To Boldly Go Where No One Has Gone Before: Integrating Site Location Analysis and Predictive Modelling, the Hierarchical Types Map

Abstract

Over the years, predictive modelling has been characterized as being environmentally deterministic, a-temporal, or even as a way of ‘effectively de-humanising the past’. Over the past ten years, however, spatial analysis of settlement patterns has progressed substantially, paying much more attention to the role of socio-cultural factors and the analysis of settlement pattern dynamics. In this paper, we will present an approach to site location analysis and predictive modelling that can be characterized as essentially data driven, yet is very much theoretically informed, and which has focused primarily on facilitating comparisons between various chrono-cultural contexts. Our experiments, that have been carried out since 2010, have mainly used data from the Roman period in various regions of France, but the general ideas and workflow can easily be transferred to other settings. To enrich the approach new developments were tested to understand the role of settlement hierarchy and its influence on the subsequent development and structuring of settlement patterns. These new developments were applied to three case study carried out in the north-east of France.

Keywords: site location analysis, predictive modelling, socio-cultural factors, temporal factors, Roman period

Introduction

In this paper, we present a new method to analyse the role of socio-environmental variables in rural settlement system development, with special emphasis on the role of the hierarchical structure of settlement. This method was developed as part of the PhD research conducted by the first author, in a case study for the Roman period in the Alsace-Lorraine region (NE France; Nüsslein 2018). This work is based on several research projects carried out in France between the 1980s and 2010s (Nuninger et al. 2012a; Favory, Nuninger & Sanders 2012; Nuninger, Sanders et al. 2006). The main interest of this long-term research is to study the dynamics of settlement systems and land use with a socio-environmental perspective and with a diachronic and transcultur-
Favory et al. 2008, Nuninger et al. 2008; Gandini et al. 2008; Gandini, Favory & Nuninger 2012), researchers from Slovenia were associated and brought new case studies. Around 2010, a new collaboration was developed between the French and Dutch, called IHAPMA (Introducing the Human Factor in the Predictive Modelling for Archaeology), bringing in an additional case study in the Netherlands (Nuninger et al. 2012b; Verhagen et al. 2013a and b; Nuninger et al. 2016; Verhagen et al. 2016), and finally the Alsace-Lorraine region. An original methodology to study changes in the settlement system and land use was built step by step over all these projects. This has given us a common reference to perform interregional comparison on a solid basis (Favory, Nuninger & Sanders 2012).

In the IHAPMA project we were in particular interested in the estimation of human impact on rural settlement choices, and mainly for the Roman period.

The issue was to analyse changes in settlement location during the Roman period to better understand what drove the choices of past communities: the environmental conditions, the potential for movement or control, or socio-economic considerations - or all of them? In order to estimate the weight of each factor we combined the ‘French’ approach, mainly based on multivariate statistical analyses and classification, and the ‘Dutch’ approach, mainly based on predictive modelling methods. Predictive modelling is used here as a scientific tool to detect change from one period to another, and not for heritage management purposes (Nuninger et al. 2012b; Verhagen et al. 2013a).

In this project, we put special emphasis on socio-environmental variables, and it is the computation and analysis of one of these social variables that we will present in this paper: the hierarchical structure of the settlement systems.

This variable was originally defined by the Archaedyn team (Fovet in Nuninger et al. 2012c; Mathian and Tannier in Favory, Nuninger & Sanders 2012), but we adapted it to a raster environment and we developed the model as an operational GIS tool. It was then applied and analysed for the first time on three regional case studies in the Alsace-Lorraine region.

The Settlement of the Countryside Between Moselle and Rhine in the Roman Period

During Antiquity, the area between the Moselle and Rhine rivers was a region in which many historical events occurred (Gallic Wars, Germanic invasions, battles in Late Antiquity). These events successively changed its administrative and political organization. The main aim of the PhD research was to study, through spatial modelling and comparative approaches, the evolution of the settlement of micro-regions in a large and complex area between the 1st c. BC and the 5th c. AD.

The three study areas are located in Alsace and Lorraine (Figure 1). Two are located on the Plateau Lorrain (zone 1 “Entre Alsace Bossue et Pays de Bitche”, zone 2 “Entre Seille et Nied”) and one in the Plaine d’Alsace (zone 3 “Basse vallée de la Bruche”). They are well known by survey and excavations. Their size varies between 300 and 600 km². All of them were more or less systematically surveyed by field walking and in addition about 10 to 15% of the sites were excavated. The number of Roman settlements per zone varies from 65 to more than 300 and at least 30% can be dated at the century scale.

