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Abstract

Acquisition of a language largely depends on the learner’s exposure to and interac-
tion with it. Our research goal is to explore and implement automatic techniques
that help create a richer grammatical intake from a given text input and engage

learners in making form-meaning connections during reading.

A starting point for addressing this issue is the automatic input enrichment method,
which aims to ensure that a target structure is richly represented in a given text.
We demonstrate the high performance of our rule-based algorithm, which is able
to detect 87 linguistic forms contained in an official curriculum for the English lan-
guage. Showcasing the algorithm’s capability to differentiate between the various
functions of the same linguistic form, we establish the task of tense sense dis-
ambiguation, which we approach by leveraging machine learning and rule-based
methods.

Using the aforementioned technology, we develop an online information retrieval
system FLAIR that prioritizes texts with a rich representation of selected linguistic
forms. It is implemented as a web search engine for language teachers and learners
and provides effective input enrichment in a real-life teaching setting. It can
also serve as a foundation for empirical research on input enrichment and input
enhancement. The input enrichment component of the FLAIR system is evaluated
in a web-based study that demonstrates that English teachers prefer automatic

input enrichment to standard web search when selecting reading material for class.

We then explore automatic question generation for facilitating and testing read-
ing comprehension as well as linguistic knowledge. We give an overview of the
types of questions that are usually asked and can be automatically generated from
text in the language learning context. We argue that questions can facilitate the
acquisition of different linguistic forms by providing functionally driven input en-
hancement, i.e., by ensuring that the learner notices and processes the form. The
generation of well-established and novel types of questions is discussed and ex-
amples are provided; moreover, the results from a crowdsourcing study show that

automatically generated questions are comparable to human-written ones.
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Chapter 1

Introduction

1.1 Motivation

Recent years have seen a dramatic growth in freely available natural language text
data, including web pages, news articles, and social media, which have opened
up entirely new theoretical, economic and educational opportunities. For the lan-
guage learning context, this means easy access to a large variety of authentic
documents that provide valuable input for language learners, which is crucial for
language acquisition. Indeed, the importance of input in language learning has
been repeatedly emphasized by the proponents of major second language acquisi-
tion (SLA) theories (Gass and Varonis, 1994; Swain, 1985).

Krashen (1977) argued that exposing learners to comprehensible input contain-
ing target constructions (i+1) is the single most important component of SLA.
However, Nagy and Herman (1985) found that a single incidental encounter of
a word seldom leads to its acquisition. They argued that a sufficient amount of
written language exposure is needed for successful language learning. This ap-
proach is also been supported by other SLA theories that have further advanced
our understanding of the role of input, specifically the frequency and perceptual
salience of constructions required for learners to acquire a language (Slobin, 1985).
This, in turn, can be aided by input flood (Trahey and White, 1993) and the cor-
responding computational linguistic (CL) method of input enrichment (Chinkina
and Meurers, 2016), which ensure that a targeted structure is richly represented

in the input.
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At the same time, second language acquisition research has emphasized that lan-
guage input alone is not sufficient to ensure successful language acquisition. Learn-
ers must also notice linguistic forms and grammatical categories (Schmidt, 1990),
and teaching can facilitate such noticing through what is known as a focus on
form (Doughty and Williams, 1998), which is designed to draw the learner’s at-
tention to relevant linguistic features of the language as they arise, while keeping
the overriding focus on meaning and communication (Long, 1991, pp.45f). For
written input, the corresponding method of wisual input enhancement has been
used to make target linguistic forms more salient with the help of, e.g., boldfacing
or highlighting. However, while such methods do draw the learner’s attention to
a linguistic form, this increased salience by itself cannot ensure that the learner

processes and fully understands its meaning.

As Hulstijn (1989) pointed out, orientation towards semantic traits of linguistic
forms requires directed attention — either by making statements or asking questions
about these forms. VanPatten and colleagues put this idea to practice by proposing
processing instruction (VanPatten, 2004), which Wong (2004) defines as a type of
focus on form instruction. After being provided with explicit information about
the target linguistic form and processing strategies, language learners engage in so-
called structured input activities — ranging from matching exercises to questions
— that ensure extensive processing of the form in a communicative setting. In
line with this body of research, we argue that language activities, and questions in
particular, can not only test but also facilitate the acquisition of different linguistic
forms by providing functionally driven input enhancement, i.e., by ensuring that

the learner notices and processes a given form.

1.2 Addressing Research Gaps

Most of the research gaps arise from the lack of CL research for the purposes of
foreign language teaching and learning (FLTL). Indeed, CL tasks are somewhat
different from those in FLTL: While computational linguists focus on inferences
about temporal relations (Lapata and Lascarides, 2006), which is undoubtedly rel-
evant for FLTL as well, foreign language teachers can benefit greatly from being
able to search texts for linguistic forms, such as grammatical tenses and condi-
tionals. While required by the curriculum, they cannot be easily found by simply

typing their names into a search engine. We address this gap by developing a
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detection algorithm that identifies 87 linguistic forms specified in an official cur-

riculum for the English language.

As language learning is not about learning forms but rather form-meaning con-
nections (VanPatten and Oikkenon, 1996), automatically distinguishing between
different meanings of the same form is an important endeavor in the field of CL. Al-
though disambiguation of word senses is a well-developed CL field, its performance
remains at 70-80% (Navigli, 2009). While also relevant in the FLTL context, this
CL task can be extended to making distinctions between the different senses of
grammatical constructions. For instance, going to can be used as part of present
progressive (I am going to the US tomorrow) or a standalone phrase expressing
intention (I am going to call you tomorrow). The present perfect tense can be
used to emphasize the duration of an action (I have lived here for three years) or
a result (I have finished writing my thesis). In our study on the disambiguation
of tense senses, we experiment with leveraging rule-based and machine learning

approaches to improve the state-of-the-art performance on this task.

Some research on input enrichment, or input flood, has demonstrated that learn-
ers benefit from the exposure to target linguistic forms richly represented in the
language input (Trahey and White, 1993; Williams and Evans, 1998). However,
recent iCALL research has mainly focused on the general readability of documents
derived from machine learning algorithms using traditional CL features, such as
the number of noun phrases and length of T-units. We argue that retrieving doc-
uments containing ¢ and i+ linguistic constructions (Krashen, 1977) relevant for
language learners and filtering out documents containing unknown constructions
is crucial for any system providing reading material for language learners. We
develop such a system and design a study in which we investigate whether En-
glish teachers need and prefer automatic input enrichment as opposed to using a

standard web search engine to select reading material for class.

Once the teacher has an enriched text containing a sufficient number of target lin-
guistic forms, they might want to make those forms more salient for their students
via intonation (in speech) or highlighting (in text). This SLA technique of input
enhancement (Sharwood Smith, 1993) was automated using state-of-the-art nat-
ural language processing technology in the WERT! system (Meurers et al., 2010).
Its multilingual extension VIEW is implemented as a browser add-on and is able to
turn any web page into an interactive exercise by enhancing the specified linguistic

forms on the page either by coloring them or replacing them with fill-in-the-blank



4 Chapter 1 Introduction

or multiple choice items. One problem with visual input enhancement is that
making a form visually more visually salient does not ensure that it is noticed and
cognitively processed more thoroughly nor do we know which aspect of that form
the reader will notice and how it will be interpreted. For example, coloring the
form has been raining in a text may draw the reader’s attention to any aspect of it:
the number or length of the words, the -ing suffix of the last word, etc. In addition,
noticing the form does not necessarily mean that a learner will be able to map
it to its present perfect progressive interpretation, which emphasizes the duration
of an action that started in the past. As a solution, we propose the method of
functionally driven input enhancement, which uses automatically generated ques-
tions about target linguistic forms in the text to ensure their understanding and

processing.

In conclusion, we argue that CL research should support FLTL more actively. The
main goal of this thesis is, therefore, to leverage and improve existing NLP tools
and CL methods to develop efficient, theory-motivated applications for language
teaching and learning. This thesis makes the approach concrete by providing

teachers support in:

e searching for linguistically-rich reading material (input enrichment) with the
option of highlighting the target linguistic forms in the text (input enhance-

ment), and

e generating text-based questions given a list of target linguistic forms (func-

tionally driven input enhancement).

1.3 Research Questions

Here we present the general research questions that are relevant for the thesis as a
whole and are addressed in Chapters 4, 5, and 6. Concrete research questions and
hypotheses for each of the individual studies are presented in the corresponding
sections: 4.2, 5.4, 6.7, and 6.8.

1. How well can we automatically detect linguistic forms and disambiguate their
senses by leveraging rule-based, crowdsourcing, and machine learning ap-

proaches?
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2. Does input enrichment succeed in giving teachers material that is (i) rich in
the linguistic forms they care about, (ii) relevant to their topic of interest,

and (iii) suitable as a reading assignment for their students?

3. Can automatically generated questions provide functionally driven input en-

hancement and be used alongside the human-written questions in FLTL?

1.4 Terminology

By linguistic forms, we mean lexical items and grammatical constructions that
are of pedagogical interest to language teachers. Examples of lexical items in-
clude words and word expressions, while examples of grammatical construc-
tions include tenses, conditionals, and other forms that can be derived by using

the syntactic rules of a language.

Input enrichment is an automatic method of maximizing the number of occur-
rences of target linguistic forms in a collection of texts. While text manipulation
and editing is a viable alternative, we approach this task as an information re-
trieval one and prioritize the texts containing the best representation of target

linguistic forms.

Input enhancement is an umbrella term for techniques used to make linguistic
forms more salient to the learner. Visual input enhancement, also known as
textual enhancement, uses written or typographical cues, such as boldfacing and
highlighting, to draw learners’ attention to target linguistic forms. Function-
ally driven input enhancement not only draws learners’ attention to linguistic
forms but also facilitates processing and deeper understanding by asking either
meaning-driven questions about their interpretation or factual questions about

their immediate context.

Automatic question generation is approached in this thesis as the computa-
tional linguistic task of generating questions from declarative sentences by applying

a set of rules and constraints or by using templates.
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1.5 Approach and Key Contributions

In our work, we combine insights from SLA research with state-of-the-art compu-
tational linguistic, machine learning, and statistical methods to support language
teachers and learners in selecting topically and linguistically appropriate reading
materials and creating activities that ensure that target linguistic forms are noticed

and processed. The key contributions of this thesis are:

e We developed the web-based FLAIR system, which, as an input enrichment
tool theoretically grounded in SLA research, provides linguistically rich read-

ing material for FLTL: www.purl.org/icall/flair.

e We conducted an online study that demonstrated that English teachers pre-
fer automatic input enrichment over standard web search when selecting

authentic reading materials for their students.

e We implemented an algorithm for detecting 87 linguistic forms specified
in the official curriculum for the English language in the state of Baden-

Wiirttemberg, Germany.

e We compiled a dictionary of grammatical tenses and their coarse-grained
senses and created a corpus of sentences from news articles containing 4089

instances of grammatical tenses annotated with those senses.

e We trained state-of-the-art machine learning models for the task of tense
sense disambiguation that outperformed a strong baseline and the state of
the art for this task.

e We introduced two novel types of FLTL questions that provide functionally
driven input enhancement by drawing learners’ attention to target linguistic

forms and facilitating their processing and understanding of these.

e We designed an automatic question generation tool that generates text-
based questions providing functionally driven input enhancement for FLTL:

www.purl.org/qg.
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1.6 Outline

The rest of the thesis is organized as follows:

Chapter 2 provides theoretical support from the field of SLA and discusses stan-
dard CL approaches and methods for developing iCALL tools. To contextualize
our approach, we give an overview of some existing systems that provide reading

material and exercises for language learners.

Chapter 3 introduces the FLAIR system, which retrieves appropriate reading ma-
terials for language learners and generates questions targeting the specified linguis-
tic forms, thereby providing automatic input enrichment and functionally driven

input enhancement to language teachers and learners.

Chapters 4, 5, and 6 discuss and evaluate each of the components in the FLAIR

pipeline:

Chapter 4 is subdivided into two parts. The first part focuses on the rule-based
detection of the linguistic forms relevant for language teachers and learners. The
second part adopts a machine learning approach to address the task of tense
sense disambiguation in order to provide a richer variety of contexts in which

grammatical tenses are used.

Chapter 5 discusses the selection of appropriate reading material for FLTL and the
information retrieval algorithms supporting it. It also presents an online study in-
vestigating English teachers’ need and preference for automatic input enrichment
as opposed to using standard web search when selecting authentic reading mate-

rials for their students.

Chapter 6 introduces two novel types of questions providing functionally driven
input enhancement and the algorithms used to automatically generate them. The
quality of computer-generated questions is compared to that of human-written

ones in two crowdsourcing studies.

Finally, Chapter 7 summarizes the main results generated by the work that went
into this thesis, discusses the limitations, and suggests directions for future re-

search.






Chapter 2

Background

Parts of the work discussed in this chapter appeared in the following thesis:

1. Chinkina, M. (2015). Form-focused Language-aware Information Retrieval (Master’s the-
sis, Eberhard Karls Universitdt T{ibingen).

Our work lies at the intersection of second language acquisition, computational
linguistics, and intelligent computer-assisted language learning. In the following
sections, we review the theoretical and practical research done in these fields that

is relevant to our work.

2.1 Second Language Acquisition

Second Language Acquisition (SLA) research is of an interdisciplinary nature since
it has evolved from several disciplines, namely, linguistics, psychology, cognitive
science, and education. SLA hypotheses have roots in these fields and shed light on
particular aspects of the language learning process. As input, noticing, and form-
meaning mapping are key SLA concepts that are directly related to our work, we

review them in this section.
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2.1.1 Input and Noticing

Acquisition of a language directly depends on the learner’s exposure to it. Hence,
SLA research consistently emphasizes the importance of input in second language
(L2) learning (Krashen, 1977; Swain, 1985; Gass and Varonis, 1994). The input
hypothesis (Krashen, 1977), also termed i+ 1, is driven by the notion of comprehen-
sible input, i.e., language input at a slightly more advanced level than learners’
current foreign language (L2) competence. Krashen (2003) saw comprehensible
input as the cause of language acquisition and argued that exposing learners to
language input containing ¢ as well as i+ 1 structures is a better method of develop-
ing grammatical accuracy than explicit grammar instruction. Nevertheless,despite
being a prominent SLA paradigm in the late 1970s, this theory left some gaps in
our understanding of the cognitive aspects of SLA processes that other theories
tried to fill in later.

Connectionism theory, which evolved from the field of cognitive psychology, advo-
cates taking a data-driven approach to language learning. Connectionists see the
brain as a statistical recorder of the frequencies of words and structures. They
stress the importance of input, which is considered the source of both the units and
the rules of language. However, Schmidt (1990) points out that not all input —
however rich — can become intake for language learning. This insight led Schmidt
to emphasize the importance of attention and noticing in language acquisition.
According to his noticing hypothesis, the learner must consciously notice L2 forms
in order to acquire them. This hypothesis has been confirmed by numerous studies

of attention and awareness in L2 learning (Robinson, 2001, 2003).

Consequently, Long (1991) introduced the concept of focus on form in education.
Focus on form refers to pedagogical instruction aimed at directing the learner’s
attention to particular structures in the input by making them more salient in order
to promote their acquisition. This method has proved to be superior to purely
communicative instruction (Leeman et al., 1995). While the various practical
applications of this approach are discussed further in this section, they all try to
address the following question: How can one ensure conscious noticing — or even
processing — of target linguistic forms, and is this at all necessary for language

acquisition?
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2.1.2 Input Flood, Enrichment, and Enhancement

Practical applications of the noticing hypothesis and focus-on-form instruction had
to face the problem of finding texts with a sufficient number of target structures,
which was addressed by the method of input flood (Trahey and White, 1993). Its
goal is to ensure learners’ incidental exposure to a large number of target linguistic
forms. Benati (2016) reviews the research testing the effects of input flood on
SLA and comes to the conclusion that it might increase learners’ awareness of the
different possibilities a language offers but cannot guarantee that target linguistic

forms are noticed.

In the field of computational linguistics, the corresponding technique of automati-
cally ensuring that a target structure is frequently represented in a text is referred
to as input enrichment (Chinkina and Meurers, 2016) and is approached as an
information retrieval task (see Section 2.2.3 for a formal definition of information
retrieval). That is, given a collection of texts and a grammatical query consisting
of one or more linguistic forms, an input enrichment system prioritizes the texts
containing the best representation of the target forms. Our system implementing

this approach is introduced in Chapter 3 and discussed in detail in Chapter 5.

Input flood, or enrichment, is also in line with the perceptual salience approach
by Slobin (1985), who considers the frequency and salience of constructions in
input crucial for how L2 learners process and learn the language. Increasing the
salience of richly represented linguistic forms is the goal of input enhancement
(Sharwood Smith, 1993), which can be seen as an instantiation of focus-on-form
instruction (Long, 1991). While input enhancement can be used to draw learners’
attention to the occurrences of linguistic forms in speech (White et al., 1991), SLA
researchers mainly investigate the effects of its textual form referred to as textual
or visual input enhancement. As the meta-analysis by Lee and Huang (2008)
shows, the results of studies on the isolated effect of visual input enhancement
on language acquisition have been mixed. One option for pushing this research
further is to investigate other types of input enhancement or in combination with
other input activities. Whether these activities should provide focus on form, focus
on meaning, or a combination of both to facilitate SLA is an empirical question

that is reviewed further in this section.
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2.1.3 Form, Meaning, and Redundancy

The debate over the relative importance of accuracy (form) and communication
(meaning) in the FLTL classroom has been around for decades (Leeman et al.,
1995; Seedhouse, 1997; Chang, 2011). Several studies show that learners pro-
cess input for meaning before processing it for form (VanPatten, 1990; Wong,
2001). However, Norris and Ortega (2000) argued that simultaneously directing
the learner’s attention to form and meaning in the input does not hinder L2 devel-
opment or reading comprehension. Leow et al. (2008) came to the same conclusion
after revisiting the methodology used in the replication studies mentioned above
and conducting a new study. They did not find any statistically significant dif-
ferences in comprehension between different intervention groups. Finally, a study
by Morgan-Short et al. (2012) demonstrated that learners who attended to and
processed linguistic forms while reading for meaning actually scored higher on

comprehension than those who only read for meaning.

The four stages believed to be involved in the learning of form-meaning connections
are: (i) initial connection, (ii) subsequent processing of the connection, (iii) contin-
ual encounters of it in the input, and (iv) accessing form-meaning connections for
use (VanPatten and Oikkenon, 1996; VanPatten, 2002). A pedagogical interven-
tion following these steps and designed to ensure that learners make form-meaning
connections during reading was introduced by VanPatten and Cadierno (1993) as
processing instruction. Work in this paradigm provides insights on the relative
importance of each of its components — explicit instruction, practice activities (so-
called structured input activities, which are discussed further in the section), and
learner production — for SLA (e.g., Farley, 2001; Wong, 2004; Marsden and Chen,
2011; DeKeyser et al., 2002).

In his update on the principles of processing instruction, VanPatten (2002) revises
the concept of the communicative value of a linguistic form. The idea behind this
concept is that other lexical items in the context may express the same meaning
as the target linguistic form, thus introducing semantic redundancy. For example,
the sentence John went to school yesterday provides two past tense cues: the past
simple form went and the adverb yesterday. VanPatten’s primacy of meaning
principle states that learners process input for meaning before they process it for
form and prefer lexical items (yesterday) to grammatical ones (went). An attempt

to draw students’ attention to the past simple tense using this sentence may not
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be successful: As there is semantic redundancy introduced by other linguistic cues
in the sentence, the students will not have to rely on the target linguistic form to
understand the meaning. However, linguistic forms do not always co-occur with
temporal expressions: The question Where did he go? provides no cues of the
past simple tense except for the past form did. Thus, the communicative value of
a linguistic form can increase or decrease depending on the context. VanPatten
(2002) even argues that a form with no or consistently little communicative value is
the least likely to get processed and may never get acquired without help. However,

more empirical studies are needed to support this argument.

2.1.4 Structured Input Activities

Structured input is defined as “input that is manipulated in particular ways to
push learners to become dependent on form and structure to get meaning” (Lee
and VanPatten, 1995). Structured input activities can be seen as an umbrella term
for a wide range of communicative language-teaching techniques. They provide
learners with enriched input and prompt them to attend to and process the target

linguistic form in order to understand the meaning and complete the activity.

One of the key components of processing instruction (VanPatten and Cadierno,
1993), structured input practice, has been identified as particularly effective in
fostering L2 development. Pointing out the importance of a systematic focus on
target linguistic forms, VanPatten and Oikkenon (1996) found that contextualized
structured input activities were more effective than explicit explanations of rules
for intermediate learners of Spanish. Benati (2004) and Wong (2004) replicated
the study targeting different linguistic forms and came to the same conclusion.
Although a number of other studies did not find the same effect (e.g., DeKeyser
and Sokalski, 1996; Collentine, 1998), VanPatten (2002) reviews their findings as
complimentary rather than contradictory to the principles of processing instruc-

tion.

VanPatten (2002) distinguishes between referential and affective structured input
activities. The former have a target correct answer that the learner is expected
to produce. Neupane (2009) translates VanPatten’s examples into English and
presents a referential listening activity targeting the causative versus non-causative
use of the verb to make: First, the students are presented with several questions:

Who prepared an omelet?, Who did the homework? etc. Then the teacher reads



14 Chapter 2 Background

out the same number of sentences containing the answers to the questions: The
teacher made the student do his homework, Ram made an omelet, etc. Such a
task encourages students to attend to the target linguistic form in every sentence
and rely on their understanding of its meaning to produce the correct answer.
Note that there are no other cues pointing to the correct answer in the sentences
except for the target linguistic form itself. Affective structured input activities, on
the other hand, have learners engage in actively processing information about the
real world and expressing their opinions. An example of such an activity targeting
the same linguistic form (to make somebody do something) is selecting one option
from a set of alternatives for a list of sentences with the target form: An adult
made [a child/a dog] bark. An adult made [a child/a dog] eat meat. An adult
made [a child/a dog] read a story. Students complete the activity and then share
and discuss their answers. Note how both options are reasonable in the second

sentence and there are no correct or incorrect answers in this activity.

Marsden and Chen (2011) conduct a study comparing the effects of referential and
affective structured input activities on the acquisition of the -ed past tense inflec-
tion. Their results confirm the conclusion that the use of processing instruction,
and structured input activities in particular, leads to learning gains. In addition,
they suggest that participants mostly gained explicit knowledge and argue that
this was induced from the referential activities. Finally, they conclude that af-
fective activities, either alone or following referential activities, do not have any

impact on learning the target linguistic construction.

To conclude, a large body of research has been done on testing the effects of
input enrichment, input enhancement, and processing instruction. However, many
studies have yielded mixed results. Some have argued that the original studies
were not properly replicated (VanPatten, 2002) leading to inconsistent results.
Certainly, the choice of target linguistic forms, types of input enhancement, and
structured input activities are important factors that can influence the design of

a study and its final results.

Whether by simply exposing the learner to certain linguistic forms or by providing
activities targeting those forms, all of the aforementioned approaches rely on the
existence of appropriate reading materials with a rich representation of linguistic
forms for effective language acquisition. Manually searching for such reading ma-

terial takes a lot of time and effort so teachers often fall back on schoolbook texts
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designed to introduce and practice the relevant constructions. The limitations this

puts on the choice of texts and other considerations are discussed below.

2.1.5 Authentic reading material

School textbook material is criticized for using artificial language, i.e., containing
stilted and unnatural vocabulary and grammatical constructions. Using up-to-
date jargon and slang in textbooks, on the other hand, makes little sense since
their lifespan is quite short and might even be considered obsolete by the time the
textbook is published. At the end of the day, when students leave the classroom,
unless they have been exposed to the foreign culture directly, they might lack some

knowledge of real-life language usage.

Foreign language teaching and learning (FLTL) professionals (e.g., Peacock, 1997;
Morrison, 1989; Swaffar, 1985) have experimented with practical methods of teach-
ing English courses with authentic texts of various types and levels. They demon-
strate positive outcomes overall, both with respect to motivating learners to learn
the target language and developing their communicative competence. Interest-
ingly, learners in some studies reported authentic materials to be significantly less
interesting than curated materials (Peacock, 1997). Though this finding seems
to speak against using authentic texts in the educational context, in our opinion,
it instead demonstrates just how unprepared schoolchildren are to read real-life
texts. Given that they will mostly come across such texts outside their learning
environment, it actually provides an additional ground for introducing authentic

materials into the everyday language learning process.

With that in mind, more and more teachers are turning to the Web in search of
authentic texts. The sources for authentic texts on the Web include a wide range
of texts from books, newspaper articles, and blogs up to (or rather down to) short
social media posts. As authentic texts are becoming an integral part of the FLTL
classroom, teachers and learners alike need support in finding appropriate reading
material to foster learners’ language acquisition via focus on form (Meurers, 2012).
Thus, whether one can make use of the aforementioned findings from the field of
SLA to find materials that are appropriate for learners’ competence level and meet
their interests at the same time remains an open question. This issue is addressed
throughout the thesis and is one of the motivations of the FLAIR system described
in Chapter 3.
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2.2 Computational Linguistics

While input enrichment, input enhancement, and processing instruction have been
traditionally implemented manually, computational linguistic methods can sup-
port their automation. In this section, we overview the basic concepts and tasks
of computational linguistics (CL), which is an interdisciplinary field that studies
computational approaches to addressing linguistic questions. Natural Language
Processing (NLP) is an area of CL dealing with natural language data and its

efficient modeling.

2.2.1 Natural Language Processing Tasks

Tokenization, POS tagging, and lemmatization are the building blocks of NLP and
follow the process of assigning words to increasingly more fine-grained categories.
First, a parser recognizes a string of characters as a word, then it assigns a part-
of-speech (POS) tag to it, e.g., to differentiate between evening as a noun (late
afternoon) and as a gerund or present participle (making more even), as shown in
(1) and (2). This information is then used to find the lemma of the word, which for
the noun evening will be evening and for the gerund or present participle evening
will be even. The performance of POS taggers is evaluated using accuracy per

token and is generally very high, at 97%.1

(1) Sowmya was working late in the evening.

(2) Vladimir has finished evening the platform.

Given this information about the individual tokens, constituency parsers resolve
a sentence into its components, i.e., phrases and words, that form a parse tree
and represent the syntactic structure of a sentence (see Figure 2.1). This process
has traditionally relied on probabilistic context-free grammars (PCFG), with re-
cent approaches implementing combinations of PCFG and neural networks (Socher
et al., 2013) and reporting an F;-measure of 90-92% McClosky et al. (2006). De-
pendency parsing, on the other hand, focuses on the grammatical relations between
individual tokens rather than their grouping into phrases (see Figure 2.2). The per-

formance of state-of-the-art dependency parsers has recently been boosted through

'https://aclweb.org/aclwiki/POS_Tagging_(State_of_the_art)
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FI1GURE 2.1: Output of a constituency parser for the sentence This package is
really simple to use.
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FI1GURE 2.2: Output of a dependency parser for the sentence This package is
really simple to use.

the use of neural networks achieving an accuracy of 92% (Chen and Manning, 2014;
Pei et al., 2015), although it has traditionally been addressed with graph-based
approaches relying on hand-crafted features. The most commonly used lists of
POS tags and dependencies are from the Penn Treebank Project (Santorini, 1990)

and the Universal Dependencies framework,? respectively.

NLP tools not only take into account the syntactic structure of a sentence but also
integrate the semantic information provided either by the direct context of a word
or dictionaries and ontologies. Tasks such as named entity recognition (NER) and
sentiment analysis are examples of a hybrid implementation of syntactic and se-
mantic features. The goal of NER is to single out proper nouns, time expressions,
and other named entities from a text and tag each of them with one of the available
NER tags (person, organization, time, location, etc.). Sentiment analyzers usually

assign positive, negative, or neutral tags to whole sentences and are built on the

2http://universaldependencies.org


http://universaldependencies.org

18 Chapter 2 Background

Aware of owner Roman Abramovich’s interest m_thijyoung Argentine“ Lé-bortd}-ééid last night: 7;;ﬂ

FC Barcelona president Joan Laporta _}}@g,_warnedoff star strike|Lionel Messi

This warning has generated dicouragement in

—
will answer as always, is not for sale and we do not want to let go.”
R —

FIGURE 2.3: A text excerpt with resolved coreferences produced by TALP
Research Center (http://www.talp.upc.edu).

assumption that there are positive and negative words, such as amazing and hor-
rible. Additional rule-based or machine learning algorithms take care of negation
(e.g., not great), adverbs (e.g., rarely good), changes in the meaning of certain
words from negative to positive and vice versa (e.g., decadent), and even sarcasm
(e.g., My mom would sure love it, heh). The last of these has become particularly
popular with the rise of social media data mining (Maynard and Greenwood, 2014;
Ghosh et al., 2015).

Coreference resolution is considered to be one of the most challenging NLP tasks.
Its goal is finding all linguistic expressions that refer to the same real-world entity
in a text or speech, as shown in Figure 2.3 below. While coreference resolution
is crucial for natural language modeling and understanding, the best supervised
methods only achieve an accuracy of 64-76% depending on the evaluation metric
and the dataset (Rahman and Ng, 2009). However, neural network approaches
produce slightly superior results of 70-79% on the same datasets (Clark and Man-
ning, 2016).

All of the NLP components mentioned above are implemented in the state-of-
the-art Stanford CoreNLP toolkit (Manning et al., 2014) and are used as a pre-

processing step for the system described in this thesis.

2.2.2 Disambiguation of Senses

In the evening example at the beginning of the previous section (1 and 2), both
humans and parsers should not have any difficulty distinguishing the noun and
the verb uses of the word evening in different contexts. However, ambiguity may
also arise within one POS category as in (3) and (4). Such semantic ambiguity
may not influence the accuracy of a parser but is detrimental for other CL tasks

such as machine translation and information retrieval.
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(3) Mareike saw a seal lying on the shore.

(4) Sophie broke the seal of the letter.

Distinguishing between different meanings of a word in context is the goal of the
CL task of word sense disambiguation (WSD). This is a classification task currently
best solved with supervised methods (Navigli, 2009), which require labeled training
data to train and fit machine learning classifiers. Semi-supervised knowledge-based
approaches (Yarowsky, 1995; Mihalcea, 2004) have also been used to address the
task of WSD, but most fail to achieve the performance accuracy of supervised
methods. Unsupervised methods do not have access to labeled data and approach
the task of WSD as a sense discrimination task by clustering all instances into
groups with no predefined senses. Ensembles of unsupervised WSD algorithms
are reported to outperform single unsupervised systems (Brody et al., 2006) but
they cannot be directly compared to supervised and semi-supervised systems due

to the difference in task definitions.

A SensEval/SemEval task® (Kilgarriff and Rosenzweig, 2000) was organized as an
initiative to evaluate and compare WSD systems. A WSD system’s performance is
expected to lie within the percentages determined by its lower and upper bounds.
The upper bound specifies the best performance a WSD can achieve and is usually
calculated as the inter-annotator agreement. The lower bound is provided by a
simple baseline selected either randomly or by marking all instances of a word
with its most frequent sense (Gale et al., 1992). The latter has proved to be
quite hard to beat: While experts manually annotating linguistic corpora for word
senses achieve agreement of 80-90% for WSD (Palmer et al., 2007; Navigli et al.,
2007), the most-frequent-sense baseline in the SemEval-2007 shared task achieved
78% (Agirre and Soroa, 2007). This indicates that WSD systems need to focus on

infrequent senses to improve performance.

Reichart and Rappoport (2010) point out that according to the construction gram-
mar framework (Goldberg, 1995), words, multi-word expressions, and syntactic
forms are all valid constructions comprised of a form and a meaning. Thus, the
WSD task can be generalized to the disambiguation of all linguistic constructions
that have more than one meaning. Grammatical tenses are one example of syn-
tactic forms: Tenses can have different grammatical meanings depending on the

context in which they are used. For example, the present perfect form has lived can

3WWW .senseval. org
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be used to express the following grammatical meanings (adapted from Murphy,
2012):

e Norbert has lived in three different cities. (Grammatical meaning: Finished

action emphasizing the experience)

e Maria has lived here for the last 5 years. (Grammatical meaning: Duration

of an action or a state)

e Alexander has lived a good life. (Grammatical meaning: Finished action

emphasizing the result)

When it comes to disambiguation of the senses of syntactic forms such as gram-
matical tenses, experts have an agreement of 84.2%, while the most-frequent-sense
baseline only achieves 46.7%, according to Reichart and Rappoport (2010). This
implies that the distributions of the senses of grammatical tenses are less skewed
than those of words. Consequently, different kinds of machine learning algorithms
could be suitable for grammatical tenses. We discuss our findings from a tense
sense disambiguation task and compare them to the work done by Reichart and
Rappoport (2010) in Section 4.2.7.

