
FDSOI Design using Automated
Standard-Cell-Grained Body Biasing

Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Johannes Maximilian Kühn

aus Künzelsau

Tübingen
2016

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 24.02.2017
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Wolfgang Rosenstiel
2. Berichterstatter: Prof. Dr. Hideharu Amano

Acknowledgments

First and foremost, I am deeply grateful for all the support and opportunities my
advisors Professor Wolfgang Rosenstiel and Professor Hideharu Amano have
bestowed upon me. They have been kind teachers in every sense of the word and
allowed me to grow academically, but also as a person. I am also deeply thankful
for their openness and their great support for this German-Japanese cooperation,
which gave me ideal circumstances and opportunities to conduct my research.
Closely related to this is also, of course, my sincere gratitude to Keio Univer-
sity, which repeatedly hosted me to conduct my research at Professor Amano’s
laboratory as well as to attend conferences. My sincere gratitude also extends to
the State of Baden-Württemberg which made a scholarship available within the
cooperative doctoral program "Entwurf und Architektur Eingebetter Systeme"1 as
well as the German Academic Exchange Service (DAAD) which complemented
this scholarship during my stay at Keio University. Furthermore, I would also
like to express my gratitude to the DFG Priority Program SPP1500 "Dependable
Embedded Systems" as well as the ENIAC Things2DO2 project within which
I conducted parts of my research and from which I received generous support.
On the Japanese side, this work was also partially supported by the "Ultra-Low
Voltage Device Project" funded and supported by the Ministry of Economy, Trade
and Industry (METI) and the New Energy and Industrial Technology Development
Organization (NEDO). It was also partially supported by JSPS KAKENHI S Grant
Number 25220002. Furthermore, I’d like to extend my sincere thanks to the VLSI
Design and Education Center (VDEC) in Tokyo and Cadence, Mentor Graphics as
well as Synopsys for supplying their EDA tools. I’d also like to extend my sincere
gratitude to EDAUtils for allowing me to use their excellent Verilog parser.

All this, of course, could not be done without the support of my colleagues and
friends on both sides of the world. First of all, I would like to thank my early
mentors Thomas Schweizer and Sven Eisenhardt for introducing me to academia
and for keeping me under their wing while transitioning into this then unknown
world. Since they also introduced me to Professor Amano’s work, I’m much
indebted. Also, I’d like to thank Professor Oliver Bringmann for his advice and
his kind support. It was always great fun to travel with you! I would also like to
express my sincere gratitude to my dear friend Christoph Gerum for sharing his

1Design and Architecture of Embedded Systems
2THIN but Great Silicon to Design Objects

i

deeply respected views and knowledge on computer science. Many problems I
encountered where solved thanks to him. Also, thanks for bearing the madness of
sharing our 24/7 office ;). Furthermore, I would also like to thank Dustin Peterson
with whom I co-authored a paper which served as one of the starting points for
this thesis. Without his masterful programming skills, we definitely would not
have made the deadline. Moving to the other side of the world, I wish to thank first
of all my dear friends and colleagues Akram Ben Ahmed and Hayate Okuhara.
Without their skill, herculean efforts and superhuman endurance, we could not
have pulled off our test chip tapeout. It was always inspiring and motivating
to work with you. Also, I would like to thank Toru Katagiri for developing the
MuCCRA4 architecture, which in many respects served as a wonderful testbed
for FDSOI technology. Concerning artistic inspiration, I’d also like to express my
gratitude to the artist collective HGich.T for their refreshing creative genius. Since
I started listening to your music, not a single paper has been rejected. Finally,
there are the many colleagues and friends on both sides of the world who cannot
all be named. Thus, I would like to humbly request your forgiveness for not listing
you all with whom I have received the pleasure to work. I promise to make up for
it in person.

Obviously, this thanks would not be complete without mentioning the closest peo-
ple who had my back and gave me confidence throughout this endeavor. Thank
you, Franziska, for always being there and for accompanying me on this path. Fi-
nally, I wish to express my sincere thanks to my parents, Marion and Detlef, who
supported me from day one, allowing me to develop my curiosity freely.

ii

Abstract

With the introduction of FDSOI processes at competitive technology nodes, body
biasing on an unprecedented scale was made possible. Body biasing influences
one of the central transistor characteristics, the threshold voltage. By being able
to heighten or lower threshold voltage by more than 100mV , the very physics of
transistor switching can be manipulated at run time. Furthermore, as body biasing
does not lead to different signal levels, it can be applied much more fine-grained
than, e.g., DVFS. With the state of the art mainly focused on combinations of body
biasing with DVFS, it has thus ignored granularities unfeasible for DVFS. This
thesis fills this gap by proposing body bias domain partitioning techniques and
for body bias domain partitionings thereby generated, algorithms that search for
body bias assignments. Several different granularities ranging from entire cores
to small groups of standard cells were examined using two principal approaches:
Designer aided pre-partitioning based determination of body bias domains and a
first-time, fully automatized, netlist based approach called domain candidate explo-
ration. Both approaches operate along the lines of activation and timing of standard
cell groups. These approaches were evaluated using the example of a Dynamically
Reconfigurable Processor (DRP), a highly efficient category of reconfigurable ar-
chitectures which consists of an array of processing elements and thus offers many
opportunities for generalization towards many-core architectures. Finally, the pro-
posed methods were validated by manufacturing a test-chip. Extensive simulation
runs as well as the test-chip evaluation showed the validity of the proposed methods
and indicated substantial improvements in energy efficiency compared to the state
of the art. These improvements were accomplished by the fine-grained partitioning
of the DRP design. This method allowed reducing dynamic power through supply
voltage levels yielding higher clock frequencies using forward body biasing, while
simultaneously reducing static power consumption in unused parts.

iii

iv

Zusammenfassung

Die Einführung von FDSOI Prozessen in gegenwärtigen Prozessgrößen er-
möglichte die Nutzung von Substratvorspannung in nie zuvor dagewesenem Um-
fang. Substratvorspannung beeinflusst unter anderem eine zentrale Eigenschaft
von Transistoren, die Schwellspannung. Mittels Substratvorspannung kann diese
um mehr als 100mV erhöht oder gesenkt werden, was es ermöglicht, die schiere
Physik des Schaltvorgangs zu manipulieren. Da weiterhin hiervon der Signalpegel
der digitalen Signale unberührt bleibt, kann diese Technik auch in feineren Granu-
laritäten angewendet werden, als z.B. Dynamische Spannungs- und Frequenz An-
passung (Engl. Dynamic Voltage and Frequency Scaling, Abk. DVFS). Da je-
doch der Stand der Technik Substratvorspannung hauptsächlich in Kombinatio-
nen mit DVFS anwendet, werden feinere Granularitäten, welche für DVFS nicht
mehr wirtschaftlich realisierbar sind, nicht berücksichtigt. Die vorliegende Arbeit
schließt diese Lücke, indem sie Partitionierungsalgorithmen zur Unterteilung eines
Entwurfs in Substratvorspannungsdomänen vorschlägt und für diese hierdurch un-
terteilten Domänen entsprechende Substratvorspannungen berechnet. Hierzu wur-
den verschiedene Granularitäten berücksichtigt, von ganzen Prozessorkernen bis
hin zu kleinen Gruppen von Standardzellen. Diese Entwürfe wurden dann mit zwei
verschiedenen Herangehensweisen unterteilt: Chipdesigner unterstützte, vorparti-
tionierungsbasierte Bestimmung von Substratvorspannungsdomänen, sowie ein er-
stmals vollautomatisierter, Netzlisten basierter Ansatz, in dieser Arbeit Domänen
Kandidaten Exploration genannt. Beide Ansätze funktionieren nach dem Prinzip
der Aktivierung, d.h. zu welchem Zeitpunkt welcher Teil des Entwurfs aktiv ist,
sowie der Signallaufzeit durch die entsprechenden Entwurfsteile. Diese Ansätze
wurden anhand des Beispiels Dynamisch Rekonfigurierbarer Prozessoren (DRP)
evaluiert. DRPs stellen eine Klasse hocheffizienter rekonfigurierbarer Architek-
turen dar, welche hauptsächlich aus einem Feld von Rechenelementen besteht und
dadurch auch zahlreiche Möglichkeiten zur Verallgemeinerung hinsichtlich Many-
Core Architekturen zulässt. Schließlich wurden die vorgeschlagenen Methoden
in einem Testchip validiert. Alle ermittelten Ergebnisse zeigen im Vergleich zum
Stand der Technik drastische Verbesserungen der Energieeffizienz, welche durch
die feingranulare Unterteilung in Substratvorspannungsdomänen erzielt wurde.
Hierdurch konnten durch die Anwendung von Substratvorspannung höhere Tak-
tfrequenzen bei gleicher Versorgungsspannung erzielt werden, während zeitgle-
ich in zeitlich unkritischen oder ungenutzten Entwurfsteilen die statische Leis-
tungsaufnahme minimiert wurde.

v

vi

Contents

1 Introduction 1

2 Background 7
2.1 Architecture and properties of FDSOI 7

2.1.1 Architecture . 7
2.1.2 Device Physics . 9
2.1.3 Body Bias Domain construction 15

2.2 Dynamically Reconfigurable Processors 18

3 State of The Art 23
3.1 Process Technologies . 23

3.1.1 Fully Depleted Silicon on Insulator 23
3.1.2 FinFET . 24

3.2 Power Management . 25
3.2.1 Pre-SOI Body Biasing . 27
3.2.2 Dynamic Voltage Frequency Scaling 29
3.2.3 Clock and Power Gating . 32
3.2.4 Multi-VT H and Multi-VDD Approaches 34
3.2.5 Body Biasing with DVFS and approaches solely focusing on Body

Biasing in SOI Technologies . 36
3.3 Dynamically Reconfigurable Processors 39

3.3.1 DRPs and their Applications . 39
3.3.2 MuCCRA DRPs . 41

3.4 Overview, Comparison and Contribution 46

4 Problem Formulation 49
4.1 Mathematical Definition . 49
4.2 Body Biasing Categories . 51

4.2.1 Static Body Biasing . 51
4.2.2 Programmable Body Biasing . 52
4.2.3 Dynamic Body Biasing . 52

4.3 Partitioning Problem . 53
4.4 Optimization Target . 53

5 General Body Bias Domain Partitioning Approaches 55
5.1 Basic Partitioning Principles . 55
5.2 Core-Grained Body Biasing . 56

vii

Contents

5.3 Coarse-Grained Body Biasing . 59
5.4 Fine-Grained Body Biasing . 62

5.4.1 Combinatorial k-Subset Approach 67
5.5 Discussion . 69

6 Standard-Cell-Grained Body Biasing and Automization through Domain
Candidate Exploration 71
6.1 Methodology and Preliminaries . 71
6.2 Determining Activation . 72
6.3 Determining Timing Criticality . 78
6.4 Building Domain Candidates . 81

6.4.1 Resource Sharing and Cannibalization 81
6.4.2 Creating Domain Candidates . 82

6.5 Building Domains . 83
6.6 Body Biasing Impact Metric and Optimal Body Bias Assignment 84
6.7 Discussion . 86

7 Test Chip Implementation 89
7.1 Body Bias Domain Partitioning . 90
7.2 Macro-based Body Bias Domain Implementation 92
7.3 Supported Body Biasing Schemes . 96
7.4 Bias Supply Network . 97
7.5 Evaluation Environment . 100

8 Results 103
8.1 Simulative Results . 104

8.1.1 Core-Grained Body Biasing . 106
8.1.2 Coarse-Grained Body Biasing 112
8.1.3 Fine-Grained Body Biasing . 118
8.1.4 Standard-Cell Grained Body Biasing 124

8.2 Chip Measurements . 128
8.2.1 Core-Grained Body Biasing . 129
8.2.2 Coarse-Grained Body Biasing 130
8.2.3 Fine-Grained Body Biasing . 131

8.3 Discussion . 135

9 Conclusion and Outlook 139

Bibliography 143

viii

1 Introduction

The steady development of applications and technologies demand ever greater computing
performance in unchanging form factors and power budgets. These demands put the semi-
conductor industry in a difficult position, wanting to answer customers’ demands while
traversing the thin line of the physically possible. This increase in performance demands
is primarily realized by shrinking transistor geometries, a process commonly called tech-
nology scaling. Technology scaling, however, also requires to address many physical chal-
lenges that become ever more challenging, the smaller transistors become. Classical tran-
sistor architectures, that is bulk technology, already reached its physical limit at about
20nm as the electric fields controlling transistor functions were overlapping so much that it
was no longer possible to manufacture a functioning and economically feasible transistor
below this limit.
Thus, two alternatives were proposed and constitute to this date the only industrially
used approaches to manufacture below the aforementioned limit. These two principal
architectures are FinFET and Fully Depleted Silicon on Insulator technology (FDSOI).
Both approaches aim to increase electric control of the transistor channel but differ
mainly in the gate structure. FDSOI essentially remains a planar technology, while
FinFET technology rotates the channel ninety degrees to form the channel in a vertical
fin with the gate along the sides of the fin. While these architectures allow realizing
functioning transistors below 20nm, the continuing scaling itself leads to ever more
complex physical challenges that ultimately impact the merit gained through increased
scaling capabilities. For example, with decreasing channel length, so-called short channel
effects and variability are exacerbated, leading to impaired static power consumption
and the need for higher variability margins. To make matters worse, the innovations
realized in such semiconductor technologies are often battery powered and thus not
only suffer from the factually required peak performance but get increasingly drained
by just keeping computational resources available, conducting very lowly demanding
computations. Many approaches have been tried and employed to counter these effects,
but in the end, these gains are immediately outweighed by further, ever denser integration.
One example for such approaches is big-little computing. Big-little computing is an
architectural approach aiming to increase the energy efficiency for mission profiles
where tasks with greatly differing performance requirements and temporally separated
scheduling dates are present. The actual improvement is realized by fitting two different
core types onto one die: Highly performant and power hungry cores and low- to medium
performant (ultra) low-power cores. Depending on the tasks’ requirements as well as
the system’s utilization, the most suiting cores are selected while the other cores are put
into a sleep mode. While architectural approaches are charming as they usually work
with any semiconductor technology, their effect is also limited to the architecture itself.

1

1 Introduction

It does not change the physical process involved when realizing the actual computations
in silicon. Power management approaches such as Dynamic Voltage Frequency Scaling
(DVFS) aim to do precisely that by altering the operation conditions. By dynamically
changing the supply voltage of specific cores, the physical operation conditions of the
transistors in which the computation is conducted can be changed. Applied to the above
example, this means that during periods where only little performance is required, the
supply voltage is lowered, requiring subsequent frequency adjustments as timing degrades.
DVFS allows not only to reduce static power consumption, but also dynamic power
which is in a quadratic relationship with supply voltage. When high performance is
required, DVFS can increase supply voltage and scale clock frequency along to meet the
performance requirements. Both above-described approaches are usually also combined
with power gating, which is a technique to cut off the supply voltage of defined chip areas
physically. This is a very effective approach which however also requires significant extra
hardware to manage the transitions from and to a sleep-mode in a well-defined manner
and incurs considerable overheads. Nonetheless, all of these approaches do not change the
actual physical process involved when transistors switch their state to realize computations.

In contrast to FinFETs, FDSOI, however, does not only allow to continue technology
scaling but also to manipulate the transistor characteristics of even tiny clusters of
transistors. This method is called body biasing, describing the application of a potential
onto the electrically insulated transistor body. Body biasing acts similar to a second
gate and thereby either heightens or lowers the threshold. This capability enables chips
to alter one of the central transistor characteristics of said clusters at runtime as if the
process technology was changed. Thus, when, e.g. only little performance is required,
FDSOI can use body bias to increase threshold voltage, cutting leakage currents to below
10% of the original leakage, or, to decrease threshold voltage and therefore increase
maximum clock frequency without changing the supply voltage. Body biasing can be
realized in much finer granularities than, e.g., DVFS, as only the transistor bodies need
to be electrically separated, with no need for costly level shifters and high performant
voltage regulators or expensive synchronization hardware for multiple clock domains.
This additional flexibility also allows utilizing the supply voltage range much more
efficiently. As body bias’s influence on timing is relative to the supply voltage, it
can give enormous speed boosts at ultra-low supply voltages, making an extremely
appealing high energy efficiency case. On the other hand, it can also be used to sharply re-
duce static power consumption at higher supply voltages without performance degradation.

Body biasing fundamentally offers a new degree of freedom for power management
techniques but also confronts chip designers with additional complexity. As this additional
degree of freedom can be managed similarly to DVFS, it will be readily integrated into
existing power management solutions. This being said, there’s nothing free in this world
and neither is body biasing in FDSOI. On the contrary, if misused, it can make chip
designs less efficient than not using body biasing at all. Beneficially leveraging this feature
is a highly complex design step. While the physical implementation is straightforward,
deciding what groups of transistors should be biased together, by how much and at

2

what time, is a very complicated step requiring design automation to allow FDSOI to be
leveraged properly.

This thesis illustrates how to tackle these issues by proposing several approaches with in-
creasing levels of automation. Thus, starting with intuitive ways to partition a design into
body bias domains, general body bias domain partitioning guidelines are derived, evalu-
ated and discussed. These partitioning methods escalate in granularity, starting with entire
cores, moving to the particular case of DRP’s regular array of processing elements before
lifting granularity limits entirely through fine-grained body biasing. These intuitive meth-
ods are however hampered by the need for hand (pre-)partitioning. While experienced de-
signers can identify very good partitioning schemes by hand, it is still considerable work.
Furthermore, many optimizations destroy design hierarchies, leaving no human-readable
structures. The destruction of design hierarchies, however, is integral to many optimization
methods. Forcing the hierarchy to stay intact would prevent these methods from function-
ing correctly. Thus, after these intuitive approaches, a fully automated standard cell-based
approach is proposed as an extension of the intuitive fine-grained approach, allowing body
bias domain partitioning to consider partitionings on standard-cell granularity.
The thesis is structured as follows: After this introductory part, chapter 1 closes with a
brief motivation. Then, chapter 2 starts with a background on available semiconductor
technologies for digital designs with a specific focus on FDSOI technology as well as
dynamically reconfigurable processor architectures, in particular, the MuCCRA architec-
tures. This chapter is followed by the state of the art in chapter 3 considering all fields
relevant to this thesis. This is, of course, semiconductor technologies, power management
techniques and dynamically reconfigurable processors. Before moving on to the partition-
ing approaches, the actual problems this thesis aims to tackle are introduced in chapter 4.
Finally, chapters 5 and 6 propose the evaluated body bias domain partitioning approaches.
Chapter 5 considers intuitive, i.e., general body biasing domain partitioning approaches
while 6 proposes an automatized method to partition highly optimized netlists into body
bias domains. Before moving on to the actual evaluation results, chapter 7 introduces the
test chip manufactured to provide the real chip evaluation part in chapter 8, the results
chapter. This chapter is split into two parts: simulative results and results based on real
chip measurements. Naturally, as simulations allow to freely exchange and modify the
evaluated design and the evaluation conditions, real-chip measurements lack this flexibil-
ity and thus cannot cover all considered strategies presented in the simulative evaluation
part. Finally, this thesis closes in chapter 9 with a brief conclusion as well as an outlook on
possible future work.

Motivation

Apart from FinFET technology, FDSOI is the only remaining option to continue tech-
nology scaling. The actual miniaturization of transistors, however, created a problem of
its own. The sheer physical dimensions no longer allow scaling all aspects accordingly.
While single transistor energy efficiency still increases per node, it does not scale at

3

1 Introduction

the same pace as the number of transistors increases [1]. This development leads to
a new paradigm called dark silicon which ultimately also put a halt to straightforward
multi-core scaling [2]. With FDSOI, this phenomenon can be significantly mitigated
as body biasing allows to change the transistor characteristics to suit the power versus
performance requirements dynamically at runtime. If e.g., no performance is required,
i.e. if background tasks are executed, reverse body biasing can almost eliminate static
power consumption. If low- to medium levels of performance is required, ultra-low supply
voltages can provide sufficient performance with the option of additional speed boosts via
forward body biasing. When combining these two aspects and applying it to entire designs
in a fine-granular manner, both aspects can even be leveraged at the same time, leading to
a highly efficient design style leveraging FDSOI’s capabilities and thereby circumventing
many of the limits imposed through the dark silicon phenomenon.

As the physical challenges associated with technology scaling continue to increase in
complexity, the challenge also became an economic one. For decades, the cost per
transistor decreased with the ability to fit ever more transistors onto the same area with
relatively similar defect probability. Below the 28nm node, however, cost per transistor
increases again as the sheer effort to manufacture a functioning unit as well as develop-
ment cost increased so steeply, they cannot be compensated without a considerable price
increase [3]. In this regard, again, FDSOI dominates in two respects. Firstly, it is planar
technology requiring no complete switch of manufacturing and design methodology.
Secondly, as hinted above, by being capable of providing more performance at lower
supply voltages, its characteristics also resemble a lot more a further scaled node than
in which it is manufactured. For example, 28nm FDSOI using body biasing exhibits
similar power and performance levels as 22nm FinFET at the same supply voltage, still
leaving much headroom for FDSOI’s ultra-low supply voltage operation. Thus, FDSOI
also possesses strategies to address many of the economic issues as well.

These capabilities have very practical implications. With smartphones inactive most
of the day, battery charges typically last no longer than a single day. This can mainly
be attributed to the many background tasks running periodically to allow the device to
monitor its status, checking emails and staying informed in order to provide an actual
"smart" user experience. Such tasks, however, do not require much performance, but still,
with process technologies safe limits of low supply voltage operation, the lowest power
operation point is still significantly above the requirements for such tasks. FDSOI, on
the other hand, allows putting the smartphone into an ultra-low-power mode, adjusting
the transistor characteristics to the actual computational demands. This could potentially
give smartphone users days instead of close to a day on a single battery charge. However,
FDSOI could not only make background tasks much more efficient. For normal operation,
supply voltage could be significantly dropped as well, and thus be made a lot more
efficient than in competing semiconductor technologies. These capabilities increase in
attractiveness when considering wearable devices, where the battery life plays an essential
role in the willingness of users to adopt new devices.

4

One of the killer applications, however, may be small, lightweight nodes as projected
as part of the Internet of Things (IoT). While IoT is still picking up the pace, both
its use-case and the potential benefit of FDSOI are self-evident. IoT lives on massive
numbers of sensors and actors, where, e.g. smart environments such as sensor-equipped
roads. The sheer number of nodes required as well as the difficulty in providing adequate
power supplies to such devices call for ultra-low-power devices that still provide enough
computational performance to conduct pre-processing on the spot.

In this specific respect, as well as regarding the question for suitable benchmarks, the
focus moves onto DRPs. Both, to obtain meaningful evaluation results as well as to
stress the suitability of FDSOI for extremely challenging ultra-low-power applications
such as IoT nodes, the evaluated architecture should reflect this demanding profile. The
DRP concept is per definition among the most energy efficient approaches to (embedded)
computing conceivable. As a compromise between FPGA-like single bit configurability
and CPUs’ word grained operation, combined with an internal reconfiguration mechanism
reminiscent of CPU instructions, DRPs operate close to an area and energy efficiency
optimum. By restricting additional hardware to a bare minimum, power consumption is
close to the physically required minimum. Coupled with a massively parallel computing
approach employing up to hundreds of processing elements, computational performance
can be scaled to a multitude of applications. This is first of all extremely appealing to
ultra-low-power applications such as in the IoT, but also constitutes one of the most
challenging benchmarks conceivable for any netlist-level power and energy efficiency
optimization method.

All these advantages in mind, technologies rarely succeeded when they where hard to
apply to real-life projects, where highly complex and challenging design methodologies,
requiring weeks of training and designated engineers lead to a spike in labor costs. For now,
the option of just moving to the next process node is still a valid alternative. Thus, FDSOI
strongly depends on design automation to leverage its capabilities without causing higher
labor costs than moving to the next node would. As semiconductor manufacturers have to
put even more efforts into creating even smaller nodes, costs will have to be offloaded to the
customer. At this point, it will be a decisive factor to have several options and thus, for the
above described, present use-cases and for the nodes further down the road, it will be vital
to be able to make the most of each node. For these reasons, this thesis makes a significant
contribution by pointing out directions for the automatized utilization of FDSOI’s greatly
increased body biasing capabilities, allowing to make use of FDSOI’s full capabilities.

5

1 Introduction

6

2 Background

In this chapter, the technologies this thesis is based on are explained in detail, and the essen-
tial facts are summed up in each section. The chapter is split into two parts: Architecture
and properties of FDSOI and Dynamically Reconfigurable Processors.

2.1 Architecture and properties of FDSOI

The principal structure of SOI transistors, or, in this thesis more specifically FDSOI tran-
sistors, are much closer to planar technologies as, e.g., FinFETs. Despite this, the SOI
construction gives rise to particular effects that shall be elucidated coherently, moving
from architecture to device physics, covering specific SOI effects and such that are shared
with conventional transistors but behave differently due to the change in architecture. As
a uniquely required step, body bias domain construction, as well as well construction and
insulation details, are touched upon.

2.1.1 Architecture

As a typical textbook definition, Weste and Harris define SOI as a transistor design where
source, drain and body regions are insulated from the rest of the silicon bulk using some
electrically insulating material [4, p. 360].

Gate

Drain Source

Gate

Drain Source

Insulator
S/D Type

Channel Type
Bulk

Gate Type

Figure 2.1: Principal bulk (left) versus SOI transistor architecture (right)

Fig. 2.1 illustrates this structure by comparing a simplified bulk against a SOI transistor.
Both transistors insulate the gate structure from the channel to realize basic transistor func-
tionality. In SOI transistors, however (Fig. 2.1, right), an additional layer of insulation
prevents electrical interaction of the transistor structure with the bulk silicon below. While

7

2 Background

this structure efficiently prevents interactions with bulk silicon, it does not prevent inter-
action with charge carriers within the channel. This difference leads to a differentiation
between Partially Depleted (PDSOI) and Fully Depleted SOI (FDSOI) technologies.

0 < VG ≈ VTH

+
-

t si
C

 F
D

SO
I

...

0 < VG ≈ VTH

+
-

t si
C

 P
D

SO
I

Gate

...

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +

- - - - - -

-
- +

+

Gate

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +

x d
1 x d

1
x d

2

t si
PD

SO
I

t si
FD

SO
I

x d
2

Figure 2.2: NMOS PDSOI with charge interaction (left) versus NMOS FDSOI (right), adapted
from [4, 5]

If the sum of the depletion areas’ depths xd1 and xd2 are less than the thickness of the
silicon film in which the entire transistor is realized (e.g. tsiPDSOI in case of PDSOI and
tsiFDSOI in case of FDSOI), the transistor is partially depleted, i.e. in this case PDSOI. If
xd1 + xd2 < tsi, then parts of the transistor structure contains free charge carriers even at
VG close to 0V (Fig. 2.2 left) [5]. If on the other hand xd1 and xd2 are at least equal to
the thickness of the entire silicon film in which the transistor is realized, no free charge
carriers beyond those of the thermal voltage can be present at VG close to 0V . This means
if xd1 + xd2 ≥ tsi, then the transistor is realized in fully depleted technology, that is FDSOI
(Fig. 2.2 right).

In PDSOI, charge can remain in the channel area and thus, body voltage and subsequently
threshold voltage VT H becomes dependent on the switching history [4, p. 362]. Thus, this
effect is called history effect. This effect significantly adds to other sources of variation and
leads to a mismatch of otherwise identical transistors [4, p. 362]. Furthermore, [4] cite the
(partially) floating body as one mechanism for a parasitic bipolar transistor forming inside
the PDSOI channel, which leads to additional unwanted current flow, so-called pass-gate
leakage.

In FDSOI, however, the channel is fully depleted, i.e., there are virtually no charge carriers
when the device is off, and no charge can remain in the channel between switching. In
combination with the electrical insulation, this leads to full electrostatic control over the
transistor channel. This furthers a major benefit of SOI and FDSOI technology in partic-
ular, which is potentially very low VT H . The possibility to use fully undoped silicon as
channel material, together with the SOI construction efficiently minimizes VT H variability
and thus requires significantly less guard-banding [4, 6, 7].

8

2.1 Architecture and properties of FDSOI

2.1.2 Device Physics

FDSOI technology exhibits peculiarities in regard to device physics. Most are shared
with bulk transistors, although they differ significantly in extent while others are different
altogether. Some of these effects are attributed to or exacerbated by the SOI construction
and thus will be covered in the subsection on SOI Effects. The body effect is shared by
all, bulk, PDSOI and FDSOI alike, although the range of voltages that can be applied as
well as the incurred effect differ considerably. As it is the principal effect this thesis is
exploiting, it is treated separately. Beforehand, principal (FDSOI) transistor physics will
be introduced.

As hinted before, FDSOI transistors have two gate structures that control the transistor
operation. The front gate is assumed to exert switching control, while the back gate can
be used to manipulate transistor characteristics. Thus, there are also two surface potentials
φs1 (front gate) and φs2 (back gate), one for each gate, given as

φs1 = (1+
Csi

Cox1
) =VG1−φms1 +φs2

Csi

Cox1
+

Q′d
2C′ox1

(2.1)

φs2 = (1+
Csi

Cox2
) =VG2−φms2 +φs1

Csi

Cox2
+

Q′d
2C′ox2

(2.2)

with φms1 and φms2 as the metal-semiconductor work function, Qox1 and Qox2 the gate oxide
charges, Cox1 and Cox2 the gate capacitances as well as C′ox1 and C′ox2 the gate oxide capac-
itances per unit area, all for the front and back gate respectively. Furthermore, Csi denotes
the depletion capacitances and Q′d the depletion charge per unit area of fully depleted Si [8].

Equations 2.1 and 2.2 can thus be combined to get independent equations for φs1 and φs2
as shown in [5] as

φs1 =

[
VG1−φms1 +

Q′d
2C′ox1

+
CsiCox2

Cox1(Cox2 +Csi)

(
VG2−φms2 +

Q′d
2C′ox2

)]
·
[

1+
CsiCox2

Cox1(Csi +Cox2)

]−1

(2.3)

φs2 =

[
VG2−φms2 +

Q′d
2C′ox2

+
CsiCox1

Cox2(Cox1 +Csi)

(
VG1−φms1 +

Q′d
2C′ox1

)]
·
[

1+
CsiCox1

Cox2(Csi +Cox1)

]−1

(2.4)

. These two surface potentials control transistor operation, similar to transistors with only
one gate and thus, assuming body biasing is omitted, also only one surface potential φs1.

9

2 Background

Transistors have several different regions of operation as depicted in Eq. 2.5 [8].

φs1 =

0 · · ·φF depletion
φF · · ·2φF weak inversion
2φF · · ·(2φF +∆φ) moderate inversion
> (2φF +∆φ) strong inversion

(2.5)

In the depletion region, which ranges from a surface potential at the front gate φs1 of 0V
to about the fermi potential, the transistor channel is depleted, i.e., almost no free charge
carriers are present. Minority carriers are repelled, but there is not enough potential to free
majority carriers to be present. Once φs1 reaches levels above the fermi potential up to two
times the fermi level, the potential is strong enough to free majority carriers, that is the
channel is weakly enriched with the opposite kind of charge carriers than in the off-state,
that is minority carriers. Hence this state is called weak inversion. This effect is strength-
ened when φs1 is within two times fermi level and the latter plus the potential required to
reach strong inversion. Strong inversion, i.e., φs1 greater than the strong inversion threshold
of 2φF +∆φ leads to the formation of an actual majority carrier channel.
In FDSOI transistors, however, there is not only one gate, but another one on the back-side
of the transistor with surface potential φs2

In contrast to PDSOI transistors, both gates’ voltages VG1 and VG2 are fully intertwined, as
the channel is fully depleted. According to [5] and [9], gate voltages are given analogous
to Eq. 2.1 through 2.4 as

VG1 = φms1−
Qox1

Cox1
+φs1

(
1+

Csi

Cox1

)
−φs2

Csi

Cox1
−

Q′d
2C′ox1

(2.6)

VG2 = φms2−
Qox2

Cox2
+φs2

(
1+

Csi

Cox1

)
−φs1

Csi

Cox2
−

Q′d
2C′ox2

(2.7)

[5, 9]. Therefore, the threshold voltage is also dependent on both gates. Using the defini-
tion of Eq. 2.5, if the front gate, the primary gate structure, reached 2φF and the back gate
is accumulated, threshold voltage VT H at zero bias VT H,zero is defined according to [8] as

VT H,zero = φms1 +2φF

(
1+

Csi

Cox1

)
+

qNCHtsi

2C′ox1
(2.8)

and similarly

VG2,acc = φms2−2φF
Csi

Cox2
+

qNCHtsi

C′ox2
(2.9)

with φF the fermi potential, electron charge q, dopant concentration in the channel NCH

and Si film thickness tsi and combined qNCHtsi as depletion charge. FDSOI and its two
gates architecture thus enables an immediate effect on transistor characteristics. The major
aspect this thesis focuses on is elaborated in Body Effect and Body Biasing. While body
biasing is a very powerful and useful feature, the FDSOI architecture as well as leveraging
body biasing may also cause unwanted side-effects as illustrated below.

10

2.1 Architecture and properties of FDSOI

2.1.2.1 ION Drive Current

An important measure for transistors is the size of the current the transistor is capable of
driving. In bulk transistors, the current flowing through the drain electrode is given by

ID = µe f fCox
W
L

[
(VG−VT HSVDS−

1
2

nV 2
DS)

]
(2.10)

and in saturation
IDsat =

1
2n

µe f fCox
W
L
(VG−VT HS)

2 (2.11)

with VT HS as the body factor accounted threshold voltage defined as

VT HS =VT H0 +nVS (2.12)

where n is the body factor which is multiplied by the substrate voltage VS [8]. In this
respect, bulk and SOI transistors behave very similarly as this figure is mainly influenced
by transistor geometry, potential strength and most importantly the threshold voltage which
is modulated through the above introduced body biasing. Colinge further simplifies these
equations for the depleted back interface case to

IDsat =
1
2n

W
L

µnCox1[VG1−VT H]
2 (2.13)

where the body factor n in the back-gate accumulation case is

nacc = 1+α = 1+
Csi

Cox1
(2.14)

and in the fully depleted case

n f d = 1+α = 1+
CsiCox2

Cox1(Csi +Cox2)
(2.15)

[8]. Without restricting generality, this equation only considers the front gate VG1 while
the back-gate or body bias influence can still be included through a modulation of the
threshold voltage. Conclusively, equation 2.13 describes the relationship between thresh-
old voltage VT H and the maximum current the transistor is capable of driving, its saturation
drain current IDsat . With decreasing VT H , IDsat becomes larger as the [VG1−VT H] term is
getting closer to VG1. Thus, if threshold voltage can be lowered, e.g. using forward body
biasing, the transistor is capable of driving larger currents and inversely, if reverse body
bias is applied, leading to an increased threshold voltage, the capability of driving currents
decreases as well.

2.1.2.2 IOFF and Leakage Effects

Closely related to the threshold voltage is sub-threshold leakage. It is the primary source of
leakage in FDSOI and all other transistor types. This being said, apart from gate-tunneling

11

2 Background

leakage, Gate Induced Drain Leakage (GIDL), as well as p-n junction leakage are sup-
pressed in FDSOI [10]. Weste and Harris describe in [4] the body effect dependent sub-
threshold leakage as

IDS = IOFF ·10
VGS+η(VDS−VDD)−kγVG2

S

(
1− e

−VDS
νT

)
, (2.16)

with IOFF as the sub-threshold current at VGS = 0V and VDS =VDD, the η term accounting
for DIBL, kγ a body effect coefficient, VG2 = VSB, the back gate voltage which Weste and
Harris refer to as VSB, the source to bulk voltage and S the sub-threshold slope. Further-
more, gate-tunneling leakage is given as in an estimated form

IGAT E =WA
(

VDD

tox

)2

e−B tox
VDD (2.17)

where W is the gate width, as well as A and B are technology constants [4].

As Eq. 2.16 indicates the voltage of the back gate has an exponential effect on sub-
threshold leakage. While this can be leveraged in some cases to reduce leakage, it also
may have the opposite effect, exponentially increasing sub-threshold leakage. With
sub-threshold already being one of the major problems in deep-submicron technologies, it
is one of the limiting factors regarding body biasing.

Gate leakage on the other hand behaves virtually just as it does in bulk technologies as
reflected in Eq. 2.17. Due to relatively large BOX thicknesses in the technologies covered
in this thesis (tox = tBOX ≥ 10nm), tunneling through the back gate can be neglected for
now.

2.1.2.3 SOI Construction Related Effects

While SOI architectures improve most aspects, the addition of insulation layers also leads
to increased thermal insulation and thus exacerbates self-heating effects (SHE) [11].

Insulator S/D TypeChannel Type BulkGate Type Dissipation

Figure 2.3: Schematic paths of heat dissipation in thick BOX (1), thin BOX (2), thin SOI (3) and
UTBB SOI (4) MOSFETs, adapted from [11]

An increase in device temperature TDEV directly translates to an increase in thermal resis-
tance RT H [11]. Takahashi et al. [11] showed that SHE is dependent on chip temperature
and BOX and SOI thickness. Fig. 2.3 shows four different SOI architectures (1)-(4) and

12

2.1 Architecture and properties of FDSOI

their heat dissipation paths. Variant (1) with a thick BOX and not-thinned SOI dissipates
generated heat through source and drain terminals and the substrate, (2) mainly through
the substrate, (3) slightly via drain and source terminals while (4) can dissipate heat both
strongly via the source and drain terminals as well as the substrate. According to [11], the
ultra-thin body and BOX (UTBB) design is most efficient in mitigating SHE and therefore
propose UTBB as improved SOI architecture.
While the added insulation does exacerbate SHE and thereby worsens variability, the SOI
construction still severely mitigates variability. However, SHE needs to be reevaluated at
smaller nodes. Ultimately, it is not a general SOI drawback but a side-effect of technology
scaling which similarly affects bulk and (SOI) FinFET technologies [12].

