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Abstract 

Human behavior is largely guided by sensory information about our 

environment. The process of transforming sensory evidence into appropriate 

behavior is called sensorimotor decision making. Despite the many advances 

in uncovering its neural basis, it remains unclear which role cortical motor areas 

play in the functional architecture enabling sensorimotor decision making. 

Specifically, it is unknown whether cortical motor areas actually contribute to the 

decision making process, e.g. by casting a vote on the response alternatives, 

or whether they alternatively simply produce the behavior selected elsewhere. 

To investigate the involvement of cortical motor areas in sensorimotor decision 

making, we conducted two experiments in which human participants made 

choices about motion in visual stimuli and reported the choice with one of two 

manual responses, i.e. button presses with the left or the right index finger. 

Using magnetoencephalography to measure neural activity during decision 

making, in the first experiment we showed that activity in sensorimotor areas 

was predictive of upcoming choices several seconds before the button press 

and even before stimulus presentation. In part, this activity could be linked to 

the neural aftermath of the previous trial’s choice report, which shifted a 

measure of cortical activity in sensorimotor areas towards the previously 

unchosen response alternative in the current trial. This previously unknown 

tendency to alternate between hands when reporting sensorimotor decisions 

was significant and varied in size with the size of the neural aftermath of the 

previous button press over sensorimotor areas across several independent 

statistics. The results show that beyond the current stimulus, i.e. beyond what 

meets the eye, other factors like the previous motor act may influence response 

selection in sensorimotor decision making. Additionally, the results suggest that 

this is driven by the neural aftermath of previous responses in cortical motor 

areas. More generally, this suggest that neural fluctuations in cortical motor 

areas can influence response selection in sensorimotor decision making. This 

means that cortical motor areas may be more than an output stage in 

sensorimotor decision making. Consistent with this interpretation, we showed 

that response alternation in sensorimotor decision making can be manipulated 

in a directed fashion through instructed and non-choice-related simple button 
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presses in an independent group of participants in our second study. This result 

establishes that previous motor acts can influence response selection in 

sensorimotor decision making, independent of whether they are choice-related 

or simply instructed. Given this generalization beyond choice-driven button 

presses, the results of the second experiment are consistent with the 

interpretation that response alternation is at least partly driven by neural 

correlates of previous motor acts. In summary, our results suggest that neural 

fluctuations in cortical motor areas can influence response selection in 

sensorimotor decision making, in turn suggesting that motor areas may be more 

than an output stage of the brain during sensorimotor decision making. 
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General introduction 

Imagine driving a car across Tübingen’s Neckar Bridge. Just as you approach 

the intersection to Gartenstraße, the traffic light turns orange. How do you 

respond?    

Each day, we make hundreds of decisions like that, where we have to select 

between different actions guided by sensory evidence – a process we call 

sensorimotor decision making.  

Often, there is more than one correct response: as you approach the traffic light, 

your reaction to hit the breaks or accelerate may depend on whether there’s a 

car behind you or a pedestrian on the sidewalk eager to cross the street. In 

other words, decision making is context-dependent and must be highly flexible. 

Therefore, the general consensus is that even simple decisions like that are 

made in higher brain areas (Heekeren et al., 2004, 2006; Noppeney et al., 2010; 

Merten and Nieder, 2012; Mante et al., 2013; Filimon et al., 2013; Siegel et al., 

2015) thought to orchestrate behavioral flexibility (Miller and Cohen, 2001; 

Buschman et al., 2012; Crowe et al., 2013). Nevertheless, putting the decision 

into effect to reach a certain goal can only be achieved by carrying out one 

movement alternative - moving the foot to the left or keeping it on the right pedal. 

In other words, the sensorimotor decision process comes down to selecting a 

movement plan and carrying it out, which sometimes has to happen extremely 

fast. 

Given that sensorimotor decision making culminates in selection between 

competing actions, one interesting question to ask is how this is reflected in the 

functional architecture underlying sensorimotor decision making. Are motor 

areas just an output stage of the brain, merely producing the behavior decided 

upon elsewhere, or are they rather an active part of the architecture underlying 

sensorimotor decision making?  
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Traditional view 

Had you asked the early cognitive scientists, they surely would have replied that 

motor areas are only an output stage of the brain because they viewed cognition 

and action as separate modules of the mind’s functional architecture (Fodor, 

1983). According to a modular view, each module - and associated brain area - 

has its own specialized function, each of which is completed before its result is 

transferred to the next module: Sensory areas analyze sensory input with 

respect to their preferred features, upon which a central executive builds mental 

representations of the world. Then, the central executive decides on how to 

behave and sends appropriate commands to motor areas which carry out 

movement. Therefore, in a modular mind, motor areas are merely the output 

stage that controls execution of movement. 

Choice variables throughout the brain 

Instead, the rich body of current evidence supports a less rigid, more fluid view 

of the brain: recent neural and behavioral evidence suggest that decisions arise 

in networks and information is shared continuously between brain areas in the 

network to support time- and context-flexible behavior such as decision making 

(Lafuente and Romo, 2006; Heekeren et al., 2008; Pesaran et al., 2008; Siegel 

et al., 2011; Filimon et al., 2013; Crowe et al., 2013; Siegel et al., 2015). For 

instance, such a network with continuous information flow is demonstrated by a 

study in monkeys making perceptual decisions about the color and direction of 

randomly moving dots which they had to report with saccades (Siegel et al., 

2015). While the monkeys were making decisions, the activity in six cortical 

areas (V4, MT (middle temporal), IT (inferior temporal), LIP (lateral 

intraparietal), lPFC (lateral prefrontal cortex), FEF (frontal eye field)) was 

measured simultaneously. The authors analyzed the temporal dynamics of 

information about decision-related variables (the choice itself, the task-rule, the 

identity of the rule-cue and sensory information about the motion and about the 

color) flowing through the network. The choice itself first arose in two areas 

simultaneously, i.e. in LIP, an area in posterior parietal cortex (PPC) which is 

concerned with transforming sensory information into saccadic motor plans, and 

PFC. Slightly later, it was also represented in downstream motor areas (FEF) 

and upstream higher sensory areas (V4,MT,IT).  
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Fronto-parietal areas as the locus of choice commitment 

Given that choice-predictive activity first arose in fronto-parietal areas, Siegel’s 

data support the current predominant view that sensorimotor decisions are 

computed and committed to in fronto-parietal areas (Huk and Shadlen, 2005; 

Freedman and Assad, 2006; Heekeren et al., 2006; Hanks et al., 2006; Merten 

and Nieder, 2012; Filimon et al., 2013; Mante et al., 2013; Latimer et al., 2015; 

Li Hegner et al., 2015) [but see also recent literature challenging the causal 

involvement of parietal areas (Erlich et al., 2015; Katz et al., 2016)]. Beyond 

that, several other properties qualify the fronto-parietal activity as the decision 

variable proposed in influential models of decision making (Smith and Ratcliff, 

2004; Gold and Shadlen, 2007): First of all, during presentation of sensory 

evidence, neurons in prefrontal and posterior parietal regions often show very 

similar response profiles (Pesaran et al., 2008; Siegel et al., 2015) [but see also 

(Hanks et al., 2015)]. Second, the activity profile looks like a temporal integral 

of neural activity from sensory areas, i.e. fronto-parietal activity ramps up as 

sensory evidence is accumulated during stimulus presentation. Also, after the 

stimulus is over, the activity level is maintained until a choice-contingent motor 

response can be made as if to keep the choice available before it is translated 

into motor output (Shadlen and Newsome, 1996; Kim and Shadlen, 1999; 

Shadlen and Newsome, 2001; Roitman and Shadlen, 2002; Mazurek et al., 

2003; Huk and Shadlen, 2005; Kiani et al., 2008; Bennur and Gold, 2011; 

Merten and Nieder, 2012). Third, when aligned to the time of saccade onset, 

neural activity in the fronto-parietal network always reaches a certain activity 

level (Kim and Shadlen, 1999; Shadlen and Newsome, 2001; Roitman and 

Shadlen, 2002; Kiani et al., 2008) which can be interpreted as evidence for a 

threshold that activity needs to pass for the monkey to be able to commit to a 

choice. Together, these properties qualify the fronto-parietal network as a good 

candidate where choices are made. 

Choice variables modulate motor activity 

To put a sensorimotor decision into effect and reap its benefits, a movement 

such as a saccade or a hand movement has to be made. Therefore, choice-

predictive activity can also be decoded from motor areas (Kim and Shadlen, 

1999; Thompson and Schall, 1999; Gold and Shadlen, 2000, 2003; Song and 

Nakayama, 2009). The activity predictive of the upcoming choice in motor areas 

is not all-or-none, as would suffice for preparation of a motor response. Instead, 
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it is graded: like the integrated decision variable, it builds up during the 

accumulation process with just a few milliseconds delay with respect to the 

fronto-parietal choice network and is graded depending on the available 

perceptual evidence. That means for difficult decisions with less sensory 

evidence choice-predictive motor activity ramps more slowly than for easy 

decisions with a lot of sensory evidence. This was shown for example for FEF 

neurons in monkeys reporting choices about the random dot motion stimulus 

with saccades (Kim and Shadlen, 1999). It was also demonstrated by an elegant 

study where neurons in FEF were stimulated to evoke a saccade into a direction 

orthogonal to two saccadic choice targets (Gold and Shadlen, 2000). Gold and 

Shadlen measured the deviation of the evoked saccade away from the 

orthogonal axis towards one of two choice targets and found that it deviated as 

a function of motion strength and stimulus duration. That means, neural motor 

plans not only reflect the upcoming choice but even the available perceptual 

evidence for the different choice alternatives. 

Similar results have been reported for premotor and primary motor areas in 

tasks where choices guided selection between different upper limp movements 

in monkeys (Lafuente and Romo, 2006; Pastor-Bernier and Cisek, 2011; Thura 

and Cisek, 2014) and in humans (Donner et al., 2009; Wyart et al., 2012; 

Kubanek et al., 2013; Lange et al., 2013), showing that modulation with 

decisional variables is a general principle that holds across different effector 

systems.  

Furthermore, Pastor-Bernier and Cisek showed that premotor neurons encoded 

the reward value of the target in their response field dependent on which value 

the other target had. That is, reward value was encoded in a relative manner in 

premotor neurons showing that modulation of neural motor plans is not 

exclusive to perceptually-guided choices but extends to reward-related 

information, too (Roesch and Olson, 2003; Pastor-Bernier and Cisek, 2011). 

Also, modulation with the decisional variables does not stop at the cortex. Even 

beyond cortex, decision formation can modulate neural activity (Michelet et al., 

2010; Selen et al., 2012). For example, Selen and colleagues have recently 

demonstrated that reflex gains (derived from the electromyogram (EMG) in 

response to perturbations of a joystick) changed with the strength of sensory 

evidence and viewing duration in a perceptual decision task. Similar results 

have been found for value-based decisions: cortico-spinal excitability measured 
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with transcranial magnetic stimulation (TMS) over primary motor cortex 

reflected the dynamics of choice-to-action transformation (Klein-Flügge et al., 

2013).
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Prestimulus motor activity predicts 

sensorimotor decisions 

The available evidence on motor activity during the decision making process 

reviewed above points towards an architecture where detailed choice-related 

information continuously flows all the way into cortical motor areas and beyond. 

Such an architecture allows for motor activity to reflect decisional variables 

during decision making, leading to the fact that decisional variables and choice-

contingent response planning often cannot be distinguished in motor area 

activity. Because this is the case, activity in motor areas may play an active role 

in sensorimotor decision making beyond reflecting decision variables routed 

here from elsewhere (Shadlen et al., 2008). Indeed, it has even been suggested 

that motor areas may be the locus of choice commitment (Cisek and Kalaska, 

2005, 2010, Cisek, 2006, 2007). However, the evidence reviewed above is also 

fully compatible with a functional architecture where motor areas are only the 

output stage of the brain. In this case, their modulation with decision variables 

may merely be a consequence of continuous flow, e.g. reflecting probability for 

one movement relative to another.  

Here, we investigated the role of motor areas in sensorimotor decision making. 

More specifically, we were interested whether choice-predictive signals in motor 

areas merely reflect continuous flow of decisional variables into motor areas for 

choice-contingent response preparation, or whether alternatively, motor areas 

can actually influence decision making. 

This question had not been investigated so far, because the levels “choice” and 

“response” are often inextricably linked in experimental paradigms. In Siegel’s 

experiment for instance, to report having seen more green dots (choice: 

“green”), monkeys always made a saccade towards the left (response: “left”), 

whereas for choosing “red”, they always made a saccade towards the right. 

Such a fixed relationship between choices and responses does not allow a 

separate analysis of the choice content (“red” / ”green”) and the behavioral 

response (“left” / ”right”), nor a separation of these levels in the neural motor 

activity. Therefore, it is unknown how much of the choice-predictive activity in 
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motor areas was relayed there, i.e. reflected true information about the choice, 

and how much was contributed by neural fluctuations (such as pre-mature 

response plans or even neural noise).  

To elucidate the role of motor areas for sensorimotor decision making, we had 

20 right-handed human participants make decisions about the presence of 

coherent motion (“yes” / ”no”) in the random dot motion stimulus. They reported 

their choices with button presses with the left and right index finger. Importantly, 

we randomly assigned the mapping from choice to response anew on each trial 

(Bennur and Gold, 2011; Merten and Nieder, 2012) to be able to analyze the 

impact of neural fluctuations in motor areas for decision making. If cortical motor 

areas can causally contribute to response selection in sensorimotor decision 

making, neural motor activity should predict upcoming responses before 

decisions can be made.  

Using beta oscillations to index motor preparation and 

decision making 

To assess the impact of neural fluctuations in motor areas during sensorimotor 

decision making, we measured the participants’ magnetoencephalogram 

(MEG) while they were making the sensorimotor decisions. The MEG 

represents the summed activity of thousands of neurons, more specifically the 

tiny magnetic fields co-occurring with intracellular current flow in the apical 

dendrites of pyramidal neurons following transmembrane ion flow caused by 

synaptic activation (Hämäläinen et al., 1993; Baillet et al., 2001). We focused 

on low-frequency oscillations in the beta range, i.e. from 12 to 30 Hz that we 

source-reconstructed from cortical motor areas. In sensorimotor areas, these 

beta oscillations have mainly been associated with motor function and are 

known to change stereotypically during different phases of movement 

(Pfurtscheller, 1981; Jenkinson and Brown, 2011; Kilavik et al., 2013). Typically, 

before a movement, power in the beta range is reduced. This change is found 

in both hemispheres, but often this reduction in power is stronger over the 

hemisphere contralateral to the upcoming movement (Pfurtscheller, 1981; 

Leocani et al., 2001; Szurhaj et al., 2003; Doyle et al., 2005; Zhang et al., 2008). 

After movement, power in beta oscillations over sensorimotor areas rebounds, 

i.e. rises beyond pre-movement amplitudes, again in a lateralized fashion but 

with opposite polarity as the pre-movement power-drop (Salmelin and Hari, 

1994; Pfurtscheller et al., 1996; Jurkiewicz et al., 2006; Parkes et al., 2006). 
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These stereotypic changes in lateralization of power of beta oscillations 

accompanying movement allow predicting the side of upcoming movement.  

By monitoring it throughout the whole trial, i.e. before and after the choice has 

been made and the choice-response mapping is revealed, we can answer our 

experimental question. Of course, as soon as participants are informed about 

the mapping from choice to a particular motor response, beta power will strongly 

lateralize in preparation of a choice-contingent motor response. Conversely, any 

lateralization occurring before participants know the mapping from choice to 

response or even before they have seen the stimulus to make their choice about 

it, cannot be related to the choice level but to the response level only. If such 

lateralization existed before the choice-response mapping, it would suggest an 

active involvement of motor areas in response selection in sensorimotor 

decision making. 

To assess the temporal dynamics of possible neural fluctuations in motor areas 

during sensorimotor decision making, we kept choice and response level 

distinct for as long as possible. That means we informed participants about the 

choice-response mapping only one second after they had formed a decision. In 

a control condition, we already informed the participants about the choice-

response mapping before decision making, to assess the impact of choice-

contingent motor planning on the role of motor areas can influence sensorimotor 

decision making. Results were very similar across conditions: 

Results 

We found that fluctuations of beta lateralization predicted the upcoming 

response already more than six seconds before the button press when 

lateralization could not yet reflect choice-contingent signals. Because these 

fluctuations were present already at trial onset, we wondered whether they may 

be related to the neural aftermath of the previous response, i.e. the beta 

rebound. Indeed, the beta rebound of the previous response had a strong 

impact on beta lateralization in the current trial and was still present at the time 

of button press in the current trial. As the beta rebound has the opposite polarity 

as the pre-movement beta lateralization and dominated lateralization in a long-

lasting manner, this made a specific prediction for behavior: If fluctuations of 

beta lateralization in motor areas can impact response selection, participants 

should tend to choose the opposite of the previous response on the current trial. 

As expected, in the behavioral analysis, we found that the previous motor 
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response negatively predicted the motor response on the current trial. That is, 

across trials, participants had a tendency to alternate between the left and right 

button press. Linking behavior and beta rebound, this response alternation 

tendency was correlated to the size of the beta rebound on the single trial as 

well as the group level. Furthermore, correcting for the previous response 

removed part of the variance in prestimulus response predictive lateralization, 

showing that the previous response’s beta rebound contributed to the response-

predictive lateralization. However, even after removing the impact of the beta 

rebound, neural fluctuations still predicted the upcoming response. Following 

the response alternation bias should of course be disadvantageous for 

performance on the sensorimotor decision task. And indeed it was, as we found 

a correlation between the strength of alternation and accuracy. 

Discussion 

These results allow new insights into sensorimotor decision making on the 

behavioral as well as on the neural level. By demonstrating that neural 

fluctuations in motor areas can predict upcoming responses even before 

decision making, they suggest that neural fluctuations in motor areas may play 

a role for response selection in sensorimotor decision making. On the 

behavioral level, we were able to uncover the behavioral bias of response 

alternation which was previously unknown to exist. Several lines of evidence 

suggested an involvement of the neural aftermath of the preceding response in 

driving this effect. Together these results suggest that motor areas are more 

than an output stage in sensorimotor decision making because they seem to be 

able to tip the scales during response selection in sensorimotor decision 

making. If the interpretation is correct and the fluctuations in cortical motor areas 

are causal rather than correlational for response selection, then this would 

suggest an active role of motor areas in sensorimotor decision making. This 

interpretation goes beyond what is commonly accepted for the role of motor 

areas in decision making, but resonates well with theories on action-centered 

cognition. 

