<u>9% / WHO I</u> MNG3 MNG673 MNG679	EVFEQKHVKK NFEHFLLQY NFEHFLLQY	A*68:01 A*29:02 A*29:02	O75648 🗕	10
NKG2-C type II integral membrane protein (NKG2C) / NKG2-E type II integral membrane protein (NKG2E)	<u>9% / WHO I+II</u> MNG499 MNG501 MNG642	VTINGLAFK LPSSWIGVF VTINGLAFK	A*11:01 B*51:01 A*11:01	P26717 ∎ Q07444 ∎	1 1
Protein AF-9 (AF-9)	<u>9% / WHO I+II</u> MNG6 MNG628 MNG661	SEALFKSF SEALFKSF SEALFKSF	B*18:01 B*18:01 B*18:01	P42568 -	3
1-phosphatidylinositol 4,5- bisphosphate phosphodiesterase delta-4 (PLCD4)	<u>9% / WHO I-III</u> MNG1 MNG673 MNG734	EELPLEQGF ALSSLVIYL ILFKDVVATV	B*18:01 A*02:01 A*02:01	Q9BRC7	2
Paraneoplastic antigen Ma2 (PNMA2)	<u>9% / WHO I+II</u> MNG1	AYVLRLETL SEVQGKGGVW	A*24:02 B*44:03	Q9UL42	32
	MNG3 MNG673	AEIQEVLQETL SEVQGKGGVW	B*40:01 B*44:03		

Meningioma-associated HLA class II antigens

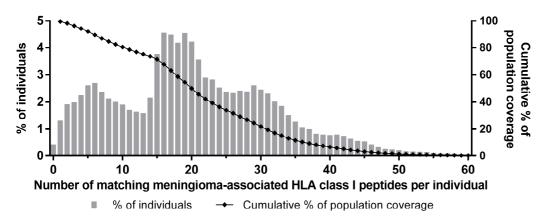
Meningioma-associated HL	A class II antigens			
Inactive serine protease 35 (PRSS35)	30% / WHO I+II MNG6 MNG7 MNG501 MNG634 MNG638	SRFSILDKRFLTNFPFS LPTPSLSELEDY LPTPSLSELEDYL LPTPSLSELEDYLSYE SRFSILDKRFLTNFPFS KVPRIVSERTFHLTSP KVPRIVSERTFHLTSPA LPTPSLSELEDY LPTPSLSELEDYL LPTPSLSELEDYLSY	Q8N3Z0 -	3
	MNG641	LPTPSLSELEDYLSYE GTDSRFSILDKRFLTNFPFS SRFSILDKRFLTNFPFS		
	MNG673	SRFSILDKRFLTNFPFST DSRFSILDKRFLTNFPFS DSRFSILDKRFLTNFPFS GTDSRFSILDKRFLTNFPFS GTDSRFSILDKRFLTNFPFS SRFSILDKRFLTNFPFST SRFSILDKRFLTNFPF SRFSILDKRFLTNFPFS		
	MNG702 MNG814	SRFSILDKRFLTNFPFST SRFSILDKRFLTNFPFS RFSILDKRFLTNFPFS		
	MNG833	SRFSILDKRFLTNFPFS DSRFSILDKRFLTNFPFS GTDSRFSILDKRFLTNFPFS RFSILDKRFLTNFPFS SRFSILDKRFLTNFPF SRFSILDKRFLTNFPFS SRFSILDKRFLTNFPFST		
Lactosylceramide 4-alpha- galactosyltransferase (A4GALT)	27% / WHO I-III MNG7 MNG623 MNG661 MNG666	KPPDLLLRLLRGAP TQSRYVLNGAFLAFERR QSRYVLNGAFLAFER QSRYVLNGAFLAFER TQSRYVLNGAFLAFER TQSRYVLNGAFLAFER	Q9NPC4 ∎	0
	MNG673	GTQSRYVLNGAFLAFERRH TQSRYVLNGAFLAFER		
	MNG682 MNG734 MNG819 MNG833	TQSRYVLNGAFLAFER QSRYVLNGAFLAFER TQSRYVLNGAFLAFER QSRYVLNGAFLAFER QSRYVLNGAFLAFER TQSRYVLNGAFLAFER TQSRYVLNGAFLAFER TQSRYVLNGAFLAFERR TQSRYVLNGAFLAFERRH		
Fibrillin-2 (FBN2)	21% / WHO I-III MNG1 MNG3 MNG612 MNG641 MNG700 MNG702	DDSVFRIHQRNGLSY DDSVFRIHQRNGLSYL GNDDSVFRIHQRNGLSYLH IQPLNNHIRYVISQG NDDSVFRIHQRNGLSY DDSVFRIHQRNGLSY LRPAIQPLNNHIRYV LRPAIQPLNNHIRYV KKDSRQKRSI DSVERIHQRNGLSY	P35556 ∎	7
	MNG702 MNG734	DSVFRIHQRNGLSY GNDDSVFRIHQRNGLSY GNDDSVFRIHQRNGLSYLH IQPLNNHIRYVISQG NDDSVFRIHQRNGLSY LRPAIQPLNNHIRYV RPAIQPLNNHIRYV		
Sushi, nidogen and EGF-like domain-containing protein 1 (SNED1)	<u>21% / WHO I-III</u> MNG7 MNG638 MNG642	QTVLITDGKLSFTIFN DRFTFRALLPGKRY DRFTFRALLPGKRYT EPAHLYIITSPRDG EPAHLYIITSPRDGAD	Q8TER0	1
	MNG666 MNG679	TKSRYVPNGKLASYT TRLFSETKAFPVWE		

	MNG702 MNG734	TKSRYVPNGKLASYT ASTISVQWALHRIR		_
MAGUK p55 subfamily member 6 (MPP6)	<u>18% / WHO I-III</u> MNG1 MNG2	INNQLLPVDAIRILG INNQLLPVDAIRILG INNQLLPVDAIRILGIH	Q9NZW5 -	5
	MNG6 MNG623 MNG641	DRHEIQIYEEVAKMPP INNQLLPVDAIRILG DRHEIQIYEEVAKMPP DRHEIQIYEEVAKMPPF DRHEIQIYEEVAKMPPFQ FDRHEIQIYEEVAKMPPFQ		
	MNG734	DRHEIQIYEEVAKMPP DRHEIQIYEEVAKMPPF		
Dorsal root ganglia homeobox protein (DRGX)	<u>15% / WHO I+II</u> MNG3 MNG501 MNG666 MNG702 MNG833	LAMKINLTEARVQVWF LAMKINLTEARVQVWF LAMKINLTEARVQVWF LAMKINLTEARVQVWF LAMKINLTEARVQVWF	A6NNA5 🔳	6
Melanoma-associated antigen 10 (MAGEA10) 1 peptide multi-maps to non- MNG-exclusive MAGEA9 (P43362)	<u>15% / WHO I+II</u> MNG499 MNG624 MNG641 MNG682 MNG700	KLLTQDWVQENYLEYRQVPGSDP KLLTQDWVQENYLEYRQVPGSDP KLLTQDWVQENYLEYRQVPGSDP ESLPRSEIDEKVTDLVQFLLFKYQM KLLTQDWVQENYLEYRQVPGSDP	P43363 ∎	3
Nuclear factor of activated T-cells, cytoplasmic 2 (NFATC2)	15% / WHO I+II MNG1 MNG6 MNG7 MNG624 MNG702	DQTYLDDVNEIIR LDQTYLDDVNEIIR KDKSQPNMLFVEIPEYR DQTYLDDVNEIIR DQTYLDDVNEIIR LDQTYLDDVNEIIR DQTYLDDVNEIIR KPHAFYQVHRITGKT	Q13469 -	20
Uncharacterized protein KIAA1586 (KIAA1586)	<u>15% / WHO I+II</u> MNG5 MNG501 MNG637 MNG642 MNG702	LDQTYLDDVNEIIR EVDLNDFREFVNNNIK ELETEIIKIGRVMGPRW ELETEIIKIGRVMGPRW ELETEIIKIGRVMGPRW ELETEIIKIGRVMGPRW	Q9HCI6 -	5
ZAR1-like protein (ZAR1L)	12% / WHO I+II MNG501 MNG638 MNG702 MNG833	MGPPTFLARPGLLVPANAP SPRLCKPNTKEVGVQVSPRVDKAV MGPPTFLARPGLLVPANAP MGPPTFLARPGLLVPANAP	A6NP61 ∎	1
G protein-regulated inducer of neurite outgrowth 2 (GPRIN2)	<u>12% / WHO I+II</u> MNG638 MNG679 MNG682 MNG702	IQKHLEMQFEQLQRAPASEDS IQKHLEMQFEQLQRAPASEDSL IQKHLEMQFEQLQRAPASEDSL IQKHLEMQFEQLQRAPASEDSL	O60269 <mark>-</mark>	2
Bone morphogenetic protein 5 (BMP5) 1 peptide multi-maps to non- MNG-exclusive BMP6 (P18075)	<u>12% / WHO I+II</u> MNG638 MNG642	SNVILKKYRNMVVRS AAEFRIYKDRSNN AAEFRIYKDRSNNR AEFRIYKDRSNNR TAAEFRIYKDRSNN TAAEFRIYKDRSNNR	P22003 -	0
	MNG679 MNG702	RDADLFLLDTRK YTNRDADLFLLDTRK AFFKATEVHFR		
Transcription factor SOX-6 (SOX6)	<u>12% / WHO I+II</u> MNG4 MNG499 MNG642 MNG679	SSNVILKKYRNMVVR ASMQVSPGAKMPS KTDGGSLAGNEMINGEDEMEMYDDY EMEMYDDYEDDP ITQLISLREQLLAAHDEQKKLAAS	P35712	5
Zinc finger E-box-binding homeobox 2 (ZEB2)	12% / WHO I+II MNG7 MNG623 MNG624 MNG635	SVNGRMRNNIKTGSSP EEYFAKRKLEERDGHAVSIEEYLQ EEYFAKRKLEERDGHAVSIEEYLQ EEYFAKRKLEERDGHAVSIEEYLQ	O60315 ■	1
Mucin-4 (MUC4)	<u>12% / WHO I+II</u> MNG499 MNG501	GRRDLRFQPVSIGR GRRDLRFQPVSIGRWG DNGQIIFPESDYQIFSYPNPLPT	Q99102 <mark>-</mark>	12

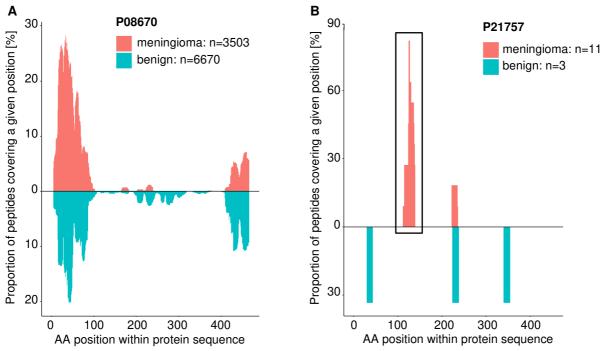
	MNG628 MNG638	SNILHASASLPP APIPILPERGVSLFPY APIPILPERGVSLFPYG		
Kinesin light chain 2 (KLC2) peptides multi-map to non- MNG-exclusive KLC1	<u>12% / WHO I+III</u> MNG6	HNLVIQYASQGRYE LHNLVIQYASQGRYE	Q9H0B6 =	6
(Q07866)	MNG612 MNG636 MNG734	LHNLVIQYASQGRYE LHNLVIQYASQGRYE HNLVIQYASQGRYE	001/00/	
Calcium-binding protein 39-like (CAB39L)	<u>12% / WHO I+II</u> MNG638 MNG641 MNG666	GKKDVTQIFNNILRRQ DRHNFAIMTKYISKPE DRHNFAIMTKYISKPE	Q9H9S4 =	2
Calpain-14 (CAPN14)	MNG702 <u>9% / WHO I</u> MNG7 MNG499	DRHNFAIMTKYISKPE MLRVENMEDVFQN IMLSDDVCQLMLIRYGGPR	A8MX76 🗖	1
Methylenetetrahydrofolate reductase (MTHFR)	MNG673 <u>9% / WHO I+II</u> MNG499 MNG638 MNG814	LPPEFFQRNTPLSQPDRFLKEKE IKDVIEPIKDNDAAIR KGENITNAPELQPNAVT IKDVIEPIKDNDAAIR	P42898 🗕	9
Killer cell immunoglobulin- like receptor 2DS4 (KIR2DS4)	<u>9% / WHO I</u> MNG7 MNG623 MNG624	MSLMVIIMACVGFFLLQGAW MSLMVIIMACVGFFLLQGAW MSLMVIIMACVGFFLLQGAW	P43632 🔳	1
Probable allantoicase (ALLC)	<u>9% / WHO I+II</u> MNG6 MNG642 MNG673	PSSICLLRPREKPM DFFAPAENLIKSDSPCF IPERGTRTGAAATPEEFEAIAELKS	Q8N6M5 -	1
Tubulin polyglutamylase TTLL6 (TTLL6)	<u>9% / WHO I+II</u> MNG632 MNG702	QMKKKVEMQGE QMKKKVEMQGE	Q8N841 🔸	2
Serine/threonine-protein kinase Sgk3 (SGK3)	MNG833 <u>9% / WHO I+II</u> MNG682 MNG702	SEEKGDSSKEDPKETVALAFV TFCGTPEYLAPEVIRKQPYDNT TFCGTPEYLAPEVIRKQPYDNT	Q96BR1 =	4
PC-esterase domain- containing protein 1B (PCED1B)	MNG833 <u>9% / WHO I-III</u> MNG634 MNG641	TFCGTPEYLAPEVIRKQPYDNT NFMVGPQLPMPFFPTPRYQ NFMVGPQLPMPFFPTPRYQ	Q96HM7 =	4
Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44)	MNG734 <u>9% / WHO I</u> MNG4 MNG6 MNC682	NFMVGPQLPMPFFPTPRYQ KRTEFAGDKFKEEKVFE KWYQQWKDFKENNVVFNRFFEMKMK	O43615 =	1
Ubiquitin conjugation factor E4 B (UBE4B)	MNG682 <u>9% / WHO I+II</u> MNG641 MNG666	KWYQQWKDFKENNVVFNRFFEMKMK KDLIGQILMEVLMMSTQTRDEN VDMFHILTKQVQKPF	O95155 =	5
Protein SGT1 (ECD)	MNG702 <u>9% / WHO I</u> MNG5 MNG6	VDMFHILTKQVQKPF DSDDLDDEDFECLDSDDDLDF LRDPIDLRACRVFKTFLPETRIMTS	O95905 🗖	4
T-lymphocyte activation antigen CD86 (CD86)	MNG632 <u>9% / WHO I</u> MNG7	EKIQASLHRAHCFL DKTRLLSSPFSIELEDPQPPP TDKTRLLSSPFSIELEDPQPPP	P42081 🗕	22
Signal transducer and activator of transcription 5B	MNG623 MNG624 <u>9% / WHO I+II</u> MNG3	DKTRLLSSPFSIELEDPQPPP DKTRLLSSPFSIELEDPQPPP DGVMEVLKKHLKPH	P51692 =	13
(STAT5B) Nucleoporin GLE1 (GLE1)	MNG702 MNG833 <u>9% / WHO I+II</u> MNG628	DGVMEVLKKHLKPH DGVMEVLKKHLKPH ISGIIRASSESSYPTAE	Q53GS7 🛛	3
N-acetyltransferase ESCO1	MNG634 MNG814 <u>9% / WHO I+II</u>	KEEGQIRLRALYALQEEML KQAEQERLRKEEGQI	Q5FWF5 -	14
(ESCO1) Protein angel homolog 2	MNG499 MNG635 MNG641 9% / WHO I-III	KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK KVLEVKSDSKEDENLVINEVINSPK	Q5VTE6 -	0
(ANGEL2)	MNG634 MNG734 MNG833	DHYGAEIRPSLESLGY DHYGAEIRPSLESLGY DHYGAEIRPSLESLGY		

Meteorin-like protein (METRNL)	<u>9% / WHO I+II</u> MNG666 MNG702	GFQYELVRRHRASD TGFQYELVRRHRASD GFQYELVRRHRASD TGFQYELVRRHRASDLH	Q641Q3 🔳	3
	MNG833	GFQYELVRRHRASD		
E3 ubiquitin-protein ligase RFWD3 (RFWD3)	<u>9% / WHO I</u> MNG3 MNG666 MNG702	TNFISGLQRLHGMLEFL TNFISGLQRLHGMLEFL TNFISGLQRLHGMLEFL	Q6PCD5 -	2
Highly divergent homeobox (HDX)	<u>9% / WHO I+II</u> MNG634 MNG635 MNG666	QRSYKPEHTGPALHNLC FIENELEIQKQKYFKLQ SEMTVPQKPSVCHRPCKIEP	Q7Z353 🔳	2
Signal-regulatory protein delta (SIRPD)	<u>9% / WHO I+II</u> MNG1 MNG3 MNG673	PLPSLLLYLLLELA PLPSLLLYLLLELAG PLPSLLLYLLLELA PLPSLLLYLLLELA	Q9H106 •	3
Uncharacterized protein C1orf112 (C1orf112)	<u>9% / WHO I+II</u> MNG3 MNG6 MNG642	FVSSLGKLF FVSSLGKLF KAVFYSFEQCSGELSLP	Q9NSG2 ♦	1

Supplementary Table 17. Meningioma-associated HLA class I ligands presented on at least five tumors. Peptides already reported to derive from meningioma-associated antigens were excluded from this listing. The number of positive non-meningeal tumors was based on n=841 HLA class I peptidome datasets. HLA restrictions not passing manual assessment as quality control are indicated in italic. These combinations of sequence and HLA restriction were excluded from downstream analyses such as calculation of peptides matching per patient worldwide.