2.1.2.4 Body Effect and Body Biasing

With the long history of body biasing, most descriptions of the body effect apply to bulk
transistors. Kuroda and Sakurai give a detailed overview of mostly pre-SOI technologies
exploiting body biasing in [13]. Similar to [4], Kuroda and Sakurai describe the body effect
as

VT H =VT H0 + γ

⌊√
2φb−VBS−

√
2φb

⌋
, (2.18)

γ =
tox

εox

√
2εsiqNA, φb =

kT
q

ln
(

NA

Ni

)
,

with VBS as substrate potential, VT H0 being the threshold voltage at zero bias VBS = 0V , φb
the surface potential at threshold, γ the body effect coefficient, εox and εsi the dielectrical
constats for gate-oxide and silicon respectively, q the electronic charge, k the Boltzmann
constant, temperature T and intrinsic doping Ni as well as NA the channel doping. This
equation, however, does not depict reality in FDSOI technologies. If a SOI transistor
is manufactured in a triple well process, the transistor body is fully insulated from the
transistor channel as well as the substrate. Thus, much larger potentials can be applied on
the transistor body without causing any unwanted current flow.
Furthermore, in FDSOI, there are two actual gates, and due to the fully depleted construc-
tion, as noted above, their effects cannot be separated [9]. This means that any change in
potential on one of the gates directly changes the potential required on the other gate to
reach a certain channel state. Thus, the threshold voltage for the actual front gate is also
highly dependent on the back gate. Following Eqs. 2.6 and 2.7, [5] summarizes the thresh-
old voltage VT H,FD for fully depleted devices in dependence on the back gate, i.e. body
bias, as

VT H,bias =VT H0− (nFD−1)(VG2−VG2acc), (2.19)

whereas the body factor for fully depleted devices nFD is given as

nFD = 1+
CsiCox2

Cox1(Csi +Cox2)
(2.20)

with the unaltered threshold voltage VT H0 =VT H,zero (see Eq.) the zero bias threshold volt-

13

2 Background

age, body factor nFD, the back gate voltage VG2 and the back gate voltage in accumulated
state VG2acc. This can be further broken down to

∆VT H,bias =−(nFD−1)∆VG2,

. This also corresponds to the experimentally validated observations of [14] that simplifies
threshold voltage back gate dependency as a linear relationship equation

VT H,bias =VT H0−KγVG2, (2.21)

with an experimentally obtained approximation factor Kγ which should correspond to
(nFD − 1) of Eq. 2.19. The effect described in Eqs. 2.18 to 2.21 is also called body
bias, i.e. the application of a potential onto the transistor body to alter the VT H of, i.e. bias,
a transistor.
The actual body bias has to be computed for both PMOS and NMOS separately, and in
case on non-flip well architectures, it generally follows the scheme

VDD =VBP +VBN (2.22)

VBP =VBN−VDD

where VBN denotes the body bias voltage for NMOS, where VBP means the body bias volt-
age for PMOS. What is typically being referred to as body bias VBB is the NMOS body bias
voltage VBN . So e.g. if VBB = x then VBN = x and VBP = x−VDD. If VBB = 0V , it is called
zero-bias. If VBB < 0V , it is called Reverse Body Bias (RBB), whereas VBB > 0V is called
forward body bias.
Combining Eq. 2.19 or Eq. 2.21 with 2.16, it can be observed that through body bias, i.e.
the body effect via its influence on VT H has an exponential relationship with leakage. Fig.
2.4 visualizes this relationship.
Fig. 2.4 depicts the relationship between body bias given as VBB, denoting the NMOS body
bias voltage, as well as leakage for three different FDSOI variants. The first two graphs
depict STMicro’s 28nm UTBB-FDSOI RVT (LR) and LVT (LL) flavors. Due to their
difference in back-plane doping, RVT covers VBB ranges from−1.3V to 0.3V 1 and−0.3V
to 1.3V 1 for LVT. Both LVT and RVT show an exponential response to VBB. SOTB also
displays exponential behavior but is more sensitive to changes in VBB. Thus, leakage in-
and decreases more steeply. For all variants, FBB exponentially increases leakage, while
RBB exponentially decreases leakage.
In contrast, delays behave inversely. Weste and Harris derive from Sakurai and Newton’s
Alpha-Power law [15] the following delay scaling factor τ which is described as

τ = k
CVDD

(VDD−VT H)α
(2.23)

with k as a technology parameter, C as the driven capacitance and the Alpha-Power law
parameter α [4]. Consequently, the relationship between VBB and delay is given by com-

1Theoretically, the limit is VBB,lim = 300mV +VDD/2 for RVT and −VBB,lim for LVT [6]

14

2.1 Architecture and properties of FDSOI

 0

 1

 2

 3

 4

 5

 6

 7

-1 -0.5 0 0.5 1

Le
ak
ag
e
no
rm
al
iz
ed

VBB [V]

LR VDD=0.60V
LL VDD=0.60V

 SOTB VDD=0.55V

Figure 2.4: Normalized leakage by body bias for STMicro’s 28nm FDSOI LVT (LL) and RVT (LR)
flavor at VDD = 0.60V as well as an in-silicon measurement of Renesas’ 65nm SOTB UM flavor at
VDD = 0.55V

bining Eq. 2.19 or Eq. 2.21 with Eq. 2.23. Fig. 2.5 visualizes this relationship of VBB with
switching delay for the same three FDSOI variants as above. While LVT and RVT display
almost linear behavior, SOTB again exhibits higher sensitivity to VBB as in Fig. 2.4.
Body bias’ influence on delay is furthered by its impact on drive current. Thus, if FBB is
applied and VT H is subsequently lowered, the drain-source current IDS should increase as
well. Weste and Harris describe this relationship as

IDS = k(VGS−V ∗T H)) (2.24)

where k is a technology-specific factor and V ∗T H denotes the x-intercept of a linear-fit of a
IDS by VDS =VGS plot [4].

Considering both Figs. 2.4 and 2.5, body bias offers a trade-off between leakage and delay.
I.e. a decrease in delay can be achieved by allowing a leakage increase and inversely, a
leakage decrease can be realized by allowing delays to increase.

2.1.3 Body Bias Domain construction

To supply different body biases to separate groups of standard cells, they have to be
grouped into separate body bias domains. These groups’ wells have to be electrically in-
sulated from each other. To facilitate the electrical separation and to supply the respective
body bias voltages to the appropriate well, tap-cells are inserted into each body bias domain
at regular intervals (Fig. 2.6). In this case, tap-cells function entirely as well-connector,

15

2 Background

 0

 1

 2

 3

 4

 5

 6

-1 -0.5 0 0.5 1

D
el
ay

N
or
m
al
iz
ed

VBB [V]

LR VDD=0.6V
LL VDD=0.6V

 SOTB VDD=0.55V

Figure 2.5: Normalized delay by body bias for STMicro’s 28nm FDSOI LVT (LL) and RVT (LR)
flavor at VDD = 0.60V as well as an in-silicon measurement of Renesas’ 65nm SOTB UM flavor at
VDD = 0.55V

PMOS
NMOS

…
…

…
…

VBP dtap

Figure 2.6: Top-view of a standard cell row with beginning tap-cell, at regular interval dtap and
with terminating tap-cell, adapted from [16]

16

2.1 Architecture and properties of FDSOI

connecting a supplied potential to the wells of a standard cell row. As visualized in Fig.
2.7, the potential is fed from the supply terminal to the standard cell row’s wells. Such

… …
… …

VBP VBN

Figure 2.7: Frontal cross-cut of a standard cell row with beginning tap-cell, adapted from [16]

potentials are typically supplied using straps connected to a body bias supply mesh (Fig.
2.8). Most technologies also offer tap-cells to short VDD and VSS

2 to PMOS and NMOS
respectively, in case body bias is not needed.

dtap

Supply straps

Tapcell Terminating
column

Macro
Figure 2.8: Exemplary body bias domain construction with a standard cell-based macro and body
bias straps (green and red)

Furthermore, there are also differences concerning the delimitation of body bias domains.
Within a standard cell row, a body bias domain can be ended by using terminating tap-
cells, interrupting the well supply. Commonly, domains are delimited by placing them into
a macro each, which are then physically separated by a separation margin.

2This depends on the employed FDSOI technology. There are also flavors that both require VSS on both wells
for zero-bias.

17

2 Background

register set
data / statusRegister File

FU

Context
Memory

to
in
te
rc
on
ne
ct

to interconnect

to
interconnect

Figure 2.9: General structure of a Processing Element

2.2 Dynamically Reconfigurable Processors

Dynamically Reconfigurable Processors (DRP) are a subset of Coarse-Grained Recon-
figurable Architectures (CGRA). CGRA are an architectural concept that consists of an
array of interconnected Processing Elements (PEs) and offer certain reconfigurability.
PEs operate on a coarse, word-grained granularity while each PE is assigned at least
one configuration, called context in the CGRA domain. DRPs are often described as
a step between Field Programmable Gate Arrays (FPGA) and general purpose CPUs
(GPCPUs). DRPs combine concepts of both worlds: Actual architectural reconfigurability
and cycle-by-cycle instruction-like reconfigurability. While the typical FPGA fabric
realizes bit-grained reconfigurability with limited dynamic reconfiguration, DRPs realize
cycle-by-cycle dynamic reconfigurability efficiently by operating on word granularity.
Apart from special features each DRP architecture may implement, they largely differ in
the number of contexts, i.e. "configuration slots" they can store on-chip, as well as the
word size, i.e. granularity on which computations are conducted. In the following, the
basic architectural traits of DRPs will be explained.

Like CGRAs, DRPs are comprised of an array of PEs. These PEs typically consist of
routing elements (multiplexers or actual routing elements), some data manipulation units
and registers. They are connected to each other using an interconnection network [17].
Such PEs consist of several components as visualized in Fig. 2.9. This representation is
a reduction to the most general DRP traits, and thus, does not aim to capture all possible
structures, but represents the most common case such as NEC’s DRP [18], or, in the case
of Oppold et al., the basic instance of the CRC scheme [19]. All the components are
geared towards the architecture’s word granularity, which refers to the number of bits in

18

2.2 Dynamically Reconfigurable Processors

Reconfigurable
Component

M

External
Reconfiguration

C

Reconfigurable
Component

M

External
Reconfiguration

C

Internal
Reconfiguration

t0
t1

t2

Figure 2.10: External (left) versus internal reconfiguration (right), visualized using an abstract rep-
resentation of a reconfigurable component

one word of data. This being said, many DRPs also often accommodate operations on
sub-word granularity, such as a half word or a single bit. Commonly, each PE contains
at least one Functional Unit (FU), such as an ALU or even an FPU to manipulate data.
Furthermore, a register file is usually included to store additional operands or intermediate
results. Routing of data is facilitated by switching elements or is set statically. To select
from those data sources, multiplexers are used. Depending on the PE design, additional
registers may be introduced to create a pipelined structure. Furthermore, depending on
the interconnect, there may be another multiplexing stage to select the output which is
sent over the interconnect. All these components are controlled via the context memory
contents, the actual configuration memory, on which the context pointer is set. Starting
with the FU function, the internal data selection, register file read and write as well as the
output destination and interconnect usage.

Deriving DRPs from CGRAs, the central defining architectural feature is so-called dy-
namic reconfiguration. To further distinguish (re)configuration concepts, two concepts of
configuration delivery are introduced. Firstly, there is external reconfiguration which de-
scribes the most common reconfiguration process (Fig. 2.10 left). External reconfiguration
means that the configuration memory (represented as M in Fig. 2.10) of a reconfigurable
component is rewritten using external configuration data. As a popular example, FPGAs
are externally reconfigured when writing a configuration bitstream via some interface (e.g.,
JTAG) to the configuration memory. The thereby stored configuration data then controls
the actual functional component (represented as C in Fig. 2.10) using this memory.
Secondly, there is internal or dynamic reconfiguration (Fig. 2.10 right). Here, multiple con-
figuration data are stored in the reconfigurable component using external reconfiguration.
This allows faster and externally independent configuration delivery. Thus, without exter-
nal intervention, configurations can be switched within a clock cycle or with a significantly
smaller delay than e.g. in FPGAs. Following the example in Fig. 2.10, C is reconfigured
at times t0, t1 and t2 using the configuration data which has been stored previously using
external reconfiguration.
The weaker definition of CGRAs also encompasses architectures that have configuration
memory to hold precisely only one context, i.e., where one context is the entire configura-
tion. This requires external reconfiguration every time the implemented function shall be

19

2 Background

TILE0

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

SPU SPU SPU SPU

SPU

SPU

SPU

SPU

TILE1

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

SPU SPU SPU SPU

SPU

SPU

SPU

SPU

TILEN TILEN+1

Figure 2.11: Hierarchical grouping of PEs and Special Purpose Units (SPU)

changed. With dynamic reconfiguration, the need for external reconfiguration can be lim-
ited and allows to implement more complex functionality on less area. This significantly
increases area efficiency [17].
To accommodate as many PEs as possible, PEs usually are more light-weight than
fully-fledged processor cores. To further this effort, certain functionality is offloaded to
shared Special Purpose Units (SPU), which generally operate similarly to PEs on a context
configuration basis and are mapped and configured similarly. For efficient SPU utilization,
PEs are often grouped using another logical hierarchy level called tile as depicted in Fig.
2.11. Thus, all PEs in one tile share its SPUs. It is a broadly utilized concept and most
often covers memory accesses, special computation functions, additional control logic,
etc. Thus, while referring to this concept as SPU in this taxonomy, the term SPU is not
restricted to a single type of special PE.

SPUs help to keep area requirements down by sharing functionality which is either
temporally not used with such intensity, that each PE would need to be equipped with
the unit’s functionality, or spatially, e.g., to connect to memory outside the PE array to
alleviate routing congestion and the interconnect topology complexity. The structure
illustrated in Fig. 2.11 groups 16 PEs with 8 SPUs together to form one tile. As the
SPUs are located on the outskirts of the tile, a prime example would be memory interface
SPUs relaying and handling memory requests from the tile’s PE array. The suitability of
this arrangement for special, non-external memory dependent computation units largely
depends on the interconnection network. However, previous implementations such as
NEC’s DRP used exactly such arrangement.

While the above structures describe the compute core, a DRP requires several additional
components to operate. First of all, the DRP requires memory which can serve as input
and output buffer, as well as intermediate storage. The above described SPUs access this

20

2.2 Dynamically Reconfigurable Processors

MEMX

MEMX+1

TILE0 TILE1

TILEN TILEN+1

C
on

tro
lle

rs

Interfaces and P
eriphery

Figure 2.12: Entire DRP structure consisting of tiles, on-chip memory, controllers, periphery, and
interfaces

memory. These memories may further be accessed by interface controllers which read
from or write to the DRP’s memory. Additionally, PEs, in general, do not contain control
flow logic, but their program counter is centrally controlled using a finite state machine
which may obtain control signals from the PE array. In case the architecture supports
multi-threaded operation, the required control logic is thus also located in this execution
controller. Furthermore, to facilitate reconfiguration efficiently, reconfiguration controllers
are used to providing features such as configuration multicast or compressed configuration
streams. The periphery of DRPs is mainly dependent on the degree of stand-alone oper-
ation and overall DRP complexity. Thus, such periphery may range from a non-volatile
configuration memory to timers and interrupt controllers.

21

2 Background

22

3 State of The Art

This state of the art is divided into three sections to reflect the current state of all areas
that are touched upon in this thesis. First of all, FDSOI technologies are briefly introduced
and compared to each other regarding geometry, process complexity, overall performance
as well as benefits and drawbacks. To present a balanced view, the latest generation of
FDSOI’s main contender, so-called FinFET technology is presented as well.
To put such technology to good use, power management techniques, such as those this the-
sis proposes are utilized. Thus, the section on power management covers a broad selection
of techniques and approaches on the latter, as well as a comparison, especially in regard to
the contributions of this thesis.
Finally, the state of the art moves towards Dynamically Reconfigurable Architectures, the
centrally utilized architecture of this thesis and approaches that exploit previously de-
scribed power management techniques.

3.1 Process Technologies

3.1.1 Fully Depleted Silicon on Insulator

FDSOI technology is one of two remaining major approaches to tackle SCEs and other
effects such as variability, hindering scalability. Currently, there are three major FDSOI
technologies available: Renesas 65nm Silicon on thin BOX (SOTB), STMicroelectronics
28nm UTBB-FDSOI and Globalfoundries 22FDX 14nm front-end, 28nm metal-backend
process.
SOTB has been first proposed in [20] along with the thereby enabled body biasing appli-
cations. Using such schemes, the drive current can be increased by 20% and great leakage
reductions in standby modes can be achieved [20]. Furthermore, SRAM cells that are ca-
pable of exploiting body biasing are proposed. Continuing in [10], Ishigaki et al. give
an extensive overview of the 65nm SOTB technology. SOTB currently is available in two
flavors: Low-power (LP) and Low standby power (LSTP). Both flavors can co-integrate
bulk structures in case non-SOI components need to be on the same die and both flavors
are manufactured in a triple-well process. SOTB successfully suppresses SCEs via the
BOX SOI structure and is free of self-heating [10]. Furthermore, the SOTB transistor ar-
chitecture allows reducing variability by eliminating or at least reducing many variability
sources such as random dopant fluctuation [21, 22] by employing an undoped channel re-
gion. Also concerning reliability, being a FDSOI technology, SOTB exhibits beneficial
reliability properties when compared to bulk processes [23]. However, as these effects are
often body bias dependent, this also leads to more complexity in reliability projections.

23

3 State of The Art

GAAΩ-Gateπ-GateTrigate

Bulk
(FD)SOI-
UTTB

Double-gate
/(FD)SOI-
UTTB w. BB FinFET

Figure 3.1: An illustration of the "FDSOI FinFET merge", describing how aspects of FDSOI and
FinFETs combine in smaller geometries modeled after [32]

In smaller nodes, the Ultra Thin Body and BOX FDSOI technology developed by STMi-
croelectronics found widespread industrial adoption. In [24] Planes et al. introduced the
technology with a focus on low-voltage computing. Due to the fully depleted channel re-
gion as well as the SOI construction, UTBB-FDSOI and derivative technologies offer high
performance at low supply voltage, as well as high responsiveness to power management
techniques [25]. UTBB-FDSOI comes in two principal flavors; both manufactured in triple
well processes: Low Threshold Voltage (LVT) for high-performance applications, as well
as Regular Threshold Voltage (RVT) for (ultra-)low-power applications [6]. The principal
difference is in the back-plane doping and the gate-stack. Regarding reliability, Federspiel
et al. demonstrated UTBB-FDSOI to be more resilient against all common effects in [26].
Globalfoundries 22FDX process has been announced in [27]. 22FDX shall be geared using
four different flavors towards target domains. In the absence of official demonstration
papers of Globalfoundries, publications by the entire SOI Consortium are cited. In [28], the
technology outline is presented. Scaling from 28nm to 14nm in the front-end allows a delay
reduction by 45%, 30% speed boost or a 55% power consumption reduction. Furthermore,
body biasing capabilities are shown to retain their effect or even gain in effectiveness.
Principal scalability has been shown to be feasible down to the 10nm node in [29], although
further scaling is conceivable.

3.1.2 FinFET

FinFET tackles the SCE challenge by using a three-dimensional gate structure. Up-to-
date processes by major semiconductor manufacturers, such as Globalfoundries (14nm),
Samsung (14nm), Intel (14nm) [30] or TSCM (16nm) [31] are in mass production.
Reliability evaluations have been conducted and indicate similar results to FDSOI relia-
bility evaluation. Despite continued scaling, BTI effects are not worsened [33]. While

24

3.2 Power Management

FinFETs may have a more complex structure, variability is comparable to FDSOI [34]
and has good prospects when employing SOI technology. In terms of principal scalabil-
ity, TSMC reported the ramp-up of first commercial design in 10nm FinFET technology
while 7nm FinFETs are announced to become available in 2018. FinFETs’ further scal-
ability is hardly a question of scalability, but rather terminology as Fig. 3.1 graphically
illustrates. This figure visualizes the similarities of existing transistor architectures with
proposed transistor architecture candidates for scaling below 7nm by illustrating the ar-
chitecture evolution. This evolution indicates a convergence of architectural properties of
FDSOI and FinFET technology.

3.2 Power Management

In the following, a broad selection of power management techniques is investigated and
presented with two objectives in mind. First of all, this section shall allow a comparison of
the state of the art with the approaches proposed in this thesis, and secondly, it should also
elaborate on existing partitioning approaches for power management techniques.
However, to give such an overview of power management techniques and approaches
that implement the latter in a logically structured manner, the entangled natures of these
techniques only allow for compromises. This is then further obscured when considering
the underlying partitioning techniques which may put power management techniques with
seemingly different objectives into the same group. While, e.g., of course, the primary
goal of multi-VT H approaches is to improve static power consumption, it can also be used
to optimize dynamic power consumption when reducing critical path delay with standard
cells that employ a lower threshold voltage, consequently allowing to lower the supply
voltage. Thus, it could be seen as both, a technique to lower static power consumption
as well as dynamic power consumption. In regard to partitioning or rather selection
of standard cells that should receive altered VT H equivalents, it is e.g., identical to an
unconstrained body bias partitioning problem with as many body bias levels as there are
threshold voltage groups.

Thus, instead of categorizing these techniques by power management objective, they are
loosely grouped, if at all, by the similarities of the underlying algorithmic problems. To
highlight the objectives of the respective methods, they are categorized by their triangular
relationship between static power consumption, dynamic power consumption, and energy
efficiency. This relationship is illustrated in Fig. 3.2.
Starting with index 1, this marks the tradeoff between static and dynamic power consump-
tion. This relationship in this state of the art refers to body biasing, where an increase in
leakage can be traded for lower delays and vice versa. This, in turn, allows a circuit to
reach a given clock frequency at a lower supply voltage level and thus possibly reduces
dynamic power consumption. Whether or not this increases energy efficiency depends on
the increase in static power consumption being less than the reduction in dynamic power
consumption. Inversely, when reducing static power consumption at the cost of increased
delay, the circuit potentially requires a higher supply voltage level for a given clock fre-

25

3 State of The Art

Energy Efficiency

Static Power
Consumption

Dynamic Power
Consumption

can be traded for

1. delay for leakage

3. for delay2. for delay

4. influences

Figure 3.2: The triangular relationship between dynamic and static power consumption, as well as
energy efficiency with categories of power management techniques indexed in numbers 1. to 4.
accordingly.

quency and thus, is only sensible under certain conditions. Then there is the second re-
lationship marked by index 2. This category fits multi-VT H and multi-VDD targeted for
leakage reduction, power gating as well as pre-SOI body biasing. The relationship marked
by index 3 applies to dynamic voltage (and frequency) scaling and clock gating.
Strictly speaking, multi-VT H approaches are now also used in cutting-edge technologies to
improve dynamic power similar to body biasing. To prevent the complexity of the pro-
posed state of the art structure to raise further, such aspects will be ignored henceforth.
Instead, a fourth relationship marked by index four is introduced which covers desired
or unintended side-effects. For example, a change in supply voltage always affects static
power consumption as well. However, as the supply voltage is usually primarily defined
by the timing constraints, static power consumption is only spared a thought in this regard
when the situation allows, e.g. in idle. Similarly, every power management technique re-
quiring additional active components also increases static power consumption and incurs
dynamic power consumption for its switching activity. These aspects, however, usually
can be neglected as they are only employed when the benefit is significantly greater.
All these power management techniques and categories in mind, they increase energy effi-
ciency if and only if the reduction on one side is greater than the increase on the other.

This triangular relationship categorizes the presented approaches as denoted in table 3.2.
Considering these findings, there are three observations to be made. First, all power
management techniques have side-effects, thus all techniques are in category 4. This
category merely denotes that independent of the primary objective, other objectives are
affected as well. This is a starch contrast to category 1 where such a tradeoff is actively
sought through specified parameters. Secondly, if the power management method can be

26

3.2 Power Management

Method Scale Direction Category
Pre-SOI Body Biasing - 1, 2, 4

DVFS
up 3, 4

down 3, 4
Clock Gating - 3, 4
Power Gating - 2, 4

Multi-VT H
speed 3, 4

leakage 2, 4
Multi-VDD - 3, 4

SOI Body biasing w. and wo. DVFS
up 1, 2, 3, 4

down 1, 2, 3, 4

Table 3.1: Categorization of the power management techniques according to the triangular relation-
ship in Fig. 3.2

used in opposite directions on a given scale, both directions need to be covered and usually
result in different categories. Lastly, apart from category 1 representing the leakage/delay
tradeoff exploited in body biasing, these approaches can be categorized along the lines of
static power (2) and dynamic power optimization (3).

3.2.1 Pre-SOI Body Biasing

In regard to body biasing, the state of the art is split into two major categories. This section
gives an excerpt of the state of the art on pre-SOI body biasing, that is the application
of a potential on the transistor body in bulk transistors. While the principal effects are
related to body biasing in FDSOI technologies, the actual physics differ considerably.
Furthermore, body biasing in pre-SOI technologies is limited to such great extent, that it
is used for entirely different purposes, such as mitigation of process variations. This of
course also leads to a problem of nomenclature, as most people in the field associate this
kind of pre-SOI body biasing with the general term "body biasing". To differentiate and
to set both techniques apart, they are also treated separately, although they are obviously
related.

In [35], Kobayashi and Sakurai propose a self-adjusting threshold voltage technique
which utilizes body biasing to compensate for speed variation on a chip and thus allows to
operate the chip at the ideal, non-variability affected frequency. To do this, they propose
the so-called self-adjusting threshold-voltage schemes (SATS) which monitor the leakage
current of a predetermined group in a constant feedback loop. Variation in leakage is
assumed to correspond to the variation in threshold voltage. A sense stage thus measures
leakage and then sets a body bias via a controllable voltage source which corresponds
to the desired, lower threshold voltage. The voltage generator is realized using a charge
pump design.

27

3 State of The Art

A similar, but substantially extended approach is proposed by Kuroda and Sakurai in [36].
They use the self-controlled capability to manipulate threshold voltage to both compensate
for on-chip threshold voltage variation and to further boost transistor switching speed at
low supply voltages. Here, the authors intentionally decrease supply voltage to reduce
dynamic power consumption while they mitigate variability which has a specially high
impact at low supply voltage. Furthermore, threshold voltage is further lowered to give a
speed boost, reaching speed levels that would not otherwise be possible. This, of course,
leads to increased leakage which is then again cut off by applying a reverse body bias
in idle. Using this approach, the authors could reduce power consumption by 50% for a
defined operation point.

Also targeting variability is Tschanz et al. in [37]. They propose a method called
bidirectional adaptive body bias (ABB) which uses a self-controlled scheme similar to
both [35] and [36]. Their approach utilizes both forward and reverse body biasing to
compensate for die-to-die as well as intra-die variability. The authors target both timing as
well as power constraints. Increased leakage is countered via reverse body biasing while
timing issues are resolved by lowering threshold voltage via forward body bias. Timing
problems are identified using a phase detector on the critical path while bias voltage
generation is facilitated using analog multiplexers and externally supplied potentials.
Using this approach, the number of chips not meeting the specification is reduced by a
factor of 7×.

Martin et al. used one of the most popular applications of body biasing in the pre-SOI
era in an actual product, the Transmeta Crusoe processor, and researched the tradeoffs
for dynamic voltage scaling in combination with adaptive body biasing in [38]. Adaptive
body biasing here is restricted to reverse body biasing, thus, the authors seek to find the
most energy-efficient operation point in a tradeoff between dynamic power, influenced by
dynamic voltage scaling, and static power using the exponential effect of body biasing
on leakage. First, Martin et al. developed an analytical model using SPICE simulations
and then using this model to derive optimized dynamic voltage scaling and adaptive body
biasing strategies. Their evaluation on the Transmeta Crusoe processor, manufactured in a
180nm process, indicated an impressive 23% total power reduction, which is effect wise
much closer to results of the FDSOI era.

In [39], Neau and Roy follow in the footsteps of [35–38] with their take on determining
the optimal body bias to achieve compensation of variability as well as minimizing
leakage. The authors analyze the impact of body biasing on all leakage components
that were relevant at the time. Using this analysis, the authors model band-to-band and
subthreshold leakage. They then define the leakage minimization goal as an equilibrium
of band-to-band leakage and subthreshold leakage. A current mirror circuit is then used
to determine the actual target body bias where this condition applies. These schemes are
evaluated for 70nm and 50nm predictive models and achieve about 42% leakage reduction.

28

3.2 Power Management

Teodorescu et al. present in [40] a fine-grained body biasing approach to mitigate process
variations. They propose to partition a chip into body bias domains based on the inherent
component structure, as timing variations are affecting component specific critical paths.
The actual body biases are then chosen via a timing monitor and provided through a local
bias generator.

Sathanur et al. propose a row based forward body bias assignment scheme to mitigate
variability in [41]. By assigning forward body bias per row, Sathanur et al. are capable of
avoiding the steep leakage increase as a side effect of using forward body bias on a chip
granularity while keeping the physical implementation highly simple. The row based body
bias assignment then works to reach overall timing while minimizing leakage. The actual
row assignment algorithm benefits significantly from the row constraint and consists of
two simple passes. First, a body bias is assigned to all rows so that the design meets
timing. Once a body bias is found for which timing is met, the rows are sorted by timing
criticality and the least timing critical rows are put on a lower- or zero body bias levels
until timing is barely maintained.

The approaches presented in this section suffer from their pre-SOI intent where body bias
could only be used in rudimentary forms due to physical limitations. While intriguing
approaches are among them, like row-based or other clustering approaches, they are ulti-
mately failing the reality of body biasing in SOI technologies where body biasing rivals
supply voltage scaling. The central point is that they were not intended for any other use
than variability mitigation or sleep current minimization. With much higher body biasing
levels available, even a small group of standard cells can outweigh an entire row of stan-
dard cells at pre-SOI body biasing levels. Thus, while many methods are inspirational, the
approaches cannot be transferred to SOI technologies.

3.2.2 Dynamic Voltage Frequency Scaling

Dynamic voltage frequency scaling (DVFS) is a method where the supply voltage as the
primary variable is changed and then subsequently adjusts the clock frequency to meet the
altered timings without timing violations. As it directly affects the operation conditions, it
has a strong influence on the power versus performance ratio, drastically influencing both
leakage and dynamic power consumption. However, it also has significant downsides and
limitations. First of all, to conduct voltage scaling dynamically, significantly large voltage
regulators are required. Furthermore, when two different voltage regions communicate
through electrical wires, signals have to pass level shifters to account for the different
signaling levels. Additionally, when using all degrees of freedom DVFS offers, signals
between domains also have to pass different clock domains, requiring synchronization
hardware such as phase locked loops. Thus, the hardware overhead is considerable, with
its application warranted only on large granularities such as entire cores. Furthermore,
with influence only on the operation condition of transistors and finite resolutions in its
regulator components, it is far from an ideal solution as the following excerpt of the state
of the art on DVFS shall show.

29

3 State of The Art

In [42], Isci et al. propose a workload-aware, global DVFS scheme under a fixed power
budget. For such a system, they then consider different scenarios where the DVFS scheme
is optimized towards prioritization of tasks, power per core balance or system throughput.
The strategies are then evaluated for performance degradation, power budget utilization,
and slowdown incurred by applying the proposed schemes. The presented results are of
a more general nature, focussing on performance degradation over an oracle with perfect
knowledge, i.e., optimal power strategies, as well as a comparison against chip-wide
DVFS. In both respects, the approach performs very well with performance coming within
1% of the oracle for the throughput-oriented approach and clear superiority over chip-wide
DVFS. With power versus performance tradeoffs having a different focus at the time of
publication, the authors include their findings on power balancing, but fail to stress the
implications that point to DVFS as a powerful tool to conduct such tradeoffs.

Herbert and Marculescu present in [43] the dynamics involved in DVFS strategy deci-
sions and also propose a method to partition a processor into voltage as well as frequency
domains. They evaluate three different DVFS algorithms: a utilization threshold based
algorithm, a proportional-integral controller as well as a greedy algorithm searching for
the minimal energy per throughput squared. The partitioning method, or more partitioning
rule, merely prescribes what kind of component should be put into its own domain or mul-
tiple domains. The results are thorough and demonstrate that DVFS can also benefit from
finer than core granularity partitionings. Furthermore, by putting the considered strategies
into context with the evaluated benchmarks, they derive conclusions regarding suitability
to benchmark classes. As an intriguing result, the authors conclude that the core-granular
DVFS approaches often do not provide enough merit to justify the increased complexity.
Furthermore, they continue by stating that the granularity on which DVFS is practiced to
this date is insufficient and point out the energy efficiency gains that could be achieved
when applying DVFS in a fine-granular manner.
Kim et al. concur with the savings that can be achieved by employing at least core granu-
larity, but also further explore temporally fine-grained applications of DVFS realized using
on-chip regulators [44]. This is especially interesting as it highlights the overheads asso-
ciated with the different implementations of DVFS and thus illustrates the complexity and
cost of efficient DVFS schemes. Kim et al. present an elaborate and fair assessment of
the overheads power and area-wise, which is of great importance considering the hardware
effort. Accounting for all overheads, the application dependent reduction in power con-
sumption range from −7% for their worst-case scenario (raytrace), up to 21% for their
best-case benchmark (ocean). Considering that the ideal DVFS savings are 2% and 24%,
the proposed method is quite close to the optimum. An additional merit of the presented
work is also an overhead evaluation regarding regulator implementation.
Yin et al. evaluate DVFS and its impact on a per-core basis for on-chip networks. In such
designs, cores are interconnected using sophisticated interconnects and routers [45]. To
mitigate the area overhead that would be occurred by placing a voltage generator for each
router, the authors propose to use a power delivery mesh with specifically dimensioned
transistors as voltage selectors. The actual DVFS scheme is then governed by the local

30

3.2 Power Management

traffic status. For power consumption estimation, Yin et al. use the alpha-power model
[15] by Sakurai and Newton. The power consumption reductions are cited to be between
45% and 60% with a roughly doubled latency increase. While the proposed ideas are
solid, this work again points towards the complexity in realizing DVFS in a beneficial
manner. First of all, offloading voltage generation may be sensible when requiring only
few voltage levels, but aiming to use this setup in an extremely fine temporal granularity of
a couple of nanoseconds contradicts to some extent the original intention of reducing the
area overhead. Furthermore, more substantially, with all latencies almost doubled, other,
probably more suiting techniques could be used as well.
In [46], Howard et al. propose a 48-Core x86 message passing processor design with 8
voltage and 28 frequency domains. Voltages are supplied from off-chip regulators ranging
from 0 to 1.3V in 6.25mV steps. Each voltage domain can be put into a disabled reten-
tion mode at 0.7V or completely cut off if retention is not required. Communication is
facilitated using a sophisticated 5-port virtual cut-through 2D mesh network, operating at
a maximum frequency of 2GHz with 16-byte data links. The design allows for efficient
power management schemes, allowing to adjust power and performance characteristics ac-
cording to the momentary demands. Power consumption for the entire chip can be cut
by 80% from normal operation down to a low power mode. Nevertheless, this naturally
also goes along with significant performance cuts. To achieve the 80% reduction, clock
frequency is reduced by a factor of 8× from 1GHz to 125MHz.
Cochran et al. focus in turn on DVFS strategies in [47]. They propose thread "packing",
i.e., grouped execution of threads along with adjusted DVFS to meet a certain power bud-
get, referred to as power cap in their work. Using performance counter data, power and
temperature measurements along with multinomial logistic regression, thread packings and
the corresponding optimal voltage and frequency settings are determined. The scheme is
applied and evaluated on a real Intel Core i7 based server. In 82% of all executed tests,
power consumption stayed in the power cap even without dedicated power consumption
measurements. This strategy harmonizes threaded workload execution and DVFS control
and thus gives an additional edge over thread-agnostic DVFS. This also allows to meet
more power versus performance constraints and thus allows to leverage DVFS more effi-
ciently with only a small software overhead.
Similarly, Kolpe et al. approach the voltage regulator overhead problem using software
implemented DVFS strategies in [48]. By grouping several cores to one voltage frequency
island, the number of required voltage regulators is reduced by the grouping factor. Then,
by analyzing workloads, similar workloads are assigned a DVFS cluster. These schemes
are evaluated in a simulated 16-core processor with evaluated cluster sizes from 1 core
per voltage frequency island, i.e., per core DVFS, 4, 8 and finally 16 cores per cluster,
i.e., chip grained DVFS. Then, for a given power constraint, the execution time required
by each scheme is evaluated. The results indicate that while chip grained DVFS needs
a relaxation of constraints, core clustering constitutes a valid and interesting method to
reduce the hardware overheads usually associated with DVFS.

This excerpt of the state of the art on DVFS clearly shows that it is a very effective power
management technique as it manipulates the operation point, but the selected works also

31

3 State of The Art

demonstrate that there is a considerable price to pay for in terms of overheads. Further-
more, in the case of DVFS as well, fine-grained applications indicate further directions for
optimization but are ultimately hindered by the steep implementation overheads and the
theoretical maximum power consumption reduction achievable through DVFS just not of-
fering enough incentives to go for finer granularities. Using advanced techniques, workload
scheduling and DVFS strategies, DVFS utilization efficiency can be optimized, however
only towards an ideal DVFS strategy oracle. Furthermore, overheads associated with the
implementation of DVFS can be reduced, but only at the expense of spatial or temporal
flexibility, again resulting in larger power consumption for executing the same computa-
tions. Ultimately, DVFS is a highly efficient technique when the workload gives or is made
to give enough leeway for the physical actuators to adjust the operating conditions.

3.2.3 Clock and Power Gating

In this subsection, approaches to leverage clock and power gating are presented. Clock
gating is a method to cut off parts of the clock tree when the regions supplied by these
parts are inactive, i.e., not used. This is realized using special standard cells for clock tree
use which have increased blocking and driving capabilities to account for the strong drive
power of clock tree cells, required for the large fan-out. By preventing the clock signal
from entering inactive regions, considerable dynamic power savings can be achieved,
while only static power consumption remains. Power gating is a continuation of the clock
gating idea. Here, not only the clock signal but the entire power supply is cut off using
power switches. Power gating, however, requires a lot more hardware to be implemented
in a well-defined manner. It does not only need power switches, but also retention cells
to retain some initial state into which the cut-off area is recalled when returning from its
off state. Furthermore, even if no such state needs to be retained, the power gated region
needs some kind of high resistance switch to prevent actual signals from entering and thus
driving the cells within. Of particular interest for this thesis are the methods by which
clock or power gating regions are defined.

Clock gating approaches presented in this section can be categorized into three different
types: symbolic, analytical as well as architectural approaches. One of the classical
examples of symbolic computing based clock gating is [49] by Benini and Micheli.
Here, a symbolic, boolean representation of the circuit in question is used to determine
the conditions, in which parts of the circuits are inactive. Using these conditions,
appropriate logic determining the satisfaction of the condition together with a clock switch
is inserted at the appropriate locations in the netlist. Analytic approaches ultimately also
employ symbolic methods but are differentiated by analyzing the original RTL and then
synthesizing a derived clock structure. For example, [50] and [51] do such analyses and
then manipulate clock structure synthesis accordingly. In the case of [51], this is done
implicitly by modifying the verilog source code which is then used for clock tree synthesis
by a commercial layout tool. Many EDA tools also offer clock gating support as early
as in [52], where the authors present the clock gating capabilities of Synopsys’ Power
Compiler. The last remaining clock gating approach category is also very intriguing. By

32

3.2 Power Management

utilizing architectural information, Li et al. present a clock gating approach in [53]. In
this work, the authors present a method how architectures such as in modern pipelined
processors can be used to determine clock gated areas as well as their activation. As it is
usually known a couple of clock cycles beforehand, whether certain parts of a pipeline
stage or pipeline stages altogether are used or not, this can be leveraged to implement clock
gating conditions and activation. All these presented approaches result in considerable
dynamic power reductions and are thus well in the standard repertoire of low-power chip
design.

Power gating, on the other hand, is not as straightforward due to the involved overheads,
including those overheads occurring at runtime.
Usami and Okubo propose in [54] to use the clock gating capabilities to use this activation
information to build power gating domains. This is done by traversing flip-flops with clock
gating gates inputs and marking the combinational paths encountered. If other flip-flops
without clock gating gates are encountered, they are marked using the original flip-flops
id as well. This is done for all clock gating enabled flip-flops, while the markings of all
the gates marked with more than one ID are concatenated. Then, power gating domains
according to those labels are created, while those gates without any label are not power
gated. For the actual power gating strategy, Usami and Okubo also analyze the overheads
of deactivating and reactivating power gating domains and put areas to sleep only if the
period of sleep is longer than the break-even point. As clock gating signals have been
originally used, this is a critical step.
Leinweber and Bhunia propose hypergraph partitioning and shannon decomposition to de-
termine power gating domains in [55]. In a first step, the mapped netlist is parsed and
a hypergraph representation generated. Then, the resulting hypergraph is partitioned in
a shannon expansion aware manner to allow shannon decomposition to exactly separate
unrelated logic. In this step, the hypergraph is also coarsened on common activation con-
ditions to simplify the structure, allowing also larger, complex designs to be partitioned. If
these steps worked correctly, which is assessed using an introduced quality metric, shan-
non decomposition deals neatly with shared resource and defines non-overlapping power
gating domains.
Sathanur et al. present two different approaches for power gating based on clustering
functionality in rows in [56]. The optimal approach uses binary integer programming to
assign standard cells to rows that are then power gated altogether, while the other, heuristic
approach analyzes the layout-based row assignments of standard cells and ranks each row
by timing criticality. Then, starting with the subset consisting of all rows, rows are dropped
until power gating given rows do no longer lead to a timing violation. This, of course,
requires the designs to be "pre-separated" using the row-based layout style. Despite this
severe row clustering constraint, the power gating results get very close to normal, ideal
power gating partitionings.
Saito et al. propose a fine-grained power gating approach based on the architectural struc-
ture of coarse-grained dynamically reconfigurable processors in [57]. Along with a high-
speed power gating technique requiring only a couple of nanoseconds for wakeup, the
authors also analyze the involved overheads and consider power gating only beyond the

33

3 State of The Art

appropriately chosen break-even points. By power gating PE components individually,
leakage reduction is achieved even when parts of the PE are in use. As a nice plus, Saito et
al. consider all overheads and present their achieved leakage reduction of 48% in the light
of expended hardware overhead, which they measured to 9% in their real chip implemen-
tation.
Chen et al. propose a power gating design method for standard-cell like structured ASICs
in [58]. To realize this, transistors are grouped into via-configurable logic blocks with
power gating capabilities per such block. The proposed structured ASIC is comprised
of both power gating enabled logic blocks as well as blocks without power gating
capabilities. The actual assignment is then done using a standard synthesis tool while in
the library information, power gating enabled logic blocks receive a smaller area, making
the synthesis tool choose those over non-power gating enabled blocks once timing is met.
Just like with clock gating, the actual power gating decision is offloaded to the synthesis
tool.

