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Abstract

This thesis aims at developing new schemes for the treatment of correlation effects in condensed
matter systems using quantum field theoretical approaches. In particular, our goal is to extend
the description of correlation physics at the two-particle level. This is necessary for an unbiased
treatment of condensed matter systems that exhibit electronic correlations and competing ordering
tendencies. In this respect, the functional renormalization group (fRG) approaches have surely con-
tributed substantially over the last years, as they account for all scattering channels and their mutual
feedback effects in an unbiased way. In spite of its flexibility, the application of the fRG is limited by
its inherent perturbative nature. To go beyond the conventional weak-coupling implementations,
we discuss the general idea to extend fRG based computational schemes by using an exactly solvable
interacting reference problem as starting point for the RG flow. The systematic expansion around
this solution accounts for a non-perturbative inclusion of correlations at both, the one-particle (self-
energy) and two-particle (vertex functions) level. The full treatment of the two-particle vertex
functions, however, poses a huge limitation to the numerical performance, not only in the fRG, but
in several forefront many-body algorithms. In this perspective, we provide a detailed diagrammatic
analysis of the frequency and momentum structures of the vertex functions, together with their
physical interpretation. This constitutes the basis for sophisticated parametrization schemes. We
then explain the technical details necessary for cutting-edge numerical implementations, and further

benchmark our ideas using refined implementations of both, the fRG and the parquet approximation
(PA).






Zusammenfassung

Diese Doktorarbeit beschaftigt sich mit der Entwicklung neuer Ansatze fiir die Behandlung von Ko-
rrelationseffekten in Materialien. Mit Hilfe quantenfeldtheoretischer Methoden steht dabei beson-
ders die korrekte Beriicksichtigung von zwei-Teilchen Streuprozessen im Vordergrund, die fiir die
Beschreibung konkurrierender Instabilitaten essenziell ist. Zu deren Verstandnis hat die funktionale
Renormierungsgruppe (fRG), die die verschiedenen Streukanile sowie deren Wechselspiel gleicher-
maBen beinhaltet, in den letzten Jahren wesentlich beigetragen. Trotz der hohen Flexibilitat in der
Anwendung weist die fRG als perturbative Methode aber Einschrankungen auf. Wir stellen hier
einen allgemeinen Ansatz fiir eine Erweiterung tber das Regime schwacher Kopplung hinaus vor, in
dem ein exakt losbares Referenzsystems als Startpunkt fiir den Renormierungsgruppenfluss verwen-
det wird. Die systematische Entwicklung um diese Losung ermoglicht es Korrelationseffekte sowohl
auf dem ein-Teilchen (Selbstenergie) als auch auf dem zwei-Teilchen Niveau (Vertex-Funktionen)
nicht-perturbativ einzubeziehen. Die numerische Handhabung von zwei-Teilchen Vertex-Funktionen
stellt jedoch fiir die fRG wie auch fiir zahlreiche andere moderne Vielteilchenmethoden eine groBe
Herausforderung dar. In dieser Arbeit prasentieren wir eine umfassende diagrammatische Analyse
der Frequenz- und Impulsstrukturen der Vertex-Funktionen sowie deren physikalische Interpreta-
tion. Die daraus gewonnen neuen Einsichten bilden die Grundlage fiir die Entwicklung effizienterer
Parametrisierungen. Wir diskutieren die technischen Details der numerischen Implementierung und

testen diese am Beispiel der fRG und der parquet Naherung (PA).
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Chapter 1

Introduction & Motivation

Electronic correlations give rise to a wealth of interesting physics in condensed matter systems,
ranging from the Mott metal-insulator transitions [1] over high-temperature superconductivity [2,3]
to the variety of novel phenomena observed in optical lattices [4]. The physics of these systems is
typically governed by many different energy scales. Some of them are intrinsic, like the microscopic
Coulomb interaction U and kinetic energy t, but the most exciting phenomena of correlated systems
are also influenced by emergent energy scales like the magnetic exchange interaction J, transition
temperatures T, the superfluid stiffness, etc. that are based upon the presence of electronic cor-
relations. These energy scales can easily span, on the whole, multiple orders of magnitudes, and
their correct description as well as the proper treatment of their mutual feedback poses one of
the most challenging tasks in the field of contemporary condensed matter theory. What makes
the theoretical treatment so hard (and likely the related phenomena so interesting) is the impos-
sibility of performing a plain mean-field or low order perturbation expansion. In this respect, the
renormalization group (RG) approaches have surely played a substantial role over the last decades.
Historically, their first applications in the field of condensed matter were focused on scale invariant
systems, as e.g. in the block-spin approaches [6], and they have since contributed significantly to
the description of critical phenomena and phase transitions in classical as well as quantum systems.
The main concept behind the RG approaches is, in fact, a scale ordered treatment of all degrees
of freedom. This ordering allows to successively integrate out the degrees of freedom beginning

from one end of the scale, e.g. high energies, to devise an effective theory for the remaining scales,

energy [eV]

10 4+ [J (Coulumb interaction)
14t (hopping)
0.1 + J (magnetic interaction)

0.01 4+ kT, (SO)

Figure 1.1.: Schematic illustration of the different energy scales (left) and the scale invariance (right) [5].
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14 CHAPTER 1. INTRODUCTION & MOTIVATION

e.g. the low-energy degrees of freedom. Extending these ideas to a more general field theoretical
frame has lead to the well-known Wetterich equation [7], which allows to apply the RG-based con-
cept to a large variety of quantum many-body problems. In particular, the Wetterich equation is
an exact reformulation of the physical problem at hand by means of a functional flow equation for
the generating functional of the one-particle irreducible (1PI) vertex functions, also referred to as
“effective action”. An expansion in orders of the fields yields an infinite hierarchy of flow equations
for the 1PI vertex functions, which is the basis of the functional renormalization group (fRG) [8-17]
approach. The latter is a very flexible and unbiased tool for the treatment of correlated fermion
systems, and has been applied in a variety of different systems for analyzing e.g. competing instabil-
ities, spontaneous symmetry breaking, quantum criticality and correlation effects in quantum wires
and quantum dots. As a showcase, | will briefly outline in the following an application of the fRG

to a so-called Josephson quantum dot, as it was described in the manuscript presented in Supp. I.

1.1 Andreev bound states in Josephson quantum dots

Quantum dots coupled to superconducting leads have been an active research topic in recent years,
both in theory [18-75] and experiments [76—110] , motivated to a large extent by their potential
use as quantum information devices [111]. They can be modeled theoretically by a single atomic
site! with an on-site energy € and a local Coulomb repulsion U, that is coupled to one or two
superconducting leads of BCS type, with superconducting gap A and phases 1 and ¢ respectively.
Such a setup is illustrated in the left panel of Fig. 1.2. The proximity effect will then lead to a
gapped local density of states (see right panel of Fig. 1.2) on the atomic site, with discrete in-gap
states, the so-called Andreev bound states (ABS). They emerge due to resonant Andreev reflection
processes, where an electron is reflected as a hole at the interface to the superconductor, creating
a Cooper pair in this process.

These bound states play a crucial role in the Josephson current that is transferred across the
quantum dot, even at zero bias voltage, in case of a finite phase difference between the leads. They
have been analyzed extensively [18,19, 24,27, 30, 33, 34, 38,40, 41, 44,47,49,51, 53, 54, 56, 58, 60—
62,65-67,69,70,72-74,80,84,91,96,102-107, 109, 110], while a full theoretical analysis in presence

! Assuming sufficiently low temperature and large level spacing.
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Figure 1.2.: The left panel shows an illustration of a single atomic site with energy ¢ and local Coulomb
repulsion U, tunnel coupled (vertical bars) to two superconducting leads with gap A and phases
1 and , respectively. The gapped density of states with the discrete ABS is depicted on the
right.
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of both a local magnetic field and a finite Coulomb interaction was still missing. Both parameters
can induce a quantum phase transition in the Josephson quantum dot from a non-magnetic singlet
ground-state, typically denoted as O-phase, to a ground state with a localized magnetic moment, the
so-called m-phase. This phase-transition induces a sign-change in the Josephson current, directly
connected, in turn, with a shift of spectral weight between the Andreev states.

In our work presented in Supp. | we investigate the ABS by means of two complementary ap-
proaches: the static fRG and the self-consistent Andreev bound states (SCABS) theory [54,99,112].
Their flexibility enabled us to study the physical behavior of the ABS for varying on-site energy ¢,
phase-difference ¢, superconducting gap 4, and, in particular, for varying magnetic field B. We
further supplement these results by analytical calculations in the large-gap limit.

Overall, we find a good agreement of the results in the range of validity of the two approaches.
However, the fRG approach turned out to be problematic concerning the description of Andreev
bound states in the w-phase for vanishing magnetic field. In order to improve in this respect, we
considered an alternative fRG approach which takes into account the exact solution of the large-
gap limit from the very beginning in the flow. This idea triggered the subsequent development
of extending the fRG to correlated starting points. In Supp. Il we worked out the details of the

theoretical framework in a general way, as will be outlined in the following.

1.2 fRG beyond the perturbative regime

In the functional renormalization group approach, the dependence on a scale A is introduced into
Gaussian part of the system, i.e. the non-interacting propagator Go(iv) — G§\(iv). At the initial
scale Ajnital the system should be exactly solvable, such that the initial values of all flowing 1PI
vertex functions can be determined, while at the final scale A5 we should recover the action of the
system of interest, i.e. Go/\fi"a'(iy) = Go(iv). This allows for a large freedom, not only in the choice
of the initial action, but also in the path, or cutoff-scheme, used for the fRG flow (see left panel of
Fig. 1.3). While this choice will not have any effect on the final results as long as the full hierarchy
of flow equations for the 1PI vertices is considered, an error with respect to the exact correlation
functions (Gsyir) is introduced during the integration of the flow equations if truncations of the
hierarchy are performed (see right panel of Fig. 1.3), as is necessary for numerical implementations.
In the conventional fRG schemes, the typical choice is Gé\i”i“a'(iz/) = 0, such that all 1Pl vertex
functions are trivially determined by their microscopic bare values. This choice of the initial action
freezes propagation at all scales, and does thus not allow for correlation effects. The idea behind
the extension to strong coupling is to improve on the choice of the starting point, such that the
most correlation effects possible are included from the very beginning in the fRG flow. l.e., one can
consider as a starting point an interacting reference system described by an action Sg, that has a
close physical connection to the system of interest, but is still exactly solvable. By using this new
starting point, one can expect to reduce the error on the final correlation functions induced by the
truncation of the hierarchy (red path in right panel of Fig. 1.3). This very idea has recently been
implemented in first pioneering studies in the case of correlated electron systems [15,113,114] as

well as spin-models [115, 116].
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Figure 1.3.: In the fRG, certain choices for the initial action (left) can potentially reduce the truncation
error introduced into the correlation functions G by the flow equations (right). Reproduced
from [16].

The concept of setting up a perturbative expansion around the solution of an interacting reference
system is not new [117]. By means of a Hubbard-Stratonovich transformation, one can reformulate
the physical problem for new auxiliary degrees of freedom that include the exact reference system
solution already in their quadratic part. Further, their free propagator contains a new small param-
1 —g,;l, partially
justifying perturbative series even for larger values of the interaction. This idea has found extensive

eter, that is, the difference between the physical and the reference system A = g~

use in the dual fermion [16, 118-127] approaches, where an effective impurity model determined
by means of dynamical mean-field theory (DMFT) [128-131] is assumed as a reference system for
correlated electrons on a lattice. However, while the dual fermion approaches perform perturbative
or ladder expansions for these auxiliary degrees of freedom, we propose in Supp. Il to use the fRG to
solve the auxiliary problem. Further, we could establish a precise connection to the fRG approaches
that, as described in the previous paragraph, also choose a correlated starting point, while working
directly with the physical degrees of freedom (e.g. the DMF2?RG [15]).

As for the practical implementation of these non-perturbative schemes in the common truncation
at the two-particle level, it is not sufficient to consider as a starting point of the fRG flow only
the one-particle quantities of the reference system. The two-particle vertex function of the inter-
acting reference system will also enter into the fRG calculation from the very beginning, and its

renormalization must be considered during the flow.

1.3 Towards an efficient treatment of two-particle quantities

The considerations at the end of the previous section lead us to the topic presented in the main
part of this thesis, that is, the correct treatment of two-particle quantities and their high-frequency
asymptotics in particular. A two-particle vertex function F(1,&2,&3,&a), in its most general form,
is a function of four composite indices &;, where & = (iv, k, 0, s) is a composite index with Mat-
subara frequency iv, momentum k, spin ¢ and orbital quantum number s. Even in the case of
an SU(2) symmetric single-band lattice model like the Hubbard model, this vertex function has
N3 x NS components, where N, denotes the number of Matsubara frequencies considered and Ny

is the number of discretization points considered to parametrize the Brillouin zone. If one assumes
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e.g. N, = N = 50 with 16 bytes of memory for every vertex value, a stunning 320GB is already
required to store a single momentum-dependent two-particle vertex! It is thus very obvious that
the limits of current as well as future computing resources will be quickly exhausted by a plain
algorithmic treatment of two-particle quantities. For this reason it is essential to gain a deeper
understanding of their frequency and momentum structures [132, 133], such that efficient, and
physically guided, parametrization schemes can be devised. In particular, effort should be made to

simplify the problem, wherever this does not entail an appreciable loss of information.

For the numerical treatment of two-particle quantities, an approximation widely used in state of
the art fRG implementations decomposes the full vertex F into a sum of three terms [134] (in the
frequency domain),

‘QpTZ v3—Up

off ph , (1.3.1)

~ Qpp=11+13 -QphZVZ*Vl
F(Vl, vy, V3) ~ U + ICefF,pp + ICEfF,ph + K

each of them depending on a single bosonic transfer frequency 2. This approximation holds in the
weak-coupling regime, and can be motivated by perturbation theory arguments under consideration
of the so-called parquet equation [135, 136]

F = Nopi + Ppp + (Dph + d’p? (1.3.2)

This equation is depicted numerically in Fig. 1.4 for the purely local case of a SIAM, as explicitly
discussed in Chap. 6 of this thesis. The parquet equation decomposes the full 1Pl two-particle vertex
by classifying its scattering diagrams according to the level of two-particle reducibility. The first
term, the so-called fully irreducible vertex function Aypj, contains all scattering diagrams that are
two-particle irreducible (2P1), i.e., that cannot be separated into two parts by cutting two internal
propagator lines. This holds trivially for the diagram containing only the bare interaction, while the
next leading order diagram scales already as U* (see also Fig. 1.4 for the leading order diagrams).
The remaining terms of the parquet equation are referred to as the reducible vertex functions &,
and contain all the diagrams that are two-particle reducible. This class can be further divided into
the three scattering channels, particle-particle (pp), particle-hole (ph) and transverse particle-hole
(ph), depending on which of the external indices remain connected after the cut?. Their leading
order diagrams, as depicted in the upper row of Fig. 1.4, contain the particle-particle as well as the
particle-hole bubbles, and are of leading order U2 or U3. These lowest order diagrams, due to their
structure, do not depend on all of the external arguments, but rather on a single transfer frequency.
If one approximates the fully irreducible vertex by its lowest order contribution, i.e. Ayp; =~ U, and
considers the leading order contributions for the remaining terms, one finds that the approximation
presented in Eq. (1.3.1) holds.

The idea of identifying scattering contributions that exhibit a reduced dependence on the external
arguments of the scattering process plays an essential role in identifying the high-frequency struc-

tures of the two-particle vertex functions, and is developed into a sophisticated diagrammatic vertex

2Note that reducibility is always channel-exclusive.
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Figure 1.4.: The bottom row depicts the parquet equation (1.3.2) numerically for the SIAM described in
Chap. 6 for U = 1 and 8 = 20 using the pp-notation for zero transfer frequency (2 = 0).
The upper row shows the lowest order diagrams (excluding the bare interaction) included in
the contributions from the different vertex functions (notations according to App. A). In the
diagrammatic representations used throughout this thesis, all external propagators (legs) are
excluded.

decomposition scheme in Chap. 4 of this thesis. This deepened understanding of the two-particle
vertex has allowed us to reduce the numerical costs of a full treatment, while at the same time
posing the basis for advanced vertex parametrization schemes. We have implemented these ideas
in a first numerical study in Supp. lll, and the corresponding numerical implementation techniques
are extended thoroughly in Chap. 5 of this thesis.

We want to stress that these insights (and the related algorithmic improvements) are not only
of benefit to the fRG, but are crucial for performant applications of all many-body approaches
based on two-particle vertex functions, like the dynamical vertex approximation (DIA) [121, 131,
137-140] and the dual fermion approaches [16,118-127, 141], which are diagrammatic extensions
of DMFT [15,122,137,141-148], as well as numerical calculations that solve directly the parquet
equations [149-165]. In this perspective, the concepts and the results presented in the central part
of this thesis pave a definite route towards an efficient treatment of both spatial and temporal
electronic correlations beyond the one-particle level. Because of its impact on cutting-edge method
developments and on the predictive power of the theory, this represents, in fact, one of the most

important challenges for the quantum many-body physics of the forthcoming years.



Chapter 2

Structure

Let us briefly outline the structure and content of this thesis. In Chap. 1 we set the stage by giving
a general introduction, focusing in particular on renormalization group approaches for condensed
matter theory. We further introduce our published manuscripts, beginning with Supp. I, that
is, an exemplary application of the fRG approach to a so-called Josephson quantum dot. The
work presented in Supp. Il, on the other hand, discusses recent ideas to extend conventional fRG
approaches to the regime of stronger couplings by using correlated starting points, and elaborates
on their generalization. In this respect, the correct description of two-particle quantities and their
high-frequency asymptotics plays an essential role. This topic is discussed thoroughly in the main
part of this thesis, which is the basis of a forthcoming joint publication [166], and is also addressed

in a numerical study of the parquet equations in Supp. Ill.

The main part of this thesis begins with a summary of the diagrammatic formalism at the two-
particle level in Chap. 3, to then proceed in Chap. 4 with the discussion of a general two-particle
vertex decomposition scheme, that, based solely on diagrammatic arguments, allows for an efficient
parametrization of the high-frequency asymptotics. In the following Chap. 5 we discuss the practical
implementation of these ideas in numerical and analytical calculations, considering as examples the
atomic limit vertex (Sec. 5.1), and numerical implementations of the fRG (Sec. 5.2) and the parquet
approximation (Sec. 5.3). We check the validity of our implementation schemes in Chap. 6, by
comparing the results we obtain for a SIAM against the exact solution of the exact diagonalization
(ED). In order to check the correct description of two-particle quantities, we focus first on the
weak-coupling regime, where fRG and PA, being perturbative approaches, are expected to perform
well. After having shown that our implementations correctly take into account all high frequency
asymptotics, we address the inherent limitations of fRG and PA in the regime of stronger coupling.
In particular, we demonstrate the importance of a correct numerical treatment of two-particle
quantities in Sec. 6.1, and conclude our discussions by considering the effect of fRG corrections
and common simplified parametrization schemes in Sec. 6.2 and Sec. 6.3 respectively. We then

summarize our findings in Chap. 7, and give a brief outlook.

In App. A we present details on the notations utilized throughout this thesis. Further, we elaborate
in App. B on an alternative numerical approach to extract vertex asymptotics directly from the

full one-particle irreducible vertex function. Finally, we summarize the symmetries of the newly

19



20 CHAPTER 2. STRUCTURE

introduced asymptotic and vertex functions in App. C.