The main CL applications where sense disambiguation can be of great benefit
are machine translation and information retrieval. As the latter is particularly

relevant to our work, it is discussed in more detail in the next section.

2.2.3 Information Retrieval

The research field of Information Retrieval (IR) addresses the problem of effi-
ciently obtaining relevant information from a collection of resources. Formally,

the problem of IR can be defined as follows:

V ={wy,ws,...,wn};
q=q,- -, qlg € V;

di =di1, ..., dimjldij € V; (2.1)
C={dy,...,dy};
R(q) € C
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where V' is a language vocabulary, ¢ is a query, d is a document, C'is a collection of
documents and R(q) is a set of relevant documents given query ¢. The task of IR is
to compute R'(q), which is an approximation of R(q). This can be achieved using
two strategies, document selection or document re-ranking, the dangers of the
former being low precision at high recall or retrieving an empty list of results. Web
search is the most common instantiation of the IR strategy of document re-ranking.
However, there are certain peculiarities when it comes to retrieving documents
from the Web rather than from a preprocessed database. Given unstructured data
and ambiguous queries, the retrieved documents do not match the query precisely

but are rather relevant (or irrelevant) to it (van Rijsbergen, 1979).

Different types of models representing documents in the collection can be used to
design an effective ranking function f(q, d), many of which rely on features such as
bag-of-words representation, term frequency, and document length. The ranking
function assigns each document a weight based on either its probability of being
relevant given a query (probabilistic models) or the similarity between the query
and the document (algebraic models) and ranks the documents accordingly. While
a comprehensive overview of IR algorithms is given in Grossman (2004), we focus

on the most effective methods relevant to our research.

The simplest yet powerful IR model is tf-idf, which has also given rise to many
more sophisticated heuristics. While ¢ f; ; represents the frequency of a query term
in a document, idf; p filters out the terms that are extremely frequent in the whole
collection and are barely informative. The tf-idf of a term is a product of the term
frequency and inverse document frequency, each of which has a number of possible
implementations. Thus, tf-idf increases with the number of occurrences of a query
term within a document and with the rarity of the term in the collection, as the

following instantiation of the tf-idf formula demonstrates:

tfidf(t,d,C) = (1 + log(tf,a)) x loglo(g—ff) (2.2)

where ¢ is a query term, d is a document in a collection C of size N, tf; 4 is the
number of occurrences of ¢t in d and df; is the number of documents that contain

t, or the document frequency of ¢.

The main limitation of Formula 2.2 is that it does not take document length
into consideration. This is addressed in optimizations of the formula, such as
BM25 (Robertson and Walker, 1994) and pivoted length normalization (Singhal
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et al., 1996). The trick behind these formulae is a tunable parameter b introduced
to control the amount of length normalization required for a particular retrieval

purpose, as demonstrated in the most common instantiation of BM25:

BM25(q,d) = B+ 1) Xt

teqmdtft,d—l—k: x (1 —b+bx %)

where ¢ is a query term, d is a document, ¢ f; 4 is the number of occurrences of ¢ in d,
|d| is document length, avdl is the average document length in the collection, idf; is

an instantiation of inverted document frequency, and k and b are free parameters.

Importantly, both algorithms allow for any document length unit (e.g., words,
tokens, characters): the denominator in Formula 2.3 includes a ratio of the current
document length to the average document length in the collection and is thus
unit-independent. BM25 also controls for the upper-bound of tf, thus, avoiding
dominance by one term in a document. In Section 5.3.3, we provide reasons for
our use of an instantiation of BM25 as the ranking formula for our IR system
FLAIR.

Evaluating IR systems usually requires a set of documents, a set of queries, and
a set of relevance judgments. Manning et al. (2008) give an overview of common
evaluation metrics, such as the Fi-measure, R-precision, and a ROC curve, most

of which are derived from measures of precision and recall.

2.2.4 Automatic Question Generation

A typical text-based question generation (QG) system consists of three compo-
nents: target selection (sentences and words), generation of questions and answers,
and generation of distractors, which is applicable for a multiple choice answer for-
mat. Most work on target selection follows a top-down perspective on the text:
First, a set of suitable sentences is selected based on different criteria (e.g., Pino
et al., 2008; Pilan et al., 2013). Then the target words or linguistic forms are
selected from within the set of suitable sentences (e.g., Becker et al., 2012). How-
ever, as our focus is on input enhancement for language learning, we pursue a
bottom-up approach instead: Given one or more target linguistic forms (e.g., the
passive voice or the present perfect tense), we automatically select all candidate

sentences in a text containing the target forms, apply basic constraints to filter
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out unsuitable sentences (such as those containing unresolvable pronouns), and

then generate questions for the remaining ones.

Once the target sentence has been selected, it can be used to generate questions
addressing particular linguistic forms contained in the sentence. The QG method-
ology goes back to Wolfe (1976), who used simple pattern matching to generate
questions from texts. As the researcher expected, advances in the field of NLP fur-
ther improved the accuracy of this method by encoding meta-linguistic information
in the patterns. Although similar to pattern matching, the method of using tem-
plates is approached slightly differently in the QG task. The templates are either
created manually (Liu et al., 2010) or learned from a large amount of data (Curto
et al., 2012). Most of the attempts at QG have also probably included some kind of
transformation — syntax-based transformation rules (Heilman, 2011), transforma-
tions based on semantic labeling (Mannem et al., 2010; Chali and Hasan, 2012), or
semantic transformations that make use of text representations (Yao and Zhang,
2010). To achieve a higher accuracy, researchers usually combine several methods,
such as transformation rules and statistical ranking (Heilman and Smith, 2009).
Finally, QG is not an exception to the wave of neural networks, with Du et al.
(2017) recently developing an approach for the automatic generation of reading
comprehension questions on that basis. All of the aforementioned QG systems
either assess vocabulary or reading comprehension, which contrasts with the focus

of our work on functionally supporting focus on form in language learning.

Distractor generation is a separate complex task that has received some attention
in the QG community. It supports the provision of answer options in a multiple-
choice setup by ensuring that the choice of distractors is closely tied to what is
intended to be assessed by the question. Traditionally, distractors are selected
among words that are semantically related to the correct answer (Mitkov et al.,
2006; Araki et al., 2016). Brown et al. (2005) select the distractors among the
most frequent words that have the same part of speech as the correct answer.
Pino and Eskenazi (2009) use wrong answers provided by the users of their system
to inform the distractor generation component. Given that our focus is not on
the multiple-choice answer format, distractor generation is not discussed further

in this thesis.

QG systems are commonly evaluated by humans, who rate the generated questions
on a set of predefined scales. These scales can represent a range of aspects, such

as grammaticality, semantic ambiguity, and relevance to the task. As annotating
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a large amount of data is a costly task, the evaluation of IR and QG systems as
well as other linguistic and CL tasks is sometimes outsourced to many non-expert
workers, which has proved to be comparable to expert annotation (Snow et al.,
2008). The next section introduces crowdsourcing as a method for collecting,

annotating, and evaluating linguistic data.

2.2.5 Crowdsourcing in CL

Viewing crowdsourcing as the process of outsourcing work to a large number of
people, Howe (2008) distinguishes between four primary strategies of crowdsourc-
ing: crowd wisdom, crowd creation, crowd funding, and crowd voting. Indeed,
crowdsourcing comes in different forms: several research teams taking part in
shared tasks, hundreds of people editing Wikipedia® entries, answering questions
on Quora’® or StackOverflow®, and sending money to support promising start-ups

on Kickstarter.”

Estellés-Arolas and Gonzélez-Ladron-De-Guevara (2012) provide an overview of
crowdsourcing tasks and develop a definition of crowdsourcing as an online activity
undertaken voluntarily by a heterogeneous group of contributors, who are rewarded
for their contributions either monetarily or by means of social recognition and the

development of their own skills.

Although crowdsourcing annotations have generally proven to be comparable to
expert ones (Snow et al., 2008), Hsueh et al. (2009) raises concerns about out-
sourcing linguistic tasks to non-experts as they are not specifically trained for
annotation and might not want to invest enough time and effort into producing
high-quality data. The results of their study on sentiment analysis of political
blogs suggest that crowd workers have lower inter-annotator agreement than ex-
perts. They show that the quality of labels can be improved by eliminating noisy
annotators and ambiguous examples and point out that even noisy data from

several crowd workers can still be successfully used to build statistical models.

Callison-Burch and Dredze (2010) provide an overview of language-related crowd-

sourcing tasks conducted as part of a shared task in which participants were given

www.wikipedia.org
WWW.quora.com
www.stackoverflow.com
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$100 of seed money to analyze linguistic data. As a result, they used crowdsourc-
ing to annotate textual and visual data, recognize textual entailment, and evaluate

information extraction algorithms and machine translation outputs.

Munro et al. (2010) propose using crowdsourcing to collect linguistic and psy-
cholinguistic data in tasks that go beyond the scope of annotation. They give an
overview of seven tasks conducted via crowdsourcing and compare them to their
lab counterparts. These tasks range from semantic judgments and cloze tasks
to the audio segmentation of words in artificially constructed languages. Munro
et al. (2010) report non-significant differences between crowd workers” and lab sub-
jects’ ratings and high correlations between the two experimental settings. They
also used the collected judgments to fit mixed-effect logistic regression models
for syntactic tasks. The most significant factor yielded by the model was in line
with the results of other experimental models. They conclude that the quality
of crowdsourcing linguistic tasks is comparable to that of controlled laboratory

experiments.

Following the work of Parent and Eskenazi (2010), who utilized crowdsourcing for
the task of word sense disambiguation, we rely on this method to annotate the
senses of grammatical tenses and report the results in Section 4.2. In line with
Heilman and Smith (2010), we also evaluate the quality of automatically generated

questions via crowdsourcing and present the findings of two studies in Section 6.6.

2.3 Intelligent Computer-Assisted Language Learn-

ing

Intelligent computer-assisted language learning (iCALL) focuses on leveraging
available NLP technology to create theoretically and pedagogically informed and
efficient FLTL applications that foster learners’ awareness of linguistic forms and
categories and provide individual feedback (Amaral and Meurers, 2011). Advances
in technology and the rise of Web 2.0 have not only proved to help enhance various
aspects of learning (Ehrmann, 2002) but also have caused major changes in the
way courses are developed and delivered. Technology no longer has to be used
in an “ad hoc and disconnected fashion” (Warschauer and Healey, 1998) but is

instead an integral part of the everyday learning process. Consequently, the role
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of the teacher has shifted from an instructor to a facilitator who must be aware of

a variety of appropriate material for improving students’ language skills.

Moreover, language learners may want or need to search for reading materials
themselves. In his book Education and Ecstasy, Leonard (1968) observes that
students prefer being in control of the learning process rather than remaining
mere recipients of information. Lepper (1985) also concluded that control gives
learners the opportunity to make choices and makes them feel more competent
and intrinsically interested in the activity. Rather than being a passive recipient

of information, a learner who uses technology becomes an active user.

One objective of iCALL is to allow the learner to interact with the system as in-
dependently as possible while acquiring linguistic knowledge and developing skills.
However, iCALL systems can also target language educators and assist them in
selecting appropriate teaching material for class. When it comes to finding texts at
an appropriate level of language proficiency, readability measures come into play.
These are designed to predict the grade level that a text corresponds to (e.g., el-
ementary school, B2 level). The next section provides an overview of traditional

and state-of-the-art approaches to automatic readability assessment.

2.3.1 Text Readability

According to the input hypothesis discussed in Section 2.1, reading at the appro-
priate level is crucial for language learning in general and developing grammatical
accuracy in particular. Standard text readability measures rely on the predictive
power of the morphological and syntactic structure of a language, the two most tra-
ditional features for computing readability being word length and sentence length
(Kincaid et al., 1975).

Average syllable count has also been used as a measure of text readability. How-
ever, in the corpus used by Si and Callan (2001), web pages written for Grades 3
to 5 had more polysyllable words than those written for Grades 6 to 7. This indi-
cates that the number of polysyllables does not necessarily increase with difficulty.
Another counterargument is made by Bennohr (2005), who remarks that longer
words might look familiar to adult L2 learners due to their background knowledge
and their mother tongue, differently from young L1 learners. By contrast, adult L2

learners may find short words with no similarity to other languages much harder
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to remember. Moreover, sentence length has been found to be a more reliable

feature than syllable count (Uitdenbogerd, 2003).

Doing research at the intersection of language, computation and education, Vajjala
and Meurers (2012) demonstrate that insights and findings from SLA research can
improve the performance of readability scoring systems. Nevertheless, finding
material that is appropriate in terms of both form and content is still seen as
a challenge. The problem itself is two-sided as inappropriate content can either
be uninteresting or not match the reader’s level of language competence. With
respect to text interestingness, most SLA approaches agree on the importance of
discovering and making use of the learner’s interests to increase their motivation.
Thus, it is critical to find reading material that is both interesting for the learner
and at their level of language competence. While readability-based systems take
care of the latter, the former can be addressed simply by letting the reader search

text collections themselves.

In another paper, Vajjala and Meurers (2013) analyze the top 100 documents for
50 queries retrieved from a standard web search engine to see if form-appropriate
results can be found among the content-appropriate ones, which proved to be
the case. It should also be noted that some readability measures do not always
apply to web retrieval due to the ubiquity of malformed web pages. Sentence
length, parse tree height, and other syntactic sentential features might fail on web
pages containing little text or unstructured captions and links. Therefore, special
attention should be paid to reducing the amount of boilerplate text in the corpora

to a minimum.

Algorithms for calculating a text readability score differ in the number and the
level of features used in the formulae. The processing cost of each algorithm
is directly correlated with the complexity of its features. While the automated
readability index (ARI) proposed by Smith and Senter (1967) only takes word
and sentence length into consideration and can be calculated easily and fast, the
sophisticated readability formula discussed in Vajjala and Meurers (2014) requires
deeper parsing as it makes use of about 151 text complexity features in a supervised

machine learning approach. ARI is calculated as follows:

Chars ) L 0.5 x (20D ) o1 43 (2.4)

ARI(d) =471 % (
words sentences
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where chars are the number of letters and digits; words are the number of de-
pendencies as obtained from the parser, without punctuation;® and sents is the
number of sentences as obtained from the sentence splitter. The final score is then
rounded up to the next whole number. It falls within a range from 1 to 12 and
roughly aligns with the corresponding US school grade level. Because of its low
computational cost, ARI was our IR algorithm of choice for the current version of
the FLAIR system presented in Chapter 3.

2.3.2 IR systems for FLTL

We understand IR for FLTL as a task involving searching a document collection
to retrieve texts that (a) satisfy the learner’s information need, (b) are linguisti-
cally appropriate given the learner’s language proficiency level and (c) assist the
teacher in achieving their current pedagogical goal. Much of the recent research
has focused on satisfying the criterion of text appropriateness (Collins-Thompson
et al., 2011; Vajjala and Meurers, 2014). Consequently, the algorithms used in
state-of-the-art learner-oriented IR systems are mainly based on lexical properties
and readability features, although some mention the integration of grammar mod-
ules as a goal for the future (Brown and Eskenazi, 2004; Ott and Meurers, 2011).
Table 2.1 provides a comparison of three learner-oriented IR systems: TextFinder
by Benndhr (2005), REAP by Brown and Eskenazi (2004), and LAWSE by Ott
and Meurers (2011). This comparative overview should set up the correct context
for critically approaching the problem of IR for FLTL as well as our approach,

which we compare to the aforementioned ones in Appendix A.

Educator-oriented IR systems, on the other hand, focus more on pedagogical intent
and usually delegate full control over the reading material to the educator, which is
justified for language test designers but might not be appropriate for teachers. For
example, SourceFinder (Sheehan et al., 2007) is an authoring tool targeting test
developers that supports the retrieval of suitable source material for developing
reading comprehension passages. Its text acceptability model is built on linguistic
constructs and other textual cues that are detected in order to estimate complexity
features such as degrees of narrativity and argumentation. Among the IR systems
mentioned in this section, LAWSE (Ott and Meurers, 2011) appears to be the

closest in spirit to our work since it retrieves authentic documents from the Web

8 Although the original ARI does contain punctuation.
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rather than from a preprocessed text database. Its authors emphasize the need
for a more language-informed retrieval to facilitate the search for texts containing

particular grammatical constructions, which is one of the objectives of this thesis.

2.3.3 Systems Generating Questions and Activities for FLTL

This section introduces research on automatic question generation (QG) for FLTL.
The most prominent approach to QG for FLTL, which is also the closest to our
work, is taken by Heilman (2011). He utilizes the syntactic phrase structure of in-
put sentences to transform them into factual wh- questions targeting noun phrases,
prepositional phrases, and subordinate clauses. As this results in a large number
of generated questions, he implements a ranking machine learning algorithm to
prioritize the most well-formed questions. As future work, he emphasizes the need
for a larger system providing both the IR and QG functionality as well as a grading

interface for language teachers.



Textfinder (Bennohr, 2005)

REAP
(Brown and Eskenazi, 2004)

LAWSE
(Ott and Meurers, 2011)

Database

Offline database

Offline database

The Web

Source

Texts from online newspapers

Web materials

Web materials

Third-party tools

Lucene

AltaVista

Lucene

Main focus

Text complexity and user
modeling

Lexical language modeling

Text complexity, lexical
language modeling

Target users

English L2 adult learners

English learners, teachers,
researchers (L1 and L2)

English L2 learners

Readability

Yes: word and sentence length +
conjunctions (regression)

Yes: word histograms (machine
learning)

Yes: readability measures +
lexical frequency profiles

Learner model

Yes: writing sample

Yes: pre-defined ability levels

No

Grammar difficulty

Partially: conjunctions

No

No

Vocabulary difficulty

No

Yes: word lists

Yes: lexical frequency profiles

Reading interface

No

Yes: dictionary definitions

No

Evaluation

Teacher ranking, learner
questionnaire

Empirical study, learner
questionnaire

Against a corpus of graded texts

Stated future work

Readability formula
optimization

Grammar difficulty, text
cohesiveness

Syntactic features, grammatical
constructions for visual input
enhancement

TABLE 2.1: A comparison table of learner-oriented IR systems
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While the REAP system (Brown and Eskenazi, 2004) was reviewed as an IR tool
in the previous section, it can also generate certain types of questions (Brown
et al., 2005). In particular, it generates cloze and definition exercises for vocab-
ulary training. The main focus of the system is on the selection of appropriate
target lexical items and distractors, such as synonyms, antonyms, hypernyms, and
hyponyms, which are obtained from WordNet (Miller, 1995). The system features
a learner model that represents learners’ vocabulary knowledge and gets updated

every time a learner completes an exercise.

Mostow et al. (2004) generate similar types of exercises for assessing reading com-
prehension and vocabulary knowledge. They conduct rigorous empirical research
on their system with native English speakers and report that it could predict the
participants’ word identification, word comprehension, and passage comprehen-
sion scores on the Woodcock Reading Mastery Test (Woodcock et al., 1987) with
a high reliability.

Language Muse®™ by Burstein et al. (2012) is another system that generates ex-
ercises of different forms targeting vocabulary, syntactic structure, and discourse
relations. It is designed for content-area teachers and supports them in develop-
ing relevant language-based instructional scaffolding for their students. Language
Muse™ makes use of a large number of resources and manually-created lists to
create a wide range of activities for FLTL. The reported resources include morpho-
logical and discourse analyzers, a distributional thesaurus, and paraphrase gener-
ation tools. The researchers conducted a teacher survey (Madnani et al., 2016)
and a user study with K-12 English teachers (Burstein et al., 2013) to evaluate
the effectiveness of the tool. The results show that teachers’ linguistic awareness

increases in the post-test measure.

It is important to note that while QG systems utilize state-of-the-art NLP re-
sources to generate pedagogically and theoretically-motivated activities for FLTL,
they do not necessarily analyze learners’ answers to the automatically generated
questions, with the exception of multiple choice questions, where the correct an-
swer is presented along with several distractors. On the other hand, when a learner
provides an answer that does not match the words in the text verbatim, it may
be challenging to assess its correctness. Although some work has been done in
the field of matching learner answers to target ones (Ziai et al., 2012), there is
to the best of our knowledge no system that generates exercises and analyzes the

answers at the same time. The FeedBook system (Rudzewitz et al., 2017) is taking
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a step in this direction, as it is able to automatically provide scaffolding linguistic
feedback to learners on the basis of their answers. However, we do not compare
this system to the other systems in this section because it does not automatically

generate activities but rather digitizes those found in printed English workbooks.

To conclude, systems for generating questions for FLTL still require supervision
and are currently mostly being developed for language teachers as the point of
connection between materials and learners. Further development of NLP and
statistical algorithms as well as the integration of a scaffolding feedback component
into QG systems are needed to fully implement an end-to-end tutoring system for

language learners.

2.3.4 Intelligent Tutoring Systems for FLTL

Intelligent tutoring systems (ITS) focus on providing individualized instruction
to learners. They do not necessarily generate activities but adjust their presen-
tation based on learners’ psychological states, be it general knowledge, current

comprehension of the material, or motivation.

A meta-analysis of the effects of ITS on learning outcomes by Ma et al. (2014)
revealed that I'TS are superior to teacher-led, large-group, and non-ITS computer-
based instruction as well as working with textbooks or workbooks. However,
no significant differences were found between ITS and learning from a human
tutor or working in small groups. Tsiriga and Virvou (2004) examined language
learners’ attitudes to the individualized instruction and compared their learning
outcomes when using an intelligent and a non-intelligent system. While it took
the participants longer to familiarize themselves with the intelligent system, they
appreciated the individualized support. Objectively, it also led them to take more
exploratory, rather than linear, learning paths and resulted in higher learning

outcomes.

While ITS and iCALL research has mostly focused on the interaction between
the learner and the system, the development of teacher interfaces, such as I'TS
authoring tools (Ainsworth and Grimshaw, 2004) or teacher professional develop-
ment tools (Burstein et al., 2012), allows researchers to look into the ways teachers
create learning environments and to evaluate their effectiveness. We contribute to
this line of research by developing the iCALL system FLAIR introduced in the
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next chapter and conducting an online study with English teachers presented in
Section 5.4. The results provide insights into English teachers’ preferences when

selecting reading material for their students.






Chapter 3

The FLAIR Approach

Parts of the work discussed in this chapter appeared in the following peer-reviewed publications

and theses:

1. Chinkina, M., & Meurers, D. (2017). Question Generation for Language Learning: From
ensuring texts are read to supporting learning. In Proceedings of the 12th Workshop on
Innovative Use of NLP for Building Educational Applications. Copenhagen, Denmark,
pages 334-344.

2. Chinkina, M., Kannan, M., & Meurers, D. (2016). Online information retrieval for lan-
guage learning. ACL 2016: System demonstrations. Berlin, Germany, pages 7-12.

3. Chinkina, M., & Meurers, D. (2016). Linguistically Aware Information Retrieval: Provid-
ing Input Enrichment for Second Language Learners. In Proceedings of the 11th Workshop
on Innovative Use of NLP for Building Educational Applications. San Diego, CA, pages
188-198.

4. Chinkina, M. (2015). Form-focused Language-aware Information Retrieval (Master’s the-
sis, Eberhard Karls Universitdt Tiibingen).

While second language acquisition (SLA) research advances our understanding
of effective methodology and strategies for language teaching and learning, the
field of computational linguistics (CL) can support this endeavor by automating
some SLA methods, such as input enrichment, input enhancement, and processing
instruction. This motivated us to develop our own approach, which was practically
implemented in the FLAIR system (www.purl.org/icall/flair) that we present,

discuss, and evaluate in this thesis.
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3.1 Motivation and Need for FLAIR

Section 2.1 introduced input enrichment, input enhancement, and processing in-
struction as for SLA. All of these methods rely on the existence and availability of
comprehensible input for language learners. Apart from the curated texts found
in textbooks, language teachers often turn to the Web for additional authentic
materials. While it is the largest freely available text database in the world, the
Web has the disadvantage of being unstructured and thus difficult to search. In
fact, the larger the database, the more time-consuming a search for appropriate
reading material gets — both for the user and for the machine. Consequently, the
development of efficient web search tools has been a major concern in the field of
computer science in the last couple of decades. Sophisticated ranking algorithms
in the leading search engines, such as Google! and Yahoo!?, include an estimated
up to 200 features® that influence the final ranking of the retrieved results, all of
which work to ensure that the user’s information need is satisfied as fast and with

as few clicks as possible.

At the core of any web search engine lies vocabulary retrieval: One obtains an
appropriate text containing target lexical items by including them in a search
query. Grammar retrieval, on the other hand, requires an extension of web search
as the user is unlikely to find appropriate texts by simply searching for texts
containing reqular and irreqular verbs. In fact, the top search results may contain
very few to no occurrences of the linguistic form of interest. The heat map at
the top of Figure 3.1 demonstrates that although regular and irregular verbs are
highly frequent, they are not evenly represented across the top 60 search results
retrieved by Microsoft Bing. The heat map at the bottom of Figure 3.1 shows
the results following automatic input enrichment: a reordered list of the search
results retrieved from Bing with those containing the best representation of both
regular and irregular verbs closer to the top (i.e., to the left in the figure). This
approach allows for the retrieval of texts that address content of interest to the
learners and at the same time are rich in terms of the linguistic forms to be
taught. This is the basis of our information retrieval system FLAIR (Chinkina and

Meurers, 2016), which supports the retrieval of documents containing 87 linguistic

1
2
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Before automatic input enrichment (original web search results)

frequency

regular verbs—

0.04

irregular verbs-

After automatic input enrichment (FLAIR)

frequency

regular verbs-| 0.04

irregular verbs|

1 1 1 1 I I
search result

F1GURE 3.1: Comparison of the top results retrieved by a standard web search

engine before and after automatic input enrichment. The 60 search results are

plotted along the X axis, and the two target linguistic forms, regular and irreg-
ular verbs, are plotted on the Y axis.

forms specified in the official English language curriculum for schools in Baden-
Wiirttemberg, Germany, such as different verb forms, grammatical tenses, and
conditionals. Concretely, it re-ranks texts in a document collection based on the

frequency of the selected linguistic forms.

3.2 FLAIR Interface and Functionality

Figure 3.2 demonstrates the general layout of FLAIR. It consists of three elements:
a settings panel on the left, a results field in the middle, and a text panel on the
right. A search field opens when the user clicks on a magnifying glass icon in the
bottom-right corner. The search language and number of results to be retrieved
can be specified right away. In another scenario, the user can click on the upload
icon next to the search icon and is prompted to upload their own collection of
texts in English or German. Both scenarios result in a specified number of texts

displayed in the original order in the results field.

In the settings panel on the left, the user can select linguistic forms and adjust
their weights using a slider to retrieve the documents containing the most optimal

linguistic representations. FLAIR currently can detect 87 linguistic forms, which
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are grouped into sentence-level and word-level forms. The first group includes
different types of questions, clauses, and sentences, while the second group lists
the remaining linguistic forms by part of speech. This functionality is central to
FLAIR and requires the use of a number of natural language processing (NLP) re-
sources and algorithms. We discuss the detection of linguistic forms and associated

challenges in Section 4.1.
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FIGURE 3.2: FLAIR interface.

In addition, the panel includes settings for preferred text length and readability
level. The latter provides the information about the number of texts corresponding
to each of the three CEFR levels: A1-A2; B1-B2, and C1-C2. The configuration
does not change for consecutive searches within a session and can be shared with
others via a unique link by clicking on Share Search Setup. In the most common
scenario, the teacher would adjust the settings and share them with their students,

who will in turn use the system as a search engine with pre-configured settings.

Based on the feedback from English teachers, we also implemented a language-use
component. This contains an academic vocabulary search that uses the Academic
Word List (Coxhead, 2000) to estimate the register of documents on-the-fly and
re-rank them accordingly. In addition, the user has the option of searching for and

highlighting the occurrences of words from manually created vocabulary lists.

When the user clicks on a search result, the text of the corresponding web page is
shown in the text panel on the right with the occurrences of the selected construc-

tions highlighted. Information about the text readability level, the approximate
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number of sentences and words in the text, and the frequencies of all linguistic
forms found in it are also presented. Finally, there are two FLAIR components
that we describe further in this section: the visualization component ( Visualize in
the settings panel; Section 3.2.1) and the question-generation component (Gener-

ate Questions in the text panel; Section 3.3).

3.2.1 Interactive visualization

On the basis of the feedback from language test designers at the development stage,
we enhanced the system by adding a visual component that allows for a stricter
selection of documents and delegates more control over different parameters to the
user. This element makes it possible to inspect and further select documents on

the basis of the multi-faceted nature of the retrieved documents.

The interface illustrated in Figure 3.3 is based on the visualization technique of
parallel coordinates used for visualizing multivariate data. Vertical axes represent
parameters, such as any linguistic forms selected by the user, the number of sen-
tences, the number of words, and a global readability score. Each polyline stands
for one document and records its linguistic characteristics by going through dif-
ferent points on the parameter axes. The interface supports mouse interaction,
allowing the user to restrict the range of values permitted for particular param-
eters, with other documents becoming grayed out in the interface and removed
from the search results. In the figure, only documents with a non-zero frequency
for both past simple and present perfect are selected. The numbers on the vertical
axes for the grammatical constructions correspond to their relative frequencies in
the documents. Once the Apply button is clicked, the search result list is restricted

to those documents satisfying the constraints specified in the visualization module.

This visualization makes it possible to get an overview of the distribution of lin-
guistic characteristics in the set of documents to be re-ranked. The interface also
supports interaction with the visualization, providing fine-grained control over a
user-selected set of linguistic characteristics. Users can select a range of values for

one or more constructions to precisely identify and retrieve documents.
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Interactive visualization of results
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FicGure 3.3: FLAIR visualization component. Documents with a non-zero
frequency for both past simple and present perfect are selected.

3.3 Question Generation Component

As mentioned in Section 2.2.4, most of the work on QG has dealt with vocabulary
(Brown et al., 2005) and comprehension questions (Mostow et al., 2004) rather
than grammar. Among the approaches to automatically generate exercises that
facilitate grammar acquisition and practice, cloze sentences are the most ubiqui-
tous type. These are generated by substituting the target linguistic form with a
gap: the challenge usually lies in the selection of appropriate sentences and gaps

(Becker et al., 2012; Niraula and Rus, 2015):

(5) The advisory group had a list of all the different territorial ar-

rangements in the EU. (draw up)

Meta-linguistic questions, which are designed to test learners’ explicit knowledge
of the language system, have not received much attention in the CL community.
This is because they require the use of a limited number of templates and only
a minimal amount of NLP. For example, in order to generate the question From
which verb is the noun ‘generation’ derived?, one would only need a POS tagger
and the WordNet database (Miller, 1995). Teachers’ frequent use of meta-linguistic
questions is also widely criticized by educators and researchers alike, mainly be-

cause they do not serve a communicative goal. In our work, we combine cloze
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sentences with open-ended wh- questions to leverage their advantages and cancel

out the drawbacks.

The questions that we generate are text-based, and the target linguistic forms
come from the source text out of which they are detected. Therefore, the goal of
asking questions in our case is to foster learners’ processing of the target linguistic
forms, in line with VanPatten’s (2002) work on structured input activities. The
two main types of questions that we generate are form-exposure and grammar-
concept questions. Form-exposure questions, such as (6a), have the form of a
wh- question followed by a cloze sentence, or a gap sentence, and are similar to
local comprehension questions. They are generated by transforming the original
declarative sentence into an interrogative one. The current version of our system

can generate form-exposure questions for subjects, objects, and predicates.

(6) Indeed, Semel and the media executives he brought in by all accounts

turned a scrappy young internet startup into a highly profitable company.

a. Form-exposure question: Who turned a scrappy young internet startup

into a highly profitable company? Semel and the media executives he

Grammar-concept questions, such as (7a), draw learners’ attention to the semantics
of the target linguistic form and encourage them to rely on it to get to the meaning
of the sentence. Grammar-concept questions can currently target grammatical
tenses (present perfect, past simple, etc.) and are template-based. We discuss the

generation of form-exposure and grammar-concept questions further in Chapter 6.

(7) Chinese retailers have cut staff.

a. Grammar-concept question: Are Chinese retailers still cutting staff?