In summary, clock and power gating rightfully belong to the standard repertoire of low-
power design. While clock gating can be used almost free of side-effects, power gating
requires significant consideration of tradeoffs due to its hardware overheads as well as its
physical limitations. As circuits under power gating do not retain their state, additional
precautions are required to send to and awake these circuits from their sleep state in a well-
defined manner. This being said, power gating is the most efficient method to eliminate a
component’s power consumption without switching off the whole chip. However, the area
overheads incurred by retention cells to retain the component’s state, control logic as well
as power switches require the power savings to be rather large to justify these efforts. i.e.,
fine-granular application is extremely complicated to achieve in an economical fashion.

3.2.4 Multi-VT H and Multi-VDD Approaches

Multi-threshold voltage standard cell design as well as multi-supply voltage design are two
entirely static low-power design methods. Multi-threshold voltage (VT H) standard cell li-
braries contain standard cells executing the same logical function, but utilize transistors
with a different threshold voltage for their realization. In consequence, if transistors with
higher threshold voltage are used, the standard cell is slower but also less leaky. In contrast,
if transistors with lower threshold voltage are used, the standard cell incurs more leakage
but delivers its outputs faster. The different threshold voltages are attained through changes
in the transistor structure and thus are permanent and unchangeable after manufacturing.
Other than this constraint, multi-threshold voltage designs only incur additional hardware
overheads in accordance with the threshold voltage manipulation. If, e.g., different thresh-
old voltages are realized using longer channel lengths, transistors become bigger and thus
may require more area for their implementation. If, on the other hand, the gate work func-
tion is manipulated through the materials used, it may require an additional fabrication step
and thereby also additional masks, but is then neutral in regard to area overheads.
Multi supply voltage (VDD) design supplies clusters of standard cells with different supply
voltages, thus attaining a similar speed and leakage tradeoff. Additionally, as supply

34

3.2 Power Management

voltage is manipulated, dynamic power changes as well. Just like with DVFS however,
different supply voltage domains require level shifters between such domains. This also
leads to the above-mentioned constraint, i.e., that only clusters of standard cells are
considered as otherwise the overhead would outweigh any benefit attained. Due to the
limited applicability of sole supply voltage scaling, it has been rarely used. The overheads
of supplying multiple supply voltages in combination with the required level shifters
usually made static multi-supply voltage designs less appealing, in clear favor of dynamic
voltage scaling or DVFS.

Multi-VT H approaches have been used in a similar fashion as pre-SOI body biasing to
achieve leakage and delay tradeoffs. In [59], Kim et al. use multi-VT H techniques to mini-
mize the power consumption incurred by leakage. To achieve this, the authors first model
leakage and access time in dependence on threshold voltage VT H and then use numerical
solving techniques to minimize the leakage function constrained by the cache access time.
This approach achieves significant leakage reductions, however, their peak reduction also
requires adaption of the architecture to accommodate an additional cache level to mitigate
the access time increases.
Gupta et al. propose to use fine-grained gate-length biases to offer a large variety of
threshold voltages without the need for additional masks in [60, 61]. The authors focus
on supplying additionally characterized fine-grained gate-length biased standard cell li-
braries which are then used by industry standard synthesis tools. Their approach includes
the automatic adaption of the standard cell layout and thus constitutes a fully automatic
multi-VT H methodology. Like the early pre-SOI body biasing approaches, multi-VT H is
also used to mitigate sources of variability, such as [62].
In this approach, Calimera et al. use multi-VT H cells to make designs less vulnerable. This
is done by modeling the behavior of standard cells with different threshold voltage as well
as their temperature dependent effects, such as temperature inversion. Then, the actual
synthesis is conducted with slightly overconstrained timing which gives the critical path
enough slack for temperature timing variation. The uncritical paths are then populated with
high threshold voltage cells which are assumed to have a positive temperature inversion,
and thus become less timing critical with increasing temperature. With the overconstrained
critical path and the intended temperature inversion on all other paths, timing is kept even
in worst-case corners.
For multi-VDD approaches, Yeh et al. propose in [63] a simulated annealing based place-
ment algorithm to cluster standard cells with equal intended supply voltage. These clusters
are then supplied with different supply voltages, which minimize the use of level shifters
only between those clusters. Their proposed approach clusters standard cells in rows while
the availability of both supply voltages allows for mixed VDD rows. The only constraint
imposed on such rows is that one VDD may be only on one of either side to minimize the
inference of level-shifters.
Puri et al. present an interesting case-study in [64]. In this study, the authors explore the
possibilities of combined multi-VDD multi-VT H design. While the authors acknowledge the
theoretical nature of their study due to the additional complexity and overheads involved,
their findings give a clear indication of the merits of multi-VDD design in view of the over-

35

3 State of The Art

heads. The authors evaluate different optimization techniques and different numbers of
threshold voltages in combination with single- or dual-VDD design. In dual VDD design,
the design is partitioned into parts running at a lower supply voltage where the other parts
operate at a higher supply voltage. While the target design in their study, a DSP processor,
exhibits a potential 50% power consumption reduction, this is furthered by another 14%
when combined with their dual-VDD design method.
Li et al. propose to use programmable VDD design for FPGA interconnects in [65]. As
for uncritical paths, the interconnect is overdesigned, the authors propose to use multiple
supply voltages to exploit the difference in timing criticality. To do this, three different
supply levels are used: high VDD, low VDD and power gating. These different levels are
then assigned by timing criticality or set to power gating when the interconnect part is
unused. While it is evident that this method considerably reduces power consumption,
the work falls short of considering the area overheads which cannot be neglected for such
approaches.

In summary, while multi-VT H approaches such as gate-length biasing found its way into
standard low-power design, multi-VDD as the works described in this selection of the state
of the art, was virtually replaced by the more powerful DVFS schemes. While the merit of
multi-VT H design is indisputable, its static assignment limits the extent of potential power
savings, as all paths and their VT H had to be chosen in such manner, that timing is always
kept, whether the path is used or not. Dynamic multi-VT H , in this sense, is highly desirable,
but physically impossible for these multi-VT H approaches.

3.2.5 Body Biasing with DVFS and approaches solely focusing on Body
Biasing in SOI Technologies

Most of the time, body biasing in SOI is combined with DVFS. This is not only sensible
as both techniques, voltage scaling and body biasing effect the same central variable,
clock frequency, but also allow them to be managed similarly. Body biasing can be easily
integrated by not solely considering supply voltage in a DVFS controller, but rather a tuple
consisting of both supply voltage and body bias. So it does not come as a surprise that
most existing work considers body biasing in SOI transistors in conjunction with DVFS.

Such an approach is also proposed by Akgul et al. in [66]. The authors propose an adapted
mode selection scheme for STMicroelectronics’ 28nm UTBB-FDSOI process based on
discretely convex sets of power modes. Each of the power modes is a tuple of frequency
and power consumption. The space of power modes is then set up using supply voltage
and body bias. Since the set of all power modes is not necessarily convex, the authors give
instructions on creating a convex subset and also proof, that this process can be used to
minimize power consumption for a given clock frequency. This method is then demon-
strated using an oscillator implemented in STMicroelectronics’ 28nm UTBB-FDSOI. In
real chip evaluation, the authors achieved a 27.55% reduction in power consumption. To
give the authors fair credit, it has to be noted that an oscillator does not represent an ideal
test-case, but also indicates that there is much unused potential in cases where dynamic

36

3.2 Power Management

power does not dominate as much as in ring oscillators.
In a related paper [67], Akgul et al. extended this approach in regard to two aspects:
mathematical approach and evaluated design. The mathematical approach in this work is
now explicitly based on piece-wise convex sets to optimize power consumption using three
drivers: supply voltage, body bias and clock frequency. Then, for a given target frequency
ftarget , two modes are always considered: VDDi as well as the next higher VDDi+1. For
these two modes, a power consumption curve is determined, i.e., power consumption is
approximated and plotted for a given VDD by sweeping over body bias. In a subsequent
step, the piece-wise convex parts of each curve are determined and stored as piece-wise
convex sets of each mode. If now the target frequency Ftarget can be reached using a power
mode of the mode of the lower supply voltage VDDi, this mode is chosen. If the mode cannot
be reached, the piece-wise convex set of the next higher supply voltage VDDi+1 is searched,
and its appropriate power mode is chosen. This approach is then evaluated using a DSP
design where each PE is a DVFS and body bias domain. Obviously, the PEs considered
in this DSP design are significantly large cores to offset the DVFS overheads. In total,
despite the mathematical refinement, the authors determined a up to 17.31% improvement
in power consumption over the FDSOI implementation not using the proposed combined
DVFS body biasing method.
Chen et al. propose a power optimization technique for real-time multi-core SoCs with
optimal DVFS and DPM in [68]. With the added complexity of real-time deadlines to
be observed and the subsequent challenges for DVFS and DPM, Chen et al. resort to a
variant of integer linear programming. Using this approach, optimal DVFS and body bias
combinations are determined while observing the real-time aspects. Their approach yields
a power consumption reduction of 10.5% and 8.9%, with peak reductions of 16.0% and
12.2% for 4- and 8-core systems respectively over all evaluated benchmarks while meeting
all deadlines.
Jevtić et al. propose a combined per-core DVFS and body biasing scheme with the DVFS
power management realized using switched-capacitor converters in [69]. The authors pro-
pose to let the switched capacitor voltage generator output to ripple and thus achieve higher
DC-DC conversion efficiency. The ripple is the mitigated by frequency tracking the ripple
using the processor core. This ripple spanning a considerable amount of time is compen-
sated in the adapted DVFS scheme and its greatly enhanced body biasing range. Through
body biasing, VDD hopping requirements due to the ripple at lower VDD is virtually over-
come. By combining this approach with body biasing the authors realized an improvement
in over all chip energy efficiency of up to 25% depending on the application.
One of the few approaches focusing on the optimal utilization of body biasing is [14]
by Okuhara et al. The authors introduce a new, real-chip evaluation based theoretical
model using a method for finding optimal supply and body bias voltages. The evaluations
were conducted for Renesas 65nm SOTB FDSOI on a microcontroller design where the
processor core is placed in a body bias domain other than the memories. Using the newly
introduced model, the authors can make more applicable approximations for the examined
FDSOI process and achieve a prediction accuracy ranging from 5.23% to 12.6% versus
real chip observations. Essentially, the model and optimization method make sure that
dynamic power consumption via supply voltage and static power via body biasing are kept

37

3 State of The Art

in an optimal tradeoff position.
Conti and Benini as well as Rossi and Benini developed the PULP platform geared toward
ultra-low-power computing and presented two generations in [70, 71]. Each PULP chip
features a SoC voltage domain and a cluster voltage domain with four OpenRISC cores,
where each core can be biased individually. As an additional innovation, the body bias
selection is realized using a voltage multiplexer referred to as BBMUX which selects body
biases in a highly area-efficient manner from a global bias supply grid. While the first
generation of PULP has been manufactured in STMicroelectronics UTBB-FDSOI RVT
flavor, the second generation is manufactured using the LVT flavor, allowing for signif-
icantly increased forward body biasing. By exploiting body biasing on such a per-core
basis, energy efficiency is improved well above 10% all over the supply voltage range,
with peak efficiency improvements at low supply voltages of more than 30%.
Most influential for this thesis are the works by Hioki et al. on fine-grained body biasing
enabled FPGAs as described in [72, 73]. In these works, Hioki et al. propose a FPGA
structure partitioned into multiple, fine-grained body biasing domains. The FPGA is
overlayed with a body bias supply grid where each body bias domain is equipped with
small voltage selectors. In many respects, these studies are limit studies, i.e., they seek
to define up to which granularity area overheads are incurred by fine body bias domain
partitionings justified by the returns, i.e., performance improvement or leakage reduction.
The test chip evaluated in [73] consists of 121 FPGA tiles, where each tile consists of
8 switch multiplexers, 12 input multiplexers, 24 local multiplexers, 4 look-up tables, a
flip-flop set, a set of 2 to 1 multiplexers and pad output muxes. For each of these 57
elements in total, a body bias can be set individually as part of the configuration memory.
With 121 tiles, this makes 6897 body bias domains in total. This, of course, also incurs
a significant overhead on the 3.2mm× 2.4mm die. That is 54% of the die is occupied
with structures required for the implementation of the body bias domains and its supply
structures. While such overheads, of course, are unacceptable for actual designs, Hioki et
al. clearly illustrate the potential of body biasing in FDSOI technologies such as SOTB.
The actual body bias levels are set by the EDA tool based on path timings.

Having summarized this selection from the state of the art on the utilization of body biasing
in FDSOI, there are several issues with the presented works. First of all, the approaches
are split in half between those that focus on the application of body biasing within the
scope of DVFS [66–69] and those that focus solely on the optimized usage of body biasing
[14,70–73]. As noted on DVFS above, DVFS is severely limited in the manner it is applied
due to the large overheads associated with the latter. Body biasing, on the other hand,
can be realized on much finer granularities. First of all, body biasing generally does not
need large voltage regulators as only a potential has to be generated, i.e., there is only
current flow when charging the transistor bodies. However, no level shifters are required
as signal levels are unchanged by body biasing. This additional degree of freedom is
nonetheless completely ignored by the presented works with the exception of [72, 73].
Even in [14, 70, 71], granularities below core-granularity were not considered. In [72, 73],
the authors went to great lengths to highlight the possibilities of extremely fine-grained
body biasing, however, they only focussed on a specifically optimized FPGA design with

38

3.3 Dynamically Reconfigurable Processors

the goal of leakage minimization. Thus, also the field covered by this thesis, methods
on optimized body bias domain partitioning and general, optimal body bias assignment
methods is with the exception of a few pre-SOI works has been completely untouched to
this day.

3.3 Dynamically Reconfigurable Processors

In this section, a brief overview of the state of the art on dynamically reconfigurable ar-
chitectures will be presented. The first section presents a short, non-exhaustive overview
of popular DRP architectures and applications and directions to which DRPs have been
applied. In the second section, the MuCCRA DRPs will be introduced of which the most
recent architecture has been used in the evaluations of this thesis.

3.3.1 DRPs and their Applications

Much of the principal groundwork concerning DRPs has been done around Masa Moto-
mura who first introduced the NEC DRP-1 in [18]. DRP-1 featured all defining DRP con-
cepts with PEs grouped into individual arrays, so-called tiles as illustrated in Fig. 3.3. Each
tile is equipped with a state transition controller for execution control and memories as well
as full-width multiplication units placed around the tile boundaries. Using this architec-
ture, many different types of applications have been ported and successfully benchmarked,
such as general stream applications [75] with another study on the thereby encountered
peculiarities [76], IPsec cryptographic acceleration [77] or JPEG2000 as a graphics bench-
mark [78]. Furthermore, one of the major issues concerning DRPs, application mapping,
has also been addressed by use of high-level synthesis [79]. Popular commercial architec-
ture examples are also the ADRES architecture developed at IMEC [80] and the Samsung
Reconfigurable Processor [81]. Both use the same principal VLIW processor PE/FU array
integration as illustrated in Fig. 3.4. While their PEs are arranged in a two-dimensional
array, a couple of specially equipped PEs (yellow) are reused to form a VLIW processor.
The ADRES and SPR architectures are a mixture of DRP and VLIW processor with
specially equipped, multi-functional PEs which can form a VLIW processor for des-
ignated tasks. Such special cases as found in architectures like the SRP or IMEC
ADRES [80, 82–84] can also be treated similarly to an extension in the sense of Special
Purpose Units as described in the background section. Another noteworthy architecture
is the PACT XPP [85]. For all three architectures, ADRES, SRP and PACT XPP, a
development environment including DRP mapping optimized compilers has been devel-
oped [82, 86].

Apart of such commercial variants, there are also academic DRPs such as the MuC-
CRA architectures introduced below. Among others, there is the CRC architecture
template [19] for which also compilation technique studies and optimizations have been
conducted [87, 88]. While the above architectures like the original NEC DRP aimed
for generality within the scope of MIMD architectures, there are also more specialized

39

3 State of The Art

TILE0

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

HMEM MUL HMEM MUL

VMEM

VMEM

VMEM

VMEM

TILE1

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

HMEM MUL HMEM MUL

VMEM

VMEM

VMEM

VMEM

TILE3

PEPEPEPE

PEPEPEPE

PEPEPEPE

PEPEPEPE

HMEMMULHMEMMUL

VMEM

VMEM

VMEM

VMEM

TILE2

PEPEPEPE

PEPEPEPE

PEPEPEPE

PEPEPEPE

HMEMMULHMEMMUL

VMEM

VMEM

VMEM

V
MEM

FSM

Figure 3.3: Illustration of NEC’s DRP architecture style, modeled after [74]

40

3.3 Dynamically Reconfigurable Processors

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Register File

Processor logic
Fetch/Dispatch/Decode

PE Array

VLIW Processor

FS
M

 C
on

te
xt

M
em

or
y

Figure 3.4: Illustration of IMEC’s Architecture for Dynamically Reconfigurable Embedded System
(ADRES) style DRP, modeled after [80] and [81]

variants of DRPs geared towards specific applications. For example, there are a couple
of implementations featuring floating-point unit equipped PEs such as [89] or [90].
The obvious downside of such implementations is, of course, the thereby incurred area
penalty of relatively large floating-point units per PE, while on the other hand, this returns
superior throughput in floating-point use cases. Concerning this tradeoff, [83] examined
multi-domain application mapping on DRPs and CGRAs. Another example for highly
specialized applications of DRPs is [91], a DRP optimized for neural network applications.

As DRPs per construction traditionally aimed for energy efficiency, many studies using
low-power techniques, such as those referenced in the section on MuCCRA DRPs, have
been conducted. These studies however always suffered from the difficult area versus
power consumption reduction trade-off DRPs had to face in light of the coarse, but com-
pared to GPCPUs still considerably fine granularities. Most commercial architectures
therefore also were rather conservative and pushed the low-power design aspect more into
the software developer and compiler techniques domain. With most power optimization
studies thus either exploiting the inherent energy efficiency of DRPs, there are no compa-
rable studies on the exploitation of FDSOI through fine-grained partitioning of a DRP into
body bias domains.

3.3.2 MuCCRA DRPs

Multi-Core Configurable Reconfigurable Architecture (MuCCRA) is a series of DRPs de-
veloped at the laboratory of Professor Hideharu Amano at Keio University, Japan. Among
other projects, the MuCCRA architecture is a series continuous development and has thus

41

3 State of The Art

has been developed in a multitude of variants and implementations. Apart from the archi-
tectures, an ecosystem has been built around DRPs, ranging from software development
tools, architectural templates to high-level synthesis. In the following section, the base
architectures will be introduced, followed by noteworthy specialized versions and studies,
closing with a brief glance on tooling.

Architectures and Implementations

MuCCRA-1 has been implemented on a 5mm square die in ROHM’s 180nm process
and featured sixteen 24 Bit PEs [92]. Each PE contained 64 context memory entries.
MuCCRA-1 is a heterogeneous DRP architecture, as there is only one multiplier per PE
row to reduce area consumption. Clock frequency ranges from 20 to 40MHz and is appli-
cation dependent.
MuCCRA-2 is implemented using ASPLA’s 90nm process on a 2.5mm square die and
consists of sixteen 16 Bit PEs [92]. With MuCCRA-1 occupying much area for its mem-
ories, MuCCRA-2 was created to address this issue. This is achieved by sharing context
memory between two PEs. Furthermore, the amount of local memory is reduced, which is
compensated by increased routing capabilities.
Building on these experiments, MuCCRA-CUBE, a 3D-stacking MuCCRA chip has been
developed [93]. Per die, there are sixteen 24 Bit PEs implemented in ASPLA’s 90nm
process on a 2.5mm by 5mm die. Each die is equipped with a through-chip interface based
on inductive coupling with multiple channels. Using this method, 4 dies are stacked. Each
PE is equipped with a multiplication unit and switching elements are extended to account
for communication in three dimensions.
MuCCRA-3 is a consequent evolution of the previous MuCCRA DRPs, focussing espe-
cially on low-power applications [94]. It consists of a sixteen PEs array with a word side
of 16 Bit each. It is implemented in Fujitsu’s 65nm eShuttle process on a 4.2mm by 2.1mm
die. One of the power optimizations is done by registering all PE outputs and thus reducing
the amount of unnecessary switching caused by e.g. glitches. Consequently, the combina-
tion of operations, i.e., chaining, has been restricted as it couldn’t be leveraged in previous
versions.

3.3.2.1 The MuCCRA-4 Architecture

Building upon MuCCRA-3, the MuCCRA-4 architecture will be described in the follow-
ing. MuCCRA-3 has been geared toward low-power computation [94]. To achieve this,
several previously suggested low-power optimizations have been incorporated, e.g. [95].
Despite its low-power focus, each PE’s ALU contains a full-width multiplication opera-
tion.
Fig. 3.5 depicts MuCCRA-3’s PE array structure including its island style interconnect.
The interconnection network is realized through switching elements (SE). Each SE has
two channels. Each channel transfers 16 Bit plus 1 Bit carry data.
Likewise, the PEs operate on 16 Bit data and an additional carry bit. A part of the energy
efficiency optimization has taken place inside PEs. The number of operations that can be

42

3.3 Dynamically Reconfigurable Processors

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

MEM MEM MEM MEM

MEM MEM MEM MEM

Figure 3.5: MuCCRA-3 DRP’s PE array with island-style interconnect, modeled after [94]

43

3 State of The Art

A

AL
U

Y Z
B

AL
U_

CA
RR

Y_
SE

L

...

ALU_OUT_REG

RF

RF_OUT_SEL

RF_OUT_REG

A_REG B_REG

ALU_DATA_SEL_A ALU_DATA_SEL_B

... ...

CONTEXT_CONT64-32 CONTEXT_CONT0-31

C_
RE

G

CONTEXT_CONT
SE 1 SE N RF ALU DATA SEL ...0:

SE 1 SE N RF ALU DATA SEL ...1:

SE 1 SE N RF ALU DATA SEL ...2:

SE 1 SE N RF ALU DATA SEL ...32:

...

2C
H

Di
re

ct
 In

te
rc

on
ne

ct

IF1+ IF2

ID

EX

WB

TH0 TH1

TH0

TH1

Figure 3.6: MuCCRA-4 PE featuring a direct interconnect with two channels in each direction, reg-
ister file, ALU and data selection multiplexers as well as registers used for pipelining. Additionally,
register file regions and thread pointers (TH0 and TH1) to realize multithreading are added.

executed in a single PE has been significantly reduced to 13 basic operations. Complex,
combined operations have been eliminated as they do not only heavily increase area and
thus also static power, but can be rarely leveraged in applications and thus extend critical
paths without actual benefit. By omitting such operations, more operations per second can
be executed with less static power consumption. Even though the DRP is thereby in total
more utilized, it increases energy efficiency [94].
MuCCRA-4 (Fig. 3.6) was designed building upon this strategy and alleviates one major
design drawback of MuCCRA-3. Up to and including MuCCRA-3, each PE from input
registers to output registers used to be a combinatorial net. All steps from switching context
memory entries to data multiplexing, actual computation, and output multiplexing had to
be done within a single clock cycle. Apart from resulting in much longer critical paths, this
also led to higher switching activity.
Thus Katagiri et al. split the PE structure into five pipeline stages:

1. IF1 Instruction fetch 1
2. IF2 Instruction fetch 2
3. ID Instruction decode
4. EX Execute
5. WB Write-back

[96, 97]. The first two stages are introduced to cover instruction, i.e., configuration fetch

44

3.3 Dynamically Reconfigurable Processors

t

0

2

4

PE0 PE1

t

0

2

4

PE0 PE1
Inst A[0]

Inst C[0] Inst B[0]

NOP

NOP

Inst D[0]

NOP

Inst A[0]

Inst A[1]

Inst C[0]

Inst C[1]NOP

Inst B[0]

Inst B[1]

Inst D[0]

Inst D[1]

Figure 3.7: MuCCRA-4 pipeline-hazard caused by two staged instruction fetch (left) and solved
pipeline-hazard by employing TVI (right)

from the context memories. At clock frequencies at the limit of a chosen operation point,
memory accesses become timing critical. Especially when SRAMs are employed, access-
ing those memories limits attainable clock frequency. With very limited options to speed
up this process, instruction fetch is split into two pipeline stages, doubling the time to read
a configuration. In instruction decode, the previously read (IF1 and IF2) configuration sets
the data paths of the PE. This includes reading from registers as well as setting input mul-
tiplexers for the execution stage (EX). In the execution stage (EX), the actual computation is
executed in the ALU. Additionally, the register file may be set to read out a register value
as output. Both, the ALU and register file store the result of the instruction in an output
register which is then used in the write back stage (WB). This stage is used to commit and
send data on the interconnect.
This instruction fetch stage split, however, introduces another issue: By allowing two
clock-cycles per fetch, a NOP is issued in the pipeline to compensate for the one clock-
cycle delay before the instruction is completely fetched. This causes the pipeline to stall
for a clock cycle whenever the PE switches contexts as visualized in Fig. 3.7. This not
only affects a single PE but continues throughout the PE array and thus constitutes a ma-
jor issue that had to be fixed in order to exploit the newly introduced pipeline structure.
As DRPs usually execute loop kernels, this effect can be minimized by introducing a vec-
tor instruction [96, 97]. Here, the authors introduced the so-called tiny vector instruction
(TVI).
The TVI exactly counters the stall induced by IF1 and IF2 by repeating the executed
instruction twice, hence it operates on 2-tuples of data. The additional execution allows
the one clock-cycle delay to be used by executing the same computation on another date.
To facilitate this, the authors of [96] utilize loop-unrolling (Fig. 3.8).
As visualized in Fig. 3.8, the loop is unrolled by a factor of two, thus exactly fitting the
vector size. In respectively marked loops, two data are always processed using the same
operation. Thus, the pipeline-hazard is effectively solved and the speed gain achieved
through pipelining of the PE can be utilized.
Furthermore, MuCCRA-4 also features multi-threading support. MuCCRA-4 supports the
simultaneous execution of two threads. To realize this, the register file is split into two

45

3 State of The Art

Loop(N) {
Inst A;

Inst B;
}

Loop(N/2) {
Inst A[2*N];
Inst A[2*N+1];

Inst B[2*N];
Inst B[2*N+1];

}

Unroll x2

Figure 3.8: Regular execution (left) versus TVI realized through two-fold loop-unrolling (right)

halves when threaded execution is active. Thereby, register renaming is not required at the
cost of a reduced number of available registers per thread. The target context during thread
change is indicated by an additional thread pointer. Thus, each thread TH0 and TH1 has its
own pointer. The selection is then done globally for all PEs through a control bit issued by
the execution control.

3.4 Overview, Comparison and Contribution

In this state of the art several goals have been pursued. Apart from giving an overview on
the latter and showing that no such approach, from either a technological or algorithmic
point of view, as well as an architectural point of view, has been researched and evaluated
before, two more central aspects have been covered:

1. Putting body biasing in SOI technologies into context with existing power manage-
ment techniques, thereby allowing a fair comparison

2. Creating a survey on algorithms utilized to implement power management tech-
niques that require some kind of partitioning and thereby indicating the research
gap this thesis fills

With respect to the first aspect, it can be concluded, that there are many similarly powerful
techniques available. As however, none of them make body biasing in SOI technologies
redundant and as on the contrary, body biasing can build on them, enhance their effects
or even replace some of them with additional benefits, it is safe to say that body biasing
is among the key power management techniques. Whether considering DVFS or clock
gating, body biasing complements these techniques in a highly beneficial manner. Power
gating, on the other hand, could be replaced with a combination of clock gating and
strong reverse body biasing, eradicating the need for long wake-up periods and retention
cells. Similarly, in view of the strong effects of body biasing at low supply voltages,
multi-VDD design further lost in appeal. The case for multi-VT H design, however, is very
intriguing. Body biasing can be seen as a kind of dynamic multi-VT H design where
the threshold voltage can be set dynamically at runtime. This does not make actual
multi-VT H design superfluous but certainly, can replace it in many cases. Thus, body

46

3.4 Overview, Comparison and Contribution

Method Scale Direction Category Dynamic Static Energy Efficiency Area
Pre-SOI Body
Biasing - 1, 2 - 3 - (3) -

DVFS up 3 77 77 7 7

down 3 3 3 3 3

Clock Gating - 3 3 - (7) 3 - (7)
Power Gating - 2 - 3 3 7

Multi-VT H
speed 3 3 7 3 -

leakage 2 - 3 3 -
Multi-VDD - 3 3 - (3) 3 7

SOI Body
biasing w.
and wo.
DVFS

up 1, 2, 3 3 77 - 7

down 1, 2, 3 3 3 3 7

Proposed
FGBB

up 1,2 3 3 33
- (7)opt 1,2 - 33 3

down 1,2 - 333 3

Table 3.2: Comparison of the presented power management techniques with the fine-grained body
biasing method proposed in this thesis. Legend: 333almost ideal, 33very strong improvement,
3significant improvement, - no improvement nor degradation, 7degradation, 77strong degradation,
(3/7) tendency that virtually has no effect

biasing as considered in this thesis is a great extension of the power management repertoire.

In regard to the second aspect, this state of the art clearly indicates the lack of specialized
body bias domain partitioning as well as a general method of optimal body bias assignment
to such previously partitioned domains.

Also when comparing the key merit figures, static and dynamic power consumption, en-
ergy efficiency as well as area overhead, the comparison in table 3.4 further stresses the
importance of filling this research gap to exploit such techniques.
This becomes most evident when comparing this thesis’ approach to its main contender,
the existing approaches exploiting SOI body biasing capabilities with or without DVFS. It
might seem bizarre that it makes no difference whether DVFS is exploited or not, but as all
approaches in the state of the art stay at core granularity, not further exploring finer granu-
larities, all approaches suffer from either the exponential leakage increase when applying
forward body biasing, and the exponential performance drop when applying reverse body
biasing. With this thesis breaking with granularities formerly dictated by methods with
comparatively huge overheads such as DVFS, fine granular body bias domain partitionings
are capable of giving a forward body biasing speed boost while at the same time reduc-
ing overall leakage, and hence also constitute a significant improvement over the state of
the art. Furthermore, the algorithms proposed in this thesis are also a step forward in the
direction of automatization.

47

3 State of The Art

48

4 Problem Formulation

In this section, the underlying problems of leveraging body biasing in a hardware design is
defined and elaborated. As introduced in the previous chapters, firstly, there is the need to
partition a design into body bias domains during physical design, and secondly, the body
bias that needs to be applied to the respective domains varies even within applications that
are executed on the design. Thus, there are three major challenges:

1. Once the design is partitioned, it cannot be changed later on (physical partitioning)

2. The design space of possible body bias partitionings is huge (space of partitionings
into body bias domains)

3. For a specific partitioning, different body bias assignments are required to achieve
the desired result for different applications (body bias assignment and application
dependency)

Problem 1. asks for a general way to partition a design into body bias domains. As this
thesis aims to find a general partitioning method, no usage profiles are assumed. Every
partitioning into body bias domains should be capable of executing applications without
special restrictions. Problem 2. points towards the huge design space that is opened up
by body biasing. Not only could virtually any standard cell be placed in a different body
bias domain to constitute a different partitioning, but the body bias assignment for these
domains further enlarge the possible design space by the number of possible body bias as-
signment combinations as well. This leads to the third problem, body bias assignment. Of
all body bias assignments that do not violate timing, obviously, the leakage minimal solu-
tion should be used. In the following, these problems shall be put into a mathematical form.

4.1 Mathematical Definition

As described in 2.1.2, body biasing affects both leakage and delay, essentially reducing
the body biasing problem to a leakage and delay trade-off. As there is no documented
direct effect on dynamic power, the goal is to get the desired reduction of delays for the
smallest leakage current possible. This intuitively leads to the formulation of the body
biasing problem as leakage minimization. Therefore, for any given clock frequency at a
given supply voltage, body biasing is used optimally if of all valid partitionings into body
bias domains and their respective body bias assignments, the leakage minimal solution is
chosen.

49

4 Problem Formulation

Consider a pipelined hardware design δ consisting of pipeline stages δk = (C,T P,Vd ,Vb)
with N components C = {c1 · · ·cN}, timing paths T P = {t p1 · · · t pM} where
∀{t pi|t pi ⊆C}, a set of Q available supply voltages Vd = {VDD1 · · ·VDDQ} [V] and a
set of R available body biases Vb = {VBB1 · · ·VBBR} [V]. On such design δ, an appli-
cation A = (a1 · · ·aZ) is executed with instructions ai ⊆ T P. Then there is a function
CL(p,c,VDD,VBB) that determines for each domain p and the contained parts of compo-
nent c, a specific supply voltage VDD and body bias VBB its respective leakage current.
Then there is also CD(p,c,VDD,VBB,a) which determines for each domain p and the parts
of component c in it , at a given supply voltage VDD and body bias VBB the delay incurred
when instruction a is executed. Each component is capable of executing at least one in-
struction. If the component is not involved in the realization of an instruction, its delay is
zero.

Then, a valid body bias partitioning into k disjunct domains P = (P1 · · ·Pk),Pi ⊆C with a
body bias assignment V BA = (V B1 · · ·V Bk) with V Bi ∈Vb is valid, if

∀ag ∈ A ∀t pi ∈ ag ∑
p j∈P

(
∑

ck∈p j

CD(pk,VDD,V B j,ag)

)
≤ tclk (4.1)

applies. Eq. 4.1 computes for each instruction used in the application executed on the
design in question the delay incurred throughout the timing paths possibly leading through
multiple domains and components. Of these components, however, only the actual delay,
i.e., the parts of a component realizing instruction ag is accounted. Thus if all instructions
are executed in less or equal time than the clock period tclk, timing is not violated, and the
partitioning is valid.

Thus, of all valid partitionings and body bias assignments

ILeak =
k

∑
i=1

(
∑

c j∈pi

CL(pi,c j,VDD,V Bi)

)
(4.2)

leakage current ILeak, i.e., the sum of all components’ leakage in all domains i at body bias
V Bi should be minimal. For the exhaustiveness of this chapter, this problem definition
can be extended to capture the aspects of the dynamic application of body biasing, which
requires the following auxiliary definitions. Let BC(p,C, ~VBB) define the charge required to
switch the body potential of the parts of C in p from VBB,1 to VBB,2 with ~VBB = (VBB,1 VBB,2).
Let additionally BC(p, ~VBB) define the transistor body charge required when switching the
body bias of domain p from VBB,1 to VBB,2. Both BC(p,C, ~VBB) and BC(p, ~VBB) shall also
account for the energy dissipated while charging and the loss due to supply effectiveness.

Then we can define the dynamic body biasing problem using

ELeak = tclk ·VDD ·∑
a∈A

∑
p∈P

∑
c∈p

CL(p,c,VDD,V Bpa) (4.3)

with tclk the clock cycle in seconds, supply voltage VDD, instruction a of program A, domain

50

4.2 Body Biasing Categories

p of all domains P, parts of a component c in p and the body bias assigned to domain p
at the execution of instruction a written as V Bpa. ELeak thus is the leakage energy incurred
through leakage throughout the execution of A with possibly changing body biases V Bpa.
However, this is only part of the dissipated energy, as switching body biases also requires
energy which is defined as

EBC =
Z−1

∑
i=1

k

∑
j=1

BC(p j,(VBB,i,VBB,i+1)) (4.4)

the energy dissipated when switching body biases of k domains p j during the execution of
Z instructions. Then, the actual dynamic body biasing problem is defined as

minETotal = ELeak +EBC +EBC,static (4.5)

with EBC,static as the energy dissipated by the components supplying the charge required
to switch the body bias in standby. Thus, the dynamic body biasing problem is the mini-
mization of dissipated energy due to leakage currents and the energy required to change to
affected transistor bodies throughout the execution of A. For a valid and realistic considera-
tion of this problem, however, we have to consider the transition times required to facilitate
the ~VBB transition as well. With experimental data supplied by Okuhara and Amano in [14],
it is clear that transition times of several hundred microseconds are beyond the temporal
granularity focused on in this thesis for dynamically reconfigurable architectures. Thus,
beyond this problem definition, dynamic body biasing will be only covered in a reduced
form, called programmable body biasing, which will be introduced below.

4.2 Body Biasing Categories

Body biasing can be categorized by its temporal application, which in turn differs in ver-
satility. Like multi-VT H approaches, body biasing can be applied statically, fixed at design
time. In the case of body biasing, however, the actual VT H may still be changed depending
on the supply of the body bias potential. Then there are two further overlapping ways to
apply body biasing: programmable and dynamic body biasing. Both are comparable to
DVFS, their actual distinction, however, is body biasing specific and thus shall be elabo-
rated in detail in this section.

4.2.1 Static Body Biasing

With static body biasing, body bias domains are defined at design time like every other
body biasing scheme as well. However, the body bias supply is physically connected to
a single supply net, and thus it cannot be changed later. This means that all domains
connected to this supply net will always have the same body bias applied. While it is
still possible changing the potential on the supply net at the voltage source, this is not
considered in this definition. Thus, static body biasing is defined as

51

4 Problem Formulation

∀
A
∀

a∈A
∀

p∈PStatic,i

: V Bpa =VSupply,i (4.6)

with A the set of all applications, PStatic,i the i-th set of static domains connected to a supply
net supplying VSupply,i. Thus, over all applications and the instructions executed therein, the
body bias of the considered domains never changes.

4.2.2 Programmable Body Biasing

Opposed to static body biasing, programmable body biasing allows to change the bias of
specific domains within certain time limits. This change of body bias is best character-
ized in reconfigurable architectures. When a reconfigurable architecture shall change its
implemented function, this usually requires external reconfiguration which usually takes a
period of the microseconds to milliseconds order of magnitude.
Similarly, programmable body biasing is defined as a change in body bias between two
points in time ti and ti+1 that conform to a lower bound tProgrammable. Thus, first of all,
programmable body bias allows for different biases, however, within small applications or
application blocks Al , the bias may not change.

∀
p∈P

∀
ai∈Al

∀
a j∈Al ,i 6= j

: V Bai p =V Ba j p (4.7)

Thus Eq. 4.7 expresses, that all instructions ai of an application Al are executed under the
same bias V Bap. Between applications Al and Al+1, the bias may change if either one runs
at least tProgrammable seconds. Thus, between each application of a set of applications A,
body biases may be changed if the following constraint

∀
Al∈A

tl− tl+1 ≥ tProgrammable (4.8)

is fulfilled. This allows a simplification in regard to body bias switching costs EBC +
EBC,static and gives a bound for tProgrammable. If tProgrammable is large enough, then for switch-
ing between two body biases VBB,l and VBB,l+1 between two applications

∆ELeak = ∆t ·∑
c∈p

(CL(p,c,VDD,VBB,l)−CL(p,c,VDD,VBB,l+1))� EBC +EBC,Static (4.9)

∆ELeak, the leakage saving when actually switching body biases is much greater than the
cost of switching. Furthermore, with at least tProgrammable between each body bias switch,
the standby cost EBC,Static can be significantly lowered. With regard to Eq. 4.9, EBC and
EBC,Static are thus neglected for programmable body biasing.