High-frequency asymptotics
of the vertex function:
diagrammatic parametrization &

algorithmic implementation
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Chapter 3

Diagrammatic formalism at the two-particle level

In this chapter we present a concise summary of the general formalism for two-particle vertex
functions. In particular, we recall how their high-frequency asymptotic behavior can be qualitatively
related to the lowest-order perturbation theory diagrams. While a comprehensive investigation of
the corresponding physical interpretation can be found in Chap. 4 and in Refs. [132,167], we focus
here mainly on aspects which are relevant for the algorithmic development and the applications
presented in this thesis.

Although most of the following considerations are valid for a wide range of many-body Hamilto-
nians, we will restrict ourselves, for the sake of notational simplicity, to one-band systems with a

local Coulomb interaction. Specifically, we consider the following Hamiltonian:

H=>"tj(el g, +el&0) + > Uinnhy, (3.1)
ij,o i
where ?:,-(J) annihilates (creates) an electron with spin o at the lattice site R; and f;, = E}LJ?:,-U.

tjj denotes the hopping amplitude for an electron between the lattice sites i and j (for i = j this
corresponds to setting the energy-level for an electron at site /). U; is a (site-dependent) local
interaction between electrons of opposite spin.

From the Hamiltonian in Eq. (3.1) one retains the standard Hubbard model by choosing the
parameters t; = —t if / and j are nearest neighbors and t; = 0 otherwise, and U; = U (site
independent). The restriction t; = Vjdjo, tj = €; and U; = Udjo, on the other hand, corresponds
to the SIAM, where lattice site Rg is the impurity.

In the following we will consider the two-particle Green's function for the model in Eq. (3.1), where
for the SIAM we will restrict ourselves to the corresponding (purely local) correlation functions at the
impurity site. Considering the time -and for the Hubbard model also space- translational invariance
of the system, we can work more conveniently in frequency (and momentum) space. To this end,
we will adopt both for the SIAM and the Hubbard model the following generalized notation for the
frequency and momentum arguments of the Green's functions: k denotes a generalized fermionic,
q a generalized bosonic index. For the Hubbard model, this corresponds to the four-vector notation
k = (v,k) and g = (£2,q), where v is a fermionic and 2 a bosonic Matsubara frequency and k and

g are momenta in the first Brillouin zone. For the case of the SIAM, k and g correspond simply to

23
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the fermionic and bosonic Matsubara frequencies v and 2, respectively.

The general definition of the two-particle Green’s function G; is given explicitly in App. A, along-
side the general relation between the two-particle Green's functions and the corresponding irreducible
(1P1) vertex function, i.e., the (full) vertex F. The latter is obtained from G, by first removing all
unconnected parts, and by subsequently amputating all outer legs [132, 145,168]. From a physical
perspective, F represents the quasi-particle scattering rate between particles and holes (in param-
eter regimes where such excitations are well-defined [169]). Diagrammatically, F consists of all
connected two-particle diagrams, i.e., all (connected) Feynman diagrams with two incoming and
two outgoing lines (see leftmost diagram in Fig. 1.4).

As described in Chap. 1, the full two-particle vertex F can be decomposed into four distinct classes
of diagrams, that differ in their two-particle irreducibility. This decomposition is summarized in the
so-called parquet equation (1.3.2), where F is split into the fully irreducible vertex A, and the three
reducible vertex functions ®,,, @, and ¢p77' In the lower panels of Fig. 1.4, such a decomposition
is illustrated for an actual case (namely the SIAM, see discussion in Chap. 6), by means of the
results of our numerical calculations. All quantities are presented in the pp-notation® for a fixed
bosonic transfer frequency 2 = 0, as functions of the fermionic frequency arguments v and v/
(compare App. A). While we restrict ourselves here to the 1| spin combination, we stress that
analogous features are observed when decomposing Fy4.

Investigating the full vertex F::’/T(f:o) (leftmost panel) we can identify three main features [132]:
(i) There is a constant background different from the (constant) bare Coulomb interaction U. (ii)
We observe two diagonal structures which we will refer to as main (for v = v') and secondary
(for v = —1/') diagonal. (iii) F:;¥f:0) exhibits also a “plus”-like structure, i.e., an enhanced
scattering rate along the lines v = +x/3 and v/ = +7/3. Remarkably, these features do not
decay, even in the limit of large fermionic frequencies and give, hence, rise to a highly non-trivial
asymptotic behavior of the vertex functions. In order to explain their origin, we will analyze in the
following the frequency structures of the four building blocks of F. Our strategy will be guided by
the comprehension of the frequency behavior of the lowest order perturbation diagrams for each of
these sub-parts.

/ —
As for the fully irreducible vertex /\Z;l(;f)}?, we can see that it decays uniformly in all directions

! —
(2=0) does not contribute to

of the two-dimensional (Matsubara) frequency space. Hence, /\ii’
the asymptotic structures of the two-particle scattering amplitude FTVfI(Q:O) (except for the trivial
constant background given by the interaction U). Beyond its numerical observation, this asymptotic
behavior of A can be also justified through the analysis of its diagrammatic structure, exemplified
by the “envelope’-diagram (second diagram from the left in Fig. 1.4). As discussed in detail in
Ref. [132], A does indeed depend explicitly on v and v/ (and £2) and, hence, it decays in all frequency

directions?.

!Note that ®pn and @ were explicitly translated from their respective natural mixed notation to the one of the
pp-channel.

2Every frequency dependence of a diagram originates from the frequency dependence of the corresponding Green's
functions. The latter decay in the asymptotic high frequency regime as 1/iv.
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v Q-

Q-v

Figure 3.1.: The so called “eye’-diagrams in the particle-particle channel.

Turning to the diagrams reducible in the particle-particle scattering channel, i.e., ¢>:;’/T(fzo) (third

panel in Fig. 1.4), they exhibit two of the three asymptotic frequency structures of F::/T(fzo)
Specifically, one can identify a constant background and a well-defined “plus”-structure. The
background can be immediately understood by analyzing the second order diagram depicted above

the plot of @, 1. This is given by the bubble-term
U2
FZG(Vl)G(Q*W), (3-2)
V1

which -evidently- does not depend explicitly on v and /. Hence, bubble diagrams of this type
are responsible for the constant background observed in the particle-particle reducible vertex, and,
consequently, in the full vertex F. The “plus”-structure, on the other hand, originates, in lowest
order, from the so-called “eye”-diagrams (see Fig. 3.1), which either on their left or on their right
hand side collapse into a bare vertex U. For this reason (as detailed in Chap. 4), they cannot
explicitly depend on both v and v/, thus remaining constant upon increasing the corresponding
(unnecessary) frequency [132].

Let us now consider the vertex function reducible in the particle-hole (longitudinal) channel, i.e.,
CDZZ’/T(f:O) (fourth density plot from the left in Fig. 1.4). One can clearly see that this vertex exhibits
a secondary diagonal structure along v/ = —v. Again, we can gain insight about the origin of this
feature by analyzing the lowest order perturbative diagram. For the 1/-channel considered here,
this is of third order in U, as the bare bubble term vanishes. It is given by the fourth diagram (from

the left) in Fig. 1.4, and reads

U3 ?
U IS 6mcwm v i) 63

i.e., it depends only on the bosonic frequency v + v/ rather than the two fermionic frequencies v
and v/ separately. Consequently, its value remains constant along a line v + v/ = const and, thus,

generates the secondary diagonal structure.

Finally, we turn our attention to the vertex reducible in the transverse particle-hole channel,

¢%IT(f:0)' Obviously, it accounts for the main diagonal in the full scattering amplitude F::’/T(fzo)

Once again, the analysis of its lowest order (bubble) contribution allows for an intuitive explanation



26 CHAPTER 3. DIAGRAMMATIC FORMALISM AT THE TWO-PARTICLE LEVEL

of this feature. It is given by the last diagram in Fig. 1.4, which reads explicitly
U2 ,
7 > G(n)G(n + v —v), (3.4)
V1

and depends only on the bosonic frequency 1/ — v. Consequently, its value remains constant along
a line v/ — v = const and, hence, generates the main diagonal structure.

The above analysis demonstrates that the high-frequency asymptotic features of the vertex func-
tions in the weak coupling regime are determined at the second and third order in U by two-
particle reducible bubble- and “eye”-like diagrams. A generalization of these conclusions to the
non-perturbative regime will be discussed in the following Chapter.



Chapter 4

Parametrization of the vertex asymptotics

In the following, we will generalize the discussion of the previous chapter about the main (asymp-
totic) structures of the various vertex functions to the non-perturbative situation. To this end, we
first note that the reduced complexity of specific diagrams regarding their frequency and momentum
dependence is not a peculiarity of low(est) order perturbation theory but rather a general conse-
quence of the frequency and momentum independence of the bare Coulomb (Hubbard) interaction
U. In fact, if any two external lines of the vertex, e.g., the incoming momenta and frequencies
k1 and ks, are attached to the same bare vertex U, energy and momentum conservation requires
ki + ks = k' + k" where k' and k" denote internal frequencies/momenta which are summed. Obvi-
ously, in this situation the entire diagram does depend only on the linear combination k; + k3 rather
than k; and ks separately. Such a behavior has been already observed for lowest order perturbative
(bubble and “eye") diagrams in the previous chapter, and does not change, as a matter of course,
upon dressing these diagrams by means of vertex corrections. These insights hence suggest the
following subdivision of the reducible vertex function CD,I,fI,;/q (and correspondingly for the other two

channels) into three distinct classes, that are depicted diagrammatically in Fig. 4.1:

e Class 1: Theingoing and outgoing frequencies/momenta are attached to the same bare vertex.
These diagrams correspond to (dressed) bubble diagrams (see first line of Fig. 4.1), and can

hence be parametrized by a single (bosonic) transfer frequency and momentum g = kq + ks.

q

The sum of all diagrams of this class will be denoted by Kl,pp'

e Class 2: Either the incoming or the outgoing frequencies/momenta are attached to the same
bare vertex. These diagrams correspond to (dressed) eye diagrams (see, e.g., Fig. 3.1 and
first two diagrams in the second line of Fig. 4.1). These diagrams depend on the bosonic
transfer frequency/momentum g = k; + k3 and one fermionic frequency k = ky or k' = ka,

respectively. The sum of such types of diagrams will be denoted as IC;qpp and K;gp.

e Class 3: Every external frequency/momentum is attached to a different bare vertex. These
diagrams depend independently on all three external arguments. Their sum will in the follow-

!
ing be referred to as the “rest” function, denoted by R,’;’;, 9. It is illustrated diagrammatically

by the last diagram in the second row of Fig. 4.1.

27



28 CHAPTER 4. PARAMETRIZATION OF THE VERTEX ASYMPTOTICS

K1pp = ;‘C‘( + _F[ D

Ka.pp = }::l)‘( Kapp = ><:j:g Rpp = :E::t:[:gi

Figure 4.1.: Diagrammatic representation of the asymptotic functions for the particle-particle channel. For
a more rigorous definition see Appendix B.

Based on this classification, we can thus introduce an (a priori exact) decomposition of each
reducible @-function into these four terms!. In the particle-particle channel it reads?

k'q

kk'qg _ 3~ kq =
Opp T =K1, + Ko, + Ko pp

kk’
1.pp 2,pp + RPP 9. (4'1)

In the same way we can decompose also the other scattering channels ph and ph. It is important
to note, that the structures arising due to K1, K> and ICop extend to infinitely large frequencies and,
hence, generate a highly non-trivial high-frequency asymptotic behavior of the corresponding vertex
function.

On the contrary, the diagrammatic content of R implies a decay in all frequency directions, since
each external fermionic frequency will enter directly one of the inner diagrammatic propagator lines
by means of the frequency conservation at its attached bare vertex. These decay properties are
verified numerically in Chap. 6, and motivate our proposed approximation for treating the vertex
asymptotics. Our strategy will be the following: We will explicitly consider the full frequency
dependence of the @-functions only in a small frequency window, while the third class of diagrams
(R) will be neglected at larger frequencies, i.e.,

(pkk'q ~

ki —=k'q
pp,asympt. ™~ ]c_’,pp +K ¥ +K (42)

2,pp 2,pp-
One can see that the reducible vertex <D,I.fl,§/q is described by functions of at most two arguments in
the asymptotic regime, which drastically lowers the cost for its numerical treatment. This way, we
are able to (i) determine the reducible vertex ®,, up to arbitrarily large frequencies with a reduced
computational effort, and (ii) avoid any problem arising from boundary effects due to finite-size
frequency grids in vertex-based numerical algorithms.

Let us stress that, whenever momenta are considered, the decay of R in the frequency domain
implies, that the reducible vertices @ exhibit their full momentum dependence only in the domain

!Note that for /C1, Ko and K, respectively, the index denotes the reduced number of external arguments required
to describe them. These shall in the following be referred to as 'necessary’ arguments for the corresponding term.

Let us remark, that the concrete form of the argument(s) for Ki,p/K2,, depend(s) on the chosen fre-
quency/momentum convention. The dependence on one/two single argument(s) becomes apparent only in its
natural notation, while for other conventions, K1,pp/K2,5p ill depend on one/two linear combination(s) of all fre-
quencies/momenta. Nevertheless, these functions will be constant along two-dimensional planes/one-dimensional
lines in the space of three frequencies/momenta (in the natural notation these planes/lines are parallel to the
coordinate axes).
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of small frequencies. At larger frequency values, where the reducible vertex function is determined
by at most two of the asymptotic functions, the momentum dependence is reduced alongside
the frequencies. This matter will become evident in the following Chap. 5. The same argument
holds for the fully irreducible vertex Ayp;, which decays to the value of the bare interaction in all
frequency directions. As a consequence, strongly momentum dependent parts of the vertex F,
e.g. the contributions responsible for a d-wave scattering amplitude, have to be localized in the
frequency domain.

Let us now discuss the physical content of the asymptotic functions K1 and Ky. The former is
directly linked to the susceptibility in the corresponding scattering channel [132,145,167]. In fact,

they are equal up to a prefactor U?, i.e.
K = U9, (4.3)

with x9 defined according to Appendix A.
K> on the other hand encodes information about how the electrons couple to different bosonic de-
grees of freedom. For instance, for the generalized density in Fourier space ng = ¥ dk > el (k) o (k+

q), we find the relation

U x (Tngcs(k + q)ch(k))e = Go(K)Go(k+q) > </c‘1’,ph,w, + /cgjz,hm,) . (4.4)

O'l

Here, (...)c considers only connected contractions, and the imaginary time-ordering acts inside the
Fourier-integrals. The above equation relates 1 and K3 to the electron-boson coupling (three-
point or Hedin) vertex as used in the ladder version of DI'A [137,170] and the recently introduced
TRILEX [147] approach.






Chapter 5

Implementation

In this chapter, we describe how the ideas presented in the previous chapter can be practically
exploited in analytical and numerical calculations based on two-particle vertex functions. After a
general presentation of the main concepts, we will explicitly discuss the application of our scheme
for analytic calculations based on the atomic limit vertex, and for numerical implementations of the
fRG in its second order truncation and the parquet approximation.

The observation that any diagram vanishes if one of its necessary frequency arguments is taken
to infinity allows us to select the different diagrammatic contributions by taking the corresponding

limits in the frequency domain, i.e.

. . kk'
[im lim 9 = K9 /) 5.1a
v =00 |1/| =00 r,oo l,r,o0 ( )
: kk'q _ 4-q kq
\V’||ITOO¢r'UU/ - ]Cl,r,cro’ + ’C2,r,0'0” (51b)
lim o9 — 9 g9 (5.1c)
V|00 roo! — "™1,r.00' 2,r,00’" :

where r € {pp, ph, ph}. We stress again the fact that, by taking limits in the frequency domain,
we find not only a reduced frequency, but also a reduced momentum dependence. The remaining
diagrammatic class 3 introduced in Chap. 4, or rest function R, which requires the full dependence
on all arguments, can then be acquired by inverting Eq. (4.1)

RN, — ke gk _xhe (5.2)

r,oo’ r.oo’ 1,r,00’ 2,r,00’

One advantage of performing this limiting procedure based on the reducible vertex, is that Eq. (5.1a)

holds equally if |v| and |2/| are taken to infinity at the same time, i.e.

: kk'q _ 1~q
|1/||IToo d)r,ao" - ,Cl,r,ag" (53)
|| =00

This property allows for a simplified scanning procedure to numerically extract asymptotic functions,
which, depending on the frequency ranges and parameters, provide a good approximation. The

procedure is straightforward and applicable in all channels (see also Fig. 5.1 and Ref. [165]):
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Figure 5.1.: Schematic representation of the scanning procedure, that extracts the asymptotic functions
from the reducible vertex function.

e |: For large |v| and |/| vary the transfer four-vector g to acquire K.

e |I: For large |V/|,

kq
Kyt

vary k and the transfer four-vector g and subtract K7 in order to obtains

e |ll: Repeat Il by replacing v/ — v and k — k’ to determine Ké 9,

The above described procedure proposed to determine X; and X, has some limitations. Firstly,
one can easily see that if the scanning is not performed at sufficiently large |v| (|2/]), the rest
function might not be fully decayed, giving rise to an error in the KC; and K, extraction. We found
this error to be particularly pronounced in the strong coupling regime (U = 4 for the comparisons in
Chap. 6) where the rest function becomes comparable with the asymptotic functions in the domain
of small frequencies. Secondly, the scanning procedure requires the knowledge of the reducible
vertex functions @,, which are not directly available in some algorithms, as e.g. for the exact

diagonalization. This raises the question whether a similar set of limits can be formulated also for
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F. And in fact, as will be clarified in the following, the limits presented in Eq. (5.1) still hold, i.e.

. . kk'
‘V||inoo |V/I\ITOO Fr,m;” B (1 B 50,0’)U = ,Cg,r,aa" (5‘43)
Jim FING — (1=, )U=KT, .+ K5, (5.4b)
. kk' —k’
‘Vl\lnoo F"vU:/ - (1 a 50"7/)U = K]?,r,ao“ + K2,:7,crcr" (54C)

where again F, denotes the representation of F in one of the three mixed notations. However,
the numerical equivalent of the limiting procedure, i.e. the scanning procedure previously described
for the @-functions, is not feasible in the case of F, which is directly related to the fact that
Eq. (5.3) does not hold equally for F. In order to numerically extract the asymptotics from F
directly we thus suggest an alternative approach detailed in Appendix B. We implemented this
diagrammatic extraction to determine the exact asymptotic functions, as presented in Chap. 6,

from ED calculations.

The limiting procedure Eq. (5.4) is however particularly suited in the case that analytical expres-
sions for F are available, as demonstrated for the atomic limit case in Sec. 5.1. Let us thus argue
why this generalization of Eq. (5.1) holds. It relies on the property that any reducible diagram
vanishes if the corresponding transfer frequency, being a necessary argument, is sufficiently large,
i.e.

lim 9 =0, (5.5)

We have to further consider, that in order to take the limits in Eq. (5.4), we should formulate
Eq. (1.3.2) in the corresponding mixed notation. E.g. for the particle-particle channel we have to
translate ®@,;, and <D,7h to the pp-notation as follows
kk'q  akk'q kk'q kk'(q— k' —k) k(q—k')(K'—k)

Fpp,aa/ - /\2Pl,pp,aa’ + ¢pp,aa’ + (pph,aa’ + (DE'UU/ : (56)
It now becomes clear that for fixed 2 and v/, the bosonic frequencies of the ph and ph channel,
that is 2 — v/ — v and v/ — v, will lead to a vanishing of the respective scattering channels for
|v| — oo. This behavior can also be observed in Fig. 1.4, and holds equally for the other scattering
channels. Since Ayp| decays in all frequency directions to the bare interaction, we conclude that
M, 5o Frlfl;;q, —(1=9,,)U = limp, 5o ¢ﬁ§g,, while the same argument can be made for the
other limits in Eq. (5.4).