Peptide sequence	HLA restriction	Frequenc	y of	Antigen (UniProt accession)	Protein frequency on meningiomas	Peptide-positive non-meningeal tumors Protein frequency on non-meningeal tumors	Protein frequency on dura (n=9) / benign samples (n=418)
TLQSTLLLL	A*02:01 C*17:01	30% MNG501 MNG628 MNG641 MNG673 MNG702	MNG612 MNG638 MNG666 MNG700	Mimecan (OGN; P20774)	61%	1 2%	11% 5%
QTFPNVREM	B*57:01 C*03:04 C*06:02 C*12:03	30% MNG2 MNG5 MNG634 MNG636 MNG666	MNG3 MNG628 MNG635	Forkhead box protein C2 (FOXC2; Q99958)	85%	0 7%	67% 8%
IPISNILMV	B*07:02 B*51:01 B*51:02 B*55:01	24% MNG499 MNG612 MNG642 MNG814	MNG501 MNG635 MNG702	Interferon-induced protein 44-like (IFI44L; Q53G44)	30%	37 12%	11% 3%
LLLPVVSFA	A*02:01	21% MNG612 MNG641 MNG673 MNG734	MNG628	Cathepsin K (CTSK; P43235)	21%	29 7%	0% 4%
SLPELVHAV	A*02:01	<u>21%</u> MNG6 MNG641 MNG673 MNG734	MNG628	Sestrin-3 (SESN3; P58005)	11%	23 11%	33% 4%
YSLEKVFGI	A*02:01 C*02:02 <i>C*06:02</i> <i>C*07:01</i> C*12:03 C*17:01	<u>21%</u> MNG2 MNG612 MNG641 MNG734	<u>WHO I-III</u> MNG5 MNG638 MNG666	associated antigen D2	94%	24 52%	56% 48%
EVYGTGVASTR	A*34:01 A*66:02 A*68:01	<u>21%</u> MNG3 MNG499 MNG642 MNG814	<u>WHO I-III</u> MNG6 MNG632 MNG734	Serine palmitoyl- transferase 3 (SPTLC3; Q9NUV7)	76%	2 20%	33% 17%

,,,,,								
A 29.02 MNG41 MNG632 P2074) 2% 5% A 30.02 B*15.01 MNG644 MNG646 MNG646 MNG646 MNG646 MNG646 MNG646 MNG646 MNG646 MNG67 2% 32 22% 3% MNG63 MNG63 MNG63 MNG64 11% MNG64 MNG64 11% MNG64 MNG64 MNG64 MNG64 11% MNG64 MNG64 11% MNG64 <	KAIDYIRFL	C*12:03	MNG1 MNG628 MNG666	MNG4 MNG636	element-binding protein 1 (SREBF1;	55%		
C*12:03 MNGG28 MNGG37 GTPase ¹ (GPN1; 25% 15% YPSGIHLEL B*07.02 21% WH0 Litl Sulfate transporter 70% 2 33% MNG684 MNG664 GMNG74 Sulfate transporter 70% 2 33% LPYNTSLVEM B*07.02 21% WH0 Litl Sulfate transporter 70% 2 22% 11% NNG682 MNG684 MNG684 (MOC1): P28289) 8% 11% 11% NYAGALMYF A*24.02 18% WHO Litl Gold mileak 24% 2 0% 15% SELLVVKM B*18.01 18% WHO Litl Gold mileak 24% 2 0% 15% VYGLYTSFF A*24.02 18% MNG684 MG683 sector protein 70% 3 33% OYGLYTSFF A*24.02 18% MNG684 MNG684 Gold mileak 24% 2 0% 15% VYGLYTSFF A*24.02 18% MNG684	KLNNLTFLY	A*29:02 A*30:02	MNG1 MNG641 MNG673	MNG632 MNG646	· · · ·	61%		
B*35:01 MNG22 MNG632 MNG634 MNG75 MNG632 MNG634 (SLC26A2; P50443) 4% 3% LPYNTSLVEM B*07:02 15% WHO LHI Tropomodulin-1 67% 2 22% NYAGALAMYF A*24:02 15% WHO LHI Tropomodulin-1 67% 2 2% 1% NYAGALMYF A*24:02 15% WHO LHI Solutim leak 24% 2 0% SELLVVKM B*18:01 15% WHO LHI Solutim leak 24% 2 0% SELLVVKM B*18:01 15% WHO LHI Solutim leak 24% 2 0% VYGLYTSFF A*24:02 16% WHO LHI Obscurin-like 45% 5 33% MNG64 MNG635 MNG636 NNG636 NNG636 NNG636 NNG636 NNG636 0% / 0% 3% 3% VYGLYTSFF A*24:02 15% WHO LHI Solutale transporter 70% 3 3% DGYIEVIGF B*3:01 MNG64 <	SSFPTVVIY		MNG628 MNG637 MNG666	MNG636 MNG661	GTPase 1 (GPN1;	49%	-	
B*35.01 MNG67 MNG634 MNG67 MNG634 MNG67 MNG634 MNG67 MNG634 MNG67 MNG634 MNG67 MNG634 MNG67 MNG635 MNG67 Selective protein 24% 2 2% 0% SELLVVKM B*18.01 19% WHO L1 Obscurin-like MNG635 45% 5 33% SELLVVKM B*18.01 19% WHO L1 Obscurin-like MNG635 45% 5 33% VYGLYTSFF A*24:02 18% WHO L1 Sufate transporter MNG635 70% 3 33% DGYIEVIGF B*35.01 18% WHO L1 Sufate transporter MNG635 70% 3 33% DGYIEVIGF B*35.01 18% WHO L1 Sufate transporter MNG632 70% 3 33% DVIDGPISQR A*68.01 MNG634 MNG644 MNG634 49% 7 33% SWVEDITGLRL A*08.01 18% WHO L1 Sufate transporter MNG634 70% 28 56% SWVEDITGLRL A*02.01 18% MNG64 MNG634 20% 7	YPSGIHLEL		MNG2 MNG632 MNG642	MNG7 MNG634		70%		
MNG1 MNG628 MNG638 chamel non- (NALCN; Q8IZF0) 2% 1% SELLVVKM B*18:01 13% WHO1-III MNG64 Dbscurin-like 45% 5 33% VYGLYTSFF A*24:02 13% WHO1-III MNG63 Suffact transporter MNG638 70% 3 33% DGYIEVIGF B*35:01 13% WHO1-III MNG628 Suffact transporter MNG638 70% 34 0% / 0% DGYIEVIGF B*35:01 18% WHO1-III MNG628 Suffact transporter MNG628 18% / 39% 34 0% / 0% DVIDGPISQR A*66:01 18% MNG641 MNG628 MNG643 MNG641 MNG649 MNG649 MNG649 MNG649 MNG649 18% 47% 20% 18% DVIDGPISQR A*66:01 18% WHO1-IIII Signal-induced 49% 7 33% SMVEDITGLR A*33:01 18% WHO1-IIII Signal-induced 49% 7% 41% SWFAGVGV A*02:01 18% WHO1-IIII Gamylate	LPYNTSLVEM		MNG7 MNG632	MNG628 MNG634		67%		
B*40:02 MNG1 MNG64 MNG66 MNG664 protein 1 (DBSL1; 17% 15% VYGLYTSFF A*24:02 18% WHO 1-II MNG63 Sulfate transporter MNG638 70% 3 33% DGYIEVIGF B*35:01 18% WHO 1-II Diacylglycerol MNG632 18% / 39% 34 0% / 0% DGYIEVIGF B*51:01 MNG632 MNG634 (DGK1 / DGK2; MNG632 18% / 39% 34 0% / 0% MNG64 MNG632 MNG632 MNG634 (DGK1 / DGK2; MNG634 0% / 18% 6% / 19% 37% 18% DVIDGPISOR A*66:01 18% WHO 1-II DSignal-Induced 49% 7 33% EVQDRVMLTGR A*33:01 18% WHO 1-II Signal-Induced 49% 7 33% SWVEDITGLRL A*02:01 18% WHO 1-III Signal-Induced 49% 7 34% 32% SVFAGVVGV A*02:01 18% WHO 1-III Protein ripipee- MNG634 70% 26 56% 34% 32% <tr< td=""><td>NYAGALMYF</td><td>A*24:02</td><td>MNG1 MNG635</td><td>MNG628 MNG638</td><td>channel non- selective protein</td><td>24%</td><td></td><td></td></tr<>	NYAGALMYF	A*24:02	MNG1 MNG635	MNG628 MNG638	channel non- selective protein	24%		
MNG65 MNG635 MNG661 MNG628 MNG635 MNG636 MNG633 GLC26A2; P50443) 4% 3% DGYIEVIGF B*35:01 18% MNG62 MNG633 MNG624 IDacy[glycerol 18% / 39% 34 0% / 0% DGYIEVIGF B*35:01 18% MNG632 MNG634 IDacy[glycerol 18% / 39% 34 0% / 0% DVIDGPISOR A*66:01 18% MNG63 MNG632 MNG634 IDCRI / DGRI / DGR	SELLVVKM		MNG1 MNG628	MNG6 MNG638	protein 1 (OBSL1;	45%		
B*51:01 MNG622 MNG632 Kinaše ina zeta (DGKI / DGKZ; MNG632 6% / 19% 3% / 16' DVIDGPISQR A*66:01 18% MNG429 WHO1-III MNG499 Signal-induced proliferation- MNG499 49% 7 33% EVQDRVMLTGR A*68:01 18% MNG499 WHO1 Brotin 1 (SIPA1L1; O43166) 20% 18% EVQDRVMLTGR A*33:01 18% MNG499 WHO1 Protein yippee- MNG499 70% 28 56% SMVEDITGLRL A*02:01 18% MNG634 WHO1 Protein yippee- MNG635 70% 26 56% SVFAGVVGV A*02:01 18% MNG638 WHO1-III MNG668 Desmoplakin (DSP; MNG673 97% 26 56% SVFAGVVGV A*02:01 18% MNG661 WHO1-III MNG6673 Uanylate cyclase 64% 42 56% B*51:02 MNG612 MNG642 MNG642 MNG642 MNG642 MNG642 VPYSRALIM B*35:03 18% MNG612 WHO1-III Lysoplasmaloge- NMG642 24% 27 11% MNG642 VPYSRALIM B*18:01 18% MNG628 <td>VYGLYTSFF</td> <td>A*24:02</td> <td>MNG5 MNG635</td> <td>MNG628 MNG638</td> <td></td> <td>70%</td> <td></td> <td></td>	VYGLYTSFF	A*24:02	MNG5 MNG635	MNG628 MNG638		70%		
A*68:01 MNG3 MNG499 MNG62 MNG499 modes MNG632 MNG632 proliferation- associated 1-like protein 1 (SIPA1L1; O43166) 20% 18% EVQDRVMLTGR A*33:01 18% WHO1 MNG33 WHO1 Protein 1 (SIPA1L1; O43166) 20% 18% SMVEDITGLRL A*02:01 18% WHO1-III MNG636 Protein 1 (SIPA1L1; O43166) 70% 28 56% SWVEDITGLRL A*02:01 18% WHO1-III MNG636 Desmoplakin (DSP; 97% 26 56% SVFAGVVGV A*02:01 18% WHO1-III MNG666 Guanylate cyclase 64% 42 56% VPYSRALIM B*35:03 18% WHO1-III MNG612 Guanylate cyclase 64% 27 11% YENLLKASF B*18:01 18% WHO1-III MNG642 Usyoplaxmaloge- NMG633 24% 27 11% YENLLKASF B*18:01 18% WHO1-III MNG638 Desmoplakin (DSP; 97% 12 56% AANGVFHVV C*12:03 15% WHO1-III MNG663 Desmoplakin (DSP; 97% 12 56% AANGVFHVV<	DGYIEVIGF		MNG624 MNG632	MNG628 MNG634	kinase iota / zeta (DGKI / DGKZ;	18% / 39%	-	0% / 0% 3% / 16%
A*68:01 MNG3 MNG499 MNG6 MNG634 MNG6 MNG632 like 5 (YPEL5; P2699) 47% 41% SMVEDITGLRL A*02:01 18% WH01-III MNG601 Desmoplakin (DSP; 97% 26 56% SVFAGVVGV A*02:01 18% WH01-III MNG6612 Desmoplakin (DSP; 97% 26 56% SVFAGVVGV A*02:01 18% WH01-III MNG6612 Guanylate cyclase 64% 42 56% MNG641 MNG6612 MNG6612 Guanylate cyclase 64% 42 56% VPYSRALIM B*35:03 18% WH01-III Guanylate cyclase 64% 27 11% B*51:02 MNG612 MNG662 MNG642 TMEM86A 5% 2% YENLLKASF B*18:01 18% WH01-III Desmoplakin (DSP; 97% 12 56% AANGVFHVV C*12:03 15% WH0 I-III MNG668 MNG664 4% 34% 32% AEFPELAAF B*18:01 15% WH0 I-III MNG6666 QNY15) 34%	DVIDGPISQR		MNG3 MNG499	MNG6 MNG632	proliferation- associated 1-like protein 1 (SIPA1L1;	49%		
MNG501 MNG612 MNG638 P15924) 34% 32% SVFAGVVGV A*02:01 18% MNG66 WHO I-III MNG66 Guarylate cyclase 64% 42 56% MNG661 MNG6612 soluble subunit 17% 16% MNG673 MNG6612 soluble subunit 17% 16% MNG673 MNG702 Q02108 24% 27 11% VPYSRALIM B*35:03 18% WHO I-III Lysoplasmaloge- nase-like protein 24% 27 11% B*51:01 MNG612 MNG642 TMEM86A (TMEM86A; Q8N2M4) 5% 2% YENLLKASF B*18:01 18% WHO I-III MNG66 Desmoplakin (DSP; 97% 12 56% AANGVFHVV C*12:03 15% WHO I-III MNG668 Stabilin-1 (STAB1; 79% 19 34% 31% AEFPELAAF B*18:01 15% WHO I+II Uncharacterized protein KIAA1755 45% 0 0% 2%	EVQDRVMLTGR		MNG3 MNG499	MNG6 MNG632	like 5 (YPEL5;	70%		
MNG6 MNG641 MNG641 MNG673 MNG612 MNG670 MNG702 soluble subunit alpha-3 (GUCY1A3; Q02108) 17% 16% VPYSRALIM B*35:03 B*51:01 18% MNG612 WHO I-III MNG642 Lysoplasmaloge- nase-like protein 24% 27 11% B*51:02 MNG612 MNG612 MNG642 MNG702 MNG642 MNG642 MNG643 TMEM86A (TMEM86A; Q8N2M4) 5% 2% YENLLKASF B*18:01 18% MNG628 WHO I+II MNG661 Desmoplakin (DSP; 97% 12 56% AANGVFHVV C*12:03 15% MNG628 WHO I-III MNG6661 Stabilin-1 (STAB1; 79% 19 56% AEFPELAAF B*18:01 B*40:02 15% MNG1 WHO I+II MNG6 Uncharacterized protein KIAA1755 45% 0 0%	SMVEDITGLRL	A*02:01	<u>18%</u> MNG501 MNG638	<u>WHO I-III</u> MNG612 MNG641		97%		
B*51:01 B*51:02 MNG6 MNG612 MNG612 MNG702 MNG499 MNG642 MNG633 nase-like protein TMEM86A (TMEM86A; Q8N2M4) 5% 2% YENLLKASF B*18:01 B*15:35 18% MNG1 WHO I+II MNG68 MNG638 MNG661 Desmoplakin (DSP; 97% P15924) 12 34% 56% 32% AANGVFHVV C*12:03 15% MNG668 MNG661 WHO I-III MNG666 MNG734 Stabilin-1 (STAB1; 79% Q9NY15) 19 34% 56% 31% AEFPELAAF B*18:01 B*40:02 15% MNG1 WHO I+II MNG6 Uncharacterized protein KIAA1755 45% 2% 0 2% 0% 2%	SVFAGVVGV	A*02:01	MNG6 MNG641	MNG612 MNG666	soluble subunit alpha-3 (GUCY1A3;	64%		
B*15:35 MNG1 MNG628 MNG642 MNG6 MNG638 MNG661 P15924) 34% 32% AANGVFHVV C*12:03 15% MNG628 MNG661 WHO I-III MNG636 MNG636 Stabilin-1 (STAB1; 79% 19 56% AANGVFHVV C*12:03 15% MNG661 WHO I-III MNG636 Stabilin-1 (STAB1; 79% 19 56% AEFPELAAF B*18:01 15% MNG1 WHO I+II MNG6 Uncharacterized protein KIAA1755 45% 0 0%	VPYSRALIM	B*51:01	MNG6 MNG612	MNG499 MNG642	nase-like protein TMEM86A (TMEM86A;	24%		
MNG628 MNG636 Q9NY15) 34% 31% MNG661 MNG666 MNG666 34% 31% AEFPELAAF B*18:01 15% WHO I+II Uncharacterized 45% 0 0% B*40:02 MNG1 MNG66 protein KIAA1755 2% 2%	YENLLKASF		MNG1 MNG628	MNG6 MNG638		97%		
B*40:02 MNG1 MNG6 protein KIAA1755 2% 2%	AANGVFHVV	C*12:03	MNG628 MNG661	MNG636		79%		
MNG646 Q5JYT7)	AEFPELAAF	B*40:02	MNG1 MNG636	MNG6	protein KIAA1755 (KIAA1755;	45%		


DEDRFMMQF	B*18:01	<u>15%</u> MNG1 MNG628 MNG661	<u>WHO I+II</u> MNG6 MNG638	Formin-like protein 2 (FMNL2; Q96PY5)	48%	3 18%	11% 14%
DEKFHIAY	B*18:01	<u>15%</u> MNG1 MNG623 MNG661	<u>WHO I+II</u> MNG6 MNG628	Sestrin-1 (SESN1; Q9Y6P5)	67%	6 28%	56% 34%
DMFATPQYR	A*33:01 A*68:01	<u>15%</u> MNG3 MNG499 MNG814	<u>WHO I</u> MNG6 MNG636	Adiponectin receptor protein 2 (ADIPOR2; Q86V24)	24%	18 8%	0% 3%
DVFQHSQSR	A*33:01 A*34:01 A*66:01 A*68:01	<u>15%</u> MNG3 MNG636 MNG734	<u>WHO I-III</u> MNG632 MNG642	coactivator of	85%	3 42%	33% 36%
DYTIGFGKF	A*24:02	<u>15%</u> MNG1 MNG628 MNG833	<u>WHO I+II</u> MNG5 MNG661	Integrin beta-4 (ITGB4; P16144)	76%	7 21%	22% 27%
EIVGNLPSAMR	A*68:01	<u>15%</u> MNG3 MNG499 MNG814	<u>WHO I+II</u> MNG6 MNG632	Kelch-like protein 23 (KLHL23; Q8NBE8)	21%	3 3%	0% 2%
ETASVLVNYR	A*66:01 A*68:01	<u>15%</u> MNG3 MNG632 MNG814	<u>WHO I-III</u> MNG6 MNG734	Intersectin-2 (ITSN2; Q9NZM3)	24%	6 19%	11% 13%
EVASEIQPFLR	A*68:01	<u>15%</u> MNG3 MNG499 MNG814	<u>WHO I+II</u> MNG6 MNG632	Desmoplakin (DSP; P15924)	97%	1 34%	56% 23%
FEGNVFMY	B*18:01	<u>15%</u> MNG1 MNG628 MNG661	<u>WHO I+II</u> MNG6 MNG638	Cell cycle control protein 50A (TMEM30A; Q9NV96)	64%	7 30%	44% 18%
GLFQKLENI	A*02:01	<u>15%</u> MNG501 MNG666 MNG700	<u>WHO I+II</u> MNG641 MNG673	Desmoplakin (DSP; P15924)	97%	1 34%	56% 32%
HSIGAVGPTGR	A*68:01	<u>15%</u> MNG3 MNG499 MNG814	<u>WHO I+II</u> MNG6 MNG632	Serine palmitoyl- transferase 3 (SPTLC3; Q9NUV7)	76%	0 20%	33% 17%
IYNGKVTSI	A*24:02	<u>15%</u> MNG1 MNG635 MNG833	<u>WHO I+II</u> MNG628 MNG661	ATP-dependent RNA helicase DHX8 (DHX8; Q14562)	58%	6 23%	11% 18%
LAFPGEMLL	C*03:03 C*12:03	<u>15%</u> MNG628 MNG661 MNG734	<u>WHO I-III</u> MNG636 MNG666	Neutral amino acid transporter A (SLC1A4; P43007)	18%	23 9%	0% 3%
LPIGIALMF	B*51:01	<u>15%</u> MNG499 MNG632 MNG833	<u>WHO I+II</u> MNG501 MNG682	Multidrug and toxin extrusion protein 1 (SLC47A1; Q96FL8)	70%	1 5%	33% 5%
LPIIANMI	B*51:01	<u>15%</u> MNG499 MNG612 MNG833	<u>WHO I-III</u> MNG501 MNG642	Armadillo repeat- containing X-linked protein 2 (ARMCX2; Q7L311)	45%	11 12%	33% 11%
MEYFPTTRF	B*18:01	<u>15%</u> MNG1 MNG623 MNG638	<u>WHO I+II</u> MNG6 MNG628	Phospholipase D4 (PLD4; Q96BZ4)	39%	1 5%	33% 4%
PYFDKPLFI	A*24:02	<u>15%</u> MNG628 MNG638 MNG833	<u>WHO I+II</u> MNG635 MNG661	Sodium leak channel non- selective protein (HSBP1; Q8IZF0)	24%	1 2%	0% 1%
QTMSDQIIGR	A*68:01	<u>15%</u> MNG3 MNG499 MNG814	<u>WHO I+II</u> MNG6 MNG632	Heat shock factor- binding protein 1 (O75506)	15%	8 3%	0% 3%