4.2.3 Dynamic Body Biasing

Dynamic body biasing allows changing body biases as long as the switching can be realized
fast enough by the appropriate hardware. This also means that dynamic body biasing
allows for switching strategies that are detrimental to power consumption. Thus, the main

52

4.3 Partitioning Problem

challenge is to determine switching strategies that minimize power consumption as defined
in Eq. 4.5. Thus, for any point in time tl and tl+1, it is worth to switch from bias VBB,l to
VBB,l+1 for domain p if

∆ELeak > BC(p,(VBB,l,VBB,l+1)) (4.10)

with ∆ELeak defined as in 4.9 without further considering EBC,Static as for dynamic body
biasing, voltage regulators realizing the bias switch are required in all cases. Thus, the
charge required to change the body bias BC(p, ~VBB) is essential. Without this information
disclosed by semiconductor companies and in light of the static scheduling of dynamically
reconfigurable processors, this strategy is not further pursued in this thesis, but still remains
an important definition to delimit the extent of programmable body biasing.

4.3 Partitioning Problem

Another problem of partitioning a design δ into body bias domains is the sheer possible
number of partitionings. To elucidate this, Eq. 4.11

|Pδ|= S(N,k) (4.11)

computes the cardinality of the set of all possible partitions P of a design δ composed of N
individual components, partitioned into k non-empty subsets. This is done using Stirling
numbers of second order which can be computed as

S(N,k) =
1
k!

k

∑
i=1

(−1)k−i
(

k
i

)
iN (4.12)

.
To find the leakage minimal partition P ∈ P , all partitions have to be evaluated for the
resulting leakage. While this problem cannot be solved differently, the search space can be
significantly reduced by looking for a fitting reduction of N the number of components to
be partitioned into body bias domains.

4.4 Optimization Target

The problems introduced in section 2.1.2, specifically sections 2.1.2.2 and 2.1.2.4, require
considerable efforts to be solved. However, the benefits that can be achieved by solving
these problems are at least equally desirable. The problems can be reduced to a leakage
and delay trade-off, where reduced delay and thus higher achievable clock frequencies are
attained by allowing a certain increase in leakage, i.e., static power consumption. Within
limits, this trade-off is highly beneficial as it allows to virtually cut off leakage currents in
idle and gives significant speed boosts without increasing supply voltage VDD, which is in
a quadratic relationship with dynamic power.

53

4 Problem Formulation

For reasons of simplicity, this thesis focuses on three corner cases for a given supply volt-
age VDD and a respectively attainable maximum clock frequency Fmax:

1. Max. RBB - Maximum reverse body bias with Fmax scaled down to Fmax,RBB

2. Low Power (LP) - Fmax unchanged, optimized leakage

3. High Performance (HP) - Fmax scaled to Fmax,FBB using forward body biasing

These corners are further separated into an idle mode and active modes. Idle modes aim
to minimize leakage irrespective of other goals, while active modes seek to maximize en-
ergy efficiency by minimizing leakage. Max. RBB is an idle mode, thus lowers the clock
frequency enough for all components to meet timing even at maximum reverse body bias.
Any automatized method to determine body bias domains will report that it is not bene-
ficial to partition a design into more than one domains when targeting Max RBB. Thus,
to partition a design into body bias domains, this corner is unsuitable. Therefore, body
bias domain partitionings are determined using one of the active corners, while for idle
modes, all domains in the resulting partitioning are applied a maximum reverse body bias.
In contrast to power gating, however, the design can still operate, although at lower clock
frequencies. If this is not required, power consumption can be reduced to static power
consumption at maximum reverse body bias, if clock gating is applied. This, however, is
not covered in this thesis.
In contrast, active modes seek to minimize leakage while reaching a given clock frequency,
thus maximizing energy efficiency. When such a mode is specified as the optimization
target, the presented approaches will search for a leakage minimal distribution of compo-
nents or standard cells into body bias domains with respective body bias assignments. This
is done independently of the applications which may later be executed on the design. After
partitioning, the resulting partitioned design can then be evaluated for specific benchmark
applications.

54

5 General Body Bias Domain Partitioning
Approaches

This chapter discusses general body bias domain partitioning principles and subsequently
derived approaches not operating on standard cell granularity. This distinction is essential,
as it allows to focus on the actual principles behind body bias domain partitioning and
keeps combinatorial problem sizes within feasible limits. Thus, the following approaches
operate on abstract components, e.g., adders, multipliers etc. These are in turn of course
realized in standard cells. Using this abstraction, the approaches in this chapter need not
examine every standard cell that realizes the respective functionality, but can treat these
abstract components as clusters of standard cells, significantly reducing the problem size.

This restriction, of course, comes at a cost, as, first of all, it does not cover all conceivable
body bias domain partitionings and it limits the degree of synthesis optimizations that
can be applied to the component to be partitioned. In the following, basic partitioning
principles are introduced which also justify the use of such abstraction, while core-
and coarse-grained body biasing approaches introduce intuitive methods to partition a
design using its inherent structure, with particular regard to dynamically reconfigurable
processors. This, in turn, also motivates further, more fine-grained partitionings which are
introduced at the end of this chapter. With fine-grained body biasing, the combinatorial
k-subset approach is also introduced. This the basic algorithm to merge multiple compo-
nents or domain candidates into a limited number of k body bias domains.

This chapter is based on [98–101], presented at the International Symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (ISHEART) in 2014, Design Au-
tomation and Test Conference in Europe (DATE) in 2015, Synthesis and System Inte-
gration of Mixed Information Technologies workshop (SASIMI) in 2015, and the IEEE
Symposium on Low-Power and High-Speed Chips (COOL Chips) in 2015 respectively.

5.1 Basic Partitioning Principles

All partitioning strategies are based on two principal characteristics: Timing and activa-
tion. Timing refers to the actual time a signal needs from input to output to reach a final
state. As body bias affects timing, it determines how much reverse body biasing can be
applied or how much forward body bias may be needed. Timing also concerns another
aspect which becomes more apparent when examining partitioning on the standard cell
level: if the application of body bias to one standard cell affects the timing of another
standard cell, they are connected. Take, for example, an N-Bit adder as depicted in figure

55

5 General Body Bias Domain Partitioning Approaches

FA FA FA

A[N] B[N] A[1] B[1] A[0] B[0]

COUTCOUTCOUT CIN CIN CIN

Z[N] Z[1] Z[0]

…

Figure 5.1: N-Bit adder comprised of N full-adder cells

5.1. The COut signal of the lower bit is connected to the CIn of the next higher bit’s
full-adder. The result Z[k] of bit k is dependent on the k− 1 bit’s COut and thus also of
every further lower bit’s full-adders and their inputs. This also means that, if the addition
in Fig. 5.1 should be sped up using body biasing, the whole component consisting of
multiple components should be treated as one entity.

Activation, on the other hand, refers to activation patterns at different points in time. For
example, if it can be determined that when component A is used, component B is always
unused, it might make sense to put those two components into different BBDs.
The goal of each method should be to use forward body bias only when and wherever it is
needed and to apply reverse body bias as broadly as timing allows.

5.2 Core-Grained Body Biasing

Core-grained body biasing is the most straightforward application in regard to partition
granularity. A core denotes one functionally independent entity, i.e., a component which
can operate independently once connected to the infrastructure required to execute its
function, such as a bus, and once it has been able to receive the required data for execution.
In GPCPUs, the actual CPU core plus required caches and its interconnect hardware
would constitute such a core. In regard to DRPs, the whole DRP including IO controller,
execution control data, and context memory represent a core. Furthermore, a core has
only one clock domain. Thus, the characterizing aspect of core-grained body biasing is,
that body biases have to be chosen in a way that all contained components can operate at a
specified operating condition given as supply voltage VDD and maximum clock frequency
Fmax. An obvious advantage is the reduced complexity of only one body bias domain.
However, the applicability of reverse body biasing is limited to rare cases where only paths
with positive timing slack are utilized. Furthermore, core-grained body biasing results
in large leakage penalties as all components within a core, irrespective of necessity, are
forward biased. As outlined in in the paragraph on leakage and its relationship with body
biasing (2.1.2.2), this is limiting the application of forward body bias. With core-grained

56

5.2 Core-Grained Body Biasing

body biasing, the threshold where forward body biasing becomes prohibitive, i.e., where
supply voltage scaling is more efficient, is rather low.

In core-grained body bias, body bias domain partitioning is not required, as the core itself
constitutes the body bias domain. Thus, to use body biasing, only the body bias voltage
VBB has to be computed, from which then the actual body potentials VBP and VBN are
computed (see 2.1.2.4).

In DRPs, this means that the body bias has to be set according to the most timing critical
operation conducted during the execution of an application in all of its PEs, controllers
or other hardware components. Thus, the following algorithm is used for a given supply
voltage VDD, maximum clock frequency Fmax and application A = {a1 · · ·aZ} to find the
minimal global VBB,core which does not violate timing:
Require: VDD,Fmax,V B,C
Ensure: VBB,core is the minimal VBB not violating timing

1: tclk← F−1
max

2: VBB,core←min(V B)
3: for all c ∈C do
4: for all a ∈ A do
5: timingViolation← false
6: for VBB,c←VBB,core; VBB,c ≤max(V B); VBB,c← nextV BB(VBB,c) do
7: if CD(core,VDD,VBB,c,a)≤ tclk then
8: breakLoop
9: else

10: if VBB,c == max(V B) then
11: timingViolation← true
12: end if
13: end if
14: end for
15: if timingViolation == true then
16: Fail
17: end if
18: if VBB,c >VBB,core then
19: VBB,core←VBB,c

20: end if
21: end for
22: end for

with VBB,maxRBB the maximum available reverse body bias. First, in line 2 VBB,core is set
to maximum reverse body bias, that is the numerically minimal value as determined by
min(V B), as the aim is to use as much reverse body bias and as little forward body bias as
possible. Then, in lines 3 and 4, the algorithm iterates over all components c of C and all
operations a of A. In line 5, a timing violation flag is declared, first assumed to be false.
For each components’ operations, the component timing CD is then checked at a body bias

57

5 General Body Bias Domain Partitioning Approaches

Coreà?
MEMT

max -0.3V

MEMB
max -0.3V

PE
max
0.8V

PE
max
1.3V

PE
max

-0.3V

PE
max

-0.3V

PE
max
0.5V

PE
max
0.4V

PE
max
0.3V

PE
max
0.2V

PE
max
0.8V

PE
max
1.3V

PE
max

-0.3V

PE
max

-0.3V

PE
max
0.5V

PE
max
0.4V

PE
max
0.3V

PE
max
0.2V

R
ec

on
f.

C
on

tro
lle

r
m

ax
-0

.3
V

TC
C

-0
.3

V
C

S
C

-0
.3

V

IO
 C

ontroller
m

ax -0.3V

Coreà1.3V
MEMT

MEMB

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

R
ec

on
f.

C
on

tro
lle

r
TC

C
C

S
C

IO
 C

ontroller

Figure 5.2: Core-grained body bias determination for a 4× 4 DRP and maximum body bias per
component incurred by the executed operations already determined

of VBB,core. If once one previous operation of any component caused VBB,core to be set at
any body bias greater than maximum reverse body bias, a body bias less than the VBB,core

in the current iteration cannot be chosen without violating timing. However, if in line 7 the
components’ timing for the given operation is less than the clock period tclk, timing is met.
Thus, in line 8 the loop is broken, and the next operation a or the next component c can be
examined. If, however, the timing is not met, first it has to be verified if the timing for the
present component and operation can be met at all by checking if the current body bias
VBB,c is less than the maximum available forward body bias. If it is, the next higher VBB

will be used to see if the timing is met. If it is not, timing cannot be met and the algorithm
fails in line 16. If the algorithm hasn’t failed yet, whether timing has been met yet or not,
if VBB,c is greater than the global core body bias VBB,core, it should be updated accordingly
in line 19. Once the algorithm iterated through all components and its operations without
failing, the global body bias VBB,core applied to the entire core is determined.

Fig. 5.2 visualizes the principle function of this algorithm. The left core depicts a DRP
with maximal incurred body bias per component already determined (usually done in lines
4-7) for demonstration purposes. The goal of the entire algorithm is to find the most timing
critical path and thus also the greatest body bias required in the entire core. In this example,
the greatest body bias is a VBB of 1.3V in the 2nd PE (counting from left to right, top to
bottom) and in the 10th PE. Therefore, the entire core is assigned a body bias of 1.3V
forward body bias (Fig. 5.2 right). However, as stated above, only two PEs need such
strong forward body bias. This saving potential is leveraged using the following body
biasing approaches.

58

5.3 Coarse-Grained Body Biasing

��

����

����

����

����

����

����

����

����

��
�
���
�

��
�
�� �

�
�
�
�
�
��
�
��
�
�
�
����

�
�
��

�
�

���
�� ��

�
��
�
�
�
��
��
�
�
�
�
�
�
��
�
�

�����������
��������

�����������
��������

�����������
��������

Figure 5.3: Operation dependent timing slack for STMicro’s 28nm UTBB-FDSOI LVT flavor at
supply voltages 0.6V , 0.8V and 1.0V and the LP corner, reaching clock frequencies of 274MHz,
500MHz and 704MHz without forward body biasing accordingly

5.3 Coarse-Grained Body Biasing

Coarse-grained body biasing is an evolution of core-grained body biasing by allowing
much more locally focussed biasing. One of the characterizing aspects of coarse-grained
body biasing is that, similar to core-grained body biasing, the components within one
body bias domain must be able to execute the intended function with the required body
bias applied. Thus, while components might depend on other components in different
body bias domains to perform their function, timing dependencies must be restricted to
the body bias domain, i.e. cross-domain timing dependencies are excluded.

In case of DRPs, an intuitive partitioning into body bias domains which observes this
definition is to put each PE or groups of several PEs in one body bias domain. While
a single PE or a group of PEs depends on additional functionality such as an execution
controller to supply a context pointer, the actual functionality implemented in the PEs will
be executed correctly if, under a given body bias, all used timing paths observe timing
constraints. For this general definition, PEs are assumed to communicate via clocked
registers. Chaining of several PEs to form a larger combinatorial circuit is omitted as well
but will be treated as a special case below.

Like with core-grained body biasing, independent of the corner, leakage should be
minimized by using only as much forward body bias as absolutely necessary. With the
additional degree of freedom of coarse-grained body bias to have different body biases for

59

5 General Body Bias Domain Partitioning Approaches

����

����

����

��

����

����

����

����

��
�
���
�

��
�
�� �

�
�
�
�
�
��
�
��
�
�
�
����

�
�
��

�
�

���
�� ��

�
��
�
�
�
��
��
�
�
�
�
�
�
��
�
�

�����������
��������

�����������
��������

�����������
��������

Figure 5.4: Operation dependent timing slack for STMicro’s 28nm UTBB-FDSOI LVT flavor at
supply voltages 0.6V , 0.8V and 1.0V and the HP corner, reaching clock frequencies of 450MHz,
581MHz and 871MHz with forward body biasing accordingly

each domain, the usage of reverse body bias should be maximized while forward body
bias should be applied only wherever and only by as much as absolutely necessary.

The actual bias per domain, i.e., PE in the specific case of coarse-grained body biasing in
DRPs, is determined based on application dependent timing slack. This timing slack is
dependent on the corner the PE is being used in, thus Fig. 5.3 depicts the timing slack per
ALU operation given for the LP corner, while Fig. 5.4. depicts the same for the HP corner.
As can be seen, the HP corner targets much higher clock frequencies but then also incurs
negative slack for some operations. Thus, positive slack can be used to apply reverse body
biasing, while negative slack has to be compensated for using forward body biasing. This
requires a relationship between body biasing and timing slack.

For this purpose, the function RSF (Required Slack Function) and function PSF (Per
operation Slack Function) are introduced. RSF is defined per supply voltage VDD and
clock frequency F and returns per body bias voltage VBB the required slack in nanoseconds
that is required or can be compensated. For reverse body bias, positive timing slack is
required which can then be exploited to reduce leakage currents, while negative timing
slack, i.e. timing violations require forward body bias to speed-up the affected circuits and
thus compensate for negative slack at the cost of increased leakage currents. PSF , on the
other hand, takes the data plotted in Figs. 5.3 and 5.4 and returns per operation OP and
clock frequency F the timing slack in nanoseconds.

60

5.3 Coarse-Grained Body Biasing

����

��

����

��

����

��

����

��

����

��

���� �� ���� ���� ���� ���� �� ����

��
�
��
�
�

��
�
�� �

�
�
�
�
�
��
�
��
�
�
�
��
��

�
�
��

�
�
��
�
�� ��

�
��
�
�
�
��
�
�

�������

��

�����������
��������

�����������
��������

�����������
��������

�����������
��������

Figure 5.5: RSF and PSF functions for corners LP and HP at a supply voltage of 0.6V .

Fig. 5.5 exemplarily shows both RSF and PSF for the LP and HP corners and their respec-
tive clock frequencies at a supply voltage of VDD = 0.6V . To find the appropriate body bias
per PE and application, the operations executed on each PE have to be examined, and the
most timing critical operation executed, i.e., the operation with the smallest PSF opcrit , in
the course of the application is noted. For this operation opcrit the intersection between
y = PSF(opcrit) and RSF for a given corner is searched and the body bias required to avoid
timing problems is found. Graphically put, for all used operations of a PE in an application,
PSF has to be above RSF of the same corner. If this condition is met, timing is not violated.

This leads to the following algorithm which is executed for each PE’s application mapping
as visualized in Fig. 5.6:
Require: A per PE, V B, RSF and PSF for a given corner
Ensure: VBB,PE is assigned the leakage minimal body bias not violating timing or fail

1: for all PE do
2: tminslack← ∞

3: for all a ∈ APE do
4: if PSF(a)< tminslack then
5: tminslack← PSF(a)
6: end if

61

5 General Body Bias Domain Partitioning Approaches

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

PE
OPs

Context0:
add PE00, MEMT0, MEMT1
and PE33, MEMB2, MEMB3
…

Context1:
sri PE00, PE01, 2
sli PE33, PE02, 2
…

…
ContextN:

mul PE00, MEMT0, MEMT1
xor PE33, MEMB2, MEMB3

Figure 5.6: Per PE determination of the appropriate body bias using the application’s instructions
executed on the PE in question

7: end for
8: VBB,PE ← solve(RSF(X)≤ tminslack,X)
9: if RSF(min(V B))< tminslack then

10: VBB,PE ←min(V B)
11: end if
12: if RSF(max(V B))> tminslack then
13: Fail
14: end if
15: end for
where APE denotes the operations executed in a specific PE during the execution of appli-
cation A and V B the set of available body biases. For each PE, in lines 1 to 7, the algorithm
then searches the operation with the minimal slack and stores the actual minimal timing
slack in tminslack. Using this minimal timing slack, the appropriate body bias is searched by
computing the intersection of RSF and y = PSF(opcrit) = tminslack in line 8. Lines 9 to 11
then check if the executed operations are timing uncritical enough for the strongest reverse
body bias to be applied or if the PE is unused altogether (tminslack = ∞). In this case, the
strongest reverse body bias available (VBB = min(V B)) will be supplied. If, however, no
body bias could compensate for tminslack < 0, which is the case when tminslack is smaller, i.e.,
more negative than RSF(max(V B)), then the algorithm should fail (lines 12-14). In sim-
ple terms, RSF(max(V B)) denotes the maximum negative slack that can be compensated
when using the maximum available forward body bias (max(V B)).

5.4 Fine-Grained Body Biasing

Fine-grained body biasing is another evolution on core- and coarse-grained body biasing.
Its principal difference is that with fine-grained body biasing, cross-domain timing
dependencies are allowed. This enables designs to be partitioned in virtually every

62

5.4 Fine-Grained Body Biasing

1 module ALU (
2 INPUT_A ,
3 INPUT_B ,
4 INPUT_CARRY ,
5 ALU_OP ,
6 ALU_OUT
7);
8 ...
9

10 always @(*) begin
11 case(ALU_OP)
12 ‘ADD : ALU_OUT = INPUT_A + INPUT_B + INPUT_CARRY;
13 ‘MULT : ALU_OUT = INPUT_A * INPUT_B;
14 ...
15 endcase
16 end
17

18 endmodule

Figure 5.7: Example ALU before pre-partitioning into subcomponents with all functionality real-
ized in one verilog module

possible way. With coarse-grained body biasing, the domain size is limited by the
smallest timing independent components, i.e. in the case of DRPs the FU i.e., ALU,
register-file etc. Fine-grained body biasing allows much smaller body bias domains as it
does not restrict timing paths to a single domain. Thus, domains down to a single standard
cell are conceivable, although they are not sensible in reality. The limiting problem
with fine-grained body biasing is pre-partitioning and the thereby arising complexity.
pre-partitioning defines the partitioning step of a component, i.e., a verilog module, into
sub-components that form the original component. This is critical to make full use of the
cross-domain resource sharing constraint elimination. While finer pre-partitionings into
subcomponents possibly result in better domain partitionings, they are ultimately limited
by the size of the partitioning problem. As explained in section 4.3, the partitioning
problem quickly becomes too big to be solvable. This pre-partitioning is done by hand on
the RTL into finer functional subcomponents. e.g., an ALU is split up by the functions it
implements where each function constitutes a new subcomponent.

Consider the minimal verilog HDL example of an ALU in Fig. 5.7. In lines 12 and 13,
addition and multiplication functionality is directly invoked from within the ALU mod-
ule. Once the ALU is synthesized, the different functionality it implements can no longer
be distinguished in the mapped netlist. Thus, to enable partitioning into body bias do-
mains beyond the ALU module, it is split up into subcomponents. This can be done by
identifying the different functions implemented or inferred in the HDL. In case of Fig.
5.7, there is an addition and a multiplication using data inputs INPUT_A, INPUT_B and
INPUT_CARRY, and a multiplexer outputting the respective result depending on the value of
ALU_OP. Each of these functionalities is then outsourced into separate HDL modules. Fig.

63

5 General Body Bias Domain Partitioning Approaches

1 module ALU (INPUT_A , INPUT_B , INPUT_CARRY , ALU_OP ,
2 ALU_OUT);
3 ...
4

5 wire [‘WORD_SIZE -1:0] ADD_OUT;
6 ADD add0 (.A(INPUT_A), .B(INPUT_B), .C(INPUT_CARRY),
7 .OUT(ADD_OUT));
8

9 wire [‘WORD_SIZE -1:0] MULT_OUT;
10 MULT mult0 (.A(INPUT_A), .B(INPUT_B), .C(INPUT_CARRY),
11 .OUT(MULT_OUT));
12 ...
13 ALU_MUX mux (.ADD_OUT(ADD_OUT), .MULT_OUT(MULT_OUT), ...,
14 .ALU_OP(ALU_OP), .ALU_OUT(ALU_OUT));
15

16 endmodule
17

18 module MULT (A, B, C, OUT);
19 ...
20 assign OUT = A * B;
21 endmodule
22

23 module ADD (A, B, C, OUT);
24 ...
25 assign OUT = A + B + C;
26 endmodule
27 ...
28 module ALU_MUX (ADD_OUT , MULT_OUT , ..., ALU_OP , ALU_OUT);
29 ...
30 endmodule

Figure 5.8: Example ALU RTL pre-partitioning of Fig. 5.7 into subcomponents.

64

5.4 Fine-Grained Body Biasing

Liberty Static Timing
Analysis

Component
Delays

Component
Netlist SPICE

Models
Circuit Level
Simulation

Component
Leakage

Synthesis

Component
Netlist

Component
HDL

Figure 5.9: Characterization flow of pre-partitioned (sub)components

5.8 exemplarily demonstrates this outsourcing. New modules ADD, MULT and ALU_MUX are
introduced and instantiated in place of the behavioral description found in Fig. 5.7. These
(sub)components then can be synthesized and characterized individually to determine at-
tributes, such as their timing and leakage. This process is illustrated in Fig. 5.9.
Each of these (sub)components is first synthesized using standard cell information
provided by the foundry or the standard cell provider (labeled Liberty, format may differ).
This yields a component netlist, i.e., a mapped standard cell netlist which is then used
in a static timing analysis tool to determine its timings, i.e., the delays incurred by
using the component. Furthermore, the mapped netlist is converted to a SPICE netlist
to determine body bias dependent attributes such as leakage. While foundries began to
include additional characterization points with body biases, it usually covers only between
one and a few body biases. Thus, to cover a whole range of body biases, this additional
step is required. Additional body bias dependent timing analysis is not conducted, as
timings are scaled merely using normalized delay functions such as in section 2.1.2.4 Fig.
2.5.

The pre-partitioning and the characterization steps thus result in a detailed description of a
component to be partitioned into body bias domains as well as detailed timing and leakage
information for all the subcomponents. Using this information, body bias domain parti-
tionings can be conducted. For this initial partitioning it is assumed that all components
and all their timing paths have to be timing violation free, i.e., all components have to be
usable. This is a constraint which is later on relaxed to require only those paths that are
being used to be free of timing violations.
To approach the partitioning algorithmically, the set of timing paths T P introduced in chap-
ter 4 has to be converted to a timing graph. This is done by creating a graph per timing
path t pi and then merging all such graphs with shared nodes. This is done by eliminating
duplicate vertices, retaining one shared vertex and redirecting all edges which previously
pointed from or to their respective duplicates from or to the now shared vertex as illustrated
in Fig. 5.10.
Using this timing graph T G, the optimal partitioning into kbest body bias domains can be
computed. In this step, the timings of (sub-)components are individually examined and
the body bias for the target timing constraint tclk computed. Since V B is a discrete set
of the body bias voltages available, multiple (sub)components may be assigned the same
body bias. These components are then merged to form a domain candidate. All these kbest
domain candidates form their own body bias domain with the optimal body bias, that is,

65

5 General Body Bias Domain Partitioning Approaches

ADD MULT

ALU_
MUX

ALU_
MUX

ADD MULT

ALU_
MUX

OP_
ISO

OP_
ISO

OP_
ISO

Figure 5.10: Conversion of the timing paths of example ALU of Fig. 5.8 to a timing graph with
added operand isolation OP_ISO for better illustration.

timing is just met, applied. This, however, also raises the question how the optimal body
bias assignment is found. In previous works such as [99] and [101] which build upon the
latter, this is done by exhaustive search. As multiple body bias assignments on a timing
path may observe timing constraints and thus are valid assignments, each valid assignment
needs to be evaluated for leakage1. Then the leakage minimal assignment is chosen.
The following algorithm computes the kbest domain candidates and their optimal body bias
assignment:

1: for all G ∈ T G do
2: minLeak← ∞, best← null
3: maxT P← searchCriticalTimingPath(G,VBB = 0V)
4: for all curV BA ∈ generateV BA(V B,maxT P) do
5: if computeTiming(curV BA)≤ tclk then
6: leak← computeLeakage(curV BA)
7: if leak < minLeak then
8: minLeak← leak
9: best← curV BA

10: end if
11: end if
12: end for
13: V BAG←V BAG∪best
14: end for
15: V BAG← mergeEqualVBB(V BAG)

For each timing graph G in T G, the minimal leakage body bias assignment best is com-
puted. The body bias computation is based on the critical timing path in G, determined
in line 3. Body bias assignments are defined as a tuple V BA = (CDC,VBB,DC), with CDC

as the set of components in the particular domain candidate and VBB,DC as the assigned
body bias. The tuple incurring the least leakage while maintaining the timing constraint
is then computed in lines 4 to 12 by iterating over all combinations of available body

1In chapter 6, an algorithm with polynomial runtime will be introduced.

66

5.4 Fine-Grained Body Biasing

biases V B applied to the critical timing path in G maxT P. Thus, every conceivable body
bias assignment curV BA is checked. Of course, it only makes sense to proceed if this
combination does not violate timing, thus, in line 5, the resulting timing is checked against
timing constraint tclk. If the combination does not violate timing and is thus valid, the
resulting leakage for the combination is computed (line 6). If leakage has been reduced
over previous iterations, then minimum leakage combination best with leakage minLeak is
updated accordingly in lines 8 and 9. Once all valid combinations have been considered,
the best body bias assignment best for maxT P is merged with the set of domain candidates
V BA (line 13). Once for all G ∈ T G the best body bias assignment has been found, V BA
entries V BAi ∈ V BA and V BA j ∈ V BA are merged to a new tuple (CDC,i ∪CDC, j,VBB), if
VBB of V BAi and V BA j are equal (line 15). Thus, after the completion of this algorithm,
kbest = |V BA| has been computed.

Usually, kbest is far bigger than the number of body bias domain k into which the hardware
developer intends to partition a given design. Therefore, leakage increase over the optimal
partitioning of kbest body bias domains or domain candidates is traded to compute a parti-
tioning with only k body bias domains. In the following subsection, a general approach to
find the leakage minimal distribution of kbest domain candidates into k body bias domains
will be introduced.

5.4.1 Combinatorial k-Subset Approach

In the previous steps, the leakage optimal solution of kbest domain candidates has been
computed. In most cases, however, a partitioning into kbest body bias domains would result
in a prohibitive overhead. To reduce the incurred overheads to a tolerable minimum, kbest
domain candidates are then merged into k body bias domains in such a fashion, that the
leakage increase over the optimal partitioning into kbest domain candidates is minimal. To
determine the leakage of a given partitioning into body bias domains, a two-step method is
employed:

1. For a partitioning into k domains, determine the leakage optimal body bias assign-
ment while maintaining timing constraints.

2. For this partitioning where each domain is assigned a body bias, compute the in-
curred leakage.

As the leakage optimal body bias assignment can only be known once a partitioning has
been determined, an algorithm aiming to find the leakage optimal solution has to con-
sider all possible combinations. Formally, the problem is thus approached by a method
termed combinatorial k-subset approach. Using combinatoric methods, all possible com-
binations of kbest domain candidates into k body bias domains, i.e., subsets of the original
kbest domain candidates DCS = {DC1 · · ·DCkbest} are computed. Each of these combination
c = (sub1 · · ·subk) is a k-tuple of non-empty subsets subi where

k
∪

i=1
subi = δ = {DC1 · · ·DCkbest} (5.1)

67

5 General Body Bias Domain Partitioning Approaches

with the entire design δ which shall be comprised of k body bias domains, which in turn
consist of domain candidates DCi and

k
∀

i=1

k
∀

j=1, j 6=i
subi∩ sub j = /0 (5.2)

dictating two central partitioning requirements. Eq. 5.1 requires the whole design δ

to be partitioned and Eq. 5.2 requiring an overlap free, i.e., physically manufacturable
partitioning.

Together with the two-stepped evaluation approach, this leads to the following algorithm:
Require: Domain candidates DCS = (DC1 · · ·DCkbest), available body biases V B, satisfi-

able constraint tclk
Ensure: Partitioning c f inal is leakage minimal and obeys timing constraint tclk

1: c f inal ← /0

2: minLeak← ∞

3: for all c ∈ generateSubSet(DCS,k) do
4: V BA← assignOptimalBodyBias(c,V B, tclk)
5: leak← computeLeakage(c,V BA)
6: if leak < minLeak then
7: minLeak← leak
8: c f inal ← c
9: end if

10: end for
In line 3, a combinatoric generator function is used to generate all combinations, i.e.,
partitioning of kbest domain candidates in DCS into k non-empty subsets over which this
for-loop iterates. Each of these combinations is then evaluated using the above-described
two-step process. First, the leakage optimal body bias assignment for combination c is
determined. This can be done as in section 5.4, using an exhaustive search, or by using
an algorithm as introduced in the following chapter 6. This optimal body bias assignment
is defined as the assignment of a body bias to each domain which results in the smallest
leakage and still observes timing constraint tclk (line 4). Then, leakage can be computed
using the partitioning c and the body bias assignment V BA in line 5. Lines 6 to 9 then
make sure that only the partitioning with the smallest resulting leakage remains in c f inal .
Additional checks have been omitted with the requirement that the timing constraint must
be reachable using one of the body biases in V B.

Fig. 5.11 visualizes the algorithms’ principle of function. First, there are four domain
candidates (kbest) with their optimal body bias assigned, i.e., at this body bias, as much
reverse body bias as possible and as little as necessary forward body bias is applied, with-
out violating timing. Obviously, these domain candidates do not share a common body
bias, in fact, all domains have different body biases. Thus, a tradeoff is sought by trying
all combinations of these four domain candidates into two body bias domains. Fig. 5.11
gives an example for the evaluation of one such combination. To avoid timing violations,

68

5.5 Discussion

Merge

-0.3V 1.3V -0.1V 1.1V

-0.1V 1.3V

Domain Candidates

Body Bias Domains
(k=2)

Figure 5.11: Visualization of the combinatorial k-subset approach for kbest = 4 and a target k = 2

the body bias has to be risen to the maximum body bias of all domain candidates that have
been grouped together. For example, when grouping the blue dots domain candidate with
the be.g., domain candidate, a minimum of VBB =−0.1V has to be applied, and similarly,
for the orange-red combination, a minimum of VBB = 1.3V has to be applied. Such com-
bination with the aforementioned body bias assignments is then evaluated for leakage. If
it is the combination with the lowest leakage up till now, it is stored as prospective mini-
mal leakage combination with the appropriate assignment. This step is repeated until all
combinations have been evaluated.

5.5 Discussion

Depending on the component that shall be partitioned, the approaches introduced in this
chapter has varying degrees of applicability and effect. It is always a question of temporal
and spatial focus. If, e.g., the design in question is known to have balanced timing paths,
i.e., no major differences in timing criticality and if all components are used at the same
time, core-grained body biasing is an easy and straightforward approach to utilize one of
FDSOI’s key features: body biasing. This, however, is a rather strong assumption and in
reality this being rarely the case, the penalties are severe.

In the case of DRPs, coarse-grained body biasing seems like a great match and indeed, it
combines the simplicity of core-grained body bias with a much more local focus of body
bias. However, especially in the case of DRPs, it is known in advance that only a couple of
the supplied resources per PE are used per application. Among those PEs, the utilization
also varies. While coarse-grained body bias in the way presented above, i.e., one body

69

5 General Body Bias Domain Partitioning Approaches

bias domain per PE, is able to make use of the varying utilization, it always has to settle
for the most critical path in use. With DRPs often consisting of large numbers of PEs,
there is a lot unused potential that can be leveraged using more fine-grained approaches.

Fine-grained body biasing answers this demand by allowing virtually any granularity.
However, the need for pre-partitioning by hand makes this partitioning approach very
labor-intensive. Even for the examined DRP design, considerable efforts are required
to enable the proposed analysis and partitioning. While one might argue, that complex
components also require significant effort for physical design, increased design complex-
ity also directly translates into significantly higher effort to pre-partition the design into
domains candidates and also to me.g., the latter into body bias domains.

All efforts can be justified if the benefits outwe.g., the investment. However, ultimately all
of the above-introduced approaches share another drawback: to analyze the mapped netlist
of the design, strong optimizations, especially those that destroy the design hierarchy,
cannot be used. If e.g., a timing analysis shall run on a PE to determine operation depen-
dent slack of the ALU, the ALU needs to be clearly defined. Similarly, if components for
fine-grained body biasing are pre-partitioned and subsequently merged, this also disables
or severely limits opportunities for resource sharing or for that matter any optimization
that requires taking the whole design into account, e.g., logical optimizations.

In sum, while leaving room for improvement, the three proposed approaches constitute
concrete partitioning approaches, describing how to partition, what should be put into such
a partition and what can be gained by that. Still, it falls short of the ability to analyze and
partition highly optimized netlists. This shortcoming, however, can only be solved on the
standard cell level for which the following chapter will propose a partitioning approach.

70

6 Standard-Cell-Grained Body Biasing and
Automization through Domain Candidate
Exploration

Highly optimized netlists represent a particular challenge as they reveal barely any
structure that allows to draw conclusions regarding the central body bias partitioning
principle of activation. Related to activation, timing poses another challenge, as the timing
of certain paths determined by activation is required to know what to bias (activation),
when (activation) and by how much (timing of the active path). While the results of highly
optimized synthesis makes the initial situation slightly better, i.e., smaller resulting circuit
size usually also means smaller leakage, it also introduces increased complexity at many
other points. First of all, there needs to be a grouping mechanism that clusters standard
cells to form domain candidates. In the previous sections 4.3 and 5.4.1, it has been
shown that the computational complexity of the merging algorithm, e.g., the presented
combinatoric k-subset approach, does not allow for standard-cell granularity due to its
factorial growth in runtime. Since there is no other way around this issue, it is imperative
to find methods to keep the number of domain candidates as low as possible. However,
even accurately determining domain candidates in highly optimized netlists is a challenge,
as synthesis optimizations seek to share resources wherever possible. With physical
partitioning not allowing overlapping body bias domains, a way to determine unique
physical partitionings is required. Even after having determined domain candidates, to
be able to merge them, optimal body bias assignments across body bias domains are
necessary to compute leakage and thus determine the optimal partitioning with optimal
body bias assignments.

In this chapter, algorithms for the mentioned problems are proposed and discussed. All
presented algorithms combined form the so-called Domain Candidate Exploration (DCE),
which has been presented at the 53rd Design Automation Conference (DAC) in 2016 as
publication [102], on which this chapter is also based on.

6.1 Methodology and Preliminaries

Again, a design δ with pipeline stages δ1 · · ·δk is assumed, where each pipeline stage is
evaluated individually as the timing constraint has to be met within each stage. Addition-
ally, memory components M1 · · ·Mt are explicitly considered as their activation, or rather
usage patterns cannot be inferred without user-defined constraints. Thus, such components
are declared with specified usage constraints as shall be later elaborated. For simplicity,

71

6 Standard-Cell-Grained Body Biasing and Automization through Domain Candidate Exploration

one concrete δk will be treated from here on, with a given VDD, voltage regulators to supply
J = |V B| body biases and a minimal clock period of tclk. Proceeding from these assump-
tions, three corners are defined in accordance with section 4.4:

1. tmax,RBB minimizing leakage currents at the cost of reduced clock frequency

2. tmax,LP = tclk unchanged clock period while optimizing leakage wherever possible

3. tmax,HP boosting attainable clock frequency using strong forward body biasing while
minimizing leakage overheads

All the data required for the subsequent partitioning steps are obtained from technology-
specific liberty files and SPICE simulations. The liberty files provide virtually all
information for each standard cell, such as state dependent leakage, timing based on input
transition and output capacitance, logical function per output pin, and the like. The SPICE
simulations, on the other hand introduce the body bias dependent factors, such as its effect
on delays (Fig. 2.5, p. 16) or leakage (Fig. 2.4, p. 15).

Nevertheless, liberty files are not supplied directly but first processed to contain simpler
timing information from which worst-case timings are computed. In fully annotated liberty
files, for each standard cell and each of its output pins, timings are given as input state
dependent tables separately for rise and fall times. While this allows to compute very
exact timings using fully-fledged, sophisticated timing solutions, in a proof of concept
implementation this wealth of information cannot be leveraged. Thus, each standard cell’s
timing information is simplified to contain only one timing table per output pin. This timing
table then contains the worst-case timings over all input states and rise as well as fall times.
The same is done for leakage in case the liberty file contained state dependent leakage. In
this case, of all states, always the worst-case leakage is used. The liberty files processed in
this manner are then output together with all required information as JSON files, allowing
straightforward object mapping. Similarly, using ring oscillator simulations, the effect of
body bias on timings is measured by computing the normalized effect delay when applying
forward or reverse body bias. Furthermore, the same is done for leakage through DC
simulation of all available standard cells from which an average is then computed1. Delay
and leakage values are normalized using their respective zero-bias values. Both of these
measures are computed for each VDD used. Temperature has always been set to the same
temperature the utilized standard cell libraries were characterized at. Both measures are
then also output as JSON files.

6.2 Determining Activation

To determine the activation of standard cells, that is when each respective standard cell is
being utilized, the evaluated design δk is parsed and represented as a graph G as visualized

1Strictly speaking, it is not necessary to average leakage results over all standard cells, as body bias affects
all transistors in the same manner and intensity.