The current implementation of the QG component in FLAIR allows the user to
generate questions about the grammatical tenses previously specified in the set-

tings. The overall procedure is as follows:

1. Type in a query or upload a collection of texts.

2. Obtain a list of search results.
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3. Specify one or more linguistic forms including grammatical tenses.
4. Obtain a re-ranked list of search results.

5. Select a text by clicking on it.

6. In the right-hand panel, click on Generate Questions.

7. Obtain the questions targeting the selected grammatical tenses.

We have developed a prototype of FLAIR incorporating the QG component and
provide a simple system-independent interface for trying out the QG tool (www.
purl.org/qg). The user can type in a text and generate form-exposure and
grammar-concept questions for any grammatical tense automatically detected in

the text. Figure 3.4 demonstrates the functionality of the demo interface.

QUESTION GENERATION START

Which tenses?

@ Present Simple
@ Present Progressive
@ Present Perfect

@ Present Perfect Progressive

@ Past Simple
FORM-EXPOSURE QUESTIONS GRAMMAR-CONCEPT QUESTIONS @ Past Progressive
@ Past Perfect
Wh- question followed by a sentence with a gap Question about the grammatical meaning of a verb

Past Perfect Progressive

Future Simple
Future Progressive
Future Perfect

@ Future Perfect Progressive

Select All

Select None

FI1GURE 3.4: A standalone application demonstrating the functionality of our
question generation tool.


www.purl.org/qg
www.purl.org/qg
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3.4 Technical Implementation and Profiling

FLAIR is written in Java and implemented as a Java EE web application. The
core architecture is based on a client-server implementation that uses WebSocket
(Fette and Melnikov, 2011) and Ajax (Garrett et al., 2005) technologies for full-
duplex, responsive communication. All server operations are performed in parallel,
and each operation is divided into subtasks that are executed asynchronously.
Operations initiated by the client are dispatched as asynchronous messages to the
server. The client then waits for a JSON® response from the server. By using
WebSockets to implement the server endpoint, we were able to reduce most of the

overhead associated with HTTP responses.
The sequence of operations performed within the client boundary is described as
follows:

1. Send search query to server and initiate web search

2. Wait for completion signal from server

3. Initiate text parsing

4. Wait for completion signal from server

5. Request parsed data from server

6. Cache parsed data

7. Re-rank results according to parameters
The sequence of operations performed within the server boundary is described as
follows:

1. Receive search query from client

2. Begin web search operation:

(a) Fetch top N valid search results
(b) For each search result, fetch page text
)

(c) Signal completion

Shttp://json.org


http://json.org
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3. Wait for request from client
4. Begin text parsing operation:

(a) For each valid search result, parse text and collate data

(b) Signal completion
5. Wait for request from client

6. Send parsed data to client

Parallelization of the tool allowed us to reduce the overall processing time. How-
ever, due to the highly parallel nature of the system, its performance is largely
dependent on the hardware on which it is deployed. Amongst all the different
operations performed by the pipeline, web crawling and text annotation prove to
be the most time-consuming and resource-intensive tasks. We conducted several
searches and calculated the relative time each operation took. Fetching the results
and extracting the documents (from entering the query till displaying a list of re-
sults) took around 50-65% of the total time and parsing them took around 20-30%
of the total time. The FLAIR algorithm for detecting linguistic forms builds upon
the results of the Stanford shift-reduce constituency parser while adding negligible
overhead. The technical evaluation of the FLAIR algorithm for detecting linguistic

forms is presented in Section 4.1.1.

As for the effectiveness of the tool in a real-life setting, full user studies with
language teachers and learners are necessary for a proper evaluation of the dis-
tinctive components of FLAIR. We took first steps in this direction by conducting
an online study with English teachers on automatic input enrichment, reported
in Section 5.4, and two crowdsourcing studies on automatic question generation,

reported in Sections 6.7 and 6.8.

3.5 Use cases for FLAIR

First and foremost, FLAIR expands the scope of empirical studies that can test
the effects of SLA phenomena such as input enrichment, input enhancement, and
processing instruction. In Section 5.4, we present one such study conducted with

English teachers. One of its objectives was to see whether teachers saw a need for
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automatic input enrichment systems and preferred the results provided by them
over those retrieved from a standard web search engine, which proved to be the

case.

In terms of envisaged use cases, in the most straightforward case, FLAIR helps
teachers identify appropriate reading materials for a class or individual students in
terms of form, content, and reading level. The system can also feed into platforms
that provide input enhancement, such as WERTi by Meurers et al. (2010), or
generate exercises from text, such as Language Muse®™ by Burstein et al. (2012),
ensuring that the form targeted in enhancement or exercise generation is as richly
represented as possible given the text base used. Finally, the QG component of
FLAIR assists teachers in automatically creating questions of different types to

facilitate processing the text as a whole and the linguistic forms in it.

In scenarios placing more value on learner autonomy or data-driven learning,
FLAIR makes it possible to divide up the specification of the form and content
criteria between the teacher and the learner: The teacher uses their pedagogical
background in foreign language teaching and learning and their knowledge of the
learner’s abilities to configure FLAIR in a way that prioritizes the texts that best
satisfy these form specifications. Using the teacher-configured FLAIR, the learner
then takes control and enters search queries in line with their personal interests or
information needs. The outcome is a collection of documents retrieved on the basis
of the learner’s search query, with the results ranked according to the pedagogical
language learning needs defined by the teacher. One potential scenario includes
the teacher obtaining information about the texts being read and using the system
to automatically generate questions about these specific texts. The teacher can
then select questions that are in line with their pedagogical goals and present them
to the learner. In another potential scenario requiring a learner model and 100%
accuracy of the QG tool, the process of selecting the target linguistic forms, re-
trieving the appropriate texts, and generating questions is fully automated, and is
supervised but not fully controlled by the teacher. As our ultimate goal is expand-
ing FLAIR into an intelligent tutoring system for students supplemented with an
authoring tool for teachers, we present our high-level ideas about the functionality

of such a system in the following section.
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3.6 Towards the Development of an Intelligent Tu-
toring System for FLTL

As intelligent tutoring systems (ITS) provide individualized instruction to learners
(see Section 2.3.4 for background information about ITS), a learner model is the
key component implemented in most state-of-the-art I'TS. Ideally, the model should
store and process information about the learner’s current psychological state in
addition to their linguistic knowledge and reading comprehension. It gets updated
after each interaction the learner has with FLAIR, that is, after each text read
and assignment completed. To improve the efficiency and accuracy of the learner
model, learners are also asked for explicit feedback about the texts, exercises, and
difficult vocabulary and grammatical constructions they encounter. The flow of

FLAIR as an ITS can be envisaged as follows:

1. The teacher provides configured settings either individually or to all students.
2. A student searches for a topic of interest.
3. The system re-ranks the texts based on:

e the teacher’s configuration and

e the student’s model.

If the student has difficulties with a certain linguistic form, this is automat-
ically selected by the system. If the student is tired, shorter texts will be

automatically prioritized.

4. The student reads the text (with or without input enhancement of the target

linguistic forms).

5. The teacher gets information about the text that each student has read and
uses the system to automatically generate (and potentially manually select)

questions and exercises.

6. The learner gets the exercises and completes them with the support of scaf-
folding feedback.

7. The teacher gets the report about the texts read and exercises completed by

each student.
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8. The system updates each student’s model, with the results grouped into
several classes: general reading comprehension, vocabulary skills, grammar
knowledge, and potentially other more specific classes for every grammatical

construction.

Before FLAIR can be further developed into an ITS, its performance, usability,
and general effectiveness need to be evaluated. The next three chapters address
this issue by presenting separate components of FLAIR and evaluating them both
technically and empirically. Chapter 4 deals with developing NLP technology
relevant for FLTL, such as the detection of linguistic forms and their different uses

in a variety of contexts.






Chapter 4

Leveraging NLP Technology

Parts of the work discussed in this chapter appeared in the following peer-reviewed publications

and theses:

1. Chinkina, M., & Meurers, D. (2016). Linguistically Aware Information Retrieval: Provid-
ing Input Enrichment for Second Language Learners. In Proceedings of the 11th Workshop
on Innovative Use of NLP for Building Educational Applications. San Diego, CA.

2. Chinkina, M. (2015). Form-focused Language-aware Information Retrieval (Master’s the-
sis, Eberhard Karls Universitdt T{ibingen).

The linguistic constructions relevant for language teachers and learners are some-
what different from traditional computational linguistic (CL) forms: while com-
putational linguists prefer to deal with noun and prepositional phrases, these are
not as richly represented in English textbooks. At the same time, linguistic forms
such as conditionals and grammatical tenses are of interest for language teachers
because their instantiation differs across languages, causing difficulties for learners.
In this chapter, we discuss the methods used to approximate and automatically
detect the linguistic forms relevant for foreign language teaching and learning
(FLTL) and distinguish their different contextual interpretations. Given an input
sentence, we run it through the Stanford CoreNLP pipeline (Manning et al., 2014)
and obtain the part of speech (POS) and the lemma of every token in the sentence,
a syntax tree with constituency information, a semantic graph with dependency
information, resolved coreferences, annotated named entities, and the sentiment of

the sentence. This information is then used in rule-based, machine learning, and

49
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hybrid algorithms. The first part of this chapter discusses the rule-based detection
of a list of 87 linguistic forms specified in the official curriculum for the English
language in the state of Baden-Wiirttemberg, Germany. The second part of the
chapter focuses on one of the most challenging aspects of the English grammar for
language learners, grammatical tenses, and explores the detection of their different

meanings using machine learning and hybrid approaches.

4.1 Detection of Linguistic Forms

NLP makes use of different approaches, from string matching to sophisticated
grammar formalisms and machine learning. While string matching works fine for
some structures (e.g., articles, prepositions), the detection of other constructions
requires deeper syntactic analysis, going well beyond the word level. In the case
of pronouns, for example, differentiating between cases and forms, i.e., retrieving
subjective, objective, reflexive as well as possessive pronouns, requires that a sim-
ple look-up be supplemented with dependency parsing in order to distinguish the

subjective from the objective you as well as the objective from the possessive her.

When dealing with the construction going to, one needs to be able to distinguish
it from the identical form of the verb to go in the progressive aspect. Thus, it
is necessary to identify the part of speech of the word following this construction
in addition to a regular expression matching the going to pattern. The colloquial
gonna is easier to detect in this case and does not require any additional part-of-
speech tagging. It is worth pointing out, though, that due to the frequent usage
of such colloquial structures in web texts (e.g., gonna do, wanna go), one needs
to decide whether the algorithm should check for the POS tag 7O (and annotate
na go as a to-infinitive) or for the word to (and not license these constructions at
all) preceding an infinitive. This choice mainly depends on the application, and,
keeping our end user (the language learner) in mind, we decided to treat such
colloquial uses as to-infinitives in order to expose the learners to real-life language

rather than let them gloss over unfamiliar structures.

The algorithm for detecting the used to construction referring to a habitual action
in the past takes this one step further. After making sure that the following word
is a to-infinitive, and thus excluding the option of licensing the constructions to be

used to doing and to get used to doing, one is still left with an ambiguous structure
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that can be either interpreted as the target construction, as in (8a), or as a passive
structure, as in (8b). Such ambiguity can then be solved by checking the POS tag

of the verb used or the presence of an auxiliary to be preceding used.

(8) a. Eyal used to come here every day.
b. It is used to build rockets.

The identification of conditional sentences poses another challenge. A conditional
sentence contains two clauses, the conditional clause and the consequent clause,
which are dependent on each other. A large majority of conditional clauses are
introduced by the subordinating conjunction if or unless. School grammar books

(e.g., Murphy, 2012) divide conditionals into:

Zero Conditional (as in “If you heat ice, it melts.”)

First Conditional (as in “Unless it rains, Karo will go jogging.”)

Second Conditional (as in “If Cansu had more time, she would write one

more paper.”)

Third Conditional (as in “If Anne had known about it, she would have told
Molly.”)

Narayanan et al. (2009) proposed a POS-based approach to identifying conditional
types for the task of sentiment analysis. It mapped sequences of POS tags to tenses
(VBD + VBN = Past Perfect) as well as conditional types (If + Past perfect, MD +
Present Perfect = Third Conditional). However, two different types of conditionals
can be mixed in the same sentence, producing the fifth type not covered by this
taxonomy, Mixed Conditional. It is ubiquitously used in everyday speech and can
be easily found in web texts, especially in interviews or transcripts. Consider the

following real example sentence taken from the Web:

(9) I had a Yorkshire Terrier, and if I was a rat, it definitely would have

eaten me.

Puente and Olivas (2008) proposed a more granular classification of conditional

sentences and an algorithm for detecting them but pointed out that authentic
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texts containing conditionals pose a challenge since some retrieved sentences do
not conform to their taxonomy. This was exactly our concern when constructing
the FLAIR parsing module. For this reason, we use a constraint grammar to
differentiate between real (Type 0 and 1) and unreal (Type 2 and 3) conditionals.
In a class setting, it can be beneficial for learners to be exposed to the full variety

of real-life conditional usages rather than stilted textbook examples.

Conditionals make use of tense-like grammatical forms of verbs to describe hypo-
thetical situations or implications. However, these forms do not express the time
reference like tenses in indicative sentences do: uf they were more patient refers
to the present, not the past, and unless you eat your lunch makes an assumption
about the future. As conditionals are studied after most of the tenses, they are
likely to be misinterpreted by the learner if accidentally found in a text. That
is, we argue that if learners with no knowledge of conditionals search for the past
simple tense, they should not obtain a text containing a conditional clause, such
as if they were more patient. Therefore, the detection of tenses is conducted af-
ter the detection of conditionals in FLAIR, and the learner is given an option
to deprioritize a certain linguistic form (conditionals, in this case) to ensure that
the retrieved texts do not contain it. A complete list of the implemented gram-
matical constructions with the corresponding detection methods can be found in

Appendix B.

4.1.1 Evaluation and Error Analysis

Linguistic target Precision Recall F,

Yes/no questions 1.00 1.00 1.00
Irregular verbs 1.00 0.96 0.98
used to 0.83 1.00 0.91
Phrasal verbs 1.00 0.61 0.76
Tenses (Present Simple, ...) 0.95 0.84 0.88
Conditionals (real, unreal)  0.65 0.83 0.73
Mean (81 targets) 0.94 0.90 0.91
Median (81 targets) 1.00 0.97 0.95

TABLE 4.1: Performance of the FLAIR detection algorithm.

Before evaluating the identification of the target linguistic forms, we inspected the
performance of the Stanford shift-reduce parser for the constructions our patterns

depend on. Among the biggest challenges were gerunds, which were mistakenly
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annotated as nouns (NN). Phrasal verbs, such as settle in, also appeared to be
problematic for the parser and were sometimes not presented as a single entity in

the list of dependencies.

To evaluate the performance of linguistic form detection on the basis of the parsed
output, we used a corpus of news articles as a common type of data analyzed
by FLAIR. We submitted three search queries and saved the top three results for
each, obtaining nine news articles with an average length of 28 sentences. Table 4.1
shows the precision, recall, and F-measure for selected linguistic constructions
identified by FLAIR and the medians and means across the 81 constructions, the

details of which are included in Appendix B.

As the numbers show, some constructions are easily detectable (yes/no questions)
while others are less reliably identified by the parser (phrasal verbs). There are dif-
ferent reasons for lower performance: the ambiguity of the construction (real con-
ditionals) and problems of the Stanford Parser (-ing verb forms) discussed above
as well as erroneous output from the text extractor module and some limitations
to the FLAIR patterns used for identification (unreal conditionals). Conditionals
were identified with an average F; score of 0.73, partially due to the difficulty
of their disambiguation, as discussed in Section 4.1.3, and partially because of a
particular choice we made: In order to avoid exposing learners to an unknown
grammatical construction, we disambiguated all unclear cases of conditionals as
the one appearing later in the curriculum, wunreal conditionals (Grade 8). This
way, any potential instances of this construction in texts at a lower level can be

avoided (e.g., in Grade 6, when real conditionals are introduced).

4.1.2 Frequency Distribution of Linguistic Forms

The algorithm for detecting grammatical constructions allowed us to analyze the
distribution of the constructions in the top results retrieved by Bing. We searched
Bing to retrieve the top 60 documents for each of 40 queries and processed each
of the 2,400 documents using the FLAIR algorithm. We could then divide the
detected linguistic forms into five frequency groups, presented in Table 4.2: ex-
tremely frequent (91-100%), relatively frequent (71-90%), of average frequency
(31-70%), relatively infrequent (11-30%) and extremely infrequent (0-10%).



Extremely frequent (91-100%)

simple aspect
present simple
regular verbs

advanced prepositions
to infinitive
articles a, the

positive d. of adverbs
long auxiliary verb forms
simple prepositions

plural regular nouns
irregular verbs
copular verbs

pronouns
pronouns as subjects
relative clauses

prepositions -ing verb forms present time simple conjunctions positive d. of adjectives
direct object compound sentences complex sentences auxiliaries be, do, have
past time possessive pronouns past simple tense subordinate clauses
Relatively frequent (71-90%)
modals reduced relative clauses  pronouns as objects adverbial clauses negation

negation not

passive voice advanced conjunctions

simple sentences

phrasal verbs

Of average frequency (31-70%)

perfect aspect
present perfect
can, could

present progr.

indefinite article an
plural irregular nouns
negation n’t

complex prepositions

-ing noun forms
progressive aspect
superl. d. of short adj.

compar. d. of short adv.

short aux. verb forms
conditionals

direct questions
existential there

future time
future simple tense

compar. d. of short adj.

determiner some

Relatively infrequent (11-30%)

past progr.

there is /| there are
determiner many
wh- questions

determiner any
do, be questions
must, have to
going to

reflexive pronouns
past perfect tense
indirect object
superl. d. of long adj.

real conditionals
superl. d. of short adv.
compar. d. of long adj.
questions

may, might

there was | there were
yes/no questions
perfect progr. aspect

Extremely infrequent (0-10%)

what, who question
tag questions
imperatives

used to

unreal conditionals
partial negation

past perfect progr.
which, whose questions

present perfect progr.
emphatic do

superl. d. of long adv.
when, where questions

determiner much

how, why questions
absolute poss. pronouns
modal verb questions

future perfect

able, ought, need
compar. d. of long adv.
have questions

TABLE 4.2: Classification of constructs based on their document frequency normalized by the total number of documents in the web

collection.
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While the table shows that grammatical constructions are highly heterogeneous,
the heat map in Figure 4.1 demonstrates that they are not evenly distributed
across the different documents: white cells represent documents with no occur-
rences of a given form, and red and black cells stand for documents with a very
rich linguistic representation of that form. However, conclusions should not been
drawn based solely on this image since grammatical constructions of different levels
are mixed here, i.e., the word and sentence levels. In order to get a clearer picture
of less frequent constructions, we replotted the data consisting for sentence-level
constructions only. Complex (subordinate) sentences appeared to be the most
frequent sentence type followed by compound (coordinate) sentences. Simple sen-
tences, which usually correspond to lower levels of text complexity, are not easily
found in every document, which complicates the search for reading material at

lower levels of language proficiency.

4.1.3 Discussion of Challenges and Solutions

A statistical parser is typically not informed by a deeper knowledge of linguistic
properties. When two constructions are identical in form, additional analysis of the
target form in context can be required. For instance, Meurers et al. (2010) employ
about 100 constraint grammar rules to disambiguate gerunds and participles,
which poses a challenge for both English language learners and parsers. Real
conditionals and answers to indirect questions are another example of such

ambiguities:

(10) a. Ramon doesn’t want to come if Jochen is coming.

b. (Does Kordula know if Detmar is coming?)

Kordula doesn’t know if Detmar is coming.

(10a) and (10b) are almost indistinguishable on the basis of the constituency and
dependency structure provided by the parser. A simple solution based on a list of
transitive verbs followed by an object if-clause (e.g., know, see) can help tackle
this case, but may not generalize well to other cases where multiple interpretation

are possible.

In the education context, not differentiating between several interpretations of the

same form can mean exposing the learner to unfamiliar constructions far beyond
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FIGURE 4.1: A heat map showing the distribution of grammatical constructions
across the top 60 results: average for 40 queries of type People and News.

their current level. According to the English curriculum, real conditionals are
introduced in the sixth grade while answers to indirect questions only in the eighth.
Different parts of speech ending in -ing, such as gerunds and present participle
forms, are taught in Grades 2, 8, and 10. Finally, the primary meaning of the
present progressive as an action taking place at the moment of speaking (as in
11a) is introduced in the second grade. However, it is only six years later, in
the eighth grade, that school children are expected to use this linguistic form to

express the meaning of an arranged action in the future, as in (11b).
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(11) a. Sebastian and Micheéle are waiting for Michael.

b. Simén and Xiaobin are leaving next week.

The last phenomenon is not limited to the present progressive but generalizes to all
grammatical tenses and some other linguistic forms. Therefore, it is both impor-
tant to identify and disambiguate forms as well as distinguish among their different
interpretations. In the next section, we approach this task with computational and

statistical methods.

4.2 Towards the Disambiguation of Tense Senses

Sentences (11a) and (11b) above demonstrate two meanings, or senses, of the
present progressive tense. In fact, most tenses have more than one sense. For
instance, present simple can be used to express an action in the present (e.g.,
Bjorn walks to work), a future arrangement (e.g., The train leaves at 9 a.m.), or
even a past event (e.g., in the headline Farthquake Hits Iran). Present perfect
can express an experience (e.g., Daria has been to Portugal once), a finished action
emphasizing the result (e.g., Anna has finished her PhD), or an ongoing action
emphasizing the duration (e.g., Natalie has lived in this house for 8 years). This
is reflected in the definition of tenses by Salaberry and Shirai (2002, p2): They
describe a tense as “a deictic category that places a situation in time with respect
to some other time, usually the moment of speech”. Deictic is the key word in this
definition as it emphasizes the importance of the context in which a tense is used.
Like lexical items, tenses are polysemous and are therefore appropriate subjects

for the task of sense disambiguation.

Tenses are also crucial in the FLTL context, as they are challenging for language
learners (Bardovi-Harlig, 1999). Learners particularly require support in establish-
ing form-meaning connections for tenses: English grammar books make a distinc-
tion between the different meanings of the present progressive, present perfect,
and other tenses (e.g., Murphy, 2012). In English schoolbooks, different types
of activities are designed to introduce and practice different tense senses — in
line with Ellis (2016) comments about the importance of tailoring the type of
input enhancement to a particular linguistic form. Therefore, tutoring systems
and iCALL applications offering activities that focus on grammar and tenses can

benefit greatly from the use of an automatic component for disambiguating tense



58 Chapter 4 Leveraging NLP Technology

senses in order to more efficiently select appropriate texts and exercises. Outside
of the FLTL context, this technology can improve the performance of CL tasks
such as machine translation and automatic textual entailment. As different lan-
guages use different means of expressing time, individual tense senses may or may
not match those expressions. In Section 4.2.8.3, we discuss the various possible
translations of the present perfect tense into Russian and how the task of tense
sense disambiguation (TSD) can both benefit from this linguistic phenomenon and

support machine translation approaches.

In line with the only other work on this topic to our knowledge by Reichart and
Rappoport (2010), we approach the task of TSD with a machine learning ap-
proach. In the following sections, we describe the research questions and task
design, explain how the data were collected and annotated, review the machine
learning classifiers we experimented with, present the results, and make sugges-

tions to improve the performance of statistical models.

4.2.1 Task Definition and Design

As research on word sense disambiguation (WSD) has repeatedly shown, the dis-
ambiguation of senses is a classification task best solved with supervised methods
(Navigli, 2009). This approach requires a large number of annotated instances,
which have traditionally been obtained by asking expert judges to annotate a
corpus using a given taxonomy. While Reichart and Rappoport (2010) followed
this procedure for their TSD task, we propose a crowdsourcing approach already

explored by the WSD research community (Hong and Baker, 2011).

The key difference between WSD and TSD is that the former is concerned with the
semantics of lexical items, while the latter aims at disambiguating the grammatical
meanings of syntactic forms. This difference is best demonstrated with an example:
Sentences (12a) and (12b) present two lexical meanings of the verb to work, namely,
to do something for a living and to function. On the other hand, Sentences (12c)
and (12d) exemplify two grammatical meanings of the present progressive tense
expressed by the verb to work, namely, an action taking place at the moment of

speaking and an arranged future event.
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(12) a. Magdalena is working from home today. (lexical meaning: to do some-
thing for a living; grammatical meaning: action taking place at the

moment of speaking)

b. The machine is not working. (lexical meaning: function; grammatical

meaning: action taking place at the moment of speaking)

c. Eran is working on a large project. (lexical meaning: to do something
for a living; grammatical meaning: action taking place at the moment

of speaking)

d. Adriane is not working tomorrow. (lexical meaning: to do something

for a living; grammatical meaning: an arranged future action)

Automatic disambiguation of senses implies that the linguistic form itself has al-
ready been detected, which highlights another difference between TSD and WSD.
While the detection of lexical items is possible with tokenization and POS tagging,
the detection of grammatical tenses requires the use of constituency and depen-
dency parsing (see Section 4.1 and Appendix B). As an algorithm for detecting
linguistic forms, including grammatical tenses, is implemented in the FLAIR sys-
tem, we used it to search and process corpora prior to addressing the TSD task
itself.

The study aimed at addressing the following research questions with this study:

1. Can we develop TSD statistical models that outperform a strong most-

frequent-sense (majority) baseline for each tense?

2. Do TSD statistical models for different grammatical tenses make use of dif-

ferent features?

4.2.2 Data Collection

First, we searched Newsela,! an American news website for language learners, for
sentences containing instances of all grammatical tenses. Although we attempted
to retrieve the same number of instances per tense, some tenses were highly in-
frequent, which resulted in a somewhat skewed distribution of instances. Having

collected 1000 sentences, we ran a pilot study and added more sentences for a

lyww .newsela.com
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selected list of tenses afterwards. All in all, we collected 4,089 instances of gram-
matical tenses from Newsela. Interestingly, the future perfect progressive tense
was not represented in the corpus, so we excluded it from further analysis. The

distribution of tenses is presented in Table 4.3.

4.2.3 Data Annotation

4.2.3.1 Dictionary of Tense Senses

Kilgarriff (1997) argues against using a predetermined set of senses because of
the constant deviation of the contextual meaning of words from their dictionary
definition. At the same time, the author points out that a taxonomy of senses
should not be a universal convention but should rather be designed for the task
at hand. We are addressing the task of TSD for two reasons: (i) to provide
English teachers and learners with a wider variety of contexts where linguistic
forms occur in their different senses and (ii) to be able to automatically generate
questions asking about different interpretations of linguistic forms (see Chapter 6
and Section 6.4 in particular). After consulting several English grammar books
and textbooks (Murphy, 2012; Jespersen, 2013), we compiled a dictionary of tense

senses whose disambiguation is relevant in the FLTL context (see Appendix E).

Similarly to the task of WSD, whether to make the tense sense classification coarse-
or fine-grained is a design decision. We had several considerations when choosing
the number of senses for each tense. The first came from the results of SenskE-
val/SemEval shared tasks, which show that coarser-grained taxonomies lead to
better inter-annotator agreement and, consequently, higher algorithm accuracy
(Navigli et al., 2007; Pradhan et al., 2007), as already discussed in Section 2.2.2.
This was confirmed by our pilot crowdsourcing annotation round on the present
perfect tense and its senses: Changing the number of senses from three to four by
splitting one sense into two led to a decrease in average agreement from 76% to
72%. This motivated the coarse-grained nature of our dictionary, in which every
tense had at most four senses. On the other hand, for the sake of the disam-
biguation task, we wanted every tense to have at least two senses, which turned
out to be difficult for some infrequent tenses. In these cases, we opted for a more

fine-grained classification.



Chapter 4 Leveraging NLP Technology 61

4.2.3.2 Gold Standard Tense Sense Annotation

We obtained gold standard annotations of tense senses from two experts, both
doctoral students in CL, and one of whom was the author of this thesis. They
first read the instructions and familiarized themselves with the dictionary of tense
senses described in Section 4.2.3.1 and presented in Appendix E. They were then
presented with a single sentence from the data set described in Section 4.2.2. The
target tense instance was highlighted, and the senses of this tense were listed next
to the sentence. The annotators selected the most appropriate tense sense from
the list, or the option None of the above if they thought that none of the senses
matched the grammatical meaning expressed by the highlighted form. Each expert

annotated 77 instances.

The inter-rater agreement across all tenses calculated using Cohen’s Kappa was
70%. As Kappa is sensitive to a lack of variability in the ratings, we do not report
it for individual tenses due to the highly imbalanced representation of senses dis-
cussed below. Instead, we opted for an overall agreement measure, calculated as
the number of items both annotators agreed on over the total number of items. The
overall agreement was comparable to the one calculated using Kappa: 71%. Inter-
estingly, the agreement for some tenses was much lower than for others: Present
perfect senses posed the biggest challenge to the annotators yielding an agree-
ment of 55%. Future simple and present perfect progressive, on the other hand,
proved to be the easiest tenses to annotate, with an agreement of 83-88%. This
was due to the fact that these tenses exhibited a highly imbalanced representa-
tion of senses, which was also true for some other tenses: All progressive-aspect
tenses had one predominant sense of action in progress; and all instances of future
simple, present perfect progressive, and future perfect were used to represent only
one meaning. Therefore, we only included a small number of those tense instances

into the crowdsourcing annotation study.

4.2.3.3 Crowdsourcing Tense Sense Annotation

Annotating a collection of several thousand sentences is costly in terms of time
and effort but is necessary for the reliable performance of statistical methods. As
crowdsourcing has proved to be successful at simple linguistic tasks, including

WSD (Hong and Baker, 2011), we opted to use it to annotate our data set with
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tense senses. As previously mentioned, FLAIR detected the tenses automatically,
so the crowd workers only had to select the most appropriate sense for a target
tense. Following the best practice guidelines suggested by Sabou et al. (2014) and
utilizing the functionality of the Figure-Eight platform? (formerly CrowdFlower),

we:

e wrote clear instructions, which were rated 4.2 out of 5 by the crowd workers

in the main study,
e displayed a short text containing only one sentence,

e presented a selection of no more than four options followed by the option
None of the above,

e designed a clear interface,

e provided reasonable test questions, which were rated 3.7 out of 5 by the

crowd workers in the main study,

e used the testing service provided by Figure-Eight to get feedback from several

trusted crowd workers about the task before launching it, and

e ran pilot studies to adjust the instructions, examples, test questions, and

payment.

The Tasks We designed and ran three crowdsourcing studies to obtain enough
data to develop and test our TSD statistical models. Two pilot studies investigated
the level of granularity of tense sense taxonomy and only included instances of
present perfect. The main study included all grammatical tenses except future
perfect progressive, as no instances of this tense were found in the collection of
5,000 documents. As previously mentioned, the expert annotation revealed that
some tenses had highly imbalanced sense classes, so we included fewer instances

of those in the main study.

Procedure In each study, participants were presented with items consisting of
a sentence with a highlighted predicate and a list of senses of the grammatical

tense represented by it. Figure 4.2 demonstrates an item from the main study.

2www.figure—eight.com
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The items were displayed in groups of five, and one of the items in each group was
a test question to ensure the participant’s reliability. We discuss the importance
of test questions later in this section.

Sweden has cut its annual emissions of carbon dioxide by 23

percent since 1990 What grammatical meaning does the verb in the

highlighted area express?
Pick the one that fits best.

Experience
Duration of an action or state
Finished action

None of the above. (Are you sure? Try not to overuse this
option.)

Please leave your comments here: (optional)

FIGURE 4.2: An item from the main crowdsourcing task on TSD.

We used 100 items with ten test questions for each of the pilot studies focusing
on present perfect and 2062 items with 50 test questions for the main study. We

collected at least three judgments per item resulting in a total of 6526 judgments.

Ensuring Reliability of Participants To ensure the quality of the responses,
we first selected a list of participating countries, including both English-speaking
countries and some European countries, where English proficiency is high accord-
ing to the EF English Proficiency Index (First, 2017): the Netherlands, Denmark,
Norway, Sweden, Finland, Germany, and Austria. The official guidelines on the
Figure-Eight platform list three ways of collecting good-quality judgments: in-
structing, training, and testing crowd workers. The first is achieved by providing
clear instructions and examples, while the latter two are achieved via test ques-

tions.