Signal fluctuations in motor areas seem to impact sensorimotor decision 

making  

Our results suggest that neural noise in motor areas can bias response 

selection in sensorimotor decision making. As such they accord well with reports 

that stimulation in motor areas can influence selection of motor responses in 
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cognitive tasks. For instance, Javadi et al recently tested the effects of 

transcranial direct current stimulation (tDCS) on primary motor cortex during a 

perceptual decision making task with bimanual responses (Javadi et al., 2015). 

They found that anodal stimulation which is known to have excitatory effects 

without directly eliciting responses (Nitsche and Paulus, 2000, 2001) biased 

response selection when reporting perceptual choices towards the hand 

contralateral to stimulation, whereas cathodal stimulation which is inhibitory 

biased participants’ responses toward ipsilateral hand responses. This is an 

important study supporting our conclusion that motor areas may be involved in 

sensorimotor decision making, because it actually shows both increases and 

decreases of lateralized responses when reporting perceptual choices in a 

stimulation-polarity- and stimulation-site-selective manner. More support for this 

conclusion comes from studies showing reductions of motor responses 

contralateral to reversible inactivation of one area during cognitive but not in 

simple motor tasks (Schieber, 2000; McPeek and Keller, 2004), and increases 

of contralateral behavior after stimulation to an area (Carello and Krauzlis, 

2004). It also follows from our observations, that choice-predictive activity in 

cortical motor areas in many decision making tasks reported in the literature 

may actually be a conglomerate of both choice-contingent activity routed here 

from upstream areas and motor-cortex intrinsic activity fluctuations related to 

movements. 

Beta - causal or epiphenomenal? 

Several independent statistics suggest that between-hand response selection 

in our decision making task was biased by the neural aftermath of previous 

responses, i.e. the beta rebound. As such the results suggest that beta 

oscillations may have causal relevance for motor function, a question which is 

still discussed (Jenkinson and Brown, 2011). A number of recent studies provide 

converging evidence for a causal involvement of beta oscillations in motor 

function. For instance, Brown and colleagues showed that upregulation of 

cortical beta synchrony using transcranial alternating current stimulation (tACS) 

during a Go/No-Go task reduced the initial rate of force development and peak 

force rate (Joundi et al., 2012). Similarly, entrainment of beta oscillations using 

tACS slowed peak acceleration and deceleration in a motor tracking task 

(Pogosyan et al., 2009).  

Moreover, it is well-known that cortical beta oscillations are synchronous with 

activity in muscles (electromyographic activity, EMG) (Conway et al., 1995; 
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Baker et al., 1997, 2003; Kilner et al., 2000). One both elegant and insightful 

study makes use of this link and shows results suggesting that beta oscillations 

may be of causal importance: Brown and colleagues measured the peak 

acceleration of cued finger movement as a function of cortical beta synchrony 

(Gilbertson et al., 2005). Participants were cued to move based on the 

amplitude of cortical beta synchrony. Because this couldn’t be assessed with 

sufficient spatial resolution in healthy participants with noninvasive methods, it 

was assessed indirectly by measuring microtremor in finger muscles which in 

turn is a product of corticospinal synchrony. The authors found that during 

periods of elevated beta synchrony, cued movements were slower than during 

periods of low beta synchrony. The study confirmed their results in two patients 

where cortical beta synchrony was measured with intracranial measurements 

(electrocorticography, ECoG). Similarly, participants upregulate corticospinal 

beta synchrony when they are warned of an upcoming finger stretch and in turn 

downregulate beta when they are warned of the necessity to make a speeded 

finger movement (Androulidakis et al., 2007). 

This body of evidence suggesting causal relevance of beta oscillations for motor 

control is also in line with extensive research on Parkinson’s disease patients 

who in parallel display chronically increased levels of beta oscillations and 

characteristic behavioral symptoms such as bradykinesia, i.e. slowed 

movement (Brown, 2007). 

Bi-hemispheric and cortico-spinal mechanisms contributing to response 

selection and competition 

The aforementioned evidence suggests a causal, anti-kinetic role of beta 

oscillations measured in motor areas. Nevertheless, its exact function during 

different phases of movement, e.g. how suppression of beta power contributes 

to movement selection, or what the function of the beta rebound is, remains 

unclear (Kilavik et al., 2013).  

Partly, this uncertainty may prevail because also more generally it is still unclear 

how motor control is organized at a network level (Graziano, 2011; Churchland 

et al., 2012; Shenoy et al., 2013), giving rise to signals that we can measure 

with MEG. Also, the lateralization of motor control may be less clear-cut than 

previously thought: there is increasing evidence that bilateral networks 

contribute to unilateral movement control (Horenstein et al., 2009; 

McCambridge et al., 2011; Montgomery et al., 2013; Buetefisch et al., 2014; 
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Uehara et al., 2015; Li et al., 2016). Ipsilateral control may be exerted via co-

activation of homologue areas via interhemispheric connections via the corpus 

callosum or by subcortical connections and/or via uncrossed fibers from 

ipsilateral primary motor cortex (Uehara and Funase, 2014). 

Because of this data situation, we can merely speculate about the exact 

mechanisms driving our effects, i.e. whether, how, when and where the beta 

oscillations that we observed as predictive of upcoming responses may have 

contributed to between-hand response selection. Several mechanisms are 

conceivable based on the literature: For instance, the lateralized beta rebound 

may simply have reduced the capacity for movement planning in one 

hemisphere and in turn passively increased the probability for motor output from 

the opposite hemisphere, in line with the suggested (Salmelin et al., 1995; Solis-

Escalante et al., 2012), yet debated idea (Kilavik et al., 2013), that beta 

rebound’s function is active inhibition. Alternatively, there may be some form of 

active interhemispheric competition (Ferbert et al., 1992; Vidal et al., 2003; 

Carbonnell et al., 2004; Praamstra and Seiss, 2005; Müller-Dahlhaus et al., 

2008). While these ideas are intriguingly simple, they likely do not capture the 

whole picture.  

One noteworthy study directly set out to investigate the question how beta 

oscillations contribute to between-hand response selection by analyzing bi-

hemispheric, simultaneous up- and down-regulation of cortical beta synchrony, 

corticospinal coherence and corticospinal phase synchronization (Wijk et al., 

2009). After a response-instructive cue, they found contralateral beta power to 

be down- and ipsilateral corticospinal coherence and phase synchronization to 

be up-regulated simultaneously. Later, that is beginning 1s before the response, 

all three measures showed less synchrony in the contra- than in the ipsilateral 

hemisphere. Because neither measure individually showed both up- and down-

regulation in opposite hemispheres simultaneously, their results suggest that all 

investigated mechanisms may contribute to between-hand selection in 

concerto, acting together to select and suppress competing responses. These 

results are in line with literature suggesting involvement of corticospinal 

coherence in motor control by demonstrating relationships between motor 

outputs and levels of coherence between cortex and EMG (Conway et al., 1995; 

Baker et al., 1997; Schoffelen et al., 2008; Muthuraman et al., 2012; 

Mehrkanoon et al., 2014).  
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This relationship between behavior, cortical beta and corticospinal coherence 

demonstrated by Wijk’s results can potentially also offer an explanation for an 

open question concerning our data: It may explain why we observed the 

response-predictive lateralization only before the stimulus interval (Fig. 2d in 

(Pape and Siegel, 2016)) despite the fact that the beta rebound of the previous 

response continued throughout the next stimulus presentation until the next 

response (Fig. 3c in (Pape and Siegel, 2016)). As shown by Wijk and 

colleagues, several measures of beta oscillations seem to change 

simultaneously during between-hand response competition. It is therefore 

possible that during stimulus presentation the response bias was present in a 

measure other than the lateralization of beta power, e.g. in corticospinal phase 

synchronization. Independent from such a possible mechanism, it is important 

to note that observing the response-predictive lateralization only before the 

stimulus does not allow us to draw any inferences about the point in time when 

motor fluctuations may have contributed to response selection in sensorimotor 

decision making.  

Subcortical contributions to motor control and decision making 

Beyond the cortex and the cortical mechanisms underlying motor control 

discussed here, there are of course many subcortical structures and 

mechanisms contributing both to motor control and to decision making. One 

subcortical structure that seems to combine both functions are the basal 

ganglia, a fact which makes them worth mentioning here. The basal ganglia 

have long been known to be involved in motor control because of their heavy 

bi-directional connections to cortical motor areas (Mink, 1996; Shadmehr and 

Krakauer, 2008; Redgrave et al., 2010; Brittain and Brown, 2014), and recently 

have also been implicated in perceptual decision making (Ding and Gold, 2010, 

2013; Green et al., 2013; Wei et al., 2015; Herz et al., 2016; Perugini et al., 

2016; Seymour et al., 2016; Zénon et al., 2016). In line with that, patients with 

Parkinson’s disease, who lack dopaminergic input to the basal ganglia, suffer 

not only from severe impairments in motor control, but also from cognitive 

deficits, e.g. in decision making (Perugini et al., 2016). Moreover, areas in basal 

ganglia display beta oscillations synchronous to cortical motor areas 

(Hirschmann et al., 2011; Litvak et al., 2012). It may therefore be interesting to 

look for changes in oscillations measured in basal ganglia nuclei in a task like 

ours and see whether the basal ganglia may also be involved in response 

alternation. 
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Gamma and oscillations more generally 

Oscillations such as beta oscillations reflect synchronized activity within or 

between populations of neurons. Our findings suggesting the involvement of 

beta oscillations in response selection in sensorimotor decision making fit well 

into the existing literature delineating the view that oscillations have functional 

significance for computations within local and long-range networks (Engel et al., 

2001; Buzsáki and Draguhn, 2004; Fries, 2005; Womelsdorf and Fries, 2006; 

Donner and Siegel, 2011; Hipp et al., 2011; Supp et al., 2011; Siegel et al., 

2011; Singer, 2011; Joundi et al., 2012; Siegel et al., 2012; Picazio et al., 2014; 

Fries, 2015; Bastos et al., 2015). Beyond oscillations in the beta range also 

changes in gamma band frequencies are frequently observed in motor areas at 

the time of movement execution (Crone et al., 1998; Pfurtscheller et al., 2003; 

Cheyne et al., 2008; Donner et al., 2009; Muthukumaraswamy, 2010). Likewise, 

stimulation studies suggest their functional importance for motor control (Joundi 

et al., 2012), more specifically, a pro-kinetic function. Investigating the 

involvement of gamma oscillations may be an interesting endeavor to fill in the 

blanks in the picture how oscillations contribute to motor control and decision 

making.  
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Preceding motor responses predict 

sensorimotor decisions 

As discussed above, the strength of lateralized pre-stimulus beta power indexed 

the probability for response alternation according to several independent 

statistics. Therefore, several lines of evidence provide reason to assume that 

the previous response’s neural aftermath in motor areas drove the response 

alternation effect across consecutive trials of our sensorimotor decision task. 

This interpretation makes a testable prediction: If it is correct, any movement 

sharing the motor cortical circuitry with an upcoming choice-contingent 

response should be able to impact response selection in the upcoming 

sensorimotor decision. 

Alternatively, response alternation may be an effect that is specific to decision 

making, which would suggest that it may have a “cognitive” origin. An example 

for such a mechanism is the “Gambler’s fallacy”, which is the false belief that 

random events are not independent, i.e. that high incidence of one event 

category will be followed by low incidence (Jarvik, 1951; Senders and Sowards, 

1952). Along these lines, the response alternation effect may for instance reflect 

a “strategy” to sample different motor outputs when the participant faces low 

sensory evidence. Importantly, suggesting that the response alternation effect 

be of cognitive origin demotes motor signals such as the beta rebound as a 

mere correlate instead of a driving force of response alternation. Therefore, 

according to this hypothesis, response alternation as we have observed it 

should occur preferably between choice-contingent motor responses, but not 

subsequent to a choice-unrelated movement. 

We can distinguish between these two alternative hypotheses, i.e. the motor 

origin from the cognitive origin, by introducing instructed, choice-unrelated 

button presses between choices. If response alternation is of cognitive origin, it 

should persist under these circumstances because response alternation should 

occur systematically only between choice-related motor responses. If 

alternatively response alternation really is driven by motor signals as we 

suspect, then we should be able to manipulate it by instructing extra button 
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presses. This is because movements are stereotypically followed by the beta 

rebound (Salmelin et al., 1995; Pfurtscheller et al., 1996, 1998) and effects 

should therefore play out on selection of the following choice-contingent motor 

response.  

Results 

First, to see whether we can replicate the response alternation effect, we 

measured the level of response alternation without any intermediate instructed 

button press. The analysis confirmed our previous finding that participants tend 

to alternate between response options on consecutive choice-related button 

presses. This condition also serves as a baseline to which we compared the 

manipulation conditions: To tackle the question whether this response 

alternation effect is of a cognitive or motor origin, we randomly instructed 

participants to press a button in between choice-related button presses. As 

expected if response alternation has a motor origin, we found that the instructed 

button presses did have an effect on the response alternation effect. 

Importantly, and in line with the motor origin, we found different effects 

depending on whether the instructed button press is the same or different than 

the previous trial’s choice-related button press. In “different” trials, where the 

instructed button press and previous choice-related button press were different, 

there was no correlation between two choice-related button presses, suggesting 

that the intermediate button press disturbed the response alternation effect. A 

direct test between the response relationship in the baseline and on “different” 

trials confirmed that the instructed different button press significantly reduced 

the tendency to alternate between choice-related button presses. In contrast, 

we found a correlation between two choice-related button presses on “same” 

trials where instructed and previous choice-related button press were the same. 

Importantly, the correlation between choice-contingent button presses on 

“same” trials was increased, as was revealed by the direct comparison between 

baseline and “same” trials. Indeed, the motor hypothesis predicts that the 

response alternation effect may be slightly stronger when the instructed button 

press is a repetition of the choice-related button press, because the neural 

aftermath of two same responses may add up and push the motor system 

towards selecting the opposite motor response. Two further findings support the 

motor hypothesis. First, response alternation also exists between the instructed 

and the following choice-related response. Interestingly, the strength of this 
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effect was dependent on the laterality of the previous choice-contingent 

response, suggesting a shared neural substrate. Second, another sequential 

effect, namely the choice-repetition effect (Fründ et al., 2014; John-Saaltink et 

al., 2016) was left intact by our manipulations, suggesting that our manipulation 

specifically affected response selection mechanisms in the motor system. 

Discussion 

Our results confirm the idea that preceding movement has an impact on 

sensorimotor decisions. The pattern of results that we observed matched 

exactly what was predicted if neural correlates of preceding movement in 

cortical motor areas can bias response selection. That means our results 

suggest that response alternation is driven at least in part by the neural 

aftermath of preceding movement in motor areas. 

Decisions are more than meets the eye 

Our results establish the preceding movement as a factor that needs to be 

accounted for in the analysis and design of experiments. Beyond the current 

stimulus, a long list of factors is known to influence sensorimotor decision 

making: noise in sensory areas (Britten et al., 1992; Faisal et al., 2008; Wimmer 

et al., 2015), expectations about stimuli (Kok et al., 2013), rewards (Rorie et al., 

2010) or motor costs (Cos et al., 2011; Moher and Song, 2014; Gross et al., 

2015; Marcos et al., 2015), the recent history of previous choices such as the 

choice repetition effect (Gao et al., 2009; Lange et al., 2013; Fründ et al., 2014; 

John-Saaltink et al., 2016) and the “Gambler’s fallacy”, i.e. the erroneous belief 

that the probability of random events is somehow linked. 

Response alternation – a feature or a bug? 

It is not straight-forward what the function of the response alternation effect may 

be, i.e. why repeating the previous motor response should be avoided in a 

sequence of decisions. Beyond the response alternation effect, we found 

another sequential behavior in our data: the tendency to repeat the previous 

choice (Fründ et al., 2014). Unlike the response alternation effect this tendency 

operates on the level of the percept and a functional explanation is available: it 

is thought to reflect the visual constancy prior (Burr and Cicchini, 2014; Fischer 

and Whitney, 2014; Liberman et al., 2014). The visual constancy prior denotes 

a shifted prior probability towards a previous percept, reflecting the statistics of 

natural environments, where the visual scene is constant in time and space over 

short timescales. Thereby, it improves perception under natural conditions. In 
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laboratory settings, however, where stimuli are presented randomly, the prior is 

known as the choice repetition bias and impairs performance in perceptual 

decision making (Lange et al., 2013; Fründ et al., 2014; John-Saaltink et al., 

2016). Interestingly, our results suggest that the visual constancy prior playing 

out as the choice-repetition bias may be much stronger than thought because it 

is counter-acted by the response alternation bias when the mapping between 

choices and motor responses is fixed.  

In analogy to the relationship between choice repetition bias and visual 

constancy prior, may response alternation also reflect a prior or more generally 

be beneficial under natural conditions? To answer this, we look at behaviors 

involving alternation behavior. However, for many sensorimotor behaviors, the 

levels of analysis choice and motor response are typically not dissociable under 

natural conditions. That means, it is often not clear whether alternation happens 

between movements or between the effects these movements bring about. 

Therefore, we have to turn to studies inspired by such naturally-occurring 

alternation behavior which experimentally separate these levels: One such 

study is based on the observation that humans have a preferred hand for 

carrying out speed- or accuracy-demanding movements like hand-writing or 

throwing a ball, but also use the non-preferred hand for less demanding 

movements like reaching. This is also true for monkeys (Gardinier et al., 2005). 

To investigate what drives between-hand choice in reaching, Lee and Schieber 

examined the interaction of effector and target laterality in three monkeys 

reaching for one of two identical food morsels (Lee and Schieber, 2006). When 

the monkeys had a choice about both the target and the hand to reach with, 

they tended to alternate between targets as well as the hand with which to reach 

for it. Because the tendency to alternate between hands was stronger than the 

tendency to alternate between targets, and because monkeys had a preference 

to reach ipsilaterally, the authors concluded that the alternation between targets 

was driven at least partly by the tendency to alternate between hands. This 

suggests that response alternation as we observed it in our sensorimotor 

decision task in an artificial setting where motor responses were guided by 

arbitrary visual choices may be an instance of naturally occurring behavior 

investigated by Lee and Schieber. The authors of this study offered various 

explanations why such behavior may be optimal in natural conditions: for 

instance to avoid motor fatigue or when competing for resources with intelligent 

individuals where non-stereotypical, non-predictable behavior such as switching 
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between hands may provide advantages. These explanations may also apply 

to response alternation.  