72

6.2 Determining Activation

I[0] I[x-s-1] I[x-s] I[x]... ...

Data input Path selectors S[s]

O[0] O[y]...

U... U...

U... U...

...

...
.

Graph nodes
representing

standard cells

Node input

Node output

Data output

..

Figure 6.1: General structure of the graph used in DCE to analyze timing and determine activation

in Fig. 6.1, with input nodes I[0] · · · I[x], where s of these input nodes S[s] ⊂ I[x] serve as
so-called path selectors. Additionally, to those two types of input nodes, there are output
nodes O[0] · · ·O[y] as well as standard cell nodes U between input nodes I[x] and O[y]
realizing the actual function. Path selectors are special input nodes such as e.g., the opcode
input of ALUs, determining the function applied on I[0] · · · I[x− s] before outputting the
result via O[0] · · ·O[y].
First, the graph G is generated by parsing the mapped verilog netlist. Verilog netlist parsing
is realized using the EDAUtils verilog parser [103]. The generated netlist structure is then
traversed from inputs top-down through standard cells and their connections to each other
down to output. Thereby, the graph structure G is built. After the graph has been built,
it is annotated with standard cell information obtained from the liberty to JSON conversion.

To determine at what time, which standard cells are used for a given path selector, logi-
cal solving is employed. The principal idea is to first generate a boolean representation
for each output node by traversing the realizing nodes top-down and expanding the logi-
cal equations using the cells’ inputs to expand each standard cell outputs’ equations. The
thereby expanded output equations are then used as inputs of the cells further down the
topology. To facilitate this expansion and the subsequent computations on boolean equa-
tions, a data structure which shall be called logic atom (LA) from here on is introduced.

73

6 Standard-Cell-Grained Body Biasing and Automization through Domain Candidate Exploration

There are two types of atoms: atomic atoms and composite atoms or molecules to stick
with the analogy. Atomic atoms either consist of a boolean value

α(TRUE|FALSE) (6.1)

which is either TRUE or FALSE (Eq. 6.1) or

α(VAR) (6.2)

a variable name VAR (Eq. 6.2). Using such atomic atoms, composite atoms consisting of
several atoms and operations can be realized. Thus

α(α · · ·α,(¬,∧,∨)) (6.3)

generally defines a composite atom as a two-tuple, consisting of a list of one or more
atoms, atomic or composite, and an operation using which the list of atoms is combined.
Valid operations are either negation ¬ which takes only a single atom as argument, logical
and ∧ as well as logical or ∨. The latter two take an arbitrary number of atoms greater or
equal than two. Using this construct, any logical function can be realized. As an example,
consider a 3-Input NAND as demonstrated in Fig. 6.2.

Z = α(α(α(A),¬),α(α(B),¬),α(α(C),¬),∨)

Figure 6.2: Exemplary LA of 3-Input NAND with inputs A, B and C, as well as the resulting output
Z.

To be able to work on standard cells, their logical function is first parsed and converted into
a logic atom representation. Thus, the following algorithm converts the logical function
string of the liberty library into a logic atom:
Require: Set of used standard cells usedStdCells where each standard cell has a logical

function string in DNF per output pin
Ensure: Each standard cell has a map, associating each output pin with the equivalent

logic atom representation of its implemented function
1: for all U ∈ usedStdCells do
2: U.out putMap← createMap(out putPin← LA)
3: for all O ∈U.out putPins do
4: LA← parseFunctionString(O. f unctionString)
5: U.out putMap.put(O← LA)
6: end for
7: end for

Line 1 iterates over all standard cells used in the graph G while for each standard cell,
a map associating each output pin with the corresponding logic function, represented as
logic atom is generated (lines 2-6). This is done by iterating over all output pins and
generating a logic atom representation of the implemented function (lines 3-4). This

74

6.2 Determining Activation

is done by parsing the logical function string obtained through the annotated liberty
information. The parser that is written for DCE requires all function strings to be in
disjunctive normal form (DNF). The thereby obtained logic atom LA is then stored in the
map U.out putMap of standard cell U , associated with logic atoms LA (line 5) as one
standard cell may have multiple outputs.

With logic atom representations of the standard cells, the boolean equations for all output
pins can be computed. To do this, the graph is traversed top-down, starting with the input
nodes as denoted in the following algorithm:
Require: Input atoms I[x] of G, logic atom representation of standard cells
Ensure: Of all nodes in G, their LAs are expanded

1: worklist← I[x]
2: while worklist not empty do
3: x← removeFirst(worklist)
4: for all v ∈ x.inputVar do
5: (U,O)← getInputCell(x.portMap,v)
6: l←U.out putMap.get(O)
7: x.atoms← substitute(x.atoms,v, l)
8: end for
9: worklist← worklist ∪ x.toNodes

10: end while

This expansion problem can be easily solved using a work list approach. The work list
is initialized with the input nodes I[x] which are atomic logic atoms realizing the input
variable names. As they are inputs themselves and not composite, they do not have the
inputVar attribute and only the vertices to which their edges connect are added to the work
list in line 9. If, however, the x which is removed from the work list in line (3) is a standard
cell, it has the inputVar attribute. inputVar is a list of all input pins the standard cell has,
internally represented as atomic variable logic atoms with the name of the corresponding
input pin. For all these inputs (line 4), the connecting node is determined via the current
standard cell x’s portmap and the current variable v. The function getInputCell then
retrieves the node as well as the responsible output pin from which the output is used as
input (line 5). Now, using the previously created output maps, the correct logic atom is
fetched by searching the out putMap of U for the logic atom of output pin O (line 6).
Line 7 then proceeds to the actual expansion step, where all occurrences of variable v
are substituted using the previously determined input logic atom. After iterating over all
input variables of the standard cells, the nodes reached by its outgoing edges are added to
the work list in line 9 to make sure all nodes are reached. After the algorithm completes,
the logical function of each output is then assigned as inputs to the nodes reached by the
outgoing edge of the standard cell output.

These boolean equations are then mathematical representations of the realizing function
with all input nodes the result may depend on, independent of the selected function. To
determine the standard cells involved in the realization of a certain function per output,

75

6 Standard-Cell-Grained Body Biasing and Automization through Domain Candidate Exploration

specified by path selector op = B0 · · ·Bs with B being a boolean value for S[0] · · ·S[s−
1] respectively, op is inserted into the boolean equations. This is done by replacing all
occurrences of S[0] · · ·S[s−1] with logic atoms representing their respective boolean value
in all output equations O[0] · · ·O[y]. Once this is done, the boolean equation can be reduced
to only those parts that realize the functionality of opcode op by solving the equation. With
actual input data I[0] · · · I[x−s−1] as unknown variables, this process only leaves the paths
and their respective logic function in the outputs’ equations that realize the functionality
specified by op. The following pseudo code describes this algorithm:
Require: Opcode selector S[s] = S[0] · · ·S[s−1]⊂ I[x], logic atom representations of O[y]
Ensure: For each O[y], only standard cells implementing the function of opcode remain

in E[O[y],opcode] while the bijection LA↔ GN is maintained
1: opcode[2width(S[s])]← generateOpSelArray(S[s])
2: for all o ∈ O[y] do
3: for all op ∈ opcode do
4: E[o,op]← clone(o)
5: for all B ∈ op do
6: origVarName← getVarNameByPos(S[s],op,B)
7: E[o,op]← substitute(E[o,op],origVarName,B)
8: end for
9: E[o,op]← solved(E[o,op])

10: end for
11: end for

Line 1 first creates an array of all possible opcodes. Should one be unused, the ensuing
process will just turn the output equation into a constant. Then, for all output equations o
of outputs O[y] and all operations op in the array of opcodes opcode, the output equations
are copied. One copy for each output equation and operation is strictly required, as the
following solving process is destructive, i.e., the data structure is irreversibly altered. With
a safe copy, the path selector variables S[0] · · ·S[s− 1] are replaced with actual boolean
values in E[o,op], the boolean equation for output o when executing operation op. To
do that, the opcode op is iterated bit by bit. To determine what should be replaced, the
position of B in op can be used, as this position corresponds to the index in the array of path
selector variables S[s] = S[0] · · ·S[s−1]. In this snippet of pseudocode, getVarNameByPos
returns the variable in S[s] specified by the index in op of B (line 6). With this known,
all occurrences of the original variable name origVarName are replaced in E[o,op] by B
(line 7). Once all path selectors are replaced with concrete boolean values, the equation is
solved in line 9. For this task, however, a commodity logic solver couldn’t be employed, as
all logic atoms have to maintain associated with a standard cell that physically realizes the
logic function. This is done using the following simple rules and the logic atom structures:

X ∧1⇒ X , X ∧0⇒ 0 α(X ,1,∧)⇒ α(X), α(X ,0,∧)⇒ α(0) (6.4)

X ∨1⇒ 1, X ∨0⇒ X α(X ,1,∨)⇒ α(1) α(X ,0,∨)⇒ α(X) (6.5)

¬1⇒ 0, ¬0⇒ 1 α(α(1),¬)⇒ α(0) α(α(0),¬)⇒ α(1) (6.6)

76

6.2 Determining Activation

Each rule is given as standard boolean representation (left) and in the encapsulating logic
atom representation used in DCE. Eq. 6.4 specifies the rules for logical and operations.
If any part of a boolean equation X is combined with boolean true, then the true value
may be removed without changing the equation. If the same is done with the boolean
value false, then the whole clause can be reduced to false as logical and requires all
operands to be true for the result to be not false. This condition is obviously no longer
possible and the clause can be reduced to false. In the case of logical or, the rules are
similar (Eq. 6.5). If any part X is combined in a logical or with the boolean true value,
the whole clause can be reduced to true as for the result of a logical or to be true, only
one expression needs to evaluate to true. Therefore, it is also not necessary to consider
the other expressions. When combining a part X with boolean false, the false value may
be eliminated as a result then solely depends on X . The most straightforward rule is, of
course, the negation rule specified in Eq. 6.6. When represented as logic atoms, however,
it reveals the inner workings of the solver. If a negation of a boolean value has not been
executed, the negation logic atom "wraps" the boolean value to be negated. Once the
negation is executed, i.e. true is inverted to false or vice versa, the wrapping atom realizing
the negation is discarded. For simplicity, the solver supports only these three operations as
specified in Eq. 6.4-6.6 and thus additionally requires all standard cells’ logic equations to
be in disjunctive normal form.

In a similar manner, blocks of inferred memories or, although not treated in this thesis,
possibly also SRAM can be analyzed for activation. This is done by simply treating parts
of the address like an opcode above. By doing so, the algorithm will determine which
memory cells can be reached for a given part of the address. For example, if the memory
should be partitioned into two domains or rather domain candidates at this stage, then the
highest address bit is defined as path selector, resulting in an opcode array with two entries
and two sets of output equations E[o,0] and E[o,1] respectively. This specification of the
path selector, however, has to be done explicitly by the developer as it strongly depends
on the usage profile of such components which cannot be determined by analysis of the
hardware component.

If the result for a given output and opcode is not constant, i.e., if the result of the solving
process is not true or false, the solver leaves the parts that determine the final result in
the resulting equation together. All other in this opcode unused parts are eliminated. The
parts that remain can still be associated with the standard cell that implements each part as
each logic atom is marked with its implementing standard cell. This provides a bijection
between logic atoms LA and graph nodes, i.e., standard cell nodes GN.

This bijection together with the solver results can now determine which standard cells are
used in each opcode. Thus, for each opcode, all standard cells used for the logic atoms in
the solved output equations are aggregated into sets indexed by opcode. This is described
in the following algorithm:
Require: Bijection IDstdcell : LA↔ GN

77

6 Standard-Cell-Grained Body Biasing and Automization through Domain Candidate Exploration

Ensure: Set A[s] contains active standard cells per opcode op
1: for all op ∈ opcode do
2: for all o ∈ O[y] do
3: for all a ∈ E[o,op] do
4: A[op]← A[op]∪ IDstdcell(a)
5: end for
6: end for
7: end for

For each opcode, all previously solved output equations are considered (lines 1-2). Then,
for each logic atom in the solved equations E[o,op], the realizing standard cell is identified
using the previously bijection, here used as function IDstdcell : LA→ GN. The thus identi-
fied standard cells are then merged in the set A[op]. In principle, this set is a first variant of
domain candidates. However, as phenomena such as resource sharing are not yet treated,
the partitioning requirement

∀
i∈opcode

i 6= x : A[x]∩A[i] = /0 (6.7)

is not satisfied. Domains built from such quasi-domain candidates may not be manufac-
turable or might result in timing faults. Before resolving this issue in section 6.4, the
second and for this step required principle, timing, will be treated.

6.3 Determining Timing Criticality

Along with activation, timing is a decisive factor when deciding what standard cells form
a domain candidate, as timing ultimately determines the level of body bias for a given
timing constraint. Thus, not only timing needs to be determined but also timing under
body bias. As introduced in chapter 2, body biasing has a strong effect on the time a
transistor requires to switch and thus body biasing influences overall timing. e.g., forward
body biasing increases both ION and IOFF , while reverse body biasing reduces both. Thus,
depending on the output capacitance the respective standard cell has to charge, the input
transitions of the following cells change with body bias and thus alter the timing of those
cells as well.
Fig. 6.3 illustrates the general timing computation approach. First, the initial timing of
the first cell is computed using a defined input transition and by computing the sum of
the capacitances it drives on its outputs. Together with input transition, this will compute
the cell’s timing and the transition time for the connected cells. This is repeated until all
cells on the path or those which exercise an influence on the timing path are computed.
Algorithmically, this has been implemented using a worklist algorithm with an additional
termination condition, specifying to terminate once the design graph has been traversed
without any changes to the timing of one of its standard cell nodes.

To account for the effect of body biasing on timing, its influence has been approximated
using ring oscillator experiments simulated in SPICE. From these simulation results, the

78

6.3 Determining Timing Criticality

Ua Ub1

Ub2

Ubx

UD1

UD2

UDy
… …

…

ttran ttran ttran
Cinput

Cinput

Cinput

Cinput

Cinput

Cinput

Figure 6.3: Exemplary timing path Ua to UD with depth D and different fanouts

oscillation frequencies Fosc,BB are obtained by sampling the data signal in the oscillator.
These frequencies are then normalized against Fosc,zero, the oscillation frequency at zero-
bias and thus is directly proportional to the involved transistors’ capability to drive current.
This step provides scaling factors nBB, expressing the frequency increase or decrease rela-
tive to zero-bias. The faster an inverter inverts an input signal, the stronger is its capability
to drive the next inverter’s input pin. Thus, while all capacitances stay the same, the result-
ing transition of a given standard cell time changes with body bias. Thus, transition time
computation is conducted as

ttran,BB = ttran ·nBB (6.8)

with ttran the originally resulting transition time, scaled using the appropriate body bias
factor nBB, i.e., the body bias factor corresponding to the VBB used in the domain the stan-
dard cell is located. While this approximation might be slightly crude, it constitutes a good
trade-off in regard to accuracy and suitability of implementation for a proof of concept.
The actual timing annotation for design graph G is described using the algorithm below:
Require: List of timing LUTs LUT [], graph G, active set activeSet, body bias factors nBB,

input nodes I[x]
Ensure: G is annotated with worst-case timings per node and per nodes’ output pins

1: worklist← I[x]
2: while worklist 6= /0 do
3: curNode← worklist.removeFirst

79

6 Standard-Cell-Grained Body Biasing and Automization through Domain Candidate Exploration

4: if curNode ∈ activeSet then
5: if isInputNode(curNode) then
6: worklist← worklist ∪ curNode.outNodes
7: else
8: for out ∈ curNode.out putPins do
9: ttiming←LUT Lookup(LUT,out.maxTimingTable,out.timingTemplate,

curNode.ttiming,max,Cdrive)
10: ttiming,BB← ttiming ·nBB

11: if ttiming,bb > out.ttiming,max then
12: out.ttiming,max← ttiming,bb
13: end if
14: if ttiming,bb > curnode.ttiming,max then
15: curnode.ttiming,max← ttiming,bb
16: end if
17: ttran ← LUT Lookup(LUT,out.maxTranTable,out.tranTemplate,

curNode.ttran,max,Cdrive)
18: ttran,BB← ttran ·nBB

19: if ttran,BB > curNode.ttran,max then
20: curNode.ttran,max← ttran,BB

21: worklist← worklist ∪ curNode.outNodes
22: end if
23: end for
24: end if
25: end if
26: end while

Before getting into the algorithm’s details, there are some assumptions which are set
in the actual implementation. Initially, all target variables (e.g. curNode.ttran,max,
curNode.ttiming,max) that store the timing values are initialized with a value of minus
infinity to ensure that all values are updated at least once. Line 1 fills the worklist initially
with the input nodes I[x] on which then the main while-loop iterates in line 2. The first
element of the worklist is then removed and stored in the curNode variable (line 3). The
check against the active set activeSet in line 4 allows the algorithm to be more general.
Body bias domains are defined as disjunct sets of standard cells. If the timing of the entire
design should be computed, activeSet is the set of vertexes of graph G. If, on the other
hand, the timing of only certain body bias domains should be computed, activeSet should
contain only vertexes, i.e., the nodes of the concerned domain(s). Following this check,
the algorithm inquires whether curNode is an input node, i.e., not an actual standard cell,
but an input of the design. If this is the case, then it also has no timing and no computation
has to be executed. However, input nodes supply data input to standard cells, so all nodes
reached by the input node’s outgoing edges should be added to the worklist.

If the examined node curNode is a standard cell, then timings will be computed in lines
7 to 25. Timings are actually not computed per cell, but per output of each cell. Some

80

6.4 Building Domain Candidates

standard cells may have multiple outputs where each output may have a different timing,
depending on the transition times of the cell’s input, the capacitance it has to drive as well
as the physical realization of its implemented function. Thus for each output pin out of
all outputs, denoted by the set curNode.out putPins, a timing ttiming as well as resulting
transition time ttran is computed. The actual computation is realized as a lookup-table
lookup. Thus, the lookup function LUT Lookup is called with the list of lookup tables
LUT , the target value table out.maxTimingTable or out.maxTranTable in case of transi-
tion computation, the template name of the lookup table used to index the value table and
the two values used to determine the index through the actual lookup table (lines 9 and
17). These two values are again pin-specific. Depending on the input variables, a different
maximum transition time may apply. Obviously, the driving capacitance always depends
solely on the input pins the output drives.

In both cases, timings and transitions are scaled using the respective body bias scaling
factor nBB used in the body bias domain to which the standard cell belongs. Once the re-
sulting times have been scaled, they are examined to decide whether they are new maxima.
If they are, the new maxima are noted (lines 11-13 and lines 19-22). Furthermore, in case
of transition times, if the resulting transition time changed and reached a new maximum,
the nodes reached by this output are added to the worklist for an update as their timing
may change thereby as well. This method ensures that the while loop iterates until the true
worst-case, timing of all standard cells is determined.

In order to find the critical path timing, now the previously computed standard cell timings
need to be summed up while the critical path marks the path, whose endpoint has the
greatest resulting timing.

6.4 Building Domain Candidates

With a first approximation of domain candidates from section 6.2 and body bias aware
timing computation of the previous section 6.3, actual body bias domain candidates can be
built. Domain candidates have the following characteristics:

1. A domain candidate contains components of equal timing criticality

2. Domain candidates fulfill the partitioning requirement, i.e., no overlaps

3. Implemented functionality may be distributed over multiple domain candidates

In the following, methods and definitions pertaining resource sharing among domain can-
didates, resolving of resource sharing induced overlaps and the determination of domain
candidates based on activation and timing criticality equality will be introduced.

6.4.1 Resource Sharing and Cannibalization

In highly optimized netlists, resource sharing is a major difficulty in determining distinct
body bias domains. In this approach, resource sharing problems are eliminated on domain

81

6 Standard-Cell-Grained Body Biasing and Automization through Domain Candidate Exploration

candidate level. The defining question addressed here is, if two prospective domain
candidates share standard cells, which domain candidate shall receive the shared cells?
Ultimately, for optimal results, this can be only answered per application. As a general
rule, however, it is most sensible to keep timing critical domains as small as possible.
Thereby, the exponential leakage increase under forward body biasing can be mitigated.

Thus, this thesis proposes to resolve resource sharing by using a method called cannibal-
ization, i.e., the less timing critical domain candidate gets the standard cells of the more
timing critical domain candidate. The following algorithm describes the procedure.
Require: Active sets A[s], the timing of each set timing(A[i])
Ensure: The resulting set C[s] conforms to partitioning requirement Eq. 6.7 and shared

cells are in the prospective domain candidate with lower timing
1: C[s]← sortByTimingDesc(A[s])
2: for x = 0,x≤ s−1,x++ do
3: for y = x+1,y≤ s−1,y++ do
4: C[x]←C[x]\C[x]∩C[y]
5: end for
6: end for

First, C[s] is assigned A[s] sorted by descending timing (line 1). Thus, the sets of active cells
per opcode are now sorted by timing instead of the numeral value of the opcode. Then each
prospective domain candidate indexed by x is stripped of all cells that are shared by less
timing critical prospective domain candidates indexed by y (line 3). This simple algorithm
called cannibalization makes C[s] conform to the partitioning requirement Eq. 6.7 and
allows these sets of standard cells to be placed together with other prospective domain
candidates to form distinct body bias domains.

6.4.2 Creating Domain Candidates

Now C[s] is prepared to form actual domain candidates DC[q]. Up to this point, C[s] is
determined by activation, while only resource sharing conflicts have been resolved by the
help of timing. However, as mentioned before, timing, i.e., timing criticality determines
the required body bias. Thus, at this point, the timing information is unused, meaning that
prospective domains that are equally timing critical and possibly even active at the same
time may be grouped into different body bias domains. To resolve that, domain candidates
of equal timing criticality are merged. The following algorithm describes the procedure:
Require: C[s] with 2opcode entries
Ensure: DC[q] is composed of q distinct, non-empty sets of standard cells, defining do-

main candidates
1: for all C ∈C[s] do
2: if C 6= /0 then
3: DC[biasO f (C, tclk)]← DC[biasO f (C), tclk]∪C
4: end if
5: end for

82

6.5 Building Domains

By iterating over all sets C (line 1), that is per opcode one set which might be even left
empty after cannibalization, it is first checked that C is not empty (line 2). Then, in line 3
the set of domain candidates DC is indexed using a helper function biasO f . This function
checks for a given timing constraint tclk which level of body bias needs to be applied. Since
the set of available body bias is discrete, components of equal body bias will be collapsed
into one domain candidate. Thus, the set of available body biases together with the target
timing constraint give a discrete measure of timing criticality and furthermore, a definition
of timing equality in respect to body biasing. That is, if two components are assigned the
same body bias from a finite set of body biases, they are equal in regard to timing criticality.

6.5 Building Domains

Now that domain candidates are distinct without any overlapping cells, cross-domain
resource sharing resolved and their number minimized, the set of domain candidates DC[q]
is optimized for usage with the previously introduced combinatorial k-subset approach.
Previously, in fine-grained body biasing, components were pre-partitioned with possibly
no intelligence at all. Thus, in the worst case, the number of domains used to artificially
increase because of bad choices in pre-partitioning. DCE on the other hand determines
domain candidates based on actual relations, activation, and timing. Thus, the number
of domain candidates generated by DCE is greatly reduced, compared to the previous
approach that didn’t even attempt reducing the number of possible domain candidates.
This is done while completely eliminating the need for manual pre-partitioning.

Furthermore, with the BBI based body bias assignment algorithm introduced in the follow-
ing section, an exhaustive search through all possible body bias assignments of |V B| = N
to q domain candidates, resulting in Nq assignments to be evaluated can be omitted. Nev-
ertheless, the merging problem ultimately can only be reduced in size through the DCE
approach, as well as be mitigated in regard to additional combinations with the body bias
assignment algorithm of the following section. The underlying problem still requires an
exhaustive search over all possible combinations of q domain candidates into k body bias
domains. Thus the algorithm of section 5.4.1 is modified, yielding the following algorithm:
Require: DCs DC[q]
Ensure: DC[q] merged into k domains stored in A, with minimal leakage while observing

timing constraint tclk
1: minLeak← ∞

2: A← /0

3: for all part ∈ generateSubSet(DC[q],k) do
4: BB[k]← assignBBByBBI(part, tclk)
5: l← computeLeakage(part,BB[k])
6: if l < minLeak then
7: minLeak = l
8: A = part
9: end if

83

6 Standard-Cell-Grained Body Biasing and Automization through Domain Candidate Exploration

10: end for
First of all, the variable storing the global minimum leakage minLeak is initialized with an
infinite value, ensuring that the partitioning will be updated at least once. In the following
line (line 2), the variable storing the domain partitioning information A is initialized, before
the combinatorial subset generator function is called in the for-loop header. The function
is the same as in section 5.4.1, generating a set of all valid partitionings of q domain
candidates DC[q] into k body bias domains. This allows the for-loop to iterate on them
while conducting per partitioning evaluations. For each of these partitionings, the body
bias impact based body bias assignment algorithm (see section 6.6) is called to determine
optimal body bias assignments for a given timing constraint tclk (line 4). With body bias
assignments determined, leakage can be determined in line 5. If now the leakage l incurred
by this particular partitioning and body bias assignment is less than the current minimum
minLeak (line 6), it should be updated along with storing the present partitioning in A. Once
the algorithm has iterated over all possible partitionings, the leakage optimal partitioning
A into k body bias domains with leakage minLeak is determined.

6.6 Body Biasing Impact Metric and Optimal Body Bias
Assignment

Once body bias domains have been determined, actual body biases have to be assigned
in order to be able to use the design. This body bias assignment is timing driven, where
the aim is to apply only as little forward body biasing as possible. With cross-domain
resource sharing, however, a timing path may cross multiple body bias domains. The
question is thus, which body bias domain should be biased by how much in order to
meet timing? In the previous chapter, the fine-grained body biasing approach determined
this by computing all possible assignments and the resulting leakages. From all these
assignments, the leakage minimal one has been selected. To avoid the exponential
complexity of this approach, a metric called body bias impact together with a polynomial
optimal body biasing determination algorithm is introduced below.

When deciding to which body bias domain how much bias should be applied, the obvious
choice is the domain which gives the largest timing improvement per leakage increase.
This is a figure which can be obtained using the information derived from standard cell
libraries and the body bias aware timing computation introduced in the sections above.
Body bias impact (BBI) is defined as follows:

BBI =
Ileak

tcrit
(6.9)

where Ileak is the leakage current per body bias domain and tcrit is the timing of the most
critical path that is used in the concerned body bias domain. Thus, this is a measure of
how much leakage is incurred per timing unit. The restriction on used paths is to keep the
assignment algorithm as general as possible. In reconfigurable architectures such as DRPs,

84

6.6 Body Biasing Impact Metric and Optimal Body Bias Assignment

it often can be ruled out with absolute certainty, that certain timing critical operations are
not conducted. Thus the body bias assignment algorithm also does not need to account for
those as well. Thereby derived assignments are of course application dependent. If such
distinction is not desired or applicable, then the used timing paths set may just be ignored
and the complete body bias domain with its overall critical paths is considered. To leverage
the BBI information, the following algorithm is proposed:
Require: Affected domains A = d[0] · · ·d[k], used t pi, timing constraint tclk
Ensure: BB assignment V BA = {VBB0, · · · ,VBBn} to D so that leakage is minimal

1: V BA =VBB0 · · ·VBBn←min(V B)
2: while timing(p,V BA)> tclk do
3: for all d ∈ D do
4: VBB,d sim← incBB(VBB,d)
5: Ileak,d ← computeLeakage(d,VBB,d sim)
6: tcrit,d ← computeTiming(d, t pi,VBB,d sim)
7: if tcrit,d == 0 then
8: BBI[d]← ∞

9: else
10: BBI[d]← Ileak,d

tcrit,d

11: end if
12: end for
13: sortAsc(A,BBI)
14: sortAsc(V BA,BBI)
15: i← 0
16: forLoop:
17: for ; i≤ n; i++ do
18: if i == n then
19: Fail
20: else
21: if V BA[i]< max(V B) then
22: break forLoop
23: end if
24: end if
25: end for
26: V BA[i]← incBB(V BA[i])
27: end while

First of all, the body bias assignment structure V BA is initialized with maximum reverse
body bias denoted by min(V B) (line 1), i.e., the minimum available body bias voltage.
Thereby it is ensured that only the minimum forward body bias reaching tclk, and the
maximum reverse body bias not violating tclk will be used. Then, from line 2 on, the core
part of the algorithm, the steady domain-by-domain BBI determined body bias increase is
conducted until timing constraint tclk has been met. Within the core part of the algorithm,
body bias impact BBI for a simulated discrete body bias increase is computed. That means
the body bias for each domain d out of D, a simulated body bias increase VBB,d sim is used

85

6 Standard-Cell-Grained Body Biasing and Automization through Domain Candidate Exploration

to compute leakage (line 5) and timing (line 6). Timing additionally uses the set of timing
paths t pi that are used in this particular domain. Consider e.g., full-adders that may be
shared among multipliers and additions. Thus, for both the resources may be in the same
domain, but the incurred timing depends on what paths are actually used, e.g. either the
multiplier part is used, or the adder part is used, in which case the incurred timing usually
is far less than in the latter.
Once both timing and leakage for the concerned domain with the simulated forward body
bias is computed, body bias impact for the given domain BBI[d] can be computed as
well (lines 7-11). In case a domain is not involved in the realization of the concerned
functionality, the incurred timing will be zero. Thus, in line 7, this condition is caught.
If a domain is not involved, the domain’s BBI is set to an infinite value which is why the
domain will be omitted for body bias increases as the leakage penalty is infinite.

After the for-loop completes in line 12, the set of domains D and the set of body bias
assignments V BA can be sorted by corresponding body bias impact in an nascending order
(line 13 and 14). Now, in the set of domains at position 0, the domain with the lowest
resulting body bias impact is located. However, depending on the number of previous
iterations, it may not be possible to increase the body bias of the concerned domain in
forward direction, as the maximum forward body bias which can be supplied may already
have been reached. In this case, the algorithm should look for the domain with the next
smallest resulting BBI. This is done in the loop from line 17 to 25. If, however, all domains
are already at maximum forward body bias while timing is still not met, the timing goal
can’t be reached at the present supply voltage. In this case, the algorithm fails in line 19. If
on the other hand, a domain with room for forward body bias has been found, the loop is
broken (line 22) and the body bias of this domain is increased by one discrete step (line 26).

Using the given algorithm, always the domain’s forward body bias is increased, which has
the lowest BBI. This is due to the sorting of data structures by ascending BBI. Further-
more, with body bias impact BBI as a measure for how much leakage increase per timing
improvement can be obtained, the algorithm always seeks the most leakage efficient way
to improve timing. Thus, it makes use of body biasing in an optimal manner. Finally, as the
algorithm starts out with maximum reverse body bias, leakage minimization using reverse
body bias does not need to be covered separately, as the algorithm thereby always strives
for optimal reverse body bias utilization as well.

6.7 Discussion

The approach presented in this chapter tackles the body bias domain partitioning problem
in a fully automatized manner, thereby allowing to take even individual standard cells into
account.
Similar to the pre-partitioned fine-grained approach, assumptions had to be made where in
real-life concious choice may be a better option. Again, this concerns, in particular, the
merging algorithm. For the leakage computation, the central optimization criterion, it is

86

6.7 Discussion

assumed that all components need to be active, i.e., free of timing violations. Depending
on the timing constraint, this may require considerable forward body biasing. While it
could be argued that if the total leakage is optimized on the condition of all components
being active, this will also reduce the leakage incurred when only requiring certain parts to
be active. However, determination of the actual optimum partitioning will always depend
on the applications that shall be run on the design in question, which again goes against
generality. In addition, approximations, e.g., averaging leakage over all operations that
should be executed in the design might not yield better results.

If for a design the application profiles are fully known, then the algorithms can specifically
gear the body bias domain partitioning towards this profile. To do this, the leakage
computation needs to be conducted per executed operation and then weighted according
to its share in the total sum of operations. This allows an application specific fine-tuning
of the body bias domain partitioning of a given design. For the sake of generalization, this
has been omitted in this thesis by using the all-active assumption for all domain candidates
while merging into actual body bias domains.

Another noteworthy aspect is the complexity of the underlying timing and leakage com-
putations. As present EDA tools nor semiconductor manufacturers supply tools that can
handle body biasing as a design variable, body bias aware timing estimation and leakage
computation had to be custom implemented. To reduce complexity, e.g., the timing tables
supplied by semiconductor manufacturers for timing computations have been pre-parsed
to compute single worst-case timing tables. Among other simplifications, this is done by
merging fall- and rise-dependent values by using the maximum of both. This, however,
may lead to inaccuracies since it leads to a general overestimation of timing. Furthermore,
to overcome the limited characterization supplied by semiconductor manufacturers, only
zero-bias libraries were used while supplicating body bias dependent behavior using mod-
els obtained through SPICE simulations. These models mainly depend on the lowered
VT H as well as the higher ION characteristics. While many studies have reported similar
effects on timing and leakage [6,71,104], more effort needs to be put into the computation
of such values. Ultimately, until proper EDA tools become body bias aware, the thereby
derived results should not be taken as the final statement on the matter. Thus, as cautious
approach in this thesis, all computations were geared to overestimate at the disadvantage
of the derived results. Thus, in regard to the results chapter documenting the evaluation of
the presented approach, results will be given normalized to zero-bias results.

87

6 Standard-Cell-Grained Body Biasing and Automization through Domain Candidate Exploration

88

7 Test Chip Implementation

In preparation of the results chapter, an overview of the test-chip implementation and its
evaluation goals will be given. The test-chip has been implemented in Renesas 65nm
SOTB on a 3× 3mm die using a macro-based flow to implement the body bias domain
partitioning obtained using the approaches described in chapter 5 and 6. The implemented
architecture is the fully pipelined MuCCRA4 architecture proposed by Katagiri and
Amano in [96, 97]. The implementation has been presented at COOLChips XIX in
Yokohama, Japan in 2016 as publication [105].

The implementation environment is listed in table 7.1. For both logic and layout synthesis,
Synopsys DesignCompiler and IC Compiler have been used. Additionally, Synopsys
PrimeTime suite was utilized to run timing analysis and power estimations. For verifi-
cation, Cadence IUS environment has been used for simulation (ncsim) on RTL, gate
and layout level netlists as well as for waveform inspection. To perform low-level tests,
Synopsys HSIM fast SPICE has been used together with Synopsys’s CosmosScope to
perform analyses on the simulation results. For the final touches and customizations on
the chip-level layout, Cadence Virtuoso as part of the IC tool suite has been used. Finally,
Mentor Graphics’ Calibre was employed to perform DRC and LVS checks. The same
tools were used for the sign-off of the final layout.

In the following, the macro-based implementation flow together with macro-level bias sup-
ply will be described. This is followed by a description of the body biasing schemes that
can be realized using the previously realized body bias domain partitioning. This chapter
closes with details on the bias supply method as well as the supply network used in this
implementation.

Task Manufacturer Tool Version
Logic synthesis Synopsys DesignCompiler 2012.06-SP5
Power & Timing Analysis Synopsys PrimeTime 2012.12-SP3
RTL/Gate/Layout level simulation Cadence ncsim (IUS) 10.20.131
Waveform analyzer Cadence SimVision (IUS) 10.20.131
SPICE level simulation Synopsys HSIM 2012.06-SP2
Waveform viewer (SPICE level) Synopsys CosmosScope 2013.12
Layout Synthesis Synopsys ICC G-2012.06-SP5
Layout finalization and stream out Cadence Virtuoso (IC) 6.15
DRC/LVS Mentor Graphics Calibre 2013.2_18.13

Table 7.1: Implementation environment used during the tapeout of MuCCRA4-BB

89

7 Test Chip Implementation

7.1 Body Bias Domain Partitioning

To cover a variety of body biasing schemes and to back up the techniques as well as result-
ing schemes proposed in this thesis, a fine-grained approach with four body bias domains
per PE has been implemented. Two domains are allocated for memories, while the first
memory domain also serves as timing uncritical domain for all pipeline stages except for
the EX stage that contains the ALU. The ALU is then split into two halves to accommodate
for two categories of operations with different timing characteristics.
Fig. 7.1 gives a schematic representation of the partitioning into body bias domains. For
more precise planning as well as for the tapeout including the body bias supply planning
as part of power planning, a domain naming scheme has been introduced. As shall later
be described, the design is partitioned into blocks, where the largest block is a column
consisting of two PEs, upper and bottom PE. Then there are two memory and two ALU
domains within the PEs. The naming scheme then first addresses the column, and then
the PE as CNL, where N is either 0 or 1 (the array consists of 4 PEs) and L represents the
location, U for upper or B for bottom.

This particular instance of MuCCRA4 is equipped with a memory fitting 32 contexts and
a 8 entries register file per PE. The context memories are split in half into a lower part
(MEML) and an upper half (MEMH). The lower half additionally contains the register-file as
well as the data memory. This is done based on the principle of activation and timing as
proposed in chapters 5 and 6 while restructuring the HDL with pre-partitioned modules
according to the result of the fine-grained approach from section 5.4. When a single
PE shall be used, some configuration is required, otherwise, it cannot be used at all. To
allow for general operation, the register-file, internal data multiplexing structures, the
interconnect and data memory is required. While the data memory is the biggest data
structure, unlike the context memories, it is usually used as a whole to have sufficient
data buffers. Thus, additional partitioning is not sensible here. For the register-file, on
the other hand, partitioning would very well be a tempting application, especially in view
of MuCCRA4’s multithreading capabilities. However, unlike context memory which
is just utilized incrementally as required, partitioning the register-file would introduce
additional timing dependencies. With larger register-files, partitioning would be sensible
as there is more room to prevent such dependencies, for an 8 entries file. However, the
possible savings are somewhat limited compared to the overheads. Thus, in sum MEML
is the essential body bias domain which has to be active to use the PE. This covers the
activation side, but also in regard to timing, the aforementioned components are incredibly
similar in this regard as well. Thus, this makes a sensible partitioning choice. For the first
PE, that is C0U, following the above scheme, this idea is extended by grouping all global
controllers into its MEML domain as well. In this case, however, this just means that the
body bias supply of C0U’s MEML partition is reused for all standard cells placed outside PE
areas. The upper half of the context memories are consequently put into a different body
bias domain, MEMH. Many applications only consist of small loops and thus do not need
more than 16 contexts. In this case, the partitioning of context memory into two domains
allows to virtually cut off the upper half and thus increase energy efficiency.

90

7.1 Body Bias Domain Partitioning

AL
U_

CA
RR

Y_
SE

L

...

ALU_OUT_REG

Global controllers
(on MEML
of first PE)

RF

RF_OUT_SEL

RF_OUT_REG

A B

ALU_DATA_SEL_A ALU_DATA_SEL_B

... ...

CONTEXT_CONT64-32 CONTEXT_CONT0-31

CONTEXT_CONTSE_A SE_B RF ALU ALU_DATA_SEL BB0:

SE_A SE_B RF ALU ALU_DATA_SEL BB15:

SE_A SE_B RF ALU ALU_DATA_SEL BB16:

SE_A SE_B RF ALU ALU_DATA_SEL BB31:

...

C

MEML MEMH ALUL ALUH

...

ALU_MUX

A

AL
U

Y Z
B

In
te

rc
on

ne
ct

Data Memory

Figure 7.1: Body bias domain partitioning of a MuCCRA4 PE into four body bias domains (k = 4)

A

A
LU

Y Z

C

B

ADD ADD8

SUB XOR

SL SR

BS MULTTB

MULT

CMP

CMB

EQL

OR

SEL

AND

OP_A OP_B

ALU_MUX

O
P_
C

Figure 7.2: Body bias domain partitioning of the ALU into two body bias domains ALUL and ALUH

91

7 Test Chip Implementation

The central and most efficient partitioning is that of the EX stage. Here, the ALU and ALU
multiplexers are partitioned into two domains ALUL and ALUH. The ALU is first analyzed
using the approaches presented in chapter 5.4 as well as sections 5.4.1 6.2, 6.3 and 6.5.
This yields a partitioning along the lines of logical and arithmetical functions of the ALU,
as well as its output multiplexer functionality as visualized in 7.2. While logical functions
are in general timing uncritical and thus put into ALUL, arithmetical functionality is put
into ALUH. As last part on the critical path of the ALU, the output multiplexer is grouped
into ALUH along with the arithmetical functions. Both the approaches described in chapters
5.4 and 6 led to the same partitioning.