STITPTSTR	A*66:01 A*68:01	<u>15%</u> MNG3 MNG499 MNG734	<u>WHO I+III</u> MNG6 MNG632	Prolow-density lipoprotein receptor- related protein 1 (LRP1; Q07954)	88%	7 32%	67% 38%
TPHDFIEHF	B*35:01	<u>15%</u> MNG624 MNG632 MNG833	<u>WHO I+II</u> MNG628 MNG682	G1/S-specific cyclin-D1 (CCND1; P24385)	79%	13 36%	67% 39%
VALPVYLLI	B*51:01	<u>15%</u> MNG499 MNG612 MNG833	<u>WHO I-III</u> MNG501 MNG702	Phosphatidylinositol N-acetylgluco- saminyltransferase subunit P (PIGP; P57054)	30%	27 9%	11% 2%
VAVGFPMMI	C*12:03	<u>15%</u> MNG628 MNG661 MNG734	<u>WHO I-III</u> MNG636 MNG666	Putative sodium- coupled neutral amino acid transporter 10 (SLC38A10; Q9HBR0)	48%	19 24%	33% 19%
VEVQLPELY	B*18:01 B*44:03	<u>15%</u> MNG1 MNG636 MNG661	<u>WHO I+II</u> MNG6 MNG638	Voltage-gated potassium channel subunit beta-1 (KCNAB1; Q14722)	21%	9 5%	11% 4%
YGYSNPKIL	C*03:04 C*12:03	<u>15%</u> MNG3 MNG636 MNG734	<u>WHO I-III</u> MNG628 MNG661	Transcription factor AP-1 (JUN; P05412)	33%	27 24%	11% 26%
YNFEYSVVF	B*38:01 C*12:03	<u>15%</u> MNG628 MNG637 MNG734	<u>WHO I-III</u> MNG636 MNG666	Renin receptor (RENR; O75787)	70%	16 42%	33% 41%
YPNAKVELV	B*51:01 B*51:08	<u>15%</u> MNG4 MNG501 MNG702	<u>WHO I+II</u> MNG499 MNG702	PDZ and LIM domain protein 4 (PDLIM4; P50479)	28%	17 8%	0% 4%
YYASAFSMM	A*24:02	<u>15%</u> MNG628 MNG638 MNG833	WHO I+II MNG635 MNG661	Dolichyl-diphospho- oligosaccharide- protein glycosyl- transferase 48 kDa subunit (DDOST; P39656)	58%	0 39%	44% 41%
YYKSTSSAF	A*24:02	<u>15%</u> MNG1 MNG635 MNG833	<u>WHO II</u> MNG628 MNG638	Galactose-3-O- sulfotransferase 4 (GAL3ST4; Q96RP7)	30%	9 6%	11% 1%
DAFDGHAAR	A*33:01 A*34:01 A*66:01 A*68:01	<u>15%</u> MNG3 MNG636 MNG734	<u>WHO I-III</u> MNG632 MNG642	CDP-diacylglycerol- inositol 3-phospha- tidyltransferase (CDIPT; O14735)	28%	6 9%	0% 6%
DSERFFIRY	A*01:01	<u>15%</u> MNG4 MNG7 MNG646	<u>WHO I</u> MNG5 MNG624	Tubulin-specific chaperone cofactor E-like protein (TBCEL; Q5QJ74)	18%	30 7%	11% 9%
EAENTLQSFR	A*68:01	<u>15%</u> MNG3 MNG499 MNG814	<u>WHO I+II</u> MNG6 MNG632	Vimentin (VIM; P08670)	100%	1 88%	100% 96%
EAIFLEVKY	A*26:01 A*29:02 B*35:01	<u>15%</u> MNG624 MNG679 MNG833	<u>WHO I+II</u> MNG634 MNG682	Vacuolar protein sorting-associated protein 13D (VPS13D; Q5THJ4)	61%	1 30%	33% 35%
EVFAGSGTSGQR	A*66:01 A*68:01	<u>15%</u> MNG3 MNG632 MNG814	<u>WHO I-III</u> MNG6 MNG734	Procollagen C- endopeptidase enhancer 1 (PCOLCE; Q15113)	21%	1 1%	0% 1%
EVPSFTMGR	A*34:01 A*66:01 A*68:01	<u>15%</u> MNG3 MNG642 MNG814	<u>WHO I+II</u> MNG6 MNG734	PRKR-interacting protein 1 (PRKRIP1; Q9H875)	15%	5 1%	0% 0.5%
FFNIPQIQY	A*29:02	<u>15%</u> MNG1 MNG673 MNG682	<u>WHO I+II</u> MNG623 MNG679	28S ribosomal protein S25, mitochondrial (MRPS25; P82663)	15%	12 4%	0% 5%

FLMEMGFRM	A*02:01	<u>15%</u> MNG6 MNG628 MNG673	<u>WHO I-III</u> MNG612 MNG638	Mediator of RNA polymerase II transcription subunit 18 (MED18; Q9BUE0)	24%	13 7%	11% 4%
FVFGENMVER	A*68:01	<u>15%</u> MNG3 MNG499 MNG814	<u>WHO I+II</u> MNG6 MNG632	Ran-binding protein 3-like (RANBP3L; Q86VV4)	24%	1 1%	0 1%
GAFGLPITV	C*02:02 C*12:03	<u>15%</u> MNG636 MNG666 MNG734	<u>WHO I+III</u> MNG661 MNG702	Glutathione S- transferase kappa 1 (GSTK1; Q9Y2Q3)	24%	10 27%	11%
GLLPLLREA	A*02:01	<u>15%</u> MNG641 MNG673 MNG734	<u>WHO I-III</u> MNG666 MNG702	Stabilin-1 (STAB1; Q9NY15)	79%	34 34%	56%
HTNDTIGSVR	A*66:01 A*68:01	<u>15%</u> MNG3 MNG632 MNG814	<u>WHO I-III</u> MNG6 MNG734	Probable ubiquitin carboxyl-terminal hydrolase FAF-X / FAF-Y (USP9X/Y; Q93008 / O00507)	82% / 64%	18 53% / 41%	67% / 44% 57%/ 41%
NLMGKTSER	A*34:01 A*66:01 A*68:01	<u>15%</u> MNG3 MNG632 MNG734	<u>WHO I-III</u> MNG6 NBG642	Transcription factor 12 (TCF12; Q99081)	61%	3 43%	33% 29%
RVYDIPPKF	A*30:02 A*32:01 B*15:35 C*12:03	<u>15%</u> MNG7 MNG634 MNG661		Cytochrome b-245 heavy chain (CYBB; P04839)	88%	4 34%	56% 32%
SLSLENVLYY	A*29:02 B*15:01	<u>15%</u> MNG1 MNG673 MNG682	<u>WHO I+II</u> MNG623 MNG679	Sortilin-related receptor (SORL1; Q92673)	45%	14 23%	11% 17%
SPNNFLSYY	B*35:01	<u>15%</u> MNG628 MNG634 MNG833	<u>WHO I+II</u> MNG632 MNG682	G1/S-specific cyclin-D1 (CCND1; P24385)	79%	8 36%	67% 39%
SVDSNLLSDY	A*01:01	<u>15%</u> MNG3 MNG624 MNG702	<u>WHO I</u> MNG7 MNG646	Oxidative stress- induced growth inhibitor 2 (OSGIN2; Q9Y236)	42%	41 12%	33% 7%
SVIEGVSRSR	A*66:01 A*68:01	<u>15%</u> MNG3 MNG632 MNG814	<u>WHO I-III</u> MNG6 MNG734	BTB/POZ domain- containing protein 9 (BTBD9; Q96Q07)	27%	13 12%	0% 6%
SYFPTVPGVYI	A*24:02	<u>15%</u> MNG1 MNG635 MNG833	<u>WHO I+II</u> MNG5 MNG638	Filamin-B (FLNB; O75369)	94%	7 46%	67% 60%
TEEPLKQSF	B*18:01	<u>15%</u> MNG1 MNG628 MNG661	<u>WHO I+II</u> MNG6 MNG638	GRAM domain- containing protein 3 (GRAMD3; Q96HH9)	42%	9 12%	11% 13%
VELLMHNDY	B*18:01	<u>15%</u> MNG1 MNG628 MNG661	<u>WHO I+II</u> MNG6 MNG638	Importin subunit alpha-5/6/7 (KPNA1/5/6; P52294 / O15131 / O60684)	73% / 58 % / 64%	12 52% / 45% / 46%	78% / 67% / 78% 53% / 45% / 46%
VGVDFALKV	C*12:03	<u>15%</u> MNG628 MNG661 MNG734	<u>WHO I-III</u> MNG636 MNG666	Ras-related protein Rab-7L1 (RAB7L1;	27%	12 4%	11% / 2%

Supplementary Figure 9. Population coverage of meningioma-associated HLA-A, -B, and -C ligands. Using the population coverage tool provided by the IEDB Analysis Resource, the world population coverage of the 141 meningioma-associated peptides was calculated. The percentage of individuals with a specific number of matching peptides (max. of 74) is indicated by bar charts (associated with the left y-axis). The line diagram (associated with the right y-axis) shows the cumulative percentage of population coverage. The candidate target peptides cover 99.57% of the world population (first diamond on line diagram counted from the left) meaning that only 0.43% of all individuals are negative for all HLA-A, -B, and -C allotypes for which meningioma-associated peptides were defined. On average, 21 peptides are expected to match per patient worldwide.

Supplementary Figure 10. Hotspot analysis of antigens represented by meningioma-exclusive HLA class II-restricted peptides. Peptides were aligned to source protein sequences, whereby identifications on meningioma (n=33) or autologous tumor-free dura (n=9) / benign tissues (n=364) are shown in red or green, respectively. The proportion of all peptides covering a given position is indicated on the y-axis (separately for malignant and benign hits). (A) Vimentin (VIM; P08670). Comparative profiling identified a total of 29 meningioma-exclusive peptides derived from vimentin. However, identical peptide sequences differing only in 1 AA in length were identified on benign tissues, which cannot be reflected by comparative profiling. HLA class II molecules are renowned for promiscuous binding of peptides due to decreased length preferences and degenerate peptide motifs and TCRs of CD4⁺ T cells rather recognize the core sequence of HLA class II-presented peptides than distinguishing between length variants. This refutes all meningioma-exclusive peptides originating from vimentin to be candidate targets for cancer immunotherapy, as they derived from regions presented on both benign and

malignant tissues. **(B) Macrophage scavenger receptor types I and II (MSR1; P21757).** Despite one part of the protein sequence was covered by both malignant and benign peptide identifications, eight distinct sequences derived from a meningioma-associated presentation hotspot were identified between position 112 and 139 (indicated by box).

Supplementary Table 18. Meningioma-exclusive HLA class II-presented peptides derived from meningioma-associated HLA presentation hotspots. Peptides already reported to derive from meningioma-associated antigens were excluded from this listing. The number of positive non-meningeal tumors was based on n=593 HLA class II peptidome datasets.

tumors was based on n=593 HLA class II peptidome datasets.										
Antigen (UniProt accession)	Protein frequency on meningiomas	Peptide sequence	Frequency of positive patients	Protein frequency on non-meningeal tumors Peptide-positive non-meningeal tumors	Protein frequency on dura (n=9) / benign samples (n=364)					
Unconventional myosin-lc (MYI1C; O00159)	49%	ENQLKYLTRLLSVE	<u>WHO</u> <u>I+II</u> 12% MNG6 MNG623 MNG666 MNG702	11% 1	0% / 17%					
		ENQLKYLTRLLSVEG	6% MNG6 MNG623	5						
		NQLKYLTRLLSVEG	6% MNG6 MNG623	0						
		TENQLKYLTRLLSVE TENQLKYLTRLLSVEG	3% MNG623 12% MNG6 MNG623 MNG635 MNG666 MNG6666	5						
E3 ubiquitin- protein ligase MARCH6 (MARCH6;	15%		WHO I+II 15% MNG637 MNG642 MNG666 MNG673 MNG833 6% MNG637	Ĵ.	0% / 2%					
O60337)		TPLFYPWQDWALGVLH	MNG833	0	000/ / 70/					
Slit homolog 2 protein (SLIT2; O94813)	52%	DHIAVELYRGRVRAS	<u>WHO</u> <u>I-III</u> 12% MNG6 MNG634 MNG641 MNG734	7% 0	22% / 7%					
		DHIAVELYRGRVRASYD	6% MNG6 MNG641	0						
		DKDHIAVELYRGRVRASYD	6% MNG6 MNG641	0						
		HIAVELYRGRVRAS HIAVELYRGRVRASYD KGDKDHIAVELYRGRVRASY	3% MNG636 3% MNG6 3% MNG636	1						
EGF-containing	45%		WHO I-III	8%	33% / 6%					
fibulin-like extracellular matrix protein 2 (EFEMP2; O95967)		DVFQIQATSVYPG	9% MNG6 MNG638 MNG734	0						
		ERSVPADVFQIQATSVYPG ITSERSVPADVFQIQATSVYPGAYN SVPADVFQIQATSVYPG	3% MNG636 3% MNG814 6% MNG636 MNG638	0 1						
		VPADVFQIQATSVYPG	24% MNG3 MNG6 MNG624 MNG636 MNG638 MNG641 MNG682 MNG734							
Coagulation factor XIII A chain (F13A1; P00488)	79%	LSANITFYTGVPKAEF	<u>WHO</u> <u>1+111</u> 9% MNG6 MNG634 MNG636	23% 1	44% / 32%					
		LSANITFYTGVPKAEFK	6% MNG636 MNG734							
		SANITFYTGVPKAEF	6% MNG612 MNG734	0						
Antithrombin-III (SERPINC1; P01008)	85%	SDQIHFFFAKLN	WHO I-III 15% MNG6 MNG612 MNG636 MNG641 MNG734		89% / 48%					
Insulin-like growth factor II (IGF2; P01344)	70%	PAHGGAPPEM PAHGGAPPEMA PAHGGAPPEMAS	WHO I+II 3% MNG637 3% MNG637 6% MNG637 MNG702 MNG702	1	44% / 18%					

		PAHGGAPPEMASN	MNG638 MNG666	MNG3 MNG637 MNG641 MNG673 MNG702	8	
Fibronectin (FN1; P02751)	94%	LTPGVEYVYTIQVLRDGQERDAPI TPGVEYVYTIQVLRDG	<u>WHO</u> 3% 6%	<u>I-III</u> MNG632 MNG638	-	100% / 65%
		TPGVEYVYTIQVLRDGQE	MNG679 9%	MNG1	1	
		TPGVEYVYTIQVLRDGQER TPGVEYVYTIQVLRDGQERDAPI YVYTIQVLRDGQERDAPI VYTIQVLRDGQERDAPI VGQQMIFEEHGFRRTTPPT	3% 3% 3% 3% 6%	MNG679 MNG638 MNG632 MNG642 MNG642 MNG635	0 2 3	
		GQQMIFEEHGFRRTTPP		MNG612 MNG638	2	
		GQQMIFEEHGFRRTTPPT	MNG641 6%	MNG635	1	
		QQMIFEEHGFRRTTPP	MNG638 12% MNG612 MNG734	MNG6 MNG635	9	
	0.001	IFEEHGFRRTTPP	3%	MNG734		110/ / 00/
Collagen alpha- 2(V) chain	36%	GNVGKTVFEYRTQNVAR	<u>WHO</u> 6% MNG638	<u>1-111</u> MNG636	11% 3	11% / 3%
(COL5A2; P05997)		VGKTVFEYRTQNVAR	12%	MNG612 MNG638	10	
		VARLPIIDLAPVDVGGTD	9%	MNG499 MNG700	13	
		ARLPIIDLAPVDVGGTD	9%	MNG1 MNG642	21	
		RLPIIDLAPVDVGGTD	6% MNG642	MNG499	28	
		LPIIDLAPVDVGGT LPIIDLAPVDVGGTD		MNG499 MNG1 MNG642	35	
Secretogranin-2 (SCG2; P13521)	30%	LSDDVSKVIAYLKRLVNAAGSG SDDVSKVIAYLKRLVNAAG SDDVSKVIAYLKRLVNAAGSG DDVSKVIAYLKRLVNAA DDVSKVIAYLKRLVNAAG	<u>WHO</u> 3% 3% 3% 3% 9% MNG6	I-III MNG4 MNG4 MNG4 MNG4 MNG4 MNG702	9% 1 2 1 3	0% / 5%
		DDVSKVIAYLKRLVNAAGSG	6% MNG702	MNG4	1	
		DVSKVIAYLKRLVNAA	6% MNG6	MNG4	4	
		DVSKVIAYLKRLVNAAG	9% MNG6	MNG4 MNG702	8	
		VSKVIAYLKRL VSKVIAYLKRLVNA	3% 6% MNG6	MNG6 MNG4	0 4	
		VSKVIAYLKRLVNAA	15% MNG6 MNG641	MNG4 MNG635 MNG702	16	
		VSKVIAYLKRLVNAAG	15% MNG6 MNG641	MNG4 MNG635	16	
		SKVIAYLKRLVNAA SGYPKTPGRAGTEALPDG YPKTPGRAGTEALPDG	3% 3% 9%	MNG6 MNG682 MNG6 MNG734	2 0 6	
		TPGRAGTEALPDG	9%	MNG6 MNG734	12	
Prolyl 4- hydroxylase subunit alpha-1 (P4HA1; P13674)	24%	DKVSVLDYLSYA	<u>WHO</u> 6%	<u>I+II</u> MNG501	7% 5	0% / 3%
		DKVSVLDYLSYAVYQ	MNG638 9%	MNG3	7	
		DKVSVLDYLSYAVYQQ	MNG7 9%	MNG638 MNG501	9	
		DKVSVLDYLSYAVYQQG	MNG635 3%	MNG638 MNG3	11	

Inter-alpha-	73%		WHO I	+11	35%	33% / 32%
trypsin inhibitor heavy chain H2	10/0	FEIPINGLSE		/NG638		00707 0270
(ITIH2; P19823)		FEIPINGLSEF	18% M MNG501 M MNG702 M	/NG638	1	
		FEIPINGLSEFVD	MNG833 6% MNG501 M	/NG702	0	
Macrophage scavenger receptor types I and II (MSR1;	15%	EVFMEHMSNMEKRIQH MEHMSNMEKRIQH MEHMSNMEKRIQHILD	3% N 3% N	<u>-III</u> MNG642 MNG635 MNG6 MNG638	2 0	0% / 1%
P21757)		RIQHILDMEANLMDTE IQHILDMEANLM IQHILDMEANLMD IQHILDMEANLMDT	MNG734 3% N 3% N	//NG734 //NG734 //NG638	0 0	
Cellular retinoic	27%	IQHILDMEANLMDTE	3% M WHO I	/NG638	1 2%	0% / 1%
acid-binding protein 1 (CRABP1;	21/0	INFKVGEGFEEETVD		/NG7 /NG642	2	0 /0 / 1 /0
P29762)	1.00/	INFKVGEGFEEETVDG KVGEGFEEETVD	3% N	/NG642 /NG7	0	110/ / 10/
Replication factor C subunit 4 (RFC4; P35249)	18%	KDRGVAASAGSSGENKKAKPVP	<u>WHO</u> <u>14</u> 18% M MNG499 M MNG634 M MNG682	/NG7 /NG628	1% 3	11% / 1%
Disintegrin and metalloproteinase domain- containing protein 17	24%	HVETLLTFSALKRH HVETLLTFSALKRHF HVETLLTFSALKRHFK	3% N	MNG734 MNG641 MNG6		0% / 3%
(ADAM17; P78536)		TSTHVETLLTFSALKRHFK VETLLTFSALKRH	6% N	/NG734 /NG641 /NG641	-	
		VETLLTFSALKRHF		/NG6	1	
		VETLLTFSALKRHFK	MNG641 M 12% N MNG634 M MNG734	/NG612	3	
Probable cation- transporting ATPase 13A5 (ATP13A5; Q4VNC0)	18%	VDSCKFGTSVSNIIKP	<u>WHO</u> <u>I-</u> 18% N MNG612 N MNG641 M MNG734	/NG6 /NG634	0.3% 1	0% / 1%
Tetratricopeptide repeat protein 27 (TTC27; Q6P3X3)	18%	EIAIILGICTNFQKN	<u>WHO</u> <u>I-</u> 15% M MNG636 M MNG682 M	/NG624 /NG638	2% 1	0% / 2%
Chondroitin sulfate proteoglycan 4	24%	DFIYVDIFEGHLRA	<u>WHO</u> <u>I-</u> 9% M MNG634 M	/NG6	8% 2	0% / 6%
(CSPG4; Q6UVK1)		DFIYVDIFEGHLRAVV DFIYVDIFEGHLRAVVE	3% N	/NG634 /NG612		
		FIYVDIFEGHLRA			5	
		FIYVDIFEGHLRAV FIYVDIFEGHLRAVV	3% N 6% N	/NG734 /NG612		
		FIYVDIFEGHLRAVVE IYVDIFEGHLRA			0 4	
		IYVDIFEGHLRAVV		/NG634	2	
_		IYVDIFEGHLRAVVE	6% N MNG734	/NG634		
Protocadherin Fat 4 (FAT4; Q6V0I7)	70%	ggnsqftinpstgqiit gnsqftinpstgqii gnsqftinpstgqiit	3% N	MNG702 MNG702 MNG3		11% / 20%