These sites are not all the same: their size varies between 100 m² and 100 ha, and their wealth and longevity are very variable. Based on these observations, we can assume different functional roles of the settlements within the system. This is why a hierarchical-functional typology of the settlements was created, based on the method developed in the Archaeomedes and Archaedyn projects, using a combination of correspondence analysis and hierarchical clustering (Van der Leeuw et al. 2003; Favory et al. 1999; Bertoncello et al. 2012a). “The principle is that of a convergence of multiple indices whose combination makes sense in the a posteriori interpretation by the archaeologist and allows him to identify a typological-functional hierarchy” (Favory, Nuninger & Sanders 2012). This analysis resulted in 9 different, hierarchical-functional classes of settlements, depending on several variables but in particular the surface area of the settlement, its duration of life, and the quality of the material used for construction (Figure 2 and Table 1). The settlements are thus classified into hierar-
However, as mentioned by Favory, Nuninger & Sanders (2012), it should be noted that these are “properties associated with the settlement referring to various periods” and no time variable is taken into account in the analysis. “Thus the existence of entities refers to an abstract a-temporal level” and does not illustrate the internal evolution of habitats. Indeed, the excavations show that the studied habitats sometimes follow long development trajectories in which they move up in the hierarchical ranking, and then decline (Nüsslein 2016). Moreover, some sites of similar status at the beginning of the Roman period will develop more strongly than their neighbours. What are the local factors explaining these different phenomena?

After this step of classification and site study, the structuring spaces generated by the sites were studied using a number of statistical and geospatial tools (for example: density, dispersion/concentration, distances between sites, etc.). These analyses showed that the areas presented clear differences in occupation over the centuries. The second question then is: what type of socio-environmental factors can explain these variations in time and space?

<table>
<thead>
<tr>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Area</td>
</tr>
<tr>
<td>B Materials used for the construction (wood, stone, mortar, etc.)</td>
</tr>
<tr>
<td>C Level of conveniences (presence of hypocauste, bath, etc.)</td>
</tr>
<tr>
<td>D Diversity of ceramic artefacts</td>
</tr>
<tr>
<td>E Other artefacts (iron, silver, tools, etc.)</td>
</tr>
<tr>
<td>F Craft activities</td>
</tr>
<tr>
<td>G Duration of life span</td>
</tr>
<tr>
<td>H Date of creation of the settlement</td>
</tr>
</tbody>
</table>

Table 1. Variables used to create the hierarchic-functional typology of the settlements (Nüsslein 2018).
To answer these two questions, the local conditions of settlement creation were studied based on the variables developed in the previous studies cited and focusing, in particular, on the relationship between settlements according to their rank within a spatial and dynamical perspective. For this, a new tool was developed in a GIS environment so as to compute a raster map of the hierarchic-functional structure of the settlement system.

The Map of Hierarchic-Functional Structure of the Settlement System

The Original Concept

In the different cases studied in the previous projects, it was observed that different types of settlements are often spatially associated (Favory et al. 1994; Favory et al. in Archaeomedes 1998; Nuninger et al. 2006; Bertoncello et al. 2012a and 2012b). The issue was how to qualify, with a synthetic index, the neighbourhood of a location according to its potential in terms of territorial organization.

There are many different types of hierarchic-functional assemblages, consisting of multiple, interacting occupations. Based on these observations, the Archaedyn and the IHAPMA teams suggested further analysis by characterizing each portion of space (place, grid cell) by quantitatively describing its neighbourhood using a set of environmental and archaeological attributes. Among the archaeological variables, we will illustrate the “heritage” index and the “hierarchical-functional structure” index.

The first one is based on the concept of “neighbourhood legacy”, characterizing the accumulated investment in the landscape at a time t. It gives the possibility to compute heritage maps where each cell gets a value calculated by the accumulated length of occupation in the neighbourhood at a time t, weighted by temporal and spatial distance (Favory, Nuninger & Sanders 2012; Nuninger et al. 2016; Verhagen et al. 2016).