As Hong and Baker (2011) noted, when designing a crowdsourcing study, one
should avoid unclear terminology in the instructions and the task itself and explain
everything in layman’s terms. Along the same lines, Munro et al. (2010) pointed
out that crowdsourcing is most successful when an annotation task is designed to
be as simple as possible. We followed this advice and avoided linguistic terminology
in the instructions and the task, which made the task accessible for a larger number

of crowd workers (see Appendix F for the instructions).
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Each study had two parts: the quiz and the main task. To make the quiz possible
and ensure the proper training and testing of crowd workers, we included a suf-
ficient number of test questions in each study. First, participants had to answer
four out of the five quiz questions correctly in order to proceed to the main task,
where they had to keep their accuracy at 70% by correctly answering test ques-
tions randomly inserted among the other items. While some of the test questions
looked exactly like the items in the main task, another type of questions tested

the crowd workers’s attentiveness, as illustrated in Example 13:

(13) Please, select the third option:
a. Experience
b. Finished action

¢. Duration of an ongoing action

Munro et al. (2010) emphasize the importance of including such test questions,
arguing that they not only filter out unreliable workers but also generally prompt
workers to be more attentive. Another type of test question can be used to draw
workers’ attention to concepts relevant to the task at hand. For example, asking
workers to select the correct rephrasing of (14) can be used to draw their attention
to the concept of hypothetical actions. However, we did not use this type of test

question in the current study in order to keep the task short and feasible.

(14) Yulia could have fallen down.
a. Real action (Yulia fell down)
b. Hypothetical action ( Yulia did not fall down)

Inter-rater agreement To measure the agreement of a large number of crowd
workers providing annotations on an imbalanced set of classes for some tenses (see
Table 4.3 for the distribution), we opted to report simple agreement. This was
calculated as the number of judgments agreeing with the most commonly selected
annotation per item divided by the total number of judgments per item, averaged
across all items. The average agreement across tenses was 87%), and the agreement

for individual tenses is reported in the corresponding sections below.
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Grammatical No. of Distribution
tense instances of senses
Present simple 409 77/16 /3 /2%
Present progressive 395 93/6/1%
Present perfect 207 14 /21 /5%
Present perfect progr. 92 100 / 0 %
Past simple 363 9/87/2/0%
Past progressive 94 9 /3 /1%
Past perfect 357 4/6 /89 %
Past perfect progr. 56 39 / 61%
Future simple 93 97 /0 /3%
Future progressive 72 98 /2%
Future perfect 24 100 / 0 %
Future perfect progr. 0 0/0%

TABLE 4.3: Distribution of grammatical tenses and their senses in the dataset.
4.2.4 Annotated Data Set

Only the sentences where the majority of the annotators agreed on a tense sense
were included into the analyses, thus, eliminating ambiguous items as well as
those where the tense was incorrectly detected. Having thoroughly examined the
annotations, we discuss the data collected for each individual tense in this section.
Table 4.3 provides an overview of the number of instances of each tense in our

dataset and the distribution of their senses, as annotated by the crowd workers.

4.2.4.1 Present tenses

Present simple As discussed in Section 4.2.3.1, we opted for a coarse-grained
taxonomy with at most four senses per tense. Present simple was represented by

four senses:

1. State in the present (with verbs that do not denote action: be, know, have)

(Joscha knows everything about programming.)

2. Repeated action (habit or routine) (Johann drinks coffee at 8 a.m. every

morning.)
3. Future scheduled event (The train leaves at 7 p.m. next Monday.)

4. Past event in a report, storytelling (Hurricane destroys several cities.)
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The first sense, state in the present, was the most frequent (77% of instances),
followed by repeated action (16%). Only 5% of instances were annotated as having
the sense of a future arrangement or past event. Overall, crowd workers achieved
an agreement of 83% when annotating the senses of present simple. However,
one test question was labeled incorrectly in 50% of cases, making it a common

challenge for annotators:

(15) “Sledding is a risky activity,” Dubuque’s city attorney wrote in proposing
the ban.

Although the verb is expresses the state of sledding being risky, half of the annota-
tors were presumably misled by its nature as an activity, interpreted the sentence
as a whole, and labeled this occurrence of present simple as a repeated action in
the present. We thus revisited the instructions and examples and replaced all ref-
erences to ‘sentences’ with ‘highlighted words’ in order to avoid confusion: e.g.,

What grammatical meaning do the highlighted words express?

We only used the first two senses of present simple in the statistical analyses
when training the statistical models. To cover all four senses, simple rules were
used to detect the infrequent future scheduled event (via a time or date expression
referring to the future as a dependent of the target tense) and past event (by
checking whether all words in the sentence were capitalized, as is often the case in
headlines).

Present progressive This tense had three senses: action in progress, future
arrangement, and repeated annoying action. The annotators selected the first
sense, action in progress, for 93% of items, with all three annotators agreeing on
most of them (88%). However, some items with 100% agreement were incorrectly

annotated:

(16) A key part of their plan is casting Republicans as uncooperative.

This example shows that the FLAIR algorithm incorrectly detected an instance of
the present progressive tense because of the ambiguous parse (VP (VBZ is) (VP
(VBG casting))), where the copula is is annotated as an auxiliary dependent on

casting. Pointing out this possibility in the instructions in lay terms may encourage
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the annotators to be more attentive and select the None of the above option in a

similar situation.

As the sense classes for present progressive were highly imbalanced, we concluded
that a rule-based algorithm was the optimal solution for TSD in this case. The
second sense of present progressive, future arrangement, can be detected if one
of the direct dependents of the main verb in the target predicate is a named
entity time or date. Instances of the third sense, repeated annoying action, can be
identified by searching for the adverbs constantly or always as direct dependents

of the main verb in the predicate.

Present perfect FExpert annotation, two pilot studies, and the main study
showed that this tense achieved the lowest inter-annotator agreement of 55-76%.
The two pilot studies both targeted present perfect and differed in the number of
senses for this tense: three and four, respectively. Making the taxonomy of senses
more fine-grained in the second study lowered the inter-annotator agreement from

76% to 72%, so we opted for the first setting with three senses for the main study:

1. Experience (Huan has never been to Barcelona.)
2. Ongoing action or state (I have known Barbara for 3 years / since 2015.)

3. Finished action (Heiko has finished debugging and can read the comics now.)

While agreement on the second and third senses was at 80%, the main challenge
occurred with the first sense, experience (71% agreement). Example (17) below
received the label experience with the lowest agreement and demonstrates the
difficulty of the annotation task for some items. It is not clear from the context
whether the process of promoting ‘these new incentives’ has already finished. Thus,

has been may express either experience or an ongoing state.

(17) Bolund, one of six Green Party cabinet members in Sweden, has been a

key figure in promoting these new incentives.

Present perfect progressive As in the case of present perfect, not every con-
text made it clear whether an action described by the present perfect progressive

tense was still ongoing, as can be seen in the following example:
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(18) Another reason might be that doctors have been telling parents not to give

small children allergens, like peanuts.

There are not enough cues in this sentence to make inferences about what the
doctors are telling parents now. However, this lack of evidence did not stop the
crowd workers from annotating all 92 pilot instances of present perfect progressive
with its first sense, ongoing action. Presumably, the intuition that most people
follow is that a progressive aspect always denotes an action in progress. We did not
collect more data on this tense and concluded that the detection of the second sense
of present perfect progressive, finished action that stopped very recently, requires

a context larger than one sentence. We leave this for future work.

4.2.4.2 Past tenses

Past simple This tense was represented by four senses:

1. State in the past (Ulrich and Adam were very busy last year.)
2. Single action in the past (Chris and Lee saw a good film last night.)
3. Repeated action in the past (Veli and Ico went dancing every week.)

4. Social distancing (I just wanted to ask you...)

The second sense, single action in the past, was the most frequent, receiving 87% of
all annotations, while instances of social distancing did not appear in the dataset
at all. As this sense is represented by a narrow range of expressions, such as [ just
wanted to..., we can use this simple heuristic to detect it. Therefore, we only used

three senses when training a statistical model for past simple.

Past progressive As in the case of past simple, the social distancing sense of
past progressive did not appear in the dataset at all. Moreover, as in the case
of the other progressive aspect tenses, the most frequent sense, action in progress
in the past, received the absolute majority of annotations (96%). Therefore, we
did not build a statistical model for this tense and assumed that simple heuristics
can be used to detect the infrequent senses of past progressive: e.g., the presence

of the conjunctions when or while for the sense of ongoing action interrupted by
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another action in the past, the presence of the adverbs always or constantly for
the sense of repeated annoying action in the past, and a list of expressions, such as

to be wondering, to be thinking, for the sense of social distancing.

Past perfect This tense received an agreement of 838%, with 89% of instances
annotated with its last sense, finished action. The issue already discussed above
regarding the completeness of an action led to some disagreement among annota-

tors. This can be exemplified with the following item:

(19) “I think I just realized at that moment — I had never been there,” he said.

The distribution of answers for this item was:

e Experience at a time point in the past: 22%
e Duration of an action or a state at a time point in the past: 22%

e Finished action at a time point in the past: 44%

One person commented: “I agree that ‘have never been’ would be an experience
at a time point in the past, to me the verb phrase “HAD never been” is a finished
action as had implies that the action is over - eg ‘I had never been there until that
day’.” Intuitively, a past perfect predicate containing negation (had never been,
hadn’t seen) does indeed imply that this action actually happened shortly before
the moment of speaking or is happening then: Jason had never seen a tiger before
would probably be said in a situation when he finally saw a tiger. However, one
could also come across the following context: “Marti’s daughter asked him what
a Yeti looked like. Marti had never seen one so he did not know what to say.”
This is similar to present perfect, where Johannes has never seen a tiger may or
may not mean that he sees a tiger now. These examples illustrate yet again that
a broader context is needed to differentiate between the senses of some linguistic

forms.

Past perfect progressive The overall agreement among crowd workers for this
tense was 70%, and its two senses received a comparable number of annotations:

39% and 61%. However, after more closely inspecting the instances of this tense,
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we concluded that most of the sentences did not provide enough context to properly
differentiate between a finished and an ongoing action in the past, as demonstrated

in the example below.

(20) That violin had been missing for more than two years.

The distribution of senses for this item was:

e Ongoing action at a time point in the past: 57%

e Finished action at a time point in the past: 43%

One person commented on this item: “Sounds to me that it is finished. Had been
missing means just that, had, which is no longer.” The sentence does not say that
the violin was found, but the annotator believes that the semantics of the past
perfect progressive tense suggest it. However, the sentence could also continue

14

in the following way: “..., and still nobody could find it.” For many items, the
assignment of the first or the second sense exhibited a random nature. Due to this
ambiguity in a narrow context, we leave this tense for future work, in which we

plan to conduct a similar study but provide a larger context for each item.

4.2.4.3 Future tenses

All instances of future tenses were annotated with their first senses with over-
whelmingly high frequencies: 97% of future simple items were labeled as a future
event or state, 98% of future progressive items were annotated with the sense of an
action in progress at a point of time in the future, and 100% of future perfect items
were tagged as an action completed before a future point of time. No instances of

future perfect progressive were found in a corpus of 5,000 news articles.

Taking into account this imbalanced distribution of senses, we concluded that
machine learning was not a suitable approach for the disambiguation of the senses
of future tenses. As was the case for present progressive and some other tenses,
simple heuristics could be implemented to detect the instances of infrequent senses,
such as the presence of the preposition for followed by a time expression to detect
the second sense of future progressive and future perfect, namely, duration of an

action or a state in the future.
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To conclude, we selected four tenses for machine learning experiments: present
simple, present perfect, past simple, and past perfect. The next section presents

a list of features designed to differentiate the senses of these tenses.

4.2.5 Features Distinguishing the Senses of Grammatical

Tenses

We compiled a list of surface, lexical, syntactic, and discourse features taking into
consideration the distinguishing characteristics of various tense senses. Surface
features include sentence length, which has been found to be a more reliable
feature than syllable count (Uitdenbogerd, 2003), as well as the length of the
predicate containing the target tense and its position in the sentence. All lexical
features are binary and check for the presence of prepositions, adverbs, articles,
negation, and different types of verbs in the sentence. Syntactic features check
for instances of other tenses in the sentence, commas surrounding the target tense
instance, and dependents of the main verb in the target tense, including date and
time expressions. Finally, discourse features range from the sentiment of the
sentence to the presence of adverbs and conjunctions of time. All features were
extracted using Stanford CoreNLP and additional simple algorithms and are listed
in Table 4.4.

In line with some WSD researchers (Mihalcea, 2002; Martinez et al., 2002), we
assume that different tenses benefit from different features: For instance, the pres-
ence of the preposition since in a sentence may help differentiate between the
senses of present perfect more so than the senses of present simple. In the follow-
ing sections, we first experiment with all 22 features and then train models using

different sets of features for different tenses.

4.2.6 Methodology
4.2.6.1 Learning Algorithms

The choice of the learning algorithm was motivated by several criteria defined

according to the TSD task. To meet our requirements, an algorithm had to:
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Surface
(all continuous)

Sentence length
Length of the tense instance
Tokens between the tense instance and the previous punctuation mark

Tokens between the tense instance and the next punctuation mark

Lexical
(all binary)

The main verb of the tense instance is stative
Presence of any form of to be in the tense instance
Presence of articles in the sentence

Presence of for or since related to the tense instance
Presence of the adverb already in the sentence
Presence of now or at the moment in the sentence

Presence of the adverb every or a marker of frequency in the sentence

Syntactic

The closest instance of another tense in a sentence (categorical)
The tense instance is followed by a comma (binary)

The tense instance is preceded by a comma (binary)

Number of dependents of the main verb (continuous)

Date or time expression is a dependent of the tense instance (binary)

Discourse

Sentiment of the sentence (categorical)

Sentence contains reported speech (binary)

Presence of the conjunction after in the sentence (binary)
Presence of the conjunction before in the sentence (binary)
Presence of the conjunctions when in the sentence (binary)

Presence of the conjunctions while in the sentence (binary)

TABLE 4.4: Features used in TSD statistical models
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1. Be suitable for a multi-class classification task (logistic regression, k-nearest

neighbors, gradient boosted decision trees, SVM, random forest)

2. Perform well with a small number of observations (logistic regression, Naive

Bayes, SVM)

3. Handle a mixture of feature types, such as binary and categorical, with or
without additional encoding (decision trees, gradient boosted decision trees,
random forest, SVM)

4. Be interpretable to some extent (no neural networks)

5. Handle imbalanced data well (decision trees, random forest)

Taking these criteria into account, we experimented with decision trees, linear
SVM, and random forest for each tense and selected the best performing one,
achieving a balance between weighted F; and precision scores in a 10-fold stratified
cross-validation. We implemented the algorithms using the sklearn Python library
(Pedregosa et al., 2011) and provided the models along with the parameters in
Appendix G. The following section presents the motivations behind our choice of

evaluation metrics.

4.2.6.2 FEvaluation metrics

There are several common metrics for evaluating the performance of machine learn-
ing algorithms, including accuracy, recall, precision, Fi-score, and AUC. While ac-
curacy appears to be commonly used for standard data sets, it is not suitable for
our case as the sense classes for almost every tense are highly imbalanced, which
will most certainly lead to an overestimation. Thus, we selected the optimal eval-

uation metrics by analyzing the task at hand and the desired outcomes.

In the FLTL context, high precision is favored over high recall as learners’ exposure
to erroneous language should be minimized. However, the balance of precision
and recall is also an important measure of algorithm effectiveness, so we opted
for an Fi-score as the measure of comparison between our models and a strong
majority (most-common-sense) baseline. As weighted averaging takes the skewed
distribution of labels into account, we calculated a weighted F;-score and precision

when selecting the best performing model for each tense.
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To properly evaluate the models, we first split the data into a training set (75%)
and a held-out test set (25%). To assess the predictive performance and the gen-
eralizability of our models, we performed 10-fold cross-validation on the training
set. This evaluation method repeatedly splits the data into a training subset (9/10
of the data) and a test subset (1/10 of the data), trains the selected model on the
training subset, and tests it on the test subset. It repeats this for each of the ten
folds and reports the average. As our data set contains a rather small number of
instances and imbalanced classes, we opted for a stratified 10-fold cross-validation,
which ensures a balanced representation of all classes in the test subset for each
individual fold. Importantly, we did not use the held-out test set to tune the
parameters of the models when performing cross-validation. The performance of
our models on the held-out test set is reported in Table 4.5 along with the cross-

validation results.

4.2.7 Results

4.2.7.1 Performance

Unlike Reichart and Rappoport (2010), who trained one model for all grammatical
tenses, we treat each tense individually. However, although our models cannot be
directly compared, the authors’ results can be seen as another general baseline.
While Reichart and Rappoport (2010) do not report the classification accuracy
for each tense, they mention the accuracy gain over the baseline for several tenses.
In line with our results, present perfect senses seem to be the most difficult to
classify, with an accuracy of only about 57%. Past perfect and present simple, on
the other hand, achieve accuracies of 77.3% and 75.8%, respectively. For the sake
of comparison, we note that our models achieved an accuracy of 62% for present
perfect, 82% for present simple, and 92% for past perfect, as measured in a 10-fold
stratified cross-validation. However, as argued in Section 4.2.6.2, we only use the

Fy-score evaluation metric due to the highly imbalanced data set.

Table 4.5 compares the performance of a strong majority baseline with that of the
best performing algorithms used to detect the senses of four grammatical tenses.
The results demonstrate that our models outperform the baseline both on the held-
out test set and on the 10-fold cross-validation performed on the training set. The

biggest gain in Fy-score was observed for the present perfect model (p = .02, 95%
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Tense Model 10-fold CV Held-out Test Set
Baseline Model Baseline Model
Fy Fy Fy Fy
Present simple | Random forest M = .75 M = .78 .73 .78
(SD =.02) (SD=.04)
Present perfect | Linear SVM M = 48 M = 61" .48 .56
(SD=.03) (SD=.13)
Past simple Decision tree M = .84 M= 91" .82 .88
(SD=.04) (SD =.06)
Past perfect Decision tree M = .90 M =091 .86 .88
(SD =.03) (SD=.02)

- p < .05, " p < .01: significant differences between a TSD model and the baseline

TABLE 4.5: Performance of our TSD statistical models on crowd-annotated
data using all 22 features compared to the strong majority baseline.

CI [-0.23; —0.02]) and the past simple model (p = .01, 95% CI [—0.12; —0.02]),
which significantly outperformed the majority baseline as measured by a Student’s

t-test. These results provide strong evidence for the predictive power of our models.

TSD has proved to be a complex task, in which achieving high agreement is difficult
even for humans. As this certainly influenced the performance of our statistical
models, we decided to re-annotate part of the dataset ourselves and investigate (i)
how much we (dis)agreed with the crowd and (ii) how much the performance of the
statistical models could be improved by improving the data quality. Concretely,
the author of this thesis annotated the 207 instances of present perfect and re-ran

the machine learning algorithms using these new data.

The agreement between the author and the crowd workers was 60%, which is
lower than the agreement among the crowd workers (76%) but higher than that
among expert annotators on a smaller dataset (55%). This may indicate that
the instructions and examples were too simplistic, as crowd workers had a higher
agreement among themselves than with the expert. On the other hand, it could be
an indication of the crowd workers’ stronger bias towards the most common sense:
They selected the third sense of present perfect, a finished action, 57% of the time,
as compared to the expert’s 46%. The results presented in Table 4.6 demonstrate
that the statistical models trained and tested using expert annotation significantly

outperformed the majority baseline; p = .006, 95% CI [—0.30; —0.06]. However,
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the difference between the crowdsourcing and expert models was not statistically
significant; p = .2, 95% CI [—0.24;0.05].

. 10-fold CV Held-out Test Set
Annotation Model Baseline Model Baseline Model
F]_ F]_ F]_ Fl
Crowdsourcing | Linear SVM | M =48 M = 61" 48 56

(SD =.03) (SD =.13)

One expert Decision tree | M = .52 M=.11" .46 .70
(SD =.06) (SD =.15)

*

p <.05, " p < .01: significant differences between a TSD model and the baseline

TABLE 4.6: Performance of TSD statistical models for present perfect on crowd-
annotated versus expert-annotated data using all 22 features.

4.2.7.2 Important Features

All three algorithms we experimented with provide ways of determining the relative
informativeness of different features: either using weight (Linear SVM) or feature
importance (decision tree, random forest) vectors. Across all four tenses, surface
(or length) features and the syntactic feature number of dependents were the most
informative. This is in line with the findings for readability assessment (Vajjala
and Meurers, 2012) and TSD itself (Reichart and Rappoport, 2010), where surface

features have proved to be extremely predictive.

Having used the whole list of 22 features presented in Section 4.2.5 to select the best
performing model for each tense, we then experimented with non-surface features
to see whether a smaller number of features we considered relevant for each tense
could outperform the all-features models. Below we present the experimental
results and provide the top most informative features of the tenses for which we

built statistical models.

Present Simple To differentiate between the two most frequent senses of present
simple, the selected-features random forest model (F; = .77, SD = .04) made use
of eight features: presence of the conjunction when, presence of the auxiliary to

be in the tense instance, the tense instance is followed by a comma, the tense
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instance is preceded by a comma, the main verb is stative, presence of articles in
the sentence, sentiment of the sentence, and the closest instance of another tense
in a sentence. This model slightly outperformed the strong majority baseline but
did not achieve the performance of the all-features model, nor did any other al-
gorithm. The most informative features for differentiating between the senses of

present simple were:

1. Sentiment of the sentence (24%)
2. Main verb is stative (20%)

3. Presence of articles in the sentence (14%)

Present Perfect Linear SVM was the best performing model both when in-
cluding all 22 features included and when only including six non-surface features
(presence of the conjunction after, presence of the conjunction when, date or time
expression is a dependent of the tense instance, the main verb is stative, pres-
ence of the adverb already, presence of for or since). The selected-features model
even slightly outperformed the all-features model (F} = .62, 5D = .12), albeit not

significantly. The most discriminative features for present perfect were:

1. Main verb is stative (29%)
2. Date or time expression is a dependent of the tense instance (24%)

3. Presence of already (20%)

Past Simple For this tense, the selected-features random forest model including
five non-surface features (the main verb is stative, date or time expression is a
dependent of the tense instance, the closest instance of another tense, presence
of the conjunction before, presence of the conjunction while) outperformed the
majority baseline (F; = .87,SD = .04), but fell below that of the all-features
model. The two other models did not outperform the baseline. Using an all-
features model to differentiate between the senses of past simple appears to be the
optimal solution. The most important features differentiating between the senses

of this tense were:

1. Main verb is stative (45%)
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2. Date or time expression is a dependent of the tense instance (24%)

3. Closest tense (14%)

Past Perfect All selected-features models outperformed the majority baseline
for past perfect. They made use of six non-surface features: presence of the con-
junction after, presence of the conjunction before, presence of the conjunction
when, presence of the adverb already, presence of for or since, date or time ex-
pression is a dependent of the tense instance. Random forest achieved the best
performance, with the same Fi-score in cross-validation as the best performing
all-features model (F; = .91,SD = .04). Consequently, we can conclude that
for past perfect, the performance of a model containing carefully selected non-
surface features is comparable to that of a model including all features. The most

informative features for differentiating between the senses of this tense were:

1. Presence of for or since (54%)
2. Date or time expression is a dependent of the tense instance (27%)

3. Presence of after or before (22%)

To conclude, all-features TSD models seem to be more robust and have higher
predictive power than the strong most-common-sense baseline. A careful selection
of features for each tense may not pay off, as such models do not significantly
outperform the ones using all features. In future work, we plan to experiment
with supervised methods using larger feature sets and unsupervised methods using
tense vectors to improve the performance of the TSD models for different tenses.

We discuss these and other challenges and possibilities further on in the section.

4.2.8 Discussion of Challenges and Solutions

Fellbaum et al. (1997) noted that training humans to tag senses is far more difficult
than training them to assign parts of speech to words. Similarly, machine learning
approaches to sense disambiguation do not yet reach the accuracy of POS taggers
either. Partially on the basis of our own work and partially inspired by Navigli’s
(2009) overview of related research on WSD, we emphasize the following challenges
of the task of TSD.
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4.2.8.1 Training Data and Features

The WSD research community estimated that building a high accuracy domain-
independent WSD model requires between 900 and 1400 occurrences of each word
(Ng and Lee, 1996; Ng, 1997), which is extremely costly. However, the finite
number of tenses and the existence of high-performing tense-detection algorithms
such as FLAIR allow for extensive data collection for the task of TSD. Data
annotation can be aided by the use of so-called bootstrapping, a statistical method
inducing a classifier from a small set of labeled data and a large set of unlabeled
data (Abney, 2002).

Defining separate feature sets for individual words has also been proposed: Mihal-
cea (2002) and Martinez et al. (2002) designed algorithms to automatically select
the most informative features in each cross-validation fold to either train or adjust
the final system. Such automatic approaches, as well as dimensionality reduction
approaches such as principal component analysis and linear discriminant analysis,

can facilitate the selection of the most informative features on-the-go.

4.2.8.2 Design Decisions

Using a fine-grained or coarse-grained taxonomy of senses. Dictionaries
and thesauri seek to provide the most comprehensive list of senses for every word.
For instance, the two main meanings of the verb [ie are usually listed as separate
entries. Within the first entry (with the general meaning of being positioned), there
are more fine-grained meanings, such as to be in a horizontal position, reside, or be
situated. The second entry refers to the meaning of misinforming someone and is
not divided into sub-meanings. But how should a list of senses be compiled for a
sense disambiguation task? Should it only consist of the two main senses; include
the more fine-grained senses as sub-meanings, resulting in a hierarchical structure;
or list them at the same level as the main senses? While the objective truth is
probably — as it oftentimes is — somewhere in the middle, this issue also has a
more practical value that is highly dependent on the task at hand. Research has
shown that this decision influences the accuracy of data annotation and the inter-
annotator agreement: In the Senseval-2 shared task, which used fine-grained word
sense distinctions, human annotators agreed on only 85% of word occurrences,
while Navigli et al. (2007) report an inter-annotator agreement of 86-94% for a

coarse-grained word sense taxonomy in SemEval-2007.
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At the same time, the task of TSD has achieved an inter-annotator agreement of
84% on a taxonomy of 103 senses (Reichart and Rappoport, 2010). Along with
the twelve grammatical tenses, the authors also included other linguistic forms,
such as conditionals and reported speech, in the task. This resulted in 18 linguistic
forms and an average number of 5.7 senses per linguistic form. The authors do
not present the senses and inter-annotator agreement for every linguistic form,
but based on the list of 11 senses of the present simple tense presented in the
paper, we conclude that they used a fine-grained taxonomy for some tenses and a

coarse-grained one for others.

Compiling a finite list of senses or clustering senses on-the-go: Super-
vised or unsupervised algorithms. Compiling a list of senses is compulsory
for supervised machine learning methods as they need annotated data for train-
ing models. In unsupervised learning, on the other hand, clustering techniques
are used to automatically group word senses. Thus, the decision about the level
of granularity of a sense taxonomy can be partially delegated to the algorithm,
but one will still need to specify the number of clusters or a threshold of sense

similarity.

In WSD, the most prominent unsupervised approach is context clustering. This
is based on the assumption that the semantics of a word can be determined by
the context in which it occurs, in line with the famous saying “Tell me who your
friends are and I will tell you who you are”. Every target word is represented as
a vector, the dimensions of which are determined by its co-occurrences with other
words in the immediate context (a sentence or paragraph). In attempting to apply
this approach to the task of TSD, the main question that arises is what kind of

linguistic forms should be treated as ‘friends’ of grammatical tenses.

On the one hand, some tense senses may be distinguishable by their co-occurrence
with certain lexical items. For instance, when present progressive is used with
the adverb always, it is most likely to express a repetitive annoying action, such
as He is always complaining. On the other hand, when the same adverb is used
with present simple, an unsupervised clustering algorithm may not be able to
distinguish between the two senses of the present simple tense: a repeated action
(e.g., Alina always takes a train to work) and a state in the present (e.g., Katharina

is always very polite). However, when the main verb in the tense is annotated as
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active (take) or stative (is), the distinction becomes more prominent. This is only

possible when using a supervised approach.

Other grammatical tenses may also serve as ‘friends’ to the target tense and thus
form vector dimensions. Indeed, when past progressive co-occurs with past simple
in a sentence, it is most likely to express an action interrupted by another action
in the past, not simply an action in progress in the past. For example, compare
the sentences (21a) and (21b):

(21) a. Madeesh was sleeping when the phone rang and woke him up.
b. Ankita was sleeping at 12 a.m. yesterday.

This certainly does not apply to all co-occurring tenses, as can be seen in the
sentences (22a) and (22b) below, where present simple and present progressive are

used together but have different grammatical meanings:

(22) a. Marina understands why Slava is working so hard. (Present simple:

state in the present; present progressive: action in progress)

b. Christine walks to work every day but tomorrow she is cycling. (Present

simple: repeated action; present progressive: future arrangement)

As the closest tense feature included in our statistical TSD models proved to be
informative for some tenses, we plan to experiment with unsupervised machine

learning algorithms using tense vectors.

Choosing a sentence or paragraph-level context. Yarowsky and Florian
(2002) demonstrate that the performance of WSD models is sensitive to the size of
the context on which they are trained. They conclude that an increasing amount
of context actually lowers the accuracy of discriminative WSD algorithms and
propose using an optimal context window of £10 neighboring words. Although
this is more applicable to bag-of-words WSD models, one might assume that TSD
models would similarly not benefit from the inclusion of features representing
dependents of higher degrees. While leaving the empirical confirmation of this
premise for future work, we include only the immediate dependents of the target

tense into our feature set (see Section 4.2.5).
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Another scenario where the size of the context is of importance concerns the human
annotation of data. Our study showed that one sentence is not always sufficient
for humans to differentiate between tense senses. However, in light of the previ-
ously mentioned finding from WSD research that more context may lead to lower
performance (Yarowsky and Florian, 2002), future TSD studies need to test the
effects of larger contexts on the inter-annotator agreement and the performance

of machine learning algorithms for the task of TSD.

Using a large-scale data set or collecting your own data. Disambiguation
of word senses ultimately serves other higher-level CL tasks — be it machine trans-
lation, natural language understanding, or automatic textual entailment. Conse-
quently, Navigli et al. (2007) expresses concern about the lack of an end-to-end
evaluation of WSD systems. Along the same lines as this discussion in the WSD
research community, we argue that T'SD systems should be designed, implemented,
and evaluated for the task at hand. As already discussed in this section, linguists,
computational linguists, and language teachers have different expectations when it
comes to tense senses and their taxonomies. While linguists might arguably prefer
the most fine-grained distinction of tense senses, language teachers may only want

to present the most prominent ones to their students.

This has an implication for the design of the whole TSD task, from data collection
to the choice of statistical methods. The type of corpora on which TSD models
are trained could also be tailored to the end users: If graded readers for sixth
grade do not use present progressive to refer to future arrangements, as in He is
driving home tomorrow, it is because this sense is not introduced till grade eight.
Training a model on the British National Corpus instead of texts appropriate for
sixth graders may not only be unnecessary but also lower the accuracy of the
model due to the larger variety of contexts. Therefore, we argue that although
large data sets are great sources of easily accessible annotated data, one should

ideally collect and annotate data for the task at hand.

Definition of the task When running a TSD task on a crowdsourcing platform,
it is important to point out that the annotators should take into consideration only
the highlighted part of the sentence and not try and annotate the sentence as a
whole. For instance, one crowd worker left the following comment when annotating

(23), providing a correct answer but also expressing the need for clearer task
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definition: “While only using one word to try and categorize, it is a bit difficult.

Said is an action verb, and it’s a past tense verb.”

(23) “T’ve lost many nights of sleep trying to figure out where we’re going to get
funding, and in recent months I just haven’t thought of any place left to

go,” she said.

In general, researchers can greatly benefit from the comments that annotators
leave, and we strongly believe that a constant feedback loop is crucial for successful

data collection and annotation.

4.2.8.3 Use of Bilingual Corpora

Another interesting approach to TSD would be to use aligned bilingual corpora to
disambiguate the tenses that have been translated to other languages. This was
initially proposed by Brown et al. (1991) for the task of WSD and has been suc-
cessfully used ever since, achieving state-of-the-art WSD performance (Ng et al.,
2003; Bovi et al., 2017).

For instance, the senses of the English present perfect tense in our study include
experience, finished action, and duration of an ongoing action. In Russian, a
finished and an ongoing action would be translated using different tenses, past

and present, respectively:

e Experience:

Thomas has been to Italy twice. — Tomac 6via B Utamun nBaxbr. (past)

e Finished action:

Corina has completed the task. — Kopuna ewnoanusa 3ananue. (past)

e Duration of an ongoing action:
Joel has known Jill for many years. — Jlxkoen snaem [lxkua muoro Jier.