5.1 Decomposing the atomic limit vertex

As a first showcase of these ideas we discuss the vertex decomposition for a system that can be

treated analytically, i.e., the atomic limit, whose Hamiltonian reads

N 1
H=U hThi_E(hT+h¢) . (5.1.1)
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Here, N, = 6;[&0 is the number operator for fermions of spin o, and we have imposed the half-filling
(particle-hole symmetry) condition i = U/2. The Hilbert space is spanned by the four eigenstates
|0), | 1), | ) and [1{), allowing for a direct calculation of the two-particle Green's functions by
means of the Lehmann representation. The resulting two-particle vertex function [113,120,132] is,

for our purposes, split into four terms (note F, # F,)
FT¢:fodd+fpp+fph+pr, (5.1.2)

which are defined in the following. The first term contains only odd orders in the interaction, and

takes the most compact form in the purely fermionic notation

Fuveras — () _ 7# -=1]- (5.1.3)

while the functions F, with r € {pp, ph, ph} are more conveniently expressed in their respective

mixed notation (see Appendix A)

0 U
Foy 5590 D”” <2> (5.1.4a)
w'Q 5 szu g Y 1.4b
ph - B .QO 5 ) (5 4 )
F 5 U2 DYV F 5.1.4
ph Boa0— > _E ' ( 1. C)

Note that, at this

with D¥' = 1/2}/2 (V2 + UT2> (V’2 + UT2> and the Fermi function f(e) = 1+ .
stage, the decomposition for the full vertex F is motivated solely by algebraic reasons, while the

connection to the physical scattering channels will be established in the following.

Let us now use the limits in Eqgs. (5.4) to identify the contributions arising from the different
diagrammatic classes. This task can be performed by considering each term in Eq. (5.1.2) separately.
Let us illustrate this procedure for the pp-channel, beginning with the first term, Foqq. Here, we

have to translate from the purely fermionic notation to the mixed one of the pp-channel:

v’ Q _fl/_Q v .Q—vy :U_£V2+(Q_V/)2+(Q_V)2+V/2_3U5 1
odd,pp ™ odd 8 v(2—-1v)(2—-v) 16 v(2—-v)(2—-v)
(5.1.5)
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The large frequency limits then result in

lim lim Fu2 =, (5.1.6a)
V| =00 |V |—o0
U1 1
l v 1.
|1/\IT Fodapp = U = 4 —Q (5.1.6b)
/ U1 1
. v'Q
m Fodapn = U= 00 (5.1.6c)
As for the limits of the second term, F,,, we have
2
lim  lim .7-";;;,’/ Bégguf<u>, (5.1.7a)
[v|—o0 |V | =00
U? U? 1 U
| w2 g 1 fl= 1.7b
Jim 7% = -0y 1+ 5 (3) (5175
2 2 1
lim Fuy'? = /Mmu 1+U Teay (5.1.7¢)
|v]—o0 4 yp U2 2

Determining the contributions from the remaining terms ¥, and ]-'p—h, which involves a translation
from their respective mixed notation to the pp-notation, we find that their contributions vanish.

This leads to the final expressions for the asymptotic functions in the pp-channel

U? U
KL ppry = 6590f<> (5.1.8a)
U1 1
Kppts =7 55— Q<’C1ppm U)' (5.1.8b)

while the K, can be acquired by means of the symmetry properties reported in Appendix C. Per-
forming the analogous procedure for the remaining two channels yields

U? U U
/C{Z,ph,u = —Bd0— [f <2> —f <—2>] : (5.1.9a)
U1 1 0
5= 4oy (Vo= ). (5.1.90)
for the ph-channel, and

0 5 sz U

ICl phtl ﬁ Q,O? _5 y (51103)
U1 1

v2 i

N TR (K2, — V) (5.1.10b)

in the ph case.

Now that we have determined all asymptotic functions of the atomic limit vertex, let us consider
its structures that are localized in the frequency domain. We proceed again in a term-wise fashion,

beginning with F,qq. By subtracting all asymptotic contributions arising from this term, we find
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Figure 5.2.: Schematic diagrammatic representation of the localized structure presented in Eq. (5.1.11).

. 5 . . . . .
that only the fifth order term —% ,% survives, while it remains unclear whether this term can

be attributed to the fully irreducible vertex function or the rest functions.

For the F, terms, let us again consider the pp-channel as an example. Here we find

Fy?— lim For?— dim Fel? 4 dim lim Fa?
PP |V’|I—>oo PP |V|I—>oo PP +\V|I—>oo\1/’|l—>oo PP

211 . el (5.1.11)
= <4w_9> X Kippt (4;/;/-9) -

This term contains three factors, i.e. a fermion-boson vertex [148] that describes the coupling to
a pairing field, the bosonic propagator in the pp-channel, and an additional fermion-boson vertex,
as depicted schematically in Fig. 5.2. We can thus argue diagrammatically that this localized term
belongs to the rest function R, 1. For the other channels, we find equally that the localized
structures belong to the respective rest function, and hence F, € &, 1,.

Note that, to obtain the full rest functions as well as the fully irreducible vertex function, it would
require the analytic expressions for all the reducible @ functions, that have so far never been reported
in the literature. Their calculation requires the very involved procedure of inverting analytically the
Bethe-Salpeter equations, which goes beyond the scope of this thesis. The resulting expressions
should reproduce the multiple vertex divergencies [133,171-173] appearing in the @ functions for
T < gU. As these divergent terms are not present in the full vertex F, they must be subjected
to cancellations between Ayp; and one (or more) of rest functions.

5.2 Implementation for the fRG solver

The functional renormalization group approach [13,174] implements Wilson's renormalization group
idea in a general field-theoretical frame. By introducing a scale-dependence into the quadratic part

of the action, i.e. the non-interacting propagator
Go(iv) — G{\(iv),

one can derive an exact functional flow equation [7] for the 1Pl generating functional, also named
"effective action”. This flow equation describes the gradual evolution of all correlation functions
as the scale A is varied from the initial to the final value. Being an exact reformulation of the
initial problem, it serves as a basis for further approximations, and has been used in many differ-
ent applications ranging from high-energy physics to condensed matter theory. In the fRG, this
approximation consists in an expansion in orders of the fields, resulting in an infinite hierarchy of
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coupled ordinary differential equations for all 1P| n-particle vertex functions, e.g. the self-energy X,
the two-particle vertex F and so on. This hierarchy is typically truncated at the two-particle level,

rendering the fRG perturbative in the interaction strength.

For the flow-parameter dependence, we consider in the following two different schemes: The

so-called Q2-flow [12]:
2

. 14 .
G({\(”/) = mGO(IV), (521)

and the U-flow [9]:
GMiv) = A- Gy(iv). (5.2.2)

The 2-flow introduces an energy cutoff into the system, that allows to successively integrate
out the different energy scales from high to low. This approach is very much in the spirit of
other renormalization group approaches. The U-flow on the other hand introduces a frequency-
independent regulator into the Green function that treats all energy scales on a equal footing. In

this sense, the U-flow is more similar to common perturbative approaches.

The flow-equations resulting from a second order truncation of the flow-equation hierarchy can

be summarized as follows. At the level of the self-energy, the derivative takes the simple form

S(k) = i dk' SM(K') x | 9=0) ¢ pARe(e=0] (5.2.3)

where we have introduced the so-called single-scale propagator
SMNiv) = G (V)| £4 fixed-

At the level of the 1Pl two-particle vertex, the flow-equation is composed of contributions from

three scattering channels (particle-particle, particle-hole and transverse particle-hole)

A AN N A
F = 7;,,, + 7;,;, + T?h’ (5.2.4)
where
ThKa i dk" [SAK') G (g — K')+ S G| x Pt FRuat’™, (5.2.52)
7;/2"?5‘7 = — Z: dk” [SA(/{” + Q)GA(/{H) + S < G} X {Ffj\hlﬁ,q":;\i;l},iqu + FTT < Fﬂr , (525b)
N kk'q " Arpn Y N kk" q A K" k' q
T = idk [5 (K"+q)G"(K")+ S + G} x P TR (5.2.5¢)

These terms can be depicted diagrammatically as shown in Fig. 5.3 for the pp-channel. To under-
stand the diagrammatic content generated by each channel let us refer to the previously introduced

parquet equation, that holds for any scale A

FY = Moy + D, + Py + P2 (5.2.6)
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—> s >—
A A

—> > >

Figure 5.3.: Diagrammatic representation of the particle-particle contribution 7,, (5.2.5a) in the vertex flow
equation. The dashed line denotes the single-scale propagator S”.

Considering the vertex flow equation Eq. (5.2.4), it is obvious that at this level of truncation, the

only diagrammatic content than can be generated by the flow is two-particle reducible, meaning
7 ini ; i i i

Ao, = /Ayp). We can thus separate the different two-particle reducible terms in Eq. (5.2.4), and

identify

WA A WA
L ="Topr D0 = Tph, *% = Tor (5.2.7)
This allows us to make use of the parametrization scheme described in Chap. 4 during the fRG flow.
While keeping track of the reducible vertex functions on a finite frequency grid, we also track the
flow of the previously introduced asymptotic functions. In fact, we can directly perform the limits

in Eq. (5.1) to compute the corresponding derivatives

2A,q T . A kk'q
Kir oo = \VI|I£>noo |u’|\lﬁ>]oo PR (5.2.8a)
~Akqg . A kk'q ~Aq
2,r,c0" \V’||IE:oo d)r,a'o“ - ICl,r,O'o'/’ (528b)
= ANKq . ’ .
! o . N kk'q Aq
Koo = lim @47~ K1 (5.2.8¢)

In practice, these limits are performed numerically by setting the corresponding frequency to an
arbitrarily large value. In doing this, we have to determine F/ in the large frequency domain by
making use of Eq. (4.2). In addition to the flow of the ®-functions we then track, using Egs. (5.2.8),
the flow of the asymptotic functions.

Due to the numerical costs involved in treating the full argument dependence of the vertex

function, a simplified parametrization scheme [134]

’ —u —([2/2]—wvo,k’ -1, —10,k’
q),/;,l; 9~ ;Cgﬁlpp _ ’Ci’,pp + ,Cg’[g)/ﬂ 0.k)q 4 /Cgpp/ 1—v0.k')q n Rg}n/z} 0.k)([2/2]—v0.k )q (5.2.9)
has found extensive use in the fRG community. Here, vy = % denotes the first positive Matsubara

frequency, and [...] will round up to the next bosonic Matsubara frequency !. This scheme considers
only the dominant transfer frequency dependence of the K> and R functions, and will be compared

to the full parametrization in Sec. 6.3. Performing the same approximation in the momentum

! The parametrization scheme presented in Eq. (5.2.9) was originally implemented at zero temperature, where
the flow of each channel was determined for vanishing transfer frequency of the other two channels. At finite
temperature, this choice is only possible for every other transfer frequency, as the condition (% >, _Q,) mod2=1
needs to hold. This leads to ambiguities in the definition.
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Figure 5.4.: Derivative of the lowest order contribution to lCé"ph.

domain limits the scattering to the s-wave type, while higher harmonics can be captured by means

of a form-factor expansion [175].

The fRG flow equations in their second order truncated form account for the feedback of F/ into
the flow up to the second order. If we in addition consider partially the neglected contribution of
the 1Pl three-particle vertex in the flow equations, it is possible to account fully for the feedback
up to O[(F/)3]. In practice this is achieved by taking into account both self-energy?, and vertex
corrections from diagrams with overlapping loops [10, 14], which is possible with a manageable
numerical effort. These corrections will in the following be referred to as two-loop (2¢) corrections

to distinguish this scheme from the conventional one-loop (1¢) one.

When considering the flow of the asymptotic functions, we find that including the two-loop
corrections gives a substantial improvement of the two-particle vertex results. While a quantitative
comparison between the one- and two-loop scheme will be presented in Sec. 6.2, we can already
understand from a simple diagrammatic argument that the lowest order contribution to K, is not
captured in the one-loop scheme. Here, the derivative includes four contributions, as depicted in
Fig. 5.4. The one-loop scheme accounts only for the first two diagrams, while the two-loop scheme
includes all of them. In particular for the U-flow, the contribution from all four diagrams is equal,
meaning that in its one-loop implementation the flow reproduces exactly % of the exact value for

U — 0. This is verified numerically in Sec. 6.2 (see Fig. 6.10). A similar argument can be made

1

for the lowest order diagram of R, where the resulting factor is 3.

5.3 Implementation for the parquet approximation

In this section we describe the implementation of the parquet approximation using the proper
treatment of the vertex asymptotics. Let us begin by presenting in detail the essential equations.
The Bethe-Salpeter equations®, as depicted also diagrammatically in Fig. 5.5, read*

2The self-energy correction S — 9,G” is generally referred to as Katanin-substitution [10].

3The Bethe-Salpeter equations can be channel-diagonalized by switching to the density (d), magnetic (m), singlet
(s) and triplet (t) channels. While this simplifies their exact inversion, this change of description is unnecessary
for the iterative procedure described in the following.

*We want to point out the fond similarity between Egs. (5.3.1), which are the basis for the iterative parquet
approximation solver, and the channel-resolved fRG flow Egs. (5.2.5), which technically allows for very similar
implementations of the two approaches.
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Figure 5.5.: Compact diagrammatic representation of the Bethe-Salpeter equations in all scattering chan-

nels.
Pyt = i dK" G(K")G(q — K") x T Oy, (5.3.1a)
O =~ jj dk" (K" = q)G(K") x [T i e+ i TP ], (5.3.1b)
o = Z‘, dk" G(K" — q)G(k") x [ T, (5.3.1c)
where
['r = Aopr + Z by, (5.3.2)
ri#r

while F is finally obtained by means of the parquet equation (1.3.2) (or Eq. (5.6) for the explicit
version in the pp-channel). If we supplement these equations by the so-called Schwinger Dyson

equation of motion for the self-energy
S (k) = UI dk; G (k1) G (ko) G (k1 + ko — K)ELSHe, (533)

we acquire a closed set of equations, the parquet equations, that can in principle can be solved, if
e.g. the fully irreducible vertex function Ayp is known. Their solution is numerically very delicate
though, and has posed a great challenge in numerical physics over the last years, one of the main
obstacles being the correct description of the vertex symmetries [164] and asymptotics [165].

If we approximate the fully irreducible vertex by its lowest order contribution, i.e. Ap; = U, we
obtain the so-called parquet approximation (PA) scheme, that we will consider in the following. The
steps that we employed for a numerical solution of the parquet approximation can be formulated in

a straightforward way as follows

e |: Initialize X as well as the @-,/C;1- and K»-functions to 0 or make some educated guess for

their starting values.

o |I: Based on their current values, update the X, @'s, K1's and K»'s according to Egs. (5.3.3),(5.3.1)
and (5.1), while making use of Eq. (1.3.2), Eq. (5.3.2) and Eq. (4.2) to correctly treat the
high-frequency asymptotics.

o |lI: Repeat Il till convergence.

Results obtained by this approach for a SIAM are presented in the following Chap. 6.



Chapter 6

Comparison to exact results of the SIAM

In this chapter we illustrate the high quality of the description of the vertex asymptotics obtained

using the algorithmic implementations discussed in the previous chapters.

In particular, we present results for the asymptotic functions as obtained from the fRG (2-flow
including two-loop corrections) and PA for a single impurity Anderson model and compare them
with exact diagonalization data, which were acquired following the procedure outlined in Appendix
B. Besides the asymptotic functions, also results for the rest function and the self-energy will be
shown. In Sec. 6.2 we will further discuss a detailed comparison between the fRG in its one- and
two-loop implementation for both the 2- as well as the U-flow. We first consider the regime,
where the fRG and the PA, as approximation schemes, are expected to be quantitatively correct.
Hence, in this regime, the comparison with the exact results of ED will represent a stringent test
for our treatment of the high-frequency asymptotics. After having demonstrated that the error
introduced in the high-frequency asymptotics of the vertex function is negligible, we proceed by
applying our fRG and PA algorithms, including the high-frequency treatment, to the intermediate
to strong coupling regime. In this case, the comparison to the ED will allow us to assess directly the
intrinsic performance of the two approximations in the non-perturbative parameter region, because

no spurious effects are introduced by an incorrect treatment of the high-frequency part anymore.

The system of interest in this chapter is a SIAM, i.e. a single impurity site with local repulsive
Coulomb interaction U coupled to a non-interacting bath (see Chap. 3, Eq. (3.1)). In our individual

case, we consider a box-like density of states

() = 550(D ~ [w), (61)

where D denotes the half-bandwidth, which will be used as our unit of energy, i.e. D = 1. This
bath is coupled to our impurity site by means of a hopping t = \/2/7 such that the resulting
hybridization function reads A(w) = 7t?p(w) = 2p(w). This choice results in A(0) = D = 1,
allowing us to directly relate our unit of energy to the one used in wide-band limit calculations [134],

namely the hybridization function evaluated at the chemical potential.

However, the exact diagonalization of the SIAM is not possible for p(w) of Eq. (6.1). Hence, we

have determined a set of four optimized bath energy levels ¢, and hoppings t, with the resulting
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Figure 6.1.: IC{{N for all three scattering channels. We present results obtained by fRG (left, solid), PA
(right, solid) and ED (right, dashed) for the SIAM with U =1, 8 = 20 and A(0) = D = 1. [166]
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Figure 6.2.: IC;% for all three scattering channels as a function of v and for different values of 2. We
present results obtained by fRG (left, solid), PA (right, solid) and ED (right, dashed) for the
SIAM with U =1, 8 =20 and A(0) = D = 1. [166]

hybridization function
4

AFP(jy) =3

2
— (6.2)
— v —ep
in order to mimic the continuous bath of Eq. (6.1) in the best way possible within a discretized ED
scheme. Following a somewhat similar strategy as in the ED algorithms for DMFT, we determine

our bath parameters such that the norm
> 1AFP(iv) — A(iv)? (6.3)
iv

is minimized. For an inverse temperature 5 = 20, which was used for all numerical calculations
presented in this thesis, we have ¢, = —0.7, —0.15,0.15,0.7 and t, = 0.45,0.34,0.34,0.45. Note
also that, since we are considering the particle-hole symmetric case, all two-particle quantities are
purely real, while the self-energy is purely imaginary. Unless mentioned otherwise, calculations are

performed with a frequency grid of 128 x 128 x 256 Matsubara frequencies for the @-functions,
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Figure 6.3.: Rest function R%/Q for all three scattering channels as a function of v and v’ plotted for
2 = 0. We present results obtained by fRG (1st row, left) and PA (2nd row, left) for the SIAM
with U =1, f =20 and A(0) = D = 1. The right side always shows the corresponding ED
result. [166]

while grids of 128 x 256 and 256 are chosen for [y and K; respectively.