Exploration / Exploitation 

Alternatively, Lee and Schieber suggested, that response alternation in reach 

choices between food morsels may be an instance of exploration in the tradeoff 

between exploration and exploitation. This trade-off guides spontaneous 

behavior in natural environments, meaning that organisms are thought to 

behave based on the answer to the question “Given the outcome of my current 

behavior, should I keep doing what I do or should I change my behavior?” 

(Cohen et al., 2007). For instance during foraging, animals have to make 

decisions about whether to exploit one resource or move on and search for a 

better source. This conceptual framing of exploration/exploitation being based 

on reward and outcomes suggests that it operates on the level of choices and 

that there is a cognitive component to it, in line with the fact that 

exploration/exploitation behavior is known to correlate with frontal dopamine 

levels (Beharelle et al., 2015; Kayser et al., 2015). This explanation based on 

choices and choice outcomes of exploration/exploitation behaviors makes it 

unlikely that response alternation is an instance of exploration. Nevertheless, it 

may be interesting to test it because when facing low levels of sensory evidence, 

concomitant high perceptual uncertainty and lowered chances of reward, it may 

be beneficial to favor variability in responses to increase the chances of finding 

a profitable input-response relationship. Also, both data and models suggest 

that dopaminergic inputs to the basal ganglia which are heavily connected to 

cortical motor areas and involved in both decision making as well as action 

selection are also involved in the trade-off between exploration/exploitation 

(McClure et al., 2005; Humphries et al., 2012). The idea that response 

alternation in our paradigm may be an instance of exploration can be tested by 

analyzing the pupil diameter of observers during decision making: Exploration 

and exploitation is known to be controlled by the locus coeruleus-

norepinephrine-system (Aston-Jones and Cohen, 2005). In turn, levels of 

norepinephrine can be tracked by measuring the pupil size in monkeys and 

humans (Rajkowski et al., 1994; Aston-Jones and Cohen, 2005) and tonic 

increases in pupil dilation are known to mark exploration periods (Jepma and 

Nieuwenhuis, 2010; Hayes and Petrov, 2016). Therefore, to see whether 

response alternation may be an instance of exploration, it would be interesting 

to investigate the link between response alternation and pupil size. 
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Our results are consistent with the idea that response alternation is driven by 

the neural aftermath of preceding movement in motor areas. This suggests that 

response alternation arises from the motor neural circuitry involved. It remains 

unclear whether beyond avoiding motor fatigue it has other behavioral benefits 

under natural conditions. As we cannot entirely exclude that beyond the 

suggested motor circuitry other circuitry is involved, this raises the possibility 

that response alternation in sensorimotor decision making may be an 

expression of another behaviorally relevant function (c.f. choice repetition). This 

possibility may be investigated in future work. 
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General Discussion 

Summary 

To investigate the involvement of motor areas in sensorimotor decision making, 

we conducted two experiments. In both, participants had to make choices about 

motion in a visual stimulus and report the choice with one of two manual 

responses, i.e. button presses with the left or the right index finger. Using MEG, 

in the first study, we showed that activity in sensorimotor areas was predictive 

of upcoming responses several seconds before the button press and even 

before stimulus presentation. In part, this activity represented the neural 

aftermath of the previous trial’s response, and biased neural motor activity 

towards the previously unchosen response alternative. Several independent 

statistics suggested a link between this motor activity and the previously 

unknown tendency to alternate motor responses in sensorimotor decision tasks. 

These results suggest that neural fluctuations in motor areas can impact 

response selection in sensorimotor decision making. This means that motor 

areas may be more than an output stage of decision-related activity routed here 

from upstream areas. Instead neural signals pertaining to motor responses may 

be able to actively impact response selection in sensorimotor decision making. 

In the second study, we were able to confirm the influence of the previous motor 

act for sensorimotor decision making and the tendency to alternate between 

response alternatives. We showed that upcoming sensorimotor decisions can 

be manipulated in a directed fashion through instructed, simple button presses 

made before decision making. This result established that previous motor acts 

can influence response selection in sensorimotor decision making, independent 

of whether they are choice-related or simply instructed. Given this 

generalization to different button presses, these results support the idea that 

neural correlates of previous motor acts bias response selection and drive 

response alternation. In turn, these results are consistent with the idea that 

motor areas are more than an output stage of the brain. Beyond the current 

stimulus, i.e. beyond what meets the eye, other factors, e.g. like the previous 

motor act can influence sensorimotor decision making. 
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Locus of choice commitment in motor areas? 

Our results resonate well with the suggestion that sensorimotor decision making 

and motor control may share a common neural circuitry (Cisek, 2007; Cisek and 

Kalaska, 2010; Shadmehr et al., 2016) because both decision making and 

motor control seem to be governed by the principle to minimize effort and 

maximize gains. For instance when humans make free choices between reach 

targets, the different biomechanics of the reach paths can predict both choice 

and movement speed towards reach targets even if the reach paths are identical 

from a visual perspective (Cos et al., 2011; Shadmehr et al., 2016). The less 

effortful trajectory is chosen more often and participants move faster towards it. 

Similar results have been shown for production of grip force and choice between 

walking or flying in starlings (Shadmehr et al., 2016). Interestingly, such effects 

cannot only be observed in free choices, where it’s intuitive that decision making 

should be sensitive to motor cost and reward, but also in tasks where animals 

should choose between options along a different dimension such as motion in 

a random dot motion stimulus. For instance, geometrical properties of the 

competing motor acts can alter both behavior (e.g. reaction time and number of 

changes of mind) (Moher and Song, 2014; Marcos et al., 2015; Lepora and 

Pezzulo, 2015; McPeek et al., 2003) as well as neural motor activity before 

choice commitment (McPeek et al., 2003; Pastor-Bernier and Cisek, 2011). 

These effects can be accounted for by assuming that decision making and 

motor control share a common utility function, and that instead of choosing a 

target and movement kinematics independently from each other, the two are 

chosen together based on a utility assigned to a target/movement pair 

(Shadmehr et al., 2016). In turn, this idea suggests a strong coupling between 

neural circuits involved in generating movement and the circuits involved in 

sensorimotor decision making as proposed e.g. by the action affordance 

hypothesis (Cisek and Kalaska, 2005; Cisek, 2006, 2007; Cisek and Kalaska, 

2010). The action affordance hypothesis suggests that different choice 

alternatives compete with each other as alternative movement plans coded in 

sensorimotor space, while upstream areas such as the fronto-parietal network 

merely modulate motor activity for choice commitment (Cisek, 2006). While our 

results do show that motor areas are involved in sensorimotor decisions making, 

they do not tell us anything about the locus of choice commitment. They are 

compatible with evidence suggesting that decisions are made in a fronto-
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parietal network as well as with the suggestion of the action affordance 

hypothesis that choices may be committed to in sensorimotor space. 

Network architecture underlying decision making 

Our results suggest that neural fluctuations in motor areas may influence 

decision making. In turn this suggests that decision making may be a network 

achievement where information about decision-related variables flows between 

areas, such that activity in all of the areas may be able to impact the decision 

process. An abundance of experimental data suggests that information may 

flow bi-directionally through such networks, i.e. that beyond the bottom-up flow 

from sensory cortices to motor cortices via the fronto-parietal choice network, 

there is some form of top-down flow originating in prefrontal or fronto-parietal 

areas (Lamme and Roelfsema, 2000; Nienborg and Cumming, 2009; Nienborg 

et al., 2012; Siegel et al., 2015). For instance, Siegel and colleagues showed 

that information about the choice flows not only in the forward direction, i.e. from 

the fronto-parietal network to motor areas, but also in the top-down direction i.e. 

back to sensory cortices, possibly through recurrent interactions (Lamme and 

Roelfsema, 2000; Wang, 2008) made possible by abundant cortico-cortical 

connections (Felleman and Van Essen, 1991; Johnson et al., 1996). Beyond 

decision making, this bi-directional flow of information seems to be a prevalent 

organizational principle underlying many computations with important functions 

attributed to top-down e.g. goal-directed attentional selection (Corbetta and 

Shulman, 2002; Buschman and Miller, 2007; Gregoriou et al., 2014).  

If we accept the idea of top-down flow as a prevalent principle and combine it 

with our results suggesting that motor areas seem to contribute to sensorimotor 

decision making, the question arises whether there may not also be feedback 

connections from motor areas back to other nodes of the network, e.g. to fronto-

parietal areas. Our results cannot answer this question, because they are in 

principle consistent with an architecture with and without recurrent connections, 

just as there exist both purely feedforward (Usher and McClelland, 2001; 

Mazurek et al., 2003; Smith and Ratcliff, 2004) as well as recurrent network 

models (Wong and Wang, 2006) which both can successfully explain many 

aspects of the decision making process. Yet, it would be very interesting to 

explore it. Exploring this question and thinking about possible functions of top-

down connections from motor areas could be inspired by and may reveal further 

support for action-centered approaches to cognition (Engel et al., 2013; König 
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et al., 2013). Ideas of embodied / enactive cognition and related theories (Varela 

et al., 1992; Clark, 1999; O’Regan and Noë, 2001; Engel et al., 2013) propose 

that cognition is dependent on aspects of the body or that action possibilities 

shape cognition (Engel et al., 2013; König et al., 2013). Put differently, these 

theories state that we perceive the world in terms of actions, i.e. that the role of 

cognition is not to create veridical representations of the world but to build 

action-relevant perception. Top-down feedback about activated action plans 

could then help to guide perception along action-relevant dimensions. 

Testing for top-down flow 

How can we test for such top-down flow? One possibility is to ask “Do neural 

fluctuations in motor areas impact sensorimotor decision making only through 

the lever on response selection or do they actually alter the choice itself?” This 

question may be answered by asking how confident subjects feel about their 

choice in response alternation trials, i.e. how much they actually believe in what 

they respond when they follow the neural bias in motor areas. If beyond acting 

as a lever on response selection, motor fluctuations can truly impact decision 

making on the choice level through top-down feedback from motor areas to e.g. 

fronto-parietal areas, participants should feel more confident when following the 

motor bias than when acting against it. Preliminary evidence for an involvement 

of motor areas in computation of perceptual confidence comes from a brain 

stimulation study (Fleming et al., 2015).  

Another way to tackle the question of top-down information flow from motor 

areas is to directly investigate the network architecture and information flow 

between brain areas. The latter one could be done using directed connectivity 

measures like Granger causality (Bernasconi and König, 1999; Bernasconi et 

al., 2000) and possibly cross-correlation of power correlations between brain 

regions (c.f. Womelsdorf et al., 2007). The former one, i.e. non-directed 

connectivity analysis through power correlations (Bruns et al., 2000) has been 

done as part of my doctoral work (Siems et al., 2016). In the respective paper 

we show that simultaneously acquired 64-channel electroencephalography 

(EEG) and MEG data reveal similar network structures in frequency-resolved 

power correlations during resting state. The results corroborate power 

correlation analyses as a connectivity measure that can capture connectivity in 

large scale networks during perceptual tasks (Hipp et al., 2011) and at rest 

(Siems et al., 2016).  
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How well do these results generalize? 

We have investigated the importance of motor areas for decision making using 

a visual stimulus and bimanual responses, an instance of sensorimotor decision 

making. An important question that remains is whether our results generalize to 

decisions that have to be reported using other effector systems and more 

generally to decision making that does not result in overt behavior? 

Sensorimotor decisions in different effector systems 

To act upon the world, we can use different effectors, some of which are under 

cranial nerve control such as the eyes and the mouth, and some of which are 

under control of skeletal muscles such as the hands and the feet. Given that 

cortical control of skeletal muscles is organized in a macroscopically 

contralateral pattern (Penfield and Boldrey, 1937), one can assume that all 

sensorimotor decision processes cumulating in skeletal muscle movement be 

sensitive to motor fluctuations and also display response alternation. Whether 

and how motor fluctuations should play out for sensorimotor decisions 

culminating in eye movements is less clear, as the two eyeballs move in 

synchrony to the same target in space, which means there is no motor 

competition between them. Instead, motor fluctuations may play out as 

competition between targets. Indeed, evidence shows that stimulating the 

superior colliculus, a subcortical structure involved in the control of eye 

movements, during a target-distractor task can lead to biases in target selection 

(Carello and Krauzlis, 2004). Similarly, stimulating one hemisphere’s FEF, an 

important cortical area underlying voluntary control of eye movements, leads to 

saccades to contralateral space only (Sherrington and Grünbaum, 1901; Bruce 

et al., 1985). Thus, motor fluctuations which were implicated to give rise to 

response alternation in between hand choice in our task, might play out as 

alternation between targets in space for eye movements. Indeed, such behavior 

is known to exist under the name of “inhibition of return” (Posner and Cohen, 

1984), i.e. delayed or even reduced responding to previously visually attended 

targets in space and is known to be at least partly driven by motor processes 

(Briand et al., 2000; Pastötter et al., 2007). Together, these considerations 

outline how our results may generalize to sensorimotor decisions culminating in 

selection between other effectors than the hands. 

Abstract, non-motor decision making 

In our task, participants knew throughout the whole trial that they would 

eventually have to make one of two button presses to report a choice, 
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suggesting that motor areas may have prepared neural motor plans even when 

choice-response mappings were revealed only after the stimulus. This has been 

shown to happen for instructed motor actions (Cisek and Kalaska, 2005; 

Tzagarakis et al., 2010, 2015; Klaes et al., 2011; Grent-’t-Jong et al., 2014). 

However, when decision making does not culminate in an action at all, motor 

areas are most likely not part of the decision making network. For instance, for 

many value-based decisions but also simple perceptual decisions that do not 

immediately ensue a motor act, neural correlates of the decision process do not 

seem to involve motor areas (Filimon et al., 2013). That means when it is not 

clear with which effector system the decision will have to be reported during 

choice formation, motor areas do not seem part of the decision making network. 

In turn, it should of course be impossible for motor fluctuations to impact 

response selection under these circumstances.   

However, our effects may also apply to more “complicated” decisions than 

perceptual decisions: also in preference- or reward-based decisions choice 

variables can be decoded from motor areas (Wunderlich et al., 2010; Pastor-

Bernier and Cisek, 2011; Hunt et al., 2013). Such observations suggest that as 

soon as motor areas can be recruited to the decision making network, because 

either the response modality or even the choice-response relationships are 

known to the decision maker, these areas also will be recruited. This suggests 

that our results may generalize to all kinds of decisions, i.e. also value-based 

decisions may be subject to motor fluctuations as soon as the decisions guide 

selection between different actions. 

It is worth considering that sensorimotor decision making is most likely the 

phylogenetically oldest form of decision making. Very likely, evolution’s forces 

selected our ancestors concerning their brains’ ability to control sensorimotor 

behavior. Because brain evolution has been relatively conservative concerning 

structural changes (Butler and Hodos, 1996; Katz and Harris-Warrick, 1999), 

we may therefore assume that much of the neural architecture underlying 

sensorimotor decision making is also part of more complex, abstract forms of 

decision making and cognition more generally. 

 



Conclusion | 39 

Conclusion 

Our results provide new insights into sensorimotor decision making on both 

behavioral and neural levels, suggesting that there is more to sensorimotor 

decisions than the visual stimulus about which observers are asked to decide. 

First of all, we uncovered that a preceding motor response can influence 

upcoming sensorimotor decisions, leading to a tendency to alternate between 

response options on subsequent decisions. This establishes preceding 

movements as a so far unknown factor that needs to be considered in the design 

and analysis of sensorimotor decision making paradigms. It would be 

worthwhile to investigate whether and how this alternation tendency relates to 

other alternation behaviors. More generally, it would be interesting to establish 

whether alternation between movements may serve a function or simply is a 

product of neural circuitry. 

Our neural results suggest that response alternation is at least in part brought 

about by the neural aftermath of preceding movements in cortical motor areas. 

Together with the finding that neural fluctuations in motor cortical areas predict 

upcoming choice reports long before decision making about the stimulus has 

begun, this suggests that fluctuations in motor areas can actually cast a vote in 

response selection during sensorimotor decision making. Our results suggest 

that the role of cortical motor areas may exceed the previously assumed 

function of merely planning and executing choice-contingent actions. This 

interpretation is consistent with hypotheses assuming large overlaps of crucial 

neural circuitry between decision making and motor planning and more 

generally action-centered accounts of cognition.
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Motor cortex activity predicts response alternation
during sensorimotor decisions
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Our actions are constantly guided by decisions based on sensory information. The motor

cortex is traditionally viewed as the final output stage in this process, merely executing motor

responses based on these decisions. However, it is not clear if, beyond this role, the motor

cortex itself impacts response selection. Here, we report activity fluctuations over motor

cortex measured using MEG, which are unrelated to choice content and predict responses to

a visuomotor task seconds before decisions are made. These fluctuations are strongly

influenced by the previous trial’s response and predict a tendency to switch between

response alternatives for consecutive decisions. This alternation behaviour depends on the

size of neural signals still present from the previous response. Our results uncover a

response-alternation bias in sensorimotor decision making. Furthermore, they suggest that

motor cortex is more than an output stage and instead shapes response selection during

sensorimotor decision making.
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W
e constantly use sensory information to choose
between alternative motor actions. The neural
processes underlying such sensorimotor choices

include the representation of sensory evidence, possibly weighing
in top-down factors, deciding between choice alternatives and
finally executing the appropriate motor response1–4.
Traditionally, these processes were viewed as sequential stages,
in which the motor cortex acts as the final output stage that
merely executes responses (for example, a specific button press)
corresponding to the choices made in other brain regions
(for example, ‘yes—I saw the target’).

In contrast to this sequential view, recent evidence suggests a
more continuous flow of information and that the motor cortex,
that is, primary and pre-motor cortex, is more directly involved in
the decision-making process itself4. Before choice commitment,
motor cortex activity already reflects competing response
options5–8, and if choices are inextricably linked to a specific
response during decision formation, activity in motor areas6,9–12

as well as corticospinal excitability13,14 and motor reflexes15 track
the evolution of upcoming choices.

However, if choice–response contingencies are specified before
decision making, choices and associated responses cannot be
dissociated, neither behaviourally nor neurally. Therefore, it is
unclear if intrinsic fluctuations of motor cortex activity have a
direct impact on the decision-making process beyond represent-
ing upcoming choice-contingent responses. Here, we overcome
this limitation by dissociating choices and responses, and
investigate with magnetoencephalography (MEG) the motor
cortex’ role in human sensorimotor decision making.

We show that fluctuations over motor cortex before decision
making are predictive of upcoming responses. These signal
fluctuations are partly carried over from the previous response
and predict a tendency to alternate between response alternatives
for consecutive choices. Our results reveal a tendency to alternate
responses in perceptual decision making. Furthermore, they
suggest that motor cortex can impact response selection during
decision making.