(present)

This approach can also be used with unsupervised methods: a tense instance in
a multilingual corpus can be represented as a context vector consisting of all the

possible ‘tense’ translations of the target tense in other languages.
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4.2.8.4 Addressing the Redundancy Principle

As discussed in Section 2.1.3, VanPatten’s (2002) redundancy principle states that
in order to draw learners’ attention to the form of a grammatical construction
and connect it to its meaning, no other markers expressing the same meaning,
such as adverbs of time or dates, should be present in the sentence. That is,
the sentence Daniil is writing a paper is preferable to Daniil is writing a paper
now when practicing the present progressive tense in a communicative language-

learning environment.

Unfortunately, the soundness of this principle is impeded by the limitations of its
practical application. Even if the immediate context of one sentence does not in-
troduce redundancy, it is likely to occur in a larger context: the time setting, event
probabilities and order as well as gender and plurality can oftentimes be inferred
due to the abundance of verbal and non-verbal contextual cues. In fact, WSD
research heavily relies on such redundancy (Yarowsky, 1995) to design features
for supervised machine learning approaches (Reichart and Rappoport, 2010; Lee,
2011). This is also the case for our system. To address this issue, we propose a fea-
sible approach to ensuring that the learner notices and processes target linguistic
forms even when they are redundant. In line with the SLA research discussed in
Section 2.1, we implement automatic input enrichment, visual input enhancement,

and functionally driven input enhancement in the FLAIR system by:

e retrieving texts containing a high number of occurrences of target linguistic

forms (see Chapter 5),
e highlighting the instances of target linguistic forms in the text, and

e generating questions targeting those linguistic forms, which helps learners

build form-meaning connections (see Chapter 6).

4.3 Summary

NLP makes use of different approaches to characterize language data, from shallow
matching to deep grammar formalisms and machine learning. These are equally

well-motivated for language learning as an application domain (Meurers, 2015,
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sec.3.2). While some grammatical constructions in the English language sup-
port relatively straightforward characterizations based on the syntactic analysis
provided by the Stanford CoreNLP, the detection of other constructions, and es-
pecially their different interpretations, or senses, requires methods going beyond
this level.

As machine learning algorithms are able to learn from data and make predictions
about unseen data, they are suitable for classification tasks that cannot be solved
by specifying explicit rules, such as the disambiguation of tense senses. Having
conducted a rigorous analysis of different grammatical tenses, we conclude that
while some senses can be differentiated rather easily by implementing heuristic
rules, others require the use of machine learning algorithms to account for the in-
teraction of various features. Although the task of tense sense disambiguation is far
from being solved, we were able to show that our statistical models for four tenses
(present simple, present perfect, past simple, and past perfect) outperformed a
strong most-frequent-sense baseline and a state-of-the-art model by Reichart and
Rappoport (2010). To conclude, analyzing the tense senses in authentic data is a

complex task that highlights the need to revisit traditional FLTL notions.

The algorithms for detecting linguistic forms and their senses discussed in this
chapter open up a range of opportunities for iCALL applications. Searching for
appropriate reading materials containing these forms is one such application, which
has its roots in the SLA notions of input flood and input enrichment. We approach
this as an information retrieval task, discuss its implementation, and present an
online study investigating the benefits of input enrichment for language teachers

in the next chapter.






Chapter 5

Automatic Input Enrichment

“An ideal Web search site for language learners |...| would
provide sophisticated querying capabilities to ensure highly
relevant results, not only matching characters, but also parts
of speech and even syntactic structures. [...] Above all, a
search site for language professionals would stress quality

and relevance of search results over quantity.”

Fletcher (2004)

Parts of the work discussed in this chapter appeared in the following peer-reviewed publications

and theses:

1. Chinkina, M., & Meurers, D. (2018). Automatic Input Enrichment for Selecting Reading
Material: An Online Study with English Teachers. In Proceedings of the 13th Workshop
on Innovative Use of NLP for Building Educational Applications. New Orleans, LA.

2. Chinkina, M., Kannan, M., & Meurers, D. (2016). Online information retrieval for lan-
guage learning. ACL 2016: System demonstrations. Berlin, Germany.

3. Chinkina, M., & Meurers, D. (2016). Linguistically Aware Information Retrieval: Provid-
ing Input Enrichment for Second Language Learners. In Proceedings of the 11th Workshop
on Innovative Use of NLP for Building Educational Applications. San Diego, CA.

4. Chinkina, M. (2015). Form-focused Language-aware Information Retrieval (Master’s the-
sis, Eberhard Karls Universitat Tiibingen).
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5.1 A Search for Reading Material

The information needs of people searching for texts vary greatly and require dif-
ferent factors to be taken into account. In the educational context alone, one can
think of several groups of target users, namely, students, teachers, and language
test designers, each of whom will have their own search preferences. Indeed, the
information needs of a student writing an essay are quite different from those of
an educator designing a language test, as is their willingness to take time to con-
figure the search settings in order to get the best results. While a student may
be satisfied with interesting content and gloss over some unknown words or gram-
matical constructions, a language test designer will most likely have a clearer idea
of appropriateness factors and, if given the opportunity, will make use of a larger

number of text complexity settings.

When it comes to acquiring appropriate texts, sites such as Newsela! offer help to
users searching for reading material of a certain length and at a desired language
proficiency level. Their scope is narrowed to news articles that are manually
adapted and grouped into thematic categories and grade levels, which facilitates
search. Adapted readers and schoolbook texrts are another example of readily-
available enriched texts produced by language learning specialists. They either
simplify an already existing story or write an entire text from scratch, fortifying it
with grammatical constructions and vocabulary. Such books do not usually require
any additional searching as texts either represent a single story or are grouped by

grammar topics.

When searching for additional reading material and interactive activities, foreign
language teachers often turn to the Web. We chose them as the target group for
assessing the need for a web search engine for educational purposes, and asked
them about their use of web search in their teaching practice. After conducting
literature research on effective survey instruments (e.g., Sudman and Bradburn,
1982; Rattray and Jones, 2007), we presented the teachers with a survey consisting
of 14 questions. The majority of the teachers who took part in the survey were
in their 20s or 30s and had six to fifteen years of teaching experience (90%). The
majority were English teachers (80%) but some teachers of other languages, such
as Japanese (10%) and German (10%), were also represented. Two questions in

the survey asked whether teachers used web search engines to look for adapted

'https://newsela.com
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or authentic reading materials on the Web to use later in class and, if yes, at
which level (A1-A2, B1-B2, C1-C2). The results show that teachers search the
Web for both adapted and authentic texts at all complexity levels, with Level
B1-B2 receiving the largest number of responses (87.5%). Among the factors that
discourage them from using web search for educational purposes, 100% of teachers
selected vocabulary that does not correspond to the words students learn at school
(e.g., slang). Grammatical constructions that do not follow the rules taught at
school were among the most discouraging factors for 60% of teachers. Although
grammar difficulty as such was not selected as a discouraging factor by many
teachers, when asked about the desired functionality of a web search engine, all of
them expressed the need to find texts appropriate for a certain reading level and

containing particular grammatical constructions.

5.2 Input Enrichment Strategies: From the Web

to Corpora

While web search is a common method of acquiring authentic texts, there is an
abundance of other resources on specialized websites and language learning fo-
rums. Teachers also have reading materials that they frequently use in class and
will benefit from the ability to search and automatically enrich such corpora.
Therefore, we argue that input enrichment systems — although similar in nature
to web search engines — should be designed to search both the Web and other
text collections. Figure 5.1 presents an overview of input enrichment strategies for

ensuring a sufficient representation of target linguistic forms in reading materials.

Automatic online information retrieval
most control

Web Automatic Website (De)prioritization of
search category selection forms - /
selection relative T

form frequency

number of relevant ¢ /

documents Manual

category Manual Writing
/ Authentic literature selection editing from scratch
least control

Offline database

FIGURE 5.1: Strategies for automatic input enrichment of an already existing
corpus or during web search.

Automatic input enrichment starts with a search for a topic of interest. Restrict-

ing the search to a particular category, such as FAQs and tutorials, may not only
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narrow down the semantic scope of the results but also ensure the occurrences
of certain linguistic constructions, such as questions and imperatives, respectively.
Similarly, when searching a particular news website (e.g., Reuters?), one can expect
the retrieved news articles to have a higher or lower representation of formal vo-
cabulary, such as the words on the Academic Word List (Coxhead, 2000). These
techniques can be configured in the interface of a search engine or by expand-
ing the search query with words (e.g., FAQ) or advanced search operators (e.g.,
site:reuters.com). One can also make use of a standard lexical query expansion
to maximize the probability of the occurrence of the target linguistic forms in
the retrieved documents (see Section 5.5.3). The amount of further control over
the search results depends on the implemented settings and the available meta
information about the documents. While a text corpus can be annotated in ad-
vance, the automatic annotation of web texts can be conducted using a pipeline
of information retrieval (IR) and natural language processing (NLP) algorithms.
Once the documents have been annotated, the user can configure the settings to
rank the documents by (de)prioritizing linguistic forms to ensure the retrieval of

linguistically rich reading material.

In the next section, we discuss the implementation of the input enrichment compo-
nent of the FLAIR system introduced in Chapter 3. Originally designed as a web
search tool, it can be used equally well to search through Project Gutenberg®, hand-
curated text repositories for children, such as Time for Kids*, OneStopEnglish®,

or any other manually created and uploaded text corpora.

5.3 Implementation of Automatic Input Enrich-

ment Systems

5.3.1 FLAIR Components

The original FLAIR pipeline can be broadly reduced to four primary operations —
web search, text crawling, parsing and ranking. As demonstrated by the diagram

in Figure 5.2, the first three operations are delegated to the server, as they require

Zhttp://wuw.reuters.com
Shttps://www.gutenberg.org
‘http://www.timeforkids.com/news
Shttp://onestopenglish.com
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FIGURE 5.2: FLAIR architecture.

the most resources. Ranking, however, is performed locally on the client endpoint
to reduce latency. The following sections cover the main design decisions made

and challenges faced when implementing each of the four modules.

Web Crawler The implementation of the FLAIR web search module relies on
the Microsoft Bing API. Thus, some of the FLAIR functionality is built upon
the search options provided by Bing, such as searching web pages in a particular
language or searching only selected websites and categories. Given the increasingly
large number of web pages retrieved by Bing for every search, a cut-off value must
be specified to limit the document space for further re-ranking. FLAIR offers the
retrieval of 10 to 50 web search results. Alternatively, the user can upload their own
collection of texts of reasonable size. Once the user has specified the search query
and the number of results, the web crawler module uses the Bing API to retrieve
search results for a given query. If a document is not on our manually-created
black list and its URL is not identical to another already retrieved document, it

is stored in memory for further processing by the text extractor module.

Text Extractor After the specified number of results for a query have been
retrieved, the Boilerpipe library by Kohlschiitter et al. (2010) is utilized for text
extraction. This library provides several algorithms for the extraction of the main
textual content from different types of web pages. We tested DefaultExtractor, Ar-
ticleExtractor and LargestContentExtractor on a test collection of 50 documents.
The results indicate that DefaultExtractor is the best choice for this task, with
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the other two options extracting too little text in some cases when the main con-
tent was divided into several parts. It is worth mentioning that ArticleExtractor
should be a better choice for searching news articles and is indeed reported to have
higher accuracy in this scenario. FLAIR does not currently differentiate between
categories of web documents (e.g., news) but introducing this functionality may
improve both the performance of the text extractor module and the user’s search

experience.

The decision to use DefaultExtractor comes with a trade-off: it sometimes fetches
links and advertisements that are accumulated together to form very long sen-
tences. This can pose a problem at the next processing stage of FLAIR. To
address this issue and facilitate parsing, we add a full stop to the end of each line
that does not end with a punctuation mark. While decreasing the parsing speed,
this has the drawback of creating short sentences that are later identified as simple
sentences or incomplete sentences by the parser, and should be taken into account

when interpreting text features.

Parser The parser module employs Stanford CoreNLP (Manning et al., 2014)
to identify numerous linguistic forms using the syntactic category and dependency
information obtained from it. Long sentences are quite frequent in web texts, so
we employed the Stanford shift-reduce parser, which is less sensitive to sentence
length. This parser has also been reported to outperform the older Stanford con-
stituency parsers.® After obtaining the output from the parser, we use a detection
algorithm to identify 87 linguistic forms listed in an official curriculum for the En-
glish language. The detection of linguistic forms and their senses is described in
detail in Chapter 4, and the full list of the implemented grammatical constructions

and corresponding detection methods can be found in Appendix B.

Ranker The ranker module is responsible for re-ranking the retrieved documents
on the basis of the statistical analysis of the data received from the previous
modules. When making a decision about the parameters of the ranking model,
we adhered to the common IR practice of assuming that high-ranked documents
should balance the occurrences of all the items in the search query. That is, the
most relevant document would ideally contain the same number of occurrences

of all query items. Documents containing all query items but considerably more

Shttp://nlp.stanford.edu/software/srparser.shtml
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instances of one than the others would be ranked lower. Finally, the documents
containing only one item, even if the number of occurrences is higher than in any
other document, would be considered the least relevant. The types of ranking
features as well as the ranking algorithm itself are discussed further on in the

section.

5.3.2 Ranking Features

Ranking features in CL retrieval tasks range from standard statistical retrieval
measures, such as term frequency or document frequency, as discussed above, to
those driven by linguistics and NLP, e.g., the number of advanced conjunctions or
verb phrases per sentence. In our approach, we differentiate among three groups of
features, namely, static, dynamic, and FLAIR query features, which are taken into
consideration either simultaneously or separately depending on the end user of the
tool. It is important to note that since we work with the results already retrieved
from a commercial web search engine given some search term(s), a FLAIR query
does not consist of words but is a set of grammatical constructions specified by

the user to get a better ranking based on their learning or pedagogical needs.

Static features depend only on the document, not on the query. They include
document position in the initial ranking, document length and document read-
ability score. These features are precomputed during indexing. Dynamic features
depend both on the contents of the document and the query. In FLAIR, they
are represented by the term frequency (¢f) and document frequency (df) of the
target constructions. The BM25 algorithm discussed further in this section incor-
porates both tf, idf as well as relative document length. Finally, FLAIR query
features only depend on the query. When formulating a FLAIR query, i.e., select-
ing the grammatical constructions for re-ranking, a user can assign a weight to
each construction. These weights then become a significant factor in the overall

re-ranking.

While characteristics such as document length, position in the initial ranking, and
term weight are straightforward to calculate, readability score and tf-idf require
additional processing. In the current version of FLAIR, we focus on the retrieval
of grammatical constructions and provide the user with an approximation of the
readability level of each retrieved document by using simple surface features, such

as word and sentence length.
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5.3.3 FLAIR Ranking Algorithm

Our system utilizes the IR bag-of-words model, which is in fact a bag of linguistic
constructions in the FLAIR context, where each document in the collection is
represented as a set of grammatical constructions. The user can then provide a
FLAIR query that contains the weights corresponding to how much preference
should be given to each construction. Intuitively, the documents containing a

larger number of occurrences of the specified construction should be ranked higher.

For this, the term frequency (tf) measure is used, which is simply the number
of occurrences of a grammatical construct in a document. However, if several
constructions with different frequency distributions are specified, e.g., frequent
definite articles and infrequent phrasal verbs, they will still get the same weights
given the identical user configuration. The more frequent constructions will be
rewarded more than the less frequent one, which is not desirable. This problem
is solved by making use of the inverse document frequency (idf) measure, which
rewards constructions that are infrequent across the whole collection. Document
length is another parameter that is introduced into all transformations of  f-idf to

ensure a balance between short and long documents in the set of retrieved results.

BM25 (Robertson and Walker, 1994) is an example of such a transformation,
and has proved to be highly successful in traditional IR systems. An important
advantage of BM25 is the fact that it allows for units of any length and helps to
avoid the dominance of a single term over the others, which is particularly useful
in the input enrichment context. There are two free parameters k and b in BM25,
which control the upper bound of ¢f and the document length normalization,
respectively. Although evidently useful, the optimal combination of their values
has been found difficult to predict for different text collections (Zobel and Moffat,
1998). In the book Introduction to Information Retrieval, Manning et al. (2008)
suggest that k£ € [1.2;2.0] and b = 0.75. We experimented with these values on
different collections of documents and decided to use £ = 1.7 and b = 0 as the
default values in the end. In addition, we used b to extend the functionality of the
tool by giving the user control over the b parameter, which can take values from
0 to 1. When it is set to zero, no length normalization is carried out whatsoever,
so longer documents are ranked higher due to producing larger (non-normalized)

tfs. The bigger b is, the more long documents are penalized.
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Finally, the idea of filtering out stop words, short and extremely frequent units,
is accepted by many standard IR systems because it saves processing power when
constructing the idf. But how well does this apply to our bag-of-constructions ap-
proach? Following the frequency logic, candidate stop constructions could include
articles, prepositions or personal pronouns — these constructions usually appear
in every document in the collection. But, as opposed to a standard search query,
the constructions included in a FLAIR query can contain those on the stop list.
Indeed, it is easy to imagine a user seeking out texts with as many articles as
possible: either a teacher wanting to refresh their students’ memory about article
usage or a researcher setting up an experiment to test the impact of visual input
enhancement on the acquisition of articles (Ziegler et al., 2017). However, if arti-
cles are on the stop list, the user’s configuration will not change the order of the
documents and will not result in the most appropriate ranking. Consequently, this

standard IR technique might not be as beneficial for grammar retrieval.

Thus, the grammatical score of each document is an instantiation of BM25 and is

calculated as follows:

(k+1) X tfya N +1

x log
tfoa+kx (1—b+bx 14 df;

G(q,d) =

teqgnd

(5.1)

where ¢ is a FLAIR query containing one or more linguistic forms, ¢ is a linguistic
form, d is a document, tf; 4 is the number of occurrences of ¢ in d, |d| is document
length, avdl is the average document length in the collection, and k£ and b are free

parameters set by default to 1.7 and 0, respectively.

To demonstrate the advantages of this approach over simple tf-idf ranking, let us
assume we have used a web search engine to search for the 2015 Pulitzer Prize and
retrieved the top six documents for further re-ranking. We then configured the
settings by assigning the highest weights to two grammatical constructions, the
definite article and phrasal verbs. The order in which the documents are repre-
sented in (24a) — (24f) corresponds to their FLAIR ranking using the grammatical
score presented above. Table 5.1 contains the scores for three ranking functions:
tf (normalized by document length), ¢ f-idf (normalized and smoothed) and BM25

(k=1.7; b=0). In each column, the score of the document ranked first is in bold.
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(24) a. ... they put out an annual ranking of the most dangerous states for
women based on the rate of women killed by men. South Carolina

came out at ...

b. ... forming a coalition with Labour, however, Miliband did come out
himself to rule out the ...

¢. ... The drama award, ... according to the guidelines. The play beat
out “Marjorie Prime," by Jordan Harrison ...

d. ... the LA Times won the Writing Prize for the stories of how the whole
draught in the USA had influence on ...

e. ... exploration of the impact of human behavior on the natural world.
David I. Kertzer’s “The Pope and Mussolini: The Secret History of
Pius XTI ...

f. ... at this point is that the outcome of the presidential race will likely

determine control of the Senate ...

Several observations can be made when comparing the scores in the table, the most
obvious one being the highest-ranked document. Because the simple ¢ f algorithm
assigned identical weights to both constructions, its final score is simply the ratio of
the total number of constructions in the document to the document length. The ¢ f-
1df algorithm took the document frequency of each construction into consideration
as well and rewarded a shorter document with a larger number of occurrences of
the infrequent construction. More accurately, it did not reward shorter documents
but rather penalized longer ones, which is clear from the scores for documents
(24a) and (24e). Finally, BM25 refrained from over-penalizing longer documents
and penalized the extremely high df of the definite article instead, thus rewarding

the document with a balanced number of occurrences of the two constructions.

5.3.4 Other Potentially Useful Features

When using the web search module of FLAIR, the user provides their information
need or current interest, and it is the task of a standard web search engine to
rank the most relevant results higher. Intuitively, the position of a document
in the initial ranking can be a good estimate of how well it satisfies the user’s
needs. However, the results of our online study with English teachers discussed in

Section 5.4 showed that there was no significant correlation between the original
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d | |d| TF score TF-IDF score BM25
24a | 27 0.15 0.26 5.1
24b | 15 0.2 0.39 4.57
24c | 16 0.25 0.36 4.34
24d | 21 0.24 0.28 2.35
24e | 24 0.16 0.2 2.21
24f | 18 0.16 0.2 2.01

TABLE 5.1: Comparison of the tf, tf-idf and BM25 weighting for grammar
retrieval given a collection of six documents.

rank of the result and its content rating (Pearson’s r = .1,p = .27). This implies
that a ranking algorithm may not profit from a feature representing the original
rank of the document before re-ranking, although more studies are needed to
confirm this. Nevertheless, other measures of content relevance explored in the
NLP and IR research, such as the semantic overlap between the search query and

a document, may be beneficial for prioritizing topically relevant documents.

The background information necessary for understanding a text, or prior knowl-
edge of the topic, has proved to be a strong predictor of the reader’s comprehension
of a text (Kendeou and Van Den Broek, 2007; Ozuru et al., 2009). This can be
automatically approximated using named entity recognition, a subtask of NLP
with robust state-of-the-art systems producing output with a high F-measure of
over 90% (Marsh and Perzanowski, 1998). The count of the person, organization
and place tags that appear infrequently in the document collection and are not
followed by an apposition can be used to calculate the amount of background
knowledge the writer expects their readers to have. Consider the sentences (25a)
and (25b):

(25) a. Joe Kelly and Matt Barnes each pitched a perfect inning of relief for
the Red Sox to complete the shutout.

b. FErdogan, 64, the most popular — yet divisive — leader in modern Turkish

history, told jubilant, flag-waving supporters there would be no retreat

from his drive to transform Turkey, a NATO member and, at least

nominally, a candidate to join the Furopean Union.
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The first excerpt requires the reader to have the knowledge about three named
entities — Joe Kelly, Matt Barnes, the Red Sox — because no additional information
is provided about any of them in the immediate context. At the same time,
although the second sentence contains more named entities, the writer elaborates
on two (or three) of them by using appositions, thus making it easier for a lay reader
to understand it. This observation is in line with the feedback from the English
teachers who took part in our online study discussed in the next section: When
selecting reading materials for class, they discarded texts with a high number of

unknown names that were not familiar to their students.

5.4 Online Study with English Teachers

In order to assess teachers’ experience and satisfaction with automatic input en-
richment as a method for retrieving topically relevant and linguistically rich texts,
the current study focuses on teachers as the conduit between students and reading
materials. The results should inform the computational linguistic and language
teaching communities about the characteristics of appropriate reading materials
for language learners and the use of automatic input enrichment to retrieve such

material.

The research questions of the study address the importance of content and lin-
guistic form as well as teachers’ attitudes towards their optimal balance: Does

automatic input enrichment succeed in giving teachers the material that:

e is enriched with the linguistic forms relevant in the FLTL context,
e is in line with the information need expressed via a search query, and

e is suitable as a reading assignment for their students?

We designed an online study to operationalize these research questions. In the
study, English teachers compared news articles retrieved by the standard web
search engine Microsoft Bing to those provided by the automatic input enrichment
system FLAIR. The following hypotheses guided the design and content of our
study:

H1: Teachers prefer texts provided by FLAIR over those provided by Bing when

choosing a reading assignment for their students.
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H2: Texts provided by FLAIR are perceived to be less relevant to the topic than
those provided by Bing.

H3: The more infrequent the target linguistic forms are, the more teachers prefer
texts provided by FLAIR over those provided by Bing.

5.4.1 Design

In order to address the aforementioned hypotheses, we designed an online study
where the participants were asked to rate and compare pairs of news articles based
on (i) their relevance to a given topic and (ii) the representation of given linguistic
forms in them. One of the news articles was the top search result from a standard
search engine, while the other was a search result prioritized by FLAIR after
specifying the target linguistic forms. We opted for a repeated-measures within-
subjects design and ensured a random order presentation of the news articles
retrieved from Bing and FLAIR as well as a random combination of topics and

pairs of linguistic forms in the main task. The study proceeded as follows:

Procedure Participants received a message with the link to the online study and
were asked to carefully read the information for participants and the consent form
before registering. Upon registration, they filled out a short questionnaire asking
for their age, gender, native language(s), English language proficiency, highest
degree in teaching, and the proficiency level(s) of their students. They were also
asked whether they used web search to look for reading materials for their classes.
Once they submitted their answers to the questionnaire, they were able to read

the detailed instructions, which were displayed on every login.

The flow of the main task is displayed in Figure 5.3: Participants were presented
with a topic and a pair of target linguistic forms. They read and rated each
of the two provided news articles by answering two questions: 1) How relevant
is the article to the topic? 2) How rich is the representation of the two target
linguistic forms in the article? Answers to both questions were submitted on a
five-point Likert scale. Finally, participants were asked to pick one article as a
reading assignment for their students with a preference scale from Definitely Text
1 to Definitely Text 2.
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After completing the ten topics, participants filled out a debriefing questionnaire
where they explained their general strategies for answering each of the questions
in the main task (e.g., How did you decide on the relevance of an article to a
given topic?). Finally, they submitted their email address and received a 20 Euro

voucher as reimbursement.

Implementation We implemented the online study as a Java J2EE web appli-
cation. To ensure anonymity, personal information on users obtained from the
questionnaire was stored separately from their responses. Upon registration, each
user was assigned a list of ten topics in a random order. Each topic was matched
with one of the three types of linguistic forms (see Section 5.4.2 below), one news
article provided by FLAIR and one news article retrieved by Bing. For each topic,
the two articles were displayed in a random order, and participants could not

change their rating of the first news article once the second was displayed.

5.4.2 Data and Participants

A total of 60 news articles were used in the study. The texts were presented in
pairs concerning shared the same topic and the same pair of target linguistic forms
(e.g., the present simple and present progressive tenses). One article in each pair
was obtained by submitting a search query to the web search engine Microsoft Bing
and selecting the top search result. The other article in each pair was obtained
by submitting the same query to FLAIR, configuring the settings to prioritize
texts with the two target linguistic forms and selecting the top search result from
the reordered list. As FLAIR relies on Microsoft Bing for retrieving the original
search results, the only variable that differed between the two conditions was the

automatic input enrichment component implemented in FLAIR.

Linguistic forms For the current study, we selected three pairs of linguistic
forms (frequent, mixed, and infrequent) based on their document co-occurrence
frequency in a corpus of 2400 news articles. Table 5.2 provides the distribution of

their mean relative term frequencies across the texts provided by Bing and FLAIR.

The frequent pair consisted of regular (e.g., typed) and irregular (e.g., wrote —

written) verb forms. It had a high document co-occurrence frequency of 95%. This
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Topic: News
Linguistic Comparative degree of short
forms: adjectives and adverbs (smarter)

Comparative degree of long (more

adjectives and adverbs intelligent)

Start
Text 1
“Title of the news article 1.."
1. How relevant is the article to the topic?
(irrelevant) 1 2 3 o4 5 (relevant)

2. How rich is the representation of the two target linguistic forms in the article?
(poor) 1 2 3 4 5 (good)
Next

Text 2
“Title of the news article 2..."

1. How relevant is the article to the topic?
(irrelevant) 1 ¢ 2 3 4 5 (relevant)

2. How rich is the representation of the two target linguistic forms in the article?
(poor) 1 2 3 4 e« 5(good)
Next

Question

Which news article would you give as a reading assignment to your students?
Text1: I Title of the news article 1.."
Text2: ITitle of the news article 2.."

Definitely Text 1 Likely Text 1 Doesn't matter Likely Text 2 Definitely Text 2

Submit

FIGURE 5.3: The main task included reading and rating two news articles and
selecting one of them as a reading assignment for class.

means that these two linguistic forms occur together in 95 out of 100 documents
on average. Both constructions are also highly frequent: in the texts chosen for
our study, regular and irregular verbs both had an average relative term frequency
of 0.016. We did not count those forms when they occurred in modifier positions

(e.g., is interested, colored balloons).

The mixed pair of linguistic forms consisted of two grammatical tenses, present
simple (e.g., Kate plays guitar) and present progressive (e.g., Kate is playing guitar
now). Their relative term frequencies in the study were 0.012 and 0.003, respec-
tively, with a document co-occurrence frequency of 50%. Predicates containing
modal verbs were not counted as the present simple tense (e.g., He can swim),

with the exception of the verbs have to, need, and want. When a form constituted



102 Chapter 5 Automatic Input Enrichment

part of a conditional sentence, it was not counted either (e.g., I will not go out if

it 1s still raining).

The infrequent pair consisted of the comparative degree of short adjectives and
adverbs (e.g., nicer) and that of long adjectives and adverbs (e.g., more beautiful).
In addition to only co-occurring in 4% of documents, these linguistic forms had low
term frequencies of 0.002 and 0.001. When the comparative form more occurred
as part of a longer form (e.g., more intelligent), the whole expression was counted

as a long form, and more was not additionally counted as a short form.

Texts Using Microsoft Bing, we did a web search for Reuters news articles by
expanding the search query with site:reuters.com. The following ten topics popular
on Bing at the time served as search queries: Game of Thrones, health care, street
artists, Roger’s Cup 2017, SpaceX, electric cars, Bitcoin, Venezuela coup, Brexit,
opioid epidemic. The top result for each topic was stored in our database as a
Bing result, and the top 20 results were used for further reordering — in line with
Lewandowski (2008), who retrieved the top 20 results per query to evaluate the
relative performance of major commercial web search engines. This decision was
also partly based on the results of several case studies demonstrating that users

only look at the top 10-20 results retrieved by a web search engine.

For each topic, we repeatedly configured the FLAIR settings to prioritize texts
containing each of the three pairs of linguistic forms presented above and stored
the three top hits as FLAIR results. In the end, we had three pairs of news
articles per topic: One was the top web search result from Bing, while the other
was the top result from FLAIR. The two texts for a given topic and a given pair of
linguistic forms were of comparable length (the difference was at most 50% of the
shortest article) and at the same or adjacent readability levels calculated using a
simple Automated Readability Index (Senter and Smith, 1967).

Participants Twelve English teachers working with upper-intermediate and ad-
vanced learners of English in Germany were recruited through university and social
media channels. Each participant was reimbursed with a 20 Euro voucher, and all
responses (n = 240) were anonymized. The participants’ ages ranged from 25 to
59 years old, and 91% of them were women. The first language of the majority
of the participants was German (75%) followed by English (8%), French (8%),
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Bing FLAIR

regular verbs 0.012 0.020

frequent
(95%)

irregular verbs 0.012 0.019

present simple 0.011 0.014

mixed
(50%)

present progressive (0.001 0.005

5 comparative d. of

@ —

=2 short adj. and adv. 0.001 0-003
g

g

" comparative d. of 0 0.001

long adj. and adv.

TABLE 5.2: Mean relative term frequencies of three pairs of linguistic forms
across the texts provided by Bing and FLAIR.

and Spanish (8%). All participants had an advanced level of English proficiency
and a degree in teaching English. They worked at a secondary school (50%), a
high school (42%), or a university (8%). The majority (75%) specified that they
currently used web search to look for reading materials for their students, and 25%

said they sometimes used web search for this purpose.

5.4.3 Results

All analyses were conducted using R version 3.2.1 (R Development Core Team,
2008). Packages for individual tests and models are specified in the footnotes. We
first compared the general preference for FLAIR to that for Bing. As previously
mentioned and as presented in Figure 5.3, each item consisted of two articles and a
final question. This question asked which of the two articles the participant would
choose as a reading assignment for their students and their level of certainty in
doing so. The option Doesn’t matter was selected 25% of the time. These responses
were not included in the analysis presented below as we were interested in the cases

where teachers expressed some preference.
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All in all, a chi-square test” revealed a significant preference for FLAIR: Partic-
ipants chose it over Bing 71% of the time; x?(1) = 16.04, p < .001. They were
also more confident in choosing FLAIR: The answer Definitely was selected three
times more for FLAIR than for Bing; x*(1) = 12.60, p < .001. Thus, our first hy-
pothesis could be confirmed: Teachers indeed preferred the linguistically enriched
texts provided by FLAIR over those provided by Bing when choosing a reading

assignment for their students.