Let us start considering the weak-coupling case (U = 1). The data for K14, K24, and Ry are
presented in Fig. 6.1, Fig. 6.2 and Figs. 6.3, 6.4 respectively!. For this parameter choice, we find
an excellent agreement between the different approaches and the exact solution for all quantities.
At the level of the asymptotic function K1 1, no distinction can be made between the results of the
different schemes, while for K5 1, the fRG shows some minor deviations w.r.t. PA and ED in the pp
and ph channel. Even at the level of the rest function R4y, which has as a leading order U*, we
find excellent agreement between PA and ED, while only minor deviations are again observed for
the fRG. Note that, contrary to the plotting conventions adopted in previous Refs. [132,165], the
fermionic frequencies are shifted by ££2/2 for K, and R, because the main frequency structures
move outwards as 2 is increased. This observation suggests to include a corresponding shift also in
the notation used in the numerical implementation, such that the localized frequency structures can
be more efficiently captured by means of the finite grid even in the case of finite transfer frequency.
Similar trends are observed for the self-energy shown in the left panel of Fig. 6.5. While PA and
ED agree perfectly, we find that the fRG self-energy deviates from the exact results, especially in
its tail.

All this numerical evidence proves the reliability of our treatment of the high frequency asymptotics

within the different schemes (see also the results for U = 2 in the supplements), allowing us to

1The contour plots are created such that every small square of equal color represents the value of the function at
the bottom left corner of this square.
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Figure 6.5.: Im X(iv) as obtained by fRG (red, solid), PA (green, solid) and ED (blue, dotted) for the SIAM

with 3 = 20, A(0)

D =1 and for U =1 (left) and U = 4. [166]
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Figure 6.7.: Same as Fig. 6.2, but for U = 4. [166]

evaluate in an unbiased way their intrinsic performance in the most challenging strong-coupling
regime.

Due to the perturbative nature of fRG and PA, the situation changes drastically in the regime
of stronger coupling. The corresponding results for U = 4 are presented for Ky 1 and K4 in
Figs. 6.6 and 6.7 respectively. Note that, for this value of the interaction, we are clearly in the
non-perturbative regime, as divergencies [123,133,171,172,176] are already present in the exact
vertices obtained by ED. For both, PA and fRG, Ky shows already strong deviations from the
exact results, while the qualitative structures are still captured. These deviations are particularly

enhanced in the ph and ph channel. In the

case of Ko 1) qualitative features are missed by RghVTQi
. . B . 20 ’

the PA and fRG, in particular for 2 = 0, while PA ED 8
a qualitative agreement is still achieved for fi-

_ 10 0
nite transfer frequency. Also for the self-energy,

. : : : -8

shown in the right panel of Fig. 6.5, strong devi- G_f_” 0 |
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this diagrammatic class is at least fourth order

in the interaction, the strongest deviations were Figure 6.8.: Comparison of R, obtained by
means of PA with the exact result.

here.
to be expected here Here, U = 4. [166]

6.1 Neglecting the asymptotics

Let us now discuss the importance of considering asymptotic functions in numerical implementa-
tions. In this regard, we present in Fig. 6.9 results for Im X (irp)/U? as a function of U calculated
by fRG and PA, with and without asymptotic functions, and compare them with the exact ED data.

For these calculations, a frequency grid of 64 x 64 x 128 Matsubara frequencies was used for the
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Figure 6.9.: Comparison of Im X (irg)/U? for the SIAM with 3 = 20 and A(0) = D = 1 as obtained by
fRG and PA with and without (K; = K3 = 0) high-frequency asymptotics, compared with ED

for g = Z.

B

reducible vertex functions. In the large frequency domain, we used Eq. (4.2) and @, asympt. = O
respectively. We observe that the results for both, fRG and PA, are strongly affected if we include
the asymptotic functions in the calculations: The comparison with the exact result improves by a
substantial amount. This is a strong indication of the importance of a correct description of the

high-frequency part of the vertex function in all vertex-based numerical implementations.

6.2 Higher order corrections in fRG

In this section, we provide a quantitative comparison between the SIAM results as obtained by
means fRG in its one- and two-loop implementation. To this aim, we compare in Fig. 6.10 the
quantities K20, | ICZ?IS,,QEO), as well as max,,/ \Rgﬂfzo)] normalized by their leading order? in
U, to the exact ED results as well as to the PA. Consistently to our expectations, we find that
the two-loop corrections yield a systematic improvement of the K1, K> and R functions acquired
during the flow, in particular for larger values of the interaction.

More specifically, for Ky pp1) the two-loop corrections have a minor effect in the weak-coupling
regime, whereas an excellent agreement with the exact results is achieved already at the one-
loop level. At larger U, the one-loop scheme strongly overestimates Kq 4. Here, the two-
loop corrections yield a substantial improvement over the one-loop scheme, while underestimating
K1,ph1)- We also note the strongly improved agreement of the two-loop fRG with the PA, which is
a trend to be expected, since the two-loop scheme allows to include higher orders of the reducible
diagrams in an exact way.

As for K3 ph 1y, We observe that already in the limit U — 0 the one-loop scheme fails to reproduce
the exact result. This can be attributed to the fact that the lowest order diagram in K5 51 is of
order U3, and is thus not captured exactly in the one-loop scheme. In particular for the U-flow,
we numerically verify the factor % (w.r.t. the exact result) already predicted diagrammatically at

the end of Sec. 5.2, while for the £2-flow we find, numerically, a factor of ~ 0.89 in all channels.

2For the particle-hole channel in the 1/ spin configuration the bare bubble vanishes, resulting in a leading order
O(U3).
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Figure 6.10.: Comparison of K250, /U3, K377 /U3, and max,., [Rip AP =" /U* (vo = %) for fRG in

the one-loop (1¢) and two-loop (2¢) implementation, for both the 2- and U-flow, with ED
and PA. We note that the one-loop U-flow diverges for U = 3 or larger.

For larger values of U, we observe a behavior similar to the one described for Ky pp 4, that is, a
systematic improvement of the results if the two-loop corrections are included in fRG.

For Rph.+, the trend is similar, while, being a function of O(U*), the relative deviations from the
exact results increase substantially. The predicted factor % for U — 0 is verified numerically, while
for the 2-flow we find factors 0.78, 0.25 and 0.78 in the pp, ph and ph channel respectively.

As for the comparison between the flow-schemes, consistently with the ratios in the weak-coupling

regime, we observe that the simpler U-flow performs in general worse than the (2-flow.

6.3 Efficiency of simplified parametrization schemes

In this section we preset results for the simplified parametrization scheme [134] presented in
Eq. (5.2.9). It has found extensive use in the fRG community, as it allows for a substantial speedup
of numerical calculations. In the left two panels of Fig. 6.11 we compare the self-energy at the first
Matsubara frequency (Im X (ivg)/U?) as well as its tail (lim, oo ImvX(iv)/U?) for fRG one-loop
and two-loop in their full and simplified (ICefr) implementation with PA and the exact results from
ED.

For the self-energy at the first Matsubara frequency, we find a good agreement between the
simplified parametrization scheme and the fully parametrized fRG implementation for both the one-
and two-loop scheme, while the simpler scheme performs slightly worse in reproducing the exact
results. In the case of the self-energy tail, the situation is reversed. Here, the aforementioned

deviations of the fRG from ED are indeed cured by the simplified parametrization scheme.

To capture the effect of the simplified approximation scheme on the two-particle quantities we
compare in the right panel of Fig. 6.11 the corresponding susceptibility in the ph-channel for the
two-loop case. It is important to note, that x cannot be directly extracted from K using Eq. (4.3)
due to the effective inclusion of ICy and R. Instead, we calculate the susceptibility after the flow by
calculating explicitly the bare and vertex-corrected bubble according to equation Eq. (B.1b) (VC).
This is compared, for an interaction value U = 4, to x = K1/U? and the corresponding PA and
ED data. We find that the simplified parametrization fails to qualitatively reproduce the exact
susceptibility, while the other approximations, although underestimating x, compare qualitatively



48 CHAPTER 6. COMPARISON TO EXACT RESULTS OF THE SIAM

; 2 lim Im » % (iv) /U2 Q
0.00 Im(ivg) /U —0.20 V200 (iv)/ s Xph, 1 |

XVC, eff
—o.01 ° 025 @ &

-0.02 —

1 b

A — Xvc
1.0 0 — X
o R ¢5))

—-0.03

-0.04

—0.05| %% 2¢ Koy

~0.06/|" "
°

—0.0{

0 15 20 25 30 35 40 0 15 20 25 30 35 40
U U

Figure 6.11.: Left two panels: Comparison of Im X(ig)/U? and lim,_ o ImvX(iv)/U? for fRG one-
loop and two-loop with the corresponding simplified schemes introduced previously (e, see
Eq. (5.2.9)), PA and ED. Right panel: Comparison of the susceptibility x in the ph-channel
for U = 4 as obtained by means of Eq. (B.1b) after the two-loop fRG flow (xvc) in the con-
ventional and the simplified scheme (eff). This is compared to the susceptibility x obtained
directly from Eq. (4.3) as well as the PA and ED result. [166]

well with ED3.

While the parametrization scheme of Eq. (5.2.9) performs well for one-particle quantities, we
find that the qualitative features of the susceptibility are badly reproduced. Further, we observe
that the ambiguities in the definition of the flow equations for the case of finite temperatures (see
p. 38) turn out to have a substantial effect on the results for larger values of the interaction. These
are strong arguments for the fully parametrized schemes, that capture, consistently, all frequency

structures of the two-particle vertex function.

3We note that x calculated after the full two-loop flow by means of Eq. (B.1) yields a result different from /C;/U?.

This is connected to the specific approximations introduced in the fRG, and is absent in the fully self-consistent
PA.



Chapter 7

Conclusion

As it also emerges from the studies of correlated systems | performed in the first part of my PhD
work, one of the most challenging aspects in the contemporary research in condensed matter physics
is the theoretical treatment of correlation effects in the non-perturbative regime. While recently,
several promising quantum field theoretical schemes have been proposed (including one by myself),
their actual implementation calls for a significant improvement of the current algorithmic procedures.
In particular, most of them are based on a Feynman diagrammatic expansion around a correlated
starting point. This means to replace the bare electronic interaction with a dynamical effective one,
which includes non-perturbatively, through the two-particle vertex function, a significant part of the
correlations from the very beginning. As the plain treatment of these vertex functions is prohibitive
in most of the cases, the development of efficient ways to include them in the current algorithms
was mandatory.

To this aim, in the main part of this thesis, we have presented a detailed analysis of the diagram-
matic content of the two-particle vertex functions. In particular by focusing on their two-particle
reducible parts, we could identify the different contributions to their high-frequency asymptotics
as diagrammatic classes with a reduced frequency (and momentum) dependence, and established
a connection to the (physical) susceptibilities and the fermion-boson vertices. The gained insights
allow to devise efficient parametrization schemes for the two-particle vertex functions. We then
discussed the algorithmic details necessary for the application of these ideas in numerical (and ana-
lytical) studies, considering as specific examples the functional renormalization group approach and
the parquet approximation. In order to verify the correct treatment of the high-frequency asymp-
totics, we benchmarked our numerical implementations for a SIAM against exact calculations from
ED. Finally, we tested the intrinsic performance of the approaches in the most challenging strong
coupling regime.

These progresses pave the way towards a full numerical treatment of correlations at the two-
particle level, which is pivotal for all vertex-based quantum many-body methods. In particular, we
foresee to apply these ideas to treat non-local correlations beyond the dynamical mean-field theory
by means of its cutting-edge diagrammatic extensions, like the DF, the DMF?RG, the DI"A and the
recently introduced QUADRILEX approach [148].
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Appendix A

Notations

In this appendix we present the definitions of the two-particle Green's and (1PI) vertex functions
following the notation of Refs. [132,145,168], and further specify the notations used throughout

this thesis. Let us start by defining the two-particle Green’s function G, which reads

G2,01030304 (X1, X2, X3, X48) = (T (¢l (x1) o, (x2) ], (x3) s (xa)) ) (A1)

Here, ¢t (c) represent the fermionic creation (annihilation) operators with an associated spin o =
{1, )}, the brackets (...) imply a thermal expectation value, 7 denotes the time-ordering operator,
and x = (R;, 7) is a four-vector including the lattice site R; and the imaginary time 7. First, we
note that the number of spin combinations can be reduced by considering spin conservation and

the antisymmetry of the two-particle Green's function, allowing us to consider only
G200 (X1, X2, X3, Xa) = G2,500'0 (X1, X2, X3, Xa), (A.2)

Further, by making use of time and space-translational invariance, we can always shift all arguments

such that x4 = 0. This property can be exploited to yield momentum and frequency conservation,

ie.
ki kaks k i —ikixt koo A—ikax
Gyar” ™ = B VBZ Oky ks kotka X Y dXi G007 (X1, X2, x3,0)€™ 17 7227157, (A3)
kikoks
G2,aa’

where k = (k, iv) represents the four-vector with momentum k and Matsubara frequency iv. Here,
we introduced the generalized four-vector integration ¥ dx = ZR,» foﬁ dT, that combines the lattice-
site summation with the imaginary time integration. The corresponding object in dual space reads
f dk = %Bz Jaz dk% >, where BZ denotes the first Brillouin zone with a volume Vgz.

To obtain the two-particle vertex function F, we subtract the two possible contractions of the

composite operator within the brackets (all disconnected diagrams) and subsequently cut the ex-
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Figure A.1.: Notations of the vertex functions in the three different scattering channels.

ternal fermionic legs

Flkks — Gl (k) G (ks) | Grf2l — G (k1) G(k3) (Oky ko — Okt keOoror) | G H(ka) G2 (Ka),

2,00

ky ko3
’

G,

2,c,00

(A.4)
Here, the additional minus sign is a matter of convention, which is commonly introduced such that
the lowest order contribution of F is given by U. Note that SU(2) symmetry is here and in the
following explicitly assumed.

While so far we considered the two-particle Green and vertex function with purely fermionic
arguments, one often introduces ‘mixed’ notations using a bosonic and two fermionic arguments,
in order to highlight a specific scattering channel. The adoption of these notations is essential for
the decomposition scheme presented in this thesis, in particular for the reducible vertex functions.

Hence, we introduce the particle-particle (pp) notation

Foar = Fagh =70 (A5)
the particle-hole (ph) notation
Foa = Figl Tt (A6)

and the transverse particle-hole (ph) notation

- ! 1

ph,oo’ oo

kk'q _ kk'(k'+q) (A?)

which are defined correspondingly for G, and the other vertex functions ¢, Axp; and I (see Chap. 3).
A diagrammatic representation of the three notations is shown in Fig. A.1. Let us note that in
general, for the two-particle vertex F and also for the fully irreducible vertex /Ayp|, none of these
notations is a priori more favorable, each of them just being an alternative way to look at the same
physical object [168].

Finally, we introduce susceptibilities in all scattering channels,
Xppoor = (1= 0007) i dk dk' GyX9 4+ (1= bgo) I dk G(q — k)G(K), (A.8a)
o = YAk G, b Y Ak GGk + ), (A8b)

q 1 ~kk'q
phoo’ i dk dk G2,C,E,cro’ * i dk G(k)G(k + q) (ASC)
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They can be easily combined to yield the physical susceptibilities in the density, magnetic, singlet
and triplet channel [132].






Appendix B

An alternative approach to the asymptotic ex-
traction

In this part we describe an approach that extracts the asymptotic functions directly from the full
vertex function F. This procedure was employed to acquire all presented high-frequency results for
the ED vertices, and is based on the fact that one can write down explicit Feynman diagrams for all
asymptotic functions. These consist of all possible ways of pinching two external legs of F into one
bare vertex U. Since the latter is purely local in space and time, the dependence on two fermionic
arguments is replaced by a single bosonic (transfer) one. The resulting diagrams for K; are shown
in Fig. B.1, and read explicitly

K9 = UP(1= b)) i dk; G(k1)G(q — ki)FY29 G(q — k») G (ko)

1,pp,o0’! pp,oo’

_U2(1 — (500/) I dkq G(q — k1)G(k1), (Blla)

K poor = U? Z: dki G(k1) G (ki + q)F3b29, G(ka) G (k2 + q) + UP0y,00 i dky G(k1)G (k1 + q),

(B.1b)
K= U I dki G (k)G (ki + q)F%fg,G(kg)G(kg +q) — U? i dky G(k1)G (ki + q).
(B.1c)

Here @ denotes the opposite spin of o, and SU(2) symmetry is explicitly assumed. In the case of K,
one introduces just one additional bare vertex, as shown in Fig. B.2. Note that here, the previously

determined K1 has to be subtracted. The equations in all scattering channels then read

2 pp,oo’ -U I dkl q kl F::lo?a G(kl) ICl .pp,oc’’ (Bza)
Ky oo = U i dky G(ky)F :;%G(kl +q) = K oo (B.2b)

k kk kk

Z(i)h oo’ =-U i dkl kl kl + q) 600’ = th(i + (1 — 50-0- )F h];:L — Kf,ﬁ,a'o'/. (B2C)
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EXTRACTION
Kby ><

Kf’pp’(m, =(1—b507)

ko k+qo ko k+qo

ky ki+q
= q _
1,ph,c0’
k+qo Fiqo
,Cq ;) = Flikaa ki+q7
1,ph,oc0 phoo
= kyo'
ko ki g . Ko
ko k2 +q k1kag
2 - + L e
A
k+q0 e igs NM+ad
ko K+qo ko' K+qo

Figure B.1.: Diagrammatic representation of the I’y functions in the three different channels. As denoted
in the first diagram, the external lines are to be excluded, making the k and k' arguments
redundant. Here, & denotes the opposite spin of o.

Further, by exploiting the symmetry relations shown in Appendix C, one can easily derive K from
ICo.

As it is typical within an ED algorithm for a SIAM, the values for F are known numerically for a
finite grid in the frequency domain. Thus, in the first calculation of the aforementioned diagrams
according to Egs. (B.1) and (B.2) we have to make a rough approximation for F (i.e. F = U) in the
large-frequency domain, which will introduce an error. To improve on this ‘one-shot’ calculation of

the diagrams, we exploit a self-consistent scheme:
o |: Initialize the KC1's and K>'s to 0. Their grids may deviate from the grid for F.
o |I: Calculate a set of new K;'s and K»'s according to Egs. (B.1) and (B.2).

e |lI: Rebuild the vertex in an arbitrarily large region (as needed) using the updated asymptotic

functions.
e |V: Continue from Il till convergence

Once the asymptotic functions are fully converged, we can directly determine the localized structures

using
/\2PI + ZRr =F - (Z K:l,r + IC2,r +K:2,r> . (83)

Further, since, at this point, we have F available in the full frequency domain, we can use this
additional information to determine also all the @ functions on an arbitrarily large frequency grid
by means of the Bethe-Salpeter equations (5.3.1). If needed, R and Aypj can then be determined
by Eq. (5.2) and Eq. (1.3.2) respectively.

The approach described in this appendix was used to compute all the exact asymptotic functions

and reducible vertices presented in Chap. 6, from ED calculations, originally performed on a fermionic
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Figure B.2.: Diagrammatic

representation

ko k+qo

kkiq
ph.oo’

¥o
qi
1,ph,c0’

K +qo0

of the Ky functions in the three different channels. Here, &
denotes the opposite spin of o, while SU(2) symmetry is explicitly assumed.

frequency grid of 128 x 128 x 128 Matsubara frequencies. While here we are dealing with a purely
local vertex, we stress that this approach is equally applicable in the non-local case.