Results
Dissociating choices from responses. We recorded MEG from
20 human participants while they judged the presence of weakly
coherent motion in a display of randomly moving dots (Fig. 1a;
see ‘Methods’ section). For each participant, stimuli were adjusted
for near-threshold performance (average correct performance:
73.9 % þ /� 9.4%). Subjects reported their choice (‘yes’/‘no’)
with a left or right hand button-press. Two design features
dissociated choices from motor responses during the decision-
phase16–18: First, the mapping between choice and response hand
was randomly re-assigned on each trial. Second, for each trial, the
choice-response mapping was indicated with a colour cue only
after the stimulus presentation was completed (Fig. 1b). Thus,
subjects had to form their decision during stimulus presentation,
but could only later map their choice onto a response.

Early response-predictive motor cortex activity. We recon-
structed neuronal activity in the left and right motor cortices as a
function of time and frequency (Fig. 2a). After the choice–
response cue and directly preceding the button-press, we
observed the typical reduction of beta-band power (12–30 Hz) in
the hemisphere contralateral to the button-press (Fig. 2a,
P¼ 0.012, two-tailed one-sample cluster permutation test; n¼ 20,
4.7–6.6 s, 10–44 Hz)9,10,19–22. Because the cortical distribution
of this lateralized pre-response activity peaked pre- and
post-centrally (Fig. 2b; 4.5–5.5 s; 12–30 Hz), we refer to it as
sensorimotor cortex activity in the following. To test if

sensorimotor cortex activity also predicted responses earlier,
that is, before the choice-response cue allowed for choice-
contingent response selection, we compared beta-band activity
(12–30 Hz) contra- and ipsilateral to the response throughout the
trial (Fig. 2c,d). This revealed significant response-predictive
lateralization not only after the choice–response cue (Fig. 2c,d;
4.6–6.1 s; P¼ 0.002, two-tailed one-sample cluster permutation
test; n¼ 20) but also at the beginning of the trial (� 1.0 to 1.1 s;
P¼ 0.01, two-tailed one-sample cluster permutation test; n¼ 20).
Beta-band activity contralateral to the button-press was
significantly lower than ipsilateral. This early response-
predictive activity was independent of accuracy. It was present
for both, correct and error trials (Fig. 2e, and Supplementary
Fig. 1).

In sum, neuronal activity in sensorimotor cortex predicted
which button participants eventually pressed not only after, but
even before the choice-response cue, before the stimulus and
more than 6 s before the final motor response. Importantly,
because choices and responses were dissociated at this point in
time, this response-predictive lateralization reflects neuronal
encoding of the upcoming response, but not of the reported
choice content.

Long-lasting effect of beta rebound. Because response-predictive
activity appeared already at trial onset, we hypothesized that it
was related to the previous trial’s response. The contralateral beta
power decrease in motor cortex before a response is typically
followed by a characteristic increase of beta power, the ‘beta
rebound’20,23,24. To investigate if this affected the early response-
predictive activity, we analysed the evolution of the beta rebound
that followed the previous trial’s button-press (Fig. 3). Indeed, we
found a prominent increase of beta power contralateral to, and
following the previous button-press that lasted for several seconds
into the current trial until presentation of the next choice-
response cue (Fig. 3a–c, 0.7 s after the previous trial’s button-
press to 4.6 s of the current trial, P¼ 0.002, two-tailed one-sample

Duration (s)
2

Irrelevant
cue

a

b

1 0.25 1 1 0.25 1 RT

Stimulus Choice-response
cue

Choice-response
mapping 1 Yes → Right No → Left

Yes → Left No → RightChoice-response
mapping 2

Response
(left/right)

Figure 1 | Visuomotor decision task. (a) Participants reported the

presence of coherent motion in a display of randomly moving dots with a

left- or right-hand button-press. In each trial, the mapping from choice to

response hand was newly assigned with a colour cue after the stimulus

(choice-response cue). Successive trials were separated by a variable

length ITI (median ITI: 1,290 ms). (b) For a red cue (choice-response

mapping 1), participants reported the presence and absence of coherent

motion with a right and left hand button-press, respectively. The mapping

from choice to response was reversed for the green cue (choice-response

mapping 2).
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cluster permutation test; n¼ 20). The cortical distribution of this
beta-rebound peaked over sensorimotor cortices (Fig. 3d), and
similar to the response-predictive activity, was independent of
response accuracy. Furthermore, the beta-rebound did not differ
following correct and error trials (Fig. 3e and Supplementary
Fig. 1). At its maximum before the current trial’s stimulus onset,
the beta-rebound lateralization was about three times as strong as
the lateralization right before the previous button-press. Thus, at
the beginning of the current trial, the sensorimotor cortex was not
in a neutral state, but even stronger and reversely lateralized than
preceding the previous response.

Beta rebound predicts response alternation. The beta rebound
pushes the sensorimotor cortices into a lateralized state opposite
to the lateralization before the previous button-press (but see
lateralization with respect to current button-press plotted
separately for response alternation and non-alternation trials,
Fig. 4a,b). We hypothesized that this reversed lateralization
following the previous response in combination with the early

response-predictive lateralization for the current response may
induce a behavioural bias towards response alternations across
successive trials. Indeed, participants showed a significant ten-
dency to alternate the response hand from one trial to the next
(Fig. 5a, mean r¼ 0.04, P¼ 0.016, one-tailed one-sample t-test;
n¼ 20). Because our design enabled us to dissociate responses
from choices, we could unequivocally dissociate this response
alternation bias from the well-known preference to repeat the
previous choice10,25–27, which was also present in our data (mean
r¼ 0.13, P¼ 5.366� 10� 4; two-tailed one-sample t-test; n¼ 20).
The response bias also affected overall performance: The stronger
the participants’ response bias, the worse they performed in the
actual motion detection task (Fig. 5b, r¼ � 0.53, P¼ 0.016,
Spearman correlation; n¼ 20).

While the above findings of a long-lasting beta rebound and
response alternation suggest a mechanistic link between these two
phenomena, they might also merely coexist. Therefore, we sought
more direct evidence for a link between these two phenomena.
If they were mechanistically related, variance in one variable
should explain variance in the other. First, we tested if, across
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participants, the strength of the beta rebound predicted the
tendency to alternate responses. This is what we found (Fig. 5c,
r¼ 0.64, P¼ 0.002, Spearman correlation; n¼ 20): the stronger a
participant’s beta rebound, the more likely the participant was to
alternate responses. We repeated this analysis across the entire
cortex (Fig. 5d). This revealed that the beta rebound predicted
response alternation specifically in regions compatible with
sensorimotor cortex and similar to those regions showing
maximum pre-response lateralization (Fig. 2b). Second, we tested
if the relationship between beta rebound and response alternation
also held on the single-trial level. Indeed, we found that the
stronger the beta rebound at the beginning of a trial, the more
likely were participants to alternate responses on this trial
(random effects: P¼ 0.021; fixed effects: P¼ 0.005; two-tailed
one-sample permutation tests on beta rebound averaged in the
window � 1 to � 1.25 s; n¼ 20 ). Another third line of evidence
suggested a close relation between beta rebound and alternation
behaviour: If the response-predictive activity at trial onset
(Fig. 2d) reflects the effect of the beta rebound on response
behaviour, then removing neural variability due to the beta
rebound should reduce the response-predictive effect. To test this,
we removed neural variability due to the beta rebound by
correcting for the effect of previous responses (see ‘Methods’
section). Indeed, we found that this correction significantly
reduced the response-predictive effect (Fig. 6a,b, P¼ 0.010, one-
tailed paired permutation test; n¼ 20). This finding provides
additional evidence for a mechanistic link between beta rebound
and response alternation behaviour.

We next tested if the strength of the beta rebound was
modulated by different aspects of the previous trial. We

found that only the duration of the preceding inter-trial
interval (ITI; Po0.001; two-tailed one-sample t-test; n¼ 20),
but not the previous choice, response hand, target presence,
accuracy, or reaction time (all P40.05; two-tailed one-sample
t-tests, all n¼ 20) predicted the strength of the following
beta-rebound (Supplementary Table 1). Corresponding to this
decay of the beta-rebound, also the alternation bias was
descriptively weaker and not significant for trials following
long (mean r¼ 0.019, P¼ 0.45, one-tailed one-sample t-test;
n¼ 20) as compared with short (mean r¼ 0.052, P¼ 0.046,
one-tailed one-sample t-test; n¼ 20) inter-trial intervals (direct
comparison P¼ 0.21, one-tailed paired t-test; n¼ 20, Supple-
mentary Fig. 2).

In sum, our findings suggest that the beta rebound drives
response-predictive fluctuations of sensorimotor cortex activity at
trial onset.

Spontaneous fluctuations of beta lateralization predict responses.
Do also spontaneous fluctuations of motor cortical activity
beyond the beta rebound predict responses? In other words, can
response variability be explained by prestimulus neural
variability—over and above the fact that responses depended on
previous responses, and the fact that each response produces a
beta rebound? Removing the neural variability due to the beta-
rebound allows for also addressing this question. Indeed, we
found that even after removing neural variability due to the beta-
rebound, motor cortex lateralization at trial onset predicted
upcoming responses (P¼ 0.024, � 1 to 1.25 s, one-tailed one-
sample permutation test; n¼ 20, Fig. 6a,b). Thus, the response-
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(12–30 Hz) in motor cortex contra- and ipsilateral to previous trial’s button-press. Activity is normalized by the mean across trials. Shaded areas indicate

SEM across participants. Black bar marks a significant difference from 0.7 s after the previous button-press to 4.6 s in the current trial (P¼0.002, two-

tailed one-sample cluster permutation tests, n¼ 20). (c) Time-course of the difference in beta power contra- and ipsilateral to the previous trial’s button-

press. (d) Beta power after left minus right button-presses (� 1 to 1.25 s). Dashed lines indicate the hand representation of primary motor cortex and the

central sulcus, respectively. (e) Beta rebound averaged across the prestimulus period is not significantly different after correct and incorrect choices

(P¼0.84, two-tailed paired permutation test, n¼ 20).
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predictive sensorimotor activity was not limited to the neural
aftermath of the previous trial, that is, the beta rebound, but also
spontaneous fluctuations unrelated to the previous button-press
predicted which button would be pressed 6 s later.

The effect of choice-contingent response planning. All of the
above results held in a situation where choices could be translated
into motor responses only after choice formation. Do motor
fluctuations also predict responses when choices can be directly
mapped onto motor responses? To test this, we recorded MEG
during a second decision task in which the choice-response
mapping was already cued before the stimulus by swapping the
order of the irrelevant and the choice–response cues (choice–
response cue for control task: 0–0.25 s).

Motor activity also predicted motor responses in this control
task, but weaker. We first focused on the beta rebound as the
major source of motor fluctuations. Again, we found evidence for
a mechanistic link between beta rebound and response alterna-
tion: Across participants, stronger beta rebound significantly
predicted stronger response alternation (Fig. 7a, r¼ 0.51,
P¼ 0.022, Spearman correlation; n¼ 20), but descriptively the
relationship was weaker than for the original task. Correspond-
ingly, participants showed a weaker tendency to alternate
responses in the control task, which was only significant in

participants with above average beta rebound (Fig. 7b, mean
r¼ 0.04, P¼ 0.0085, one-tailed one-sample t-test; n¼ 10), but not
across the entire sample (all participants: mean r¼ 0.015,
P¼ 0.132, one-tailed one-sample t-test; n¼ 20). Also the
response-predictive effect of early motor lateralization was
significantly weaker in the control task than in the original task
(Fig. 7d, Po0.001, one-tailed permutation test, � 1 to 1.25–s;
n¼ 20), and reached significance only in participants with above-
average beta rebound, not in all participants (Fig. 7 e, and
Supplementary Fig. 3, � 1 to 1.25–s, all participants: P¼ 0.18,
n¼ 20, one-tailed one-sample permutation test; participants with
above average beta rebound: Po0.001, n¼ 10, one-tailed one-
sample permutation test). The preference for repeating the same
choice as in the previous trial was present in the control task as in
original task (mean r¼ 0.055, P¼ 0.0075, two-tailed one-sample
t-test).

Why was the effect of motor fluctuations on response selection
weaker when the choice-response mapping was cued before the
stimulus? We hypothesized that this may reflect interference of
early response planning with the prestimulus motor lateralization.
Indeed, in accordance with previous reports9,10, for the control
task, response-predictive lateralization started already during
the stimulus interval (Fig. 7c, 2.3–6.1 s, P¼ 0.002, two-tailed
one-sample cluster permutation test, n¼ 20). Thus, in the control
task, subjects already mapped choices onto response plans during
decision formation, that is, earlier than in the main task. The
possibility to plan responses early on may have decreased the
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preexistent motor lateralization. To test this hypothesis, we
compared the beta rebound between the original and the control
task while ruling out confounds due to the different alternation
behaviour (Fig. 8a, see ‘Methods’ section). As hypothesized, the
beta rebound was significantly decreased for the control task in
the late stimulus interval and delay before the second cue, that is,
during response planning in the control task (Fig. 8c, P¼ 0.010,
one-tailed paired permutation test, n¼ 20). Notably, the beta
rebound was also already reduced in the delay interval directly
following the early choice-response cue in the control task
(Fig. 8b, P¼ 0.036, one-tailed paired permutation test, n¼ 20),
which may reflect the suppression of the beta rebound in
preparation of the upcoming response planning or processing of
the choice–response cue. Together, these results suggest a reduced

response-alternation bias in the control task because upcoming or
evolving response planning reduces motor fluctuations caused by
previous responses.

Discussion
Our results provide new insights into sensorimotor decision
making on both behavioural and neural levels. We uncovered that
a previous motor response can influence sensorimotor decision
making. Several factors beyond the present stimulus are known to
influence sensorimotor decisions. These factors include neural
noise at sensory stages28,29, top-down factors such as stimulus10

and reward30 expectations, motor costs associated with response
options31–33 or sequence effects such as the ‘Gambler’s fallacy’,
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that is, the mistaken belief that high event incidence is followed
by low incidence and vice versa27, or the preference to repeat the
previous perceptual choice10,25–27 that we also observed in the
present experiment. The Gambler’s fallacy and choice repetition
effect are conceptualized on the choice-level, that is, the content
of decisions (for example, ‘yes—I saw the target’). In contrast, our
results indicate that also previous responses at the level of the
motor act (for example, a specific button-press) and independent
of previous choices influence which decisions are eventually
reported. This unravels a previously unknown decision factor that
needs to be accounted for in models of decision making as well as
in the analysis and design of decision-making experiments. In
fact, our results suggest that, for perceptual decision-making tasks
with fixed choice–response mapping, the well-known choice-
repetition bias is counteracted by an independent response-
alternation bias.

While the demonstrated response-alternation bias is behaviou-
rally detrimental for perceptual decision-making tasks, such as
the one at hand, it may be beneficial in specific behavioural
contexts. For instance, response alternation may improve
sampling of different motor acts to succeed in a task, favoring
exploration over exploitation, or it may help prevent motor
fatigue.

We identified the post-movement beta-rebound as a strong
source of sensorimotor cortex fluctuations that may drive the
response-alternation bias. Three lines of evidence support this
conclusion. First, subjects with stronger beta-rebound showed
stronger response alternation. Second, the strength of beta-
rebound predicted the likelihood of response alternation on the
single-trial level. Third, removing neuronal variability related to
the previous response’s beta-rebound reduced the early response-
predictive beta lateralization.

Our results accord well with other recent studies that provide
converging correlative34–37 and manipulative38,39 evidence for a

causal role of beta-oscillations in motor control. Nevertheless, it
remains difficult to pinpoint the exact neural source of the
demonstrated alternation behaviour based on the present data
alone. First, although we found strongest effects in regions
consistent with primary motor cortex and applied source-
reconstruction to extract primary motor cortex activity, the
spatial resolution of MEG is limited. Thus, other regions such as
for example, premotor cortex or somatosensory cortex40 may well
contribute to the observed effects. Second, only regions with a
prominent macroscopic contralateral motor organization were
apt to reflect upcoming or past responses in the present
experiment. This organization decreases upstream from primary
motor cortex, which reduces response-predictive lateralization.
Thus, the effects that we observed over motor cortex may in
principle be caused by other upstream cortical or subcortical41,42

regions that encode response specific information without a
somatotopic organization. In addition, post-central somato-
sensory areas might contribute to the observed beta oscillations.
Previous research has demonstrated monosynaptic projections
from S1 onto motoneurons43 and beta coherence between S1 and
muscle activity40. Yet, S1 stimulation does not elicit or facilitate
muscle activity44. Thus, the role of S1 in motor control remains
unclear. In sum, while our results suggest an intimate relationship
of the motor cortical beta rebound and response alternation, the
exact cortical mechanisms that drive response alternation remain
to be determined. Ultimately, invasive and manipulative
approaches will be required to unequivocally show that motor
cortex activity itself causes the response-alternation bias.
Independent from the exact cortical stage, our results show
that a post-response rebound of neural representations of
motor responses predicts response alternation in human
decision making.

Furthermore, our results show that even beyond the response-
related beta-rebound the state of the sensorimotor cortex before
decision formation and unrelated to choice content predicts the
final decision-making outcome. Previous studies showed that
neuronal activity in motor areas reflects upcoming choices during
evidence accumulation if choices and responses are inextricably
linked9,10,16,45. Our finding of response-predictive, but choice-
unrelated activity suggests that sensorimotor cortex activity
during decision making does not merely reflect the routing of
decision-related activity from higher cognitive areas18,46, but that
motor cortex activity itself can act on the resolution of response
competition in a distributed network of decision making12. As
such our results accord well with a growing body of evidence
suggesting that motor regions are directly involved in the
process of decision making4–6,8,11,15,47. That said, our results
are also well compatible with converging data that suggest a
prominent role of frontoparietal association cortices in decision
making1,12,18,46,48–50.

In summary, our results show that not only choice-related
neuronal fluctuations but also fluctuations related to the
associated motor responses predict sensorimotor decisions.

Methods
Participants. Twenty healthy, right-handed volunteers (11 female, mean age 29
years) participated in this study. All had normal or corrected-to-normal vision and
received monetary reward for their participation. The study was conducted in
accordance with the Declaration of Helsinki, and was approved by the ethics
committee of the University of Tuebingen. All participants gave written informed
consent before participating.