In parallel, and based on the same idea of characterizing the social context, Élise Fovet suggested to identify the level of “hierarchical organization” of the settlement pattern within clusters of settlements defined by a segmentation of the space based on a density map (see Nuninger et al. 2012c; Bertoncello et al. 2012a).

In order to determine the level of hierarchical organization of settlement within each sector, two indicators were calculated:

1. The hierarchical variety of the settlements which shows the degree of diversification of the settlement types (number of different classes) and
2. The differentiation of the classes present in each sector based on standard deviation.

For an equivalent value of the variety, we can distinguish:

a. a low range—i.e., a high homogeneity—which indicates the association of settlements belonging to hierarchically close classes (e.g., classes 1 and 2, or classes 5 and 6),

b. a high range or a strong differentiation when classes are extreme (e.g., classes 1 and 6).

Then both indicators were combined so as to indicate the degree of settlement organization within a sector, i.e., the value of the “hierarchical-functional structure. It makes it possible to distinguish poorly structured sectors (non-diversified settlement types with similar hierarchical levels) from highly structured sectors (highly diversified and exhibiting a broad spectrum of settlement classes, see Figure 4).

In this approach, the result is largely dependent on the identified aggregates or sectors used for the analysis and the solution adopted remains problematic with respect to monitoring regional comparison. To overcome this problem, Hélène Mathian and Cécile Tannier (see Favory, Nuninger & Sanders 2012) proposed to compute a value based on a neighbourhood analysis using a regular point cloud and taking account of the hierarchical ranking of the settlements. Thus the distance to the closest neighbours of the settlement was calculated according to their hierarchical level. As a result, the potential of a place n can be defined with respect to the structuring level of the settlement system that surrounds it at a time t, using the same index created previously by Fovet. This approach takes into account the entire spatial region studied rather than just its occupied area, including the marginal or totally abandoned areas, which help us understand the types of land use and the organization of the settlement systems.

While the concept and the general method were already designed to determine systematically the value of the hierarchical-functional structure within a study area, its application within a GIS environment remained to be developed. This new step was the work done within the PhD of the first author who adapted the method and developed a tool for Arc-
GIS. This tool was then used in three regional case studies for comparison.

Creating the Map of Hierarchical-Functional Structure

To create the maps, Nüsslein (2018) used a hierarchical-functional typology and a contextual approach. Compared to the method developed by Mathian and Tannier, the approach differs in two major points: 1- instead of a point cloud, a raster environment was used to calculate the value of the “hierarchical-functional structure” and 2- the choice of the radius was not based on nearest neighbours analysis, but was decided after testing a series of radii using the method developed by François-Pierre Tournéux (Tournéux 2000; Nuninger et al. 2012b; Verhagen et al. 2013a).

For each cell in space, the hierarchical context that develops there is established. This “context” is representing the profile of one cell according to the assemblage of settlements surrounding this cell (Figure 3, step 1). To define the size and morphology of the “surroundings”, we chose to use a 2000 m radius around each cell. The size of the radius was fixed according to its statistical significance to get enough variability locally and regionally. Once all the “contexts” were computed for each cell in each micro-region, we obtained a series of profiles describing the cells in the same way in the three case studies (Figure 3, step 2, a). An automatic k-means classification was then performed on the whole set of cells to group those with similar context profiles together. The result of the classification makes it possible to distinguish five main context categories (Figure 3, step 2). The results of this new classification were then mapped (Figure 3, step 2). Each cell on the raster map indicates the presence of each category of the hierarchical-functional contexts, which refers to what we call the “hierarchical type of context”. According to the assumption that a settlement

![Figure 4. Different combinations of the indices of hierarchical variety and range showing different levels of hierarchical organization of settlement patterns (after Fovet in Nuninger et al. 2012c).](image)

![Figure 5. Categories of the hierarchical-functional contexts, ranked from 1 to 5.](image)
can interact with its neighbors, we can assume a sort of complementarity between settlements of the same hierarchical-functional rank and between various ranks. Based on this hypothesis, when considering the choice of a place to settle or the potential of development for a new occupation, it could logically be presumed that the hierarchical type of context is a variable playing a role. In other words, according to its hierarchical type of context a portion of space (cell) will presumably be more or less attractive to settle.