Appendix C

Symmetries

C.1 Symmetries of K; and K,

In this section we summarize the symmetries of the previously introduced asymptotic functions.
Before addressing the specific physical symmetries of the system of our interest, which provide
useful relations for K1 and K,, we provide some fundamental relations which hold [132,177,178]
independently of the system under analysis. First, we consider the exchange of two (fermionic)
annihilation operators in the time-ordered matrix element of Eq. (A.3), which, as a consequence
of the Pauli-principle, yields a minus sign (also referred to as ‘crossing symmetry’ [132,177,178]).
Diagrammatically speaking, this corresponds to an exchange of two outgoing lines. For K1, this

operation leads to the following relations:

}Cf,pp,ao“ = _Kf’pp'ﬁ (Clla)
q _ _4q

K{ phoor = K] shoer (C.1.1b)
q 14

}Cl,ﬁ,ao’ - ’Cl,ph,ﬁ' (C].].C)

Here, oo’ denotes a spin-flip for all external indices. While for the pp channel one finds rela-
tions between different spin configurations within the same channel, the ph and ph-channel are

interchanged. Similarly, for s one finds:

kq o kq

Kappoor = 7Kg oo (C.1.23)
k ki

Kaphoot = Ky ohzar (C.1.2b)
kq _ gy ka

Ky phoor = Ko phzar (C.1.2¢)

A second generic operation involves the simultaneous exchange of both annihilation and creation

operators in Eq. A.3. Diagrammatically, this corresponds to an exchange of both the incoming and
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Symmetries K Ko, r
Q)| KK KA =K
Koo =Ko T KL, s | K380 = K5 + K50
Time reversal Ky, oo =K1, 00 IC;quUU, = Kzfzw/
Particle hole (K;l,r,aa’)* = IC?Z;;',) (/ngqrym,)* = /Cg’/r”':',;,k)m’fq)
Table C.1.: Symmetry table for I’y and K,. Here, M = (7,7, ...) represents the (d-dimensional) 'anti-

ferromagnetic momentum’ in the case of a simple (hyper)cubic lattice with lattice constant

a=1.

outgoing particles. In this case we end up with the following relations for KCy:

q _ 19
Kl,pp,oa’ - K:l,pp,a’o'
q _ 9
Kl,ph,o'o" - ’Cl,ph,a’o'
q9__ =K 9L
1,ph,c0’ 1,ph,0’c’
For K> one obtains:
kq _ x(a=K)q
,C2,pp,«w’ - ,C2,pp,o’cf
kq _ glk+a)(—a)
K2,ph,oa’ - IC2,ph,cr’0
icka  — lkta)(=a)
2,ph,co’ 2,pho’oc

(C.1.3a)
(C.1.3b)
(C.1.3¢)

(C.1.4a)
(C.1.4b)
(C.li4c)

While for this operation all the corresponding channels are conserved, the diagrammatic class

changes from K5 to ICo in the case of the ph and ph channel.

To conclude the discussion of the fundamental relations, we consider the complex conjugation

operation, that leads to the following relations

q
(lcl,pp,m:r’

q
<K1,ph,o'cr’

q
(Kl,ﬁ,o'a"

for KCq:
* —q

) = ICl,pp,a’o
* —q

) = ICl,ph,U'/O'
* q

) = Kl,ﬁ,a’a'

(C.1.5a)
(C.1.5b)

(C.1.5¢)
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Symmetries R,
SU(2) Rid, =R
Fod = Rt + RICE,
Time reversal ”Rff;g, = Rffﬁf’a
Particle hole (Rfl;lg,)* = Rfi’t;gfk)(yl'nfk/)(g'fq)

Table C.2.: Symmetry table for R. Note that the same table holds for the two-particle reducible vertex

functions @,.

and for /Cy:
(]qu >* — ’C(*k)(*Q)
2,pp,oo’ 2,pp,c’oc
k * —k)(—
(’C2,qph,aa’) = ,Cg,ph),g’aq)
kq ¥ _ (=k=q)q
(ICZE,JU’) ~ "Y2.pholc

(C.1.6a)
(C.1.6b)

(C.1.6¢)

Using these fundamental relations, we can formulate the system-related physical symmetries,
namely SU(2), time reversal and particle-hole symmetry, in a channel-independent way. The results
are summarized in Table C.1. Note that for the particle-hole symmetry, the relations differ for the
frequency and momentum dependence. While in the purely local case, this symmetry implies a
vanishing imaginary part of all two-particle quantities, this holds only for specific lattice-dependent

k vectors in the non-local case.

C.2 Symmetries of R

For the sake of completeness we report the symmetries of the remaining diagrammatic class, namely

the rest function R, which hold equally for the reducible vertex functions @. As shown above, the

first set of fundamental relations results from exchanging two outgoing particles. We find the
following relations for R in the different channels:
Rigs s = —RUNa 7K (C2.1a)
kk'q kk'q
Rphoo' = ~Rop oo (C.2.1b)
kk'q _  kk'q
hoo! = ohiooT" (C.2.1¢)
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By means of the simultaneous exchange of both incoming and outgoing particles we obtain:

REKS = R W3-k (C.2.2a)
REp 9, = R w e (C.2.2b)
a (K +a)(k+a)(—q)
ﬁ,o’a’ - EVO'/U . (C22C)

Finally, the complex conjugation operation leads to the following relations:

(Rﬁ,k,flg) = R{ IO (C.2.32)
(Riﬁf‘;g/)* =R, )9 (C.2.3b)
(R, ) = ca

In the same way as for K1 and K, the fundamental relations for R allow us to express the physical

symmetries in a channel-independent way, see Table C.2.
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Personal contribution to publications

In this part | want to give a brief summary of my personal contribution to the publications that, as
presented in this supplement, form the basis of this cumulative thesis. First and foremost, let me
stress that the excellent guidance of my supervisor Prof. S. Andergassen as well as my co-supervisor
Prof. A. Toschi have obviously had a strong influence on the development and the presentation of

the ideas and calculations that are presented in this thesis.

Magneto-electric Spectroscopy of Andreev Bound States in Josephson Quantum Dots
[Phys. Rev. B 94, 085151] (2016)

This work was initiated in the time of my master thesis at the RWTH Aachen under the supervision
of V. Meden and S. Andergassen, and extended during my PhD as a collaboration with S. Florens.
Generalizing previous studies [134,179-181] on the Josephson current through a quantum dot to the
case of finite magnetic fields, | computed the spectral properties with the functional renormalization
group in a large parameter regime. Additional analytical insights where gained by means of my study
of the exactly solvable large gap limit both for finite and vanishing magnetic field, allowing for a
better understanding of the physical behavior also at finite gaps. Eventually, my numerical fRG
results and analytical derivations were complemented by numerical results obtained with the SCABS
theory [54] by S. Florens and T. Meng. My contribution consists further in writing most of the
manuscript (except for the SCABS theory section).

Correlated Starting Points for the Functional Renormalization Group
[Phys. Rev. B 91, 045120] (2015)

In the frame of my work on Josephson quantum dots, | considered also an extended fRG approach
that aimed to use the exact large-gap solution as a starting point of the functional renormalization
group flow, in order to improve further the fRG results and to resolve some numerical artifacts that
we observed in the case of vanishing magnetic fields in the m-phase. A similar idea had been recently
proposed by our groups, that is, to perform fRG calculations starting from the non-perturbative
DMFT solution of the 2d Hubbard model, in order to include the non-local correlations neglected
by DMFT by means of the fRG flow [15]. In this frame, | investigated the connection of these
recent strong-coupling fRG schemes with the similar dual fermion approaches [16,118-127, 141].
This lead to a generalized formulation of the fRG for correlated starting points, and the deeper
connection to fRG schemes operating with the auxiliary fermionic fields, as presented in Supp. I.
These ideas were developed and formulated by me in collaboration with my colleague C. Taranto

and under regular feedback from our collaborator A. Katanin. My own contribution also consisted
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in writing most of the manuscript.

Efficient Implementation of the Parquet Equations: Role of the Reducible Vertex Function
and its Kernel Approximation
[Phys. Rev. B 93 165103 (2016)]

In the process of developing a general purpose second order functional-renormalization group code,
that constitutes a substantial part of my PhD work, | had to address the problem of achieving
a correct numerical treatment of two-particle vertex functions, in particular their high-frequency
asymptotics. An extended scheme for this task was developed in the course of numerous discus-
sions G. Li, and then implemented and tested independently by both of us. My contribution to this
publication consists in the joint development of the ideas behind the asymptotic functions and the
constant feedback in the formulation of the manuscript presented. Further, my independent imple-
mentation allowed to double-check these novel algorithmic ideas, and also to test and benchmark
their performance.

Based on these initial ideas, | developed a deeper diagrammatic (and also physical) understanding
of the asymptotic functions, which lead to the field-theoretical as well as algorithmic progresses

presented in the main part of this thesis.
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Magnetoelectric spectroscopy of Andreev bound states in Josephson quantum dots
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We theoretically investigate the behavior of Andreev levels in a single-orbital interacting quantum dot in
contact with superconducting leads, focusing on the effect of electrostatic gating and applied magnetic field, as
relevant for recent experimental spectroscopic studies. In order to account reliably for spin-polarization effects
in the presence of correlations, we extend here two simple and complementary approaches that are tailored
to capture effective Andreev levels: the static functional renormalization group (fRG) and the self-consistent
Andreev bound states (SCABS) theory. We provide benchmarks against the exact large-gap solution as well as
renormalization group (NRG) calculations and find good quantitative agreement in the range of validity. The
large flexibility of the implemented approaches then allows us to analyze a sizable parameter space, allowing us
to get a deeper physical understanding into the Zeeman field, electrostatic gate, and flux dependence of Andreev

levels in interacting nanostructures.

DOI: 10.1103/PhysRevB.94.085151

I. INTRODUCTION

Andreev bound states (ABS) in quantum dots connected
to superconducting electrodes have been a subject of active
research in recent years, both theoretically [1-50] and ex-
perimentally [51-84]. The understanding of ABS formation
is not only of great interest for their potential use in
quantum information devices, but also because they constitute
a testbed for microscopic theories of nanostructures. Indeed,
transport measurements in the normal state (obtained under the
application of a sufficiently strong magnetic field to suppress
the superconductivity in the leads) allow to extract in prin-
ciple the basic parameters governing the quantum dot (local
Coulomb interaction U, tunneling rate I', level position €).
These in turn determine the dispersion of the ABS in the
superconducting state as a function of electrical gating, the
superconducting phase difference ¢, or with respect to a
moderate magnetic field B. Several attempts for a precise
description of ABS in quantum dots have been recently made in
this direction [69,70,77], but only qualitative agreement could
be obtained. In particular, microscopic calculations based on
the widely used self-consistent Hartree-Fock approximation
are not trustworthy except for the case of weak Coulomb
interaction or large applied magnetic fields [40,49].

Alternative theories to mean-field approaches offer a trade-
off between simplicity and accuracy. The simplest techniques
are based on static renormalization group ideas, and have
been formulated both within a perturbative expansion in
the effective Coulomb interaction in the framework of the
functional renormalization group (fRG) [48,85-88], or around
the large gap limit by a self-consistent Andreev bound
state picture (SCABS) [32,73,89]. Both techniques achieve
surprisingly good agreement (in their range of validity) with
full-scale numerical renormalization group (NRG) computa-

2469-9950/2016/94(8)/085151(14)
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tions [90-100], while their low numerical cost allows us to
efficiently explore the effective Andreev levels over the whole
parameter space. While previous analytical renormalization
group calculations have mainly focused on the particle-hole
symmetric case (i.e., at the center of the odd charge Coulomb
blockade diamond) and for zero magnetic field, we aim here at
extending both the fRG and SCABS techniques to account for
the full electric and magnetic tuning available in quantum
dot devices. We will not consider here full second-order
perturbation theory in the Coulomb repulsion U. Although
this technique provides excellent results at particle-hole
symmetry and zero magnetic field, once self-consistency on
the effective pairing amplitude is properly taken into account
[49,89], its accuracy is expected to degrade away from these
two limits (in addition, a proliferation of diagrams makes
the technique more cumbersome to use in absence of any
symmetry).

The paper is organized as follows. In Sec. II we introduce
the basic model of superconducting quantum dots, and
describe how to obtain the position and weights of ABS from
Green’s function techniques in the presence of a Coulomb
repulsion. The model is then solved mathematically in the
special limit of infinite gap in the presence of both an external
gate voltage and an applied magnetic field, which allows for a
qualitative discussion of the physics. In Sec. III we briefly
review the static functional renormalization group and the
self-consistent Andreev bound state theory extensions to the
case of finite magnetic field. Finally, we discuss our results
in Sec. IV, starting with the case of zero magnetic field
before considering the complete magnetoelectric spectroscopy
of the Andreev levels. The various methods are tested against
previous NRG results [93], in order to assess their validity
range and possible breakdowns.

©2016 American Physical Society
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FIG. 1. Setup considered in this work. A quantum dot subject to
a magnetic field B and an electrical gate € is tunnel coupled to two
superconducting BCS electrodes.

II. SUPERCONDUCTING QUANTUM DOT MODEL

A. The superconducting Anderson Hamiltonian

Due to strong electronic confinement in quantum dots,
it is legitimate to base our study on a single-orbital level
(exceptions arise however in ultraclean carbon nanotube
systems, where chirality and spin-orbit physics can play
an important role). We assume here for simplicity that the
magnetic field has no orbital effect on the quantum dot (this
applies for instance to the case of carbon nanotubes that are
perpendicular to the field axis) and only lifts the degeneracy
between spin up and spin down states through the Zeeman
effect. In the metallic leads, the Zeeman effect is usually
negligible, but a sufficiently strong orbital effect can suppress
the superconducting gap. We will thus consider here relatively
weak magnetic fields, such that the superconducting order
parameter (gap amplitude) A can be assumed constant. The
possibility to tune the superconducting phase difference via
the magnetic field in a SQUID geometry will be accounted for
via the independent phase difference ¢ across the junction. We
thus investigate the model depicted in Fig. 1 that is described
by the Hamiltonian

H = Z H, + H + Z HOT’ 1)
a=L,R a=L,R
where
_ i i 1
HO‘ - Z 612 Clz,a,aclz,a,a - Z (Aa Ci,T,aC—lz,%a + H-C~)7
ko k
(2a)
H® =3 (edid, +oBdid,)+U(n Y.
= 7 ”e )\ )
(2b)

Hy =%, dic, +Hc). (20)
io o

In the above equations « = L,R denotes the left and right
lead, respectively, while o = 1, | denotes the spin degree of
freedom. The leads are modeled by BCS Hamiltonians H,
with a lead-independent dispersion €, and superconducting
gaps A, = |A] e that differ only in the complex phase ¢, .
Note that only the phase difference ¢ = ¢; — ¢ is of physical
importance. We furthermore assume the leads to have a flat
density of states of amplitude pyp = 1/(2D), where 2D is the
total bandwidth. The leads are tunnel coupled to the quantum

|

Gliw) = (Gy' (i) — B(iw)) " = o

11 [(id4e—B-io)
—A* 4 ¥ (—iw)
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dot by tunneling amplitudes #,, which we assume to be
momentum independent. The dot, finally, is characterized
by a level energy €, an on-site Coulomb repulsion U, and
a Zeeman energy B. Note that the single-particle energy
was shifted, such that € = 0 corresponds to the particle-hole
symmetric case. As discussed above, the lead parameters (such
as the superconducting gap A and the phase difference ¢) are
considered to be effective parameters for a given magnetic
field.

B. Green’s functions in superconducting dots

For practical reasons we will work in the following with
the Nambu operator basis

dy
w:() 3)
d,

for the dot degrees of freedom. This allows us to introduce
a matrix structure for all one-particle correlation functions
(defined below on the Matsubara imaginary axis), such that
the off-diagonal terms capture the anomalous components,
while the diagonal terms can be directly related to the normal
spin-resolved ones:

Gii(iow)

G(ia))—( Glz(iw)) . (deI)iw (drd )i
-~ \Galio) '

Guliw)) (dldi)iw (djd¢>iw
4)

We first consider the situation of a noninteracting quantum dot
(U = 0). In the wide band limit, i.e., D — oo while keeping
the ratio D/ 2 constant, the Green’s function of the dot level

is given by
- -1
ib—e—B A
A* i®+e—B

1 i+¢€¢—B
= - % 4 . )
Dy(iw) —A io—€—B

Goliw) = (

with the determinant
Do(iw) = (i®> — € — B)i®+ € — B) — |A|%.

We also introduced the compact notations

r
id=io[l+ ———), 6
< va)2+A2> ©
- A .
A= > Tae®, 7

Vo + A? a=L,R

with a total hybridization I' = ) ,_, Ty, and I'y = 7ot
Note that I" will in the following be used as our unit of energy.

At the one-particle level, the effects of the local Coulomb
interaction U can be fully accounted for by a frequency-
dependent self-energy, so that the interacting Green’s function
of the dot reads

—A 4 Zp(iw) ) 8)

i®—e—B— (i)
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with the determinant
D(iw)=[i®d—€¢—B—X(iw)][id+¢ — B — X(iw)]
—|A = Zalio)*. ©)

C. Andreev bound states, spectral weights,
and Josephson current

The density of states of the quantum dot features discrete
ABS inside the superconducting gap. They correspond to poles
in the total electronic density of states

1
plw)=—— lim Im[Gn(@+in) = Gn(=o —in] (10)

that can be determined by finding all roots Eys € {£a,+b} of
the determinant D(w) on the real frequency axis. Note that
ABS poles will always appear in pairs symmetrically posi-
tioned around the chemical potential, while their respective
spectral weights are calculated from their residuals

w(Eys) = ﬂlirgjﬂ [Gi1(Eps +in) — Go(—Eps —in)]. (11)

In addition, we will consider the weight of the anomalous
component of the Nambu Green’s function

wa(Eps) = nli% in Ga1(Eps + i), (12)

which contains information on the supercurrent carried by the
ABS. As we will see in the following, the ABS are responsible
for a substantial part of the total Josephson current [101,102]
that can flow through the device in the presence of a finite
superconducting phase difference ¢. To illustrate this, let us
define the Josephson current operator as the time derivative
of the particle number operator N, for the left and right lead,
respectively,

Jo = 0Ny = i[H,N,]. (13)

In the absence an applied bias and at T = 0, the expectation
value reads

=22 [aoml 2 _Guiw]. s
= o Im| ——= iw)|.

R Jor+ar

This formula is valid also in the presence of interaction,
provided the exact anomalous Green’s function is known.
To determine the contribution of the different ABS to the
current, we split the Green’s function G into a part containing
the poles, and another part carrying the contribution of the
spectrum corresponding to branch cuts in the complex plane,
which is associated with the continuum above the gap:

. _ w(Eps)
Galiw) = GE™(iw) + Y ﬁ (15)
{£Ebs}
Plugging this into Eq. (14) we obtain
(o) = D (e + (Jeom ), (16)
{£Eubs}
with
o) 2T, Jo 1 Ae'??  w(Ey) a7
J = w 1m
BTy Vo + AZiw — Ey,
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and
2r Ae'd/? '
(Jeont.) = TL dw Im[mGﬁ?nl'(zw)}. (18)

Evaluating the integral (17) gives

Ebs

) = -2 1 (|5

)sgn(Ebsnm[e""’/ZwA(Ebs)], (19)

where f(x) = [r — 2arcsin(x)]/(w+/1 — x2). Note that the
explicit dependence of (Jg,) on the relative bound state
position |Eps/A| is weak, so that the current amplitude is
mainly determined by the sign and weight of the ABS.