In total, this partitioning results in the body bias domain table 7.2.

PE Coord. Domain Name Type Description

PE0 0,0

C0UMEML MEML Lower memory part including all global controllers
C0UMEMH MEMH Upper part of the context memory
C0UALUL ALUL ALU logical functions
C0UALUH ALUH ALU arithmetic functions and output multiplexer

PE1 1,0

C1UMEML MEML Lower memory part
C1UMEMH MEMH Upper part of the context memory
C1UALUL ALUL ALU logical functions
C1UALUH ALUH ALU arithmetic functions and output multiplexer

PE2 0,1

C0BMEML MEML Lower memory part
C0BMEMH MEMH Upper part of the context memory
C0BALUL ALUL ALU logical functions
C0BALUH ALUH ALU arithmetic functions and output multiplexer

PE3 1,1

C1BMEML MEML Lower memory part
C1BMEMH MEMH Upper part of the context memory
C1BALUL ALUL ALU logical functions
C1BALUH ALUH ALU arithmetic functions and output multiplexer

Table 7.2: Body Bias Domains of MuCCRA4-BB

7.2 Macro-based Body Bias Domain Implementation

To ease the implementation process and to realize the individual body bias domains, the
major components of a PE have been implemented as macros. This allows to treat potential
DRC errors more locally and is a proven way to reduce problem sizes. In this particular
implementation, it also helps greatly to align body bias supplies as well. Starting with the
innermost body bias domain, then continuing on the next hierarchical level surrounding
the previous domain leaves an eye-shaped silhouette. Thus, we called this implementation
style "eye-style" implementation.

92

7.2 Macro-based Body Bias Domain Implementation

Figure 7.3: Layout of the MuCCRA4-BB test-chip with 16 body bias domain (4 per PE) and a body
bias generator test-circuit in the top-right, manufactured in Renesas’ 65nm SOTB

93

7 Test Chip Implementation

Fig. 7.3 depicts the layout of the taped out MuCCRA4-BB chip with annotated body bias
domains MEML, MEMH, ALUL and ALUH in the C0U PE. The eye-style implementation process
is visualized in Fig. 7.4. This particular implementation starts out with the innermost,
usually smallest design part and then moves further outwards to construct the entire
component. During each of the macro creation steps, tap-cells for the particular domain
under construction need to be placed in defined x-intervals if standard-cells are placed
during macro creation. This facilitates the body bias supply to the standard-cells’ wells.
Furthermore, when placing thereby created macros, a separation margin has to be added
to insulate one body bias domain from the other.

Following Fig. 7.4, the ALU is built first. In this case, the innermost design part is the
ALUL domain. For this domain, a macro is then built (Fig. 7.4 a)). Then, the surrounding
ALU macro is built. Of course, this only makes sense when the engulfed macro is used
as a part of the surrounding design, which obviously is the case here as ALUL contains the
logical functions of the ALU. After building the ALU macro with the ALUH domain, this
eye style macro can again be used as a macro (Fig. 7.4 b)) to instantiate an ALU in the
next higher hierarchy level. In Fig. 7.4 c), the innermost macro is the upper half of context
memories. This macro, in turn, is placed in the MEMORY macro along with the MEML
domain for the lower half of context memories and the register file (Fig. 7.4 d)). Then, the
ALU and MEMORY macro are combined in the PE macro, whereas the data memory is
placed in the surrounding area with its tap-cells connected to the MEML domain supply of
the PE (Fig. 7.4 e)). Therefore, despite not being placed in the same macro, by shorting
the supplies, macros merge into the same domain. Two of these PEs are then placed to
form a column of the PE array. As shown in Fig. 7.4 f), the two PE macros are placed
with a slight x-offset. This is done to leave some space for the straps supplying the body
bias. As both PE macros would have identical x-coordinates for their tap-cell rows, they
also would have to be connected by a strap on the same x-coordinate. This situation is
exacerbated as all macros also need to carry straps for all other domains that overlap on
x-coordinates. Thus, a slight x-offset eases this task.

The resulting macro sizes are listed in Tab. 7.3. Ultimately, this implementation style is
driven by routing and the need for fine-grained body bias domains specific to DRPs. To
prevent massive routing overheads by placing macros alongside, the macros are placed
where they are required, in this case, inside another macro.

94

7.2 Macro-based Body Bias Domain Implementation

a) ALUL macro with domain
ALUL

b) ALU macro with domains
ALUH and ALUL in the eye

c) Macro MEMH with domain
MEMH

d) Macro MEMORY with
domains MEML and MEMH

in the eye

e) Entire PE

f) PE Array Column

Figure 7.4: Eye-style implementation from ALUL into ALUH, MEMH into MEML, MEML and ALUH into a
PE and finally PEs into a column

95

7 Test Chip Implementation

Name Width [µm] Height [µm] Area [µm2]

ALUL 50.18 61.2 3071.016
ALU 240.24 136.8 32864.832
MEMH 151.84 144.0 21864.96
MEMORY 360.1 273.6 98523.36
PE 595.14 601.2 357798.168
COL 1386.96 792.55 1099235.148

Table 7.3: Resulting MuCCRA4-BB macro sizes

7.3 Supported Body Biasing Schemes

The fine-grained implementation of body bias domains described above in sections 7.1
and 7.2 allows for the real-chip evaluation of core-, coarse- and fine-grained body biasing.
As each PE is divided into four body bias domains, the extent of the partitioning is locally
restricted to each PE. Thus, not only fine-grained schemes below PE granularity can be
applied, but also coarse-, i.e., PE-grained body biasing, clusters of PEs as well as on the
entire DRP, i.e., core-grained body biasing. This can be achieved by electrically shorting
respective body bias domains’ bias supplies. Table 7.4 gives an overview of the supported
and sensible body bias domain partitionings. Again, sensibility here refers to the defined
criteria for body bias domain partitioning, i.e., activation and timing. Of course, more than
the schemes described in table 7.4 could be evaluated with this test-chip implementation,
however, as there is no benefit to be expected, they were not included in this list. For
instance, if one ALU domain and one memory domain would be shorted together, the
chances are that one does not need to be active at all while the timing argument then finally
rules out sensibility.

Name #BBD per PE Total #BBD Description

FGBB 4 16
Context memory split in half, ALU parti-
tioned into two domains

FGBB-H 2 8 Memory and ALU make up one domain each
CGBB 1 4 One domain per PE
CGBB-2 0.5 2 Two PEs forming a domain
GBB 0.25 1 Entire DRP forming one domain

Table 7.4: List of supported body bias domain partitionings for evaluation purposes

96

7.4 Bias Supply Network

7.4 Bias Supply Network

All body bias domains receive their body bias potentials V BN and V BP from ring structures
along the IO ring, which, in turn, are fed using power pins on the IO pad. Most IO pads
on the left and right side are body bias supplies as depicted in the layout Fig. 7.3. As
body biases are not multiplexed in this test-chip as in [70,71], the body biases are supplied
directly to the concerned domains. As described in the previous sections, tap-cells feed
the body bias potential to the transistor wells. To enable the tap-cells to do this, each
tap-cell has to be connected to the supplies for the NMOS (V BN) and PMOS (V BP) body
bias supplies respectively. Therefore, for each row of tap cells, two vertical straps need
to be drawn from supply structures. The body bias supply style used in this test-chip is
visualized in Fig. 7.5.

VBN1
VBP1
VBN2
VBP2
VBN3
VBP3

D1

D2 D3

dtap

Horizontal supply straps

Vertical supply straps

Figure 7.5: Cartoon representation of body bias supply mesh for three domains, D2 in D1 with
overlapping straps and third domain D3

In this particular example, body bias supplies for three domains are drawn. As a realistic
example close to the implementation style used in this tapeout, consider domains D1 and

97

7 Test Chip Implementation

D2. This is an example for the eye-style body bias domain construction where D2 is placed
inside D1. D3, on the other hand, is an example for a regular, core-like body bias supply.
In both cases, horizontal straps are first drawn from the body bias supply rings which are
directly connected to the power pads supplying the bias potentials. Using these horizontal
straps, vertical straps can be drawn in regular tap-cell intervals on the x-coordinate that
match the body bias supply pins V BN and V BP of the tap-cells. Thus, in the case of D1
and D2, two pairs of body bias supplies are needed, totaling in four different potentials
and eight horizontal straps to restrict the vertical straps to the area between the horizontal
straps on top and below the macros of D1 and D2.
Furthermore, considering this example, D1 may have standard cells placed below and
above the D2 macro. Thus, vertical straps need to be drawn through D2 as well, as straps
always have to be drawn between two power structures of the same supply. For that reason,
a horizontal strap is drawn from one side of the red ring to the opposite side and vertical
straps are then drawn from one red horizontal strap to the red horizontal strap on the oppo-
site side of the macro. Thus, this results in three requirements for the macro implementing
D2:

1. Vertical straps for the body bias domains between horizontal supply straps that over-
lap on x-coordinates have to be drawn as well

2. Straps need to be aligned with the straps of those concerned domains

3. The macros or the straps of the placed macros need to be placed or aligned in a
manner that they are not shorted or in conflict while maintaining the tap-cell interval

These rules are visualized in Fig. 7.5 and an example is given in Fig. 7.6. Reconsider D2
in D1. The body bias of D1 is supplied via V BN1 (red) and V BP1 (green), while the body
bias of D2 is supplied via V BN2 (beige) and V BP2 (dark blue). In D1, there are first two
pairs of V BN1 V BP1, while they are continued to be drawn as part of D2. Furthermore,
the x-coordinates of the strap pairs in D1 and D2 are perfectly aligned, so they pass right
through D2. Furthermore, rule 3 is also maintained as D2 is aligned in a manner that V BN2
and V BP2 are drawn in the specified interval dtap without causing a conflict with V BN1
and V BP1.
Moving on to the example of the ALUL macro, these rules were adhered to in a similar
manner. As macro ALUL is placed inside the ALU macro, not only supplies for body bias
domain ALUL are required, but also those for ALUH as standard cells of the ALU macro
in the ALUH domain may be placed around the ALUL macro. Additionally, as horizontal
supplies are drawn above and below each PE, straps for domains MEML and MEMH have to
be drawn as well, in case their x-coordinates overlap. In this case, they do overlap, and
hence, despite only one tap-cell row is placed inside the ALUL macro, requiring one set
of straps, the three other traps are drawn. Furthermore, these straps are aligned with the
tap-cell interval of the other domains and are not causing any conflict, i.e. short circuits
with other supplies.

98

7.4 Bias Supply Network

Figure 7.6: Schematic layout view of the ALUL partition, implementing logic function, with aligned
straps for domains MEML, MEMH and ALUH of the body bias supply mesh passing through and only
ALUL straps connecting to the proper tap-cells

99

7 Test Chip Implementation

7.5 Evaluation Environment

The returned dies were packaged and bonded in 208 Pin QFP packages and evaluated in
an environment as illustrated in Fig. 7.7. The actual evaluation environment is displayed
in the photograph of Fig. 7.8. The motherboard has been custom designed to fit the special
requirements of the taped out chip. First and foremost, the chip requires a great number
of power supplies to supply body bias voltages to the individual body bias domains. To
facilitate this, six four channel power supply boards can be used on this motherboard,
where each is controlled using a USB to UART bridge on the MicroZed board. The actual
control is then exercised on a computer controlling the experiments. The actual stimulation
and debugging are done using the MicroZed board which reconfigures the MuCCRA4-BB,
starts the program execution as well as facilitates the readout. All data transfers to and from
the MuCCRA4-BB are done using a simple custom serial protocol. For this purpose, the
FPGA portion of the Zynq chip is utilized and programmed using Xilinx’s Vivado 14 suite.

Additionally, for precision measurements and additional power supplies, an Agilent
N6507A power analyzer, Agilent 34410A multimeters and Agilent E3631A power sup-
plies were used. A typical experiment is set up by using the power analyzer to supply
digital core VDD as well as other critical supplies that need to be monitored for a detailed
record of their power consumption, such as IO power supply and voltage level-shifter sup-
plies. Body bias voltages are usually supplied using the programmable voltage generator
boards which allows a temporal granularity of up to 1µs. With each body bias domain
requiring two supplied voltages, V BN and V BP, with a fully equipped motherboard, the
setup can bias twelve body bias domains while the remaining four would have to be sup-
plied using one of the lab power supplies. With the symmetry found in DRP applications,
this is usually not required.

100

7.5 Evaluation Environment

Custom
Motherboard

208QFP

4C
H

Pr
og

ra
m

m
ab

le

po
w

er
 s

up
pl

y

4C
H

Pr
og

ra
m

m
ab

le

po
w

er
 s

up
pl

y

4C
H

Pr
og

ra
m

m
ab

le

po
w

er
 s

up
pl

y

4C
H

Pr
og

ra
m

m
ab

le

po
w

er
 s

up
pl

y

4C
H

Pr
og

ra
m

m
ab

le

po
w

er
 s

up
pl

y

4C
H

Pr
og

ra
m

m
ab

le

po
w

er
 s

up
pl

y

MicroZed
Board

Xilinx Zynq
7010

M
ot

he
rb

oa
rd

 a
nd

IO

 s
up

pl
y

4CH Power Analyzer
Agilent N6507A

Precision Multimeter
Agilent 34410A

Lab Power Supply
Agilent E3631A

Precision Multimeter
Agilent 34410A

Lab Power Supply
Agilent E3631A

Figure 7.7: Evaluation environment consisting of the motherboard with the QFP208 socket TEG
board, MicroZed Zynq board, and power supplies.

101

7 Test Chip Implementation

Figure 7.8: Photograph of the evaluation motherboard with one powerboard and a MicroZed board
to control and coordinate experiments

102

8 Results

In this chapter, evaluations and the results for each proposed approach will be presented.
The result chapter is split into two principal parts:

1. Results generated through simulation (Section 8.1)

2. Results generated through test-chip evaluation (Section 8.2)

whereas each of these parts is then further divided by the granularity of the evaluated
approach. Each part will cover core-, coarse- and fine-grained body biasing, whereas in
the simulative section standard-cell grained body biasing based on the DCE approach
(chapter 6) shall be covered as well. After simulation and chip evaluation results, this
chapter will close with a discussion of the results.

All simulative results are obtained using STMicroelectronic’s 28nm UTBB-FDSOI in
both RVT (regular threshold voltage) and LVT (low threshold voltage) flavors. Standard
cell-grained body biasing results are additionally obtained in Renesas 65nm SOTB
FDSOI as well. Test chip results obviously are only obtained in the technology used for
manufacturing, which is Renesas 65nm SOTB.

The design used for evaluations is always the MuCCRA4 DRP architecture with varying
array sizes. For results obtained through simulation, a 4×4 MuCCRA4 instance has been
used, while the test-chip was manufactured with a 2×2 PE array, using the exact same ar-
chitecture. These designs are then evaluated using the corners, i.e., design targets specified
in section 4.4. Application specific approaches are evaluated for five different benchmark
applications:

• An alpha blender alpha

• Discrete cosine transformation DCT

• A 24 tap finite impulse response filter FIR

• Sum of absolute differences SAD

• Sepia image filter sepia

These applications use a variety of operations and thus exploit different aspects of the
MuCCRA4 DRP architecture. Depending on the particular instance used, the applications
are mapped on either the 4×4 or the 2×2 variants.

103

8 Results

Computing
Slack per OP

PE/D
´extracted
from layout

Process
Libraries

Constraints

BB timing
models

Compute
Required

Slack

RSF(BB)PSF(OP)
Application

SAIF
Power

Analysis

Device
Models

Standard
cells

PE/D
extracted

from layout

SPICE level
leakage
evalution

LCF(BB)

Per PE/D BB
det. algorithm

Compute
leakage

reduction

Compute
overall

reduction

1. 2.

3.

4.
5.

6.

Figure 8.1: EDA tool-assisted evaluation flow for core-, coarse- and fine-grained body bias domain
partitioning approaches as presented in chapter 5

8.1 Simulative Results

Simulation results have been obtained using two principal evaluation flows. The first flow
is depicted in Fig. 8.1. This flow is characterized through the consequent usage of industry
standard EDA tools. Such tools were at the time, and still are oblivious to freely ranging
body biasing, i.e., tools only acknowledge body bias as an additional characterization point
like another supply voltage or temperature. Thus, workarounds for this deficiency were
required.
The evaluation for core-, coarse- and fine-grained body biasing approaches start out in
1. of Fig. 8.1 by determining the slack per operation or functionality using zero-bias
characterized process libraries. This is done in an industry standard static timing analysis
tool (Synopsys PrimeTime [106]) which is also used to run power analyses which may
be later used for overall power reduction computation, which, however, is not strictly
necessary for this evaluation. The primary result of this step is the per-op slack function
PSF(OP), giving timing slack as a function of the operation. In step 2., the amount of
slack per body bias level is then computed using constraints such as the target clock

104

8.1 Simulative Results

Optimized C
netlist

Process
Libraries

BB TI/LI

DCE

DC[q]

comb. k-
subset merge

D[k]

(Per Op.) BBI
BB assign

DCE BB
timing

D[k],
VBA[k]

DCE BB
leakage eval.

Device
Models

Standard
cells

SPICE eval.
leak./timing

1.

2.

3.

4.

5.

Figure 8.2: Domain Candidate Exploration based evaluation flow for standard-cell grained body
bias domain partitioning, utilizing SPICE supplemented custom timing- and leakage computation

period tclk and body bias ranges, as well as body bias timing models obtained through the
evaluation of the effect of body biasing on ring oscillator frequencies. This then allows
computing the required slack function per body bias level RSF(BB). These two functions
are used in step 3 for the algorithms proposed in sections 5.2, 5.3 and 5.4 to determine
the required body bias levels to meet the timing constraint. Continuing in step 4., the
PEs’ or domains’ netlists are evaluated for body bias dependent leakage. This has to be
done by using SPICE simulators as only device level simulation allows for freely ranging
body biases. Thus, the library characterization limitation has been overcome. These
characterizations per PE or body bias domain (D) are then used in step 5. to compute the
actually incurred leakage by adding the individual PEs or body bias domains’ leakage
currents at the specified body biases. In the optional step 6., the overall power consump-
tion can be computed, if in step 1. dynamic power consumption has been computed as well.

The evaluation flow (Fig. 8.2) for the DCE standard-cell grained approach differs con-
siderably, as DCE implements body bias aware timing and leakage computations. It is
mostly independent of EDA tools after the required information has been obtained. This
information gathering step is visualized as step 1. in Fig. 8.2. This step generates scaling
factors for timing and leakage by evaluating ring oscillators for the timing impact, as well
as standard-cells for the leakage impact of body biasing. These factors are normalized
against zero-bias values and used in DCE subsequently. Step 2. then is the actual DCE

105

8 Results

execution which results in the domain candidates DC[q]. Afterwards, they are merged in
step 3. to form k body bias domains D[k] using DCE’s body bias aware leakage compu-
tation. Then, in step 4., similar to step 3. of Fig. 8.1, the body bias levels per domain
are determined using the BBI based body bias determination algorithm. This results in
a body bias assignment V BA[k] per body bias domain D[k], which is then used in step 5.
to compute overall leakage. This is done per standard cell by using the leakage values of
the standard-cell library, scaled with the body bias dependent leakage factor determined in
step 1. of the respective body bias domain.

8.1.1 Core-Grained Body Biasing

Core-grained body biasing is limited in its extremely coarse application of body biasing.
Thus, the effects that can be yielded are usually also accompanied by extreme side-effects.
If e.g., speed is boosted with forward body bias, the leakage penalty is severe, while huge
leakage reductions come with a reduction of maximum clock frequency by more than a
factor of 1.5×.

Consider the results for STMicroelectronic’s 28nm UTBB-FDSOI in Figs. 8.3 to 8.8. In
the first three figures, RVT is evaluated for maximum reverse body bias, indicating the
potential maximum leakage reduction at the cost of clock frequency, maximum forward
body bias which is severely limited in RVT, as well as per application evaluations for the
LP corner, i.e., reducing leakage while staying at the maximum clock frequency Fmax. The
maximum forward body bias, HP corner evaluation per application is omitted here, as the
primary use case of RVT is low power applications with extended reverse body biasing
capabilities.

As discussed in the background chapter, the effect of body biasing is relative to the sup-
ply voltage at which the transistors are operated. This relationship is also visible when
comparing Fig. 8.3 to Fig. 8.4 and Fig. 8.5. The impact of maximum reverse body bi-
asing on delays decreases with increasing supply voltage. This, however, should not give
the impression that greater supply voltages should thus be used, on the contrary, leakage
increases with supply voltage more than it could possibly be reduced with reverse body
biasing if the maximum clock frequency is scaled up as well. Furthermore, depending
on the most timing critical operation executed in the entire DRP, there are different levels
of leakage reduction in the application dependent evaluation. While all applications but
the FIR filter allow for significant leakage reduction, only at VDD = 1.0V a little leakage
reduction is feasible as the timing impact decreases. In the case of FIR, the critical path,
i.e., full-width multiplication is used, and therefore, with the aforementioned exception,
leakage cannot be reduced. By leveraging application dependent timing slack, leakage can
be significantly reduced, even when only applying body bias locally on an entire core.

106

8.1 Simulative Results

Leakage Speed

0
0,2
0,4
0,6
0,8
1

1,2
1,4
1,6

No	BB Max.	RBB Max.	FBB alpha dct fir sad sepia

RVT	@VDD=0.6V,	Fmax=132MHz

Figure 8.3: Core-grained evaluation of MuC-
CRA4 in the RVT flavor at VDD = 0.6V for Max.
RBB and LP corners by application

0
0,2
0,4
0,6
0,8
1

1,2
1,4
1,6

No	BB Max.	RBB Max.	FBB alpha dct fir sad sepia

RVT	@VDD=0.8V,	Fmax=328MHz

Figure 8.4: Core-grained evaluation of MuC-
CRA4 in the RVT flavor at VDD = 0.8V for Max.
RBB and LP corners by application

0
0,2
0,4
0,6
0,8
1

1,2
1,4
1,6

No	BB Max.	RBB Max.	FBB alpha dct fir sad sepia

RVT	@VDD=1.0V,	Fmax=541MHz

Figure 8.5: Core-grained evaluation of MuC-
CRA4 in the RVT flavor at VDD = 1.0V for Max.
RBB and LP corners by application

0
1
2
3
4
5
6
7

No	BB Max.	RBB Max.	FBB alpha	FBB dct	FBB fir	FBB sad	FBB sepia	FBB

LVT	@VDD=0.6V,	Fmax=274MHz,	
FmaxFBB=450MHz

Figure 8.6: Core-grained evaluation of MuC-
CRA4 in the LVT flavor at VDD = 0.6V for Max.
RBB and HP corners by application

0
1
2
3
4
5
6
7

No	BB Max.	RBB Max.	FBB alpha	FBB dct	FBB fir	FBB sad	FBB sepia	FBB

LVT	@VDD=0.8V,	Fmax=500MHz,	
FmaxFBB=681MHz

Figure 8.7: Core-grained evaluation of MuC-
CRA4 in the LVT flavor at VDD = 0.8V for Max.
RBB and HP corners by application

0
1
2
3
4
5
6
7

No	BB Max.	RBB Max.	FBB alpha	FBB dct	FBB fir	FBB sad	FBB sepia	FBB

LVT @VDD=1.0V,	Fmax=704MHz,	
FmaxFBB=871MHz

Figure 8.8: Core-grained evaluation of MuC-
CRA4 in the LVT flavor at VDD = 1.0V for Max.
RBB and HP corners by application

From the standpoint of performance and high energy efficiency, the LVT flavor is of greater
interest than RVT. LVT has a lower threshold voltage and extended forward body bias ca-
pabilities. Similar to RVT, the focus in regard to the application evaluation is thus also put
solely on the HP corner, omitting the LP corner which benefits mainly from reverse body
biasing capabilities. LVT and its strong forward body biasing capabilities are predestined
to be used for frequency scaling. Thus, Figs. 8.6 to 8.8 giving the core-grained results for
the LVT flavor state two different clock frequencies:

• Fmax the regular, unscaled maximum clock frequency

107

8 Results

��

���

���

���

���

���

���

���

���

���

�����

���
�� ���

�����

�
�
�
�
�
�
�

�
��
�
�
�
���
�

�
��
�
��
�
�
��

��������
���������
��������

���������
��������

���������

Figure 8.9: Leakage reduction obtained by leveraging application dependent timing slack on a core-
grained granularity in STMicroelectronic’s 28nm UTBB-FDSOI RVT flavor for supply voltages
VDD = {0.6V,0.8V,1.0V} at their respective maximum clock frequencies.

• Fmax,FBB the maximum clock frequency scaled with the forward body bias boost

Opposite to RVT, LVT has only slight reverse body biasing capabilities and thus maximum
reverse body bias’ effect is limited for both leakage and delay. Furthermore, just as with
LVT, the effect on delay is relative to supply voltage, decreasing with increasing VDD.
With forward body biasing a lot stronger than in RVT, the leakage penalty is also much
more severe as visualized in the Max. FBB bars in Figs. 8.6 to 8.8. Thus, with leakage
impact that strong, it is imperative to apply forward body bias in a more sensible manner.
The first step towards this goal is to apply it according to the timing slack as visualized in
the applications’ bars. Only with the FIR filter, the leakage penalty could not be mitigated,
while all other applications do not use such timing critical operations and thus do have
less aggressive timing constraints to meet.

With all this being said, similar to the body bias and supply voltage relationship, LVT has,
per construction, far greater leakage currents to begin with. Thus, forward body bias does
not only increase leakage but also exacerbates a phenomenon which is considered prob-
lematic since at least 90nm nodes. This becomes most visible when putting the obtained
results in a larger context. Consider, for example, the core-grained body bias leakage sav-
ings achieved using the RVT flavor (Fig. 8.9). Despite the biasing of an entire core, in
RVT, leakage can be reduced even when there is very little slack to leverage.
Of course, as demonstrated in the fir case, when there is no slack to leverage, no leakage
improvement can be obtained. This situation, however, presents itself only when running

108

8.1 Simulative Results

��

������

������

������

������

������

������

������

������

������

�����
���������

�����
���������

�����
���������

���
���������

���
���������

���
���������

��
���������

��
���������

��
���������

���
���������

���
���������

���
���������

�����
���������

�����
���������

�����
���������

�����
���������

���

�����
���������

���

�����
���������

���

���
���������

���

���
���������

���

���
���������

���

��
���������

���

��
���������

���

��
���������

���

���
���������

���

���
���������

���

���
���������

���

�����
���������

���

�����
���������

���

�����
���������

���

�
�
�
�
��
�
�
�
�
�
�
�
���
�

�
��
�

��������������������������

���������

��������

�������

Figure 8.10: Total power reduction in a ultra-low-power scenario for the five benchmark applica-
tions executed at F = 10MHz and evaluated for supply voltages VDD = {0.6V,0.8V,1.0V} without
body biasing (left half) and with the proposed reverse body bias application (right half)

close to or right at the maximum clock frequency Fmax. Consider an example for an ultra-
low-power execution mode as depicted in Fig. 8.10, displaying total power consumption
for the benchmark applications at supply voltages 0.6V to 1.0V , with no body biasing on
the left and with reverse body biasing on the right side.

It is immediately visible that in such modes, even in the RVT flavor, leakage may comprise
more than 30% or more of total power consumption. Especially for battery powered or
always-on devices, the utilization of this additional degree of power management is im-
perative. Considering LVT in a broader context, the focus switches to energy efficiency.
Fig. 8.11 depicts total power consumption split up by switching, internal and leakage
power consumption with an additional graph overlayed for energy delay product (EDP)
for two modes: zero-bias unscaled (zero) and clock frequency scaled using core-grained,
i.e., global body bias (GBB). Results are further ordered by application, where each appli-
cation block is structured by pairs of zero-bias and core/global grained body bias (GBB)
with ascending supply voltage. For each operation point, the maximum clock frequency is
utilized. This means that e.g., at 0.6V without body bias, the maximum achievable clock
frequency is 274MHz, while with body bias it is 450MHz for this design and is thus used
for the presented power evaluation. See Tab. 8.1 for a list of supply voltages and the
attainable maximum clock frequencies without and with maximum forward body bias.

This representation allows to directly compare the power consumption of forward body
bias scaled modes to supply voltage scaled modes. This comparison is especially of
interest as scaling with forward body bias omits the quadratic relationship between supply
voltage and power consumption, and thus may be a very energy efficient frequency
scaling alternative to supply voltage scaling. However, the exponential increase in leakage

109

8 Results

Supply Voltage VDD Max. Frequency Max. Frequency with max. FBB
0.6V 274MHz 450MHz
0.8V 500MHz 681MHz
1.0V 704MHz 871MHz

Table 8.1: Maximum clock frequency unscaled and scaled with maximal forward body bias for the
MuCCRA4 architecture implemented in STMicroelectronic’s 28nm UTBB-FDSOI LVT flavor

Supply Voltage VDD Max. Frequency
0.6V 132MHz
0.8V 328MHz
1.0V 541MHz

Table 8.2: Maximum clock frequency for the MuCCRA4 architecture implemented in STMicro-
electronic’s 28nm UTBB-FDSOI RVT flavor

��

����

����

����

����

����

����

����

����

����

��
�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

����� ��� �� ��� �����

�
�
�
�
��
�
�
�
�
�
�
�
���
�

�
��
�

�
�
�

�
��
�
�

������������������������������������

���������

��������

�������

���

Figure 8.11: Total power consumption and EDP evaluation for five different benchmarks for VDD =
{0.6V,0.8V,1.0V}, without (zero) and with core-, i.e., global grained body bias (GBB) set based
on application dependent slack at their respective maximum clock frequencies

110

8.1 Simulative Results

����

����

����

����

��

����
������

����
������
���

����
������

�
�
�

�
�
�
��
�
���
�
�

�������������������������������

����

����

����

����

��

����
������

����
������
���

����
������

����
������
���������

�������
�������

�
�
�

�
�
�
��
�
���
�
�

�������������������������������

���

����

����

����

����

��

����
������

����
������
���

����
������

�
�
�

�
�
�
��
�
���
�
�

�������������������������������

����

����

����

����

��

����
������

����
������
���

����
������

����
������
���������

�������
�������

�
�
�

�
�
�
��
�
���
�
�

�������������������������������

����

����

����

����

��

����

����

����
������

����
������
���

����
������

�
�
�

�
�
�
��
�
���
�
�

�������������������������������

����

����

��

����

����

����

����
������

����
������
���

����
������

����
������
���������

�������
�������

�
�
�

�
�
�
��
�
���
�
�

�������������������������������

���

����

����

����

����

��

����
������

����
������
���

����
������

�
�
�

�
�
�
��
�
���
�
�

�������������������������������

����

����

����

����

��

����
������

����
������
���

����
������

����
������
���������

�������
�������

�
�
�

�
�
�
��
�
���
�
�

�������������������������������

���

����

����

����

����

����

��

����
������

����
������
���

����
������

�
�
�

�
�
�
��
�
���
�
�

�������������������������������

����

����

����

����

����

��

����
������

����
������
���

����
������

����
������
���������

�������
�������

�
�
�

�
�
�
��
�
���
�
�

�������������������������������

Figure 8.12: Core-grained/global body bias EDP evaluation of MuCCRA4 in the LVT flavor at
VDD = {0.6V,0.8V,1.0V} in a clock frequency scenario (HP corner) where all results are normalized
to the EDP of the next higher supply voltage scaled mode

leaves a lot of room for improvement. Consider e.g. VDD = 0.6V . Throughout all
applications, while the body bias scaled variant is still 50MHz slower than the next supply
voltage scaled variant, it has better energy efficiency in all applications but the fir filter,
constituting the worst-case application. The same trend also applies to greater supply
voltages 0.8V and 1.0V , but the decrease in energy efficiency continues.

Consider the EDP evaluations for the five benchmark applications in Fig. 8.12. As
displayed in Fig. 8.11, the total power consumption of the forward body bias scaled
variants for all applications were less than those of the supply voltage scaled variants.
However, as the maximum clock frequency of the supply voltage scaled variants is greater,
this also has an impact on the resulting EDPs. In fact, for all but the fir filter, EDPs are
significantly improved when scaling using forward body biasing. However, as soon as one
PE needs to use its critical path, which is generally assumed that it does, energy efficiency
is worse than supply voltage scaled equivalents.

These results highlight several points. Even though in the case of RVT, the effect of re-
verse body biasing on timing with increasing VDD diminishes, leakage increases stronger
with VDD than the levels of reverse body biasing can be increased without violating timing,
assuming maximum clock frequency is scaled along. Furthermore, both leakage and en-
ergy efficiency wise, a chip should be operated at the lowest VDD possible. In modes where
low clock frequencies are tolerable, reverse body biasing helps tremendously in realizing

111

8 Results

ultra-low-power modes. For such applications, core-grained body biasing is appealing, as
at low clock frequencies, all components can tolerate strong reverse body biasing since
slack is available in abundance. Forward body biasing especially helps with reaching con-
siderably high clock frequencies even at low supply voltages. At the evaluated VDD of
0.6V , it increases the maximum feasible clock frequency by 1.64×. However, as leakage
rises exponentially, core-grained application is not focused enough. With a single PE uti-
lizing the critical paths, all other PEs and components are set on full forward body bias as
well and thus add to the leakage penalty. In this case, energy efficiency drops below its
supply voltage scaling counterpart. Thus, body bias granularity is a determining factor in
leveraging body biasing.

8.1.2 Coarse-Grained Body Biasing

Coarse-grained body biasing is one step further towards locally focused body biasing. As
shown in the previous section on core-grained body biasing, the leakage penalty incurred
by applying forward body biasing on an entire DRP often outweighs the dynamic savings
realized by enabling greater clock frequencies at lower supply voltages. Furthermore, even
though core-grained body biasing is suitable for low clock frequency ultra-low-power
modes, the capability to restrict leakage to a minimum is desirable in any mode. However,
unless body biasing can be applied more locally, this can only be achieved by reducing
clock frequency.

Coarse-grained body biasing allows to determine the leakage-speed trade-off per PE
and thus is far more locally focused than core-grained body bias. In the following
coarse-grained body bias simulation studies, a 4× 4 PE array has been evaluated. As a
first step, body bias assignments per PE are computed based on the application, each PE’s
application mapping, and the intended strategy. In case of the RVT flavor, the LP corner
has been used, i.e., staying at Fmax the maximal clock frequency and applying reverse
body bias per PE as application slack allows. The maximum reverse body bias corner does
not need any further evaluation, as it is identical to the figure given in 8.1.1. Applying
maximum reverse body bias to all components is exactly the definition of the core-grained
maximum reverse body bias. LVT is similarly evaluated, although, for the HP corner,
the clock frequency is scaled Fmax is scaled with maximum forward body bias to Fmax,BB

and applying forward body bias as needed to meet timing based on application slack. In
case of coarse-grained body biasing, e.g., an unused PE or a PE merely used for routing
may be set to reverse body bias through the ability to focus body bias on a PE granularity.
Again, like with RVT, maximum reverse body bias or maximum forward body bias needs
no further consideration as this has been covered in section 8.1.1 as well.

As a first step, the body bias per application and PE is determined using the algorithms
presented in section 5. Then for the design in the RVT flavor, the LP corner is applied
using the unchanged maximum clock frequencies as denoted in Tab. 8.2. This results in
the per application and per PE body bias assignment as visualized in Fig. 8.13.
Examining Fig. 8.13, it visualizes that reverse body bias can be applied on each PE which

112

8.1 Simulative Results

0.6V
0.8V
1.0V

VDD

-0.7V
-1.2V
-1.3V

-1.3V
-1.3V
-1.3V

-0.7V
-1.2V
-1.3V

-1.3V
-1.3V
-1.3V

-0.4V
-0.7V
-1.3V

-1.3V
-1.3V
-1.3V

-0.4V
-0.7V
-1.3V

-1.3V
-1.3V
-1.3V

-0.4V
-0.7V
-1.3V

-1.3V
-1.3V
-1.3V

-0.4V
-0.7V
-1.3V

-1.3V
-1.3V
-1.3V

-0.7V
-1.2V
-1.3V

-1.3V
-1.3V
-1.3V

-0.7V
-1.2V
-1.3V

-1.3V
-1.3V
-1.3V

alpha

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

dct
0.0V
0.0V
-0.1V

-1.3V
-1.3V
-1.3V

0.0V
0.0V
-0.1V

-1.3V
-1.3V
-1.3V

-0.4V
-0.7V
-1.3V

-1.3V
-1.3V
-1.3V

-0.4V
-0.7V
-1.3V

-1.3V
-1.3V
-1.3V

-0.4V
-0.7V
-1.3V

-1.3V
-1.3V
-1.3V

-0.4V
-0.7V
-1.3V

-1.3V
-1.3V
-1.3V

0.0V
0.0V
-0.1V

-1.3V
-1.3V
-1.3V

0.0V
0.0V
-0.1V

-1.3V
-1.3V
-1.3V

fir

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

1.3V
1.3V
1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

1.3V
1.3V
1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

-0.4V
-0.7V
-1.3V

sad
-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-0.7V
-1.2V
-1.3V

-0.7V
-1.2V
-1.3V

-0.7V
-1.2V
-1.3V

-1.3V
-1.3V
-1.3V

-0.7V
-1.2V
-1.3V

-0.7V
-1.2V
-1.3V

-0.7V
-1.2V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

-1.3V
-1.3V
-1.3V

sepia

Figure 8.13: Body bias assignments for the RVT flavor using the LP corner for VDD =
{0.6V,0.8V,1.0V}

113

8 Results

��

�������

������

�������

������

�������

������

�������

������

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

���� ����� ��� �� ��� ����� ����� ��� �� ��� �����

�
�
�
�
��
�
�
�
�
�
�
�
���
�

�
��
�

��

�������

Figure 8.14: Power consumption caused by leakage for a 4× 4 MuCCRA4 instance in the RVT
flavor without (left) and with body biasing assignments of Fig. applied (right)

is not using the most timing critical full-width multiplication operation. Depending on
timing criticality, increasingly greater levels of reverse body biasing can be applied. Most
arithmetic functions like addition or half-width multiplication allow for considerable bias,
whereas PEs using logical functions, PEs that are used for routing purposes only and of
course inactive PEs’ leakage can be cut using maximum reverse body bias. This results in
considerably reduced leakage despite staying at the maximum clock frequency. Consider
Fig. 8.14. It depicts the power consumption incurred through leakage without reverse body
biasing (Fig. 8.14 left) and with reverse body biasing applied according to the assignments
specified in Fig. 8.13 (Fig. 8.14 right). This clearly shows a strong cut in leakage power.
However, Fig. 8.15 demonstrates that MuCCRA4 implemented in the RVT flavor at max-
imum clock frequency mainly consumes power through dynamic power dissipation, while
only a little portion is accounting for leakage. This little portion is also further contained
using reverse body biasing, but may not justify the efforts of coarse-grained body biasing.