		IGGNSQFTINPSTGQIIT	6% MNG673	MNG635	0	
Interleukin-34 (IL34; Q6ZMJ4)	18%	DKLQYRSRLQYMKHY LRDKLQYRSRLQYMKHY	<u>WHO</u> 3% 15% MNG3 MNG673	I+II MNG666 MNG1 MNG666 MNG702	0	0% / 1%
		RDKLQYRSRLQYMKHY	6% MNG833	MNG666		
Thrombospondin type-1 domain- containing protein 4 (THSD4; Q6ZMP0)	82%	EMYKSNNYLALRSRSGRSIIN KSNNYLALRSRSG KSNNYLALRSRSGR KSNNYLALRSRSGRS KSNNYLALRSRSGRSI	15% MNG624 MNG702	MNG682 MNG682 MNG624 MNG624 MNG682 MNG6 MNG682 MNG682 MNG734	1 4 5 6	56% / 12%
		KSNNYLALRSRSGRSIIN KSNNYLALRSRSGRSIING SNNYLALRSRSG SNNYLALRSRSGR SNNYLALRSRSGRS SNNYLALRSRSGRSI SNNYLALRSRSGRSIIN	3% 3% 3% 3% 9% MNG682 6%	MNG682 MNG682 MNG682 MNG682 MNG682 MNG624 MNG734 MNG3	1 2 2 1	
		YKSNNYLALRSRSGRS YKSNNYLALRSRSGRSI YKSNNYLALRSRSGRSIIN	MNG702 3% 3% 3%	MNG682 MNG682 MNG682	0	
Transmembrane protease serine 9 (TMPRSS9; Q7Z410)	21%	SDYHRTLTPTLEALLH	MNG637	<u>I+II</u> MNG499 MNG636 MNG646 MNG682	1% 1	0% / 1%
Epidermal growth factor-like protein 6 (EGFL6;	27%	GKGKTGEIAVDGVLLVSG GKTGEIAVDGVLLVSG	<u>WHO</u> 3% 9% MNG7	MNG7 MNG5 MNG624	1% 1 1	0% / 1%
Q8IUX8)		GKTGEIAVDGVLLVSGL KSIIFEAERGKGKTG	6% MNG637 6%	MNG7 MNG6	3 0	
		KTGEIAVDGVLLVS KTGEIAVDGVLLVSG	MNG638 3% 12% MNG7 MNG646	MNG7 MNG5 MNG624	0 2	
		KTGEIAVDGVLLVSGL	12% MNG7 MNG637	MNG5 MNG624	4	
E3 ubiquitin-	21%	TKSIIFEAERGKGKTG	3% <u>WHO</u>	MNG6 <u>I+II</u>	0 1%	0% / 1%
protein ligase UBR1 (UBR1; Q8IWV7)		TKDQDLIKQYNTLIEEMLQV	18% MNG6 MNG641 MNG682	MNG3 MNG499 MNG702	2	
Phosphatidyl- inositol 3,4,5- trisphosphate- dependent Rac	24%		MNG637	MNG6 MNG636 MNG641	3% 5	0% / 3%
exchanger 1 protein (PREX1; Q8TCU6)		LRNDFKLVENILAKRL	3%	MNG637	2	
Protein KIAA1199 (KIAA1199; Q8WUJ3)	70%	DPLKPREPAIIRHFIAYKNQD DPLKPREPAIIRHFIAYKNQDH DPLKPREPAIIRHFIAYKNQDHG	<u>WHO</u> 3% 3% 9% MNG641	MNG638 MNG638 MNG638	0	11% / 5%
		KPREPAIIRHFIAYKNQD	12% MNG636 MNG734	MNG6 MNG641	0	
		KPREPAIIRHFIAYKNQDH	6% MNG734	MNG6	0	
		KPREPAIIRHFIAYKNQDHG EPAIIRHFIAYK EPAIIRHFIAYKN	3% 3% 6% MNG734	MNG734 MNG734 MNG641	0	
		EPAIIRHFIAYKNQ	6% MNG734	MNG641	0	

		EPAIIRHFIAYKNQD IIRHFIAYKNQDHG IRHFIAYKNQDHG IPDNSIVLMASKGRYV	3% 3% 36% MNG3 MNG7	MNG734 MNG642 MNG642 MNG1 MNG6 MNG634	0	
		IPDNSIVLMASKGRYVS	MNG641 MNG666 MNG734 45% MNG3 MNG7 MNG7	MNG638 MNG642 MNG702 MNG1 MNG6 MNG612 MNG635 MNG638	1	
		IPDNSIVLMASKGRYVSR	MNG641 MNG666 MNG833 27% MNG6 MNG636 MNG641	MNG642 MNG702 MNG833 MNG1 MNG634 MNG638 MNG666 MNG734	0	
		PDNSIVLMASKGRYVS	3%	MNG702		
Cortactin-binding protein 2 (CTNNBP2; Q8WZ74)	18%	QKKLEMEKLQLQALEQEHKK		MNG499 MNG679 MNG700	1% 1	0% / 1%
SLIT and NTRK- like protein 6 (SLIRK6; Q9H5Y7)	18%	NDSRMSTKTTSILKLP		MNG6 MNG634 MNG642	2% 8	0% / 2%
Stabilin-1 (STAB1;	85%	DELARIRAHRQLVFR	<u>WHC</u> 9%		32% 3	44% / 32%
Q9NY15)		DELARIRAHRQLVFRYH	15%	MNG702 MNG3 MNG673	5	
		ELARIRAHRQLVFRYH	MNG702 15% MNG3	MNG833 MNG1 MNG666	2	
		GLVPQIEAATAYTIFVPT IEAATAYTIFVPT LARIRAHRQLVFR	3% 3% 15% MNG3	MNG833 MNG638 MNG638 MNG1 MNG666	1	
		LARIRAHRQLVFRYH	MNG702 15% MNG3	MNG833 MNG1 MNG666	1	
		LVPQIEAATAYTIF LVPQIEAATAYTIFVP LVPQIEAATAYTIFVPT	3% 3% 12%	MNG833 MNG638 MNG638 MNG623 MNG638	3 6	
		VPQIEAATAYTIF VPQIEAATAYTIFV VPQIEAATAYTIFVP	3% 3% 6%	MNG638 MNG638 MNG636	2	
		VPQIEAATAYTIFVPT	MNG638 9% MNG636	MNG623 MNG638	4	
Carboxypepti- dase A4 (CPA4; Q9UI42)	45%	IVSDYQRDPAITS SREWISQATAIWTARK TARKIVSDYQRDPA	<u>WHC</u> 3% 3% 9% MNG624	<u>I+II</u> MNG702 MNG638 MNG661 MNG642	0 1	22% / 0%
		TARKIVSDYQRDPAI TARKIVSDYQRDPAIT WTARKIVSDYQRDPA	3% 3% 3% 3%	MNG624 MNG624 MNG624 MNG642	0 0	
Carboxypepti- dase Q (CPQ; Q9Y646)	48%	AGVPGASLLDDL	<u>WHC</u> 15% MNG632		10% 0	22% / 7%
Olfactomedin-like protein 2B (OLFM2B;	55%	FSQEVIVLSKLNAAD		MNG623 MNG641	11% 2	11% / 1%
Q68BL8)		FSQEVIVLSKLNAADL	MNG661 9%	MNG623	6	

				4	
		GAFYYNRAFTRNII	MNG635 MNG64 9% MNG3	4	
		GAFYYNRAFTRNIIK	MNG501 MNG64 6% MNG64		
		GFSQEVIVLSKLNAAD	MNG700 3% MNG62	93 1	
		GFSQEVIVLSKLNAADL	6% MNG62 MNG641		
		NGAFYYNRAFTRNII	6% MNG63 MNG642	8 0	
		NGAFYYNRAFTRNIIK	6% MNG63 MNG642	8 0	
		SQEVIVLSKLNAAD	9% MNG63 MNG641 MNG66		
		SQEVIVLSKLNAADL	MNG641 MNG66 15% MNG62 MNG635 MNG64 MNG661 MNG70	23 6 1	
		VIVLSKLNAAD VIVLSKLNAADL VYNGAFYYNRAFTRNIIK	3% MNG62 3% MNG70 3% MNG64	28 1 12 2 12 0	
		YNGAFYYNRAFTRNII	12% MNG3 MNG501 MNG63 MNG642	1 88	
		YNGAFYYNRAFTRNIIK	9% MNG50 MNG638 MNG64		
		YYNRAFTRNII	6% MNG63 MNG642		
Inter-alpha-	55%		<u>WHO</u> <u>I+II</u>	8%	22% / 12%
trypsin inhibitor heavy chain H5		GHKKQRTYLRTITILINKPE	6% MNG62 MNG679	23 0	
(ITIH5; Q86UX2)		KQRTYLRTITILINKPE	15% MNG1 MNG2 MNG5 MNG623 MNG67	1 ′9	
Immunoglobulin	21%			1%	0% / 1%
superfamily member 21 (IGSF21; Q96ID5)		APKGPKIVMTPSRARVGDT	15% MNG1 MNG3 MNG66 MNG702 MNG83		
CUB and sushi	18%		<u>WHO</u> <u>I+II</u>	1%	0% / 1%
domain-contain- ing protein 1 (CSMD1; Q96PZ7)		KSPVCKSKGVREVNETVTKTPVP	15% MNG7 MNG499 MNG63 MNG641 MNG66		
Hermansky-	21%		<u>WHO I+II</u>	2%	11% / 1%
Pudlak syndrome 3		ERGLIFYINHSLYE ERGLIFYINHSLYEN	3% MNG7 9% MNG3	0 4	
protein (HPS3; Q969F9)		KYERGLIFYINHSLY	MNG634 MNG63 12% MNG3 MNG501 MNG70	3	
Fibromodulin	94%		MNG814 WHO I+II	26%	56% / 18%
(FMOD; Q06828)		MPGPLPRSLRELHLDHNQI	9% MNG49	9 10	50787 1078
		MPGPLPRSLRELHLDHNQISR	MNG642 MNG70 9% MNG49	9 21	
		MPGPLPRSLRELHLDHNQISRVPN NLTRMPGPLPRSLRE	MNG646 MNG70 3% MNG49 6% MNG63	9 18	
		NLTRMPGPLPRSLRELH NNLTRMPGPLPRSLRE	MNG646 3% MNG63 6% MNG63 MNG646		
		NNLTRMPGPLPRSLRELH	6% MN635 MNG646	0	
EGF-containing fibulin-like extracellular	61%	GRNNFVIRRNPADPQR	<u>WHO</u> <u>I+II</u> 9% MNG68 MNG702	11% 32 0	33% / 16%
matrix protein 1 (EFEMP1; Q12805)		GRNNFVIRRNPADPQRIP GRNNFVIRRNPADPQRIPS	3% MNG83 9% MNG70 MNG666		
Q12003)		GRNNFVIRRNPADPQRIPSN GRNNFVIRRNPADPQRIPSNP GRNNFVIRRNPADPQRIPSNPS NFVIRRNPADPQR	3% MNG68 3% MNG7(3% MNG7(9% MNG62	2 0 2 0	
		NFVIRRNPADPQRIPS	MNG666 MNG70 12% MNG62 MNG682 MNG70	2 28 3	
			MNG833		
		NNFVIRRNPAD	6% MNG62 MNG702	28 0	

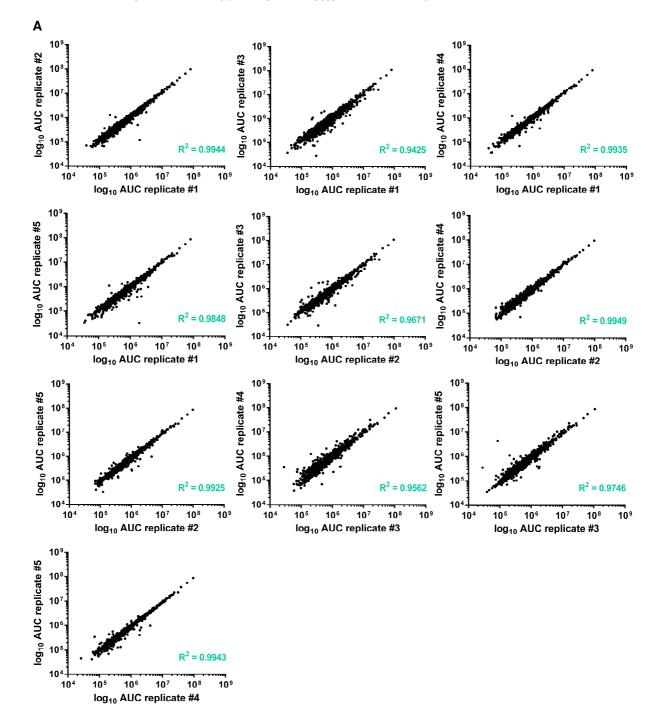
			NNFVIRRNPADPQR	6% MNG702	MNG682	0	
			NNFVIRRNPADPQRIPS	12% MNG682	MNG628 MNG702	2	
			NNFVIRRNPADPQRIPSNPS PQRIPSNPS	MNG833 3% 6%	MNG702 MNG628		
			TGRNNFVIRRNPADPQR TGRNNFVIRRNPADPQRIPS TGRNNFVIRRNPADPQRIPSN TGRNNFVIRRNPADPQRIPSNPS TGRNNFVIRRNPADPQRIPSNPSH VIRRNPADPQR VIRRNPADPQRIPS	MNG702 3% 3% 3% 3% 3% 6%	MNG666 MNG702 MNG702 MNG702 MNG702 MNG628 MNG628 MNG628	0 0 0 0 0	
	Collagen alpha- 3(IX) chain	24%	EQIAQLAAHLRKPL	6%	<u>I-III</u> MNG636	2% 1	0% / 2%
	(COL9A3; Q14050)		EQIAQLAAHLRKPLAPG GGMISEQIAQLAAHLRKPLAPG	MNG734 3% 6%	MNG734 MNG641		
			IAQLAAHLRKPLAPG	MNG734 6%	MNG501	1	
			ISEQIAQLAAHLRKP	MNG702 9%	MNG612 MNG734	2	
			ISEQIAQLAAHLRKPL	18% MNG612 MNG638	MNG6 MNG636	6	
			ISEQIAQLAAHLRKPLA	MNG734 6%	MNG641	3	
		ISEQIAQLAAHLRKPLAP		MNG6 MNG636	6		
			ISEQIAQLAAHLRKPLAPG	21% MNG501 MNG636	MNG734 MNG6 MNG612 MNG638	6	
			QIAQLAAHLRKP QIAQLAAHLRKPL SEQIAQLAAHLRKP	3% 3% 6%	MNG734 MNG734 MNG734 MNG636	1	
			SEQIAQLAAHLRKPL		MNG6 MNG636	4	
			SEQIAQLAAHLRKPLA SEQIAQLAAHLRKPLAP	3% 3%	MNG734 MNG734 MNG734	1	
	Nidogen-2 (NID2; Q14112)	73%	DTSPAVLGLAARYVRAGFPR EDTSPAVLGLAARYVRAGFPR		<u>I-III</u> MNG1 MNG1 MNG673	14% 0 0	11% / 13%
			LPSGELNTFQAVLASDG	MNG833 15% MNG6 MNG6	MNG3 MNG638	2	
			LPSGELNTFQAVLASDGSDSYAL SPAVLGLAARYVRAG	3% 6% MNG638	MNG734 MNG6 MNG3	0 1	
			SPAVLGLAARYVRAGFP	9% MNG3	MNG1 MNG833	0	
			SPAVLGLAARYVRAGFPR	9%	MNG1 MNG833	0	
	Importin subunit	18%	TSPAVLGLAARYVRAG	3% WHO	MNG638 I+II	1 11%	0% / 8%
	beta-1 (KPNB1; Q14974)		kttlvimerlqq Kttlvimerlqqvl Kttlvimerlqqvlq	3% 3% 15% MNG623	MNG6 MNG623 MNG6	1	0,0,0,0,0
	Splicing factor 1 (SF1; Q15637)	15%	GVAGMPPFGMPPAPPPPPQN	<u>WHO</u> 12% MNG628 MNG702	<u>I+II</u> MNG6 MNG638	6% 13	0% / 2%
			MGMGVAGMPPFGMPPAPPPPPQN	6% MNG702	MNG666	20	
	Proteoglycan 4 (PRG4; Q92954)	42%	GGLTGQIVAALSTAKYKNWPE GLTGQIVAALSTAKYKN	<u>WHO</u> 3% 6% MNG638	<u>I+II</u> MNG6 MNG3	3% 0 0	0% / 5%

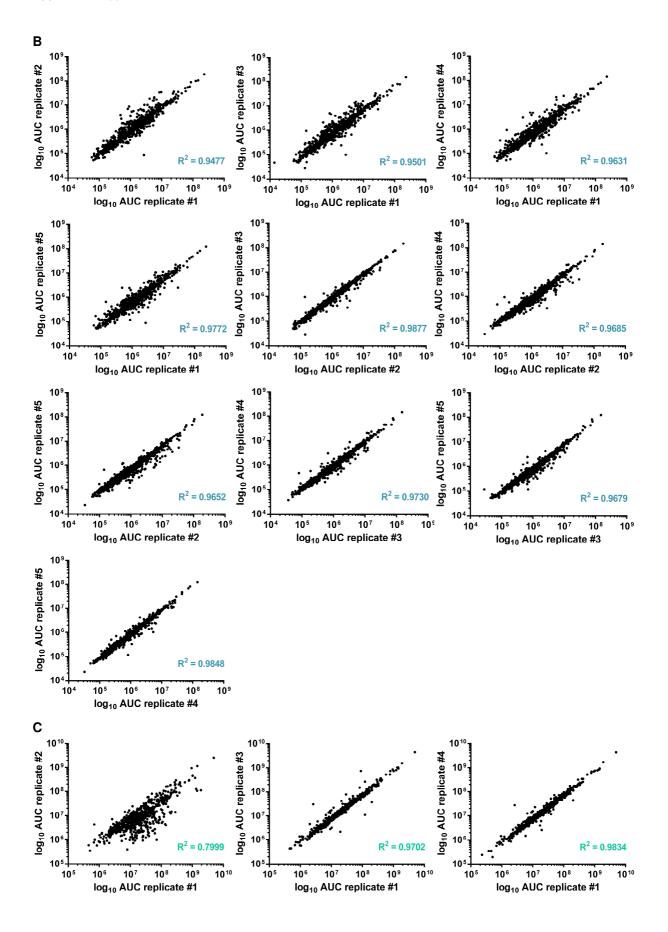
GLTGQIVAALSTAKYKNWPE

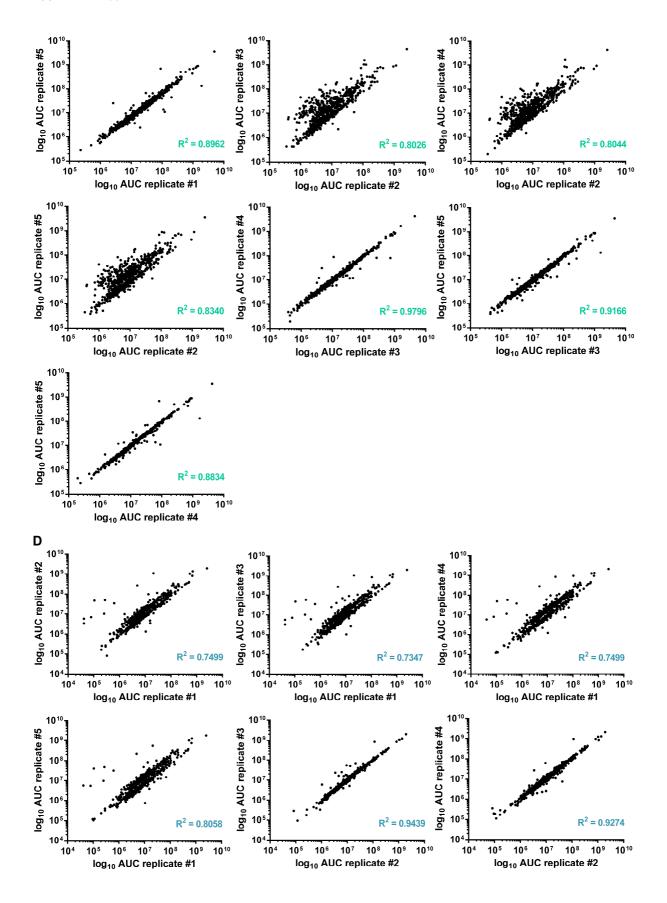
	MNG666		
GQIVAALSTAKYKN	3%	MNG3	0
TGQIVAALSTAKYK	3%	MNG642	0
TGQIVAALSTAKYKN	9%	MNG3	0
	MNG638	MNG642	

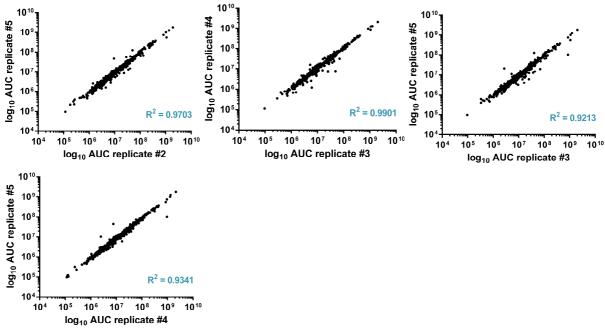
6%

MNG6


1


Supplementary Table 19. Established TAAs and CTAs identified as meningioma-exclusive antigens or represented by meningioma-exclusive peptides on ≥ 2 tumors. HLA restrictions not passing manual assessment as quality control are indicated in italic. The number of positive nonmeningeal tumors was based on n=841 HLA class I and n=593 HLA class II peptidome datasets. The frequency of positive benign HLA peptidomes was calculated from n=9 tumor-free duras and n=418 (HLA class I) or n=364 (HLA class II) benign human specimens. Meningioma exclusivity of HLA class IIrestricted peptides was evaluated for the exact sequence match with none of the peptides arising from a tumor-associated presentation hotspot.