D. The large gap limit

A simple physical picture of the ABS can be obtained
from the limit [103] A — oo. In this case, the noninteracting
Green’s function simplifies as

= B+ ¢ —I
Goliw)™ 22 iw—( ) ? ) (20)
—F¢ B—¢

where T'y = Y, T'ye'®, which, for the case of a symmetric
coupling to the leads I'y = 'k = I'/2, takes the simple form

[y =Ty =T cos % 21)

The key point is that the noninteracting Green function (20)
coincides with the one of a system with an effective local
Hamiltonian

Heoff = \IJT(B+€

_F¢
s )w (22)

B —¢

where W is the previously introduced Nambu spinor. This
Hamiltonian can be diagonalized by means of a Bogoliubov
basis transformation

v ("o (" e 23
- (5 _<v* u) (23)

where u and v are defined up to an arbitrary phase factor by

u*v = Ty /(2Ey), (24a)
u)* = (14 €/E4)/2, (24b)
v = (1 —€/Ey)/2, (24¢)

and

E¢ =,/€2+ |F¢|2. (25)

The possibility to reduce the problem to a local one allows
us to deal with the Coulomb interaction in a simple way. In the
new basis {|00),|01),[10),]11)}, labeled by (n,n_), the full
effective Hamiltonian takes the diagonal form

U
Her = Ey(ny —n_)+ By +n_— 1)+ E(’H —n_),
(26)
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TABLE I. Relations of the electronic dot basis to the eigenbasis
of the effective interacting Hamiltonian.

Eigenvalue Eigenbasis Dot basis

E, 1) )

E, |00) )

E; [01) [+)=u [0)+v 1))
E_ [10) [—=) = v*10) —u|1])

with the eigenvalues

U
Eyw=—B, Eo =E;+ bR (27a)

U
E10=—E¢+3, E;; = B. (27b)
The relations to the electronic dot basis are shown in Table I.
Here we have introduced the shorthands
E; =0B, Ei=U/2+tE,. (28)
Clearly (for positive B and U, which we assume from
now on), the system can assume only two possible ground
states, either the nonmagnetic O-phase state |10), or the
spin polarized m-phase state |00). A phase transition (level
crossing) will occur under the condition £, = E_, whichreads
explicitly

(U +2B)* = 4|:(FR —T'1)* + 4T Tk cos? %] + 4€2.

This indicates the similar role of U and B in determining
the phase boundary that is an increase of either parameters
will induce a transition to the 7w phase. However, an increase
of U alone will tend in addition to renormalize strongly the
electronic states on a wide energy range.

Using Lehmann’s representation, one can reconstruct the
exact Green’s function in the large gap limit (see Appendix A),
and hence the corresponding self-energies for finite magnetic

fields B # 0,
U —€ F¢
3E, (F}; . 0 phase

N

Note that, in this exactly solvable limit, the self-energy is found
to be frequency independent, which is a strong argument for
approaches that make the assumption of a static self-energy.
On the other hand, the self-energy is completely independent
from the magnitude of the magnetic field, while being purely
linear in U in both phases. For finite magnetic field, this is a
strong argument in favor of approaches that are perturbative in
U (such as the static fRG or Hartree-Fock theory).

The situation changes drastically when we consider the
case of vanishing magnetic field. While the self-energy in the
0 phase remains unchanged, the twofold degeneracy of the
ground state in the 7 phase results in a frequency dependence

(29)

O I

0
U 7 phase
2
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TABLE 1I. Spectral weights and anomalous weights of the
Andreev bound states evaluated for the O phase and for the 7 phase,
with the associated transitions.

0 phase
Es Transition w Wa
*ay 1) < [-) [v]?,Jul? 0,—u*v
*a, ) < 1=) [v]?,|ul? u*,0
by 1) < [+) 0 0
+b, ) < 1+) 0 0
7 phase
Eys Transition w wa
*ay 1) < =) 0 0
+a, ) < 1-) [v]2, |ul? u*v,0
+by 1) < [+) 0 0
+b, ) < 1+) lul?, v —u*v,0
as well as a U? scaling. At B = 0 we find
—e T

u ¢

ETon 0 phase

2Ey (F;; € ) p

r= (30)
U_2 1 iv+e —F¢
T Gor—E2 ( T iw—e 7 phase

The situation at zero magnetic fields is thus more complex for
perturbative methods.

To get a more physical understanding of the Andreev bound
state energies, we refer again to the Lehmann representation
of the Green’s function in the atomic limit. Here the poles
can be identified as one-electron transitions between the
eigenstates {|—),[+)} < {|1),]4)}. The possible transition
energies are thus

a, = E_—0B,
bo-:E+_O'B,

(31a)
(31b)

and their negative values, respectively. The corresponding
weights of the Andreev bound states are summarized in Table I1
(see Appendix A for details) for both phases in the case of
finite magnetic field B > 0. The expressions a, and b, are
plotted in Fig. 2 as a function of the on-site energy € and
for U =2T", B =0.7T, and ¢ = /2. Here solid lines were
chosen whenever the corresponding weight is nonvanishing,
and dashed lines are associated with zero weight, thus to a
nonvisible transition.

Let us now clarify a few important points that will allow
for a deeper understanding of the ABS even for the case of
finite gap. First we want to point out that at finite magnetic
field exactly two bound states (four, including their symmetric
partners) have a nonvanishing weight, independent of whether
the ground state is magnetic or not. The energies of the
inner bound state pair are given by *a, in both phases, and
can thus be tracked continuously across the phase transition.
Furthermore, as the requirement for the level crossing phase
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6k _ A=oo _ -
4F - T P
5 Y~ .

0

-4

-6+t ‘ ‘ ‘

-4 -2 0 2 4

FIG. 2. The Andreev transition energies a;, a,, by, and b,
(bottom to top) for the large-gap limit as a function of the on-site
energy € and U =2I', B=0.7TT", ¢ =n/2, and I', =T =T/2.
Solid lines correspond to regions of nonvanishing weight, while
dotted lines denote a vanishing weight. Note that the contributions
—ay, —a,, —by, and —b, from the symmetric ABS have not been
drawn here for clarity.

transition is given by E, = E_ and thus a, = 0, the inner
bound state will always cross the chemical potential at the
point of the phase transition, while the outer bound state pair
experiences a jump in energy. While in the O phase the outer
bound-state pair has energies +ay, their energies change to
=£b, in the 7 phase. This behavior is depicted in Fig. 3 for the
case of a varying level position €. Here and in the following we
show the inner bound states +a in red, while a4 is shown
in green and %b in blue.

We finally consider the Josephson current in the large gap
limit for a nonvanishing magnetic field. The total current
is most straightforwardly calculated by the derivative of the
ground state energy Egs(¢),

J =204 Es(¢). (32)

In the 7 phase, the ground state energy does not exhibit any ¢
dependence, leading to a vanishing Josephson current. In the
0 phase, the current is given by

sin ¢
J =—204Ey = 2T Tp—o1. 33)
Eg

It is instructive to determine the contribution of each bound
state to the total Josephson current. In the limit A — oo
Eq. (19) yields

(Jg,,) = =20 Im[e' 2w (Epy)*Isgn(Eys),  (34)

0-phase m-phase 6 o
— |1 — T

/ / 0 7T 0

1y S e o

el

FIG. 3. The visible Andreev bound states and the corresponding
transitions in and out of the ground states in the 0 and 7 phase for
U=2I'B=0TT, ¢ =n/2,and T, =T =T/2.
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Since the spectrum on the dot consists only of the bound
states, we get no continuum contribution to the total Josephson
current. Recalling that u*v = I'y/(2E4), the result for the 0
phase is

) (35)

adding up to the total Josephson current (33). In the = phase

the contributions are

sin ¢
Ey’

(Jp,) = (36)

—(Ja,) =TLTR
leading to a vanishing Josephson current, as expected. Having
identified the transitions associated with the different bound
state energies (see Table II), we can interpret the corresponding
Josephson current contribution as a measure for the relevance
of the virtual intermediate state in the Cooper pair transport
process. It is also interesting to note that the magnitude of the
current in the O phase does not depend on the magnetic field
at large gap, an artifact of this limit.

II1I. METHODS

We here briefly review two complementary approaches that
are able to tackle the problem of superconducting quantum
dots in the presence of both a finite Coulomb interaction and a
finite gap: the static fRG and the SCABS approximation. In the
description of their implementation, we focus on the aspects
specific to the extension to finite magnetic fields.

A. Static functional renormalization group

The fRG [104,105] is based on Wilson’s general RG idea
for interacting many-body systems. By introducing a scale
dependence into the noninteracting Green’s function one can
derive an exact functional flow equation that describes the
gradual evolution of the effective action, that is, the generating
functional of the one-particle irreducible vertex functions, as
the scale is changed. While the action at the final scale is the
one of the systems in question, we only require the initial
action to be exactly solvable, giving rise to a large freedom
in the choice of the initial conditions [106]. Expanding this
functional flow equation in powers of the external sources
yields an exact but infinite hierarchy of flow equations for
the n-particle vertex functions. In practical implementations,
however, this hierarchy has to be truncated at a given order.
This truncation is commonly performed at the two-particle
level, and yields a set of flow equations for the self-energy and
the two-particle vertex functions.

We here use the fRG implementation for superconducting
quantum dots formulated on the Matsubara axis [104,107]
(see Ref. [48] for the extension to real-time Keldysh space)
assuming that the self-energy and the two-particle vertex
are both static. The underlying approximations are devised
for weak to intermediate Coulomb interaction strengths and
arbitrary gap, and have been checked by comparing with NRG
data.

At zero temperature we use a frequency cutoff of the form

G} = 0(lo| — NGy, (37)
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while the Green function at a given scale is determined by

means of the Dyson equation G* = [(G})™' — 217" Inthe
static approximation, the self-energy contains three frequency-
independent elements

TMiw) = (Ef\ Eﬁ)

. 38

while the static two-particle vertex is determined by a single
renormalized Coulomb interaction U”. Note that the static
terms ©{ and £ effectively renormalize the on-site energy
and magnetic field. Introducing flowing effective physical
parameters

ef=e+1(Z-2}), B*=B+i(ZM+2), 39
the Green’s function reads
1 [i®+er - B2
D(iw)\ —A* + 4"

—-A+ 3%
i®—ed—BMN)

(40)

Griw) =

with the determinant
D(iw) = (i — " — BM(id+ " — BY — |A — 4.
(41)
The explicit flow equations for the effective parameters read

Agh
A Ute

dned = —— _[a? + (M — (BN + |A—zA] .
A€ nID(iA)|2[w + (%) = (BY +| Al ]w:A
(42a)

UABA ~ 2

A 7T|D(iA)|2[w (€M)’ +(B) 4| Al oea
(42b)
UrZh - A) - )
a EA — A ~2 A 2_ B/\ 2 A_EA ,
A 7 |DiIA)? [@°+(e™)*—(B" Y+ Al loa
(42¢)
and

AU = 27[(0n B2 — (9a€™ + |0aZAT] . 43)

for the two-particle vertex, with the initial conditions
er=* =¢, B =B, (44a)
TATY =0, UNM®=U. (44b)

This set of ordinary differential equations is then integrated
numerically from A/ T = 10%to A/ T" = 107 using a Runge-
Kutta solver. An example for the evolution of the renormalized
parameters during the flow is shown in Fig. 4.

Introducing the notation

A0 — ¢

ZA7 =4,

BA:O — Br,
Ur="=u,

(45a)
(45b)
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uMr
|

04 E

| | | |
1e-4 AT 1e+2

FIG. 4. Flow of the renormalized on-site energy €* and the
effective interaction U* for A=T, e=T, B=T, ¢ =7r/2,
'y =T =T/2, and different values of U. U = 0.6I" is close to
the phase transition and the flow converges at a lower energy scale.
Note that the interaction is effectively reduced in the 0 phase, while
an enhancement is observed in the 7 phase.

for the renormalized values at the end of the flow, the poles of
the Green’s function are determined by finding the roots of its
determinant (41), e.g., by solving

(@—¢€ —B)@+€ —B)—|A—2A?=0.  (46)

The spectral weights of the associated ABS are then calculated
according to Egs. (11) and (12).

B. Self-consistent Andreev bound state theory

This alternative approach focuses again on effective An-
dreev levels, but, instead of a scheme based on a renormalized
perturbative expansion in the Coulomb interaction, rather con-
siders the infinite gap limit as a starting point for a perturbative
treatment. The clear advantage here is that the 0 to 7 transition
is already captured at A = oo, and thus the method should be
able to describe both phases on an equal footing. For A = oo,
we have previously calculated the one-particle energy levels
E? = o B and the BCS-like levels EY = U/2 £ /e + [Ty|2
Note that we have added an additional superscript 0 to
denote that these are the uncorrected energies at infinite gap.
Furthermore, all following derivations will be considering
the general case of a finite bandwidth 2D, which requires
the introduction of the generalized hybridization function
Fyliw) = %arctan (\/%W) D I'ye'% . In the following,

Ty = Ty(0).
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Straightforward calculations detailed in Appendix B give the perturbative correction at lowest order

1 1

1 1
SE, = —1* = kil _ ’
' XE:[E,ﬁ—(EQ—Eg) TErE ) B COSz‘<E;+(E3_Eg) E,;+(E°_—E2)>:|
(47a)
__p ! _2A el L )
SE, = —t Z(E,;—(E&—EO) L v|cos E,;—(ER—EQ)) 2Ty uv, (47b)
SE :—ﬂz ! + —uv Cos—; +2|T4|uv, (47¢c)
L\ () B 2 (B )

with the quasiparticle energy E; = /€;2 + AZ. These expressions generalize the results of Ref. [32] to the case of finite magnetic
field.

At finite A, the self-consistent perturbative approach considered in Ref. [32] can be generalized to the spinful case. In
order to write self-consistent equations for the corrections to the Andreev transitions, da, = 6E_ — §E, = a, — ag and 6b, =
SEy —8E, = b, — bg, one must analyze carefully the singularities appearing in their respective expressions:

r [P 1 1 1 2A ) 1 1 1
Sa, =—— | d - - = 2 - 2Ty luv,
=7 E[ZE—aS, R E+a2+E””°°S2‘<UZE—a2, E+b2+E+a2>}+"”'””

o’ ’

(48a)

r rP 1 1 1 2A ) —1 1 1
Sby =—— | d — — — = — —2|Ty|uv.
nfo 6[;,3_1,2, E+b] E+a2+E””0052’(;E—b2/ E+b2+E+a2)} Folicw
(48b)

Recall that E = +/€2 + A2, such that singularities appear indeed whenever a one-particle transition on the dot becomes
comparable to the minimum quasiparticle energy given by the gap A. A first important observation is that the singularities tend
to cancel out together for the outer bound state correction b, which implies that these states become part of the continuum for
small enough A. One can thus focus on analyzing the singularities related to the inner bound states a,, which originate from the
denominators in 1/(E £ a?). The physics here is simply an effect of level repulsion from the continuum whenever the bound
state approaches the gap edges. In the case a? > 0, which occurs typically in the regime of strong correlations U > T, only
the denominators in 1/(E — a?) are singular. This leads to a downward renormalization of the bound state energy a, compared
to the bare value ag. Conversely, an upward renormalization of the bound state occurs when ag < 0, since the denominators
1/(E + a2) provide then the main contribution. We can thus renormalize in a self-consistent way the inner Andreev bound states
according to

r P 1 1 1
bag =—— de Z 0 - -
7w Jo — E —a, — O[-éay18a,, E+ b E+adl

(49)

428 > ! L ! + 2|y |
~—uvl|cos — — uv,
E 2\ E—dl —Ol-day18a, E+b) " E+al+6lbaylay ¢

’

(

and correspondingly for b. Note the presence here of ®
functions that account for respective downward and upward
renormalization, as discussed above. We thus find that da,
depends on both éay and éay, such that one has to solve a
coupled set of self-consistent equations for da, (and similarly
for 6b,). These equations can, however, be decoupled, since
day — day is a constant that does not depend on either da,
(and again similarly for §b,, which is not written here).
This simple procedure does not provide any information on
the weights of the ABS, in contrast to the fRG approach
of the previous section. The understanding of the allowed

transitions can nevertheless be gathered from the atomic
limit.

IV. RESULTS

For the results in the following we will focus on the case
of symmetric coupling I';, = I'g as the physics of the system
does not differ from the general case. We will first describe
how the case of finite gap is linked to the solution in the
large-gap limit in order to understand in more detail the
effect of a local magnetic field on the spectrum. This will
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be followed by a detailed comparison between the fRG and
the SCABS approximation, and further by a brief benchmark
against available NRG results [93]. To conclude our study, we
will give a small outlook towards transport calculations that
are closer to actual spectroscopic experimental setups.

A. From large to small gaps using fRG

While the previously introduced SCABS approximation
includes the exact large-gap limit solution by construction, this
does not hold for the fRG. This allows us to benchmark fRG
calculations of the Andreev bound states performed for a large
gap value (e.g., 10°T") against the exact expressions presented
previously. This comparison is shown in the left panel of Fig. 5,
which shows the Andreev bound state energies (upper panels),
the corresponding spectral weights (middle panels), as well as
the bound-state resolved Josephson current (lower panels) as
a function of the level-position € for U = 2T, ¢ = 7 /2. The
dashed line indicates the exact solution in the large-gap limit,
while solid lines denote the corresponding fRG data. Bound
state colors are chosen as previously introduced. We find an
excellent agreement of the fRG data with the exact solution,
not only for the ABS, but also for their weights as well as the
Josephson currents. Small deviations can be found in the &

A=oco

T T
exact - - - -

e

FIG. 5. Bound state energies (upper panels), the corresponding
weights (middle panels), as well as the bound-state resolved Joseph-
son currents (lower panels) defined in Eq. (19) as a function of the
on-site energy €. The calculation is shown for the large-gap situation
(left column) and a finite gap A = I" (right column), with U = 2T,
¢ =m/2,and B = 0.7T in all cases. Solid lines show fRG results,
while dotted lines denote the exact expressions for A = oo. The
weights shown here correspond to the bound state energies a;, a,,
and —b associated with their respective colors (compare Fig. 2). The
gray lines denote the total Josephson current.
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phase for the outer bound states +b, (blue), specifically close
to the phase transition.

The corresponding fRG data for the same set of parameters
but now a finite gap A = I' is shown in the right panels of
Fig. 5. While the qualitative behavior of the ABS is similar,
we find that, due to the repulsion from the gap edge, the overall
structure is squeezed in the process of closing the gap from
large to small values. In particular, the outer bound states are
strongly deformed due to this process. This is also mirrored
in the change of the spectral weight, as the ABS tend to loose
more weight the closer they are to the gap edge. In fact,
for sufficiently small gap, the outer bound state pair can be
absorbed completely into the continuum part of the spectrum.
As the gap is lowered, we also find a nonvanishing Josephson
current (gray) in m phase. Further it is interesting to note
that the bound-state contributions no longer add up to the
total Josephson current (which we will study in what follows),
as the continuous part of the DOS now has a nonvanishing
contribution to the Josephson current.