The usage of strong forward body bias in the LVT flavor, however, stands in stark contrast
to these findings as the following will elucidate. For the LVT flavor, the HP corner is used
again, i.e., scaling clock frequency using forward body bias. Again, body bias assignments
are determined using the algorithms presented in chapter 5. The result is visualized in Fig.
8.16.
Inverse to the RVT assignments where reverse body bias is applied wherever application
slack allows doing so, the algorithms now check how much forward body bias is necessary
to be applied in order to reach the timing goals. Again, this is done per supply voltage
VDD. At first glance, Fig. 8.16 shows two major differences: both reverse, as well as
forward body bias, is applied and inverse body biases are applied to each PE. For example,
what previously couldn’t take any reverse body bias for timing reasons is now applied
maximum forward bias as Fmax,BB, the scaled maximal clock frequency, is determined

114

8.1 Simulative Results

��

�����

����

�����

����

�����

����

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

�
�
�
��
�
�
�
�
��
�

��
�
�

���� ����� ��� �� ��� ����� ����� ��� �� ��� �����

�
�
�
�
��
�
�
�
�
�
�
�
���
�

�
��
�

��

���������

��������

�������

Figure 8.15: Total power consumption for a 4× 4 MuCCRA4 instance in the RVT flavor without
(left) and with body biasing assignments of Fig. applied (right)

by the critical path timing under maximum forward body bias (Fig. 8.16 FIR). Aside of
the worst-case application FIR, moderate levels of forward body bias are applied. Again,
noteworthy are the PEs that only implement routing, timing uncritical logic operations or
those which are unused. These PEs are assigned the maximum reverse body bias the LVT
flavor can provide and thus significantly add to the overall leakage reduction achieved by
coarse-grained body biasing. This, of course, is also reflected in the power figures given
in Figs. 8.17 and 8.18.

Consider Fig. 8.17 depicting the incurred leakage per application and body biasing
scheme. The results are first ordered by application and supply voltage. Thus, first
for all applications and a given body biasing scheme, e.g., zero meaning no body bias,
incurred leakage is depicted per application ordered by supply voltage. Once for all
applications and one scheme leakage results for all supply voltages are plotted, the
next application scheme, in this case, coarse-grained body biasing, is plotted. Finally,
for comparison, the leakage results of core-grained body biasing are added. Not only
does the figure show that despite considerably increasing clock frequency, the incurred
leakage is at about the level of the zero-bias result with one step increased supply
voltage VDD. Furthermore, it clearly shows that coarse-grained body biasing is capa-
ble of strongly mitigating the leakage penalty of core-grained body biasing in the FIR filter.

To properly assess the total power consumption results depicted in Fig. 8.18, they are now
sorted in a different fashion: Now all results are grouped solely by application and within
such application group, results are divided into sub-groups of supply voltage. Within
these sub-groups, results are ordered by body bias application scheme, i.e., first zero
bias, coarse-grained body bias (CBB) and lastly core-grained, global body bias (GBB).
While facilitating a direct comparison of all schemes, this chart also allows comparing

115

8 Results

0.6V
0.8V
1.0V

VDD

0.7V
0.3V
-0.1V

-0.3V
-0.3V
-0.3V

0.7V
0.3V
-0.1V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

-0.3V
-0.3V
-0.3V

0.7V
0.3V
-0.1V

-0.3V
-0.3V
-0.3V

0.7V
0.3V
-0.1V

-0.3V
-0.3V
-0.3V

alpha

0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

0.3V
-0.3V
-0.3V

0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

dct
1.3V
1.3V
1.3V

-0.3V
-0.3V
-0.3V

1.3V
1.3V
1.3V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

-0.3V
-0.3V
-0.3V

1.3V
1.3V
1.3V

-0.3V
-0.3V
-0.3V

1.3V
1.3V
1.3V

-0.3V
-0.3V
-0.3V

fir

-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

-0.3V
-0.3V
-0.3V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

0.8V
0.5V
0.1V

sad
-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

0.7V
0.3V
-0.1V

0.7V
0.3V
-0.1V

0.7V
0.3V
-0.1V

-0.3V
-0.3V
-0.3V

0.7V
0.3V
-0.1V

0.7V
0.3V
-0.1V

0.7V
0.3V
-0.1V

-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

-0.3V
-0.3V
-0.3V

sepia

Figure 8.16: Body bias assignments for the LVT flavor using the HP corner for VDD =
{0.6V,0.8V,1.0V}

116

8.1 Simulative Results

��

�����

����

�����

����

�����

����

�����

����

�����

����

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

����� ��� �� ��� ����� ����� ��� �� ��� ����� ����� ��� �� ��� �����

�
�
�
�
��
�
�
�
�
�
�
�
���
�

�
��
�

�������������

�������

Figure 8.17: Power consumption caused by leakage for a 4× 4 MuCCRA4 instance in the LVT
flavor without (left, zero) and with coarse-grained body biasing assignments of Fig. 8.16 applied
(middle, CBB) and core-grained global body biasing (right, GBB)

��

����

����

����

����

����

����

����

����

����

��

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
��

�
�
�
�
��
��
�

��
�
�

�
�
�
�
��
��
�

��
�
�

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

������
�������
���� ����� ��� �� ��� �����

�
�
�
�
��
�
�
�
�
�
�
�
���
�

�
��
�

�
�
�

�
��
�
�

������������������������������������

���������

��������

�������

���

Figure 8.18: Total power consumption for a 4×4 MuCCRA4 instance in the LVT flavor grouping
by application, within each application group by VDD and body bias application scheme (zero,
coarse-grained CBB, core-grained global body bias GBB), with coarse-grained body bias applying
the body biasing assignments of Fig. 8.16

117

8 Results

voltage scaling to body bias based frequency scaling in a more comprehensible manner.
As overlay the EDP of all results is plotted on top of the bars. It is observable in Fig. 8.18
that leakage makes up for a significant part of total power consumption. Furthermore,
Fig. 8.18 also indicates that coarse-grained application of coarse-grained body biasing
yields better energy efficiency than scaling to the next higher supply voltage level for all
applications, including the worst case application FIR. In case of the sepia application,
the EDP of the coarse-grained body bias frequency scaled variant at VDD = 0.6V yields
a better EDP than the original unscaled result. This is because the local assignment of
reverse body bias can even result in a leakage reduction compared to the original zero-bias
variant at the same VDD.

Thus, these results highlight four points:

• Reverse body biasing focused strategies may consider core-grained body biasing

• Forward body biasing greatly benefits from coarse-grained body biasing

• Coarse-grained body biasing exhibits better energy efficiency in all cases compared
to voltage scaling

• There is a lot of unused potentials to be leveraged by better partitioning methods and
algorithms

Results on coarse-grained body biasing in processes and flavors with mostly reverse body
bias capability may not benefit as much by focussing the bias more locally. This, however,
depends strongly on the intended purpose and the process used for the implementation. As
shall later be shown in chip evaluation results, processes that have both strong forward and
strong reverse body biasing capabilities do benefit from more fine-grained approaches. For
the sole purpose of realizing ultra-low-power modes, the overheads may not be justified.
For forward body bias oriented flavors, however, the results clearly showed the superiority
of coarse-grained body biasing over the core-grained method. Throughout all evaluated
applications, it resulted in better energy efficiency, while also hinting the unused potential
that can be leveraged with better, more fine-grained body biasing.

8.1.3 Fine-Grained Body Biasing

As the previous sections indicated, coarse-grained body biasing still leaves room for
improvement. For this reason, the fine-grained body biasing approach proposed in section
5.4 were applied to the MuCCRA4 design. It has then been pre-partitioned on PE level
into individual domain candidates. e.g., the register file, context memory, sub-components
of the ALU (adder, multiplier, multiplexer etc.), etc. each constitute a domain candidate.
Memories have not further been divided for this evaluation as this requires assumptions on
memory usage to be made, which for this simulative study has been omitted.

The aforementioned hand defined domain candidates were then merged using the merging
algorithms specified in sections 5.4.1 for a target number of body bias domains per PE

118

8.1 Simulative Results

k ranging from 1 to 4. Obviously, k = 1 just means coarse-grained body biasing, as all
(sub-)components of a PE are put into one body bias domain. Using the thereby gathered
body bias domain partitionings, different temporal body biasing schemes, as specified in
section 4.2, are evaluated. These schemes are static, i.e., hard-wired body bias assignment,
programmable, meaning body biases may be changed per application and dynamic, i.e.,
switched at any given point in time. If increasing the number of target body bias domains
didn’t yield any leakage improvement during merging, this number of target body bias
domains and above will be ignored. e.g., if the figures display a k ranging from 1 to 3, this
means 4 body bias domains per PE didn’t yield any improvement for the given design and
temporal scheme.

The body bias domain partitioning for a target of k = 3 body bias domains generated in
this step and used for most evaluations in this subsection is displayed in Fig. 8.19. Using
this partitioning, the evaluation of power consumption for programmable body biasing is
conducted, resulting in Fig. 8.20.

As this graph shows, there are no data points for k = 4, which means that for programmable
body biasing, the partitioning visualized in Fig. 8.20 yields maximum leakage reduction.
This, of course, is also due to the limited resolution of the domain candidates as they have
to be pre-partitioned by hand. However, for no body bias indicated by the letter N and k
ranging from 1 to 3, programmable body biasing shows a steady reduction in the leakage
penalty incurred by the forward body bias used for frequency scaling. By splitting up PEs
into several body bias domain, the components requiring strong forward body bias can
be separated from those that do not need such body bias. On the contrary, some might
even tolerate reverse body bias. Thus, increasing numbers of body bias domains allow for
more separation of such parts. Furthermore, for all applications, EDP is now lower than
unscaled variants on the same supply voltage level when k is at least k = 2. This means
that with fine-grained body biasing, it is in the evaluated architecture always more energy
efficient to use forward body bias to scale clock frequency than increasing the supply
voltage by a discrete step as done in the evaluation.

Putting the leakage reduction into concrete numbers, Figs. 8.21 and 8.22 visualize the
achieved leakage reduction of programmable body biasing per number of body bias do-
mains per PE. Obviously, these figures are application dependent and thus, the best-case
application incurs less reduction than the worst-case application. However, the best-case
application, of course, starts out with less leakage to begin with. For application sepia,
a solid 20-50% leakage reduction is achieved, while for fir, leakage is cut by more than
half over coarse-grained body biasing (k = 1).
The evaluation for dynamic body biasing is more of a theoretical nature as switching body
biases on a small time-scale is a multifactorial challenge. It is mainly dependent on the
charge required to change the body bias from a given potential to the next, as well as
the transistor bodies’ RC characteristics. For this evaluation, a fictive substrate charge
equivalent to charging transistor terminals is assumed. Both in terms of resistance R and
capacitance C, this is highly underestimated. This being said, it ultimately only changes the

119

8 Results

A

A
LU

Y Z

C

B

ADD ADD8

SUB XOR

SL SR

BS MULTTB

MULT

CMP

CMB

EQL

OR

SEL

AND

OP_A OP_B

ALU_MUX

O
P_
C

A

AL
U

Y Z
B

AL
U_

CA
RR

Y_
SE

L

...

ALU_OUT_REG

SE_B

SE_A

Body Bias Selector

RF

RF_OUT_SEL

RF_OUT_REG

A B

ALU_DATA_SEL_A ALU_DATA_SEL_B

... ...

CONTEXT_CONT64-32 CONTEXT_CONT0-31

CONTEXT_CONT
SE_A SE_B RF ALU ALU_DATA_SEL BB0:

SE_A SE_B RF ALU ALU_DATA_SEL BB1:

SE_A SE_B RF ALU ALU_DATA_SEL BB2:

SE_A SE_B RF ALU ALU_DATA_SEL BB32:

...

C

BBI 1 BBI 2 BBI 3

Figure 8.19: Partitioning into body bias domains generated through pre-partitioning assisted fine-
grained body bias flow with combinatoric k-subset merging.

120

8.1 Simulative Results

��

����

����

����

����

��

����

���
�����

�����

�����

�����

�����

�����

�����

�����

�����

�
�������

���� ����� ��� �� ��� �����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
��
�
�
�
�
�
�
�
���
�

�
��
�

�
�
�

�
��
�
�

��

�������

�������

���

Figure 8.20: Total power consumption for a 4×4 PEs MuCCRA4 instance implemented in STMi-
croelectronic’s 28nm UTBB-FDSOI LVT flavor in the body bias frequency scaling scenario (corner
HP), split by dynamic and static power (leakage) with the respective EDP per bar as overlay as a
measure of energy efficiency

��

���

���

���

���

���

���

���

���

���

����

����

� � � �

�
�
�
�
�
�
�
��
�
�
�

�������������

����������������������

��������

��������

��������

��������

Figure 8.21: Leakage body biasing at VDD = {0.6V,0.8V,1.0V,1.2V} for programmable body bi-
asing in best-case application sepia and increasing numbers of body bias domains per PE

121

8 Results

��

���

����

����

����

����

� � � �

�
�
�
�
�
�
�
��
�
�
�

�������������

��������������������

��������

��������

��������

��������

Figure 8.22: Leakage reduction over core-grained body biasing at VDD = {0.6V,0.8V,1.0V,1.2V}
for programmable body biasing in worst-case application sepia and increasing numbers of body
bias domains per PE

period required to stay at a given body bias level to amortize the switching costs. Therefore,
based on the operations executed in the applications, the time spent executing the respective
operation, time-dependent body bias assignments were computed using the approaches
presented in sections 5.4.1 and 6.6.
This results in body bias levels depicted in Fig. 8.23. The body bias is only changed,
when the leakage reduction or the mitigated leakage penalty that is saved by switching
body bias outweighs the switching cost. This computation, however, neither includes static
power consumption of the realizing regulators, nor does it include the efficiency loss of the
mentioned regulators. Thus, it is not expected for dynamic body biasing to yield a benefit
at this time scale. This hypothesis is confirmed by the overall leakage reduction of the
presented body biasing schemes. Consider Fig. 8.24.
Fig. 8.24 depicts the leakage reduction of programmable and dynamic body biasing with
static, i.e., hard-wired coarse-grained body biasing as baseline. Here again, the worst-case
application fir benefits much more from body biasing application schemes. In this case,
fine-grained leakage reduction amounts to almost 90% while for sepia, the best-case,
gets barely close to a 50% reduction in leakage. This being said, applications are similar
in regard to the effect of the first additional body bias domain. Depending on the design
and the different need of its components for different levels of body bias, this effect varies.
For the relatively small design of one PE, there are two major categories: 1. arithmetic
functions and 2. logical functions and inferred memories. While the first category
can generate paths of considerable length and timing criticality, the second category is

122

8.1 Simulative Results

����

��

����

����

����

����

��

����

�� �� �� �� �� �� �� �� �� ��

�
�
�

����������������

���

��������

��������

��������

��������

����

��

����

����

����

����

��

����

�� �� �� �� �� �� �� �� �� ��

�
�
�

����������������

��

��������

��������

��������

��������

Figure 8.23: Dynamic switching strategy for application fir depending on vector instruction size,
2 (top) and 16 (bottom)

��

��

���

���

���

���

���

���

���

���

���

� � �

�
�
�
�
�
�
�

�
��
�
��
�
�
�
�
�
��
��
�

�����������

��

�������������
������������

�������
��

���

���

���

���

���

���

���

���

���

� � �

�����������

�����

�������������
������������

Figure 8.24: Overall leakage reduction of static coarse-grained body biasing (k = 1) over pro-
grammable and dynamic body biasing

123

8 Results

uncritical in comparison.

The fine-grained results hint towards the limitations of body biasing. Increasingly fine-
grained body biasing yields benefits only up to a certain point, which is defined by the
number of components with highly different timing criticality. This, again, points towards
the last remaining optimization potential: standard-cell grained body bias domain parti-
tioning. In this pre-partitioning fine-grained body biasing approach, domain candidates
are defined on HDL module level. In reality, ideal domain candidates are most likely not
defined along the lines of component borders. Especially if greater levels of synthesis
optimization are desired, effects such as resource sharing need to be accounted as well.
With the pre-partitioning based domain candidate definition, not only is this clearly not
feasible but also hinders synthesis optimization. Another limitation concerning dynamic
body biasing is the temporal granularity. Dynamic body biasing is only beneficial beyond
a threshold period for which the body bias remains unchanged. While there are, of course,
very potent regulators e.g., for DVFS, one of the intriguing aspects of body biasing is the
extremely low demands on drive current. Furthermore, the resistance characteristics of the
transistor wells constitute another research challenge, ultimately giving a physical lower
bound.

8.1.4 Standard-Cell Grained Body Biasing

To alleviate the shortcomings of all previous approaches, the DCE standard-cell grained
body biasing approach has been proposed in chapter 6. Analyzing timing and activation
in highly optimized standard-cell netlists does not only eliminate the issue of limited syn-
thesis optimization but also removes the need for pre-partitioning into domain candidates
by hand. This, however, also requires complex computations like timing and leakage
analysis usually conducted by sophisticated EDA tools. In this thesis’ case, rudimentary
algorithms implementing such analyses have been implemented. However, although they
are expected to be consistent for the comparison, they do not need to be exact at this
point. For this reason, all results in this section are given relative to the zero bias (No BB)
baseline.

To generate the following results, the target components, an ALU and a register-file, were
synthesized using process specific libraries and Synopsys Design Compiler [107] with
ultra optimizations and ungrouping enabled. The ultra feature is the synthesis feature with
the highest level of optimization, thus leaving one single highly optimized netlist per target
design. This netlist is then used in DCE together with process specific libraries and SPICE
augmented body biasing data to identify possible domain candidates. Once resource
sharing effects have been taken care of, these domain candidates can be merged using
the optimized combinatoric k-subset merging algorithm described in section 6.5. The
actual evaluation is then also conducted by DCE using its leakage and timing computation
functionality. For evaluation, two modes are considered: static body biasing and dynamic
body biasing. These two modes constitute two extremes: worst-case and best-case
application. With static body biasing, it is assumed that the body bias is hard-wired and

124

8.1 Simulative Results

thus cannot be changed while dynamic, in this case, assumes that body bias could be
switched at any point in time. The latter mode’s results are thus generated by averaging
the leakage incurred when activating each operation group. An operation group denotes
a set of operations which result in the same body bias assignment to body bias domains
when activated. Thus, evaluation only needs to be conducted for each of such groups.

For a better distinction between results, the following nomenclature is used:

1. No BB - Zero bias

2. Max. RBB, maximum reverse body bias with reduced maximum clock frequency

3. N kXM Normal corner N, i.e., unchanged maximum clock frequency

4. F kXM Forward body biasing scaling corner F , with increased maximum clock
frequency

where kX means the number of body bias domains k is k = X and M is either s static body
bias assignment, or, d dynamic assignment. For example, Fk3d describes a result for the
forward body biasing scaling corner with 3 body bias domains per evaluated component,
with the evaluation conducted for dynamic body bias assignment.

For STMicroelectronic’s 28nm UTBB-FDSOI, the target designs were evaluated at both
supply voltages VDD = 0.6V and VDD = 1.0V . Consider the results for VDD = 0.6V first
in Fig. 8.25. As first observation, the flavors have opposite body bias capabilities. While
RVT has an extended reverse body bias range and only little forward body bias, LVT has
an extended forward body bias range with limited reverse body bias capabilities. Thus, the
differences between LVT and RVT flavors in the Max. RBB corner, as well as all other
results that benefit from one direction, can be accounted to the flavor difference.
An interesting phenomenon becomes visible when considering the static results. Indepen-

dent of the corner, both N and F now show reactions to increased numbers of body bias
domains k. This is due to cross-domain resources sharing effects. As with static body bias-
ing, the body bias cannot be changed temporally, it is a fixed assignment that ensures that
all components are always functional. As the critical paths cross all body bias domains,
none of the assigned body biases could be decreased without violating timing. While re-
source sharing is, in principle, a good optimization, it can hinder proper utilization with
body biasing. In the dynamic case, however, significant leakage reductions can still be
achieved by adjusting the body bias depending on the operation groups executed during
certain periods. In the worst case, dynamic body biasing is equal to static body biasing.
For a supply voltage of VDD = 1.0V , results are fairly similar as depicted in Fig. 8.26.
It corresponds to the reduced impact of body bias at higher supply voltages as discussed
in previous chapters. As the components are not synthesized anew for greater supply
voltages, the graphs exhibit the same effects as in Fig. 8.25. Static body biasing is still
hindered by cross-domain resource sharing, while dynamic body biasing leverages the
different body bias requirements of different operation groups.

125

8 Results

0

0,2

0,4

0,6

0,8

1

1,2

No BB Nk1d Nk2d
0

1

2

3

4

5

6

7

No BB Fk1s Fk2s Fk3s
0

0,5

1

1,5

2

2,5

3

3,5

No BB Fk1d Fk2d Fk3d
0

0,2

0,4

0,6

0,8

1

1,2

No BB Rk1
0

0,2

0,4

0,6

0,8

1

1,2

No BB Nk1s Nk2s

Max. RBB (R) LP (N) static LP (N) dynamic HP (F) static HP (F) dynamic
LV

T
R

VT

0

0,2

0,4

0,6

0,8

1

1,2

No BB RBB
0

0,2

0,4

0,6

0,8

1

1,2

No BB LP1 s LP2 s
0

0,2

0,4

0,6

0,8

1

1,2

No BB LP1 d LP2 d LP3 d
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

No BB HP1 s HP2 s HP3 s
0

0,2

0,4

0,6

0,8

1

1,2

1,4

No BB HP1 d HP2 d HP3 d

V D
D

=
0.

6V
Leakage Speed

Figure 8.25: Normalized leakage and speed evaluation of the DCE based body bias domain par-
titionings for STMicroelectronic’s 28nm UTBB-FDSOI flavors LVT (top) and RVT (bottom) for
VDD = 0.6V

Max. RBB (R) LP (N) static LP (N) dynamic HP (F) static HP (F) dynamic

LV
T

R
VT

0

0,2

0,4

0,6

0,8

1

1,2

No BB RBB
0

0,2

0,4

0,6

0,8

1

1,2

No BB LP1 s LP2 s
0

0,2

0,4

0,6

0,8

1

1,2

No BB LP1 d LP2 d LP3 d

0

0,2

0,4

0,6

0,8

1

1,2

No BB Rk1
0

0,2

0,4

0,6

0,8

1

1,2

No BB Nk1s Nk2s
0

0,2

0,4

0,6

0,8

1

1,2

No BB Nk1d Nk2d
0

1

2

3

4

5

6

7

No BB Fk1s Fk2s Fk3s
0

0,5

1

1,5

2

2,5

3

No BB Fk1d Fk2d Fk3d

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

No BB Fk1s Fk2s
0

0,2

0,4

0,6

0,8

1

1,2

1,4

No BB Fk1d Fk2d

V D
D

=
1.

0V

Leakage Speed

Figure 8.26: Normalized leakage and speed evaluation of the DCE based body bias domain par-
titionings for STMicroelectronic’s 28nm UTBB-FDSOI flavors LVT (top) and RVT (bottom) for
VDD = 1.0V

126

8.1 Simulative Results

Max. RBB (R) LP (N) static LP (N) dynamic HP (F) static HP (F) dynamic
SO

TB
 V

D
D

=
0.

55

0

0,2

0,4

0,6

0,8

1

1,2

No BB Rk1
0

0,2

0,4

0,6

0,8

1

1,2

No BB LP1 s LP2 s LP3 s
0

0,2

0,4

0,6

0,8

1

1,2

No BB LP1 d LP2 d LP3 d
0

1

2

3

4

5

6

7

No BB HP1 s HP2 s HP3 s
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

No BB HP1 d HP2 d HP3 d

Leakage Speed

Figure 8.27: Normalized leakage and speed evaluation of the DCE based body bias domain parti-
tionings for Renesas’ 65nm SOTB FDSOI for VDD = 0.55V

Renesas’ SOTB, on the other hand, does not use as complex library characterizations
than the processes above. This, as well as other reasons, lead to less resource sharing
and thus also allows to leverage body bias domain partitioning to a far greater degree.
Consider the results visualized in Fig. 8.27. First of all, SOTB and its very thin buried
oxide enable the back gate to exercise greater control on the transistor channel, thus
leading to strong Max. RBB results. This also drags down the speed figure more than
e.g. with STMicroelectronic’s process at similar biases. With less resource sharing, it can
be observed that increasing numbers of body bias domains k reduce the incurred leakage
considerably.
With domain candidates with different body bias requirements no longer being dependent

on each other, more suitable body biases can be statically assigned to the individual
domains. This results in leakage reductions, which are then furthered using dynamic body
biasing. With the forward body biasing scaling corner F , the results are even more drastic.
Even though the clock frequency is scaled using forward body bias, leakage is already
below the original level when allowing more than one body bias domain. If dynamic
body biasing is employed as well, the leakage reduction almost reaches the levels of
the unscaled variants. This result, however, is to be taken with a word of caution, that
dynamic body biasing is an unanswered research challenge of its own, and thus, while the-
oretically possible, this thesis does not claim this to be feasible with the proposed methods.

Another worthwhile endeavor is also to partition components which haven’t been con-
sidered before, such as memories. In this thesis, only inferred memories like flip-flop or
latch standard cells are considered. In many designs, such components make up for a large
portion of chip area. Thus, in case the memories are unused, they could just be deactivated
to reduce unnecessary static power consumption. DCE handles such memories similar to
the ALU designs above, by treating the memory’s address like an opcode. In this case, the
highest address bit is specified as opcode and thereby partitions the memory into a lower
half and an upper half. As this partitioning is application dependent, the designer has to
specify such attributes by hand.

Consider Fig. 8.28. It clearly shows the expected response when half or all of the memory

127

8 Results

0

0.2

0.4

0.6

0.8

1

1.2

SOTB 0.55V
Mon

SOTB 0.55V
Mon 1/2

SOTB 0.55V
Moff

LVT 0.6V Mon LVT 0.6V Mon
1/2

LVT 0.6V Moff RVT 0.6V Mon RVT 0.6V Mon
1/2

RVT 0.6V Moff

Leakage by Register File Partitioning Strategy Corner: Norm

Figure 8.28: Normalized leakage for memory partitioning at LP corner using STMicroelectronic’s
28nm UTBB-FDSOI and Renesas’ 65nm SOTB at VDD = 0.6V and VDD = 0.55V respectively

is deactivated using maximum available reverse body biasing. The responses are thus
mainly dependent on the processes’ capabilities to exercise reverse body biases. While
SOTB with its strong body effect exhibits the greatest reductions, it is closely followed
by the RVT flavor of STMicroelectronics. Lastly, the LVT flavor, not having strong
reverse body biasing capabilities still exhibits considerable reductions of about 25% when
switched off completely.

In summary, standard cell-grained body biasing is a two-fold refinement on fine-grained
body biasing. Not only is partitioning granularity no longer limited by component bound-
aries, but also eliminates the need for pre-partitioning by hand. By first identifying domain
candidates on standard cell basis, it allows standard cell granularity with often even less
computational overhead during the merging phase, as many domain candidates can be col-
lapsed into a few. However, there are also downsides which will have to be addressed
if body bias domain partitioning should become a standard process when designing with
FDSOI. The greatest hindrance as demonstrated in Figs. 8.25 and 8.26, is cross-domain re-
source sharing which can be resolved by e.g., replicating shared resources. Heavy resource
sharing can ultimately reduce or eliminate the benefits of additional body bias domains.

8.2 Chip Measurements

In this section, the actual chip measurements will be presented. They were obtained
using a power analyzer attached to the digital core VDD and measuring the incurred static
current while changing the body bias of respective domains using FPGA controlled
voltage regulators. By shorting body bias domains of PEs or entire PEs altogether,
different granularities can be evaluated. e.g., if fine-grained body biasing is evaluated,
each domain is biased individually, while for coarse-grained body biasing all body bias
domains of one PE are shorted together to form one body bias domain. The design, as
well as the body bias domain partitioning, has been implemented as illustrated in chapter 7.

128

8.2 Chip Measurements

 0.1

 1

 10

 100

 1000

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

D
is
si
pa
tio
n
[µ
W
]

VBB [V]

0.55V
(G) 0.55V

0.35V
0.75V

Figure 8.29: Static power consumption of the digital core at VDD = {0.35V,0.55V,0.75} where
VDD = 0.55V is split into all evaluated chips and a good lot (G)

The chip leakage evaluation is conducted by first estimating the PE’s timing at zero bias
using the standard cell libraries supplied with the PDK. Using this timing estimate together
with further SPICE simulations gives an accurate description of the effects of body biasing
on the timing of each PE. Using these body bias augmented timing estimates, the body bias
assignments are computed as described in chapter 5 and 6 for all covered granularities.

8.2.1 Core-Grained Body Biasing

Core-grained body biasing, or in this particular case, whole chip body biasing shortens
all body bias domains to one big V BN and V BP net, thus acting like one single body
bias domain. Fig. 8.29 explicitly depicts the incurred static power consumption instead
of the leakage current to differentiate between the supply voltages VDD. The y-scale is
a logarithmic scale as body bias influences leakage and static power consumption in an
exponential manner.

The results presented in fig. 8.29 were obtained using different numbers of samples,
where VDD = 0.55V is the one with the most chips sampled. For this supply voltage,
a total of 6 chips were evaluated in detail. From this group, a good lot in regard to
leakage has been derived, comprising 4 chips. In the results, their average static power
dissipation is visualized as (G) VDD = 0.55V . From this good lot, one chip was taken
to evaluate the design at two more supply voltages VDD = 0.35V and VDD = 0.75V . For
all evaluations, a mostly exponential behavior can be observed. At maximum reverse
body bias, the VDD = 0.35V measurement reaches about 200nW while the good lot of

129

8 Results

-500

-400

-300

-200

-100

 0

 100

alpha dct fir sad sepia

[%
] P
en
al
ty

Global LP
Global HP

Zero-Bias

Figure 8.30: Leakage reduction or penalty respectively for global body biasing applied to five
benchmark applications at VDD = 0.55V

VDD = 0.55V reaches the respectable 500nW range. The regular VDD = 0.55V group with
the bad chips, however, does not respond well to reverse body bias and even worsens
the VDD = 0.55V results beyond the VDD = 0.75V data points. The measurements for
VDD = 0.35V and VDD = 0.75V behave as expected, slightly translated below and above
the good lot measurements of VDD = 0.55V . Thus, the effectiveness of body biasing on a
whole chip level, i.e., core granularity, is concluded.

Now applying these core-grained capabilities to application specific body biasing schemes,
Fig. 8.30 depicts the leakage penalties (negative values) and reductions (positive values)
achieved by core-grained body biasing for the entire chip.
The results clearly show that when staying at the regular, unscaled maximum clock fre-
quency (LP), leakage can be reduced and in the worst-case, it does not yield any reduction
at all over zero-bias. For the forward body biasing frequency scaling case (HP) however,
the strong need for more fine-grained schemes becomes obvious. Without the ability to
focus on forward body bias which leads to an exponential leakage increase, the leakage
penalty becomes intolerable such as with the fir filter.

8.2.2 Coarse-Grained Body Biasing

As the previous simulative result sections have shown, coarse-grained body bias constitutes
a significant step forward over core-grained, or in this case chip-grained body bias. Coarse-
grained body bias allows to focus the application specific body bias per PE and thus to
achieve more leakage reduction in the LP corner and greatly reduced leakage penalties in
the HP corner as depicted in Fig. 8.31. For the LP corner, now all applications, even the fir
filter shows leakage reductions achieved by disabling unused processing elements using

130

8.2 Chip Measurements

-300

-250

-200

-150

-100

-50

 0

 50

 100

alpha dct fir sad sepia

[%
] P
en
al
ty

CG LP
CG HP

Zero-Bias

Figure 8.31: Leakage reduction or penalty respectively for coarse-grained body biasing applied to
five benchmark applications at VDD = 0.55V

strong reverse body bias, while the PEs running the expensive multiplications continue
working at zero-bias. For the HP corner, on the other hand, the leakage penalty is almost
halved compared to core-grained body biasing. While this is still not ideal, it constitutes a
major improvement.

8.2.3 Fine-Grained Body Biasing

Ultimately, if body bias should be used in the most beneficial manner, forward body bias
needs to be restricted to only those components that cannot work properly without and
reverse body bias spread to all components that can take it in light of the timing constraints.
Fine-grained body bias is a method to get very close to this ideal, as the following results
in Figs. 8.32 to 8.36 will show. All individual leakage measurements indicate not only the
attained leakage, but also the temperature at the time of measurement. As the results are
obtained from a lot of six chips, all measurements including the chip case temperature are
averaged. For brevity, the presented measurements are always measurements of leakage
with body bias applied to a given domain type (e.g., MEML, MEMH, ALUL, ALUH),
with the exception of the first PE’s lower memory domain, containing all DRP controllers
(C0UMEML). Thus, for MEMH, ALUL and ALUH, the leakage reading depicts the leakage
incurred by biasing all four domains of the type in the DRP.
Fig. 8.32 depicts the incurred leakage for the C0UMEML domains as well as the three

remaining MEML domains in the DRP. It also shows that despite C0UMEML containing all
controllers, memories, i.e., the MEMLx3 reading dominates all other leakage sources. This
can be seen by the extraordinary increase in leakage when applying forward body bias on
MEMLx3 or by the strong reduction in leakage when applying reverse body biasing.

131

8 Results

 50

 100

 150

 200

 250

 300

 350

 400

 450

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
 22.1

 22.15

 22.2

 22.25

 22.3
Le
ak
ag
e
[µ
A
]

A
vg
. T
em
p.

[°
C
]

VBB [V]

C0UMEML
C0UMEML Temp

MEMLx3
MEMLx3 Temp

Figure 8.32: Static current and case temperature while changing the body bias of the three MEML
domains as well as the C0UMEML domain at a supply voltage of VDD = 0.55V

 80

 100

 120

 140

 160

 180

 200

 220

 240

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
 22.6

 22.65

 22.7

 22.75

 22.8

Le
ak
ag
e
[µ
A
]

A
vg
. T
em
p.

[°
C
]

VBB [V]

 MEMHx4
Temp

Figure 8.33: Static current and case temperature while changing the body bias of the MEMH do-
mains at a supply voltage of VDD = 0.55V

132

8.2 Chip Measurements

 110

 112

 114

 116

 118

 120

 122

 124

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
 22.4

 22.5

 22.6

 22.7

 22.8

 22.9
Le
ak
ag
e
[µ
A
]

A
vg
. T
em
p.

[°
C
]

VBB [V]

ALULx4
Temp

Figure 8.34: Static current and case temperature while changing the body bias of the ALUL do-
mains at a supply voltage of VDD = 0.55V

MEMH is the second largest domain type and thus also incurs significant leakage in
foward direction and also allows for considerable leakage reductions when applying
reverse body bias. ALUL, on the other hand, is the smallest domain type and can be
seen as a mix of research interest in extremely fine body bias domains and the attempt
to keep the critical body bias domain ALUH as small as possible. As ALUH is the only
domain which is exhibited to maximum forward body bias, it is vital to keep it as small
as possible. In this regard, ALUH may be considered the most important or most critical
body bias domain type. It contains all arithmetic operations per PE and thus will require
the maximum forward body bias. ALUH is restricted to the bare minimum it requires
while also facilitating some resource sharing opportunities among arithmetic operations
while at the same time omitting any actual cross-domain resource sharing. Despite all
this, as ALUH also contains the output multiplexer as part of the critical path, ALUL and
ALUH do have some cross-domain resource sharing. However, the operations in ALUL
are never timing critical enough to cause an actual cross-domain resource sharing conflict.

This fine-grained body biasing scheme now allows restricting the forward body bias to
wherever necessary, while allowing reverse body bias in large unrequired areas such as the
upper half of the context memory etc. This, of course, is reflected in the leakage reductions
over all corners and applications as depicted in Fig. 8.36.

Even when scaling clock frequency using forward body bias, leakage can be considerably
reduced, as only a comparatively tiny part of the chip needs a strong forward body bias.

133

8 Results

 105

 110

 115

 120

 125

 130

 135

 140

 145

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
 22.5

 22.6

Le
ak
ag
e
[µ
A
]

A
vg
. T
em
p.

[°
C
]

VBB [V]

ALUHx4
Temp

Figure 8.35: Static current and case temperature while changing the body bias of the ALUH do-
mains at a supply voltage of VDD = 0.55V

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

alpha dct fir sad sepia

R
ed
uc
tio
n
[%
]

Max. RBB
FG LP

FG HP
Zero-Bias

Figure 8.36: Fine-grained body biasing (FG) for the low power corner (LP) as well as the high
performance, frequency scaling corner (HP) versus maximum reverse body biasing as well as zero-
bias as baseline at 0% reduction

134

8.3 Discussion

Corner Fmax Fmax,BB/Fmax

Max. RBB Fmax,RBB = 12.77MHz 0.18
LP Fmax = 72.55MHz 1
HP Fmax,FBB = 111.58MHz 1.54

Table 8.3: Maximum clock frequencies at VDD = 0.55V per corner with regular Fmax at the LP
corner

Tab. 8.3 lists the maximum clock frequencies as well as their ratio normalized to regular
Fmax per corner. In comparison to applying a strong forward body bias to the memory
domains, the leakage penalty incurred with ALUH is neglectable and is compensated
with the savings in memory domains. In this regard, an individual ALUL domain is also
sensible, as it helps to keep the leakage penalty low. While the leakage reduction reaches
a minimum at the fir filter application, it is still a solid leakage reduction.

In sum, these findings prove that proper fine-grained partitioning into body bias domains
using measures of timing criticalities and activation leads to the desired, further improve-
ments over coarse-grained body biasing.

8.3 Discussion

As the original MuCCRA architectures were built for use with SRAM context memories,
the inferred memory devices in this implementation are a lot faster than the originally
anticipated memory. While this enhances the positive results, the general trend would be
still the same even with SRAM devices. Up till now however, there are no detailed studies
on the behavior of SRAMs in modern FDSOI under strong bias. Thus, an evaluation with
inferred memories had to be chosen.

The general insights that can be derived from these results section can be split into two
types of body biasing:

1. Reverse body biasing minimizing leakage to reach the lowest power consumptions
possible (ultra-low-power)

2. High-Performance applications scaling clock frequency using forward body biasing
to maximize energy efficiency

In regard to the first category, large parts of the chip or the entire chip are using strong
reverse body bias, as such modes usually do not require high performance. In comparison
to dynamic power, such modes often exhibit relatively large static power consumption.
This static power consumption can be efficiently reduced by employing reverse body
biasing. As at such low clock frequencies the timing criticality of all components is
virtually non-existent, the entire part or chip can be put into a single body bias domain.
If, however, the chip is geared towards ultra-low-power and performance, it could

135

8 Results

����

����

����

����� ��� �� ��� �����

�
�
�
�
�
���
�

�
��
�

��
��
�
�
�
�
���

������
�����
�����
�����

�����
���������
���������
���������

���

���

���

��

���

���

���

���

����

Figure 8.37: Comparative overview of fine-grained versus coarse-grained versus core-grained body
biasing schemes applied to five benchmark applications at VDD = 0.55V

tremendously benefit from the extremely high-frequency boost of forward body bias at low
supply voltages, thus killing two birds with one stone: attaining ultra-low-power as well
as high performance considering the supply voltage. For this purpose, low supply volt-
ages are combined with the high-performance corner discussed in the following paragraph.

When a design should be geared toward high performance at maximum attainable energy
efficiency, it could possibly benefit from having as many body bias domains as there are
parts with different timing criticality and activation. Only when a design is partitioned
along these lines, the severe penalties of forward body biasing used for frequency scaling
can be mitigated. Furthermore, a direct relation between the granularity and the leakage
penalty or reduction can be drawn.
Consider Fig. 8.37, which is a overall comparison of all considered body biasing schemes
from core- to fine-grained body biasing evaluated per application using the test chip
described in chapter 7. Each application block starts with maximum reverse body biasing
at a frequency of Fmax,RBB, followed by the LP corner at Fmax and finally followed by
the HP corner at Fmax,FBB. Each of these corners is evaluated for fine-grained (first),
coarse-grained (second) and global body biasing (last). Thus, it is clearly visible that
fine-grained schemes get very close to the theoretical optimum of maximum reverse
body biasing, however at more than five times the clock frequency. Furthermore, this
comparison also shows that fine-grained body biasing is superior to all other approaches
proposed in this thesis.