We conducted two logistic regression analyses® to investigate how texts provided
by FLAIR and Bing compared in terms of (i) their representation of linguistic
forms and (ii) the relevance of the content to the topic. In line with the de-
scriptive statistics in Table 5.2, the logistic regression models showed that FLAIR
(M = 3.22, SD = 1.07) was significantly more likely to be rated higher in terms
of representation of linguistic forms than Bing (M = 2.51, SD = 1.15); b = 1.89,
SE = 0.51, p < .001. Moreover, texts provided by FLAIR (M = 3.67, SD = 1.08)
were perceived to be slightly more relevant to the topic than those provided by
Bing (M = 3.58, SD = 1.00), although the difference failed to reach statistical
significance; b = 0.53, SE = 0.74, p = .470.

In order to test whether the absence of statistical significance was due to chance
or whether the texts provided by FLAIR and Bing were indeed comparable with
regard to content, we conducted two one-sided tests of equivalence (Schuirmann,
1987).2 The results were statistically significant, t; = 4.55, to = —3.19, p; <
.001, ps < .001, 90% CI [—0.13;0.31], so we could confirm that the samples were

equivalent with a medium effect size of 0.5 and an alpha level of .05.

Finally, we used a two-way repeated-measures analysis of variance!® to test whether
the preference for FLAIR depended on the type of linguistic form. We hypothe-
sized that the more infrequent the target linguistic forms were, the more teachers
would prefer texts provided by FLAIR. The first factor was the preference for
FLAIR (a five-point scale), and the second factor was the type of linguistic forms
(frequent, mixed, or infrequent). The ANOVA did not show the tendency that we
expected; F'(2,90) = 0.87,p = .419; so we inspected the means of all three groups

and performed paired samples t-tests.

"R native stats package, method chisq.test()
8R native stats package, method glm()

9R package TOSTER, method TOSTtwo()
10R native stats package, method aov()
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The biggest mean preference for FLAIR was found for the mixed pair of lin-
guistic forms (present simple and present progressive; M = 3.92, SD = 1.99), fol-
lowed by the infrequent group (comparative degree of short adjectives and ad-
verbs; M = 3.69, SD = 1.30) and the frequent one (regular and irregular verbs;
M = 3.46, SD = 1.39). When we turned the five-point scale into a binary out-
come variable (i.e., either selecting FLAIR as a reading assignment or not) and
calculated the percentage of responses favoring FLAIR, we found 76% of positive
responses in the infrequent group, 75% of responses in the mixed group, and 65%

in the frequent one.

As the data for the three groups were not normally distributed (Shapiro-Wilk’s
normality test'! yielded significant differences from a normal distribution), we

12 The paired tests revealed that

opted for paired two-samples Wilcoxon tests.
there was no significant difference between the groups with regard to preference
for FLAIR: infrequent and mixed groups, Z = 128, p = .352; mixed and frequent

groups, Z = 157, p = .643; infrequent and frequent groups, Z = 217, p = .727.

5.4.4 Discussion

English teachers demonstrated an overall preference for FLAIR over a standard
web search engine when choosing a reading assignment for their students. This is
in line with our first hypothesis and a strong argument in support of automatic

input enrichment tools for language teachers.

Feedback from teachers suggested that the relevance of the article to the topic and
the content of the article were the decisive factors in choosing one article over the
other as a reading assignment. We were therefore particularly interested in whether
there was a trade-off between the content and the representation of linguistic forms
in the articles, because a large number of the news articles retrieved by FLAIR
(40%) were not among the top ten original search results. Thus, we hypothesized
that the texts retrieved by FLAIR would be rated as less relevant to the topic but

have a richer representation of linguistic forms.

As the number of occurrences of the given linguistic forms in the texts retrieved
by FLAIR was higher (see Table 5.2), this indeed resulted in significantly higher

UR package dplyr, method shapiro.test()
12R native stats package, method wilcoz.test()
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teachers’ ratings for the representation of linguistic forms. However, counter to
our expectations, the texts provided by FLAIR were neither inferior nor superior
to those originally retrieved by Bing in terms of content: They were rated slightly,
but not significantly, more relevant to the given topic. This suggests that the most
appropriate texts for language learners may not appear within the top web search
results, and those texts that are not ranked high by standard web search engines

can have higher linguistic and pedagogical potential than the top hits.

As the study showed, automatic input enrichment is particularly beneficial for re-
trieving texts containing target linguistic forms of lower frequency levels, although
the differences were non-significant. This can be explained by document and term
frequencies: The high term and document frequencies of frequent linguistic forms
make it likely that every retrieved text contains at least several instances of each
form. In this case, the texts prioritized by an automatic input enrichment system
may not differ from the original top hits with regard to their linguistic character-
istics. Other frequently co-occurring pairs of linguistic forms relevant for language
teaching are, for example, adjectives and adverbs (co-occurring in 97% of docu-
ments), the definite and indefinite articles (96%), present simple and past simple
(93%), and to infinitives and ing verb forms (90%). In the next section, we pro-
pose a way to improve the functionality of automatic input enrichment systems

targeting frequent linguistic forms.

Infrequent linguistic forms, on the contrary, appear together in few texts and have
a small number of occurrences within each text. The advantage of automatic input
enrichment in this case is that it can detect the few texts that contain the target
infrequent linguistic forms. Other pairs of linguistic forms with low document co-
occurrence frequencies as well as low term frequencies are, for example, the modal
verbs can and may (14%), past perfect and past progressive (12%), future simple
and going to (9%), wh- questions and yes/no questions (7%), and real and unreal
conditionals (4%).

In the case of mixed pairs of linguistic forms (i.e., those consisting of one frequent
and one infrequent form), the reordering algorithm pushes the few texts containing
the infrequent form to the top. These texts are at the same time also likely to
contain several occurrences of the frequent form due to its high term and document
frequencies. Other mixed pairs of linguistic forms relevant for teaching English are

past simple and present perfect (63%), positive and comparative degrees of short
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adjectives (58%) and adverbs (45%), present simple and future simple (40%), and
past simple and past progressive (30%).

The aforementioned results show that, while relying on a standard web search
engine to retrieve the results, automatic input enrichment succeeds in providing
the texts that are a) rich in the specified target linguistic forms, b) in line with
the information need expressed via a search query or a topic, and c¢) suitable as a
reading assignment. The results also provide insights about which linguistic forms

benefit most from automatic input enrichment.

It is important to note that our goal was not to compare automatic input en-
richment to web search but to show that the linguistically motivated re-ranking
of texts leverages the content and form aspects of the retrieved material. With
the abundance of authentic texts available on the internet, such reordering does
not prioritize texts of low quality but selects the most linguistically appropriate
ones from the pool of relevant texts. This means that systems such as FLAIR can
rely on standard web search engines for retrieving texts with sound content. In
fact, FLAIR also allows users to upload their own corpora and prioritize the most
appropriate texts from among those that they have preselected. Whether auto-
matic input enrichment systems also provide an effective learning environment for

language learners should be tested in further end-to-end empirical studies.

5.5 Challenges and Solutions

The findings of the online study described above, numerous discussions with lan-
guage teachers, previous theoretical as well as empirical work in second language
acquisition (SLA), and our own understanding and practical knowledge of the
field helped us to identify the main challenges of designing a system providing

automatic input enrichment.

5.5.1 The Web as Corpus for FLTL

When approaching the implementation of an input enrichment system for FLTL as
a web search task, two types of challenges arise. The first concerns the appropriate-
ness of the Web as a corpus in general, while the other concerns its appropriateness

as a corpus for FLTL.
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Is the Web representative? If so, is it representative enough for language teaching
and learning? In their introduction to the special issue of the Web as Corpus,
Kilgarriff and Grefenstette (2003) argue that the Web is as representative as any
other corpus, with its own characteristics and limitations that need to be explicitly
stated and discussed. Although they acknowledge several constraints of web search
engines for language researchers, the authors also call the Web “a fabulous linguists’
playground”. However, whether the Web is an appropriate playground for language
learners as well is a more complicated question. One difference between language
researchers and learners is that the latter do not necessarily benefit from exposure
to all the varieties of language (at least not at lower levels of proficiency). The
solution we propose is in line with the position taken by Kilgarriff and Grefenstette
(2003) but applied to FLTL: When selecting the Web as a source of additional
reading materials for class, teachers should introduce it to learners and explain
its peculiarities. Different genres of text, different language dialects and varieties,
reliable and unreliable sources of information, blogs, social media language — they
all require a special introduction and careful exploration but do not have to be

banned from the FLTL classroom.

How erroneous is the language on the Web? Is it too erroneous for language
learners? While referring to the Web as a useful source of frequently occurring,
authentic, and contextualized linguistic forms, Wu et al. (2009) also point out that
it does not necessarily represent exemplary models of language. Indeed, web texts
may contain typos, grammatical errors, and unconventional collocations. What

can one do to minimize learners’ exposure to them?

One scenario involves the user making a mistake or a typo themselves. This has
already been addressed by standard web search engines, which have the function-
ality of correcting misspelled words in a query. A search for I beleave in you will
automatically yield the results for its corrected version, I believe in you. This
ensures that the user will not receive any web pages with the erroneous spelling of
this word. That being said, web search engines also provide the option of searching
for the results of the original query in case the corrected words are neologisms or
proper names. However, in another scenario, occasional misspellings and errors
may occur in articles, blogs, and social media posts. As parsing is an integral part
of any input enrichment system, the integration of an additional spell-checking
step at this stage may filter out some unacceptable documents and will not lead

to overhead.



Chapter 5 Automatic Input Enrichment 109

Is the vocabulary appropriate (no swear words)? Is it appropriate for FLTL (no
slang)? 1In response to the first concern, standard web search engines have im-
plemented a safe search option that, when activated, hides websites containing
inappropriate language from users. While this is useful for parents and language
teachers alike, the latter also express a need for stricter filtering options. In partic-
ular, the teachers who took part in our online study were concerned about lexical
items in the texts that their students may not be familiar with. In line with the
approach taken by Wu et al. (2009), who used a word list from the British National
Corpus to remove non-words and website names, one can use a pre-compiled word
list to ensure that the retrieved texts contain only or at least a certain percentage

of known lexical items.

5.5.2 Relative Importance of Content and Forms

What do teachers care about when selecting reading material for class: the content
or an appropriate level of vocabulary and grammar? More interestingly, what can
foster or hinder learners’ language acquisition? Teachers’ comments in our online

study may provide some insights into the first question.

When the teachers were asked how they selected news articles for a reading assign-
ment, the relevance of the content to the topic was an important factor. Teachers
were particularly sensitive to the amount of irrelevant information in the text
(including names and tedious details) and looked out for texts that could spark
further discussion in class. The majority viewed the content as superior to the
representation of linguistic forms. This demonstrates that reading activities are
commonly designed to be communicative and serve as a basis for further interactive

activities.

On the other hand, the SLA research on processing input for meaning and form
reviewed in Section 2.1 provides evidence that reading and grammar can be pre-
sented together. In fact, in one study, learners who read for meaning and form
did better on a reading comprehension test than those who only focused on com-
prehending the text (Morgan-Short et al., 2012). While more SLA research on
this topic will advance our understanding of the relative importance of reading for
meaning and form, automatic input enrichment systems can support such research
by logging users’ activity to identify the characteristics of topically relevant and

linguistically appropriate reading material.
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5.5.3 Frequent and Infrequent Linguistic Forms

Another potential benefit of the logs obtained from the users of an input enrich-
ment system is in exploring whether different topics and categories of web texts
differ in the frequencies of various linguistic forms. To test the viability of this
question, we compared 2400 documents retrieved for two types of queries — people
and events. A chi-square test was used to compare the average relative frequen-
cies of linguistic forms in the two categories of documents. The results showed
that there were no statistically significant differences between the documents of
category people compared to those of category events (p > 0.05 for each linguistic
form). However, it would be interesting to compare the distribution of gram-
matical constructions in a larger document collection retrieved for other types of
queries obtained from real learners’ search logs. Such analyses can be useful for
the teacher to ensure that all learners get the same exposure to target grammatical

constructions, no matter what topics they search for.

While there may not be much variation in the distribution of one linguistic form
in the texts of the two aforementioned categories, there are certainly some differ-
ences in the relative frequencies of individual linguistic forms (see Section 5.4.2
and Figure 4.1). Interestingly, both frequent and infrequent linguistic forms pose
challenges for input enrichment. As the results of our online study show, when
the target linguistic forms are highly frequent (such as regular and irregular verb
forms), language teachers’ preference for an input enrichment system is not over-
whelmingly higher than that for a standard web search engine. As discussed in
Section 5.4.4, this has to do with the fact that frequent forms are very likely to be
richly represented in any text. But how can input enrichment systems maximize

their usefulness and effectiveness in this case?

The first solution is counting types instead of tokens or at least offering this option
to the user. A good example of a linguistic form where this change will make a dif-
ference is the category of irregular plural nouns, such as people, children, women,
and men. Although irregular nouns are an exception to the rule of adding the in-
flection -s to singular nouns, they are treated as a frequent linguistic form because
the aforementioned four words are highly frequent across web documents. Count-
ing each unique word only once will reduce the term frequency of this linguistic

form, but increase its weight in the FLAIR ranking algorithm because it prioritizes
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infrequent constructions. For grammatical constructions, such as tenses, this so-
lution can be complemented with the disambiguation of tense senses, as discussed

in Section 4.2 and further in this section.

Some infrequent forms, some of them have an extremely low document frequency
as well as a low term frequency. This means that even when FLAIR finds a few
documents containing the construction, their number of occurrences within each
document may not be enough for language practice. Simply retrieving more docu-
ments prior to re-ranking may not solve the issue in this case. As discussed above,
the assumption that a certain category of texts will have a richer representation
of an infrequent form has not been empirically proved, either. We thus propose
a more fine-grained classification of texts that is tailored to every infrequent lin-

guistic form.

For instance, one can expect Frequently Asked Questions (FAQs) and interviews
to contain a higher number of questions than news reports. When looking for im-
peratives, one can consider nowadays ubiquitous How-To articles, cooking recipes,
and user manuals. This solution can be put to practice using an ad-hoc IR method
of query expansion (QE). For instance, when the user specifies questions as a tar-
get construction, the system will automatically expand the query with the term
FAQ or interview before sending a request to a standard web search engine, thus
ensuring a higher number of occurrences of the target construction in the top re-
sults that are to be further re-ranked by the tool. Currently, we assume that the
user will first type in a search query, get the required number of search results,
and only then configure the grammatical settings by selecting the target linguistic
forms. However, another scenario is possible: The system can first ask the user
to select the target forms and suggest the topics and categories of texts that are
most likely to contain it. Finally, QE can also ensure that a web search engine
classifies the query sent by FLAIR as an informational one. This is needed in
order to retrieve web documents containing enough text material as opposed to,
for instance, transactional websites. In the current version of FLAIR, we use QE
for this purpose by adding the word about to every query. Importantly, this should
not alter the user’s informational request and can be seen as the initial step of QE,

which can then be followed by any of the techniques described above.
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5.5.4 Tense Sense Disambiguation for Input Enrichment

While the detection of forms is the key component of input enrichment, differenti-
ating between the possible interpretations of the same form can result in a richer
and more varied linguistic representation. Consider the following two excerpts,

(26a) and (26b), targeting the past simple tense:

(26) a. “Of course, the details are incredibly complex and, as in any negoti-
ation, there will be compromises,” she said. But she added she was
setting out a path to deliver the Brexit people had voted for. “I will
need your help and support to get there,” she told the Sunday Times.

b. The divisions inside her government over the customs issue were laid
bare on Tuesday when Foreign Minister Boris Johnson said proposals
for a customs partnership with the European Union after Britain leaves

the bloc were “crazy”.

Although both excerpts contain the same number of occurrences of the target
linguistic form, the first one presents only one function of past simple, namely,
reporting something in the past (said, added, told). The second one, on the other
hand, presents a wider range of functions, such as a state in the past (were) and a
passive action in the past (were laid). As we have proved that statistical models
are capable of detecting different functions of the same tense (see Section 4.2), the
integration of such functionality into input enrichment systems will ensure learners’
exposure to richer linguistic input. Due to a number of important conceptual and

design decisions about its concrete implementation, we leave this for future work.

5.6 Summary

This chapter outlined motivations for input enrichment and presented an online
information retrieval system for ensuring effective input enrichment in a real-life
teaching setting. An online study showed that the FLAIR system succeeds in
selecting reading material that (i) is in line with the teacher’s pedagogical goal
(that is, enriched with target linguistic forms), (ii) offers content of interest to the

learner, and (iii) is suitable as a reading assignment.
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Systems providing input enrichment can be utilized in a language learning class-
room setting or — as shown in Section 5.4 — as a basis for studies on input en-
richment, input enhancement, and other SLA methods relying on enriched input.
Apart from that, such systems can also support the functionality of state-of-the-
art iCALL systems that generate exercises from text, such as Language Muse®"
(Burstein et al., 2012). We contribute to this line of research by developing a ques-
tion generation system, evaluating it, and integrating it into FLAIR. Chapter 6
presents the rationale behind the system and different types of questions that can

be generated in the FLTL context.






Chapter 6

Automatic Question Generation for
FLTL

Parts of the work discussed in this chapter appeared in the following peer-reviewed publications

and theses:

1. Chinkina, M., & Meurers, D. (2017). Question Generation for Language Learning: From
ensuring texts are read to supporting learning. In Proceedings of the 12th Workshop on
Innovative Use of NLP for Building Educational Applications. Copenhagen, Denmark,
pages 334-344.

2. Chinkina, M., Ruiz, S., & Meurers, D. (2017). Automatically generating questions to
support the acquisition of particle verbs: evaluating via crowdsourcing. CALL in a climate
of change: adapting to turbulent global conditions—short papers from EUROCALL 2017.

A growing body of computational linguistic (CL) research supports automatic
question generation (QG) as a means of assisting teachers in constructing practice
exercises and tests. For example, Heilman (2011) developed a prominent approach
to the generation of factual questions suitable for beginner or intermediate stu-
dents. His goal is to assess the reader’s knowledge of the information in the text,
which is relevant for both content and language teaching. Other QG systems
have been developed to assist students in reading (Mazidi and Nielsen, 2014) and
vocabulary learning (Brown et al., 2005; Mostow et al., 2004), or to identify weak-
nesses in students’ knowledge (Cheng et al., 2009). When implemented properly,
a question generation system can support language teachers by saving them hours

of time or facilitate learners’ self-evaluation.
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In this chapter, we broaden the perspective on the different functions questions can
play in foreign language teaching and learning (FLTL) and discuss how automatic
QG can support these different uses. Complementing the focus on comprehension,
we highlight the fact that questions can also be used to make learners notice form
aspects of the linguistic system and their interpretation. Furthermore, we dis-
cuss and illustrate the generation of well-established and novel types of questions,
and present the results of a crowdsourcing study showing that the questions au-
tomatically generated by our system are comparable to human-written ones. The
current standalone implementation of our question generation system is available

at www.purl.org/qg.

6.1 Questions in FLTL

Text-based questions allow the teacher to not only check reading comprehension,
but also notice gaps in the learner’s linguistic knowledge. In a FLTL setting,

questions can be asked to serve a broad range of different goals:

1. One can ask about the learner’s experience or general knowledge: e.g., the
question What do you know about Japan? serves a purely communicative

goal.

2. Comprehension or recall questions can be asked to check whether the learner

has understood a text or read it at all.

3. Questions can also be asked with the goal of eliciting a linguistic form from
the learner: e.g., the question What would you do if you won the lottery?

requires the learner to produce conditionals.

4. One can use questions to draw the learner’s attention to the linguistic forms
used in a text, providing functionally driven input enhancement: e.g., The
question Which happened first: Zarah finished talking or Sabrina said some-
thing? asks about the interpretation of the past perfect tense in the sentence

Sabrina didn’t say anything until Zarah had finished talking.

5. Finally, there are meta-linguistic questions checking the learner’s explicit
knowledge of the language system: e.g., From which verb is the noun decision

derived? or What is a synonym for staff?


www.purl.org/qg
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Our work focuses on several types of questions that have multi-faceted goals:
checking the learner’s comprehension of the text, drawing their attention to par-

ticular linguistic forms in the presented reading material, and eliciting those forms.

6.2 Questions as Functionally Driven Input En-

hancement

In line with Ellis (2016) remarks about focus on form, we assume that different
kinds of activities are needed to facilitate the acquisition and practice of different
linguistic forms. Typical exercises targeting lexical items are multiple-choice ques-
tions asking learners to select a synonym for a target word in the text in order to
check their understanding of its meaning. Grammatical forms, such as grammati-
cal tenses, also require the learner’s understanding of their underlying semantics in
context (e.g., which action happened first, is the action already finished) as well as
their morphology (e.g., ed for the regular verb forms in past simple). In our work,
we combine insights from the research on second language acquisition (SLA) and
CL to generate text-based questions that help learners create form-meaning con-
nections. Concretely, we propose to generate two novel types of questions creating
a functional need to process the target linguistic forms, thus providing functionally

driven input enhancement.

The first type of questions we generate are content questions about the clause
containing the target form. These are factual questions targeting particular lin-
guistic forms to be acquired and ensuring their increased activation. The goal
of these questions is to ensure greater exposure to the forms, so we will refer to
them as form-exposure questions. See (27a) for an example of a form-exposure
question targeting the present perfect tense expressed by the predicate has scaled
back in the sentence (27). Form-exposure questions are discussed in more detail

in Section 6.3.

(27) The Indian government has scaled back the urgency of its search for a new

governor of the Reserve Bank of India.

a. Form-exposure question: According to the article, what has the Indian
government done? The Indian government the urgency of its

search for a new governor of the Reserve Bank of India.
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The second type of functionally driven input enhancement is designed to also en-
sure the correct interpretation of the target form in a given context. For this, the
nature of the question that is generated must change from asking about the content
of the text to asking about the semantics of the form being targeted. The seman-
tics of linguistic forms like grammatical tenses can be targeted via a combination
of comprehension and meta-linguistic questions. While keeping the interaction
between the teacher and the learner communicative, they draw the learner’s at-
tention to linguistic forms and ensure the understanding of their semantics. In
the spirit of Workman’s (2008) concept questions, we refer to such questions as
grammar-concept questions. See (28a) for an example of a grammar-concept
question asking about the interpretation of the present perfect tense form have cut
in the sentence (28). Grammar-concept questions are discussed in more detail in
Section 6.4.

(28) Chinese retailers have cut staff.

a. Grammar-concept question: Are Chinese retailers still cutting staff?

In essence, automatically generating questions that target grammatical categories
in a text supports incidental focus on form (Loewen, 2005) in a meaning-focused
reading task. In the following sections, we discuss the two types of questions
that serve this purpose and report on a crowdsourcing evaluation comparing au-
tomatically generated and manually written questions targeting phrasal verbs, a

challenging linguistic form for learners of English.

6.3 Form-exposure Questions

Form-exposure questions focus on a particular linguistic form, which can either be
part of the question or expected in the answer produced by the learner. For exam-
ple, questions about source text (29) could conceivably address different linguistic
targets: relative clauses, past forms of irregular and regular verbs, etc. Both ques-
tions (29a) and (29b) target the past simple form expressed by the phrasal verb
brought in and prompt the learner to produce it. The difference between these
two questions is that (29a) is a question about the subject and (29b) is a question

about the predicate.
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(29) Indeed, Semel and the media executives he brought in by all accounts

turned a scrappy young internet startup into a highly profitable company.

a. Who turned a scrappy young internet startup into a highly profitable

company? Semel and the media executives he

b. What did Semel do? He media executives.

Form-exposure questions can take the form of a wh-, yes/no, or an alternative
question. In our work, we focus on the first type, and as the examples above
show, supplement it with a sentence where the target answer is replaced by a gap.
This decision is motivated by the complementary nature of wh- questions and gap
sentences. While questions are communicative, they may be too general, as can
be seen in example (29b). From a computational perspective, What did Semel
do? is a safe question to generate as it does not contain any adverbial clauses
or prepositional phrases, which normally pose challenges for the task of QG (see
Section 6.9). However, this question has at least two target answers: turned a
scrappy young internet startup into a highly profitable company and brought in

media executives.

A gap sentence can then be added to the question in order to guide the learner
to produce the expected target linguistic form by narrowing down the context of
the question. In this case, we wanted to target the phrasal verb brought in, so
we picked the corresponding part of the sentence. The results of a crowdsourcing
study reported in Section 6.8 confirm our intuition: Wh- questions are perceived
as better-formed and can be answered more easily given the source text when they

are followed by a gap sentence.

6.3.1 Generation of Form-Exposure Questions

We generate form-exposure questions about subjects, objects, and predicates. The
main linguistic form we focus on is grammatical tense, so our form-exposure ques-
tions target verbs and verb phrases. We use the Java implementation of Stanford
CoreNLP 3.7.0, a natural language processing toolkit by Manning et al. (2014) for
sentence splitting, tokenizing, lemmatizing, constituency and dependency parsing,
and resolving coreferences. After extracting a sentence or a clause containing the

target form, we perform the following steps: adjust and normalize the auxiliaries,
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resolve pronouns and other referential expressions, and detect quotation sources,

if any.

Unlike the overgenerate-and-rank approach (Heilman, 2011), we first apply a set
of constraints to minimize the probability of generating ambiguous, unanswer-
able, or ungrammatical questions. Concretely, we eliminate sentences with any
unresolved pronouns (to avoid questions like What did he do? or What happened
to this man?), sentences expressing hypothetical events or wishes (e.g., I wish I
had, if only I knew), conditionals (e.g., if there were, unless he said so), impera-
tive sentences with no subject (e.g., read this), and sentences containing reported
speech (e.g., they said they knew). The regular expressions used for detecting these
constructions can be found in Appendix C. Such strict filtering leads to fewer gen-
erated questions but also a lower percentage of ill-formed ones, which is especially

important in the FLTL setting.

Once the unsuitable sentences are filtered out, the algorithm proceeds to detect
specific syntactic components of the sentence and modify them if necessary. Fi-
nally, transformation rules are used to turn a sentence into a question. Let us
inspect the algorithm for generating questions using the example of a simple sen-

tence Chinese retailers have cut staff:
Question about Subject (e.g., Who or what has cut staff?)
1. Replace the subject with Who or what and move to the beginning of the
sentence.

2. Detect the grammatical time of the predicate, and if it is Present, replace
the auxiliary (if any) or the main verb with the form of 3rd person singular

(does, has, is).

Question about Object (e.g., Who or what have Chinese retailers cut?)

1. Replace the object with Who or what and move to the beginning of the
sentence.

2. Detect or generate an auxiliary verb.

e If there is an auxiliary verb modifying the main verb, detect it.
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e If there is no auxiliary modifying the main verb, detect the grammatical
tense of the main verb, generate an appropriate auxiliary verb, and

replace the main verb with its base form.
3. Move the auxiliary verb right after Who or what.

4. Remove the rest of the sentence after the verb.

Question about Predicate (e.g., What have Chinese retailers done?)

A. Active
(e.g., What have Chinese retailers done?)
1) Insert the question word What at the beginning of the sentence.
2) Identify or generate an auxiliary verb.

e [f there is an auxiliary verb modifying the main verb, identify it.
e Otherwise, identify the grammatical tense of the main verb and
generate an appropriate auxiliary verb.

3) Move the auxiliary verb to right after What.

4) Identify the grammatical form of the main verb and replace the rest of

the sentence with the same form of the verb do.

B. Passive
(e.g., What happened to the staff?)

1) Insert the question word What at the beginning of the sentence.

2) Identify the grammatical tense of the main verb and replace the whole
predicate with the same form of the verb happen (including the auxiliary

verb, if any).
3) Insert the preposition to to left of the subject.

4) Remove the rest of the sentence.

As previously mentioned and demonstrated, in addition to generating questions,
we also generate gap sentences (e.g., for phrasal verbs, Chinese retailers have
staff.). As the syntactic components of the sentence have already been extracted

to form a question, the generation of a gap sentence boils down to combining those
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in the same order as they appear in the source sentence and replacing the target

linguistic form with a gap.

Form-exposure questions can be used as fill-in-the-blank or multiple choice exer-
cises. In the latter case, one can ensure deeper processing of the target linguistic
form by having not the linguistic form itself but a synonym as the solution, for
example, and using semantically related words as distractors. While we do not
discuss the automatic generation of distractors in this thesis, we propose a novel
type of question that ensures that the learner processes the target linguistic form
by asking about its interpretation in a given context, which is discussed in the

next section.

6.4 Grammar-concept Questions

Questions about grammar can focus the reader’s attention on either the form or the
meaning of grammatical constructions. In addition to testing the learner’s under-
standing of the text, meaning-driven questions also raise the learner’s (meta-)linguistic
awareness and help them read and learn the language in a focused way. Rephrasing
and form manipulation are one example of such meaning-driven grammar ques-
tions. The passive voice, for instance, is normally substituted with the active voice
(or vice versa) to have the learner make inferences based on semantics: Given the
sentence The crew paved the highway, a grammar activity may prompt learners to

produce The highway was paved by the crew.

Similarly, grammar-concept questions make the learner infer information by iso-
lating defining semantic characteristics of linguistic forms. Once the grammatical
concept of a linguistic form is broken down into a series of semantic statements,
yes/no or alternative questions can be asked about each of them. Consider the

following example by Workman (2008):

Sentence: He used to play football.

Concept: Used to expresses a discontinued past habit. It highlights the fact that

the person does not do this anymore in the present.

Concept questions:

1. Does he play football now? (No)
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2. Did he play football in the past? (Yes)

3. Did he play once or often? (Often)

6.4.1 Providing Scaffolding Feedback

One important application of grammar-concept questions in FLTL is scaffolding
feedback. Such questions can incrementally guide the learner towards task com-
pletion by scaffolding the use of correct forms. Figure 6.1 demonstrates a possible
interaction between a learner and a tutoring system providing scaffolding feedback
— similar to the approach implemented by Rudzewitz et al. (2017) in their Feed-
Book system. Grammar-concept questions not only make learners aware of the
target linguistic form and its semantics, but also guide them towards producing

the form.
How does John go to school? He to school by bike.

going

Sorry, give it another try.
Is John really going to school at the moment
or is it a repeated action or simply a fact?

is going

What does the sentence say about John?
Does he go to school in general or is he
going there now?

go

Almost there!

Remember that sometimes verbs need an
ending in present simple.

Hint: John is a noun in 3rd person singular.

goes

Well done! He goes to school by bike.

FIGURE 6.1: A possible interaction between a language learner and a tutoring
system providing scaffolding feedback. Grammar-concept questions are in bold.
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6.4.2 Generation of Grammar-concept Questions

Prior to generating grammar-concept questions, we subject each candidate sen-
tence to the same set of constraints discussed in Section 6.3.1 and exemplified in
Appendix C. We then use different templates depending on the linguistic form to
generate grammar-concept questions. Let us consider the present perfect tense
as an example. Its two key characteristics are (i) the finished state of the action
and (ii) the irrelevance of the exact time in the past when the action took place.
Templates (30a) and (30b) are used to generate grammar-concept questions about
each of these aspects. The sentence Chinese retailers have cut staff is again taken

as an example.

(30) a. Be-form subject still verbing (particle) (dir-obj) (indir-obj)?
e.g., Are Chinese retailers still cutting staff ¢

b. Is it more important when exactly subject verb-past (particle)
(dir-obj) (indir-obj) or that verbing (dir-obj) (indir-obj) took
place at all?

e.g., Is it more important when exactly Chinese retailers cut staff or

that cutting staff took place at all?

The correct answers for each template are known, so they can be hard-coded.
As the templates show, a target sentence should always contain a subject and a
verb, while the object elements are optional. Importantly, the particle element is

included in order to be able to target phrasal verbs.

6.5 Motivation for the Studies

“I don’t think it is, but if that’s the computer then WOW”

A rater in a crowdsourcing study commenting on one of the

automatically generated questions

“If this was written by a teacher, please stop teaching.”

Another rater in a crowdsourcing study commenting on

another automatically generated question
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For questions to be effective in real-life FLTL, they must be reasonably well-formed
and answerable. The performance of QG systems has been assessed either by using
automatic measures, such as BLEU (Papineni et al., 2002), or by collecting human
judgments. For instance, Zhang and VanLehn (2016) recruited students to judge
the comparability of computer-generated, web-crawled and human-written biol-
ogy questions on several 5-point scales (relevance, fluency, ambiguity, pedagogy,
depth). Heilman and Smith (2010) conducted a crowdsourcing study to assess the
quality of computer-generated questions on a 5-point scale and used the collected

judgments to train a statistical ranker for their QG system.