B. Magnetic field effects

We here discuss how the magnetic field alters the ABS in
the O phase and by this drives the phase transition. Figure 6
shows the ABS (left) and Josephson current (right) obtained
from fRG as a function of the phase-difference ¢ for e =T,
A =T, U =T, and different values of B. In the absence of
a magnetic field (upper panel), the system is in the O phase
for the whole ¢ range, and the visible ABS a4 and a are
equal. Accordingly, the Josephson current shows the typical
sinusoidal behavior without a jump.

1+ ' 4 02F B=0I A

[_‘ \/

}0- -5,0/\/
_/_\

A1 F , 4 02} , .
1F ' 41 02} "B =0.4T -
_\/_

= —— ]

UJEO__,/\_::O/\/
/_\

1 F , 1 02} , §
T — 02} "B=0.8I -

—

Lugo>o<§0

_1=/ —] 2 |- .

} ' f

1T — 02} B=1.2r -

EpT
o
IF =d
o

1
—_
'
o
N
T
]

FIG. 6. Evolution of the Andreev bound states and Josephson
current with ¢ as obtained from fRG fore =T', A=T,U =T, and
different values of B.
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For a small magnetic field (B = 0.4T") the O phase is still the
most stable, but the bound states a4 and a; can now be clearly
distinguished due to the Zeeman splitting. The corresponding
Josephson is just mildly reduced as a consequence.

When increasing the magnetic field further (B = 0.8T"), the
inner bound states a will cross the chemical potential for
¢ close to m, thus inducing the phase transition for a finite ¢
range. In this window, the visible outer bound state changes
to +b,. A Zeeman splitting is thus no longer directly visible
in this part of the spectrum. As expected, the change of the
ground state is accompanied by a sign reversal in the Josephson
current.

For even larger values of the magnetic field (B = 1.2I"),
the inner bound states will completely cross the chemical
potential, inducing the m phase for the whole ¢ range.
Accordingly, the Josephson current completely inverts its sign.

C. Comparison between fRG and the SCABS approximation

In this subsection we provide a detailed comparison be-
tween the fRG and the SCABS approximation. While the fRG,
being a perturbative approach, is expected to perform better
for smaller values of U/T", the SCABS will by construction
perform better for larger A/I". We have thus chosen U €
{0.57T,nT} and A € {0.57,n"} for our comparison, in
order to span different ranges of validity of these approaches.
For the other parameters we chose € =0, ¢ =0, and B = 0,
and then varied one of these at a time. The corresponding plots
can be found in Figs. 7-9, respectively.

Overall we find a very good quantitative agreement of the
results between the two methods. As expected, the largest
deviations can be found for A = 0.57T" and U = =T, since
both methods are then pushed away from their clear regime of
applicability. Varying €, we see an almost perfect agreement
for U =0.57". Small deviations arise close to the gap
edge, which is a trend that continues throughout the whole
comparison. This is tied to a weaker repulsion of the outer
ABS from the gap edge in the SCABS approximation. We
also note that for the choice of parameters U = n" and
A = nI" we are very close to the O-7 transition. While the fRG

Epo/A

A . . . . . .
0 0.25 0.5 0.75 10 0.25 0.5 0.75 1
e/nl e/nl

0.5

Epe/A
o

/

FIG. 7. Bound state energies calculated with fRG (full lines) and
SCABS approximation (dashed lines) as a function of € for B = 0,
¢ = 0, and different values of U and A.
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U=0.5aI" =
fRG —— |
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FIG. 8. Bound state energies calculated with fRG (full lines) and
SCABS approximation (dashed lines) as a function of ¢ for B = 0,
€ = 0, and different values of U and A.

approximation predicts the system to still be in the O phase,
SCABS approximation results are already in the 7 phase. This
tendency of the SCABS approximation towards the r phase is
also observed throughout the whole comparison.

The data with varying ¢ show an artifact of the static fRG
calculations that arise in the absence of a magnetic field. The
ABS in the 7w phase for B = 0 are not described correctly,
but remain pinned at the chemical potential as they cross the
chemical potential at the phase transition, in disagreement
with the SCABS and the previous findings in the atomic limit.
This can most likely be attributed to the static approximation,
as in the large-gap limit the exact self-energy is found to be
frequency dependent at zero field in the w phase. Otherwise
the previously described trends hold, and a good quantitative
agreement is achieved in the O phase.

As Fig. 9 shows, increasing the magnetic field B induces the
7 phase rather quickly, as could already be inferred from the
large-gap phase boundary defined by Eq. (29). The tendency
of the SCABS approximation towards the 7 phase is clearly

g =
0 B
Rel Il
w <

=
& &
el o
w 1l

<

BRI

o 0.25 0.5 0.75 10 0.25 0.5 0.75 1
B/ B/T

FIG. 9. Bound state energies calculated with fRG (full lines) and
SCABS approximation (dashed lines) as a function of B for ¢ = 0,
€ = 0, and different values of U and A.
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ur

FIG. 10. Phase diagram as a function of U and A as obtained
from the fRG at € = 0 and ¢ = /2 for different values of B. The
lines separate the O phase on the left side from the 7 phase on the
right.

visible in the B-dependent data, while the fRG shows a
bending of the outer bound states in the m phase close to
the phase transition. This latter behavior was also observed in
Sec. I D in the comparison to the exact large-gap expressions,
and was there identified as the main deviation. This effect is
dominant for small values of the magnetic field B, where
the renormalized interaction was found to diverge. In this
limit the truncation of the hierarchy is no longer justified,
as it corresponds to an expansion in the effective interaction.
Similar problems using the static fRG have been found in
Ref. [108], as the investigated two-level quantum dot setup
was close to degeneracy.

D. Phase diagram at finite B

A detailed phase diagram for the O-7 transition determined
with fRG is shown in Fig. 10, as a function of Coulomb
interaction, gap amplitude, and several values of the magnetic
field (for a choice of phase difference ¢ = 7 /2). The general
expected trend is a stabilization of the 7 phase for increasing
values of U and B, which both lead to local moment formation.
The 7 state is also favored for increasing values of A, as
this removes the quasiparticles and thus weakens the Kondo
effect responsible for the possible presence of the O phase at
large U.

In experimental setups the magnetic field can be expected
to extend beyond the quantum dot. This effect can lead to a
reduction of the superconducting gap in the leads, which would
stabilize the O phase.

E. Comparison with NRG

Figure 11 shows a comparison of fRG data (solid lines)
and NRG data [93] (symbols) for the ABS and the cor-
responding weights for e =0, B=0, ¢ =0, and A/ =
0.0157,0.157,0.9425 (red, green, blue). We find a good
quantitative agreement with the NRG data up to interaction
values of U = n'I". For larger U values, frequency dependent
self-energy effects become prominent [89], so that the static
fRG cannot be expected to be precise.

PHYSICAL REVIEW B 94, 085151 (2016)
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FIG. 11. Comparison with NRG data from Ref. [93] for the bound
state energy and the corresponding weights as a function of the
interaction strength. The parameters are € =0, B =0, ¢ =0, and
A/T' =0.0157,0.157,0.9425 (red, green, blue).

F. Spectroscopy

The density of states in experimental setups like the ones
reported in Refs. [70,80,84] is probed by measuring the differ-
ential conductance using a weakly coupled normal lead. This
has the effect that the Andreev bound states are broadened by
an energy scale Iy, which is the corresponding hybridization
to the normal contact. This effect can be easily accounted for
during the fRG flow by considering the additional self-energy

Sy(iw) = ( il'y sgn(w) . 0 ) (50)

0 —il'y sgn(w)
in the Dyson-equation G* = [(G§)™' — A — Tyl We
can then straightforwardly calculate the density of states using
Eq. (10). One such calculation for a varying on-site energy €
and 'y =0.1I', A=T, U =3.5T, and B = 0.5T" is shown
in Fig. 12. As expected, the bound states acquire a broadening
due to the presence of the normal lead, and the data compare
qualitatively with measurements from Ref. [84]. Note that
the outer bound states in the m phase close to € = 0 have
already been been absorbed into the continuum, as it can be
also observed in Fig. 9. In view of the experimental observation
we point out that the fRG can be easily extended to multilevel
quantum dot systems.

V. CONCLUSION

We have investigated electrostatic gating and magnetic field
effects on the ABS of an interacting quantum dot coupled
to superconducting leads by extending the static functional
renormalization group and the self-consistent Andreev bound
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FIG. 12. fRG results for the density of states as a function of
the on-site energy €, for 'y = 0.1, ¢ =0, A =T, U = 3.5T", and
B = 0.5T". The transition from the 7 to the 0 phase is induced at
€ ==+1.5T.

states theory to include finite magnetic fields. These com-
plementary approaches allow us to capture the rich physical
behavior in the large parameter space with areduced numerical
effort. According to the range of validity we found a good
quantitative agreement not only between the methods, but
also with NRG and the exact solution in the large-gap limit.
The latter was discussed in detail for the case of a finite
magnetic field, allowing for a deeper understanding of the
generic finite-gap situation. We further showed how a local
magnetic field induces a splitting of the ABS whenever the
system is O phase, while this effect is absent in the 7w phase,
and provided examples of the tunneling density of states that
is typically measured in experiments.
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APPENDIX A: GREEN’S FUNCTION IN
THE LARGE GAP LIMIT

To calculate the full Green function in the large-gap limit
we use the Lehmann representation for diagonal correlation
functions, which reads

) |(n| A|m)|*
Gagiliow) = Z m(ﬁn + Om)-

mn

(AD)

Using the eigenbasis Eq. (27b) of the effective Hamiltonian,
we find

P10 + P11
; U

(A2)

Poo + Po1
; U
io—Ey—B—Y

G,y (i) =

PHYSICAL REVIEW B 94, 085151 (2016)

and

P11 + po1
io+Ey—B+Y
(A3)

Poo + P1o
iw+Ey—B—Y

G, o) =

The off-diagonal elements evaluate to G bobt = G, b = 0.We

now aim at calculating the exact self-energy expressions. For
B # 0, the ground state energy is either Egg or Ejo, resulting
in

Giw)=iw— (

U
F% 0
- ( 2 >, Eop 2 Eip. (A4)

B+E, 0
0 B—E

U
0 3

Using the Dyson equation G~! =iw — H° — %, we hence
obtain

(A5)

U
F= 0
Tppt = ( 02 ), Ey 2 Eqo,

SIS

for the self-energy. For B = 0, the 0-phase calculation results
in the same self-energy. For the = phase we get

1.
G, o)
1 1 -1
-9 iv—Ey—Y% ' io—Es+Y 0
- 0 1 + 1
iotEs—S | iotEs+Y

E 0 vr(— 0
=iw—("’ )—— iw-Eq L] e
0 _E¢ 4 0 iw+Eg

The resulting self-energy

. U2 ia)—l 0
Eppt(iw) = T( OE"’ 1
iot+Ey

is solely quadratic in the interaction U. The corresponding
expressions for self-energy and Green functions in the Nambu
basis can now be easily acquired by rotating back to the old
basis. Executing this for the self-energy results in Eqs. (29) and
(30). The Green function in the Nambu basis can be calculated
straightforwardly by the Dyson equation. It will prove more
useful though to write

G = u —v G u* v
ot = v* u* bbt —v* u

u)>  —u*v G > u*v
by bl —uv* |U|2 + b bl uv* |I/l|2 ’

(A8)

(A7)

since in this representation we can easily read off the bound
state weights.

085151-11



WENTZELL, FLORENS, MENG, MEDEN, AND ANDERGASSEN

APPENDIX B: DERIVATION OF THE SCABS EQUATIONS

Here we want to summarize, in accordance with Ref. [32],
the derivation of the SCABS equations presented in Sec. I1I B.
Let us begin by considering the hybridization function of the
leads for the case of a finite bandwidth 2D,

(BI)

Fy(io) = — arct D Tye'?
¢(la))_;arcan \/ﬁ § a€ .

The noninteracting Green function of the dot then generalizes

to
- -1
oy = (708 (B2)
=l A io+e—B)
with
. Io(iw) )
io=ivll+ ———— ), B3)
( /w? + A2
- A
A= ——Tyliw). (B4)
Jart Az’
The system is then fully described by the action
S = So + Sints (B5)
with
1 -
So = —2—/da) U(iw)Golio) ' W(iw) (B6)
b4

PHYSICAL REVIEW B 94, 085151 (2016)

and

S = — 2 [ deoy (T !
int = — E/ w; < 1wV (@) — 5)
_ 1
X (‘Pz(w3)‘1’2(w4) - 5)3(601 —wy + w3 — wy) (B7)

in accordance with Eq. (2b). Here W(iw) and ¥(iw) denote
the frequency dependent Grassmann fields corresponding to
the previously introduced Nambu spinors.

We can now decompose the action into a effective part,
corresponding to the limit A — oo, and all other terms

(compare Ref. [32])
S = Seff + Sperta (B8)

with

1 _
Setr = —5— / do U(iw) G iw) " W(iow) + S

(B9a)
G(iw) = Jim Go(iw), (B9b)
as well as
1 - )
Spert = —5 f do V(io)(Goliw)™ — GMiw) HW(iw).

(B10)

Expanding to lowest order in Spe; allows us to compute
straightforwardly the corrections to the atomic levels [32].
Note that this formulation in principle also allows us to set
up a functional renormalization group flow starting from the
exact atomic limit solution, following the ideas of Ref. [106].
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We present a general frame to extend functional renormalization group (fRG) based computational schemes

by using an exactly solvable interacting reference problem as starting point for the RG flow. The systematic

expansion around this solution accounts for a nonperturbative inclusion of correlations. Introducing auxiliary
fermionic fields by means of a Hubbard-Stratonovich transformation, we derive the flow equations for the
auxiliary fields and determine the relation to the conventional weak-coupling truncation of the hierarchy of flow
equations. As a specific example we consider the dynamical mean field theory (DMFT) solution as reference
system, and discuss the relation to the recently introduced DMF?RG and the dual-fermion formalism.
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I. INTRODUCTION

One of the main challenges in nonrelativistic quantum
many-body theory is the development of powerful tools for
treating correlations between fermionic particles, not limited
to specific parameter regimes. These would provide the keys
for understanding and controlling many of the most exciting
experiments currently performed in solid-state, nanoscopic,
and cold-atom physics. In fact, the state-of-the-art theoretical
tools allow for an accurate treatment of quantum many-body
correlations in specific cases, but their reliability is not
guaranteed in general.

A very powerful method, among those currently available
and widely used for performing model and realistic cal-
culations of correlated fermions, is arguably the functional
renormalization group (fRG) [1-4]. The starting point of the
fRG is an exact functional flow equation, which parametrizes
the gradual evolution from an exactly solvable initial action
Sini (typically of an uncorrelated problem) to the full final
action Sg, of the many-body problem of interest. Expanding
the functional flow equation yields an exact infinite hierarchy
of flow equations for the n-particle one-particle irreducible
(1PI) vertex functions. However, for most calculations, the
hierarchy of equations is truncated at the two-particle level.
Because of this approximation, the validity of the conventional
fRG is limited to the perturbative weak-coupling regime,
except for situations in which phase space restrictions suppress
higher order contributions [1,5,6]. For the same reason, the
accuracy of the final results depends on the choice of the
initial conditions.

In spite of the limitation to the weak-coupling regime, the
fRG has led to powerful new approximation schemes: In fRG,
infrared singularities can be dealt with much more efficiently
than within the traditional resummations of perturbation
theory, due to the built-in RG structure. Moreover—differently
from other perturbative approaches, such as RPA—fRG is
“channel unbiased”: The fRG flow equations include the
contributions of all scattering channels (e.g., spin, charge,
particle-particle) and their reciprocal interplay.
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The development of novel computation schemes for extend-
ing the advantages of an fRG treatment to the strong-coupling
regime, where, e.g., Mott-Hubbard metal-insulator transitions
can occur, represents a very challenging but highly rewarding
task. In fact, the potential of extending the fRG to the strong-
coupling (SC) regime in order to overcome the main restriction
of the conventional implementations has already motivated
the first pioneering studies [7-9]. The underlying idea is to
access the SC regime by changing the initial conditions of the
fRG flow: If these are extracted from the exact solution of
a suitably chosen interacting reference problem, a significant
part of the correlation effects are included nonperturbatively
already from the very beginning, while the remaining ones
will be generated, in all scattering channels, by the fRG flow.
Formally, this corresponds to taking a SC “reference” system
Sk as an initial action Sy, provided that it allows for a reliable
(numerical or analytical) solution. In the case of the Anderson
impurity model (AIM), for example, the atomic limit and
extensions thereof have recently been used as a reference
system to define a SC starting point for the fRG flow [8,9].
For the Hubbard model on the other hand, the effective AIM
determined self-consistently by dynamical mean field theory
(DMFT) was chosen to define the initial conditions of the fRG
flow [7]. This approach, coined DMF?RG, aims at a systematic
and channel-unbiased inclusion of correlations [7], beyond the
purely local ones described, nonperturbatively, by the DMFT.
We note that the idea of choosing a SC (or nonperturbative)
reference system for the fRG flow has been recently introduced
also in the context of spin models [10,11] or for systems of
correlated bosons [12,13].

Irrespective of the performance in specific cases, all exten-
sions of the conventional fRG face the challenge of proving
the validity of the truncation procedures in the nonperturbative
SC regime. This subject has never been explicitly addressed
and calls for a systematic derivation.

The main goal of this paper is to define the properties of
the fRG schemes with a nonperturbative starting point within
arigorous framework and a unified formalism. To this aim, we
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consider a general starting point for the perturbative expansion:
performing a Hubbard-Stratonovich transformation for the
fermionic degrees of freedom not associated with the chosen
(SC) reference system, we derive an action in terms of the
auxiliary Hubbard-Stratonovich fermionic fields (referred to
as “dual” fermions [14-22] in the context of the diagrammatic
extensions [14-29] of DMFT). The resulting equations are
compared to those derived by directly working at the level
of the physical fermions, and finally, the physical contents
underlying the approximations made in the different schemes
are critically analyzed.

The paper is organized as follows. In Sec. II we briefly
review the general procedure for decoupling the fermionic
degrees of freedom associated with a given reference system
with the introduction of auxiliary fermions. The formulation
in terms of auxiliary fields and its physical interpretation is
presented in Sec. III. In Sec. VI we derive the flow equations
in the auxiliary space and in Sec. V we discuss the relation to
other methods. Finally, in Sec. VI, we summarize our results
and draw conclusions.

II. INTERACTING REFERENCE SYSTEM

In the following, we present a general formalism that allows
for an expansion around an interacting reference system. It was
first introduced to set up an expansion of the d-dimensional
Hubbard model around the atomic limit [30], and has recently
been used in the dual-fermion (DF) formalism [14-22] to
include nonlocal correlations beyond DMFT.

Let us start with a system of fermionic particles described
by a general action of the form

S@.0) = —(@.8 ') + Si(@.9). (1

Here we use the compact notation (@,v) := ZE @, 8
denotes the noninteracting Green’s function, and S;, contains
quartic interaction terms in the Grassmann fields ¢g,@e. The
multi-index & = (w,,s) consists of a fermionic Matsubara
frequency w, and a general quantum number s including,
e.g., momentum, spin, and orbital index. We introduce an
interacting reference system described by the action

Sr(@.9) = —(9.83'®) + Sin(@.9) )

written in terms of the same Grassmann fields as action (1). It
differs from the latter only in the quadratic part g,;l, which is
chosen such that the system is exactly solvable.