In order to qualify the attractiveness, the statistical composition of each category of the hierarchical-functional context on the map (Figure 3 step 2, b) was analysed in order to interpret their level of hierarchical organization. As in the method developed by the ArchaeDyn collective for each category, we computed the two indicators: the hierarchical variety of the settlement and the range based on standard deviation. The level of hierarchical organization for each category was then defined by the combination of both indicators (Figure 4). We estimate that the more a type contains various types of settlement, and the larger its typological dispersion, the higher its level of organization.

Each category of the hierarchical-functional context was then ranked from 1 to 5 according to their level of hierarchical organization, from unstructured to a very structured social landscape (Table 1 and Figure 5).

Integrating the Factors in Site Location Analysis and Predictive Modelling

In order to analyse the potential attractiveness of each cell according to the level of hierarchical organization in its surrounding, we used a predictive model based on χ²-tests and relative gain calculations developed in previous works (Wansleeben and Verhart 1992; Verhagen 2007). This analysis aimed to see if any significant site location preferences could be established and how strong the preferences are. The predictive values were computed for periods of one century. For each century n, the model looked at the location of new settlements according to the pre-existent hierarchical context in century n - 1. For example, the predictive value of new site locations for the 2nd c. AD is calculated using the category of the hierarchical-functional context of the 1st c. AD. The analysis was done for 1st to 4th c. AD, the periods for which sufficient sites were available for quantitative analysis.

<table>
<thead>
<tr>
<th>Categories ranked by their level of hierarchical organization</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>This type represents a settlement system with a high hierarchical variety but with a low typological dispersion. This type thus presents a low level of structuring.</td>
</tr>
<tr>
<td>Level 2</td>
<td>This type, which has a medium level of structuring, displays a moderately varied assemblage and an average typological dispersion. Observing the spatial configuration of this type, we can see that these are large isolated villas or small aggregates, composed of a large villa and one or two small settlements in the periphery.</td>
</tr>
<tr>
<td>Level 3</td>
<td>Dense settlement but not very varied, showing an average typological dispersion. This assemblage, with a level of structuration comparable to the previous type, is composed of small aggregates mixing small and medium-sized villas accompanied sometimes by small farms.</td>
</tr>
<tr>
<td>Level 4</td>
<td>This settlement system has a medium level of structuring and is not very varied, but there is a very strong typological dispersion. This assembly is composed of medium-sized agglomerations around which sometimes gravitate some small farms.</td>
</tr>
<tr>
<td>Level 5</td>
<td>These are the most structured and most complex settlement systems. The settlement is varied and the hierarchical dispersion is very strong: the gap between small and large habitats is important but includes intermediate sites. Morphologically, this type shows small sets whose main settlements are large and medium-sized villas, around which gravitate many farms and small villas.</td>
</tr>
</tbody>
</table>

Table 2. Categories of the hierarchical-functional context ranked according to their level of hierarchical organization, from unstructured to very structured.
In the 1st c. BC, space is sparsely occupied in all study regions. However, the intensity of occupation is high around the main settlements (Nüsslein 2018), such as the villas in zone 1 and 2 (in reality, these sites are still farms at this period). The maps show that the sectors where level 1 (Table 2) is developing dominate in all micro-regions. The spaces still have a low level of hierarchical organization. Globally, for all the micro-regions, in this century the most important sites are established, from which settlement will intensify and expand, in the most structured sector.

In the 1st c. AD, occupation becomes more intense (Figure 6). The main settlements are expanding in space. In all micro-regions, level 1 still dominates, but weakens in favour of more structured assemblages. It is now confined to the newly settled peripheral spaces. Level 3 becomes most important. In the zones 1 and 2 the assemblages that combine medium and small villa type of settlements take up more place in the centre of the areas previously occupied, thanks in particular to the densification of settlement. The settlement system appears to become more complex. In zones 1 and 2, the densification of space also allows the emergence of level 5, the most organized. Its extent is still very limited but it will increase in the next centuries. This level of hierarchical organization appears in an area where a highly structured set of villas and small farms is developing.

In the 2nd c. AD, the settlement system is very dynamic, and small settlements appear in the surroundings where the main settlements are located. They are

Results

The Map of Hierarchical-Functional Structure

Before integrating the geo-environmental variable in site location analysis, we would like to comment on the evolution of hierarchical organization and the differences observed between the study areas.