Behavioural task. On each trial, participants had to decide whether coherent
motion was present in centrally presented dynamic random dot pattern (random
dot kinematogram, RDK) and to report their percept (yes/no) by button-press with
the left or the right index finger (Fig. 1a, 2-alternative forced choice). The choice-
response mapping was newly assigned on each trial by a colour cue (red or green).
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For the main and control task, this choic–response cue was presented after or
before the stimulus, respectively. For temporal symmetry, an irrelevant cue (blue)
was presented before or after the stimulus for the main and control task, respec-
tively. Each trial started with a 1.5 s fixation period, followed by the first 0.25 s cue
period, a blank 1 s delay, 2 s of stimulus presentation, another 1 s delay, the second
0.25 s cue period, another 1s delay and a brief (33 ms) dimming of the fixation
spot, which served as the go-cue to respond. The mean (across subjects) median
þ /� 5/95 percentile (within subject) response times were 0.63 þ /� 0.37/1.42 s
and 0.62 þ /� 0.35/1.38 s for the main and control experiments, respectively.
There was no significant difference of response times between right- and left-hand
responses for the main or control experiment (both P40.05; permutation test,
n¼ 20). 250 ms after the response, a brief (100 ms) visual feedback was presented
centrally (red or green circle; 2.1 degree diameter; green: correct, red: incorrect).
The following ITI was controlled by the participants through their fixation beha-
viour. The experiment was paused as long as participants did not fixate the central
fixation spot or closed their eyes. The pause was indicated by presentation of thin
red lines at the edges of the screen. This resulted in variable inter trial intervals with
a median duration of 1,290 ms. Participants were instructed to blink only during
the ITI. Subjects completed 240 trials of the main task and 240 trials of the control
task in two consecutive recording sessions. In addition, participants performed 240
trials (cued task), for which participants did not have to make a decision about the
stimulus but received explicit instructions which button to press on each trial.
Furthermore, for another 80 trials (passive task) participants had to press no
button at all, but were instructed to passively view the stimulus. Cued and passive
task trials were not analysed for the present study. All tasks were randomly
interleaved. Before the recording, participants practiced the task for at least 45 min.

Stimuli. Dynamic random dot patterns were presented for 2 s and consisted of
1,500 white dots (dot diameter: 0.12 deg) on a black background, moving at 10
deg s� 1 according to the ‘random direction, different rule’51 in a circular aperture
of 8.5 deg diameter. For each participant, there were exactly two stimuli, both
presented half of the trials: in the noise-only stimulus, there was no coherent
motion, whereas in the target stimulus, a fraction of dots moved coherently
downwards. Motion coherence of target stimuli was titrated to each participant’s
perceptual threshold employing a staircase procedure with 280 trials and a Weibull
function fit (average target motion coherence: 9%). All colour cues had the same
luminance (14 cd m� 2) and size (0.85 deg diameter). Choice-response mapping
was assigned as follows: red: Yes - right, No - left, green: Yes - left, No -
right, blue: uninformative.

Setup and neurophysiological recordings. We recorded the MEG (Omega 2000,
CTF Systems, Inc., Port Coquitlam, Canada ) with 275 channels at a sampling rate
of 2,343.75 Hz in a magnetically shielded chamber. Participants were comfortably
seated upright in a dark room. Stimuli were projected onto a screen at a viewing
distance of 55 cm using a hue and luminance calibrated liquid crystal display
projector (Sanyo PLC-XP41, Moriguchi, Japan) at 60 Hz refresh rate. Stimuli were
constructed offline and presented using the Presentation software (NeuroBeha-
vioral Systems, Albany, CA, USA). In addition to the MEG, we recorded the
electrooculogram and electrocardigram for offline artefact rejection.

Eye movement recordings. Throughout the experiment, we recorded the
participants’ eye movements with a video-based eye-tracker (EyeLink 1000, SR
Research, Ottawa, Canada). This ensured continuous fixation and allowed
participants to conveniently control the length of the ITI.

Structural MRI. For source reconstruction based on each participant’s individual
anatomy, we recorded structural T1-weighted MRIs of each participant (echo time
(TE)¼ 2.18 ms, repetition time (TR)¼ 2.3 ms, longitudinal relaxation time
(T1)¼ 1.1 ms, flip angle¼ 9�, 192 slices, voxel size 1� 1� 1 mm3) with a Siemens
3T Tim Trio scanner and a 32 channel Head Coil.

MEG preprocessing. MEG data were downsampled to 1,000 Hz and high-pass
filtered at 4 Hz (two-pass Butterworth filter, filter order 6). Line noise and its
harmonics were notched out (49.5–50.5 Hz, 99.5–100.5 Hz, 149.5–150.5 Hz ;
199.5–200.5 Hz, 249.5–250.5 Hz, 299.5–300.5 Hz, 349.5–350.5 Hz two-pass
Butterworth filter, filter order 4), and after careful visual inspection of the
respective signals, trials with eye blinks, saccades, strong muscle artifacts, or
signal jumps were excluded from further analyses (on average 20% and 18%
of all trials for the main and control task, respectively).

Source analysis. We used adaptive linear spatial filtering (beamforming)52,53 to
estimate neural population signals at the source level. We used frequency-domain
beamforming dynamical imaging of coherent sources (DICS)52 to investigate the
cortex-wide distribution of response-predictive beta-band activity before the
button-press. We used time-domain beamforming linearly constrained minimum
variance (LCMV)53 to analyse the dynamics of frequency-specific neural activity in
motor cortex.

The implementation details of the beamformer were as follows: for each time t,
frequency f (for frequency-domain beamforming) and source location r, three
orthogonal filters (Â¼ [Ax, Ay, Az]; one for each spatial dimension) were computed
that pass activity from location r with unit gain, while maximally suppressing
activity from all other sources:

Â r; t; fð Þ ¼ ½LT rð ÞCreal t; fð Þ� 1L rð Þ�� 1LT rð ÞCreal t; fð Þ� 1 ð1Þ
Here, L(r) is a matrix whose columns are the leadfields of three orthogonal dipoles
at source location r, and Creal denotes the real part of the complex cross-spectral-
density matrix for the data at frequency f and time t, and T indicates the matrix
transpose. For time-domain beamforming, filters are not frequency dependent and
Creal denotes the covariance matrix of the sensor-level signals. We derived a joint
filter for all contrasted conditions.

We linearly combined the three filters to a single filter pointing in the direction
of maximal variance, that is, the dominant dipole orientation. To this end, the
filters were weighted with the first eigenvectors’ elements (the eigenvector with the
largest eigenvalue of the real part of the cross-spectral-density or covariance matrix
at the source location r):

w ¼ w1;w2;w3½ � ¼ Eig1ðÂ r; t; fð ÞCreal t; fð ÞÂ r; t; fð ÞTÞ ð2Þ

A r; t; fð Þ ¼ w1 � A1 r; t; fð Þþw2 � A2 r; t; fð Þþw3 � A3 r; t; fð Þ ð3Þ
To derive the complex source estimates (frequency-domain beamforming), the
complex frequency-domain data was multiplied with the real-valued filter:

Xsource r; t; fð Þ ¼ A r; t; fð Þ � Xsensorðt; f Þ ð4Þ
where Xsensor(t,f) is the frequency-domain representation at time t and frequency f
at the sensor level and Xsource(r,t,f) is the corresponding source signal at location r.
For time-domain beamforming, Xsensor and Xsource denote the sensor-level and
source-level timecourses, respectively.

Source locations. To investigate the cortical distribution of choice predictive
neuronal activity before the button-press (Fig. 2b), we estimated neuronal activity
at 457 source locations that homogeneously covered the space at B0.7 cm beneath
the skull with a spacing of B1.25 cm. This coverage is well adapted to the spatial
resolution of MEG, samples sources with high signal-to-noise ratio (SNR) close to
the sensors, and covers a large part of the cortex.

Furthermore, we reconstructed neuronal activity specific to the button-press
near the hand representation of left and right primary motor cortex. We visually
inspected each participant’s cortical map of the contrast between contra- and
ipsilateral button-presses in main, control and cued tasks in the time-window from
4.5 to 5.5 s and the frequency range from 12 to 30 Hz. For each participant, we
selected the local spatial maximum of this functional contrast closest to the
anatomical hand representation, that is, the ‘handknob’ of the precentral gyrus.

Physical forward model for source analysis. For all source analyses, we
computed individual physical forward models (leadfields). To match participants,
we nonlinearly transformed source locations defined in standard Montreal
Neurological Institute (MNI) space into individual head space using the
participants’ individual structural magnetic resonance image (MRI). We aligned
the MEG sensors to the head geometry based on three fiducial points (nasion, left
and right ear, registered during the MEG acquisition by three head localization
coils). For each participant, we derived the physical relation between sources and
sensors using a single shell model54 that was computed based on the segmentation
of each participants structural MRI.

Spectral analysis. For time-frequency analyses of neuronal activity (Figs 2a and
3a), we source-reconstructed broad-band neuronal activity using time-domain
beamforming and employed a sliding window multi-taper Fourier analysis
(window size: 250 ms, step size: 20 ms, 8 Hz smoothing, 3 discrete prolate spher-
oidal sequences (DPSS) tapers). To account for variable response times, we
computed two time-frequency transforms: first, with data aligned to the stimulus,
and second, with data aligned to the button-press. These time-frequency trans-
forms were concatenated according to the average response time. Power was
quantified as the per cent change of power relative to the average pre-cue baseline.

To image the cortical distribution of response-predictive beta-band activity
directly preceding the response, we derived the sensor-level cross-spectral density
matrix for frequency-domain beamforming using multi-taper Fourier analysis
(4.5–5.5 s, 12–30 Hz, 17 discrete prolate spheroidal sequences tapers).

To investigate the time-course of source-reconstructed beta-band activity, we
band-pass-filtered the sensor-level MEG data in the time-domain (12–30 Hz;
two-pass Butterworth filter, filter order 4), applied time-domain beamforming,
applied the Hilbert transform, and smoothed power time-courses with a 500 ms
(full-width at half-maximum) Hanning window. Finally, all time-courses were
normalized by the average across time and trials.

Response-predictive activity. To isolate neuronal activity that predicted the
specific upcoming response (left or right hand), we contrasted power in motor
cortex contra- and ipsilateral to the response hand (Figs 2d, 6, 7c,d). This contrast
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isolates effector-specific signals and discards other unrelated neuronal variance
providing a specific proxy on neuronal activity involved in decision formation and
motor execution9,21,22. This contrast can be formalized as:

contra� ipsið Þcurrent¼
Lxr �Rxrð Þþ Rxl � Lxlð Þ

2
ð5Þ

where L and R stand for the neuronal activity measured in the left and right
hemisphere, respectively, and the first and second subscripts denote the previous
and current response hand, respectively. r, l, and� denote right, left and either
response hand, respectively. Thus, Lxr denotes the left hemispheric activity
measured for trials with left- or right-hand button-press on the previous trial and
right-hand button-press on the current trial. The left and right bracketed terms in
equation (5) correspond to neural activity contralateral–ipsilateral to current right
and left-hand button-presses, respectively.

Beta rebound. To estimate the response-specific effect of the previous button-
press on the current trial, that is, the beta-rebound, we contrasted power in motor
cortex contra- and ipsilateral to the previous trial’s button-press (Figs 3c, 8a–c):

contra � ipsið Þprevious¼
Lrx �Rrxð Þþ Rlx � Llxð Þ

2
ð6Þ

The left and right bracketed terms in equation (6) correspond to neural activity
contralateral–ipsilateral to previous right and left-hand button-presses, respec-
tively. To quantify the response-specific beta-rebound for each subject, we averaged
lateralization relative to the previous response from � 1 to 1.25 s of the current
trial.

Statistical assessment of lateralization. To assess statistical significance of
response-specific lateralization across time and frequency (Fig. 2a) or across
time (Figs 2c,d and 3b,c and 7c), we calculated cluster permutation statistics
that account for multiple comparisons with a first-level threshold of P¼ 0.05
(two-tailed) and 1,000 subject-level permutations55,56. For all contrasts tested on
specific time windows (Figs 2e, 3e, 6b, 7d,e and 8b,c), we employed permutation
statistics on un-smoothed data with 1,000 subject-level permutations. One often
employed time-window was from � 1 to 1.25 s (Figs 2e, 3e, 6b, 7d,e). We used this
window, because this period includes the entire prestimulus interval that well
matches the extent of the early response-predictive beta lateralization (Fig. 2d).
All statistics were computed across subjects (random effects) with two-tailed tests
unless noted otherwise.

Correction for previous responses. To investigate the beta rebound’s contribu-
tion to the early response-predictive activity, we computed the lateralization
relative to the current trial’s response corrected for the previous response (Fig. 6):

contra� ipsið Þcurrent corr:¼
Llrþ Lrrð Þ� Rlr þRrrð Þþ Rll þRrlð Þ� Lll þ Lrlð Þ

4
ð7Þ

The effect of previous responses is corrected for by computing the responses
contralateral and ipsilateral to the current response averaged across trials with
equal weighting across both possible previous responses (the four bracketed terms
in equation (7)). In other words, we replace the four numerator terms in
equation (5) with the same terms balanced for the previous response. By
re-ordering equation (7) it becomes evident that this balancing removes the
previous trial’s effect:

contra� ipsið Þcurrent corr:¼
Llr� Lllð Þþ Lrr � Lrlð Þþ Rll �Rlrð Þþ Rrl �Rrrð Þ

4
ð8Þ

Each of the four bracketed numerator terms in equation (8) isolates the effect of the
current response (contralateral–ipsilateral) and subtracts out the effect of a specific
previous response for a specific hemisphere. By removing the effect of previous
responses, this correction removes the neuronal variability specific to the previous
response, that is, the beta rebound. We employed this correction not only to test if
the beta rebound contributed to the early response-predictive activity, but also to
test if spontaneous, that is, beta-rebound independent, fluctuations of motor cortex
lateralization predict responses.

We applied the same correction also when comparing the size of the beta
rebound between main and control tasks (Fig. 8a–c). This allowed us to rule out
potential confounding by different alternation behaviour across tasks (for example,
less alternation trials for the control task) because correcting for the previous
response is equivalent to correcting for alternation behaviour. Again, this becomes
evident by re-ordering equation (7) accordingly:

contra� ipsið Þcurrent corr:¼
Llr� Lrlð Þþ Lrr � Lllð Þþ Rrl�Rlrð Þþ Rll �Rrrð Þ

4
ð9Þ

Now, each of the four bracketed terms in equation (9) isolates the effect of the
current response (contralateral–ipsilateral) and subtracts out the effect of the
previous response being the same or different from the previous response.

Correlation analyses. To quantify relations between nominal behavioural vari-
ables (responses ’left’ or ‘right’ on current and previous trials) we used Pearson’s
correlation coefficient for binary variables (Phi coefficient). To assess statistical
significance of correlations, we Fisher-z-transformed subjects’ r-values and applied
two-tailed t-statistics across subjects unless noted otherwise.

To test if different aspects of the previous trial modulated the strength of the
beta rebound we performed a multivariate partial correlation analysis, with the
predictors previous choice, previous response hand, previous target presence,
previous accuracy, previous reaction time, and ITI duration following the previous
response. For each subject, partial correlation was performed across trials and the
significance of predictors was assessed using a two-tailed t-statistics of the Fisher-
z-transformed r-values across subjects.

To quantify the relation between each participant’s beta rebound and tendency
to alternate responses on the subject level, we computed Spearman’s rank
correlation across subjects (Fig. 5c). We used the same approach to test for each
cortical region, how its beta rebound predicted response alternation (Fig. 5d). To
test if the strength of the beta rebound also predicted the tendency to alternate
responses on the single-trial level we either tested for a difference of the beta-
rebound between alternation and non-alternation trials across subjects (random
effects), or we tested for a difference of the beta-rebound between alternation and
non-alternation trials pooling all trials across subjects (fixed effects). For both
approaches, we employed permutations statistics and we z-scored each subject’s
single-trial beta-rebound data. Thus, both single-trial correlation analyses (random
and fixed effects) were orthogonal to the subject-level correlation analysis.

To test if the tendency to alternate responses and accuracy were related, we
calculated Pearson’s correlation across participants.

All analyses were performed in MATLAB (MathWorks Inc., Natick, USA) using
custom software and the Fieldtrip toolbox57.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.

References
1. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev.

Neurosci. 30, 535–574 (2007).
2. Wang, X.-J. Decision making in recurrent neuronal circuits. Neuron 60,

215–234 (2008).
3. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception,

memory and decision making. Nat. Rev. Neurosci. 4, 203–218 (2003).
4. Cisek, P. & Kalaska, J. F. Neural Mechanisms for Interacting with a World Full

of Action Choices. Annu. Rev. Neurosci. 33, 269–298 (2010).
5. Cisek, P. & Kalaska, J. F. Neural correlates of reaching decisions in dorsal

premotor cortex: specification of multiple direction choices and final selection
of action. Neuron 45, 801–814 (2005).

6. Pastor-Bernier, A. & Cisek, P. Neural correlates of biased competition in
premotor cortex. J. Neurosci. 31, 7083–7088 (2011).

7. Tzagarakis, C., Ince, N. F., Leuthold, A. C. & Pellizzer, G. Beta-band activity
during motor planning reflects response uncertainty. J. Neurosci. 30,
11270–11277 (2010).

8. Klaes, C., Westendorff, S., Chakrabarti, S. & Gail, A. Choosing goals, not rules:
deciding among rule-based action plans. Neuron 70, 536–548 (2011).

9. Donner, T. H., Siegel, M., Fries, P. & Engel, A. K. Buildup of choice-predictive
activity in human motor cortex during perceptual decision making. Curr. Biol.
19, 1581–1585 (2009).

10. de Lange, F.P., Rahnev, D. A., Donner, T. H. & Lau, H. Prestimulus oscillatory
activity over motor cortex reflects perceptual expectations. J. Neurosci. 33,
1400–1410 (2013).

11. Thura, D. & Cisek, P. Deliberation and commitment in the premotor and
primary motor cortex during dynamic decision making. Neuron 81, 1401–1416
(2014).

12. Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during
flexible sensorimotor decisions. Science 348, 1352–1355 (2015).
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Supplementary Figure 1. Accuracy has no effect on neural variables 

 (a) Beta power contra- and ipsilateral to the buttonpress plotted separately for correct 

(upper) and incorrect (lower) choices on the current trial. Contralateral beta power is lower 

than ipsilateral beta power in the prestimulus period in both trial categories, i.e. independent 

from accuracy. (b) Beta rebound (i.e. beta power lateralization calculated with respect to the 

previous button-press) following correct and incorrect choices. 
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Supplementary Figure 2. Size of beta rebound after long and short intertrial intervals  

 

Participants controlled the length of intertrial intervals (ITI) with their fixation behavior. As 

the beta rebound occurs locked to the previous button-press, it should decay over time, i.e. 

it should be smaller for longer ITIs. (a) Time-course of the beta rebound for trials following 

short (< median) and long (> median) ITIs (median ITI = 1290ms). (b) As hypothesized, the 

beta-rebound in the prestimulus interval was significantly smaller following long as 

compared to short ITIs (P < 0.001, two-tailed paired permutation test, n = 20). This may lead 

to weaker alternation behavior for long ITIs. Indeed, while for short ITIs participants showed 

significant response alternation (mean r = 0.052, P = 0.046, one-tailed one-sample T-test, n 

= 20), for long ITIs, response alternation was weaker and not significant (mean r = 0.019, P 

= 0.45, one-tailed one-sample T-test, n = 20). However, a direct comparison between short 

and long ITIs did not reach statistical significance (P = 0.21, one-tailed paired T-test, n = 

20). 
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Supplementary Figure 3.  Response-predictive activity in control trials  

 

To investigate if the same trend of response-predictive prestimulus lateralization holds for 

the control task, we split the participants according to the size of their beta rebound. Here, 

we show the time-course of lateralization for subjects with above and below median beta-

rebound separately. 
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Supplementary Table 1. Impact of prev trial parameters on size of the beta rebound  

 

Results of a partial multivariate correlation between the size of the beta rebound (beta-power 

contralateral minus ipsilateral to the previous button-press in the time window -1 to 1.25s of 

the current trial) and 5 parameters of the previous trial, calculated in each participant and 

tested for significance across participants. Only the ITI duration was significantly correlated 

with the strength of the beta rebound. This effect is further quantified in Supplementary 

Figure 2.  

 

Factor Mean(r)-value P-value n 

Prev. response hand  
(left or right hand) 

0.067 0.24 20 

Prev. choice  
(yes or no) 

0.012 0.65 20 

Prev. stimulus 
(coherent motion present or absent) 

0.006 0.78 20 

Prev. accuracy 
(correct or incorrect choice) 

0.001 0.97 20 

Prev. RT  
(time from Go cue to button-press) 

-0.010 0.66 20 

ITI duration -0.162 < 0.0001 20 
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Sensorimotor decisions are influenced by factors beyond the current sensory input, but 

little is known about the effect of preceding motor actions. Here, we show that choice-

unrelated motor actions influence subsequent sensorimotor decisions. By instructing 

participants to perform choice-unrelated motor responses before visuomotor 

decisions, we were able to manipulate upcoming choices in a directed fashion. Our 

results suggest that the neural aftermath of simple movements can influence 

sensorimotor decision making. 

Choice formation in sensorimotor decision making is influenced by many factors beyond the 

current stimulus such as reward expectations1, neural noise at sensory stages2,3, or previous 

decisions4–6. Recent evidence suggests that also previous choice-related motor responses7 

can influence sensorimotor decision making. However, it is unclear if this influence is restricted 

to previous motor responses related to decision making, or if it reflects a general influence of  

motor actions on decision making8. To address this, we dissociated choices and responses in 

a sensorimotor decision-making task, and tested if decision making can be manipulated by 

simple choice-unrelated motor actions before decisions.   

Participants made decisions about the global motion direction (up/down) in dynamic random 

dot patterns and reported their decision with a left or right hand button-press (Fig. 1a). The 

motion strength was adjusted for each subject to perform near the individual discrimination 
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threshold (mean correct performance: 68.2 % +/- 0.72 % sem). The mapping from choice 

(motion: up/down) to response (button: left/right) was random on each trial and indicated by a 

choice-response cue before the stimulus (Fig. 1c). This allowed us to dissociate choices and 

responses7,9. To test if the decision process could be manipulated by choice-unrelated motor 

actions, before each perceptual visual-motion decision, a response cue instructed participants 

to press either the left, right or no button (Fig. 1b). 

First, we determined the dependency of successive choice-related responses when 

participants did not press a button in between two successive perceptual decisions (Baseline). 

In accordance with previous results7, subjects showed a significant tendency to alternate 

between left and right button-presses for consecutive visual-motion decisions (Fig. 2a, P = 

0.029, mean rBaseline = - 0.038 +/- 0.06, t(17) = -2.38, n = 18, two-tailed one-sample t-test on 

Fisher-z-transformed correlation coefficients describing the relationship between choice-

related responses in each participant). This result confirms that motor responses made to 

report preceding choices influence consecutive choices on the same perceptual choice task7. 

If this response alternation is driven by any previous motor act independent of a preceding 

choice, introducing instructed button-presses between perceptual decisions should interfere 

with the response alternation observed in the Baseline condition. Specifically, we hypothesized 

that instructing a button-press different from the previous choice-related button-press 

(Different-condition) should counteract, i.e. reduce, the response alternation between 

successive perceptual choices. Indeed, we found that an intermittent “different” button-press 

strongly reduced response alternation (rBaseline-rDifferent = -0.050 +/- 0.10, P = 0.024, t(17) = -2.12, 

left-tailed paired t-test; rDifferent = 0.012 +/- 0.01, P = 0.47, t(17) = 0.74, two-tailed one-sample t-

test, Fig. 2a). 

This pattern of results supports the hypothesis that even choice-independent previous motor 

actions push responses on subsequent decision making towards response alternations. 

However, alternatively, the intermittent instructed button-press may simply have disturbed the 

response alternation between choice-related button-presses. Introducing an instructed button-



	 3 

press repeating the previous choice-related button-press (Same-condition) can dissociate 

these two alternatives. If response alternation is motor-driven, the “same” button-press should 

leave response alternation untouched, or even strengthen it because the neural bias in favor 

of an alternation7 may build up over two button-presses. Otherwise, if response alternation is 

merely disturbed by introducing an intermittent button-press, a “same” intermittent button-press 

should induce the same reduction of response alternation as a “different” intermittent button-

press. 

As predicted by the motor-driven hypothesis, response alternation between choice-related 

responses with an intermittent instructed “same” button-press was significantly stronger than 

without an intermittent button-press (rBaseline-rSame = 0.038 +/- 0.08, P = 0.039, t(17)=1.87, right-

tailed paired t-test; r same = -0.076 +/- 0.07 , P = 0.0002, t(17)=-4.6, two-tailed one-sample t-

test, Fig. 2a).  

In summary, introducing a simple instructed button-press alters response alternation between 

choice-contingent button-presses in a directed fashion. This shows that response alternation 

is not limited to choice-related motor responses, but that previous motor acts with the same 

effector can generally impact sensorimotor decisions.  

To further test this effect, we next directly analyzed the relationship between the cued 

intermittent response and the following choice-related response. Indeed, we found that 

participants also alternated between the cued button-press and the following choice-related 

button-press (Fig. 2b, r = -0.044 +/- 0.011, P = 0.0009, t(17) = -3.99, two-tailed one-sample t-

test). Furthermore, we found an interaction between the effect of the previous choice-related 

response and the intermittent cued response. There were more response alternations from the 

cued response to the next choice-response if the cued response was a repetition of the 

previous choice-related button-press than when it was an alternation itself (rDifferent-rSame = -

0.064 +/- 0.023, P = 0.012, t(17) =2.79, two-tailed paired t-test). This suggests a common 

neuronal substrate underlying the effect of the cued response and of the choice-related 

response, e.g. the post-movement rebound of neural activity in sensorimotor areas7,10.  
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The fact that also choice-unrelated responses influence subsequent choices suggests that this 

response sequence effect acts on the response-selection rather than on the choice-selection 

or perceptual stage. This is in contrast to the known choice-repetition effect5, which is thought 

to  act on the perceptual stage4,6 and may reflect a constancy bias of the visual system. Thus, 

we hypothesized that a choice-repetition effect is not affected by intermittent cued responses. 

Indeed, we found that subjects showed a significant tendency to repeat choices across 

subsequent visual-motion decisions (Fig 2c, all conditions: r > 0.1, P < 0.001, t(17)>4.0, two-

tailed, one-sample t-tests, n=18), but, as expected, this choice-repetition effect did not differ 

between Baseline, Same or Different conditions (rBaseline-rSame: 0.0069 +/- 0.09, P = 0.739, 

t(17)=0.338, two-tailed paired t-test; rBaseline-rDifferent = 0.0014, +/- 0.06, P = 0.918, t(17) = 0.10, 

two-tailed paired t-test). 

In summary, we show a response-alternation bias that is independent of the preceding percept 

or choice, because simple, instructed motor actions can manipulate subsequent sensorimotor 

decisions in the same effector system in a directed fashion. Together with previous findings7, 

the pattern of results observed here suggests that the impact of previous motor acts on 

subsequent choices is driven by a rebound of motor-cortical activity following motor actions10.  
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Figures 

 

	

Figure 1 Visual-motion decision task and experimental manipulation (a) Participants reported 

the direction (up/down) of coherent motion in a display of randomly moving dots with a left- or 

right-hand button-press. For each trial, the mapping from choice to response was newly 

assigned with a cue before the stimulus (choice-response mapping cue). Furthermore, at the 

beginning of each trial, an instructed-response cue indicated subject to either press the left 

button, the right button or no button. (b) Instructed-response cues. (c) Choice-response 

mapping cues. 
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Figure 2 Effect of intermittent instructed button presses. Each dot denotes one participant’s 

correlation-coefficient. Black lines and gray bars denote the mean and SEM of correlation 

coefficients across participants, respectively. For each panel, the group mean of correlation 

coefficients and the P-value of a t-test of Fisher-Z-transformed correlation coefficients against 

0 are stated. (a) Correlation coefficients between consecutive choice-contingent button-

presses. ‘Baseline’ condition: no intermittent button-press; ‘Different’ condition: instructed 

button-press different from preceding choice-response; ‘same’ condition: instructed button-

press the same as preceding choice-response. (b) Correlation coefficients between instructed 

responses and the following choice-contingent response. (c) Correlation coefficients between 

consecutive visual-motion decisions.  
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Methods 

Participants 
18 healthy volunteers (11 female, mean age 28 years) participated in this study. All participants 

had normal or corrected-to-normal vision and received monetary reward for their participation. 

The study was conducted in accordance with the Declaration of Helsinki, and was approved 

by the ethics committee of the University of Tübingen. All participants gave written informed 

consent before participating. 

Behavioral Task 
On each trial, participants decided if they saw coherent motion going upward or downward in 

a centrally presented dynamic random dot pattern and reported their percept (up/down) by 

button-press with the left or the right index finger (Fig. 1a, 2-alternative forced choice).  The 

choice-response mapping was newly assigned on each trial by a color cue (Fig. 1c) whose 

orientation was informative of how to map the choice (up/down) to a response (left/right). In 

addition, and before decision making, participants were randomly instructed by an instructed-

response cue to press either the left, the right or no button (Fig. 1b). Each instructed button-

press was later considered as “same” or “different” according to the last choice related button-

press.   

Each trial started with the instructed-response cue presented centrally for 0.25 s, followed by 

a fixation period of 2 s, during which participants had to respond to the instructed-response 

cue.  Next, the choice-response mapping cue was shown centrally for 0.25 s, followed by a 

fixation period of 0.75 s. Then, the motion stimulus was presented for 1.5 s. The offset of the 

stimulus served as the go-cue to report the choice (upward/downward motion) with a button-

press (left/right). The mean (across subjects) median +/- 5/95 percentile (within subject) 

response time was 0.63 +/- 0.37/1.42 s. Visual feedback was provided 0.1 s after the button-

press by turning the fixation spot green (correct) or red (incorrect choice) for 0.1 s. During the 

inter-trial interval (1 s) the fixation spot was shown.  
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Stimuli 
Dynamic random dot patterns were presented for 1.5 s and consisted of 1500 white dots (dot 

diameter: 0.11 deg) on a black background, moving at 10 deg/s according to the “random 

direction, different rule”11 in a circular aperture of 7.70 deg diameter.  In the upward-moving 

stimulus, a fraction of dots moved coherently upwards, whereas in the downward-moving 

stimulus, a fraction of dots moved coherently downward. In both stimuli, noise dots had a life-

time of exactly 1 frame. All instructed-response cues and stimulus-response mapping cues 

had the same luminance (38 cd/m²) and size (0.31 deg diameter) as the fixation spot.  

Setup 
Participants were seated in a dimly lit room in front of a screen at a distance of 58 cm. They 

were observing stimuli presented on a CRT monitor (Eizo Flexscan F931).  The screen was 

controlled by a NVIDIA GeForceGTX 460 graphics controller with a refresh rate of 60 Hz at a 

spatial resolution of 1024x768 pixels. The experiment was controlled using PsychToolbox12 for 

MATLAB.  

Procedure 
Before the recording, participants practiced the task for at least 10 minutes. Then, they 

completed a staircase procedure with 250 trials to determine a level of coherence near the 

individual perceptual threshold (staircase target: 66 % correct choices; average motion 

coherence: 3.8 %). The staircase was followed by two experimental sessions with 456 trials 

each. During the experimental sessions, the coherence level of the stimuli was further adjusted 

every 50 trials, to target 66 % correct performance. 

Eye movement recordings 
Throughout the experiment, we recorded the participants’ eye movements with an infrared-

video based eye-tracker (Arrington Research Inc., USB-220). This ensured continuous fixation. 

Correlation analyses and statistics 
To quantify relations between nominal behavioral variables (responses ”left” or “right” and 

choices “up” or “down”) we used Pearson’s correlation coefficient for binary variables (Phi 

coefficient). To assess statistical significance of correlation coefficients at the group level, we 
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Fisher-z-transformed subjects’ correlation coefficients and applied two-tailed t-statistics across 

subjects unless noted otherwise.  

All analyses were performed in MATLAB (MathWorks Inc., Natick, USA) using custom 

software. 
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Power correlations of orthogonalized signals have recently been introduced for MEG as a powerful tool to non-
invasively investigate functional connectivity in the human brain. Little is known about the applicability of this
approach to EEG, and how compatible the results are between EEG and MEG. To address this, we systematically
compared power correlations of simultaneously recorded and source co-registered 64-channel EEG and 275-
channel MEG in resting human subjects. For both modalities, connectivity peaked at around 16 Hz. For this fre-
quency range, seed-based correlation maps showed comparable patterns across modalities, with generally
more distinct patterns for MEG. A brain-wide pattern correlation analysis also revealed maximum similarity
around 16Hz. Correcting for different signal-to-noise ratio (SNR) across frequencies andmodalities revealed pat-
tern correlation betweenmodalities close to one across a broad frequency range from1 to 32Hz and only slightly
smaller for higher frequencies. The decrease above 32 Hz likely reflected higher susceptibility to muscle artifacts
for EEG than for MEG. Our results show that power correlation of orthogonalized signals is feasible for studying
functional connectivity with 64-channel EEG. Furthermore, besides differences in SNR, for frequencies from
about 8 to 32 Hz, EEG and MEG measure the same correlation patterns across the entire brain.
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Introduction

Electroencephalography (EEG) and magnetoencephalography
(MEG) measure neuronal population activity in the human brain with
millisecond temporal resolution. This temporal resolution allows for
assessing the spectral features of neural activity and connectivity.
More specifically, spectrally resolved analyses allow investigating the
covariance of narrow band oscillations between brain regions as a win-
dow into large-scale neuronal interactions in the healthy and diseased
human brain (Brookes et al., 2012; Hipp et al., 2012, 2011; Nolte et al.,
2004; Siegel et al., 2012; Stam, 2014). Recently, this approach has
been fostered by methodological advances that overcome key limita-
tions for studying co-fluctuations of neuronal oscillations with M/EEG
(Brookes et al., 2012; Hipp et al., 2012). Nearby sensors or source esti-
mates share artifactual variance due to electromagnetic field spread
and the limited spatial resolution of source-projection methods (Palva
and Palva, 2012; Schoffelen and Gross, 2009). By removing signals
with zero phase lag through orthogonalization, this artifactual correla-
tion can be discounted (Brookes et al., 2012; Hipp et al., 2012). Recent
Neuroscience, University of
ny.
. Siems),
studies have established this approach as a promising tool for investi-
gating large-scale neuronal interactions with MEG: The correlation
structure of spontaneous cortical oscillations is well structured, stable
over subjects, and frequency dependent (Brookes et al., 2012; Hipp
et al., 2012;Wens et al., 2014). It reflects known functional relationships
between brain regions (Hipp et al., 2012; O'Neill et al., 2015), predicts
BOLD fMRI correlations (Cabral et al., 2014; Hipp and Siegel, 2015),
and is altered in brain pathologies (Hawellek et al., 2013; Kitzbichler
et al., 2015).

So far, no study has systematically investigated the feasibility of
power correlations from orthogonalized signals with EEG. Thus, al-
though EEG is more readily available thanMEG, in particular for clinical
contexts, it remains unclear how these results transfer to EEG. Inhomo-
geneous tissue distribution, the high resistance of the skull and the an-
isotropy of current flow have stronger effects on EEG than onMEG. As a
result, EEG forwardmodels are typically more complex andMEG yields
better source estimation accuracy (Babiloni et al., 2004; Brookes et al.,
2011b; Fuchs et al., 1998; Klamer et al., 2015; Malmivuo, 2012; Molins
et al., 2008; Perdue and Diamond, 2013). However, dipole sensitivity
decreases faster with depth in MEG than in EEG (Malmivuo, 2012;
Molins et al., 2008): At around 70% of the head's radius, MEG source lo-
calization accuracy drops below EEG (Fuchs et al., 1998). Additionally,
differences in sensor sensitivity to dipole orientations further imply
that the information collected with both measures are at least partly

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2016.01.055&domain=pdf
mailto:markus.siegel@uni-uebingen.de
Journal logo
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independent (Baillet et al., 2001; Cho et al., 2015; Hari and Salmelin,
2012; Malmivuo, 2012). It is unclear how these differences between
modalities influence measures of functional connectivity in the resting
state. In sum, it is unknown if EEG allows for assessing large-scale neu-
ronal interactions from power correlations of orthogonalized signals
and, if so, how the correlation structure relates to that of MEG. Here
we address these questions.

We simultaneously recorded standard EEG (64 channels) and MEG
(275 channels) from eleven healthy subjects. We applied the same pro-
cessing pipeline – except for physical forward models, which differ by
construction – to both measures and co-registered both measures at
the source-level. We then quantified and compared functional connec-
tivity by the correlation of power envelopes of orthogonalized signals
at the source-level.

Methods

Participants

We collected simultaneous EEG and MEG resting-state measure-
ments from eleven healthy subjects (mean age 26.6 years ± 4.6 years
std., 7 female). The subjects were instructed to let their minds wander
and think about nothing in particular with their eyes closed (resting
state). The study was approved by the local ethics committee and con-
ducted in accordance to the Declaration of Helsinki. All participants
gave written informed consent before participating.