Crowdsourcing is an attractive option for evaluating QG systems due to its time
and cost effectiveness along with its similarity to expert judgments (Snow et al.,
2008; Benoit et al., 2016). Using crowdsourcing to compare computer-generated
and human-written questions seems like a logical next step in this line of research.
Therefore, we conducted two crowdsourcing studies using the Figure-Eight plat-

form! to answer the following research questions:

1. Are computer-generated questions comparable to those written by an English

teacher in well-formedness and answerability?

2. Are wh- questions followed by a gap sentence perceived better with respect

to well-formedness and answerability than open-ended wh- questions?

3. Do wh- questions followed by a gap sentence elicit more correct responses

and target phrasal verbs than open-ended wh- questions?

With respect to the first research question, there is no previous research comparing
computer-generated and human-written questions via crowdsourcing. However,
based on related work comparing the two types of questions offline in a university
setting (Zhang and VanLehn, 2016) and research evaluating similar QG systems
(Heilman, 2011), we expect that the questions produced by a computer and an

English teacher will be comparable in terms of the two aspects under investigation.

Given that the question items we generate are of a novel type (i.e., wh- question
followed by a gap sentence), we only have intuitive predictions about the second
and the third questions. For the second research question, we predict that a wh-

question and a gap sentence may cancel out each other’s potential disadvantages,

Lyww.figure-eight.com
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and thus their combination will be rated higher with respect to both perceived well-
formedness and answerability than a wh- question alone. For the third research
question, we predict that the addition of a gap sentence will limit the participants’
choice of an answer phrase to the phrasal verb given in the text. Thus, the
combination of a wh- question and a gap sentence will increase the likelihood of
obtaining a correct response and have a higher probability of containing the target
phrasal verbs from the source text as part of the answer than simple open-ended

wh- questions.

To address the aforementioned questions, we used the QG module of FLAIR to
generate wh- questions and gap sentences about phrasal verbs in order to draw
learners’ attention to this form. Phrasal verbs were our linguistic form of choice
as they represent a considerable teaching and learning load, as discussed by Gar-
nier and Schmitt (2016). For instance, given the source text (31), our program

automatically generated the form-exposure question (31a).

(31) Cancellations “ticked up slightly and unexpectedly” in early April amid

press coverage about the coming increases, the Netflix letter said.

a. According to the Netflix letter, what did cancellations do? Cancella-
tions slightly and unexpectedly in early April amid press

coverage about the coming increases.

6.6 Using Crowdsourcing to Evaluate QG Systems

Heilman and Smith (2010) demonstrated that data collected via crowdsourcing
can be used to successfully train a machine learning algorithm to rate automati-
cally generated questions. The authors argued that a crowdsourcing platform can
be a useful evaluation tool for natural language generation, summarization, and
translation. Indeed, Callison-Burch (2009) and Zaidan and Callison-Burch (2011)
used crowdsourcing to evaluate machine translations and compare the quality of

the data acquired from crowd workers to that of professional annotators.

Becker et al. (2012) made use of a crowdsourcing evaluation to select the best
candidate gaps when generating gap-fill questions. They controlled the quality of
annotations post-hoc by eliminating the judgments from unreliable crowd workers

and items with low inter-annotator agreement. While an integral part of any
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study, quality control is especially crucial when running crowdsourcing tasks. An
additional measure implemented by the Figure-Eight platform is test questions,
which limit the set of workers to those who continue to satisfy the requirements
and make it possible to verify that the workers are paying attention and following

the instructions. We discuss such test questions in more detail in Section 6.7.1.

So far, crowdsourcing has only been used to collect judgments about automatically
generated wh- and gap-fill questions, not to compare those to human-written ones.
In Sections 6.7 and 6.8, we explore whether the questions automatically generated
by our system are perceived similarly to manually written questions with regard

to their well-formedness and answerability.

6.7 Study on the Quality of Automatically Gener-

ated Questions

6.7.1 Design

Data We started with a corpus of 40 news articles and 96 questions designed to
test learners’ knowledge of phrasal verbs written by Simén Ruiz, an English teacher
and SLA researcher. We used the question generation approach introduced in
Chapter 4 to generate 69 form-exposure questions about phrasal verbs. To obtain
an equal number of questions for the experiment, we randomly selected 69 of the
manually created questions. To provide an illustration of the data set, (32a) and
(32b) below are instances of well-formed questions by a human and a computer,
respectively, asking about the same source text (32). On the other hand, (33a)
is a well-formed human-written question, while (33b) is an ill-formed computer-

generated question.

(32) Beijing’s drive to make the nation a leader in robotics through its “Made in
China 2025” initiative launched last year has set off a rush as municipalities
up and down the country vie to become China’s robotics center.

a. Human (+): What has the “Made in China 2025” initiative done since
it was launched last year? It has a rush for municipalities

to become China’s robotics center.
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b. Computer (+): According to the article, what has Beijing’s drive done?
Beijing’s drive has a rush as municipalities up and down

the country vie to become China’s robotics center.

(33) Twitter is also working to better define its role in the social media land-
scape. This week it rolled out a video ad that showed it as the place to go

for live news, updates and discussion about current events.

a. Human (+): What is Twitter doing to better define its role in the

social media landscape? It a video ad this week.

b. Computer (—): According to the article, what did this week do? This
week a video ad that showed it as the place to go for live

news.

Participants While the main advantage of crowdsourcing is that it provides
access to a large number of people all around the world, this also carries the risk
of recruiting unsuitable contributors (see Stewart et al. (2017) for a recent review
on the use of crowdsourcing in behavioral research). For this study, we needed
judgments that were as close as possible to those of experts. The following steps
helped us achieve this. First, we used the functionality of the crowdsourcing web-
site to select only English-speaking countries, thereby maximizing the probability
that the contributors were native speakers of English. However, when we only
received one response in the first five hours, we extended the list of participating
countries to some European ones where English proficiency is high according to the
EF English Proficiency Index (First, 2017): the Netherlands, Denmark, Norway,

Sweden, Finland, Germany, and Austria.

We then asked test questions to further filter out unsuitable contributors. In
order to proceed to the main task, each contributor first took a quiz in which
they had to correctly answer four out of five test questions. The test questions
looked exactly like the questions in the main task, except that eight of them
were manually edited to either be ungrammatical or unanswerable. To obtain
test questions on the clearly grammatical and answerable side of the spectrum,
we ran a pilot study and selected sentences that were rated as well-formed and
answerable with a high agreement (more than 70%) among the contributors. Four
human-written and four computer-generated ones were chosen as good examples of

well-formed and answerable test questions. Eight ungrammatical or unanswerable
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question items were fabricated by editing four of the 27 human-written questions
not used in the study and four automatically generated questions to make them

either ungrammatical or unanswerable.

Finally, a small number of test questions required the participants to specify
whether they were in fact proficient speakers of English and whether their an-
swers were reliable. In this way, we made sure that the contributors understood
the task at hand, that they were able to distinguish between a well-formed and an
ill-formed question, and that their language skills were advanced enough to answer
a question given a source text. In order to perform the main task, participants had
to keep their accuracy rate above 70% by correctly answering test questions ran-
domly inserted among the other question items. In total, 364 reliable contributors

took part in this study.

Procedure We investigated whether computer-generated questions are on par
with human-written ones on the basis of two criteria, well-formedness and answer-
ability; in other words, whether the question is written in acceptable English and
whether it can be answered given the information in the source text. As corpus
studies suggest that the concept of well-formedness or grammaticality is gradient
(Wasow, 2007), we used a five-point Likert scale for both criteria. In addition,
we asked the crowd workers whether they thought the question was written by
an English teacher or generated automatically by a computer. Concretely, each
task presented to the crowd workers consisted of an excerpt from the source news
text and a human-written or automatically generated question. The workers were

asked to answer four questions and could leave an optional comment:

1. How well-formed is this question item? Is it written in good English? (5-

point Likert scale)

2. Can this question item be completed with the information from the source
text? (5-point Likert scale)

3. Please, answer this question — in your words, in as few words as possible —

based on the information from the source text. (free input)

4. Do you think this question was written by an English teacher or generated

by a computer? (binary choice)
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6.7.2 Results

We received 1,384 judgments by 364 crowd workers who were classified as reli-
able, identified as proficient English speakers, and passed the quiz mode with the
test questions. The means for the well-formedness scale were 4.53 for human-
written questions and 4.40 for computer-generated questions. The means for the
answerability scale were 4.44 and 4.47, respectively. We calculated the intra-class
correlation (ICC) for the contributors and obtained the values of 0.08 and 0.09
for well-formedness and answerability, respectively. The low contributor ICC (<
.1) implies that the contributors provided different ratings for different question
items, so we can ignore the dependencies among the observations and did not need

a multi-level analysis.

We ran Welch’s t-test to find out whether the difference in ratings between computer-
generated and human-written questions was statistically significant. On the well-
formedness scale, the results turned out to be statistically significant, but the effect
size was small: #(913) = 2.06, p = .03, Cohen’s d = 0.13. On the answerability
scale, the results were non-significant: ¢(944) = -0.42, p > .1, Cohen’s d = 0.02.

However, the absence of evidence does not imply the evidence of absence. To
test whether the computer-generated and human-written questions were equiva-
lent in quality (well-formedness and answerability), we used TOST, Schuirmann’s
two one-sided test (Schuirmann, 1987). The TOST is commonly used in medical
research to determine whether one treatment is as effective as another. To prove
our alternative hypothesis that computer-generated and human-written questions

are comparable in quality, we needed to reject both parts of the null hypothesis:

HO0y: Computer-generated questions are inferior in quality to human-written ones.

HO0,: Computer-generated questions are superior in quality to human-written ones.

In statistical terms, the null hypothesis is that there is a true effect larger than a
Smallest Effect Size of Interest (SESOS) between the two samples (Lakens, 2014).
For this task, we opted for an SESOS of 0.5, a medium effect size according to
Cohen (1977), and an alpha level of .05 (Lakens, 2017). We used the R package
TOSTER? to conduct TOST testing for the equivalence of the samples. All results

’https://cran.r-project.org/web/packages/TOSTER/
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were statistically significant on both scales (p < .001), so we could reject the null

hypothesis (for more details, see Table 6.1).

Scale ty to  p1 and po 90% CI

well-formed | 9.81 -5.68  <.001 [0.02;0.22]

answerable | 7.32 -8.17  <.001 [-0.13;0.08]

TABLE 6.1: Results of Schuirmann’s TOST for equivalence of computer-
generated and human-written questions. Effect size d = 0.5; alpha = 0.05.

The results indicate that any difference between the human-written and computer-
generated questions in the ratings for well-formedness and answerability is of an
effect size smaller than the SESOS. In line with this finding, the contributors’
answers guessing whether a question had been written by an English teacher or
generated by a computer were similar for both question classes: 74% of human-
written and 67% of computer-generated questions were thought to be written by
an English teacher. Our goal at this stage was to identify whether the computer-
generated questions can effectively be used on par with manually written questions

— which indeed seems to be the case.

6.7.3 Discussion

The results of this first study imply that the questions automatically generated
by our system are comparable to those written by a human with respect to
well-formedness and answerability, although the questions written by the English
teacher were rated as slightly better-formed. Interestingly, most of the well-formed
and answerable questions were thought to be written by the English teacher, even
if they had, in fact, been generated automatically. This indicates that people do
not expect computers to be able to produce coherent output and expect automat-

ically generated questions to be more ungrammatical and unnatural.
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6.8 Study on Types of Questions and Answers They
Elicit

In the second crowdsourcing study, we wanted to find out (i) whether the addition
of a gap sentence to an otherwise open-ended wh- question influences a question
rating and (ii) whether wh- questions followed by a gap sentence elicit more phrasal
verbs than open-ended wh- questions. The task and the procedure were the same as

in the first study but the selection criteria for both data and participants differed.

6.8.1 Design

Data For each source sentence, we generated two types of questions, namely, an
open-ended wh- question and a wh- question followed by a gap sentence. As we
did not intend to evaluate our system in this study, we excluded all ungrammatical
and unanswerable computer-generated questions. Overall, the data consisted of
96 human-written and 96 computer-generated questions. These were randomized
in such a way that the two types of questions (with and without a gap sentence)
for the same source sentence were never shown together on the same page. We

collected five judgments per question item.

Participants For the second study, we selected contributors with a high reli-
ability, as specified on the crowdsourcing page, but did not limit participation
based on their level of English. Our assumption was that users must have the
necessary FEnglish skills to work on an English-language crowdsourcing website. In

this study, we collected judgments from 477 contributors.

Procedure Asin the first study, participants were asked to answer the presented
questions and rate them on two separate five-point Likert scales, one for well-
formedness and one for answerability. In this study, we analyzed both the ratings
and the responses to the questions. This time, however, we did not ask participants
to guess whether the question had been written by a teacher or generated by a

computer.
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6.8.2 Results

In contrast to the first study, as mentioned earlier, participants in the second study
were not selected based on their English proficiency level. Consequently, there was
less agreement among subjects on rating questions regarding well-formedness and
answerability (ICC = 0.34 and 0.37, respectively). Hence, we used mixed-effect

models to account for the dependencies across observations.

The analysis was conducted using the Ime4 package version 1.1-12 in the R envi-
ronment version 3.2.1 (R Development Core Team, 2008). We estimated a model
for each of the two continuous dependent variables: the perceived well-formedness
and answerability of question items. The models included fixed effects for the
source of a question item (human or computer) and the item type (with or with-
out a gap sentence) as well as crossed random effects for both participants and
items (Baayen et al., 2008). An effect was considered significant if the absolute
value of the t statistic was greater than or equal to 2.0 (Gelman and Hill, 2006;
Baayen et al., 2008). First, we found that participants did not rate computer-
generated questions significantly lower than human-written ones: well-formedness,
b=0.024, SE = 0.047,t = 0.500; answerability, b = 0.065, SE = 0.060,t = 1.080.
These results are in line with those of our first study with proficient English speak-

ers.

The addition of a gap sentence did indeed influence the rating of a question item.
The results showed that this had an effect on both the perceived well-formedness,
b=0.158, SE = 0.054, t = 2.930, and answerability, b = 0.127, SE = 0.055, t = 2.300.
In other words, the addition of a gap sentence to a simple open-ended wh- question

rendered the question better-formed and more easily answerable.

Finally, we conducted logistic regression analyses (Jaeger, 2008) to investigate
which type of questions elicited more correct responses and phrasal verbs. In the
first model, the dependent variable was analyzed as a binary outcome (correct vs.
incorrect answer). In the second model, the dependent variable was also treated
as a binary outcome (presence vs. absence of the phrasal verb from the source
text). We selected a random sample of 20% of responses and excluded nonsensical
(e.g., “good!”) and non-English (e.g., “konugma’) answers from the data. Out
of 359 answers, 277 contained an exact match to the phrasal verb given in the
source text. Only 12 contained rephrasings of phrasal verbs, and the remaining

70 answers were marked as incorrect. As expected, the linear regression results
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showed that questions followed by a gap sentence had a higher probability of
eliciting correct responses, b = 0.791, SE = 0.278, p = .004, and containing the
target phrasal verbs from the source text, b = 2.577, SE = 0.484, p < .001, than

simple wh- questions.

6.8.3 Discussion

The results of the second study showed that the question ratings were in line with
those of the first study: computer-generated and human-written questions were
rated similarly regarding well-formedness and answerability. This confirms our
hypothesis as well as the findings of previously conducted studies on automatic

question generation.

Importantly, we found that wh- questions followed by a gap sentence were rated
higher than open-ended ones on both the well-formedness and answerability scales.
Our assumption was that a gap sentence can render an otherwise ambiguous ques-
tion more specific and thus better-formed and easier to answer. Indeed, there
seems to be a trade-off between ambiguity and ill-formedness in the case of wh-
questions: The more specific a wh- question is, the more syntactic elements it
contains, raising the probability of a question being ungrammatical. When the
number of syntactic elements is kept to a minimum, there is a risk that a question
will be too general or ambiguous. On the other hand, gap sentences are typi-
cally grammatical and unambiguous (Becker et al., 2012), but they do not serve
a communicative goal. Combining a general wh- question with a more specific
gap sentence helps avoid the aforementioned pitfalls of both question types: It
maximizes the grammaticality and minimizes the ambiguity of the whole question

item while keeping the task communicative.

Finally, wh- questions followed by a gap sentence also elicited more correct re-
sponses and more phrasal verbs. Our intuition that the gap narrows the reader’s

focus to the target linguistic form in the source sentence was confirmed.
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6.9 Challenges and Limitations of Question Gen-

eration

6.9.1 NLP Challenges

The quality of the automatically generated questions relies greatly on the accuracy
of the natural language processing tools that our QG system is built on. In fact,
the main causes of ill-formed questions were erroneous coreference resolution (43%)
and incorrect parses (28%) of the source sentences (out of the questions with an
average rating of below three on a five-point scale). Other factors influencing

question quality are discussed and exemplified below.

As previously noted, a question item may not contain enough information to be
answered correctly (e.g., a missing restrictive clause) or may be too specific com-

pared to the more general context of the paragraph:

(34) Chinese retailers have also cut staff and seen inventories pile up, luxury
sector growth has dried up, and fast-food giants such as KFC-parent Yum
Brands Inc and McDonald’s Corp are grappling for growth.

a. Computer: According to the article, what do inventories do? Invento-

ries

A question item may have superfluous information (e.g., a non-restrictive phrase

or a clause) making it too long:

(35)  Musk on Wednesday sketched out his vision for an integrated carbon-free
energy enterprise offering products and services beyond electric cars and

batteries.

a. Computer: According to the article, what did Musk on Wednesday do?
Musk on Wednesday his vision for an integrated carbon-free
energy enterprise offering products and services beyond electric cars

and batteries.

While our QG produces a high number of well-formed questions (85%), it also pro-
duces ungrammatical or unanswerable questions. We plan to adapt the algorithm

to detect errors and minimize the generation of ill-formed questions.
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6.9.2 No Questions or Ungrammatical Questions

There is a two-stage process for identifying the main syntactic components, POS-
and dependency-based, and both are obligatory for the system to be able to gen-
erate a question. If there is an error, a syntactic component may not be detected.
For instance, in (36), Skype was identified as a verb by the statistical parser. Con-

sequently, no subject was detected, and it was not possible to generate a question.
(36) Skype was snapped up by eBay Inc.

The most challenging case that results in the generation of ungrammatical ques-
tions is when the parser incorrectly identifies secondary parts of speech, which does
not prevent the system from generating a question. For example, question (37a)
was generated from source text (37) below. The erroneous parse tree of the source
includes the noun phrase (NP (VBG meaning) (NNS fans)), which was then iden-

tified as the subject of the sentence.

(37) Internet access in the Communist-ruled island is restricted, meaning fans

can not easily look up series and mangas on the web.

a. What can meaning fans not do? Meaning fans can not series

and mangas on the web.

6.9.3 Coreference Resolution

Another type of error occurs when the coreference resolution component maps a
referring expression to the wrong noun phrase. Given the source sentence (38),
the program generated question (38a): in the question, the manager is resolved

incorrectly as Dean Saunders instead of Chris Coleman.

(38) Former Wales striker Dean Saunders says his country will struggle to hang
on to Chris Coleman after their startling run to the Euro 2016 semi-finals

and believes the manager could be tempted away soon.
a. According to the article, what could happen to former Wales striker

Dean Saunders? Former Wales striker Dean Saunders could be

SOOI1l.
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For questions about subjects and objects, coreference resolution was originally
used to determine the question word, Who or What. However, the error rate
was high for rare names that occasionally occur in news articles at the beginning
of sentences. Thus, we now combine the two question words into one question
phrase Who or what. The English teachers we consulted preferred this solution

over erroneously generated question words.

To further minimize the effect of errors caused by coreference resolution, we do
not substitute the subject of a gap sentence with a pronoun, which often leads
to repetition of subject noun phrases. All computer-generated examples in this
section demonstrate this limitation. However, importantly, the feedback from
the participants in our crowdsourcing studies indicated that questions may be
perceived as less well-formed if the subject in the gap sentence repeats the subject

in the wh-question.

6.9.4 Tense Sense Disambiguation for Question Generation

For template-based grammar-concept questions, the number of templates is limited
to one or two per tense if there is no information about a specific interpretation
(or sense) of the target grammatical tense in the given context. For instance, the
Cambridge Dictionary gives the following definition of past simple: “Past simple
is the form of a verb used to describe an action that happened before the present
time and is no longer happening.”® So, given sentence (39), we can only ask
a grammar-concept question similar to (39a). However, like other tenses, past
simple can express more than one meaning (see Section 4.2). The dictionary of
tense senses we compiled (see Appendix E) differentiates between four meanings

of past simple:

e State in the past (Jason was aware of the consequences.)
e Single action in the past (Alfonso read a great book last night.)
e Repeated action in the past (It snowed every day last winter.)

e Social distancing (I just wanted to know...)

3https://dictionary.cambridge.org/dictionary/english/past-simple
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With this list of senses and an algorithm that detects the most suitable tense
sense given the context, we can generate a more concrete grammar-concept ques-

tion (39b).

(39) At first, Stefanie felt confused about this.
a. Does Stefanie feel confused about this now? (no)

b. Did Stefanie repeatedly feel confused about this? (no, just once, at

first; as it is not a repeated action)

The task of tense sense disambiguation (TSD) is very relevant to our work on QG
as it can facilitate the creation of more fine-grained templates. We address this in
Section 4.2 by leveraging machine learning and rule-based algorithms. However,
the performance of TSD models is still too suboptimal to be used in such a high-
stakes task as QG, where precision has to be 100% in order to avoid exposing

learners to erroneous linguistic input.

6.9.5 Adverbial Clauses and Prepositional Phrases

Finally, there is a challenge concerning including different types of clauses and
prepositional phrases or removing them from the question. In fact, the computer-
generated questions that received the highest scores were concise, highlighting the
importance of considering the syntactic structure of a sentence. For instance, re-
moving non-restrictive clauses (usually separated by commas or other punctuation)

and keeping restrictive types usually led to well-formed questions:

(40) Meanwhile, LeEco has spun out sports and cloud units, bringing in private
equity capital from conglomerate HNA Group, Alibaba boss Jack Ma’s
Yunfeng Capital, and others.

a. Computer (+): According to the article, what has LeEco done? LeEco

has sports and cloud units.

This computer-generated question received the highest score on both the well-
formedness and answerability scales. Interestingly, this seemed to be the case even
when not enough information was provided in the question to answer it correctly.

For example, the following question does not specify the conditions under which
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Jia might be forced to put up more collateral. Nevertheless, the question also

received the highest scores on both scales:

(41) Such share pledges can be risky: if Leshi Internet stock fell sharply, Jia

might be forced to put up more collateral or sell down his stake.

a. Computer (+): According to the article, what might Jia be forced to
do? Jia might be forced to his stake.

We only removed non-restrictive clauses from a gap sentence when they were sep-
arated by commas, which was the case for 33% of computer-generated questions,
and we never removed prepositional phrases when they were in the same clause as
the target form. Subordinate and coordinate clauses were not removed when they

followed the main clause and were not separated by a comma:

(42) Nomura pegs Mohan as neutral in his monetary policy stance. The oldest
of the field of candidates, he has just taken up a position at Yale University
although a source familiar with his plans indicated he was reluctant to take

on the post.

a. Computer: According to the article, what has the oldest of the field of
candidates done? The oldest of the field of candidates has
a position at Yale University although a source familiar with his plans

indicated he was reluctant to take on the post.

To provide statistical evidence supporting our intuition about the superiority of
the questions with removed non-restrictive clauses, we conducted the following
analyses. First, we filtered out obviously ungrammatical computer-generated
questions in which the errors were propagated by the parser and the corefer-
ence resolution module. We then annotated the 60 computer-generated questions
(Mueli— formedness = 4.59, Mansweravitity = 4.62) and conducted Welch’s t-tests. The
results showed that the perceived well-formedness of the computer-generated ques-
tions with non-restrictive clauses removed (M = 4.73, SD = 0.23) was higher than
that of the ones where no part of the sentence following the target form was re-
moved (M = 4.52, SD = 0.49), and the difference was significant, #(58) = 2.30,
p = .02, 95% CI [4.73;4.52]. In case of answerability, on the other hand, the ques-
tions with removed clauses (M = 4.59, SD = 0.79) were rated as more difficult to
answer than those that did not undergo any additional modifications (M = 4.64,
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SD = 0.54). However, the difference was non-significant, ¢(28) = —0.23, p = .82,
95% CI [0.45; 0.36].

Although the heuristics of splitting the sentence into clauses separated by commas
seems to be working well, QG systems could benefit from statistical models trained
on larger data sets containing pairs of sentences — with and without certain clauses
and prepositional phrases — that could automatically classify a clause as necessary

or not.

6.9.6 Evaluation of Question Generation Systems

First and foremost, it should be noted that any kind of human evaluation is subjec-
tive. This issue becomes particularly salient when raters encounter test questions.
The Figure-Eight guidelines recommend an even answer distribution for test ques-
tions, i.e., testing both good and bad questions in our case. While ill-formed
or unanswerable questions were not difficult to write and did not receive criti-
cism from the participants even when they rated them incorrectly (we allowed
for ratings of 1, 2, and 3 for such questions), good questions proved to be more
challenging. Some participants argued that when a question is well-formed and
answerable, the rating it receives in the end is quite subjective. To address this
problem, one could only test the participants on ill-formed questions or introduce
a binary choice Is this question grammatical or ungrammatical? instead of a scale

How well-formed is this question?.

The fact that open-ended questions did not elicit significantly more rephrasings
of phrasal verbs, as the results of our second study showed, may also be due to
the limitations of a crowdsourcing experiment design. First, there were simply
too few rephrasings (3%) produced by the participants. In crowdsourcing studies,
participants are less encouraged to take their time to process every question they
are not being tested on. As there were no correctness checks for the answers they
submitted, many used the same wording as in the source text for the sake of time.
When designing a similar study in the future, one could try blocking the copy-
paste functionality in order to prevent participants from copying the text without

reading it more thoroughly.

Finally, it is also worth pointing out that a crowdsourcing study with non-proficient

English speakers took about four hours to complete. When we introduced the
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filtering mechanism to select proficient English speakers, the time went up to
about 39 hours. This could indicate a potential demographic and linguistic bias
of some crowdsourcing studies. That being said, while crowdsourcing platforms
are not magic boxes that always produce perfect data, they do provide quality
control mechanisms that allow researchers and other users to acquire annotations

and judgments comparable to those of experts.

6.10 Summary

To conclude, answering questions is an integral part of both developing and test-
ing reading comprehension as well as vocabulary and grammar knowledge in the
context of reading. In this chapter, we provided an overview of different types of
questions used in the context of foreign language teaching and learning and dis-
cussed the generation of two novel types of questions providing functionally driven

input enhancement: form-exposure and grammar-concept questions.

The results of the two crowdsourcing studies described in this chapter showed
that automatically generated form-exposure questions are comparable to human-
written ones. This finding is in line with previous research in which expert judges
evaluated the quality of computer-generated and human-written questions (Zhang
and VanLehn, 2016). We also found that the addition of a gap sentence to a wh-
question significantly improves its well-formedness and answerability. Moreover,
the responses elicited by wh- questions followed by a gap sentence contain signif-
icantly more correct answers, as well as target linguistic forms, than open-ended
wh- questions. From a CL perspective, these findings imply that QG systems
can benefit from leveraging and combining different types of questions instead of

opting either for wh- questions or gap sentences.

Overall, we demonstrated that both proficient and non-proficient English speakers
rate the quality of computer-generated questions just as high as human-written
ones. Interestingly, proficient speakers of English thought that most of the ques-
tions were written by an English teacher, although the proportion of computer-
generated and human-written questions in the study was the same. This shows
that people are often not aware of the state-of-the-art in computational linguistic
technology. This is true not only for crowd workers but also English teachers, who

could benefit more from intelligent computer-assisted language learning tools.






Chapter 7

Conclusion and Outlook

“Learning is goal-oriented ... Teaching therefore becomes an
active thinking and decision-making process in which the
teacher is constantly assessing what students already know,
what they need to know, and how to provide for successful

learning.”

O’Malley and Chamot (1990)

In this thesis, we addressed the research gaps identified in the introductory chapter
by improving the existing computational linguistic technology and leveraging it to
support language teaching and learning. The FLAIR system (www.purl.org/
icall/flair) we developed implements algorithms for the automatic detection of
linguistic forms, input enrichment, and question generation. Its components have
been theoretically grounded and evaluated in separate studies, the results of which
demonstrate the feasibility and effectiveness of our approach. In this chapter, we
summarize our work, discuss the implications and limitations of our approach, and

conclude with an outlook for the future.

7.1 Summary of the Results

The research goal of this thesis was to explore and implement automatic techniques
that help create a richer grammatical intake from a given text input and engage

learners in making form-meaning connections during reading. We successfully
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applied rule-based, crowdsourcing, and machine learning approaches to develop
theory-motivated and efficient tools for foreign language teaching and learning

(FLTL) and to address the research questions listed in Chapter 1.

A technical evaluation demonstrated a high state-of-the-art performance of our
rule-based algorithm that detects 87 linguistic forms specified in the official cur-
riculum for the English language. It allowed us to explore the representation,
distribution, and co-occurrences of linguistic forms across web documents and de-

velop the FLAIR system, which provides automatic input enrichment for FLTL.

The task of automatic input enrichment — as we approached it — consisted of
selecting an information retrieval algorithm and the features to be included in it.
We opted for a variation of the classical BM25 algorithm that includes weighted
linguistic forms and a normalization parameter controlling for text length. The
results of our online study with English teachers showed that FLAIR succeeds
in providing reading materials that are (i) rich in the linguistic forms teachers
care about, (ii) topically relevant, and (iii) suitable as a reading assignment for
language learners. Teachers’ feedback indicated that input enrichment systems
need to take into account not only a rich representation of linguistic forms but

also their variety.

With that in mind, we explored the task of tense sense disambiguation, for dif-
ferentiating between the variety of contexts in which grammatical tenses occur.
Having created a taxonomy of tense senses, we crawled a corpus of 5000 documents
and annotated 4089 instances of tenses with their senses. We then designed a set
of machine learning features and successfully trained several statistical models to
select the optimal ones for the target tenses. Each of our selected models outper-
formed a strong majority baseline as well as the state of the art in the task of
tense sense disambiguation. We showed that models for different tenses benefit
from different features, but the best-performing ones made use of all the provided

features.

Finally, we discussed question generation for FLTL and proposed that, in addition
to the typical focus on comprehension, questions can also play an important role
in functionally driven input enhancement. We proposed two novel types of ques-
tions, form-exposure and grammar-concept questions, that help language learners
process relevant linguistic forms and draw form-meaning connections during a

communicative activity. We discussed our transformation- and template-based
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question generation approaches and evaluated the quality of the output of our
system in two crowdsourcing studies. The results confirmed that automatically
generated questions are comparable to human-written ones with regard to their
well-formedness and answerability and can therefore be used in the FLTL con-
text with minimal supervision. To showcase this, we incorporated the question
generation component into the new version of FLAIR and designed a standalone
interactive web application that automatically generates questions for an input

text (www.purl.org/qg).

7.2 Limitations

The pragmatic nature of our work allowed us to leverage several approaches and
algorithms to achieve our research goals, thus downplaying technical pitfalls such as
erroneous output by third-party NLP tools. While this is discussed and exemplified
throughout the thesis, in this section, we consider the methodological limitations
of our research and make suggestions for minimizing or avoiding them in future

work.

Generalizability We chose news article as our development data for all of the
FLAIR components: from the detection of linguistic forms and disambiguation
of their senses to input enrichment and question generation. However, issues of
generalizability and representativeness need to be taken into consideration when
drawing conclusions from the experimental results. Firstly, news articles are likely
to include only a limited number of certain linguistic forms or their senses, such
as a spontaneous decision for future simple (Ill pay with a card). Secondly, they
may or may not appeal to language teachers and learners, depending on their
interests. Finally, they are usually written for educated readers of higher language
proficiency. We plan to investigate whether the performance of our tools differs on
texts of lower complexity and from other genres, such as news articles for children,

graded readers, and corpora of spoken English.