<table>
<thead>
<tr>
<th>Categories of geo-environmental context (topography)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 South to east aspect, very warm to warm environment with medium (4-8%) to steep (8-15%) slopes.</td>
<td></td>
</tr>
<tr>
<td>2 South to west aspect, warm to medium-fresh environment with flat area (à-2%) or weak slopes (2-4%)</td>
<td></td>
</tr>
<tr>
<td>3 West aspect, warm to fresh environment with medium to steep slopes. This context is marked by a strong mix of criteria</td>
<td></td>
</tr>
<tr>
<td>4 No or north to east aspect, medium-warm to medium-fresh environment with flat areas</td>
<td></td>
</tr>
<tr>
<td>5 North to east aspect, fresh to medium-warm environment with flat area to medium slopes. This context is marked by a strong mix of criteria</td>
<td></td>
</tr>
<tr>
<td>6 North to east aspect, cold to fresh environment with medium to steep slopes.</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Categories of geo-environmental context.
increase in the number of contexts occupied by level 3 and 5, which appear in sectors formerly characterized by level 1 and 2.

During the 3rd c. AD, the hierarchical structure of the spaces remains stable in zones 1 and 3 (Figure 7). In zone 2, the situation seems to evolve in the 3rd century. It shows a decrease in the representation of level 1 in favour of level 3. This evolution is due to the abandonment of certain isolated peripheral founded in close proximity to the larger ones and increase the intensity of occupation in many parts of the space. Concerning the hierarchical organization of spaces, the configuration changes strongly in the zone 1 and 2 where the settlement pattern seems to become more complex and the main habitats develop. The increased density of population there leads to an increase in the level of organization. Concretely, on the maps, this phenomenon is illustrated by the

Figure 6. Maps of the hierarchical-functional structure for the 1st century AD.
habits but also to the densification of sectors already occupied where they are set up. New small sets emerge, composed of small and medium-sized villas. The process of increasing the level of structuring of the settlement, which seems already to have been accomplished in zones 1 and 3, thus seems to continue in zone 2. Finally, note that where occupation is most intense, the level of hierarchical organization is high.

In the 4th c. AD, settlement systems change with an apparent decrease (Figure 8). The peripheral spaces are abandoned and the most intensively exploited and structured sectors are abandoned. However, some densely occupied areas, where large habitats are located, remain busy. Maps of the hierarchical-functional structure of the settlement system, show that overall, in all micro-regions, the settlement system apparently becomes less complex and the level of structuring of the spaces diminishes.
However, where large villas subsist, the settlement seems to resist better.

Results of Site Location Analysis and Predictive Modelling Using Geo-Environmental Factors

In order to test the relevance of this variable and to see its importance, we first apply the protocol only with geo-environmental factors. The classification is composed of six classes of environmental contexts, ordered from ‘warm’ to ‘cold’ (Table 3, Figure 9). Here we present only the results for the three micro-regions presented in this paper. The comparisons are based on an analysis of the full dataset, so including both existing and new settlements.

For zone 1, the model has a low maximum relative gain for all settlements dated in Antiquity (= the
whole Roman period; 7.2%). Thus, there is no evidence of geo-environmental determinism according to this index. Indeed, we observe that there are no really attractive or repulsive contexts. However, for settlements dated per century, the model presents better predictive values than for all settlements, but the maximum gain values remain low. Overall, it is interesting to note that the evolution of the maximum gain shows that when the population increases, the spatial distribution of habitats in the contexts becomes more homogeneous and when the numbers decrease, the differences become more significant. The model presents a higher predictive value for all settlements from Antiquity in zone 2 than in zone 1. The choice is more pronounced. This sector also has a different geo-environmental profile from the other micro-regions. This illustrates the existence of different strategies in the two micro-regions. In zone 3, the model has a greater maximum relative gain than recorded in the other micro-regions for all settlements dating in Antiquity (23.6%). Apart from the fact that context 2 is the most attractive one during almost the whole of Antiquity, the strategy adopted by the settlements of this zone is different from what was observed for the other micro-regions. The choices here are more marked and remain virtually the same throughout the period studied. Despite the increase or decrease in the number of establishments, the predictive values do not change and the preferentially exploited environments remain the same.