Peptide sequence	HLA restriction		iency of p	ositive	Protein frequency on meningiomas	Protein frequency on non-meningeal tumors Peptide-positive non- meningeal tumors	Protein frequency on dura / benign samples
Meningioma-exclu	isive HLA class I-pr	esente	d antigens	s derived f	rom established	TAAs and CTAs	
Protein SSX5/SSX5	9 (SSX5/9; O60225 /	Q7RT1	ГЗ)				
Supplementary Tab	ble 16						
Probable ATP-depe (DDX43/53; Q9NX2	endent RNA helicase Z2 / Q86TM3)	DDX4	3/54		6% / 6%	0.5% / 0.5%	0% / 0% 0.5% / 0.5%
YLMPGFIHL	A*02:01; C*17:01	6%	MNG628	MNG641		0	
Meningioma-exclu	isive HLA class I lig	ands o	lerived fro	m establis	hed TAAs and C	TAs	
Neurofibromin (NF	1; P21359)				64%	25%	56% / 22%
LPYLFHVV	B*51:01	12%		MNG612 MNG833		13	
NYPDEFTKL	A*24:02	12%	MNG1 MNG635	MNG628 MNG661		8	
AETVLADRF	B*44:03	6%	MNG1	MNG636		2	
DEFDQRILY	B*18:01	6%	MNG1	MNG661		5	
AVIAFRSSY	A*30:02	6%	MNG7	MNG632		3	
DYAELIVKF	A*24:02	6%	MNG628	MNG833		5	
Catenin beta-1 (CT	NNB1; P35222)				100%	75%	100% / 72%
ATVGLIRNL	A*32:01; <i>B*13:02</i> <i>C*02:02</i>	9%	MNG634 MNG702	MNG635		22	
KTNVKFLAI	C*15:02	6%	MNG499	MNG501		7	
TYTYEKLLW	A*23:01; A*24:02	6%	MNG638	MNG679		9	
Platelet-derived gro	owth factor receptor b	eta (PI	DGFRB; PC	9619)	70%	21%	33% / 16%
YMDLVGFSY	A*29:02	9%	MNG623 MNG682	MNG673		1	
MPYHIRSI	B*51:01	9%		MNG833		7	
Regulator of G-prot	ein signaling 5 (RGS	5; O15	539)		61%	29%	11% / 18%
KAKQIYEEF	<i>B*15:35</i> ; B*57:01	9%	MNG3 MNG673	MNG642		11	
KIKSPAKMAEK	A*03:01	6%	MNG636	MNG814		15	
	capentaplegic homol	•		,	33%	11%	11% / 12%
HASQPSMTV	B*51:01; C*15:02	9%	MNG499 MNG833	MNG702		11	
	ATP-dependent helic	•	-	,	24%	4%	11% / 4%
ILQDLQPFL	A*02:01	9%	MNG612 MNG673	MNG638		5	
	1B1 (CYP1B1; Q166	78)			73%	27%	89% / 41%
NRNFSNFIL	B*39:01; B*39:31	6%		MNG734		0	
RVMIFSVGK	A*03:01	6%		MNG666		3	
SMMRNFFTR	A*31:01	6%		MNG635		2	
	erase ELAC protein 2			-	61%	30%	22% / 22%
EISSPAVER	A*68:01	6%	MNG3	MNG632	500/	1	0004 / 004 /
	sociated protein (RB1				52%	33%	33% / 39%
DEVKNVYF	B*18:01	6%	MNG6	MNG661		13	
TEINSALVL	B*40:01; B*40:02	6%	MNG3	MNG646	000/	5	
	ase subunit 1 (MT-CC	,	,		39%	21%	11% / 18%
LPVLAAGITM	B*07:02; B*35:01	6%	MING628	MNG666		3	


DNA polymerase epsilor	n catalytic subuni	t A (PC	DLE; Q078	64)	33%	19%	11% / 25%
FYVDTVRAF A*2	24:02	6%	MNG661	MNG833		18	
EPSSLTYVTR A*6	68:01	6%	MNG3	MNG814		2	
Short transient receptor	potential channel	l 1 (TR	PC1; P489	995)	33%	5%	0% / 4%
NEIRDLLGF B*1	8:01	6%	MNG1	MNG628		1	
DNA mismatch repair pr	rotein Msh2 (MSH	12; P43	3246)		30%	34%	11% / 32%
SAAEVGFVR A*6	68:01	6%	MNG3	MNG814		3	
Epidermal growth factor	receptor (EGFR;	; P0053	33)		24%	13%	0% / 6%
YQDPHSTAV C*0)2:02; B*39:31	6%	MNG702	MNG734		28	
Adenomatous polyposis	coli protein (APC	CP; P2	5054)		24%	18%	0% / 19%
GELDTPINY B*1	8:01; B*44:03	6%	MNG1	MNG636		1	
LPSSSSSRGSL B*0	07:02	6%	MNG7	MNG814		30	
Mismatch repair endonu	uclease PMS2 (PI	MS2: F	54278)		18%	7%	11%/7%
		6%	MNG501	MNG833		4	
Mothers against decape					18%	11%	0% / 5%
		6%	MNG636			6	
		6%	MNG636			6	
	39:31	0 /0	WING000	WING/04		0	
POTE ankyrin domain fa		POTE	A: Q6S8J7)	30%	3%	11%/5%
		. <u> </u>	MNG628		00,0	2	
						_	
Meningioma-exclusive	•		J	s derived 1	rom established	TAAS and CTAS	
Melanoma-associated a	0 (A10; F	943363)				
Supplementary Table 16	6						
A/G-specific adenine DN	VA glycosylase (N	<i>I</i> UTYF	l; Q9UIF7)		6%	1%	0% / 0%
WRRRAEDEMDLDRRA	AYAVWVSEVM	6%	MNG1	MNG679		2	
Calcium-binding tyrosine	e phosphorylation	n-regula	ated protei	n	6%	0.5%	0% / 0%
(CABYR; 075952)							
DVLMVDVATSMPVVIK	EVPS	3%	MNG666			0	
PVTEGVVYIEQLPEQIV	1	3%	MNG636			2	
Meningioma-exclusive	HLA class II-res	stricte	d peptides	derived f	rom established	TAAs and CTAs	
Platelet-derived growth					48%	5%	33% / 2%
(PDGFRL; Q15198)			5111		40 /6	578	55 /0 / 2 /0
APKTQSIMMQVLDKGF	ROKPA	15%	MNG499	MNG623		5	
		1070	MNG673			0	
			MNG700				
TQSIMMQVLDKGRFQł	KPA	15%	MNG499	MNG623		5	
			MNG637	MNG679			
			MNG700				
		15%	MNG499			5	
TQSIMMQVLDKGRFQ	KP						
TQSIMMQVLDKGRFQł	KP		MNG637	WING042			
		00/	MNG679			0	
		9%	MNG679 MNG666			3	
IQDTWRLIHRGLGHTT			MNG679 MNG666 MNG833	MNG702			
QDTWRLIHRGLGHTT		6%	MNG679 MNG666 MNG833 MNG666	MNG702 MNG833	200/	2	00/ / 70/
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc	coprotein 6-beta-N	6%	MNG679 MNG666 MNG833 MNG666	MNG702 MNG833	30%		0% / 7%
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5;	coprotein 6-beta-N Q09328)	6% N-acety	MNG679 MNG666 MNG833 MNG666 Iglucosam	MNG702 MNG833 inyl-	30%	2 15%	0% / 7%
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5;	coprotein 6-beta-N Q09328)	6%	MNG679 MNG666 MNG833 MNG666	MNG702 MNG833 inyl- MNG623	30%	2	0% / 7%
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN	coprotein 6-beta-N Q09328)	6% V-acety 12%	MNG679 MNG666 MNG833 MNG666 vlglucosam MNG6 MNG642	MNG702 MNG833 inyl- MNG623 MNG666	30%	2 15% 15	0% / 7%
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN	coprotein 6-beta-N Q09328)	6% N-acety	MNG679 MNG666 MNG833 MNG666 (Iglucosam MNG6	MNG702 MNG833 inyl- MNG623 MNG666	30%	2 15%	0% / 7%
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR	coprotein 6-beta-N Q09328)	6% V-acety 12%	MNG679 MNG666 MNG833 MNG666 rlglucosam MNG6 MNG642 MNG642	MNG702 MNG833 inyl- MNG623 MNG666	30%	2 15% 15	0% / 7% 56% / 32%
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12	coprotein 6-beta-N Q09328) 2830)	6% V-acety 12%	MNG679 MNG666 MNG833 MNG666 rlglucosam MNG6 MNG642 MNG642	MNG702 MNG833 inyl- MNG623 MNG666		2 15% 15 13	
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12	coprotein 6-beta-N Q09328) 2830)	6% N-acety 12% 9%	MNG679 MNG666 MNG833 MNG666 riglucosam MNG6 MNG642 MNG642 MNG679	MNG702 MNG833 inyl- MNG623 MNG666 MNG673		2 15% 15 13 22%	
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN	coprotein 6-beta-N Q09328) 2830) PQ	6% N-acety 12% 9%	MNG679 MNG666 MNG833 MNG666 rlglucosam MNG6 MNG642 MNG642 MNG679 MNG1	MNG702 MNG833 inyl- MNG623 MNG666 MNG673		2 15% 15 13 22%	
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF	coprotein 6-beta-N Q09328) 2830) PQ	6% N-acety 12% 9% 9% 6%	MNG679 MNG666 MNG833 MNG666 MIglucosam MNG6 MNG642 MNG642 MNG642 MNG679 MNG1 MNG702 MNG7	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG673		2 15% 15 13 22% 3	
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-proteir	coprotein 6-beta-N Q09328) 2830) PQ h kinase ATR (AT	6% N-acety 12% 9% 9% 6%	MNG679 MNG666 MNG833 MNG666 MIglucosam MNG6 MNG642 MNG642 MNG642 MNG679 MNG1 MNG702 MNG7	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG673	64%	2 15% 15 13 22% 3 2	56% / 32%
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-proteir	coprotein 6-beta-N Q09328) 2830) PQ h kinase ATR (AT	6% J-acety 12% 9% 9% 6% R9; Q1	MNG679 MNG666 MNG833 MNG666 MIG642 MNG642 MNG642 MNG642 MNG679 MNG7 MNG7 3535)	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG673 MNG623	64%	2 15% 15 13 22% 3 2 4%	56% / 32%
IQDTWRLIHRGLGHTT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA	coprotein 6-beta-N Q09328) 2830) PQ h kinase ATR (AT NTDE	6% J-acety 12% 9% 9% 6% R9; Q1	MNG679 MNG666 MNG833 MNG666 rlglucosam MNG6 MNG642 MNG642 MNG642 MNG679 MNG702 MNG7 3535) MNG501	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG673 MNG623	64%	2 15% 15 13 22% 3 2 4%	56% / 32%
IQDTWRLIHRGLGHTT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA Neurofibromin (NF1; P2	coprotein 6-beta-N Q09328) 2830) PQ h kinase ATR (AT NTDE 21359)	6% J-acety 12% 9% 9% 6% R9; Q1	MNG679 MNG666 MNG833 MNG666 rlglucosam MNG6 MNG642 MNG642 MNG642 MNG679 MNG702 MNG7 3535) MNG501	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG673 MNG623	64% 15%	2 15% 15 13 22% 3 2 4% 0	56% / 32% 11% / 5%
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA Neurofibromin (NF1; P2	coprotein 6-beta-N Q09328) 2830) PQ h kinase ATR (AT NTDE 21359)	6% N-acety 12% 9% 6% R9; Q1 9%	MNG679 MNG666 MNG833 MNG666 MIG642 MNG642 MNG642 MNG642 MNG679 MNG7 3535) MNG7 3535) MNG501 MNG702	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG673 MNG623 MNG700	64% 15%	2 15% 15 13 22% 3 2 4% 0 3%	56% / 32% 11% / 5%
IQDTWRLIHRGLGHTT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA Neurofibromin (NF1; P2 GNPIFYYVARRFK	2009328) 2830) PQ h kinase ATR (AT NTDE 21359)	6% N-acety 12% 9% 6% R9; Q1 9%	MNG679 MNG666 MNG833 MNG666 MIG02 MNG642 MNG642 MNG642 MNG702 MNG7 3535) MNG501 MNG501 MNG702 MNG6	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG673 MNG623 MNG700	64% 15%	2 15% 15 13 22% 3 2 4% 0 3%	56% / 32% 11% / 5%
IQDTWRLIHRGLGHTT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA Neurofibromin (NF1; P2 GNPIFYYVARRFK Legumain (LGMN; Q995	2009rotein 6-beta-N Q09328) 2830) PQ n kinase ATR (AT NTDE 21359) 538)	6% N-acety 12% 9% 6% R9; Q1 9%	MNG679 MNG666 MNG833 MNG666 MIG642 MNG642 MNG642 MNG679 MNG702 MNG7 3535) MNG501 MNG501 MNG702 MNG6	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG673 MNG623 MNG700	64% 15% 12%	2 15% 15 13 22% 3 2 4% 0 3% 0	56% / 32% 11% / 5% 0% / 4%
IQDTWRLIHRGLGHTT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA Neurofibromin (NF1; P2 GNPIFYYVARRFK Legumain (LGMN; Q995	2009rotein 6-beta-N Q09328) 2830) PQ n kinase ATR (AT NTDE 21359) 538) LAVLR	6% V-acety 12% 9% 6% R9; Q1 9% 9% 6%	MNG679 MNG666 MNG833 MNG666 MIG42 MNG642 MNG642 MNG642 MNG702 MNG702 MNG702 MNG501 MNG501 MNG501 MNG702 MNG501 MNG702 MNG6 MNG734 MNG1	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG623 MNG623 MNG623 MNG641	64% 15% 12%	2 15% 13 22% 3 2 4% 0 3% 0 31%	56% / 32% 11% / 5% 0% / 4%
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA Neurofibromin (NF1; P2 GNPIFYYVARRFK Legumain (LGMN; Q99 VPKDYTGEDVTPQNFL Matrix-remodeling-assoc	2009rotein 6-beta-N Q09328) 2830) PQ n kinase ATR (AT NTDE 21359) 538) LAVLR ciated protein 5 (f	6% V-acety 12% 9% 6% R9; Q1 9% 9% 6%	MNG679 MNG666 MNG833 MNG666 MIG42 MNG642 MNG642 MNG642 MNG702 MNG702 MNG702 MNG501 MNG501 MNG501 MNG702 MNG501 MNG702 MNG6 MNG734 MNG1	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG623 MNG623 MNG623 MNG623	64% 15% 12% 49%	2 15% 15 13 22% 3 2 4% 0 3% 0 31% 21	56% / 32% 11% / 5% 0% / 4% 22% / 46%
IQDTWRLIHRGLGHTT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA Neurofibromin (NF1; P2 GNPIFYYVARRFK Legumain (LGMN; Q99 VPKDYTGEDVTPQNFL Matrix-remodeling-assoc	2009328) 2830) PQ n kinase ATR (AT ATDE 21359) 538) LAVLR ciated protein 5 (f	6% V-acety 12% 9% 6% R9; Q1 9% 9% 6% MXRAS 6%	MNG679 MNG666 MNG833 MNG666 MNG642 MNG642 MNG642 MNG642 MNG702 MNG702 MNG702 MNG501 MNG501 MNG702 MNG66 MNG734 MNG1 5; Q9NR99 MNG666	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG623 MNG623 MNG641	64% 15% 12% 49%	2 15% 15 13 22% 3 2 4% 0 3% 0 31% 21 16% 10	56% / 32% 11% / 5% 0% / 4% 22% / 46%
IQDTWRLIHRGLGHTT QDTWRLIHRGLGHT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA Neurofibromin (NF1; P2 GNPIFYYVARRFK Legumain (LGMN; Q99 VPKDYTGEDVTPQNFL Matrix-remodeling-assod DPWPRILWRLPSK GDPWPRILWRLPSK	2009 28) 2830) PQ n kinase ATR (AT NTDE 21359) 538) LAVLR ciated protein 5 (I	6% V-acety 12% 9% 6% R9; Q1 9% 9% 6% MXRAS 6% 6%	MNG679 MNG666 MNG833 MNG666 MNG642 MNG642 MNG642 MNG642 MNG702 MNG702 MNG702 MNG501 MNG501 MNG702 MNG66 MNG734 MNG1 5; Q9NR99 MNG666 MNG666	MNG702 MNG833 inyl- MNG623 MNG673 MNG673 MNG623 MNG700 MNG700	64% 15% 12% 49%	2 15% 15 13 22% 3 2 4% 0 3% 0 31% 21 16% 10 12	56% / 32% 11% / 5% 0% / 4% 22% / 46%
IQDTWRLIHRGLGHTT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA Neurofibromin (NF1; P2 GNPIFYYVARRFK Legumain (LGMN; Q998 VPKDYTGEDVTPQNFL Matrix-remodeling-assor DPWPRILWRLPSK GDPWPRILWRLPSK	coprotein 6-beta-N Q09328) 2830) PQ n kinase ATR (AT NTDE 21359) 538) LAVLR ciated protein 5 (f	6% V-acety 12% 9% 6% R9; Q1 9% 9% 9% 6% 6% 6% 6% 6% 6%	MNG679 MNG666 MNG833 MNG666 MNG642 MNG642 MNG642 MNG642 MNG702 MNG702 MNG702 MNG501 MNG501 MNG702 MNG660 MNG734 MNG1 5; Q9NR99 MNG666 MNG666 MNG666 MNG666	MNG702 MNG833 inyl- MNG623 MNG673 MNG673 MNG623 MNG700 MNG700 MNG702 MNG702 MNG702 MNG702	64% 15% 12% 49% 24%	2 15% 15 13 22% 3 2 4% 0 3% 0 31% 21 16% 10 12 12	56% / 32% 11% / 5% 0% / 4% 22% / 46% 11% / 5%
TQSIMMQVLDKGRFQH IQDTWRLIHRGLGHTT Alpha-1,6-mannosylglyc transferase A (MGAT5; DNILQRIGKLESKVDN LDLSKRYIKALAEENR Cadherin-1 (CDH1; P12 GTDGVITVKRPLRFHN TGRQRTAYFSLDTRF Serine/threonine-protein GLPLSIEGHVHYLIQEA Neurofibromin (NF1; P2 GNPIFYYVARRFK Legumain (LGMN; Q998 VPKDYTGEDVTPQNFL Matrix-remodeling-assor DPWPRILWRLPSK GDPWPRILWRLPSK GDPWPRILWRLPSKR C-1-tetrahydrofolate syn GVSGALTVLMKDAIKPI	2830) PQ h kinase ATR (AT TDE 1359) 538) LAVLR ciated protein 5 (f	6% V-acety 12% 9% 6% R9; Q1 9% 9% 9% 6% 6% 6% 6% 6% 6%	MNG679 MNG666 MNG833 MNG666 MNG642 MNG642 MNG642 MNG642 MNG702 MNG702 MNG702 MNG501 MNG501 MNG702 MNG660 MNG734 MNG1 5; Q9NR99 MNG666 MNG666 MNG666 MNG666	MNG702 MNG833 inyl- MNG623 MNG666 MNG673 MNG623 MNG623 MNG623 MNG700 MNG702 MNG702 MNG702 MNG702 S86)	64% 15% 12% 49%	2 15% 15 13 22% 3 2 4% 0 3% 0 31% 21 16% 10 12	56% / 32% 11% / 5% 0% / 4% 22% / 46%

Macrophage scavenger receptor types I	and II	(MSR1; P2	1757)	15%	3%	0% / 1%
RIQHILDMEANLMDTE	6%	MNG638	MNG734		1	
Zinc phosphodiesterase ELAC protein 2	(ELAC	2; Q9BQ52	2)	12%	1%	0% / 1%
LSGMILTLKETGLPKCVLSGPP	6%	MNG7	MNG499		0	
IIFLGTGSAIPMKIRNVSATLVNI	6%	MNG638	MNG702		0	
Poly(A) polymerase alpha (PAPOLA; P5	51003)			9%	2%	0% / 1%
LSVDLTYDIQSFTD	6%	MNG1	MNG3		6	
Ephrin type-B receptor 2 (EPHB2; P293)	23)			9%	3%	0% / 4%
TPGMKIYIDPFTYED	6%	MNG3	MNG638		1	
Tyrosine-protein kinase receptor Tie-1 (TIE1; P	35590)		9%	2%	0% / 15%
QTDVIWKSNGSYFYT	6%	MNG499	MNG814		0	
A/G-specific adenine DNA glycosylase (MUTY	H; Q9UIF7)		6%	1%	0% / 0.5%
WRRRAEDEMDLDRRAYAVWVSEVM	6%	MNG1	MNG679		0	
ALK tyrosine kinase receptor (ALK; Q9L	JM73)			6%	1%	0% / 1%
PHNEAAREILLMPTPG	6%	MNG7	MNG638		0	

Supplementary Figure 11. Reproducibility of precursor ion intensities across technical replicates exemplarily shown for MNG679. Scatter plots depicting raw MS¹ intensities prior to normalization in pairwise comparisons of technical replicates acquired from (A) HLA class I ligands eluted from tumor-free dura, (B) HLA class I ligands identified in meningioma, (C) HLA class II-presented peptides eluted from tumor-free dura, and (D) HLA class II-presented peptides identified in meningioma. Correlation coefficients were calculated by linear regression and amounted to > 0.85 except for HLA class II peptide intensity comparisons including replicate #2 acquired from dura and replicate #1 acquired from meningioma. HLA class II peptide intensities were in general slightly less reproducible as compared with HLA class I ligand intensities.