Electrophysiological recordings

We collected 10min of simultaneousMEG and EEG data per subject.
The MEG was continuously recorded with a 275-channel whole-head
system (Omega 2000, CTF Systems Inc., Port Coquitlam, Canada) in a
magnetically shielded room. The head position relative to theMEG sen-
sors was controlled using three head localization coils (nasion, left/right
preauricular points). MEG signals were recorded at a sampling rate of
2343.75 Hz (anti-aliasing filter at 1/2 Nyquist-frequency).

Simultaneously, we recorded the continuous 64-channel EEG
with Ag–AgCl ring electrodes mounted on an elastic cap (antNeuro
waveguard, Enschede, Netherlands), referenced against the mastoid.
We kept electrode impedances below 20 kΩ. EEG signals were recorded
at 2000 Hz sampling rate (anti-aliasing filter at 1/2 Nyquist-frequency).
Additionally, a 2-channel (horizontal and vertical) bipolar electro-
oculogram (EOG) and a 1-channel bipolar electro-cardiogram (ECG)
were measured to control for cardiovascular and eye-movement arti-
facts. Offline, synchronization between EEG and MEG was achieved in
two steps: First, we estimated and corrected for differences in system
clocks and temporal offsets between the MEG and EEG systems based
on triggers that were simultaneously sent to both systems every second
during the entire recording. Second, we low-pass filtered and interpo-
lated the data of both modalities to a common sampling rate of
1000 Hz (300 Hz anti-aliasing low-pass filter, 4th order zero-phase
Butterworth).

Artifact rejection

Artifact rejection was carried out in a two-step procedure: First, we
filtered line noise with a notch filter at 50 Hz and at the first six har-
monics (stop-band width: 1 Hz). We visually inspected the data for
muscle-, eyeblink-, and technical artifacts (i.e. SQUID-jumps) and
rejected corresponding time intervals and malfunctioning or noisy
channels (mean: 1 MEG-channel; 1.6 EEG-channel; range: 0 to 3 chan-
nels). Second, we high-pass filtered the data at 0.5 Hz with a 4th order
Butterworth filter and split the data into two frequency bands: A low
frequency band from 0.5–20 Hz (EEG) and 0.5–30 Hz (MEG) and a
high frequency band with frequencies above 20 or 30 Hz, respectively.
Independent component analysis (ICA) (Hyvärinen and Oja, 2000)
was performed for each frequency range and modality. This approach
takes advantage of the different nature of physiological artifacts: eye-
blink, eye-movement and cardiovascular artifacts show prominent
low frequency features whereas muscle activity comprises higher fre-
quencies. We chose different cutoff frequencies between modalities to
optimally separate between low and high frequency artifacts in each
modality. In principle, this may have introduced differences between
modalities that affected our results in this frequency range. Repeating
our analysis on uncut, non ICA-cleaned data provided a control that
this was not the case. We did not find differences in the 16–32 Hz fre-
quency range between the ICA-cleaned data and the uncut, non ICA-
cleaned data, suggesting that the different cutoff frequencies between
EEG and MEG had little effects on our main analyses and results (see
Fig. 6a).

Independent components were visually inspected and artifactual
components rejected according to their topology, time-courses and
spectra (Chaumon et al., 2015; Hipp and Siegel, 2013). Subsequently,
both frequency bands were recombined.

MRI data acquisition

The subjects were scanned in a Siemens MAGNETOM Trio 3T scan-
ner (Erlangen, Germany) with a 32-channel head coil. A T1-weighted
sagittal MP-RAGE (TE = 2.18 ms, TR = 2300 ms, TI = 1100 ms, flip
angle = 9°, 192 slices, voxel size = 1 × 1 × 1 mm3) and a sagittal T2-
weighted fat suppressed scan (TE = 185 ms, TR= 3200 ms, 192 slices,
voxel size = 1 × 1 × 1 mm3) were obtained from each participant to
construct individual high-resolution head models.

Spectral analysis

Time-frequency representations TFR(t,f) of time-domain MEG and
EEG data D(t) were generated using Morlet's wavelets (Goupillaud
et al., 1984):

w t; fð Þ ¼ σ t
ffiffiffi
π

p� ��1
2e

� t2

2σt
2e�i2πft ð1Þ

TFR t; fð Þ ¼ D�wð Þ t; fð Þ ð2Þ

where TFR is the number-of-sensors by samples matrix. The number of
samples varies with frequency. The bandwidth of wavelets was 0.5 oc-
taves (f/σt=5.83, kernel size was 6 σt). We derived spectral estimates
for frequencies f from 0.8 to 128 Hz (2–1/2 to 27) in quarter octave
steps. The temporal step-size for frequency f was σt/2. Time points, for
which the kernel overlapped with periods marked as artifacts, were
discarded.

Physical forward model

Source-reconstruction of EEG and MEG was based on individual
head models generated from each subject's MRI data. MRI scans were
segmented using a customized SimNIBS pipeline (Windhoff et al.,
2013), which combines the segmentation algorithms of FreeSurfer
(Fischl, 2012) and FSL (Smith et al., 2004) to produce optimized head
models. We conducted the segmentation based on regular T1 images
and the summation of the T1 and T2MRI-contrasts to optimize the sep-
aration of skull and skin. Head models consisted of five tissue classes:
gray (GM) and white matter (WM), cerebrospinal fluid (CSF), skull
and skin. Based on this segmentation we generated a single shell
head model for MEG source-reconstruction (Nolte, 2003) and a five-
compartment Finite Element Method (FEM) model for EEG source-
reconstruction (Windhoff et al., 2013). FEM conductivities were set
to: GM 0.276, WM 0.126, CSF 1.654, skull 0.010, and skin 0.465
(Thielscher et al., 2011).
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Forward models (leadfields) were computed for sources on a regu-
larly spaced grid with 1 cm distance covering the entire brain (3294
sources) in MNI-space. The leadfield describes how a dipole with fixed
current pointing to each of the 3 principal axes (x-, y-, z-axis) projects
to the sensors. We non-linearly transformed the source locations to in-
dividual headspace using each participant's T1-weighted MRI scan. The
coordinates for the seed-based connectivity analyses were adopted
from Hipp et al. (2012). For every seed, the source location with mini-
mum Euclidean distance from the seed coordinates was chosen. Source
coordinates, head model, EEG andMEG channels were co-registered on
the basis of the three head localization coils.

Source projection

Sensor-level EEG and MEG data were projected to source-space
using adaptive linear spatial filtering (DICS, beamforming; Gross et al.,
2001; Van Veen et al., 1997). For each source i, the filter A is derived
from the MEG/EEG cross-spectral density matrix CSD specific for fre-
quency f and the physical forward model L (leadfield), which is the
number of sensors-by-3 matrix corresponding to three orthogonal di-
poles. The CSD is the outer product over time points of the frequency-
domain sensor level data TFR(f) with its complex conjugate transpose
(Hermitian transpose) normalized by the number of time points nt:

CSD fð Þ ¼ TFR fð ÞTFR0
fð Þ=nt ð3Þ

where TFR'(f) denotes the complex conjugate transpose of TFR(f).
For each frequency band f and source position i, we derived the 3-
dimensional filter-matrix A (Van Veen et al., 1997):

A i; fð Þ ¼ L i; fð ÞTCSDreal fð Þ�1L i; fð Þ
h i�1

L i; fð ÞTCSDreal fð Þ�1 ð4Þ

where CSDreal(f) is the real part of the sensor-level cross-spectral density
matrix. Beamforming filters transmit activity from sources of interest
with unit gain, while maximally suppressing contribution from all
other sources. While theoretically beamforming assumes uncorrelated
sources, the method is robust to moderate, i.e. biologically plausible,
levels of correlation (Van Veen et al., 1997). The regularization
parameter was set to 5% of the frequency specific signal power.
Beamformingwas applied separately for EEG andMEG. For each source,
we projected the sensor-level CSD through the filter, which yielded the
3-by-3 source-level CSD (CSDi(f)), where it's real part describes the co-
variance between the 3 orthogonal dipole orientations. We performed
principal component analysis (singular value decomposition) on the
source-level CSD to estimate the source-level data along the dominant
dipole orientation:

CSDi fð Þ ¼ real A i; fð ÞCSD fð ÞA i; fð ÞT
� �

ð5Þ

U i; fð ÞS i; fð ÞV i; fð ÞT ¼ svd CSDi fð Þð Þ ð6Þ

The first Eigenvector of the principle component analysis equals the
dominant dipole orientation at the given source. Hence, we projected
the filter onto the first Eigenvector U1.

Apri i; fð Þ ¼ U1 i; fð ÞTA i; fð Þ ð7Þ

Finally, for every source position i, we derived the source-level data
xi bymultiplying the complex sensor-level data TFRwith the real-valued
filter Apri.

xi t; fð Þ ¼ Apri i; fð ÞTFR t; fð Þ ð8Þ
Functional connectivity analysis

As a measure of functional connectivity, we computed brain-wide
pairwise correlations (Pearson's r) between log-transformed power at
all source locations i and j. In the following sections i always denotes
the row index and j the column index. Without further processing,
these correlations suffer from source leakage: Source estimates are not
independent due to field spread and limited filter resolution. This
leads to an overestimation of short-distance correlations (Brookes
et al., 2012; Hipp et al., 2012). Source leakage has an effect only on in-
stantaneous relations, since electromagnetic fields propagate at speed
of light. To eliminate these spurious correlations Hipp et al. (2012) pro-
posed to orthogonalize any two signals before correlating (Pearson's
r) their envelopes (see also Brookes et al., 2012).

xi orth t; fð Þ ¼ imag xi t; fð Þ x0j t; fð Þ
xj t; fð Þ�� ��

 !
ð9Þ

By projecting the original complex signal xi as a function of frequen-
cy f and time t onto the vector orthogonal to the complex signal xj(t, f),
we derived the orthogonalized signal xi orth(t,f). This approach sup-
presses instantaneous contribution of signal xj on xi. As was shown by
Brookes et al. (2014) removal of volume conduction by orthogonaliza-
tion is optimal for data with Gaussian distributions (Brookes et al.,
2014). Furthermore it should be noted, that the employed orthogonali-
zation does only discount mutual field spread between the two sources
of interest, but it does not affect any field-spread of other sources on
these two sources (Palva and Palva, 2012). For all pairs of source loca-
tions i and j, we computed log-power envelopes p(t, f) applying the
orthogonalization in both directions:

xi on xj;

pi orth t; fð Þ ¼ log xi orth t; fð Þx0i orth t; fð Þ� � ð10Þ

pj t; fð Þ ¼ log xj t; fð Þx0j t; fð Þ
� �

ð11Þ

xj on xi;

pi t; fð Þ ¼ log xi t; fð Þx0i t; fð Þ� � ð12Þ

pj orth t; fð Þ ¼ log xj orth t; fð Þx0j orth t; fð Þ
� �

ð13Þ

We computed correlations for the complete adjacencymatrix C(f) as
the averaged correlations across both orthogonalization directions
Cdir(xi on xj; and xj on xi):

ci; j dir fð Þ ¼
cov

1≤ t ≤T
pi orth t; fð Þ;pjðt; f Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

1≤ t ≤T
pi orth t; fð Þð Þ var

1≤ t ≤T
pj t; fð Þ
� �r ð14Þ

c j;i dir fð Þ ¼
cov

1≤ t ≤T
pi t; fð Þ;pj orth t; fð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

1≤ t ≤T
pi t; fð Þð Þ var

1≤ t ≤T
p j orth t; fð Þ
� �r ð15Þ

ci; j fð Þ ¼ c j;i fð Þ ¼ tanh atanh ci; j dir fð Þ� �
=2

� �þ atanh c j;i dir fð Þ� �
=2Þ ð16Þ

where ci,j denotes the i-th row and j-th column element of matrix C.
Discarding the relation between sources with zero phase lag causes
underestimating correlations by a factor of approximately 0.577 (Hipp
et al., 2012). All correlations were corrected accordingly.
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Seed-based analysis

We computed log-power correlations of orthogonalized signals be-
tween homologous early sensory areas and whole brain seed correla-
tions. Seed correlations were further computed for selected higher
order cortices. We adapted seed locations from Hipp et al. (2012): left
auditory cortex (lAC) [−54, −22, 10]; left somatosensory cortex
(lSSC) [42,−26, 54]; left visual cortex (lVC) [−20,−86, 18]; right dor-
sal prefrontal cortex (rDPFC) [54, −63, −8]; and right lateral parietal
cortex (rLPC) [46,−45, 39] (all MNI coordinates).

For our further analyseswe focused on the spatial structure of ampli-
tude correlations. To pinpoint the spatial structurewhile discounting for
general offsets in correlation strength between subjects, we standard-
ized (z-scored) the square adjacency matrices C(f) within each column
j and participant:

ci; j zsc fð Þ ¼ ci; j fð Þ– mean
1≤ i≤Nsource

ci; j fð Þ
� 	

= std
1≤ i≤Nsource

ci; j fð Þ ð17Þ

Each element of the standardized adjacency matrix Ci, j zsc cor-
responds to the row-wise standardized connection strength within a
given subject. Each row describes the standardized correlation pat-
tern of a source j. For the seed-based analysis we tested across all S sub-
jects, which connections showed a standardized correlation ci,j zsc larger
than zero, i.e. which connections showed correlations significantly
stronger than the average correlation across all sources (Student's
t-test). The resulting p-values were corrected for false discovery
rate (FDR; Benjamini and Hochberg, 1995) within each column of
Czsc(pcorr b 0.05).

Intermodal correlation and attenuation correction

For the whole-brain analysis of the similarity of EEG and MEG, we
correlated the standardized adjacency matrices (correlation structures)
– for different subjects s1 ≠ s2, at each source j (column of czsc), and fre-
quency f – between modalities rbetween:

r j;s1;s2 between fð Þ

¼
cov

1≤ i≤Nsource

ci; j;s1 zsc EEG fð Þ; ci; j;s2 zsc MEG fð Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var
1≤ i≤Nsource

ci; j;s1 zsc EEG fð Þ� �
var

1≤ i≤Nsource

ci; j;s2 zsc MEG fð Þ� �r ð18Þ

Correlation was computed between different subjects to match the
computation of within-modality reliabilities (see below). We averaged
the overall possible S(S−1) combinations of subjects, which yields the
average brain-wide between-modality similarity of correlation patterns
(rbetween).

The spatial structure of intermodal correlation patterns does not
only depend on the true correlations of the underlying correlation pat-
terns but also on the fidelity (signal-to-noise ratio, SNR), with which
each modality measures these patterns. Signal power is neither equally
distributed over space nor over frequencies. Furthermore, EEG andMEG
are sensitive to different proportions of artifacts and environmental
noise. To control for different levels of SNR, we first estimated the SNR
for each modality and frequency as the between subject reliability of
correlation structure within each modality (rEEG, rMEG).

r j;s1;s2 EEG fð Þ ¼
cov

1≤ i≤Nsource

ci; j;s1 zsc EEG fð Þ; ci; j;s2 zsc EEG fð Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var
1≤ i≤Nsource

ci; j;s1 zsc EEG fð Þ� �
var

1≤ i≤Nsource

ci; j;s2 zsc EEG fð Þ� �r ð19Þ

We correlated the standardized adjacency matrices for each column
j between subjects s1 ≠ s2, which yielded a single reliability value for
each source pattern and comparison. We computed the reliability
maps of MEG accordingly and derived the average within-modality
reliabilities rEEG and rMEG by averaging over all S(S−1)/2 between-
subject comparisons.

To compute the SNR corrected between-modality correlations rcorr,
we employed Spearman's correction of attenuated correlation coeffi-
cients (Bergholm et al., 2010a; Hipp and Siegel, 2015; Spearman, 1904):

ri; j corr fð Þ ¼ ri; j between fð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri; j MEG fð Þri; j EEG fð Þ

q
ð20Þ

The between-modality correlation rbetween was normalized by the
pooled within-modality reliabilities rEEG and rMEG . Correlations can
only be corrected for reliable estimates. Thus, only sources i with
correlation-pattern reliabilities consistently larger than zero for both
modalities were included (Student's t-test at puncorr b 0.05).

ti EEG fð Þ ¼ ri EEG fð Þ
std

1≤ s≤S
ri;s EEG fð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S S� 1ð Þ=2� 1

p ð21Þ

The index s denotes the pairwise comparisons for which s1 ≠ s2
holds. Sources with a non-significant reliability in either of the two
modalities were excluded from correction. Attenuation correction was
independently applied in each frequency.

Degree distribution of functional networks

To assess the strength of connectivity of specific sources within the
network structure we computed the network degree of each source
for each frequency band and modality. Adjacency matrices C of each
subject s were binarized to values larger than the 90th percentile rp90.

Cbin sð Þ ¼ C sð ÞNrp90 ð22Þ

We calculated the degreeDeg as themarginal of the binarizedmatri-
ces and averaged across subjects s for each frequency f.

Deg j fð Þ ¼ 1
S
∑S

s¼1∑
Nsource
i¼1 ci; j binðs; f Þ ð23Þ

For each source, this yields the average number of connections with
correlation above the 90th percentile. This approach partly circumvents
the problemof different average degreeswith fixed thresholds in binary
graphs (Van Wijk et al., 2010).

All analyses were performed in Matlab (Mathworks, Massachusetts,
USA) using custom scripts and the FieldTrip (Oostenveld et al., 2010),
and SPM toolboxes (Friston et al., 2011).

Results

Interhemispheric correlations of homologous sensory areas

Previous studies have demonstrated prominent anatomical (Shen
et al., 2015) and functional (Biswal et al., 1995; Brookes et al., 2011a,
2011b; Cordes et al., 2001; Hipp et al., 2012; Nir et al., 2008) connectiv-
ity between homologous sensory cortices in both hemispheres. Thus,
we first compared power envelope correlations of orthogonalized left
and right sided auditory, somatosensory and visual seeds between
both modalities (Fig. 1a,b).