To conclude, we can see that the model based on geo-environmental factors has a low predictive value for two of the three micro-regions. It does not show a very clear influence of geo-environmental factors for site location in the Roman period, which confirms the results obtained in our earlier studies (Nuninger et al. 2012b).

Results with the Map of Hierarchical Structure

Next, we applied the protocol for the variable ‘hierarchical structure’ (Figure 10). Here, the comparisons are based on an analysis of the newly created settlements.

In micro-region 1, in the 1st c. AD, the settlements are established in the areas previously occupied by types 1 and 3. In the 2nd century there is an increase in the maximum relative gain. This is due to the fact that a large number of new sites are established in an environment that is moderately structured (type 3) and which becomes very attractive. In the 3rd century the choices become even more pronounced as the most structured spaces (type 5) are preferred. Overall, structured occupancy types (types 5 and 3) are more attractive than contexts with low levels of structuring (types 1 and 2). In the next century, the situation is somewhat balanced because of the numerous abandonments that occur in types 3 and 5. The sectors occupied by these two types are nevertheless more attractive than the other categories.

In zone 2, at the beginning of Antiquity, the areas characterized by moderately structured contexts attract most settlements (types 2 and 3). In the 2nd c. AD, the maximum relative gain is increasing, and new settlements always favour contexts that were weakly to moderately structured in the previous century. In the 3rd century, contrary to what can be observed in zone 1, the settlements do not necessarily prefer a location in the sectors that were most hierarchical in the previous century. In the following period, the situation changes little. Nevertheless, the less hierarchical contexts are now less attractive, the settlements preferring to remain in environments characterized by types 3 and 5.

In zone 3 in the 1st c. AD, new settlements are predominantly found in contexts that do not have the highest structuring values (types 1 and 2). The most attractive category nevertheless gathers contexts of type 4. In the next century, the less structured environments of type 1 become repulsive. During the 3rd century, type 4 decreases but the situation is not changing very much. However, in the 4th century, the maximum relative gain increases because of numerous abandonments in the zones with type 1. Habitats thus refocus in contexts that are most structured.

To conclude, these analyses clearly confirm the importance of this variable that has strong predictive power. There are also differences between micro-regions and types of hierarchical structuration. In zone 1, the structured sectors strongly attract settlement in the early Roman period. This attraction becomes less marked later and the situation tends to balance. In zone 2, the choices are less pronounced, and it is found that the settlements located in the most structured areas, that is, the areas dominated by the main...
Figure 9. Results for the geo-environmental factors.
Conversely, small sites that set up later in such context will evolve very little, but they will be more sustainable.

Conclusion

The results of this research highlight the diversity of habitat types, spatial patterns and dynamics between Rhine and Moselle during the Roman Period. The study clearly shows that socio-environmental
parameters have a very important influence on the trajectory of sites and on the development of the settlement patterns.

More generally, the study presented in this paper shows the importance of taking socio-environmental variables into account in site location analysis, the development of the sites studies, and predictive modelling studies.

We want to emphasize, and this is one of the key elements we have highlighted in this study, that the evolution of settlements patterns depends not only on geo-environmental conditions, but that socio-environmental parameters have a very important influence on the societies we are studying. Concerning the way forward, we believe that the variable “map of hierarchical structure” can be further improved and made more efficient. A next step is to integrate this variable directly with other geo-environmental and socio-cultural parameters in site location analysis.

For the moment, this study confirms the interest of predictive modelling tools to approach the complexity of settlement system trajectories. The method allows for diachronic and regional comparisons, but we have to test it at a larger level on many case studies.

Acknowledgements

The research for this paper was partly made possible through a dual PhD at the University of Strasbourg and the University of Franche-Comté, and thanks to a grant awarded to the first author by the Réseau Franco-Néérlandais (EOLE) to be welcomed at Vrije Universiteit Amsterdam.

Previous unpublished methods and tools were made available by the instigators of the Archaedyn project, funded by the Ministère de la Recherche et des Nouvelles Technologies, and by the Agence National de la Recherche (France), and the IHAPMA project funded by the Réseau Franco-Néérlandais (Netherlands) and the French Ministry of Foreign Affairs (PHC Van Gogh).

References

Raynaud, C 1989 Archéologie du paysage autour de l’Étang de l’Or (Hérault). Choix, contraintes et méth-