Supplementary Table 20. Peptide sequences and level of modulation for antigens exclusively represented by up- or down-modulated HLA class I- and II-presented peptides. Oxidized (m) and reduced (M) methionine were not treated equally in LFQ-MS and are listed separately. Multi-mapping peptides were censored when the second annotated protein diverged in assignment to groups of modulation according to comparative profiling. HLA restrictions not passing manual assessment as quality control are indicated in italic (HLA class I ligands not matching the motif of any of the patient's HLA allotypes; HLA class II-presented proteins neither identified with peptides exceeding a length of twelve AA nor with different sequences across patients). Abbreviation not introduced in the text above: fold change meningioma/dura (fc M/D).

UniProt accession	Antigen	Patients with significant modulation	Peptide sequence	HLA restric- tion	Fc (M/D)	Corrected <i>p</i> -value
Antigens ex	clusively represented by H	LA class I ligand	s up-modulated on meningioma			
P05387	60S acidic ribosomal protein P2 (RLA2)	60% MNG679 MNG702	MRYVASYLL mRYVASYLL MRYVASYLL mRYVASYLL MRYVASYL mRYVASYL	C*04:01 C*04:01 C*06:02 C*06:02 C*06:02 C*06:02	67.32 20.86 22.02 60.94 68.11 7.47	0.00093 0.00011 0.00161 0.00014 0.00005 0.00014
P0DJ07	Protein PET100 homolog, mitochondrial (PT100)	MNG833 40% MNG819 MNG833	mRYVASYLL IYLTFPVAmF IYLTFPVAmF	<i>C*04:01</i> A*23:01 A*24:02	18.48 5.82 10.58	0.00089 0.00333 0.00208
P28039	Acyloxyacyl hydrolase (AOAH)	40% MNG679 MNG702	KFTNFNLFY SVIEQLAQV	A*29:02 A*02:01	23.01 18.33	0.00002 0.00112
Q14126	Desmoglein-2 (DSG2)	40% MNG679 MNG819	RFLDDLGLKF Manual HLA annotation: RFLDDLGLKF	<i>C*04:01</i> A*23:01 A*23:01	44.61 28.79	0.00002 0.00176

Q15796	Mothers against deca- pentaplegic homolog 2 (SMAD2) 1 peptide multi-maps to	40% MNG702 MNG679	LTELPPLDDY FVKGWGAEY	A*01:01 A*29:02	10.83 6.52	0.00052 0.00049
	SMAD1/3/5/9 (Q15797 / P84022 / Q99717 / O15198)					
Q2TAY7	WD40 repeat-containing protein SMU1 (SMU1)	40% MNG679	DVIRLIMQY DVIRLImQY	A*29:02 A*29:02	856.09 209.76	0.00025 0.00256
Q68CP4	Heparan-alpha-	MNG833 40%	DVIRLImQY	B*35:01	5.15	0.00037
	glucosaminide N- acetyltransferase (HGNAT)	MNG679 MNG819	NYFPFQWKL NYFPFQWKL	A*23:01 A*23:01	25.65 12.97	0.00473 0.00090
Q6KC79	Nipped-B-like protein (NIPBL)	40% MNG679		A*29:01	93.70	0.00012
Q6PI26	Protein SHQ1 homolog	MNG814 40%	EVVAVDPSILAR	A*68:01	4.53	0.00840
OCDKCO	(SHQ1)	MNG679 MNG833	EAIEQILKY NVHDImVSF	A*29:02 B*35:01	28.28 6.39	0.00002 0.00072
Q6PKG0	La-related protein 1 (LARP1)	40% MNG679 MNG819	YGLEKFWAF YGLEKFWAF	A*23:01 A*23:01	45.79 11.98	0.00012 0.00169
Q96T76	MMS19 nucleotide excision repair protein	40% MNG679	EVVHLILFY	A*29:02	125.12	0.00043
Q9BS91	homolog (MMS19) Probable UDP-sugar	MNG702 40%	VDTLVTKF	B*37:01	21.09	0.000009
Q9H799	transporter protein SLC35A5 (S35A5) Ciliogenesis and planar	MNG679 MNG833 40%	KWSIPAFLY IFIQNSKLYF	A*29:01 A*24:02	17.63 10.08	0.000005 0.00070
0011700	polarity effector 1 (CPLN1)		KFLDLFLSY EYIKFLDLF	A*29:01 A*23:01	6.92 15.21	0.00727 0.00279
Antigens ex	clusively represented by HI		down-modulated on meningioma	11 20101	10121	0100270
Q9Y520	Proline-rich and coiled-	60%	-			
	coil-containing protein 2C	MNG679	FYmDTSHLF	A*23:01	0.0491	0.0000002
Q9UL54	(PRC2C) Serine/threonine-protein	MNG819 MNG833 40%	FYmDTSHLF FYmDTSHLF	A*23:01 A*24:02	0.0957 0.1108	0.00013 0.00030
Q90L34	kinase TAO2 (TAOK2) 1 peptide multi-maps to TAOK3 (Q9H2K8)	40% MNG679 MNG702	SEVVAIKKm QTELGNQLEY	B*44:03 A*01:01	0.1283 0.0457	0.00119 0.00005
Q9BXC9	Bardet-Biedl syndrome 2 protein (BBS2)	40% MNG679 MNG819	AEQDLIREL IRSNNINTL	B*44:03 C*06:02	0.0303 0.0793	0.00047 0.00205
Q9BRK3	Matrix-remodeling- associated protein 8	40% MNG702	RSEDIQLDY	A*01:01	0.0470	0.00002
Q99733	(MXRA8) Nucleosome assembly	MNG814 40%	ALPSRILLWK	A*03:01	0.0240	0.000002
	protein 1-like 4 (NP1L4) peptides multi-map to	MNG679 MNG833	EEVHDLERKY QPmSFVLEF	B*44:03 B*35:03	0.0603 0.1462	0.00027 0.00007
Q8NG06	NP1L1 (P55209) Tripartite motif-containing	40%				
	protein 58 (TRI58)	MNG702 MNG819	GLLEGVRGV GLLEGVRGV	A*02:01 A*02:01	0.0168 0.0444	0.000006 0.00034
Q8IUQ4	E3 ubiquitin-protein ligase	40%		0+04.04	0.0405	0.00000
Q6N022	SIAH1 (SIAH1) Teneurin-4 (TEN4)	MNG679 MNG814 40%	VFDTSIAQL ATALPTGTSK	C*04:01 A*03:01	0.0425 0.2459	0.00030 0.00541
QUINUZZ		MNG679 MNG819	AYSDGHFLF AYSDGHFLF	A*23:01 A*23:01	0.0951 0.0517	0.00045 0.00163
Q53FT3	Protein Hikeshi	40% MNG679	KmLDNFYNF	A*23:01	0.0579	0.00001
Q15746	Myosin light chain kinase,	MNG819 40%	KmLDNFYNF	A*23:01	0.2422	0.00099
Q15005	smooth muscle (MYLK) Signal peptidase complex	MNG702 MNG814 40%	DAFEEKANI SPQQVDFRSVL	B*51:01 B*07:02	0.0115 0.1016	0.00001 0.00024
	subunit 2 (SPCS2)	MNG679 MNG819	AEFTKSIAKF REAEFTKSIA	B*44:03 B*50:01	0.0469 0.0947	0.00114 0.00709
Q01459	Di-N-acetylchitobiase (DIAC)	40% MNG679 MNG819	REIEGSQVTF SQITTVATF	B*44:03 B*15:01	0.0492 0.1910	0.000003 0.00014
P57740	Nuclear pore complex protein Nup107 (NU107)	40% MNG679 MNG819	AEDELFNRY AYLEAHETF	B*44:03 A*23:01	0.0275 0.1817	0.000001 0.00013
P43243	Matrin-3	40%				
		MNG679 MNG702	FFGETSHNY RTEEGPTLSY	A*29:02 A*01:01	0.2240 0.0696	0.00004 0.0000003

P29966 P24821	Myristoylated alanine-rich C-kinase substrate (MARCS) Tenascin (TN-C)	40% MNG679 MNG819 40%	AESGAKEEL AERPGEAAVA	B*44:03 B*50:01	0.0649 0.0866	0.00006 0.00604
-		MNG679 MNG819	TYLPAPEGLKF TYLPAPEGLKF	A*23:01 A*23:01	0.0468 0.0147	0.00029 0.00017
P12755	Ski oncogene (SKI)	40% MNG814 MNG819	KPSSWLRTL QELEFLRVA	B*07:02 B*50:01	0.0073 0.0619	0.00008 0.00006
O15066	Kinesin-like protein KIF3B (KIF3B)	40% MNG679 MNG819	VYVKDLSSF VYVKDLSSF	A*23:01 A*23:01	0.0474 0.1181	0.00005 0.00039
Antigens ex	clusively represented by H	LA class II-restric	ted peptides up-modulated on mer	ningioma		
Q6PCB0	von Willebrand factor A domain-containing protein 1 (VQA1)	33% MNG700	ADSGYYVLELVPSAQPG DSGYYVLELVPSAQPG SGYYVLELVPSAQPG	Class II Class II Class II	23.73 49.63 18.03	0.00107 0.00150 0.00140
		MNG819	ADSGYYVLELVPSAQPG DSGYYVLELVPSAQPG SGYYVLELVPSAQPG	Class II Class II Class II	21.16 10.57 4.18	0.00066 0.00112 0.00053
O14949	Cytochrome b-c1 complex subunit 8 (QCR8)	33% MNG700 MNG702	FRVVPQFVVF FRVVPQFVVF	Class II Class II	5.25 22.51	0.00119 0.00019
Antigens ex	clusively represented by H	LA class II-restric	ted peptides down-modulated on n	neningioma	l	
Q9UBX1	Cathepsin F (CATF)	33% MNG700 MNG819	LPSNAYSAIKNLGGLE LPSNAYSAIKNLGGLE	Class II Class II	0.1075 0.0996	0.00486 0.00112
Q9GZZ6	Neuronal acetylcholine receptor subunit alpha-10 (ACH10)	33% MNG700 MNG819	YTSALRPVADTDQTLNV YTSALRPVADTDQTLNV	Class II Class II	0.0148 0.0014	0.00733 0.00073
Q96NH3	Protein broad-minded (BROMI)	33% MNG700 MNG819	TLCEKLTVSLSDPDPVF TLCEKLTVSLSDPDPVF	Class II Class II	0.0075 0.0014	0.00722 0.00073
P46459	N-ethylmaleimide- sensitive vesicle-fusing ATPase (NSF)	33% MNG700 MNG819	AAEFIQQFNNQAFS AAEFIQQFNNQAFS	Class II Class II	0.0573 0.0379	0.00639 0.00006

Supplementary Table 21. Functional annotation clustering of source proteins exclusively represented by up- or down-modulated HLA class I- or II-presented peptides on meningioma *versus* autologous tumor-free dura. Clustering for biological processes was performed on the basis of Gene Ontology (GO) terms using DAVID Bioinformatic Resources 6.8 ('Homo sapiens' as background, medium classification stringency, GO BP_ALL). As recommended by Huang *et al.* (Ref. 419 CHAPTER 1), only clusters with an enrichment score \geq 1.0 were reported.

Biological proc Gene Ontology					Enrichment sco	ore
Antigens exclus	sively represented b	y HLA class I lig	ands up-modulate	d on meningioma		
organelle organiz	zation				3.50	
GO:0071840	GO:0016043	GO:0006996				
ribosome biogen	esis				2.04	
GO:0034470	GO:0034660	GO:0006364	GO:0016072	GO:0006396	GO:0022613	GO:0042254
cellular protein lo	ocalization				2.03	
GO:0051641	GO:0008104	GO:0034613	GO:0033036	GO:0070727	GO:1902580	GO:0033365
GO:0046907	GO:1902582	GO:0015031	GO:0006605	GO:0045184	GO:0051649	GO:0006886
GO:0051179	GO:0072594	GO:0071702	GO:0051234	GO:0006810	GO:1902578	GO:0044765
DNA-templated t	ranscription				1.84	
GO:0032784	GO:0034243	GO:0006354	GO:0032786	GO:0006368		
histone modificat					1.69	
GO:0016570	GO:0051276	GO:0016569	GO:0006325	GO:0018205		
protein complex					1.61	
GO:0043933	GO:0044085	GO:0022607	GO:0065003	GO:0006461	GO:0070271	GO:0071822
GO:0034622	GO:0043623					
intracellular prote					1.57	
GO:1903829	GO:0090316	GO:0015031	GO:0051222	GO:0032388	GO:0006605	GO:1904951
GO:0032880	GO:0006886	GO:1903827	GO:0051223	GO:0070201	GO:0033157	GO:1903533
GO:0032386	GO:0032386	GO:0032386	GO:0032386	GO:0032386	GO:0032386	GO:0032386
cellular compone					1.37	
GO:0051130	GO:0033043	GO:0051128				
membrane prote			0.0.0070077	0.0.0007000	1.32	0.0.0070070
GO:1902580	GO:0061024	GO:0044802	GO:0072657	GO:0007009	GO:0010256	GO:0072659
GO:1990778						
protein oligomeri		00.005/050	0.0.005/000		1.19	
GO:0070206	GO:0070207	GO:0051259	GO:0051260		4.45	
	on of GTPase activity	00.0040005	00.0005000	00.0051045	1.15	00.0050700
GO:0044093 GO:0051336	GO:0043547 GO:0051338	GO:0043085 GO:0007264	GO:0065009	GO:0051345	GO:0043087	GO:0050790