Sample size The online study testing automatic input enrichment employed
a repeated-measured design, which allowed us to collect 240 judgments from 12

teachers. The fact that we could not reject the null hypothesis that the preference
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for FLAIR did not depend on the frequency level of the target linguistic forms (see
Section 5.4.3) might have been caused by the small sample size. A larger number
of participants would be desirable in order to have more statistical power and —

potentially — find significant effects.

Another case where more data could improve the results was our study on tense
sense disambiguation. A low inter-annotator agreement led us to exclude many
items from the training set, which had an impact on the performance of our ma-
chine learning algorithms. There could be several reasons for a low inter-annotator
agreement. If it is caused by the intrinsic ambiguity of the items, carefully ex-
amining the dataset and making decisions on whether to leave in or exclude such
items may improve the results. If the cause is poor performance by the annotators,
both crowdsourcing and traditional annotation scenarios can benefit from provid-
ing more training and support to the annotators as well as implementing stricter

quality control mechanisms, such as in-task test questions.

Subjectivity Another limitation leading to a low inter-annotator agreement is
the subjective nature of any human evaluation or annotation. For classification
tasks, broader categories may minimize the disagreement among annotators. In
the case of evaluation, discrete scales will ensure the independent nature of judg-
ments, which is necessary for statistical analyses. Importantly, every category
or criterion should be richly illustrated with examples in the instructions and in
the task itself, e.g., via tooltips, to reduce the chance of ungrounded subjective

judgments.

7.3 Outlook

We conclude this thesis with a discussion of several potential future directions
for our research at the intersection of second language acquisition, computational

linguistics, and intelligent computer-assisted language learning.

As discussed in Section 3.6, our ultimate goal is to further develop FLAIR into
an intelligent tutoring system. The first steps in this direction will include imple-
menting a learner model along with the functionality of marking certain linguistic
forms as difficult. Eventually, we plan to model learners’ reading behavior as well

as linguistic knowledge in order to automatically suggest appropriate material
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accompanied by activities providing functionally driven input enhancement and

scaffolding feedback.

The comparability of computer-generated and human-written questions paves the
way for an external evaluation of the learning outcomes that can be achieved
using the approach of functionally driven input enhancement. With NLP tech-
nology integrated into web-based tools supporting the intervention, a large-scale
randomized controlled field study can be set up and run over an entire semester or
school year, the time span in which real-life foreign language learning takes place.
Crucially, such a setup could also include a collection of measures on individual
differences and other relevant factors. In addition, the insights gained from such
a study could further improve the learner model by parameterizing the selection
of reading materials and the generation of questions targeting the linguistic forms

that are particularly relevant for a given user.

From a computational linguistic perspective, the task of generating questions is
feasible yet challenging and is interestingly intertwined with other NLP tasks. For
instance, the tasks of named entity recognition and coreference resolution can be
used to make questions more precise. The integration of semantic roles — and
potentially, other semantic representations — into the question generation system
can lead to a larger variety of generated questions, as has been previously demon-
strated by, e.g, Heilman (2011) and Flor and Riordan (2018). Further advances in
the task of tense sense disambiguation can broaden the scope of grammar-concept

questions asking about the interpretation of tenses in various contexts.

Finally, one important strand of future work is the generalization of our system to
other languages. As our system is rule-based, this task requires writing different
rules for every language both for the detection of linguistic forms and for the
generation of questions. Currently, we have a full English system and an input

enrichment module for German in place.

To conclude, we demonstrated that the methodology extensively explored and
evaluated in the field of second language acquisition can be automated using
state-of-the-art computational linguistic technologies. Our work thus proves that
developing theory-motivated and efficient applications for language teaching and
learning is a feasible enterprise. Feedback loops between researchers, develop-
ers, and teachers can ensure the constant improvement of such applications and

encourage teachers to integrate them into their pedagogical practice.
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FLAIR and Other IR Systems
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FLAIR TextFinder REAP LAWSE
(Bennohr, 2005) (Brown and Eskenazi, 2004) (Ott and Meurers, 2011)
Database The Web or a corpus Offline database Offline database The Web
Source Web m,aterlals or the Texts from online Web materials Web materials
user’s own texts newspapers
3rd-party tools Bing, CoreNLP Lucene AltaVista Lucene

Main focus

Re-ranking, question
generation

Text complexity and user
modeling

Lexical language modeling

Text complexity, lexical
language modeling

Target users

English and German L2
teachers and learners

English L2 adult learners

English learners, teachers,
researchers (L1 and L2)

English L2 learners

Readability

Yes: word and sentence

Yes: word and sentence

Yes: word histograms

Yes: readability measures

length length + conjunctions + lexical frequency profiles
Learner model No Yes: writing sample Yes: pre-defined ability No
levels

Grammar Yes: 87 linguistic forms Partially: conjunctions No No

Yes: i 1 Yes: lexical f
Vocabulary es: academic vocab}l ary No Yes: word lists es: lexical frequency

and custom word lists profiles

Reading interface Yes: highlighted forms No Yes: dictionary definitions No

Evaluation

Online study with
teachers, crowdsourcing

Teacher ranking, learner
questionnaire

Empirical study, learner
questionnaire

Against a corpus of graded
texts

Future work

Intelligent tutoring
system, other languages

Readability formula
optimization

Grammar difficulty, text
cohesiveness

Syntactic features,
grammatical constructions

TABLE A.1: A comparison table of FLAIR and a selection of IR systems.

0ST

swa)sAS I WPYIO pue YTy 14 ¥ XIpueddy



Appendix B

List of 87 Linguistic Forms

Identified by FLAIR

Abbreviations:
lookup = look-up in a predefined list

regex = regular expression

Tregex = tree-based regular expression

Semgrex = dependency-based regular expression

POS = part of speech
CP = constituency parse

DP = dependency parse

Construct

Detection method

Simple constructions

Existential there (present and past) DP
Sentence structure

Imperative sentences Tregex
Subordinate clauses CP
Relative clauses CP
Adverbial clauses CPp
Direct object DP
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Indirect object DP

Questions

Direct questions regex

Indirect questions CP

General questions (yes/no) regex + POS

Be-, do- or have- questions regex + CP + DP
Wh- questions regex + POS

Tag questions regex + POS + DP
Conditionals

Real conditionals (Type 0 and Type 1) Tregex + lookup

Unreal conditionals (Type 2, Type 3 and Mixed) Tregex + lookup

Tenses and Aspects
Future perfect, future perfect progressive Semgrex

The simple aspect, present simple, past simple, DP + POS

future simple

The progressive aspect, present progressive, past DP + CP + POS +

progressive, future progressive lookup

The perfect aspect, present perfect, past perfect, DP + CP + POS

future perfect

The perfect progressive aspect, present perfect DP + CP + POS
progressive, past perfect progressive, future per-

fect progressive

The Voice

Passive voice DP

Verb forms
irregular verbs (in the 2nd or the 3rd form) POS + regex
regular verbs (in the 2nd or the 3rd form) POS + regex

phrasal verbs Tregex
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going to, used to (habitual, past) regex + POS

short verb forms (’s, 're, 'm, ’s, 've, ’d) POS + regex

full verb forms (is, are, am, has, have, had) POS + regex
auxiliaries be, have in declarative sentences POS + regex + DP
-ing verb forms (gerund AND participle) POS

to- infinitives POS

emphatic do POS + DP

Modal verbs

simple modals (can, must, need, may) POS + lookup
advanced modals (might, ought to, able) POS + lookup
Negation

no, not, never DP

other negative adverbs (rarely, hardly, etc.) POS + lookup
Conjunctions

simple conjunctions (and, but, or) POS + lookup

advanced conjunctions (therefore, because, etc.)  POS + lookup

Prepositions

basic prepositions (in, at, on, with, after, to) POS + lookup
advanced prepositions (during, through, etc.) POS

complex prepositions (because of, etc.) POS + DP
Pronouns

subjective pronouns (I, you, etc.) DP + POS —+ lookup
objective pronouns (me, you, them, etc.) DP + POS + lookup
possessive pronouns (my, your, their, etc.) POS

absolute possessive pronouns (mine, yours, etc.) lookup

reflexive pronouns (myself, themselves, etc.) POS + lookup
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Quantifiers

some, any, much, more DP + regex
Articles

a, an, the POS + regex
Adjectives

positive degree POS + regex
comparative or superlative degree - simple POS
comparative or superlative degree - compound POS + regex
irregular comparative or superlative POS + lookup
Adverbs

positive degree POS + regex
comparative or superlative degree - simple POS
comparative or superlative degree - compound POS + regex

irregular comparative or superlative CP + lookup




Appendix C

Regular Expressions for Tree and

Dependency Graphs

C.1 Imperatives

Tregex:

/~8.%/ > (ROOT !<<- /\?/) < (/°V.x/ !,, /°N.*/
<<, /VB|VBP/=imperativeVerb)

Explanation: A declarative sentence that is just 1 level away from the root,

immediately dominates a VP starting with an infinitive verb form and not preceded

by any NP. Note that in Java, the question mark has to be escaped twice.

Tricky cases where it works:

e When the sentence does not start with a VP: “Please, close the door”, “And
then turn on the lights"

Tricky cases where it does not work:

e When the imperative VP is preceded by a pronoun, usually you: “You go

and think about what you’ve done.”
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C.2 Wishes

Semgrex:

{lemma:wish;tag:/~V.*/} >ccomp ({} >cop {tag:/VBD/} |
>aux {tag:/VBD/} | >aux {word:could} | >aux {word:would} |
>aux {word:might}) | >ccomp {tag:/VBD/}

Tricky cases where it works:

True negatives (not detected, and rightly so):

e “He wished her a happy birthday."
e “He wished her to always be happy."

e “He wished to always be happy."
True positive (correctly detected):

e “I am wishing you were here."

C.3 Hypothetical events

Semgrex:

{lemma:if} <mark ({tag:/VBDIN/} !</advcl:if/ {}) | <mark
({} >cop {tag:/VBDIN/} | >aux {tag:/VBDIN/} !</advcl:if/ {})

| <mwe {lemma:as}

Explanation: If only followed by a verb in a past tense with no subjunctive
clause. As if may or may not be followed by a verb in a past tense (e.g., “As if I

cannot sing!")



Appendix C Regular Expressions for Tree and Dependency Graphs 157

C.4 Reported speech

Semgrex:

{lemma:/sayltell|add|write|report/;tag:/VB.*x/}
I>ccomp ({tag:/"VB.*x/} $++ {tag:’’} $-- {tag:‘‘})

Explanation: A reporting verb that is not governing a clause inside quotation
marks. If there is no verb inside the quotation marks, it is not considered a full

quote, and the sentence can still be counted as reported speech.

Decisions on borderline cases: Although reported speech is mainly studied in
the language learning setting when something was reported in the past (e.g., “He
said that..."), we also detect the present-tense use of reported speech (e.g., “He is

saying that ...").

Tricky cases where it works:

e “The company also said that it will continue with its application to the
Department of Trade and Industry to operate a ‘personal communications

network’."

C.5 Conditionals

Tregex:

/~S.x/=ifClause <+ (/~CONJP/) (/"IN/ < if|If|unless|Unless !, asl|As

. necessary !. (mot !.. /°V.%x/)) !>+ (/SBAR/) (/~V.x/

<<# (know|see|show|remember|tell|remind|advise|notice|recognizel
recognise|doubt|check|investigate|consider|decide|explain|feel|find]|
guess|mention|repeat|knew|known|saw|seen|showed|shown|remembered|
told|reminded|advised|noticed|recognized|recognised|doubted|
checked|investigated|considered|decided|explained|felt|found|
guessed|mentioned|repeated

!'.. (that .. iflunless)) !$++ /°NP/) '$, (/.*/ <<# (sure|certain|aware
!'.. (that ..iflunless))) (>+ (@VP|S|SBAR) (/~S.*/=mainClause < (/~NP/
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$.. (/°VP/ (7<<, would|could|might=would | 7<<, /~VBD$/=realPast)))) |
<+ (!SBAR) (SBAR ?7<< would|could|might=would) | <+ (!SBAR) (S << /,/
7<< would|could|might=would)) <+ (/~S$/) (/~V.x/

(<<, needed|would|could|might=ifPast | <<, need|will|can|may|
wo=ifPresent | <<, QVBZ|VBP=ifPresent | <<, QVBN=ifPresent |

<<, (@VBD=ifPast ,, /"N.*x/) | <<, (QVBD=ifPresent !,, /"N.*x/)))

Explanation:

Mark a clause that has if or unless as a descendant, which satisfies the following

conditions:

If Junless is not preceded by as (to exclude as if), is not followed by necessary
(to exclude if /unless necessary), and is not followed by not if it is followed by
a non-VP (to exclude if not altogether horrible but not to exclude if not treated

correctly).

This clause should also not be a sister-node of a VP heading the verbs like know,
see, check, etc. (to exclude “I don’t know if he is coming”, “He will immediately see
if you are making enough effort”, etc.) and also not a sister-node of any subtree
heading aware, certain, or sure (to exclude “I am not certain if he will come”).
Both the special verbs and aware, certain, and sure, should not be followed by
that if, immediately or not (to exclude “I am sure that if you try hard, you can

succeed.”)

There are three ways to find the main clause:

1. Tt can be the first S-parent of the if-clause (via an unbroken chain of VP, S,
or SBARs, if any) that contains an NP followed by an VP (not necessarily

immediately followed).

2. It can be the first SBAR~child of the if-clause (via an unbroken chain of VP
or S’s, if any).

3. It can be the first S-child (via an unbroken chain of any nodes except for

SBAR, if any) that contains a comma.

In the main clause, find the main verb: a VP whose first child is either would /-

could /might or a verb in the past tense (VBD). If a verb in the past tense is found,
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the sentence belongs to the real-past conditionals (“If I studied hard, I always got
good marks.”). If would/could /might is found, mark it as would for later analysis.

Always inspect the first element of the retrieved trees and omit the rest.

In the if-clause, find the main verb: a VP (dominated by the if-clause-S/SBAR

through a chain of S, if any), whose left-most descendant is either:

— a modal in its present form (need/can/may/will): mark it as ifPresent
—a modal in its past form (needed/could/might/would): mark it as ifPast
—a verb in its present form (VBZ or VBP): mark it as ifPresent

—a verb in its past form (VBD) preceded by a noun: mark it as ifPast

—a verb in its past participle form (VBN: “if accompanied by parents, ...”): mark

it as ifPresent

— a verb in its past form (the verb may mistakenly be parsed as VBD instead of

VBN) not preceded by a noun: mark it as ifPresent
Then, follow the logic:
if realPast: real past
else if would && ifPresent: mixed
else if would && ifPast: unreal (or real past with would/cold/might)
else if (lwould) && ifPresent: real present/future
else if (lwould) && ifPast: mixed
else: mixed
Decisions on borderline cases:
e Fven if is always counted as conditional: either real (e.g., “Even if he fights,

he will need..."), unreal (e.g., “Even if it was not right..."), or mixed (e.g.,

“Even if it is, some state would need...").

e If the verb in the main clause is in its past form, it is counted as a real past

conditional (e.g., “If I studied hard, I always got good marks.")
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e All conditionals where the verb in the if-clause is in its past form and the

verb in the main clause is would/could /might are counted as unreal.

Tricky cases where it works:

True positives (correctly detected):

e “He knew that if she..."

e “He always tells me that if I..."

True negatives (not detected, and rightly so):

e “He does not know if she..."

e “He will not come if she..."

Tricky cases where it does not work:

e Real conditional in the past, especially with reported speech (e.g., “He said

that if he were to..., he would...")

e c.g., "You will not find out their surnames if they are not related.": If the
if-clause projects to the main S via a chain of VP’s, the object dependent of
the verbs from the list (know, see, find, etc.) will not be matched because it
will not be at the same level as the if-clause.

However, this only influences recall, not precision. It could be solved by

adding a Semgrex.
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Document Co-occurrence

Frequencies of Linguistic Forms

Frequency
Construction 1 (% docs) Construction 2
High
frequency
Positive adjective (nice, diffi- o _
96.70 Positive adverb (easily, fast)
cult)
The 95.80 A
Irregular verbs (form 2, 3) 95.20 Regular verbs (form 2, 3)
Present Simple 93.20 Past Simple
To infinitives 90.00 -ing verb forms
Medium
frequency
Pronouns as subject 73.50 Pronouns as object
The 67.80 An
A 67.30 An
-ing verb forms 67.10 -ing nouns
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Long verb forms (have, are)
Plural nouns - regular
Present Perfect

Past Simple

Comparative adjective short

(nicer)

Superlative adjective short
(the nicest)

Present Simple

Comparative adverb short
(faster)

Not
Future Simple

Present Progressive

Comparative adjective short

(nicer)

Comparative adverb short
(faster)

Past Simple
Future Simple

Past Perfect

Superlative adverb  short
(fastest)
Direct  object  (transitive
verb)

Present Perfect

Can

64.80

63.30

63.20

62.90

57.80

55.40

50.20

45.30

41.60

40.10

38.10

38.00

33.00

30.00

26.00

24.70

23.70

23.50

21.60

20.50

Short verb forms (’ve, 're)
Plural nouns - irregular
Present Simple

Present Perfect

Positive adjective (nice, diffi-

cult)

Positive adjective (nice, diffi-
cult)

Present Progressive

Positive adverb

Nt
Present Simple

Present Perfect

Superlative adjective short
(the nicest)

Comparative adjective short

(nicer)
Past Progressive
Present Progressive

Past Simple
Positive adverb (easily, fast)

Indirect object (ditransitive

verb)
Past Progressive

Could
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Past Perfect 19.30 Present Perfect
Comparative adjective long 19.00 Positive adjective (nice, diffi-
(more difficult) cult)
Superlative adjective long 18.40 Positive adjective (nice, diffi-
(the most difficult) cult)
Past Progressive 17.20 Present Progressive
Comparative adjective short 15.80 Comparative adjective long
(nicer) (more difficult)
Superlative adverb  short 1510 Comparative adverb short
(fastest) (faster)
Superlative adjective short 13.90 Superlative adjective long
(the nicest) (the most difficult)
Can 13.70 May
Some 13.70 Any
Could 13.10 May
Past Perfect 12.10 Past Progressive
Low

frequency
Past Simple 10.20 Present Perfect Progressive
Future Simple 9.50 Going to
Can 8.90 Might
Present Perfect Progressive 8.70 Present Perfect
Might 8.60 Could
Present Progressive 7.10 Present Perfect Progressive
Wh- questions 6.90 Yes/No questions
Comparative adjective long 6.10 Superlative adjective long

(more difficult)

(the most difficult)
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Explicit negation (no, not,

never)
Might

Real conditional

Comparative adverb long

(more easily)

Comparative adverb long

(more easily)
Present Perfect Progressive
Past Perfect

Many

Superlative adverb long (the

most easily)

Superlative adverb  short

(fastest)

Past Perfect Progressive

Possessive pronoun (my)

Past Perfect Progressive

Comparative adjective long

(more difficult)

Past Perfect Progressive
Past Perfect Progressive
Past Perfect

Past Perfect Progressive

Can

5.10

5.10

4.30

4.10

4.10

3.80

3.60

3.00

2.90

2.90

2.60

2.40

2.00

2.00

1.80

1.70

1.40

0.50

0.50

Partial
hardly)

negation  (barely,

May

Unreal conditional
Positive adverb (easily, fast)

Comparative adverb short
(faster)

Past Progressive

Present Perfect Progressive

Much
Positive adverb (easily, fast)

Superlative  adverb  long

(most easily)

Past Simple

Possessive absolute pronoun

(mine)
Present Perfect

Comparative adverb long

(more easily)

Past Progressive
Present Progressive
Past Perfect Progressive

Present Perfect Progressive

Able
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Comparative adverb long 0.20 Superlative  adverb  long
(more easily) ‘ (most easily)

Might 0.00 Able

Able 0.00 May

TABLE D.1: Pairwise document co-occurrence frequencies of grammatical con-
structions calculated on the basis of a corpus of 2400 web texts.






Appendix E

Dictionary of Tense Senses

Grammatical Form Example Grammatical meaning
tense
PRESENT TENSES
Present Verb John is a writer. State in the present (with
Simple or verbs that do not denote
Verb + (e)s | Now | understand. action: be, know, have, ...)
| get up at 6.00 every morning. Repeated action (habit or
routine)
He walks to work every day.
The train leaves at 6.00 a.m. Future scheduled event
| have a meeting next Sunday.
Earthquake hits Iran. Past event in a report,
storytelling
This guy suddenly walks up to
me..
Present Amlis/are + | She is talking on the phone now. | Action in progress
Continuous + verb +
ing | am meeting Jane on Friday. Future arrangement
Max is always complaining! Repeated annoying action
Present Have/has + | He has been to Italy twice. Experience
Perfect + verb + ed
/irregular | | have known her for three years | Ongoing action or state
3rd form / since 2015.
Jill has done her homework and Finished action
can go play outside now.
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Present Have/has + | Luke has been working since 8 | Ongoing action
Perfect been a.m.
Continuous + verb +
ing Here you are. | have been Finished action that
waiting for you. stopped very recently
PAST TENSES
Past Simple Verb + ed / | Last winter was extremely cold. State in the past (with
irregular verbs that do not denote
3rd form Mr. Jones had three brothers. action: be, know, have)
Jane saw a good film last night. Single action in the past
It snowed every day last winter. Repeated action in the
past
| just wanted to ask you... Social distancing
Past Was/were | Chris was hiking at 2 p.m. Action in progress in the
Continuous + yesterday. past
+ verb +
ing | was watching TV when the Ongoing action in the past
phone rang. interrupted by another
action
While Alex was traveling in
Europe, he ran into an old friend.
He was coughing all night long. | Repeated annoying action
in the past
| was wondering ... Social distancing
Past Perfect Had + Tim had only been to France Experience at a time point
+ verb + ed | once by then. in the past
[ irregular
3rd form They had known each other for Duration of an action or a
years. state in the past
They had already moved to Finished action at a time
Atlanta by 2010. point in the past
She had left when he arrived.
Past Perfect Had + They had been swimming in the | Unfinished action
Continuous been + water for 2 hours when they interrupted by another
verb +ing | finally saw a whale. action but still continuing

| saw the wet streets: It had been
raining.

Finished action at a time
point in the past
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FUTURE TENSES
Future Simple | Will + verb | It will probably rain tomorrow. Future event or state
She will be fine.
I’ll pay with a card. Spontaneous decision
He won’t listen. In the negative form:
unwillingness
The pen just won’t write.

Future Will + be + | A driver will be waiting for you Action in progress at a
Continuous verb +ing | when you arrive. point of time in the future
| will be watching my series

while he will be playing
computer games.
She will be working on her Duration of an action or
thesis for the next three years. state in the future
Future Perfect | Will + have | He will have done the job by Action completed before a
+ verb + ed | Friday. future point of time
/irregular
3rd form
| will have finished the book by | Action completed before
the time we see each other again. | another future action
She will have worked here for 5 | Duration of an action or a
years next summer. state at a point of time in
the future
Future Perfect | Will + have | She will have been working Duration of an ongoing
Continuous + been + here for 5 years by the end of action or a state
verb +ing | June. measured by a point of

time in the future

She will have been working
here for 5 years by the time she
goes on a maternity leave.

Duration of an ongoing
action or a state
measured by a future
event







Appendix F

Instructions for the Crowdsourcing
Task on TSD

OVERVIEW

Important information! This job is designed for proficient speakers of En-
glish. We kindly ask you to only do this job if you are fluent in English and are

familiar with the English grammar.

We want to prove that crowd workers are as good as expert human judges at
linguistic tasks! Since we only need high-quality responses, there will be many test

questions that will ensure your reliability. We appreciate your time and effort!

The task: Please, remember your English lessons, read the instructions carefully
and help us select the most appropriate grammatical meaning of a verb in a sen-
tence. The examples are provided below, in the grammar reference, and in the

task itself.

WHAT IS A GRAMMATICAL MEANING?
Let’s take the verb to live as an example.

We all know what it means and can find its definition in a dictionary. But depend-
ing on the grammatical construction and the context in which it is used, it can
have different grammatical meanings. For example, just one form has lived can be

used to express the following grammatical meanings:
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[ live in the US. (Grammatical meaning of live here: State in the present)

I have lived in three different cities. (Grammatical meaning of have lived

here: Experience)

[ am living with my parents now. (Grammatical meaning of am living here:

Action in progress)

[ have been living here for the last 5 years. (Grammatical meaning of have
been living here: Ongoing action that started in the past and continues in

the present)

STEPS

1.

Read the sentence, pay attention to the highlighted area, especially to the

verb in it.

. Select the most appropriate grammatical meaning of the verb in this

context ((See the examples of grammatical meanings in the Grammar Refer-

ence below and when you mouse over the meanings in the task).

If the verb in the sentence is negated, select the corresponding 'positive’

meaning from the list. For example:

— Sentence: He has completed the task. — Grammatical meaning of the verb:

Finished action

— Sentence: He has not completed the task. — Grammatical meaning of the verb:

Finished action

Select the option None of the above If the highlighted words describe not

a real but a hypothetical action as in:

— If only we could turn back time! (But we cannot.)

— She would love to go skiing. (But she does not love it now.)
— I wish they did not argue all the time. (But they do.)

— He must have forgotten about our meeting. (But maybe he did not.)

. (Optional) Leave a comment about the current sentence in the corresponding

field. Is there anything peculiar about the sentence that makes it hard to

judge the tense or its meaning?
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GRAMMAR REFERENCE

You will find the examples of each grammatical meaning when mousing over it in

the task.

Here is a link to the grammar reference containing all grammatical construc-

tions with their forms, examples, and grammatical meanings:

>>> Grammar Reference (opens in a new tab) <<<

EXAMPLES

Sentence with a highlight Correctly answered question
Experience
Duration of an action or state
Sweden has cut its annual emissions of carbon © Finished action

dioxide by 23 percent since 1990.

None of the above. (Are you sure? Try not to
overuse this option.)

© Actionin progress
Future arrangement
Repeated annoying action

Young people especially are fighting for animal
rights.

Experience
Duration of an action or a state
© Finished action

Zimmerman, 29, had been charged in the
shooting of Martin last winter.

© Future event or state

Within 15 years scientists will develop a new Spontaneous decision

kind of chicken. X .
In the negative form: unwillingness

Unfinished action

Without the data, “we would have basically Finished action that stopped very recently

been flying blind," he said.
© None of the above. (Are you sure? Try not to

overuse this option.)

Comments

Sweden has completed an
action, and now the annual
emissions of carbon dioxide
are 23 lower than in 1990.
The sentence emphasized
the result. Although there is
a time expression since 1990,
the sentence does not
describe the duration of an
action as in Sweden has been
very successful since 1990. It
also does not describe an
experience as in Sweden has
been at the top of the list twice.

The action isin progress
right now, and it is not an
annoying action as in He is
always complaining! It is also
not a future arrangement as
in We are meeting for lunch at
1pm.

The sentence describes an
action that s finished and
emphasizes the result, not
experience as in He had been
to Italy twice, and not
duration as in He had known
her for years.

The sentence describes a
future event. It does not
describe a spontaneous
decision as in | will get the
phone, and not unwillingness
as in He just won't listen.

The highlighted form is part
of a so-called unreal
conditional: the action of
flying blind is not real, it is
hypothetical.

P.S. There are a couple of questions that require your honest answer and not a judgment of a question item. Please, read every

question attentively. Thank you!
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Model Instantiations and
Parameters for TSD

G.1 Preprocessing

All preprocessing, training, and testing was done in Python using the sklearn
library (Pedregosa et al., 2011). We followed the following procedure for every

model:

1. Excluded the items with agreement lower than 60%: e.g., when each of the

three annotators selected a different sense of a tense:
data_frame = data_frame.loc[data_frame[‘agreement’] >= 0.6]
2. One-hot encoding for categorical features:

int_encoded = LabelEncoder().fit_transform(
data_frame[‘feature_name’].values)

onehot_encoder = OneHotEncoder (sparse=False)

int_encoded = int_encoded.reshape(len(int_encoded), 1)

onehot_encoded = onehot_encoder.fit_transform(int_encoded)

data_frame[‘feature_name_label’] = onehot_encoded

3. Split the data set into a training and a test set:
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>~
I

data_frame[[‘feature_name_1’, ‘feature_name_2’]]

data_frame[‘sense_label’]

<
1

X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=0)

4. Scaling, normalization of training and test sets:

scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

G.2 Model parameters

Majority baseline

clf = DummyClassifier(strategy = ‘most_frequent’).

fit(X_train, y_train)

Present simple

clf = RandomForestClassifier(max_features = 9,random_state=0).

fit(X_train, y_train)

Present perfect

clf = LinearSVC(C=1, random_state=0, class_weight=‘balanced’).

fit(X_train_scaled, y_train)

Past simple

clf = DecisionTreeClassifier (max_depth=2).fit(X_train, y_train)

Past perfect

clf = RandomForestClassifier(n_estimators = 29, max_features = 12,

random_state=0) .fit(X_train, y_train)



Appendix H

Online Study on Automatic Input

Enrichment

INSTRUCTIONS

You will read and evaluate 10 pairs of articles on 10 different topics. For each
pair of articles, you will first be presented with a topic and two target linguistic

constructions:

Topic: News

Linguistic Comparative degree of short

forms: adjectives and adverbs (smarter)
Comparative degree of long (more
adjectives and adverbs intelligent)

Start

You will then read the first article and answer two questions about its relevance
to the given topic and the representation of the given grammar constructions in
it:

Follow the same procedure with the second article and click Next to answer the

final question.

The final question presents the topic, the two target grammar constructions, and
both articles (which you can open and read again if you want to). You need to

decide which article you would choose as a reading assignment for an English class:
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Text 1

"Title of the news article 1.."  (click the title to read)

1. How relevant is the article to the topic?
(irrelevant) 1 2 3 o4 5 (relevant)

2. How rich is the representation of the two target linguistic forms in the article?
(poor) 1 2 o3 4 5 (good)
Next

Question

Which news article would you give as a reading assignment to your students?
Text 1: I Title of the news article 1..”

Text2: “Title of the news article 2..."

Definitely Text 1 Likely Text 1 Doesn't matter Likely Text 2 Definitely Text 2

Submit

Once you have read and answered questions about all 10 pairs of articles, you
will be requested to answer a few questions about your experience during the
experiment. Finally, you will be requested to submit your email address, to which

the amazon gift voucher will be sent.

In case you encounter any problem, you can let us know by clicking the 'Report a
problem’ form in the left-side panel of the main webpage. Alternatively, you can

also send us an email.

We thank you in advance for participating in the experiment.



Appendix I

Crowdsourcing Study on

Automatically Generated Questions

INSTRUCTIONS

Important information! This job is designed for proficient speakers of En-
glish. We kindly ask you to only do this job if you are fluent in English. Thank

you for your understanding!

In this job, you will be presented with questions asked about excerpts from
news articles. The questions are intended for learners of the English language,

and some of them are automatically generated by a computer program.
Your task is to rate each question on two scales from 1 to 5:
1. "How well-formed is this question?" (1 - very ill-formed ... 5 - very well-
formed)
2. "Can this question be answered by the source text?" (1 - no, not at all ... 5
- yes, easily)
Then answer the question given the information provided in the source text.

Please, write your responses in English.

Finally, make a guess whether the presented question is written by a human or is

generated by a computer.
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Optional: Once you have answered a question, you can leave a comment in the

corresponding box.

STEPS

e Read the source text, the question asked about it and the gap sentence that

answers it

e Rate the question item (the question and the gap sentence) based on how

well-formed it is

e Rate the question based on how easily it can be answered by the source text

o Answer the question with as few words as possible

e Guess whether the question was written by an English teacher or generated

by a computer. It does not matter if your guess is wrong.

e If you want, leave a comment about the question (optional)

EXAMPLES

Source text: The housing boom in Canada’s hottest cities has spilled over into

the suburbs, where builders say they are working as fast as they can to meet

soaring demand and get homes to market before a much-feared housing bust.

Question items:

NO

YES

Well-
formed?
(first
scale)

Can be
answered?
(second
scale)

P.S. There are a couple of questions that require your honest answer, and not a

judgement of a question item. Please, read every question attentively. Thank you!

What the housing boom in Canada’s
hottest cities has? Reason: The ques-
tion is ungrammatical. The word "done" is
missing, the auziliary verb "has" should be
used right after the question word "What".

What has the economic boom in England’s
hottest cities done? Reason: The question
cannot be answered. The text mentions a
housing boom in Canada, not an economic
one in England.

What has the hous-
ing boom in Canada’s
hottest cities done? It

has into the sub-
urbs.
Possible answers:

spread / spilled out
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