Our MEG and EEG findings confirmed the results of Hipp et al.
(2012). Overall, the raw correlations were highly similar and positive
in both modalities. Correlations peaked in the frequency range from 8
to 32Hzwith correlations significantly above average in bothmodalities
(p b 0.05). The visual areas showed a pronounced peak in the alpha
range (8 to 11 Hz) and another peak around 19 Hz forMEG. The audito-
ry areas showed a distribution similar to the average connectivity
strength. The somatosensory areas showed a broader pattern with
peak connectivity between 8 and 22 Hz.
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Fig. 1. Interhemispheric correlations between homologous early auditory (red), somatosensory (yellow) and visual (blue) areas for A)MEG and B) EEG. C) Standardized interhemispheric
correlations forMEG andD) EEG. Asterisks indicate correlations that are significantly (p b 0.05) stronger than the average across the brain (dashed line). Colored bars in C) andD) indicate
significantly larger standardized correlations in the respective modality than in the other modality (p b 0.05). A schematic of the investigated connections is shown as inset in B). Shaded
areas indicate standard errors.
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Next, we assessed the spatial structure of correlations between sen-
sory areas as compared to the rest of the brain. To this end, we standard-
ized (z-scored) the correlations for each participant by subtracting the
mean and dividing by the standard deviation of correlations across all
connections (Fig. 1c,d). This revealed generally higher standardized cor-
relations, i.e. spatial structure of correlations in early sensory areas, for
MEG (Student's t-test; p b 0.05), in particular, in the frequency range
with strongest correlations (8 to 32 Hz).

We next investigated if power correlations in MEG and EEG were
mutually predictive. In other words, we asked if subjects with strong in-
terhemispheric correlation inMEG also showed strong interhemispher-
ic correlation in EEG. Indeed, we found that in particular in the alpha
and beta frequency range (8–32 Hz), the strength of MEG and EEG
power correlations were mutually predictive for all sensory seeds as
well as for the grand average across connections (Fig. 2a).
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The comparison of standardized correlations for sensory regions
suggested a stronger spatial correlation structure for MEG than for
EEG. To investigate the correlation structure across the entire brain,
we compared the distribution of power envelope correlations across
all connections between modalities. More specifically, we quantified
the skewness of MEG and EEG correlation distributions across connec-
tions (Fig. 2b). We hypothesized that above average correlations, i.e.
spatial structure of connectivity, result in a right-tailed distribution
with positive skewness. Indeed, for both modalities, we found positive
skewness over the entire spectrum. For MEG, the skewness spectrum
well resembled the average correlation spectrum (Fig. 1a) with highest
skewness around 16 Hz. For frequencies below 32 Hz, MEG and EEG be-
haved similarly. MEG showed higher skewness corresponding to more
distinct connectivity peaks than EEG (p b 0.05). For frequencies above
32 Hz, we found a qualitative difference between EEG and MEG:
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While MEG skewness dropped similar to the average correlation spec-
trum (Fig. 1a), EEG skewness strongly increased, yet above the skew-
ness for lower frequencies and the maximum skewness in MEG
(Fig. 2b).

Correlation structure of early sensory and higher order cortices

To further investigate the spatial structure of power envelope corre-
lations assessedwith bothmodalities, we spatially resolved the connec-
tivity of specific cortical seeds (Fig. 3). First, we imaged the brain-wide
correlation strength for the three sensory seeds investigated above.
We focused this analysis on 16 Hz carrier frequency because it showed
the strongest raw correlations over the entire brain in both modalities
(Fig. 1), and to foster the comparison with previous MEG studies
(Hipp et al., 2012). In accordance with these previous results (Hipp
et al., 2012), for both MEG and EEG, all three sensory seeds showed
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Fig. 3. Seed-based correlation structure for the left auditory (top), left somatosensory (middle)
seed locations. Correlation structure ismasked for correlation significantly larger than the avera
maximum 95% percentile for each seed.
the strongest correlation to neighboring cortical regions and homolo-
gous regions in the other hemisphere. In general, EEG andMEG correla-
tion patterns were well compatible (lAC: r = 0.83; lSSC: r = 0.89; lVC:
r=0.87). However, as indicated above (Figs. 1 and 2), standardized cor-
relations were generally higher for MEG than for EEG with stronger
inter-hemispheric correlations. This was in particular the case for the
auditory cortex (compare also Fig. 1c,d). Furthermore, correlation pat-
terns generally appeared spatially smoother in MEG than in EEG.

Next, we investigated the brain-wide correlation structure of higher
order cortices (Fig. 4). We focused on the right dorsal prefrontal cortex
(rDPFC) and the right lateral parietal cortex (rLPC). These brain regions
have previously been shown to exhibit a complex power correlation
structure in MEG (Hipp et al., 2012) and are thus well suited to test
for complex correlation structure in EEG. Again, our MEG results con-
firmed previous findings. For rLPC the patterns overlapped well be-
tween MEG and EEG (r = 0.89) with ipsilateral and contralateral
EEG
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peaks in LPC. For the rDPFC, MEG correlations peaked ipsi- and
contralaterally around the DPFC as well as bilaterally in the postcentral
gyrus. In contrast, EEG did not resolve a distinct correlation peak in the
contralateral postcentral gyrus. However, pattern correlation still indi-
cated a strong overlap between modalities (r = 0.80). Furthermore,
standardized correlation values were again generally lower for EEG
than for MEG (Student's t-test, p b 0.01).

Conclusively, seed correlation patterns of 275-channel MEG and 64-
channel EEG were generally very well compatible. In accordance with
the much larger number of MEG sensors, distinct correlation patterns
were generally better resolved with MEG.

Brain-wide intermodal relation of correlation structure

So far, we investigated the similarity of EEG and MEG correlation
structure for 16 Hz carrier frequency and selected seeds in sensory
and higher order cortices. To systematically analyze the pattern similar-
ity across the entire brain and spectrum, we correlated the seed correla-
tion maps of MEG and EEG for every source and frequency (Fig. 5).
Averaged across all seeds, we foundpositive correlations for all frequen-
cies with highest correlations in the frequency range from 8 to 32 Hz
(Fig. 5a). For lower frequencies (1 to 8 Hz), similarities were highest
for occipital regions (Fig. 5b). Around 16 Hz, peak similarity shifted to-
ward parietal and frontal regions. In the low gamma range (32Hz), sim-
ilarity peaked again in occipital and parietal areas. From 64 to 128 Hz
similarity patterns became very sparse, again with consistent peaks in
occipital and parietal regions.

Signal-to-noise corrected brain-wide intermodal correlation of patterns

The observed spectral and spatial distributions of pattern similarity
between MEG and EEG resemble the known signal-to-noise (SNR)
characteristics of cortical population signals as measured with these
techniques (Niedermeyer and da Silva, 2005). For example, in the
alpha frequency range intermodal patterns overlap best in occipital re-
gions, whereas in the beta frequency rangemotor areas show peak sim-
ilarity, which matches the strong alpha and beta rhythms found in
occipital and motor regions, respectively. Also the peak of average pat-
tern similarity around 16Hzmatches prominent cortical population sig-
nals and strongest correlations structure in that frequency range
(Fig. 1). Thus, the observed spectral and spatial distribution of inter-
modal similarity may not reflect the genuine relation between MEG
and EEG, but the fidelity i.e. the SNR of the compared correlation pat-
ternswithin eachmodality. E.g. low intermodal similarity at frequencies
below 16 Hz may rather reflect the low SNR of correlation patterns
within EEG andMEG, than a substantial difference in the patterns mea-
sured by both modalities.

To investigate the influence of SNR, we computed the attenuation
corrected correlation between MEG and EEG (Bergholm et al., 2010b;
Hipp and Siegel, 2015; Spearman, 1904) (Fig. 6). Attenuation corrected
correlation can be interpreted as the correlations that would have been
measured for perfect reliability within each modality (i.e. no measure-
ment error). In this procedure, the within-modality reliability of pat-
terns across subjects is taken as the measure for the SNR. Raw
intermodal correlations are then divided by the pooled within-
modality reliabilities (see “Methods” section). Attenuation correction
was only performed if both EEG and MEG showed significant within-
modality reliability (Fig. 6b). If both modalities measure the same un-
derlying networks, but are prone to noise processes, the attenuation
correction converges to one. In contrast, if both modalities are sensitive
to different aspects of the signal, independent of the influence of noise,
attenuation corrected values are smaller than one.

Attenuation corrected intermodal correlations approached 1 for al-
most all frequencies (Fig. 6a, solid blue line). However, above 32 Hz,
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attenuation corrected correlations slightly decreased to around 0.8.
From about 4 to 32 Hz, many sources that were broadly distributed
across the brain showed significant reliabilities to estimate attenuation
corrected intermodal correlation (Fig. 6b and c). For very high and low
frequencies, only fewsources showed significant reliabilities to estimate
attenuation corrected intermodal correlation. But the remaining sources
still had mean attenuation corrected intermodal correlations around
0.98 (range: 0.95–0.99) and 0.8 (range: 0.70–0.98) for low and high fre-
quencies, respectively.

The decrease of attenuation corrected intermodal correlations for
high frequencies suggests thatMEG and EEG do not reflect identical pat-
terns of power correlations for these frequencies. We hypothesized that
this may reflect the stronger sensitivity to muscle artifacts for EEG. To
test this, we repeated the analysis on the rawdatawithout removing in-
dependent components reflecting muscle activity (Fig 6a, dashed pur-
ple line). If the decrease of attenuation corrected correlation reflected
the effect of muscle activity we expected this decrease to be more pro-
nounced for the raw data. Consistent with this hypothesis, the attenua-
tion corrected correlation in the not-cleaned data decreased from 32 to
128 Hz to around 0.6 (range: 0.55–0.64).

Degree distribution of functional networks

In a final set of analyses, we applied simple graph-theoretical mea-
sures (degree) to identify cortical hubs, i.e. brain regions with strongest
connectivity to other regions. This approach may identify differences in
spatial sensitivity betweenmodalities that are not picked up by the cor-
relation of correlation structures. For each participant and frequency
band, we defined a connection if the correlation between the orthogo-
nalized signals of two sources was higher than the 90th percentile.
We computed the marginal of the resulting binary connectivity matri-
ces and averaged over participants. The resulting vector yielded the
brain-wide degree distribution (Fig. 7).

For frequencies below 32 Hz, there was good correspondence of the
cortical degree distributions between EEG and MEG. From 1 to 4 Hz,
highest degrees were broadly distributed across occipital, parietal, and
frontal areas. From 8 to 16 Hz, the patterns became spatially very
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distinct: The degree prominently peaked in bilateral posterior parietal
cortex spreading also further anterior at 16 Hz. From 32 Hz on, the pat-
terns diverged betweenmodalities. ForMEG, at 32Hz and 64Hz the de-
gree distribution peaked in central regions. At 128 Hz, occipital cortex
showed maximum degree. In contrast for EEG, from 32 to 128 Hz
highest degrees were consistently located in anterior frontal and tem-
poral regions.

Discussion

Here, we systematically compared the power correlations of simul-
taneously recorded, source-level co-registered, and orthogonalized
MEG and EEG. Our results demonstrate the feasibility of this approach
for EEG, and reveal several commonalities as well as differences be-
tween 275-channel MEG and 64-channel EEG.

Seed-based connectivity analyses

Our seed-based analysis showed that the spectral pattern of inter-
hemispheric correlations is very similar in both modalities and that
the spatial structure of seed-correlations is well compatible between
modalities. Inter-hemispheric correlation as well as correlation
structure peaked around 16 Hz for MEG and EEG. Furthermore,
inter-hemispheric connectivity correlated well between modalities in
particular in this middle frequency range. For both modalities, seed-
correlation maps at 16 Hz indicated connectivity of homologous inter-
hemispheric regions. For higher order cortices bothmodalities revealed
complex patterns of bilateral connectivity that accorded well with the
previousMEG results (Hipp et al., 2012). In sum, our seed-based results
showed a strong overlap betweenMEG and EEG andwerewell compat-
ible with recent MEG studies (Brookes et al., 2011b, 2012; Hipp et al.,
2012). It should be noted though, that the identified networks had sim-
ple spatial structure as compared to resting-state networks identified
with functional connectivity magnetic resonance imaging (fcMRI)
(Fox and Raichle, 2007). This is largely due to the limited spatial resolu-
tion of non-invasive electrophysiological techniques. However, the ap-
plication of more complex analytical approaches, such as graph theory
(Hipp et al., 2012) or ICA (Brookes et al., 2011a) to MEG, allows for re-
vealing more subtle spatial patterns with similarity to fcMRI networks.
Nevertheless, the relation between electrophysiological and BOLD-
related functional networks is complex and power correlations of a sin-
gle frequency band are not sufficient to describe fcMRI networks (Hipp
and Siegel, 2015).
Besides general similarity, the seed-based analysis also revealed dif-
ferences betweenMEG andEEG. Three lines of evidence indicate that for
275-channel MEG correlation patterns were generally more distinct
than for 64-channel EEG. First, standardized correlations, which mea-
sure the spatial structure of correlations, were consistently larger for
MEG than for EEG (Fig. 1c,d). Second, some spatial features of correla-
tion structure that werewell resolved byMEG could not be clearlymea-
sured by EEG (Fig. 3 auditory seed and Fig. 4a rDPFC seed). Third, for
frequencies up to 32 Hz, MEG showed a higher skewness of the correla-
tion distribution than EEG, i.e.more positive outliers relative to a normal
distribution. Interestingly, above 32Hz, correlation skewnesswas larger
for EEG than for MEG. As we will further discuss below, we hypothesize
that this effect reflects the modality specific influence of muscle
artifacts.

The observed advantage of MEG for resolving distinct correlation
patterns is likely at least partly due to the much larger number of
MEG sensors (275) as compared to EEG electrodes (64) employed.
Thus, the observed difference should not be interpreted as a general ad-
vantage of MEG over EEG. In fact, given the difference in the number of
sensors, it seems remarkable how similar correlation patterns were be-
tween modalities and how well the 64-channel EEG could resolve the
patterns obtained with 275-channel MEG. On the one hand, this sug-
gests that a standard 64-channel EEG, which is readily available in clin-
ical settings, may suffice for resolving a substantial fraction of the
correlation structure detectable with 275-channel MEG. On the other
hand, high-density EEG, e.g. with 256 channels, may allow for resolving
further spatial structure that was not available with the present 64-
channel EEG system (Malmivuo, 2012).

Another difference betweenMEG and EEGwas thatMEG correlation
patterns were generally smoother than EEG patterns. This may be sur-
prising at first, because the number of channels, and thus the implicit
degrees of freedom or smoothness of the source-reconstruction was
lower for EEG as compared to MEG. This suggests that the more noisy
appearance of EEG correlation patterns may reflect the more complex
head model physics (FEM vs. single-shell) and field distributions in
EEG as compared to MEG (Cho et al., 2015; Malmivuo, 2012).

Brain-wide intermodal correlation

The systematic correlation of seed-correlation maps between mo-
dalities revealed strongest intermodal similarity around 16 Hz in occip-
ital and central regions. We adapted an approach that was recently
introduced for the comparison between MEG and fMRI (Hipp and
Siegel, 2015) to test if this spectral and spatial structure reflected
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genuine difference betweenmodalities or rather their SNR. For frequen-
cies below 32 Hz, accounting for the SNR yielded almost perfect pattern
similarity for regions with reliable correlation patterns in both modali-
ties. Furthermore, from about 8 to 32 Hz reliable patterns were identi-
fied for more than 95% of the brain. Thus, from about 8 to 32 Hz, MEG
and EEG power correlations display the same functional networks.

This finding sheds new light on the nature of the neuronal activity
driving thepower correlationsmeasuredwith EEG orMEG. Bothmodal-
ities have different sensitivities for specific dipole orientations and loca-
tions (Cho et al., 2015; Malmivuo, 2012). In particular, MEG is blind to a
substantial number of sources, i.e. radially oriented dipoles on the top of
gyri and at the bottom of sulci. Thus, our results suggest that the spatial
extend of cortical sources that drive the measured correlation patterns
is broader than the resolution of gyri and sulci, which differs between
EEG and MEG. We conclude, that although on the level of raw dipole
measurements EEG and MEG have different sensitivities, on the level
of power correlations, especially from 8 to 32 Hz, both measures reflect
the same underlying network activity. These results are promising for
potential clinical applications (Stam, 2014), for which EEG ismore read-
ily available than MEG. Our results suggest that recent MEG findings
(Brookes et al., 2012; Hawellek et al., 2013; Hipp et al., 2012;
Kitzbichler et al., 2015; O'Neill et al., 2015) may be well extrapolated
to potential EEG applications. However, it remains to be determined to
what extent EEG network analyses could provide a diagnostic and pre-
dictive tool in the clinical routine, particularly on the single-subject
level.

Furthermore, it should be noted that attenuation correction is only
applicable for sources with reliable correlation patterns within both
modalities. For frequencies below 8 Hz or above 32 Hz, we did not
find reliable correlation patterns for the entire brain in both modalities.
Thus, in principle for these frequencies ranges, there may be differences
in correlation patterns between modalities in areas we could not
correct.

Muscle artifacts

Our results reveal a small but substantial difference between MEG
and EEG for frequencies above 32 Hz. Specifically, our results suggest
that for this frequency range, i.e. the gamma band, electromyogenic ar-
tifacts substantially confound EEG power correlations, which is much
less the case for MEG. Several findings support this reasoning. First, for
this frequency range attenuation corrected intermodal correlations did
not approach one, but values around 0.8 (range: 0.70–0.98). Intermodal
pattern similarity further decreased, if independent components that
reflected muscle activity were not removed from the data (range:
0.55–0.64). Second, above 32 Hz, the skewness of EEG power correla-
tion progressively increased, indicating a substantial amount of strong
correlations beyond a normal distribution. This was not the case for
MEG. Third, for EEG above 32 Hz, the degree distribution, which pin-
points to those regionswith strongest correlations, peaked in superficial
anterior frontal and temporal regions well compatible with leaked
electromyogenic activity from forehead, eye, and temporal muscles.
This pattern was not found for MEG.

Notably, we observed the effects of muscle activity on EEG power
correlations although we applied several complementary approaches
to discount electromyogenic artifacts for MEG and EEG. We excluded
epochs with obvious muscle activity, we rejected ICA components
reflecting muscle activity, and we employed adaptive spatial filtering
(beamforming) for source-reconstruction. This suggests that EEG
power correlations are particularly sensitive to confounding by
electromyogenic artifacts and more so than MEG. This accords well
with recent reports of the substantial influence of electromyogenic arti-
facts on EEG gamma-band activity (Goncharova et al., 2003; Hipp and
Siegel, 2013; Whitham et al., 2008; Yuval-Greenberg et al., 2008) and
highlights the importance of careful artifact rejection in network analy-
ses of electrophysiological data.
Conclusions

In summary, our results show that power correlation of orthogonal-
ized signals is feasible for studying functional connectivity with 64-
channel EEG. Furthermore, besides the differences in SNR, for frequen-
cies from about 8 to 32 Hz, EEG and MEG reflect identical underlying
correlation patterns across the brain. Above 32 Hz, power correlation
patterns differ betweenmodalities, which likely reflects the higher sus-
ceptibility to muscle artifacts for EEG than for MEG.
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