DALA						
DNA damage resp GO:2001020	onse GO:0006282	GO:0006281	GO:0006974	GO:0006259	1.15 GO:2001022	GO:2000779
GO:0045739	GO:0006282 GO:0051052	GO:0006281 GO:0006302	GO:0008974 GO:0051054	GO.0006259	60.2001022	GO.2000779
positive regulation		0.0.0000002			1.11	
GO:0051983	GO:0090068	GO:0045787				
	enous cyclic compo		00 0071 107	00.0040000	1.10	00 0074 405
GO:0009719 GO:0071310	GO:0071363 GO:0042221	GO:0070848	GO:0071407	GO:0010033	GO:0070887	GO:0071495
amino acid biosynt					1.10	
GO:0071265	GO:0009086	GO:0006555	GO:0009067	GO:0000096	GO:0046394	GO:0008652
GO:1901607	GO:0016053	GO:0009066	GO:0006790	GO:0006520	GO:1901605	
nuclear protein imp					1.08	
GO:0006913 GO:0046824	GO:0051169 GO:0044744	GO:1902582	GO:1900182	GO:0051170	GO:1903533	GO:0034504
GO:1904591	GO:0044744 GO:0017038	GO:0006606 GO:1900180	GO:1902593 GO:0046822	GO:0042991 GO:0042990	GO:0042307 GO:0042306	GO:0042993 GO:1904589
chromosome segre		00.1500100	00.0040022	00.0042000	1.07	00.1004000
GO:0051983	GO:0007059	GO:0007062	GO:0000819	GO:0033045	GO:0051304	GO:0098813
GO:0033044	GO:0007091	GO:0010965	GO:0044784	GO:0051306	GO:0051784	GO:0033047
GO:0000070	GO:0007094	GO:0034502	GO:0071173	GO:0022402	GO:2001251	GO:2000816
GO:0051985	GO:0031577	GO:0000280	GO:1903047	GO:0010948	GO:0045786	GO:0045839
GO:0030071 GO:1901991	GO:1902099 GO:0007049	GO:1901990 GO:0051301	GO:0010639 GO:1901987	GO:0007346 GO:0051783	GO:0007067 GO:1901988	GO:0048285 GO:0010564
GO:0000075	GO:0007049 GO:0007126	GO:1903046	GO:0051726	GO:0031783 GO:0044772	GO:0007088	GO:0010504 GO:0044770
GO:00001129	GO:0007093	GO:0051321	GO:0000086	GO:1902589	GO:00044839	GO:0051129
egulation of organ	elle organization				1.05	
GO:0033043	GO:0010638	GO:0051493				
	complex assembly	00.0000010	00.0071000		1.05	
GO:0022613 amide biosynthesis	GO:0001731	GO:0022618	GO:0071826		1.02	
GO:0006412	GO:0043043	GO:0043604	GO:1901564	GO:1901566	GO:0006518	GO:0006417
GO:0010608	GO:0043603	GO:0034248	0.0.1001004		0.0.0000010	0.0.0000117
		y HLA class I liga	ands down-modul	ated on meningion	na	
•	and presentation	,		gion	3.98	
GO:0002478	GO:0019884	GO:0048002	GO:0019882	GO:0019886	GO:0002495	GO:0002504
GO:0002479	GO:0042590	GO:0002474				
ntracellular signal					2.90	
GO:0035556	GO:0023051	GO:0010646	GO:0048583	GO:0007165	GO:0044700	GO:0023052
GO:0007154	GO:0051716	GO:0050794	GO:0009966	GO:0050789	GO:0050896	GO:0065009
GO:0065007	GO:1902531 of signal transduct	ion			2.89	
GO:0023051	GO:0010646	GO:0010648	GO:0023057	GO:0009966	2.89 GO:0009968	GO:0048585
nembrane protein		5.0.0010010	0.0.0020007		2.87	0.0.00000
GO:1902580	GO:1990778	GO:0090150	GO:0072657	GO:0072659	GO:0090002	GO:0010256
GO:0034613	GO:0070727	GO:0007009	GO:0061024	GO:0044802		
viral process	00.0044440	00.0010000	00.0044704	00.0044000	2.60	00/0010000
GO:0044403 GO:0019058	GO:0044419 GO:0051704	GO:0016032	GO:0044764	GO:0044033	GO:0019080	GO:0019083
protein complex bi					2.56	
GO:0006996	GO:0065003	GO:0043933	GO:0071840	GO:0044085	GO:0016043	GO:0034622
GO:0070271	GO:0022607	GO:0006461	GO:0071822			-
cellular protein loca					2.27	
GO:1902580	GO:0051641	GO:0008104				
0 4000500			GO:0045184	GO:0034613	GO:0033036	GO:0070727
	GO:0051234	GO:0051179	GO:0051649	GO:0015031	GO:1902578	GO:0072594
GO:0006810					GO:1902578 GO:0006886	
GO:0006810 apoptosis	GO:0051234 GO:0046907	GO:0051179 GO:0033365	GO:0051649 GO:0006605	GO:0015031 GO:0044765	GO:1902578 GO:0006886 2.25	GO:0072594 GO:0071702
GO:0006810 apoptosis GO:0051402	GO:0051234	GO:0051179	GO:0051649	GO:0015031	GO:1902578 GO:0006886	GO:0072594
GO:0006810 apoptosis GO:0051402 GO:0042981	GO:0051234 GO:0046907 GO:0043523	GO:0051179 GO:0033365 GO:0070997	GO:0051649 GO:0006605 GO:1901214	GO:0015031 GO:0044765 GO:0043524	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501	GO:0072594 GO:0071702 GO:0006915
GO:0006810 apoptosis GO:0051402 GO:0042981 GO:0060548 nhibition of kinase	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity	GO:0051179 GO:0033365 GO:0070997 GO:0043067 GO:0043065	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068	GO:0015031 GO:0044765 GO:0043524 GO:0008219	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23	GO:0072594 GO:0071702 GO:0006915 GO:0043066
GO:0006810 apoptosis GO:0051402 GO:0042981 GO:0060548 nhibition of kinase GO:0031400	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549	GO:0051179 GO:0033365 GO:0070997 GO:0043065 GO:0043065	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0032269	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348
GO:0006810 apoptosis GO:0051402 GO:0042981 GO:0060548 nhibition of kinase GO:0031400 GO:0033673	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549	GO:0051179 GO:0033365 GO:0070997 GO:0043065 GO:0010563 GO:0012563 GO:0042325	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0051338	GO:0015031 GO:0044765 GO:0043524 GO:0008219	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23	GO:0072594 GO:0071702 GO:0006915 GO:0043066
GO:0006810 upoptosis GO:0051402 GO:0042981 GO:0060548 nhibition of kinase GO:0031400 GO:0033673 GO:0001932	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:00435859 GO:0043086	GO:0051179 GO:0033365 GO:0070997 GO:0043065 GO:0043065	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0032269	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348
GO:0006810 apoptosis GO:0051402 GO:0042981 GO:0060548 nhibition of kinase GO:0031400 GO:0033673 GO:0001932 cellular response to	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:00435859 GO:0043086 peptide hormone	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0010563 GO:0042325 GO:0044092	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0051338 GO:0031324 GO:0045936	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0032269 GO:0006469	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326
GO:0006810 upoptosis GO:0051402 GO:0042981 GO:0060548 nhibition of kinase GO:0031400 GO:0033673 GO:0001932 vellular response to GO:0010033	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:00435859 GO:0043086	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0010563 GO:0042325 GO:0044092 GO:0009725	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0051338 GO:0045936 GO:1901700	GO:0015031 GO:0044765 GO:0044765 GO:0008219 GO:0032269 GO:0006469 GO:0010243	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326 GO:0071495
GO:0006810 apoptosis GO:0051402 GO:0042981 GO:0060548 aphibition of kinase GO:0031400 GO:0033673 GO:0001932 cellular response tr GO:0010033 GO:0032870	GO:0051234 GO:0046907 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:00436859 GO:0043086 peptide hormone GO:0071310	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0010563 GO:0042325 GO:0044092	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0051338 GO:0031324 GO:0045936	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0032269 GO:0006469	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326
C:0006810 poptosis C:0051402 C:0042981 C:0060548 hibition of kinase C:0031400 C:0033673 C:0001932 ellular response tr C:0010033 C:0010033 C:0010033 C:0002870 C:0071375 CGFR signaling	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:00435859 GO:0043086 Depetide hormone GO:0071310 GO:1901698 GO:1901698	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0010563 GO:0042325 GO:0044092 GO:0009725 GO:0009725 GO:0070887 GO:1901701	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0031324 GO:0045936 GO:1901700 GO:1901700 GO:0009719	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0008219 GO:0006469 GO:0010243 GO:0010243	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417 GO:1901653	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326 GO:0071495 GO:1901652
GO:0006810 upoptosis GO:0051402 GO:0042981 GO:0060548 hibition of kinase GO:0031400 GO:0033673 GO:0001932 ellular response to GO:0010033 GO:0010033 GO:002870 GO:002870 GO:0071375 EGFR signaling GO:0007173	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0045859 GO:0045859 GO:0043086 o peptide hormone GO:0071310 GO:1901698	GO:0051179 GO:0033365 GO:0070997 GO:0043067 GO:0043065 GO:0042325 GO:0044092 GO:0044092 GO:009725 GO:0070887	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0031324 GO:0045936 GO:1901700 GO:1901700 GO:0009719	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0008219 GO:0006469 GO:0010243 GO:0010243	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417 GO:1901653 GO:0032868 1.98	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326 GO:0071495 GO:1901652
GO:0006810 upoptosis GO:0051402 GO:0042981 GO:0060548 hibition of kinase GO:0031400 GO:0033673 GO:0001932 wellular response to GO:0010033 GO:0001033 GO:00071375 GGFR signaling GO:0007173 well development	GO:0051234 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:0043549 GO:0043086 Deptide hormone GO:0071310 GO:1901698 GO:1901699 GO:0038127	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0010563 GO:0042325 GO:0044092 GO:0009725 GO:0070887 GO:1901701 GO:0007169	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0031324 GO:0045936 GO:1901700 GO:0009719 GO:0007166	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0008269 GO:0006469 GO:0010243 GO:0043434 GO:0042221	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417 GO:1901653 GO:0032868 1.98 1.92	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326 GO:0071495 GO:1901652 GO:0032869
GO:0006810 apoptosis GO:0051402 GO:0042981 GO:0060548 nhibition of kinase GO:0031400 GO:0033673 GO:0001932 cellular response to GO:0010033 GO:00071932 GO:0071375 EGFR signaling GO:007173 cell development GO:0044767	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:0043549 GO:0043086 Deptide hormone GO:0071310 GO:1901698 GO:1901699 GO:0038127 GO:0032502	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0042325 GO:0044092 GO:009725 GO:009725 GO:0070887 GO:1901701 GO:0007169 GO:00048731	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0031324 GO:0045936 GO:1901700 GO:0009719 GO:0007166	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0008219 GO:0006469 GO:0010243 GO:0010243	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417 GO:1901653 GO:0032868 1.98	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326 GO:0071495 GO:1901652
GO:0006810 apoptosis GO:0051402 GO:0042981 GO:0060548 nhibition of kinase GO:0031400 GO:003873 GO:0001932 sellular response tr GO:0010033 GO:0010033 GO:007173 EGFR signaling GO:0007173 sell development GO:0044767 GO:0030154	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:0043549 GO:0045859 GO:0045859 GO:0071310 GO:1901698 GO:1901698 GO:1901699 GO:0038127 GO:0032502 GO:0032502 GO:0048513	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0010563 GO:0042325 GO:0044092 GO:0009725 GO:0009725 GO:0070887 GO:1901701 GO:0007169	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0031324 GO:0045936 GO:1901700 GO:0009719 GO:0007166	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0008269 GO:0006469 GO:0010243 GO:0043434 GO:0042221	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417 GO:1901653 GO:0032868 1.98 1.92 GO:0007275	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326 GO:0071495 GO:1901652 GO:0032869
GO:0006810 apoptosis GO:0051402 GO:0042981 GO:0060548 nhibition of kinase GO:0031400 GO:0033673 GO:0001932 cellular response to GO:0010033 GO:00071375 EGFR signaling GO:0007173 cell development GO:0044767 GO:0030154 ibonucleoprotein c	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:0043549 GO:0045859 GO:0045859 GO:0071310 GO:1901698 GO:1901698 GO:1901699 GO:0038127 GO:0032502 GO:0048513 complex assembly	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0042325 GO:0044092 GO:009725 GO:009725 GO:0070887 GO:1901701 GO:0007169 GO:0048731 GO:0048731 GO:0032501	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0031324 GO:0045936 GO:1901700 GO:0009719 GO:0007166	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0008269 GO:0006469 GO:0010243 GO:0043434 GO:0042221	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417 GO:1901653 GO:0032868 1.98 1.92	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326 GO:0071495 GO:1901652 GO:0032869
GO:0006810 upoptosis GO:0051402 GO:0042981 GO:0060548 hhibition of kinase GO:0031400 GO:0033673 GO:0001932 evellular response tr GO:0010033 GO:00071375 EGFR signaling GO:0007173 evellopment GO:0007173 evellopment GO:0004767 GO:0030154 ibonucleoprotein c GO:0022613	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:0043549 GO:0045859 GO:0045859 GO:0071310 GO:1901698 GO:1901698 GO:1901699 GO:0038127 GO:0032502 GO:0032502 GO:0048513	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0042325 GO:0044092 GO:009725 GO:009725 GO:0070887 GO:1901701 GO:0007169 GO:00048731	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0031324 GO:0045936 GO:1901700 GO:0009719 GO:0007166	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0008269 GO:0006469 GO:0010243 GO:0043434 GO:0042221	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417 GO:1901653 GO:0032868 1.98 1.92 GO:0007275 1.73	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326 GO:0071495 GO:1901652 GO:0032869
GO:0006810 upoptosis GO:0051402 GO:0051402 GO:0060548 hibition of kinase GO:0031400 GO:003673 GO:0001932 ellular response tr GO:0010033 GO:0001033 GO:002870 GO:0071375 EGFR signaling GO:007173 ell development GO:0004767 GO:0044767 GO:0044767 GO:00154 Bionucleoprotein c GO:0022613 olatelet activation	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:0043549 GO:0045859 GO:0045859 GO:0071310 GO:1901698 GO:1901698 GO:1901699 GO:0038127 GO:0032502 GO:0048513 complex assembly	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0042325 GO:0044092 GO:009725 GO:009725 GO:0070887 GO:1901701 GO:0007169 GO:0048731 GO:0048731 GO:0032501	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0031324 GO:0045936 GO:1901700 GO:0009719 GO:0007166	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0008269 GO:0006469 GO:0010243 GO:0043434 GO:0042221	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417 GO:1901653 GO:0032868 1.98 1.92 GO:0007275	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0051348 GO:0042326 GO:0071495 GO:1901652 GO:0032869
GO:0006810 apoptosis GO:0051402 GO:0051402 GO:006548 nhibition of kinase GO:0031400 GO:0033673 GO:0001932 cellular response tr GO:0010033 GO:0071375 EGFR signaling GO:0071375 cell development GO:0044767 GO:0030154 ribonucleoprotein of GO:0022613 olatelet activation GO:0007596 nucleosome organ	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:0043549 GO:0045859 GO:0045859 GO:0071310 GO:1901698 GO:1901699 GO:0038127 GO:0038127 GO:0032502 GO:0048513 complex assembly GO:0022618 GO:0042060 ization	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0042325 GO:0044092 GO:0009725 GO:0070887 GO:1901701 GO:0007169 GO:0048731 GO:0032501 GO:0071826	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0031324 GO:0045936 GO:1901700 GO:0009719 GO:0007166 GO:0007399	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0008219 GO:0006469 GO:0010243 GO:0043434 GO:0043434 GO:0044707	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417 GO:1901653 GO:0032868 1.98 1.92 GO:0007275 1.73 1.63	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0042326 GO:0071495 GO:1901652 GO:0032869 GO:0048869
GO:1902582 GO:0006810 apoptosis GO:0051402 GO:0042981 GO:0042981 GO:006548 nhibition of kinase GO:0031400 GO:0033673 GO:0001932 GO:0001932 GO:0010033 GO:002870 GO:0010033 GO:007173 EGFR signaling GO:0007173 cell development GO:0007173 cell development GO:0022613 olatelet activation GO:0022613 olatelet activation GO:007596 nucleosome organ GO:0071103 GO:0065004	GO:0051234 GO:0046907 GO:0043523 GO:0010941 GO:0010942 activity GO:0043549 GO:0043549 GO:0043549 GO:0043549 GO:0043086 Deptide hormone GO:0071310 GO:1901698 GO:1901699 GO:0038127 GO:0032502 GO:0048513 complex assembly GO:0022618 GO:0042060	GO:0051179 GO:0033365 GO:0043067 GO:0043065 GO:0042325 GO:0044092 GO:0009725 GO:0070887 GO:1901701 GO:0007169 GO:0048731 GO:0032501 GO:0071826	GO:0051649 GO:0006605 GO:1901214 GO:0043069 GO:0043068 GO:0051338 GO:0031324 GO:0045936 GO:1901700 GO:0009719 GO:0007166 GO:0007399	GO:0015031 GO:0044765 GO:0043524 GO:0008219 GO:0008219 GO:0006469 GO:0010243 GO:0043434 GO:0043434 GO:0044707	GO:1902578 GO:0006886 2.25 GO:1901215 GO:0012501 2.23 GO:0051248 GO:0001933 2.19 GO:0071417 GO:1901653 GO:0032868 1.98 1.92 GO:0007275 1.73 1.63 GO:0030168	GO:0072594 GO:0071702 GO:0006915 GO:0043066 GO:0042326 GO:0071495 GO:1901652 GO:0032869 GO:0048869