136

8.3 Discussion

These findings are especially important with smaller technology nodes where leakage
will be considerably exacerbated. As FDSOI is reported to be scalable down to at least
10nm [29], it will be vital to be able to contain leakage during forward body biasing.
This aspect also has to be seen in the light of the available alternatives. Consider the only
actual contender: supply voltage scaling. In order to justify all the additional hardware,
e.g. voltage level shifters, performant voltage regulators etc., considerably sized domains
are required. This increased granularity also exacerbates the incurred penalty, leakage and
dynamic power wise. In stark contrast, body biasing needs nothing more than the actual
body bias creation with power straps supplying the tap cells. This allows to pinpoint
portions of a chip that need an extra performance boost while reducing power consumption
at the same time in parts that need less performance than available at a given supply
voltage. Also, compared to power gating, body biasing offers an interesting alternative.
By combining clock gating with strong reverse body biasing, power consumption of the
affected parts is minimized while neither power switches nor retention cells are needed as
the state of the circuit is retained.

In this light, body biasing can also be used as a last resort artificial pipeline balancer,
adjusting all parts to a given clock cycle. Although of course, this is a very desirable feature
as despite best design efforts, totally balanced designs are hard to come by. Furthermore, by
using body biasing in its most desirable application, i.e., the above-mentioned frequency
scaling, it of course effects pipelining as well. If circuits can operate faster, additional
pipeline stages may be omitted altogether, which is a low-power design method itself.
These advantages combined with the ability to actually lower supply voltage while staying
at the same clock frequency should disperse any doubts in regard to body biasing as a
low-power technique.

137

8 Results

138

9 Conclusion and Outlook

The FDSOI construction of processes as manufactured by STMicroelectronics, Renesas
and Globalfoundries significantly extended body biasing capabilities, but the state of the
art exhibited a big gap to exploit body biasing in FDSOI fully. The conducted research can
be broken down to one simple golden rule, by which the approaches proposed in this thesis
function: The more focussed, either spatially or temporally, the better the effect of body
biasing. This points towards the central contribution of this thesis, to explore methods to
break up granularity limitations of previous approaches and evaluate them in a detailed
manner, allowing projections for complex, future computing architectures consisting of
great numbers of processing elements.

In contrast to DVFS, the implementation of body biasing requires far smaller overheads
and thus allows highly effective fine-grained solutions. While DVFS would also benefit
considerably from more fine-grained approaches, it is simply not feasible at present.
Without the need for level-shifters, voltage generators that are capable of driving huge
dynamic loads and the accompanying infrastructure, options for more advanced appli-
cation schemes arise. In FDSOI with body biasing, even small groups of standard cells
can be pinpointed and adjusted to minimize power consumption and to maximize energy
efficiency. This, however, introduces great complexity in regard to which standard cells
should be biased together, by how much and when, also in the light of the still very
existent constraints and the small, but in sum possibly expensive overheads of aggressive
partitioning.

To tackle this challenge, this thesis proposed two principal partitioning approaches:
Guided pre-partitioning with subsequent leakage trade-off based partitioning into body
bias domains, and, fully automatized, standard cell netlist based domain candidate
exploration. To demonstrate the effectiveness of the proposed methods, a Dynamically
Reconfigurable Processor architecture called MuCCRA4 has been used. DRPs with their
arrays of PEs provided a good trade-off between generality, pointing towards present
and future many-core processors, as well as the simplicity that allowed this in-depth
evaluation regarding body bias applications and which made test-chip manufacturing
feasible. This DRP architecture has then been partitioned into varying granularities using
several approaches. Following the trade-off aspects of body biasing, activation and timing
were determined to be suitable guidelines to determine body bias domains. Where the
first approach employing guided, pre-partitioning by hand, domain candidate exploration
successfully replaced this step with a more powerful automatized approach. This is done
by algorithmically grouping standard cells into domain candidates which were then also
merged with a subset based merging algorithm.

139

9 Conclusion and Outlook

In contrast to DVFS, however, body biasing introduces another level of complexity as it
is not a single supply voltage that needs to be governed, but the bias voltages of multiple
domains which may be interdependent. This phenomenon was described as cross-domain
resource sharing, where body bias assignments could not be simply determined by biasing
the domain with the seemingly lowest leakage current to yield optimal results in regard
to energy efficiency. Furthermore, changing the timing of one domain also affects the
timing of dependent domains. These effects have been successfully accommodated using
a metric called body biasing impact. This metric was defined to determine iteratively in
each step the most leakage and timing efficient domain for a discrete change in body bias,
resulting in an energy efficient body bias domain partitioning with leakage minimal body
bias assignments. With different instructions being used, leveraging different application’s
timing slack allowed for further optimization of body bias application.

Simulative results showed that significant gains in energy efficiency over the state of the
art could be attained by applying body bias in a more fine-grained manner. Together with
the implementation of a fine-grained body biasing enabled DRP design, the validity of the
proposed approaches was then also shown using in-silicon measurements of the leakage
current affected by the partitioning, assignment and application dependent schemes. The
in-silicon results clearly showed leakage reductions very close to and beyond SPICE based
evaluations of fine-grained body biasing. While in SPICE simulations, maximum leakage
reductions converged at around 80% versus naive body biasing, in-silicon evaluations
showed results crossing the 90% mark. These values certainly demand caution but are
very well within the capabilities FDSOI technologies offer and demonstrated before. In
the case of this thesis, however, leakage increases in forward body bias direction or clock
frequency degradation in the reverse body bias direction have been minimized to a fraction
of the penalties incurred in previous technology demonstrations.

There are, however, also many aspects that could not be sufficiently addressed in this thesis
and which, among others, point to remaining research that needs to be conducted to fully
exploit FDSOI and its body biasing capabilities. Body biasing in general, but especially
the aspects of dynamic body biasing proved to require far more research in architectural,
software, EDA, technological and electrical respects. First of all, body biasing can be
exploited architecturally in a multitude of ways. One intriguing architectural technique
is artificial pipeline balancing. With body biasing, the timing of pipeline stages or of
combinatorial circuits inside a pipeline stage can be easily adjusted using body biasing
if considered during design. This allows designing pipelined design more freely, with
balancing, or even dynamic balancing after manufacturing. Furthermore, body biasing also
could be used to incorporate more actual specialization while compensating the burden
on static power consumption via reverse body biasing when certain specialized circuits
are not required. Additionally, on the software side, many optimizations can be geared
towards scheduling of operations by timing slack or other methods considering the need
to switch body biases for optimal operation. Moreover, in regard to design automation,
current EDA tools are not even close to incorporate body biasing in a more fine-grained

140

fashion than existing DVFS like approaches. Also in regard to sign-off and reliability
analysis, variability or even only temperature variation, these effects have not been not
considered sufficiently.
But then, of course, while all this applies to body biasing with temporal granularities like
DVFS, i.e. where switching overheads can be neglected, it is the case all the more for
actual dynamic body biasing. Regarding dynamic body biasing, there is also still a lot of
unused potential on the technological and electrical engineering side, apart from the actual
scaling challenges. Transistor architecture still has much potential for optimization, such
as reducing body capacitance or optimizing body effect utilization for improved dynamic
body biasing capabilities.

All these challenges in mind, body biasing is a powerful technique. While body biasing
is virtually independent of technology scaling as a technique, and even though it can be
applied to most transistor architectures, FDSOI depends significantly on it. Its exploitation
is thus imperative for the success of FDSOI technology which does not only have fierce
competition but also has a couple of aces up its sleeve. The first one is body biasing which
has been discussed at great lengths in this thesis, but also economics, as cost per transistor
is no longer decreasing. Together with all the benefits of being planar technology, FDSOI
has the right attributes to become a new commodity technology for an extensive range
of applications. From automotive and aerospace applications with known planar reliability
and radiation profiles, highly energy efficient high-performant consumer hardware to ultra-
low-power, but flexibly capable sensor node applications. This broad application range and
the body bias enabled capabilities to broaden its power and performance range will make
sure that FDSOI will stay around for a long time.

141

Bibliography

[1] R. Merrit, “Arm cto: power surge could create ’dark silicon’,” EETimes, oct. 2009.

[2] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in Computer Architecture (ISCA), 2011
38th Annual International Symposium on. IEEE, 2011, pp. 365–376.

[3] M. Wolf, “Ultralow power and the new era of not-so-vlsi,” IEEE Design & Test,
vol. 33, no. 4, pp. 109–113, 2016.

[4] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective,
4th ed. USA: Addison-Wesley Publishing Company, 2010.

[5] A. Schmidt, “Analog circuit design in pd-soi cmos technology for high tempera-
tures up to 400° c using reverse body biasing (rbb),” Ph.D. dissertation, Univer-
sität Duisburg-Essen, Fakultät für Ingenieurwissenschaften» Elektrotechnik und In-
formationstechnik, 2014.

[6] D. Jacquet, F. Hasbani, P. Flatresse, R. Wilson, F. Arnaud, G. Cesana, T. Di Gilio,
C. Lecocq, T. Roy, A. Chhabra et al., “A 3 ghz dual core processor arm cortex tm-
a9 in 28 nm utbb fd-soi cmos with ultra-wide voltage range and energy efficiency
optimization,” Solid-State Circuits, IEEE Journal of, vol. 49, no. 4, pp. 812–826,
2014.

[7] T. Ohtou, N. Sugii, and T. Hiramoto, “Impact of parameter variations and random
dopant fluctuations on short-channel fully depleted soi mosfets with extremely thin
box,” Electron Device Letters, IEEE, vol. 28, no. 8, pp. 740–742, Aug 2007.

[8] J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI: Materials to
Vlsi. Springer Science & Business Media, 2004.

[9] H.-K. Lim and J. G. Fossum, “Threshold voltage of thin-film silicon-on-insulator
(soi) mosfet’s,” Electron Devices, IEEE Transactions on, vol. 30, no. 10, pp. 1244–
1251, 1983.

[10] T. Ishigaki, N. Sugii, R. Tsuchiya, S. Kimura, and Y. Morita, Ultralow-power LSI
Technology with Silicon on Thin Buried Oxide (SOTB) CMOSFET. INTECH Open
Access Publisher, 2010.

[11] T. Takahashi, T. Matsuki, T. Shinada, Y. Inoue, and K. Uchida, “Comparison of self-
heating effect (she) in short-channel bulk and ultra-thin box soi mosfets: impacts

143

Bibliography

of doped well, ambient temperature, and soi/box thicknesses on she,” in Electron
Devices Meeting (IEDM), 2013 IEEE International. IEEE, 2013, pp. 7–4.

[12] L. Wang, A. R. Brown, M. Nedjalkov, C. Alexander, B. Cheng, C. Millar, and
A. Asenov, “Impact of self-heating on the statistical variability in bulk and soi fin-
fets,” Electron Devices, IEEE Transactions on, vol. 62, no. 7, pp. 2106–2112, 2015.

[13] T. Kuroda and T. Sakurai, “Body biasing,” in Leakage in Nanometer CMOS Tech-
nologies. Springer, 2006, pp. 105–140.

[14] H. Okuhara, K. Kitamori, Y. Fujita, K. Usami, and H. Amano, “An optimal power
supply and body bias voltage for a ultra low power micro-controller with silicon on
thin box mosfet,” in Low Power Electronics and Design (ISLPED), 2015 IEEE/ACM
International Symposium on. IEEE, 2015, pp. 207–212.

[15] T. Sakurai and A. R. Newton, “Alpha-power law mosfet model and its applications
to cmos inverter delay and other formulas,” Solid-State Circuits, IEEE Journal of,
vol. 25, no. 2, pp. 584–594, 1990.

[16] S. H. Dhong, J.-T. Tzeng, K. M. Babaji, R. Krishnan, L.-C. Lu, and T.-P. Guo,
“Planar compatible fdsoi design architecture,” May 14 2013, uS Patent 8,443,306.

[17] H. Amano, “A survey on dynamically reconfigurable processors,” IEICE transac-
tions on Communications, vol. 89, no. 12, pp. 3179–3187, 2006.

[18] M. Motomura, “A dynamically reconfigurable processor architecture,” in Micropro-
cessor Forum, 2002, 2002.

[19] T. Oppold, T. Schweizer, J. Oliveira Filho, S. Eisenhardt, and W. Rosen-
stiel, “Crc–concepts and evaluation of processor-like reconfigurable architectures
(crc–konzepte und bewertung prozessorartig rekonfigurierbarer architekturen),” it–
Information Technology (vormals it+ ti), vol. 49, no. 3, pp. 157–164, 2007.

[20] R. Tsuchiya, M. Horiuchi, S. Kimura, M. Yamaoka, T. Kawahara, S. Maegawa,
T. Ipposhi, Y. Ohji, and H. Matsuoka, “Silicon on thin box: A new paradigm of the
cmosfet for low-power high-performance application featuring wide-range back-
bias control,” in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE
International. IEEE, 2004, pp. 631–634.

[21] N. Sugii, R. Tsuchiya, T. Ishigaki, Y. Morita, H. Yoshimoto, K. Torii, and S. Kimura,
“Comprehensive study on vth variability in silicon on thin box (sotb) cmos with
small random-dopant fluctuation: finding a way to further reduce variation,” in Elec-
tron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008, pp. 1–4.

[22] N. Sugii, R. Tsuchiya, T. Ishigaki, Y. Morita, H. Yoshimoto, and S. I. Kimura, “Lo-
cal variability and scalability in silicon-on-thin-box (sotb) cmos with small random-
dopant fluctuation,” Electron Devices, IEEE Transactions on, vol. 57, no. 4, pp.
835–845, 2010.

144

Bibliography

[23] T. Ishigaki, R. Tsuchiya, Y. Morita, N. Sugii, and S. I. Kimura, “Effects of device
structure and back biasing on hci and nbti in silicon-on-thin-box (sotb) cmosfet,”
Electron Devices, IEEE Transactions on, vol. 58, no. 4, pp. 1197–1204, 2011.

[24] N. Planes, O. Weber, V. Barral, S. Haendler, D. Noblet, D. Croain, M. Bocat, P.-O.
Sassoulas, X. Federspiel, A. Cros et al., “28nm fdsoi technology platform for high-
speed low-voltage digital applications,” in VLSI Technology (VLSIT), 2012 Sympo-
sium on. IEEE, 2012, pp. 133–134.

[25] P. Magarshack, P. Flatresse, and G. Cesana, “Utbb fd-soi: A process/design sym-
biosis for breakthrough energy-efficiency,” in Proceedings of the Conference on De-
sign, Automation and Test in Europe. EDA Consortium, 2013, pp. 952–957.

[26] X. Federspiel, D. Angot, M. Rafik, F. Cacho, A. Bajolet, N. Planes, D. Roy,
M. Haond, and F. Arnaud, “28nm node bulk vs fdsoi reliability comparison,” in
2012 IEEE International Reliability Physics Symposium (IRPS), 2012.

[27] Globalfoundries, “Globalfoundries launches industry first 22nm fd-soi technology
platform,” July 2015, available online: http://globalfoundries.com/newsroom/press-
releases/2015/07/13/globalfoundries-launches-industry-s-first-22nm-fd-soi-
technology-platform, accessed February 17th, 2016.

[28] O. Weber, E. Josse, F. Andrieu, A. Cros, E. Richard, P. Perreau, E. Baylac, N. De-
gors, C. Gallon, E. Perrin et al., “14nm fdsoi technology for high speed and energy
efficient applications,” in VLSI Technology (VLSI-Technology): Digest of Technical
Papers, 2014 Symposium on. IEEE, 2014, pp. 1–2.

[29] Q. Liu, B. DeSalvo, P. Morin, N. Loubet, S. Pilorget, F. Chafik, S. Maitrejean,
E. Augendre, D. Chanemougame, S. Guillaumet et al., “Fdsoi cmos devices featur-
ing dual strained channel and thin box extendable to the 10nm node,” in 2014 IEEE
International Electron Devices Meeting. IEEE, 2014, pp. 9–1.

[30] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane,
S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu et al., “A 14nm logic technology fea-
turing 2 nd-generation finfet, air-gapped interconnects, self-aligned double pattern-
ing and a 0.0588 µm 2 sram cell size,” in Electron Devices Meeting (IEDM), 2014
IEEE International. IEEE, 2014, pp. 3–7.

[31] S.-Y. Wu, C. Y. Lin, M. Chiang, J. Liaw, J. Cheng, S. Yang, M. Liang, T. Miyashita,
C. Tsai, B. Hsu et al., “A 16nm finfet cmos technology for mobile soc and comput-
ing applications,” in Electron Devices Meeting (IEDM), 2013 IEEE International.
IEEE, 2013, pp. 9–1.

[32] E. IQ, “Fully gate-all-around silicon nanowire cmos devices,” 2014, available
Online: http://www.electroiq.com/content/eiq-2/en/articles/sst/print/volume-
51/issue-5/features/nanotechnology/fully-gate-all-around-silicon-nanowire-cmos-
devices.html Accessed: January 2014.

145

Bibliography

[33] K. T. Lee, W. Kang, E.-A. Chung, G. Kim, H. Shim, H. Lee, H. Kim, M. Choe,
N.-I. Lee, A. Patel et al., “Technology scaling on high-k & metal-gate finfet bti reli-
ability,” in Reliability Physics Symposium (IRPS), 2013 IEEE International. IEEE,
2013, pp. 2D–1.

[34] A. Paul, A. Bryant, T. Hook, C. Yeh, V. Kamineni, J. Johnson, N. Tripathi, T. Ya-
mashita, G. Tsutsui, V. Basker et al., “Comprehensive study of effective current
variability and mosfet parameter correlations in 14nm multi-fin soi finfets,” in Elec-
tron Devices Meeting (IEDM), 2013 IEEE International. IEEE, 2013, pp. 13–5.

[35] T. Kobayashi and T. Sakurai, “Self-adjusting threshold-voltage scheme (sats) for
low-voltage high-speed operation,” in Custom Integrated Circuits Conference,
1994., Proceedings of the IEEE 1994. IEEE, 1994, pp. 271–274.

[36] T. Kuroda and T. Sakurai, “Threshold-volgage control schemes through substrate-
bias for low-power high-speed cmos lsi design,” Journal of VLSI signal processing
systems for signal, image and video technology, vol. 13, no. 2-3, pp. 191–201, 1996.

[37] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A. Antoniadis, A. P. Chan-
drakasan, and V. De, “Adaptive body bias for reducing impacts of die-to-die and
within-die parameter variations on microprocessor frequency and leakage,” Solid-
State Circuits, IEEE Journal of, vol. 37, no. 11, pp. 1396–1402, 2002.

[38] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic volt-
age scaling and adaptive body biasing for lower power microprocessors under dy-
namic workloads,” in Proceedings of the 2002 IEEE/ACM international conference
on Computer-aided design. ACM, 2002, pp. 721–725.

[39] C. Neau and K. Roy, “Optimal body bias selection for leakage improvement and
process compensation over different technology generations,” in Proceedings of the
2003 international symposium on Low power electronics and design. ACM, 2003,
pp. 116–121.

[40] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “Mitigating parameter vari-
ation with dynamic fine-grain body biasing,” in Microarchitecture, 2007. MICRO
2007. 40th Annual IEEE/ACM International Symposium on. IEEE, 2007, pp. 27–
42.

[41] A. Sathanur, A. Pullini, L. Benini, G. De Micheli, and E. Macii, “Physically clus-
tered forward body biasing for variability compensation in nanometer cmos design,”
in 2009 Design, Automation & Test in Europe Conference & Exhibition. IEEE,
2009, pp. 154–159.

[42] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An analysis of
efficient multi-core global power management policies: Maximizing performance
for a given power budget,” in Proceedings of the 39th annual IEEE/ACM interna-
tional symposium on microarchitecture. IEEE Computer Society, 2006, pp. 347–
358.

146

Bibliography

[43] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling
in chip-multiprocessors,” in Low Power Electronics and Design (ISLPED), 2007
ACM/IEEE International Symposium on. IEEE, 2007, pp. 38–43.

[44] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of fast,
per-core dvfs using on-chip switching regulators,” in High Performance Computer
Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on. IEEE,
2008, pp. 123–134.

[45] A. W. Yin, L. Guang, E. Nigussie, P. Liljeberg, J. Isoaho, and H. Tenhunen, “Ar-
chitectural exploration of per-core dvfs for energy-constrained on-chip networks,”
in Digital System Design, Architectures, Methods and Tools, 2009. DSD’09. 12th
Euromicro Conference on. IEEE, 2009, pp. 141–146.

[46] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wil-
son, N. Borkar, G. Schrom et al., “A 48-core ia-32 message-passing processor with
dvfs in 45nm cmos,” in Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2010 IEEE International. IEEE, 2010, pp. 108–109.

[47] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap: adaptive
dvfs and thread packing under power caps,” in Proceedings of the 44th annual
IEEE/ACM international symposium on microarchitecture. ACM, 2011, pp. 175–
185.

[48] T. Kolpe, A. Zhai, and S. S. Sapatnekar, “Enabling improved power management
in multicore processors through clustered dvfs,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2011. IEEE, 2011, pp. 1–6.

[49] L. Benini, G. De Micheli, E. Macii, M. Poncino, and R. Scarsi, “Symbolic synthe-
sis of clock-gating logic for power optimization of synchronous controllers,” ACM
Transactions on Design Automation of Electronic Systems (TODAES), vol. 4, no. 4,
pp. 351–375, 1999.

[50] Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its application to low power
design of sequential circuits,” Circuits and Systems I: Fundamental Theory and Ap-
plications, IEEE Transactions on, vol. 47, no. 3, pp. 415–420, 2000.

[51] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-tree power optimization based
on rtl clock-gating,” in Design Automation Conference, 2003. Proceedings. IEEE,
2003, pp. 622–627.

[52] F. Emnett and M. Biegel, “Power reduction through rtl clock gating,” SNUG, San
Jose, 2000.

[53] H. Li, S. Bhunia, Y. Chen, T. Vijaykumar, and K. Roy, “Deterministic clock gating
for microprocessor power reduction,” in High-Performance Computer Architecture,
2003. HPCA-9 2003. Proceedings. The Ninth International Symposium on. IEEE,
2003, pp. 113–122.

147

Bibliography

[54] K. Usami and N. Ohkubo, “A design approach for fine-grained run-time power gat-
ing using locally extracted sleep signals,” in Computer Design, 2006. ICCD 2006.
International Conference on. IEEE, 2007, pp. 155–161.

[55] L. Leinweber and S. Bhunia, “Fine-grained supply gating through hypergraph par-
titioning and shannon decomposition for active power reduction,” in Proceedings
of the conference on Design, automation and test in Europe. ACM, 2008, pp.
373–378.

[56] A. Sathanur, A. Pullini, L. Benini, A. Macii, E. Macii, and M. Poncino, “A scalable
algorithmic framework for row-based power-gating,” in Design, Automation and
Test in Europe, 2008. DATE’08. IEEE, 2008, pp. 379–384.

[57] Y. Saito, T. Shirai, T. Nakamura, T. Nishimura, Y. Hasegawa, S. Tsutsumi,
T. Kashima, M. Nakata, S. Takeda, K. Usami et al., “Leakage power reduction for
coarse grained dynamically reconfigurable processor arrays with fine grained power
gating technique,” in FPT 2008. International Conference on Field-Programmable
Technology. IEEE, 2008, pp. 329–332.

[58] S.-Y. Chen, R.-B. Lin, H.-H. Tung, and K.-W. Lin, “Power gating design for
standard-cell-like structured asics,” in Proceedings of the Conference on Design,
Automation and Test in Europe. European Design and Automation Association,
2010, pp. 514–519.

[59] N. S. Kim, D. Blaauw, and T. Mudge, “Leakage power optimization techniques for
ultra deep sub-micron multi-level caches,” in Proceedings of the 2003 IEEE/ACM
international conference on Computer-aided design. IEEE Computer Society,
2003, p. 627.

[60] P. Gupta, A. B. Kahng, P. Sharma, and D. Sylvester, “Selective gate-length biasing
for cost-effective runtime leakage control,” in Proceedings of the 41st annual Design
Automation Conference. ACM, 2004, pp. 327–330.

[61] ——, “Gate-length biasing for runtime-leakage control,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 25, no. 8, pp. 1475–
1485, 2006.

[62] A. Calimera, E. Macii, M. Poncino, and R. Bahar, “Temperature-insensitive synthe-
sis using multi-vt libraries,” in Proceedings of the 18th ACM Great Lakes symposium
on VLSI. ACM, 2008, pp. 5–10.

[63] C. Yeh, Y.-S. Kang, S.-J. Shieh, and J.-S. Wang, “Layout techniques supporting the
use of dual supply voltages for cell-based designs,” in Design Automation Confer-
ence, 1999. Proceedings. 36th. IEEE, 1999, pp. 62–67.

[64] R. Puri, L. Stok, J. Cohn, D. Kung, D. Pan, D. Sylvester, A. Srivastava, and S. Kulka-
rni, “Pushing asic performance in a power envelope,” in Proceedings of the 40th
annual Design Automation Conference. ACM, 2003, pp. 788–793.

148

Bibliography

[65] F. Li, Y. Lin, and L. He, “Vdd programmability to reduce fpga interconnect power,”
in Proceedings of the 2004 IEEE/ACM International conference on Computer-aided
design. IEEE Computer Society, 2004, pp. 760–765.

[66] Y. Akgul, D. Puschini, S. Lesecq, E. Beigne, P. Benoit, and L. Torres, “Methodology
for power mode selection in fd-soi circuits with dvfs and dynamic body biasing,” in
Power and Timing Modeling, Optimization and Simulation (PATMOS), 2013 23rd
International Workshop on. IEEE, 2013, pp. 199–206.

[67] Y. Akgul, D. Puschini, S. Lesecq, E. Beigné, I. Miro-Panades, P. Benoit, and L. Tor-
res, “Power management through dvfs and dynamic body biasing in fd-soi circuits,”
in Proceedings of the 51st Annual Design Automation Conference. ACM, 2014,
pp. 1–6.

[68] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time multiproces-
sor system-on-chip with optimal dvfs and dpm combination,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 13, no. 3s, p. 111, 2014.

[69] R. Jevtic, H.-P. Le, M. Blagojevic, S. Bailey, K. Asanovic, E. Alon, and B. Nikolic,
“Per-core dvfs with switched-capacitor converters for energy efficiency in manycore
processors,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 23, no. 4, pp. 723–730, 2015.

[70] F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini, “Energy-efficient vision on the
pulp platform for ultra-low power parallel computing,” in Signal Processing Systems
(SiPS), 2014 IEEE Workshop on. IEEE, 2014, pp. 1–6.

[71] D. Rossi, A. Pullini, I. Loi, M. Gautschi, K. Gurkaynak, A. Teman, J. Constantin,
A. Burg, I. Miro-Panades, E. Beignè, F. Clermidy, F. Abouzeid, P. Flatresse, and
L. Benini, “193 mops/mw @ 162 mops, 0.32v to 1.15v voltage range multi-core
accelerator for energy efficient parallel and sequential digital processing,” in Low-
Power and High-Speed Chips (COOL CHIPS XIX), 2016 IEEE Symposium in.
IEEE, 2016.

[72] M. Hioki, T. Sekigawa, T. Nakagawa, H. Koike, Y. Matsumoto, T. Kawanami, and
T. Tsutsumi, “Fully-functional fpga prototype with fine-grain programmable body
biasing,” in Proceedings of the ACM/SIGDA international symposium on Field pro-
grammable gate arrays. ACM, 2013, pp. 73–80.

[73] M. Hioki, C. Ma, T. Kawanami, Y. Ogasahara, T. Nakagawa, T. Sekigawa, T. Tsut-
sumi, and H. Koike, “Sotb implementation of a field programmable gate array with
fine-grained vt programmability,” Journal of Low Power Electronics and Applica-
tions, vol. 4, no. 3, pp. 188–200, 2014.

[74] T. Toi, N. Nakamura, Y. Kato, T. Awashima, and K. Wakabayashi, “High-level syn-
thesis challenges for mapping a complete program on a dynamically reconfigurable
processor,” IPSJ Transactions on System LSI Design Methodology, vol. 3, pp. 91–
104, 2010.

149

Bibliography

[75] M. Suzuki, Y. Hasegawa, Y. Yamada, N. Kaneko, K. Deguchi, H. Amano, K. Anjo,
M. Motomura, K. Wakabayashi, T. Toi et al., “Stream applications on the dynami-
cally reconfigurable processor,” in Field-Programmable Technology, 2004. Proceed-
ings. 2004 IEEE International Conference on. IEEE, 2004, pp. 137–144.

[76] N. Suzuki, S. Kurotaki, M. Suzuki, N. Kaneko, Y. Yamada, K. Deguchi,
Y. Hasegawa, H. Amano, K. Anjo, M. Motomura et al., “Implementing and eval-
uating stream applications on the dynamically reconfigurable processor,” in Field-
Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual
IEEE Symposium on. IEEE, 2004, pp. 328–329.

[77] Y. Hasegawa, S. Abe, H. Matsutani, H. Amano, K. Anjo, and T. Awashima, “An
adaptive cryptographic accelerator for ipsec on dynamically reconfigurable proces-
sor,” in Proceedings. 2005 IEEE International Conference on Field-Programmable
Technology, 2005. IEEE, 2005, pp. 163–170.

[78] K. Deguchi, S. Abe, M. Suzuki, K. Anjo, T. Awashima, and H. Amano, “Implement-
ing core tasks of jpeg2000 encoder on the dynamically reconfigurable processor.” in
ARCS Workshops. Citeseer, 2005, pp. 12–18.

[79] T. Toi, N. Nakamura, Y. Kato, T. Awashima, K. Wakabayashi, and L. Jing, “High-
level synthesis challenges and solutions for a dynamically reconfigurable processor,”
in Proceedings of the 2006 IEEE/ACM international conference on Computer-aided
design. ACM, 2006, pp. 702–708.

[80] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Adres: An archi-
tecture with tightly coupled vliw processor and coarse-grained reconfigurable ma-
trix,” in International Conference on Field Programmable Logic and Applications.
Springer, 2003, pp. 61–70.

[81] W.-J. Lee, S.-O. Woo, K.-T. Kwon, S.-J. Son, K.-J. Min, G.-J. Jang, C.-H. Lee, S.-Y.
Jung, C.-M. Park, and S.-H. Lee, “A scalable gpu architecture based on dynamically
reconfigurable embedded processor,” High Performance Graphics, pp. 5–7, 2011.

[82] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins, “A tightly coupled vliw/re-
configurable matrix and its modulo scheduling technique,” in New Algorithms, Ar-
chitectures and Applications for Reconfigurable Computing. Springer, 2005, pp.
15–28.

[83] G. Lee, K. Choi, and N. D. Dutt, “Mapping multi-domain applications onto coarse-
grained reconfigurable architectures,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 30, no. 5, pp. 637–650, 2011.

[84] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S. Jung, S. Lee, H.-S. Park, and T.-
D. Han, “Sgrt: A mobile gpu architecture for real-time ray tracing,” in Proceedings
of the 5th high-performance graphics conference. ACM, 2013, pp. 109–119.

150

Bibliography

[85] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt, “Pact
xppa self-reconfigurable data processing architecture,” the Journal of Supercomput-
ing, vol. 26, no. 2, pp. 167–184, 2003.

[86] J. M. Cardoso and M. Weinhardt, “Xpp-vc: Ac compiler with temporal partitioning
for the pact-xpp architecture,” in International Conference on Field Programmable
Logic and Applications. Springer, 2002, pp. 864–874.

[87] S. Eisenhardt, T. Oppold, T. Schweizer, and W. Rosenstiel, “Optimizing partial re-
configuration of multi-context architectures,” in 2008 International Conference on
Reconfigurable Computing and FPGAs. IEEE, 2008, pp. 67–72.

[88] T. Schweizer, T. Oppold, J. Oliveira Filho, S. Eisenhardt, K. Blocher, and W. Rosen-
stiel, “Exploiting slack time in dynamically reconfigurable processor architectures,”
in Field-Programmable Technology, 2007. ICFPT 2007. International Conference
on. IEEE, 2007, pp. 381–384.

[89] M. Jo, V. P. Arava, H. Yang, and K. Choi, “Implementation of floating-point opera-
tions for 3d graphics on a coarse-grained reconfigurable architecture,” in 2007 IEEE
International SOC Conference. IEEE, 2007, pp. 127–130.

[90] C. Brunelli, F. Garzia, D. Rossi, and J. Nurmi, “A coarse-grain reconfigurable archi-
tecture for multimedia applications supporting subword and floating-point calcula-
tions,” Journal of Systems Architecture, vol. 56, no. 1, pp. 38–47, 2010.

[91] S. M. Jafri, T. N. Gia, S. Dytckov, M. Daneshtalab, A. Hemani, J. Plosila, and
H. Tenhunen, “Neurocgra: A cgra with support for neural networks,” in High Perfor-
mance Computing & Simulation (HPCS), 2014 International Conference on. IEEE,
2014, pp. 506–511.

[92] H. Amano, Y. Hasegawa, S. Tsutsumi, T. Nakamura, T. Nishimura, V. Tanbunheng,
A. Parimala, T. Sano, and M. Kato, “Muccra chips: Configurable dynamically-
reconfigurable processors,” in Solid-State Circuits Conference, 2007. ASSCC’07.
IEEE Asian. IEEE, 2007, pp. 384–387.

[93] S. Saito, Y. Kohama, Y. Sugimori, Y. Hasegawa, H. Matsutani, T. Sano, K. Kasuga,
Y. Yoshida, K. Niitsu, N. Miura et al., “Muccra-cube: A 3d dynamically reconfig-
urable processor with inductive-coupling link,” in Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on. IEEE, 2009, pp. 6–
11.

[94] Y. Saito, T. Sano, M. Kato, V. Tunbunheng, Y. Yasuda, M. Kimura, and H. Amano,
“Muccra-3: a low power dynamically reconfigurable processor array,” in Proceed-
ings of the 2010 Asia and South Pacific Design Automation Conference. IEEE
Press, 2010, pp. 377–378.

151

Bibliography

[95] T. Nishimura, K. Hirai, Y. Saito, T. Nakamura, Y. Hasegawa, S. Tsutsusmi, V. Tun-
bunheng, and H. Amano, “Power reduction techniques for dynamically reconfig-
urable processor arrays,” in Field Programmable Logic and Applications, 2008. FPL
2008. International Conference on. IEEE, 2008, pp. 305–310.

[96] T. Katagiri and H. Amano, “動的再構成プロセッサmuccra-4の実装 (implemen-
tation of a dynamically reconfigurable processor muccra-4),” 研究報告システム
LSI設計技術 (SLDM), vol. 2014, no. 22, pp. 1–6, 2014.

[97] ——, “A high speed design and implementation of dynamically reconfigurable pro-
cessor using 28nm soi technology,” in Conference on Field Programmable Logic
and Applications. IEEE, 2014.

[98] J. M. Kühn, H. Amano, T. Katagiri, and W. Rosenstiel, “Leakage reduction using
coarse-grained static body biasing in a dynamically reconfigurable processor,” in
Fifth International Symposium on Highly Efficient Accelerators and Reconfigurable
Technologies, 2014, https://dl.dropboxusercontent.com/u/3355605/isheart2014.pdf.

[99] J. M. Kühn, D. Peterson, H. Amano, O. Bringmann, and W. Rosenstiel, “Spatial
and temporal granularity limits of body biasing in utbb-fdsoi,” in Proceedings of
the 2015 Design, Automation & Test in Europe Conference & Exhibition. EDA
Consortium, 2015.

[100] J. M. Kühn, H. Amano, and W. Rosenstiel, “Using body biasing for energy efficient
frequency scaling in a dynamically reconfigurable processor,” in Online Proceed-
ings of The 19th Workshop on Synthesis And System Integration of Mixed Informa-
tion technologies (SASIMI), 2015.

[101] J. M. Kühn, H. Amano, O. Bringmann, and W. Rosenstiel, “Fine-grained body bias-
ing for frequency scaling in advanced soi processes,” in Low-Power and High-Speed
Chips (COOL CHIPS XVIII), 2015 IEEE Symposium in. IEEE, 2015.

[102] ——, “Leveraging fdsoi through body bias domain partitioning and bias search,” in
Proceedings of the 53rd Design Automation Conference (DAC), Austin TX, 2016.

[103] EDAUtils, “Verilog netlist parser with java and tcl api,” 2016, available online:
http://www.edautils.com/VlogNetlistParser.html, accessed May 29th, 2016.

[104] K. Kitamori, H. Su, and H. Amano, “Power optimization of a micro-controller with
silicon on thin buried oxide,” in The 18th Workshop on Synthesis And System Inte-
gration of Mixed Information technologies, 2013, pp. 68–731.

[105] J. M. Kühn, A. B. Ahmed, H. Okuhara, H. Amano, O. Bringmann, and W. Rosen-
stiel, “Muccra4-bb: A fine-grained body biasing capable drp,” in 2016 IEEE Sym-
posium in Low-Power and High-Speed Chips (COOL CHIPS XIX). IEEE, 2016,
pp. 1–3.

152

Bibliography

[106] Synopsys Inc., “Primetime - static timing analysis,” 2016, available online at:
http://www.synopsys.com/Tools/Implementation/SignOff/PrimeTime/Pages/default.aspx,
accessed June 14th 2016.

[107] ——, “Accelerate design innovation with design compiler,” 2016, available online:
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/default.aspx,
accessed: June 23rd, 2016.

153

	1 Introduction
	2 Background
	2.1 Architecture and properties of FDSOI
	2.1.1 Architecture
	2.1.2 Device Physics
	2.1.3 Body Bias Domain construction

	2.2 Dynamically Reconfigurable Processors

	3 State of The Art
	3.1 Process Technologies
	3.1.1 Fully Depleted Silicon on Insulator
	3.1.2 FinFET

	3.2 Power Management
	3.2.1 Pre-SOI Body Biasing
	3.2.2 Dynamic Voltage Frequency Scaling
	3.2.3 Clock and Power Gating
	3.2.4 Multi-VTH and Multi-VDD Approaches
	3.2.5 Body Biasing with DVFS and approaches solely focusing on Body Biasing in SOI Technologies

	3.3 Dynamically Reconfigurable Processors
	3.3.1 DRPs and their Applications
	3.3.2 MuCCRA DRPs

	3.4 Overview, Comparison and Contribution

	4 Problem Formulation
	4.1 Mathematical Definition
	4.2 Body Biasing Categories
	4.2.1 Static Body Biasing
	4.2.2 Programmable Body Biasing
	4.2.3 Dynamic Body Biasing

	4.3 Partitioning Problem
	4.4 Optimization Target

	5 General Body Bias Domain Partitioning Approaches
	5.1 Basic Partitioning Principles
	5.2 Core-Grained Body Biasing
	5.3 Coarse-Grained Body Biasing
	5.4 Fine-Grained Body Biasing
	5.4.1 Combinatorial k-Subset Approach

	5.5 Discussion

	6 Standard-Cell-Grained Body Biasing and Automization through Domain Candidate Exploration
	6.1 Methodology and Preliminaries
	6.2 Determining Activation
	6.3 Determining Timing Criticality
	6.4 Building Domain Candidates
	6.4.1 Resource Sharing and Cannibalization
	6.4.2 Creating Domain Candidates

	6.5 Building Domains
	6.6 Body Biasing Impact Metric and Optimal Body Bias Assignment
	6.7 Discussion

	7 Test Chip Implementation
	7.1 Body Bias Domain Partitioning
	7.2 Macro-based Body Bias Domain Implementation
	7.3 Supported Body Biasing Schemes
	7.4 Bias Supply Network
	7.5 Evaluation Environment

	8 Results
	8.1 Simulative Results
	8.1.1 Core-Grained Body Biasing
	8.1.2 Coarse-Grained Body Biasing
	8.1.3 Fine-Grained Body Biasing
	8.1.4 Standard-Cell Grained Body Biasing

	8.2 Chip Measurements
	8.2.1 Core-Grained Body Biasing
	8.2.2 Coarse-Grained Body Biasing
	8.2.3 Fine-Grained Body Biasing

	8.3 Discussion

	9 Conclusion and Outlook
	Bibliography