regulation of MAP		0.0.0004000	0.0.0044007	00000000	1.50	0.0.00.005.00
GO:0051246	GO:0032268	GO:0031399	GO:0044267	GO:0006464	GO:0036211	GO:0043549
GO:0006468	GO:0019538	GO:0016310	GO:0043412	GO:0051338	GO:0045860	GO:0033674
GO:0045859	GO:0050790	GO:0051347	GO:0065009	GO:0032147	GO:0043406	GO:0042325
GO:0001932	GO:0019220	GO:0051174	GO:0060255	GO:0043085	GO:1902531	GO:0006796
GO:0006793	GO:0031401	GO:0044093	GO:0001934	GO:0042327	GO:0045937	GO:0010562
GO:0019222	GO:0071902	GO:0071900	GO:0023014	GO:0000165	GO:0032270	GO:0043170
GO:0051247	GO:0070372	GO:0043405	GO:0043410	GO:0043408	GO:0044260	GO:0080090
GO:0000187	GO:0009893	GO:0010604	GO:0048584	GO:0010647	GO:0031323	GO:0023056
GO:0051336	GO:0070371					
T-cell activation					1.46	
GO:0050852	GO:0007155	GO:0022610	GO:0031295	GO:0031294	GO:0050851	GO:0030155
GO:0098609	GO:0002429	GO:0002768	GO:0050865	GO:0002376	GO:0001775	GO:0022407
GO:0002764	GO:0002757	GO:0050863	GO:1903037	GO:0002253	GO:0045321	GO:0002694
GO:0050870	GO:0038095	GO:0070486	GO:0045785	GO:0007159	GO:1903039	GO:0006952
GO:0046649	GO:0045087	GO:0002682	GO:0002252	GO:0071593	GO:0070489	GO:0042110
GO:0002223	GO:0051249	GO:0002220	GO:0050778	GO:0022409	GO:0050867	GO:0098602
GO:0031349	GO:0050776	GO:0006955	GO:0031347	GO:0002684	GO:0016337	GO:0002696
GO:0002758	GO:0038093	GO:0051251	GO:0002218	GO:0045089	GO:0045088	GO:0002221
GO:0002683	0.0.0000000	0.010001201	0.0.000121.0			0.010001222
membrane fusion					1.41	
GO:0022406	GO:0006904	GO:0048278	GO:0061025	GO:0048284	GO:0022406	GO:0006904
microtubule-assoc		00.0040270	00.0001025	00.0040204	1.37	00.0000304
GO:0030705	GO:0072386	GO:0072383	GO:0072384	GO:0007018	GO:0010970	GO:0047496
GO:0030705 GO:0099518	GO:0072386 GO:0051656	GO:0072383 GO:0051640	GO:0072384 GO:0007017	GO:0007018 GO:0051648	GO:0010970 GO:0051650	00.004/490
stress-activated M		00.0001040	GO.0007017	GO.0031040	1.32	
		CO:0070000	GO:0046328	CO:0000014	GO:0000165	CO:0021000
GO:0080135	GO:0032872	GO:0070302		GO:0023014		GO:0031098
GO:0051403	GO:0046330	GO:0043408	GO:0043410	GO:0032874	GO:0070304	GO:0043507
GO:0007254	GO:0043506				1 00	
respiratory system		00 0000000	00 0000 105	00 000-00-	1.30	
GO:0060541	GO:0030324	GO:0030323	GO:0060425	GO:0035295	1 00	
regulation of cell p					1.29	
GO:0008283	GO:0008285	GO:0042127	GO:0008284			
cell physiology					1.28	
GO:0065007	GO:0009987	GO:0044763	GO:0044699			
response to vitam					1.26	
GO:0071305	GO:0031670	GO:0031669	GO:0071295	GO:0031668	GO:0033280	GO:0071496
GO:0031667	GO:0009991	GO:0033273	GO:0007584	GO:0042594		
negative regulatio	n of TGF-β / bone r	norphogenetic prot			1.22	
GO:0071560	GO:0071559	GO:0090101	GO:0007179	GO:1903845	GO:0030512	GO:0007167
GO:0090288	GO:1903844	GO:0017015	GO:0007178	GO:0070848	GO:0071363	GO:0060021
GO:0090092	GO:0030514	GO:0090287	GO:0030509	GO:0071773	GO:0071772	GO:0030510
neuron differentia	tion				1.21	
GO:0048468	GO:0048666	GO:0022008	GO:0030154	GO:0030182	GO:0031175	GO:0048699
GO:0061564	GO:0048667	GO:0007399	GO:0000902	GO:0007409	GO:0000904	GO:0032989
GO:0048812	GO:0030030	GO:0048858	GO:0032990			
viral genome repli					1.21	
GO:0019079	GO:0039703	GO:0039694				
	ubstrate adhesion				1.18	
GO:0045216	GO:0034332	GO:0034330	GO:0051017	GO:0032231	GO:0061572	GO:0048010
GO:0001952	GO:0051492	0.0.000.000	0.0.000.01.			
GO:2000114		GO:0007160	GO·0048041		GO:0007044	
		GO:0007160 GO:0032878	GO:0048041 GO:0031589	GO:0007045	GO:0007044 GO:0034329	GO:0034333
100090009	GO:0001954	GO:0032878	GO:0031589		GO:0007044 GO:0034329	
GO:0090109	GO:0001954 GO:0051893			GO:0007045	GO:0034329	GO:0034333
response to steroi	GO:0001954 GO:0051893 id hormone	GO:0032878 GO:1903391	GO:0031589 GO:0010811	GO:0007045 GO:1901888	GO:0034329	GO:0034333 GO:0010810
response to steroi GO:0009725	GO:0001954 GO:0051893 id hormone GO:0014070	GO:0032878 GO:1903391 GO:0071407	GO:0031589 GO:0010811 GO:0033993	GO:0007045	GO:0034329	GO:0034333
response to steroi GO:0009725 GO:0071383	GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401	GO:0032878 GO:1903391	GO:0031589 GO:0010811	GO:0007045 GO:1901888	GO:0034329 1.17 GO:0071396	GO:0034333 GO:0010810
response to steroi GO:0009725 GO:0071383 nuclear protein im	GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port	GO:0032878 GO:1903391 GO:0071407 GO:0009755	GO:0031589 GO:0010811 GO:0033993 GO:0030518	GO:0007045 GO:1901888 GO:0030522	GO:0034329 1.17 GO:0071396 1.09	GO:0034333 GO:0010810 GO:0048545
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580	GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0034613	GO:0032878 GO:1903391 GO:0071407 GO:0009755 GO:0070727	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582	GO:0007045 GO:1901888 GO:0030522 GO:0051649	GO:0034329 1.17 GO:0071396 1.09 GO:0072594	GO:0034333 GO:0010810 GO:0048545 GO:0046907
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365	GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0034613 GO:0006606	GO:0032878 GO:1903391 GO:00071407 GO:0009755 GO:0070727 GO:0044744	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0006605	GO:0001954 GO:0051893 id hormone GO:0014070 GO:00443401 port GO:0034613 GO:0006606 GO:0006913	GO:0032878 GO:1903391 GO:0071407 GO:0009755 GO:0070727 GO:0044744 GO:0051169	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:003365 GO:0006605 GO:0043433	GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0034613 GO:0006606 GO:0006913 GO:0042990	GO:0032878 GO:1903391 GO:0071407 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:003365 GO:0006605 GO:0043433 GO:0033157	GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0034613 GO:0006606 GO:0006913 GO:0042990 GO:1903829	GO:0032878 GO:1903391 GO:0071407 GO:0009755 GO:0070727 GO:0044744 GO:0051169	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:003365 GO:000605 GO:0043433 GO:0033157 histone acetylation	GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0034613 GO:0006606 GO:0006913 GO:0042990 GO:1903829 n	GO:0032878 GO:1903391 GO:0071407 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991 GO:0090316	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:000605 GO:0043433 GO:0033157 histone acetylation GO:0051276	GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0034613 GO:0006606 GO:0006913 GO:0006913 GO:01903829 n GO:1903829 n GO:0006325	GO:0032878 GO:1903391 GO:00071407 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0043433 GO:0033157 histone acetylation GO:0051276 GO:2000615	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0034613 GO:0006606 GO:0006913 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573	GO:0032878 GO:1903391 GO:00071407 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0006473	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0046822 GO:1903533 GO:0016569 GO:0035065
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0043433 GO:0033157 histone acetylatioi GO:0051276 GO:2000615 GO:0035066	GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0034613 GO:0006606 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0043543	GO:0032878 GO:1903391 GO:00071407 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:2000756	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0006473 GO:0043967	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0033365 GO:0043433 GO:0033157 histone acetylatio GO:0051276 GO:2000615 GO:0035066 GO:0031056	GO:0001954 GO:0051893 id hormone GO:0014070 GO:00443401 port GO:0034613 GO:0006606 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0043543 GO:0043543 GO:0031058	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0006473	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:0043966	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0046822 GO:1903533 GO:0016569 GO:0035065
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0043433 GO:0033157 histone acetylatio GO:0051276 GO:0051276 GO:0035066 GO:0031056 establishment or r	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0034613 GO:0006606 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0043543 GO:0043543 GO:0031058 maintenance of cell	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:2000756 GO:1905269	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0006473 GO:0043967 GO:0043967 GO:0033044	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:10018394 GO:1901983 GO:0043966 1.04	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:003365 GO:006055 GO:0043433 GO:003157 histone acetylation GO:0051276 GO:0051276 GO:2000615 GO:0031056 establishment or r GO:0006939	GO:0001954 GO:0051893 id hormone GO:0014070 GO:00443401 port GO:0034613 GO:0006606 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0043543 GO:0043543 GO:0031058	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:2000756	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0006473 GO:0043967	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:0043966	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:003365 GO:0006055 GO:0043433 GO:003157 histone acetylation GO:0051276 GO:00051276 GO:00051276 GO:0031056 establishment or r GO:0006939 GO:0007043	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:00043401 port GO:0034613 GO:0006913 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0043543 GO:0031058 maintenance of cell GO:0007163	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:2000756 GO:1905269	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0006473 GO:0043967 GO:0043967 GO:0033044	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:0043966 1.04 GO:0030866	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0043433 GO:0033157 histone acetylation GO:0051276 GO:2000615 GO:0031056 establishment or r GO:000399 GO:0007043 cytokine-mediated	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0006606 GO:0006913 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0043543 GO:0031058 maintenance of cell GO:0007163	GO:0032878 GO:1903391 GO:00071407 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity GO:0070830	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:2000756 GO:1905269 GO:0043297	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0006473 GO:00043967 GO:0034329 GO:0034329	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:10018394 GO:1901983 GO:0043966 1.04	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0033365 GO:0043433 GO:0033157 histone acetylation GO:0051276 GO:2000615 GO:0035066 GO:0035066 GO:0031056 establishment or r GO:0006939 GO:0007043 cytokine-mediated GO:0045087	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0006606 GO:0006913 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0043543 GO:0031058 maintenance of cell GO:0007163	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:2000756 GO:1905269	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0006473 GO:0043967 GO:0043967 GO:0033044	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:0043966 1.04 GO:0030866 1.04	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0043433 GO:0033157 histone acetylation GO:0051276 GO:0000615 GO:00051276 GO:0000615 GO:00051276 GO:00051276 GO:00051276 GO:00051276 GO:00051276 GO:00051276 GO:00051276 GO:00051276 actin organization	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:00043401 port GO:00060606 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0016573 GO:001058 maintenance of cell GO:0007163 d signaling GO:0019221	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity GO:0070830 GO:0071345	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0043297 GO:0043297 GO:0034097	GO:0007045 GO:1901888 GO:0030522 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0043967 GO:0043967 GO:0033044 GO:0034329 GO:0002684	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:0018394 GO:1901983 GO:0043966 1.04 GO:0030866 1.04 1.02	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252 GO:0030865
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0033365 GO:0043433 GO:0033157 histone acetylation GO:0051276 GO:2000615 GO:0035066 GO:0035066 GO:0031056 establishment or r GO:0006939 GO:000743 cytokine-mediated GO:0045087	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0006606 GO:0006913 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0043543 GO:0031058 maintenance of cell GO:0007163	GO:0032878 GO:1903391 GO:00071407 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity GO:0070830	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:2000756 GO:1905269 GO:0043297	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0006473 GO:00043967 GO:0034329 GO:0034329	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:0043966 1.04 GO:0030866 1.04	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0043433 GO:0033157 histone acetylation GO:0051276 GO:0000615 GO:00051276 GO:0000615 GO:00051276 GO:00051276 GO:00051276 GO:00051276 GO:00051276 GO:00051276 GO:00051276 GO:00051276 actin organization	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:00043401 port GO:00060606 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0016573 GO:001058 maintenance of cell GO:0007163 d signaling GO:0019221	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity GO:0070830 GO:0071345	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0043297 GO:0043297 GO:0034097	GO:0007045 GO:1901888 GO:0030522 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0043967 GO:0043967 GO:0033044 GO:0034329 GO:0002684	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:0018394 GO:1901983 GO:0043966 1.04 GO:0030866 1.04 1.02	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252 GO:0030865
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0033365 GO:0033157 histone acetylation GO:0051276 GO:2000615 GO:0035066 GO:0035066 GO:0031056 establishment or r GO:0006939 GO:0007043 cytokine-mediated GO:0045087 actin organization GO:0051017	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:00060606 GO:0006913 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0016573 GO:0043543 GO:0031058 maintenance of cell GO:0007163 d signaling GO:0019221	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity GO:0070830 GO:0071345 GO:0032231	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:2000756 GO:1905269 GO:0043297 GO:0043297 GO:0034097 GO:0061572	GO:0007045 GO:1901888 GO:0030522 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:0043967 GO:00043967 GO:0033044 GO:0033044 GO:0034329 GO:0002684 GO:1902589	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:0018394 GO:1901983 GO:0043966 1.04 GO:0030866 1.04 1.02 GO:0051493	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:00106569 GO:2001252 GO:0030865 GO:0010638
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0043433 GO:0033157 histone acetylation GO:0051276 GO:00051276 GO:0005165 GO:0035066 GO:0035066 establishment or r GO:0006939 GO:0007043 cytokine-mediated GO:0045087 actin organization GO:0051017 GO:0051017	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0006066 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0016573 GO:001058 maintenance of cell GO:0007163 d signaling GO:0019221 GO:0030036 GO:0007010	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:00061647 GO:1902275 polarity GO:0070830 GO:0071345 GO:0032231 GO:0032233	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0043970 GO:0043297 GO:0043297 GO:0034097 GO:0034097 GO:0061572 GO:0051130	GO:0007045 GO:1901888 GO:0030522 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:00043967 GO:00043967 GO:0033044 GO:0034329 GO:0002684 GO:1902589 GO:00044087	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:0018394 GO:0043966 1.04 GO:0030866 1.04 1.02 GO:0051493 GO:0030029	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252 GO:0030865
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:003365 GO:0043433 GO:0033157 histone acetylation GO:0051276 GO:00051276 GO:00051276 GO:0031056 establishment or r GO:0006939 GO:0007043 Cytokine-mediated GO:0045087 actin organization GO:0051017 GO:0051017 GO:0051492 GO:0032970	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0006606 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0043543 GO:0031058 maintenance of cell GO:0007163 d signaling GO:0019221 GO:0030036 GO:0007010 GO:00031032 GO:0051130	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity GO:0070830 GO:00771345 GO:0032231 GO:0032233 GO:0043254	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:2000756 GO:1905269 GO:0043297 GO:0043297 GO:0034097 GO:0061572 GO:0051130 GO:0051496	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:00043967 GO:00043967 GO:0033044 GO:0034329 GO:0002684 GO:1902589 GO:0044087 GO:0030038	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:0018394 GO:0043966 1.04 GO:0030866 1.04 I.02 GO:0051493 GO:0030029 GO:0043149	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252 GO:0030865
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0043433 GO:0033157 histone acetylation GO:0051276 GO:2000615 GO:0035066 GO:0031056 establishment or r GO:0006399 GO:0007043 cytokine-mediated GO:0045087 actin organization GO:0051017 GO:0051017 GO:00510492 GO:0032970 GO:0051130	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:0006606 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0043543 GO:0031058 maintenance of cell GO:0007163 d signaling GO:0019221 GO:0030036 GO:0007010 GO:00031032 GO:0051130	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity GO:0070830 GO:00771345 GO:0032231 GO:0032233 GO:0043254	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:2000756 GO:1905269 GO:0043297 GO:0043297 GO:0034097 GO:0061572 GO:0051130 GO:0051496	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:0018205 GO:00043967 GO:00043967 GO:0033044 GO:0034329 GO:0002684 GO:1902589 GO:0044087 GO:0030038	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:0043966 1.04 GO:0030866 1.04 1.02 GO:0051493 GO:0030029 GO:0043149 GO:0051130	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252 GO:0030865
response to steroi GO:0009725 GO:0071383 nuclear protein im GO:1902580 GO:0033365 GO:0033365 GO:0033157 histone acetylation GO:0051276 GO:2000615 GO:0035066 GO:0035066 GO:0035066 GO:0035066 GO:0035066 GO:0035067 actin organization GO:0051017 GO:0051017 GO:0051130 iron ion homeosta	GO:0001954 GO:0001954 GO:0051893 id hormone GO:0014070 GO:0043401 port GO:00060606 GO:0006913 GO:0006913 GO:0042990 GO:1903829 n GO:0006325 GO:0016573 GO:0016573 GO:0016573 GO:0031058 maintenance of cell GO:0007163 d signaling GO:0019221 GO:0030036 GO:0007010 GO:0031032 GO:0051130 usis	GO:0032878 GO:1903391 GO:0009755 GO:0009755 GO:0070727 GO:0044744 GO:0051169 GO:0042991 GO:0090316 GO:0016570 GO:0061647 GO:2000758 GO:1902275 polarity GO:007070830 GO:0071345 GO:0032231 GO:0032233 GO:0043254 GO:0051130	GO:0031589 GO:0010811 GO:0033993 GO:0030518 GO:1902582 GO:1902593 GO:0006886 GO:1900180 GO:0032388 GO:0043970 GO:0018393 GO:200756 GO:1905269 GO:0043297 GO:0043297 GO:0034097 GO:0051130 GO:0051496 GO:0051496	GO:0007045 GO:1901888 GO:0030522 GO:0051649 GO:0017038 GO:0042306 GO:1903827 GO:00042306 GO:000473 GO:000473 GO:0034329 GO:0034329 GO:0002684 GO:1902589 GO:0044087 GO:0030038 GO:003038	GO:0034329 1.17 GO:0071396 1.09 GO:0072594 GO:0034504 GO:1904589 GO:0032386 1.04 GO:0006475 GO:0018394 GO:1901983 GO:0043966 1.04 GO:0030866 1.04 1.02 GO:0051493 GO:0051493 GO:0051430 GO:0051130 1.02	GO:0034333 GO:0010810 GO:0048545 GO:0046907 GO:0051170 GO:0046822 GO:1903533 GO:0016569 GO:0035065 GO:1901985 GO:2001252 GO:0030865 GO:0030865

ribosome bioger					1.02	
GO:0022613	GO:0042254	GO:0006364	GO:0016072	GO:0034660	GO:0006396	GO:0042274
	ion of RNA transcrip				1.01	
GO:0048519	GO:0048523	GO:0010605	GO:0051246	GO:0009892	GO:0032268	GO:0009058
GO:1901576	GO:0044267	GO:0043412	GO:0019538	GO:0031324	GO:0060255	GO:0019222
GO:0000122	GO:0043170	GO:0010629	GO:0080090	GO:0010468	GO:0009890	GO:0044260
GO:0045934	GO:0031323	GO:0006366	GO:0010558	GO:1902679	GO:0031327	GO:0010467
GO:1903507	GO:0051171	GO:0051172	GO:0051253	GO:2000113	GO:0090304	GO:0034654
GO:0045892	GO:0006139	GO:0008152	GO:0018130	GO:0034641	GO:0071704	GO:0019438
GO:0044238	GO:0016070	GO:0006357	GO:0019219	GO:0046483	GO:0006725	GO:1901362
GO:0044271	GO:0010556	GO:0032774	GO:1901360	GO:0051252	GO:0009889	GO:0006807
GO:0031326	GO:0097659	GO:2001141	GO:2000112	GO:0044237	GO:1903506	GO:0006355
GO:0009059	GO:0034645	GO:0044249	GO:0006351			
Antigens exclu	sively represented	by HLA class II-re	estricted peptides u	up-modulated on n	neningioma	
cell-cell adhesion	n				3.94	
GO:0007156	GO:0098742	GO:0098609	GO:0007155	GO:0022610	GO:0007399	
ribonucleoside n					2.16	
GO:0033275	GO:0030049	GO:0030048	GO:0006936	GO:0070252	GO:0003012	GO:0003009
GO:0006928	GO:0046034	GO:0050881	GO:0050879	GO:0009205	GO:0009199	GO:0009144
GO:0009167	GO:0009126	GO:0009161	GO:0009141	GO:0009123	GO:0003008	GO:0046128
GO:0042278	GO:0006941	GO:0009119	GO:0009116	GO:0030029	GO:1901657	GO:0007517
GO:0009150	GO:0009259	GO:0006163	GO:0019693	GO:0072521	GO:0061061	GO:0060537
GO:0009117	GO:0006753	GO:0055086	GO:0019637	GO:0014706	GO:1901135	GO:0006470
GO:0006796	GO:0006793	GO:0009888	GO:0044281	GO:0016311	GO:1901564	GO:0044710
actin organizatio		00 00000 40	00 0070050	00 00000 44	2.00	0.0.000000
GO:0033275 GO:0031032	GO:0030049 GO:0061061	GO:0030048 GO:0055002	GO:0070252 GO:0055001	GO:0006941 GO:0010927	GO:0030029	GO:0030239
GO:0031032 GO:0048646	GO:0061061 GO:0051146	GO:10055002 GO:1902589	GO:0032989	GO:0010927 GO:0042692	GO:0070925 GO:0007010	GO:0030036
Antigens exclusively represented by HLA class II-restricted peptides down-modulated on meningioma						
response to oxid					1.74	
GO:0098869	GO:1990748	GO:0098754	GO:0009636	GO:0055114	GO:0000302	GO:0006979
GO:1901700						
protein catabolis		00 4004555	0000007-	0.0.0044065	1.14	0000000
GO:0044248	GO:0009056	GO:1901575	GO:0009057	GO:0044265	GO:0009894	GO:0042176
GO:0031329	GO:1903050	GO:1903362	GO:0030163	GO:0051603	GO:0044257	GO:0006508
GO:0043161	GO:0006511	GO:0019941	GO:0043632	GO:0010498	GO:0042787	GO:0030162
GO:0016567	GO:0032446	GO:0051246	GO:0032268	GO:0070647		

Supplement of CHAPTER 6

Supplementary Table 22. Peptide yields with PROCAL or heavy isotope-labeled RT peptides spiked into a complex matrix of HLA class I peptides eluted from JY cells. PROCAL peptides were spiked at 2.5 / 5 / 10 / 20 fmol/peptide/µl into JY17#3 and LC-MS/MS measurements were performed back-to-back on an Orbitrap Fusion Lumos. A selection of ten in-house produced heavy isotope-labeled RT peptides were diluted in JY17#3 (Orbitrap Fusion Lumos) or in JY17#4 (LTQ Orbitrap XL) to a concentration of 0.01 / 0.25 / 0.05 / 0.1 / 0.25 / 0.5 / 1 / 5 fmol/peptide/µl and LC-MS/MS data acquisition was performed in the order of ascending synthetic peptide concentration. Of note, neither PROCAL nor RT peptides had an apparent influence on the total number of unique peptide identifications at any of the evaluated concentrations. RT peptides were spiked at determined concentration into the newly produced LC-MS/MS standard JY19#1.

	Concentration	Unique	Total	Total
LC-MS/MS measurement	[fmol/ peptide/µl]	peptides	PSMs	intensity
PROCAL peptides				
Orbitrap Fusion Lumos				
180628_LF_jpt_RTPeptides_12-5fmol-5ul_2-5fmol-ul_ JY17#3_4-1diluted_thawed20180629_DDA#1_400-650mz_msms67	2.5	1057	3435	3.504E+10
180628_LF_jpt_RTPeptides_25fmol-5ul_5fmol-ul_ JY 17#3_ 4-1diluted_thawed20180629_DDA#1_400-650mz_msms66	5	1094	3936	6.012E+10
180628_LF_jpt_RTPeptides_50fmol-5ul_10fmol-ul_ JY 17#3_ 4-1diluted_thawed20180629_DDA#1_400-650mz_msms65	10	1080	3833	1.064E+11
180628_LF_jpt_RTPeptides_100fmol-5ul_20fmol-ul_ JY17#3_4-1diluted_thawed20180629_DDA#1_400-650mz_msms64	20	1029	4404	2.333E+11
In-house heavy isotope-labeled RT peptides				
Orbitrap Fusion Lumos				
190605_LF_10_RTPeptides_in-house_0-fmol-ul_Aload_1-10_ in_JY17#3_ thawed20190604_DDA#1_400-650mz_Lumos_msms1	0	1254	2785	2.452E+10
190605_LF_10_RTPeptides_in-house_0-01fmol-ul_in_ JY17#3_thawed20190604_DDA#1_400-650mz_Lumos_msms2	0.01	1201	2670	2.035E+10
190605_LF_10_RTPeptides_in-house_0-025fmol-ul_in_ JY <mark>17#3</mark> _thawed20190604_DDA#1_400-650mz_Lumos_msms3	0.025	988	2197	1.718E+10
190605_LF_10_RTPeptides_in-house_0-05fmol-ul_in_ JY1 7#3 _thawed20190604_DDA#1_400-650mz_Lumos_msms4	0.05	1393	3014	2.621E+10
190605_LF_10_RTPeptides_in-house_0-1fmol-ul_in_ JY1 7#3_ thawed20190604_DDA#1_400-650mz_Lumos_msms5	0.1	1430	3106	2.807E+10
190605_LF_10_RTPeptides_in-house_0-25fmol-ul_in_ JY17#3_thawed20190604_DDA#1_400-650mz_Lumos_msms6	0.25	1441	3269	2.817E+10
190605_LF_10_RTPeptides_in-house_0-5fmol-ul_in_ JY1 7#3_ thawed20190604_DDA#1_400-650mz_Lumos_msms7	0.5	1419	3182	3.003E+10
190605_LF_10_RTPeptides_in-house_1fmol-ul_in_ JY1 7#3_ thawed20190604_DDA#1_400-650mz_Lumos_msms8	1	1358	3201	3.150E+10
190913_AN_JY_Standard_ 19#1 _RT_ aufgetaut190913_DDA#1_400-650mz_msms7	0.05-1	2429	5453	5.347E+10
LTQ Orbitrap XL				
190604_LF_10_RTPeptides_in-house_0fmol-ul_Aload_1-10_ inJY <mark>17#4</mark> _thawed20190604_Rep#1_400-650mz_XL_msms11	0	923	2525	9.267E+09
190604_LF_10_RTPeptides_in-house_0-025fmol-ul_ inJY <mark>17#4</mark> _thawed20190604_Rep#1_400-650mz_XL_msms12	0.025	1004	2545	8.724E+09
190604_LF_10_RTPeptides_in-house_0-05fmol-ul_ inJY <mark>17#4</mark> _thawed20190604_Rep#1_400-650mz_XL_msms13	0.05	915	2356	8.654E+09
190604_LF_10_RTPeptides_in-house_0-1fmol-ul_ inJY <mark>17#4</mark> _thawed20190604_Rep#1_400-650mz_XL_msms14	0.1	947	2454	7.730E+09
190604_LF_10_RTPeptides_in-house_0-25fmol-ul_ inJY <mark>17#4_</mark> thawed20190604_Rep#1_400-650mz_XL_msms15	0.25	974	2477	9.842E+09
190604_LF_10_RTPeptides_in-house_0-5fmol-ul_ inJY 17#4 _thawed20190604_Rep#1_400-650mz_XL_msms16	0.5	976	2565	1.014E+10
190604_LF_10_RTPeptides_in-house_1fmol-ul_ inJY17#4_thawed20190604_Rep#1_400-650mz_XL_msms17.msf	1	839	2227	7.066E+09
190604_LF_10_RTPeptides_in-house_5fmol-ul_ inJY17#4_thawed20190604_Rep#1_400-650mz_XL_msms18.msf	5	912	2656	1.126E+10
191125_LM_Standard_JY19#1_W_10RTpeptides_ 20191112_Rep#4_400-650mz_XL_PerformanceCheck_msms25.msf	0.1-0.5	1350	3347	1.623E+10