In order to expand the action

S(@.9) = Sr(@,9) — (@,A¢) 3

in the difference A = g~! — g5' of the quadratic parts, we

cannot apply Wick’s theorem to the many-particle reference
Green’s functions because the reference action Sy contains
the quartic terms in the fields. Instead, we perform a fermionic
Hubbard-Stratonovich transformation

D,v) _; 5 .
5.nD7'ng) =1In | DL~ DVFEne)IHGA) 4
(¢ ®) / 3ot D “)
introducing a set of auxiliary fermionic fields v, v. We require
that the matrices ng ¢ and Dy ¢ fulfill the condition nD~'n =
A, which implies freedom in the choice of n. At this point, we
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can perform the integration with respect to the physical fields
@, to yield an action

Sa(0,v) = —(p,8,'v) + V(®,v) 5)

that depends on the auxiliary fields only (see Appendix A 2 for
more details), with an inverse Gaussian propagator

g, = -nlGr+A "I (©6)

that contains correlation effects already through the one-
particle Green’s function of the reference system Gg. The
interaction of the auxiliary fields reads

V@) =~ G*Gm + @.Geml y—m . (7

7=nTv
where Gy corresponds to the generating functional of the
reference system Green’s functions,

1 _ _ _
Gr(ii,n) = Z_/'D(gb’w)e*[sﬂ(<ﬂ,<ﬂ)+(ﬂ,w)+(«7,71)]’ 8)
R

with source fields n, 7. While the freedom in the choice of n
can be maintained in all following considerations, we focus on
the conventional choice [14]

n =Gy ©)

for the sake of simplicity [50].

Before providing more details about the treatment of the
SC problem in auxiliary space, let us briefly sketch in Fig. 1
the idea motivating the formulation of an fRG flow from a
SC starting point. In contrast to the case of the conventional
fRG, the initial uncorrelated generating functional Gy, is
replaced by the one of the (solvable) interacting system, Gg.
A suitable choice reduces the effects of the truncation of the
flow equations on the final result, which is therefore closer to
the desired Ggp.

A GR™~» N
©
.gﬁn
.
RG flow _~
//

»

parameter space

FIG. 1. (Color online) Schematic representation of the fRG flow
in a general “parameter space.” In conventional schemes the fRG
flow starts from the generating functional of an uncorrelated problem
Gini- The approximations due to the truncation lead to deviations
of the result at the end of the flow from the exact final generating
functional Gg,. This truncation error can be reduced by using a
correlated reference system (provided its generating functional Gg
is exactly known) as a starting point for the flow.
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III. THE AUXILIARY PROBLEM

Now that we have reformulated our initial problem in
terms of the auxiliary fields, we derive the expansion around
the reference system solution. By definition the reference
system solution is contained completely in the noninteracting
theory (9 = 0) of the auxiliary fields, while any treatment of
the auxiliary interaction introduces corrections that take into
account the solution of the physical system. In the following,
we discuss the physical interpretation of the propagator and
of the interaction of the auxiliary fields, before introducing
the relations between the physical quantities in auxiliary and
physical space.

A. Gaussian propagator

The Gaussian propagator of the auxiliary fields (6) has
interesting properties. We find that as A tends to zero, g,
vanishes linearly [31]:

8a —> GrAGg. (10)
A—0

This means that any expansion in the interaction converges

asymptotically, as higher order diagrams with N internal lines

will be suppressed as AN. For a physical intuition of the

propagation described by g,, we write

1

— — Ggp. 11
pe (1)

8a =
The first term can be interpreted as an approximation to the
physical Green’s function (it actually brings the result of the
Oth-order expansion in )>), from which we subtract the full
reference propagator. In this sense, g, corresponds to the
difference of the interacting propagators. Therefore it does
not exhibit the typical ~1/w behavior at large frequencies, but
rather ~1/w?.

B. Interaction

By integrating out the physical fields ¢, the interaction of
the auxiliary fields (7) is generated. It contains two- and multi-
particle interactions that are given by the connected reference
Green functions, where G g is amputated at each external leg.
We can thus schematically write

1GR1(GR'D).(G'D).(GR'v).(G'v)]
— 3G (GR'D).(Gr'D).(GR'P),
(G'v).(Gr'v). (G V)] + -,

where G(,g")’c (m=2,...,00) denotes the connected m-
particle reference Green’s function. In Eq. (12) we introduced
the notation V,[ay,...,a,,aj},...,a,] which is a shorthand for

f}(f),v) =—

(12)

Vilar, ....and)s @)z, et
= (ae,y - -- @),y V(U1 . Jﬂn,lﬂ{, . ,lﬁ,g)
X @)y - - @)y g (13)

where we sum over repeated indices. V,, represents a generic
n-particle vertex function (e.g., connected Green’s function,
1PI vertex,...) and g; is a two-dimensional matrix in the multi-
index &;.

PHYSICAL REVIEW B 91, 045120 (2015)

Since the treatment of infinitely many multi-particle inter-
actions poses an impossible task, approximations to the infinite
series defining the interaction have to be devised. We drop the
interaction terms beyond the quartic one and thus

Vo)~ —1GR(GR'D),(GR'9). (G 'v). (GR'v)]

- _%VZR[D,D,U,V], (]4)

where y2R denotes the one-particle irreducible (1PI) two-
particle vertex of the reference system.

This represents an approximation based on the fundamental
assumption that the effects of (m > 3)-particle scattering
processes beyond the description of the reference system
can be neglected. The impact this has on the resulting flow
equations is discussed in Sec. IV. While previous works
[14-22,27,30] have treated the auxiliary interaction 1% by
means of perturbation theory or ladder approaches, we propose
using the fRG [4] to perform a channel-unbiased resummation
of diagrams to all orders in a scale-dependent fashion, thereby
further improving on the physical results.

C. Relation to physical quantities

Once the solution in the auxiliary space is obtained, we need
to translate Green’s and vertex functions from the auxiliary
to the physical space. These relations can be formulated in
a very general way by establishing the connection between
the generating functionals. As shown in Appendix A3, the
generating functionals of the Green’s functions fulfill

GG = Ga(GR" ARG A ) x @A (15)
with G’ = (G3')". Further relations for the generating
functional of the connected Green’s functions, or the effective
interaction and the respective derivations, are presented in
Appendix A 3. By taking the derivative of Eq. (15) with respect
to the source fields we find the relation between the physical
and auxiliary Green’s functions,

G=A"'"+A1G63'G. G AT (16)
Translated to the self-energy, this relation reads
D P a7
1+ GrZ,

where the fraction is to be understood as multiplication by the
inverse from the right. The corresponding relation for the 1PI
two-particle vertex reads (see Appendix A 3 for further details)

Y2 = VZ,a[é"g’E’E]’ (]8)
with¢ = G 'Ggrand £ = GrG !, where
G=(g'—%)". (19)

In the following we refer to Egs. (11), (17), and (18)
and generalizations thereof for higher order vertices as the
transformation to the auxiliary fields 7.

D. DMFT as reference system

To make the procedure described above more concrete,
let us focus on the example of a reference system obtained
by DMFT. This allows for a direct comparison with the DF
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approach and the recently introduced DMF’RG [7], which is
summarized in Sec. V.

DMEFT can be considered the quantum extension of classi-
cal mean field theory [32,33] as it can be formally derived
as the exact solution of a quantum lattice Hamiltonian in
the limit of infinite spatial dimensions (d — oo) [34]. In
DMFT all nonlocal spatial correlations are averaged out, and
one can reduce the study of a quantum lattice problem to
a self-consistently determined local impurity problem. For
instance, one can consider the action of a one-band Hubbard
model [35] given by

Slallice =T Z dk @k,a(wn)glzl(wn)wk,a(a)n)

+U Y [ dr by = 1720000~ 1721,
l 20)

with T being the temperature, g, '(a),,) =(lw, — n — €x), €k
the energy dispersion of the lattice, i the lattice site index,
U the Hubbard interaction, and 7, ,(t) = @;.+(7)®;.+(0). The
on-site (local) properties of this action are studied in DMFT
by singling out a lattice site and embedding it in an effective
bath which accounts for the presence of all the other sites,
i.e., an Anderson impurity model (AIM) in an effective bath.
To guarantee that the AIM approximates the local physics
of the lattice, the effective bath (or hybridization function)
I'(w,) has to be computed self-consistently, and the resulting
frequency dependence of the effective bath accounts for
all purely local quantum correlations. The self-consistency
condition that determines the effective bath and the propagator
gijnlp(a),,) =iw, — I'(w,) (often referred to as dynamical Weiss
field in the DMFT literature) of the AIM reads

Gpwmrr = /dk (g — 2JDMFT)7l = (g;nlp - EDMFT)717
20
where Xpypr is the self-energy of the self-consistent impurity
problem defined by gimp, and Gpwmrr represents the DMFT
approximation to the local interacting lattice Green’s function.
The self-consistency equation (21) follows directly from the
DMFT assumption of locality of the lattice self-energy, which
is clearly an approximation in finite-dimensional systems.
Since the AIM can be solved exactly, the action of a
collection of disconnected self-consistent AIMs, one for each
lattice site, is well suited as reference action to approximate
the physical action (1)

Se=T Y P (@)&imp(@n)Pio (@)

1, Wy, 0

+uy / dt [niy(0) = 1/2)[n;,y () = 1/2]. (22)

This way, the local physics of the system, computed at the
DMEFT level, is already included in the reference action. Note
that assuming the action (22) as reference action is what is
typically [51] done in the DF [14-22] approaches. In some
cases, also the solution of a cellular DMFT [36] or a dynamical
cluster approximation [37,38] calculation has been taken as a
reference system [18,39]. This way one is able to include
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nonperturbatively in the initial conditions also the short-range
spatial correlations, providing a complementary multiscale
[39] framework to treat correlations beyond DMFT over all
length scales. Hence, the DF reference system is defined by the
momentum-independent propagator gim,, While its interacting
Green’s function is the local DMFT one,

"= g — ZomFT- (23)

R
Performing the Hubbard-Stratonovich transformation to intro-
duce the auxiliary fermions relative to this reference system,

one obtains for the noninteracting propagator

1

iwn — €k — 2:imp

8 = — Gg, (24)
which explicitly depends on the momentum k through the
lattice dispersion €. The first term in Eq. (24) represents the
DMFT approximation to the lattice Green’s function under
the assumption of a local self-energy. g, is also referred to as
the purely nonlocal propagator, as the local impurity Green’s
function is subtracted, and therefore it vanishes by summing
over the momenta. As for the interaction between the auxiliary
fields, this is, according to Eq. (14), given by the 1PI two-
particle vertex of the AIM [14]. This input can be calculated
[40,41] to high accuracy within the current numerical solvers
for the AIM.

IV. FLOW EQUATIONS

After having reformulated the initial problem by means of
the auxiliary action (5) we now address the issue of solving
this problem using the fRG. This procedure is sketched on
the right-hand side of Fig. 2. Integrating the flow equations
in auxiliary space (which are derived in the following) results
in an approximated solution for the auxiliary problem that we
can eventually translate back to acquire a physical solution.
This scheme is then compared to the one obtained by deriving
fRG flow equations directly in the physical space.

A. General formulation

We recall that the first step to determine the fRG flow
equations [4] is to substitute the noninteracting propagator
g of the system in question by a scale-dependent g”. This
allows for the derivation of an exact functional flow equation

Physical Auxiliary
Cutoft gt = ..g—T>g£=O....gm

gr
i i

Hierarchy N ———
flow
Results YTm <———F T '77ﬁ,a,

FIG. 2. Overview of the relation between the flow in physical and
auxiliary space; 7 denotes the transformation to the auxiliary fields.
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that describes the gradual evolution of the effective action as
the cutoff scale A is changed. Expanding the flow equation in
the 1PI vertex functions results in an infinite hierarchy of the
form

V= F V) (23

For practical implementations this hierarchy is typically
truncated at the two-particle level by assuming that y;* =~

)/3A‘“‘ = 0, reducing the hierarchy to a set of coupled flow
equations for the self-energy and the 1PI two-particle vertex
function

$A = _sh oy,

v =y o (S" o GM+ G o SM) oy

(26)
27

In Egs. (26) and (27) the o stands for summation over
internal momenta and quantum numbers according to standard
diagrammatic rules as shown explicitly in Appendix A 1, while

§A = =G [0r(g™) ' 1G" = 0nG™ |z i (28)
denotes the single-scale propagator, with
Gh =[N -z (29)

The scale dependence of gA has to be chosen such that, at the
initial scale Ajy, X% and yQA‘“‘ can be determined exactly,
while the physical propagator g is recovered at the final scale
Aﬁnala

gAlinal =g. (30)

In conventional fRG approaches the bare propagator vanishes
at the beginning of flow. We introduce the notation

3D

to describe this scale-dependence. While this choice results
in trivial initial conditions that can be read off from the
microscopic model action directly, recent works [7-9,11,]
introduced the idea of starting the fRG flow from a reference
system solution by choosing

¢gh=0...g

¢t =gr...q (32)

This approach corresponds to the left-hand side of Fig. 2.

B. Flow in the auxiliary space

In contrast to the derivation in the previous subsection,
we now consider the reformulated problem for the auxiliary
fields, for which we set up an fRG flow in the conventional
sense. For this, we introduce a scale-dependent auxiliary field
propagator g2 =0...g,. The resulting flow equations then
read as Egs. (26) and (27), where all physical objects have to be
replaced by their auxiliary equivalents. Note that the relations
(17) and (18) between the scale-dependent physical and
auxiliary quantities remain valid. Even though the auxiliary
self-energy X fl‘ vanishes at the scale A;,;, the initial conditions
are in general highly nontrivial, since )/ﬁ“‘ =yf.

As mentioned in Sec. IIIB, we approximate the bare
auxiliary interaction by its quartic term. This corresponds
to neglecting the effect of multiparticle scattering processes
when calculating corrections of the reference system solution
towards the physical one. In the auxiliary fRG flow, this results
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in an initially vanishing scale-dependent three-particle vertex,
7/3/,\;“ = Vsli,- = 0, which justifies our truncation of the auxiliary
flow equation hierarchy. Note, however, that multiparticle
scattering processes are of course included in the exact solution
of our reference system, and thus in the initial conditions
(Vzl,\;'i = p) of the flow. After solving these flow equations
numerically, results have to be translated back, using the
transformation 7~ as described in Sec. ITI C.

This approach is similar in spirit to recent approaches [7—
9,11] following Eq. (32), as depicted on the left-hand side
of Fig. 2. In fact, any cutoff of the form (32) is translated to
gl =0...g,inauxiliary space by means of (11). Without any
approximations the two flow schemes yield identical results.
The approximations due to the truncation of the flow equation
hierarchy however induce important differences, as illustrated
in the following. We compare the two paths in Fig. 2 leading
to a hierarchy of physical flow equations y,2. In particular, we
will compare the equations for the one- and two-particle 1PI
vertex functions as relevant to common truncation schemes.
Assuming that the scale dependence g2 translates into g* by
(11), we determine the relation between the scale-dependent
Green’s functions. Introducing the scale dependence in Eq.
(16) and solving for G2 yields

GY = MG - GMER, (33)

where G, defined by Eq. (19), acquires a scale dependence
via XA, For the single-scale propagator we use the definition
S} =0xGL s fix to obtain
Sh=¢hsheh, (34)
Considering that
Vaa = v2 [EHLEHTLEHTLEH ™,
we find that each diagram contributing to the auxiliary flow

can be translated to its physical counterpart by making the
substitutions

(35)

vl = v, Sh—>Sh Gl GM-G*. (36)
To relate the flow equations for the self-energy in the physical
and auxiliary space we take the A derivative of the scale-
dependent Eq. (17),

»A = Aphh, (37)
Applying the translation rules above, the corresponding flow
equation in physical space remains unchanged, and is thus
given by Eq. (26). The flow equations for the two-particle
vertex, instead, can be obtained by taking the A derivative of
Eq. (35). Besides the contribution arising by a direct translation
of the diagrams in auxiliary space through Eq. (36), additional
terms arise due to the derivative of the ¢ factors attached at
each leg:

yZA = ))QI}a[é‘A’é-A7EA’EA] - VQI}Q[EAGRngng?EA]
— PN A GREN T — RN N GREN A
2V (SN G SN €7 o I (38)

Finally, by truncating the auxiliary flow equation at the one-
loop level, we get the following flow equations in physical
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SA
= |+
A ~A . ' -
72 2 C‘;A
~ rd
ah

FIG. 3. Diagrammatic representation of the physical flow equations for £* and y," that correspond to solving the conventional flow

equations for the auxiliary fields using the second-order truncation.

space:
v =y 08" o GM + G o 5N oy
08" o GM+ G oSN oy
—yMEAGA 1,11 — pA L EAGA L

-1 LGA RN 1] -y L LG RN (39)
for a detailed derivation we refer to Appendix A 4. The
corresponding diagrams are shown in Fig. 3. The first term
of Eq. (39) is identical to the flow equation Eq. (27) for the
two-particle vertex in physical space, while the other terms
are not present in the conventional scheme. In particular, we
note that the last four terms of Eq. (39) are reducible in G*.
However, this “reducibility” does not necessarily coincide
with the reducibility in G* and could be attributed to the
specific approximation performed here. This can also be
understood by considering the relation between the physical
and auxiliary scale-dependent three-particle vertices, depicted
in Fig. 4. Assuming that the effect of % on the flow
is negligible, we find that the effect of the physical 1PI
three-particle vertex can be described by the effect of the
rightmost term in Fig. 4. By connecting two of the six
external (amputated) legs of this diagram with a single-scale
propagator, one obtains the one-loop correction [second term
in Eq. (39)] as well as the “reducible” corrections [last four
terms in Eq. (39)] to the conventional flow equation. In
particular, 1PI three-particle vertex corrections are included
under the assumption that the auxiliary 1PI three-particle
vertex vanishes. In conventional fRG, where it is assumed
that both sides of the equation depicted diagrammatically in
Fig. 4 do not contribute, three-particle vertex effects are fully
neglected, unless they are explicitly accounted for, e.g., by two-
loop diagrams [42,43]. Let us note that a similar diagrammatic
structure of the flow equations has been determined in a recent
two-band fRG approach [44], where a high-energy band was

- OO

FIG. 4. Relation between the physical and auxiliary scale-
dependent three-particle vertex functions.

included perturbatively, resulting in an effective one-particle
reducible three-particle interaction of the low-energy band.
The corresponding contribution to the two-particle vertex flow
was subsequently considered explicitly. We emphasize that in
the present approach the one-particle “reducible” (in the sense
explained above) corrections to the physical self-energy [19]
inferred by (17) appear at the two-particle level (as the last
term in the flow equation for the vertex in Fig. 3). On the
other hand, comparing the auxiliary flow equations to the ones
obtained in the recently introduced 1PI approach [27] allows
us to attribute the one-particle “irreducible” correction of the
two-particle vertex to the the first two terms. Translated to
the self-energy, for the Hubbard model with the DMFT as a
starting point, these terms produce the analog of the purely
nonlocal contribution to the self-energy, which contains the
Green’s function difference G — G in the diagrammatic series.
In contrast, the contribution containing “irreducible” diagrams
with at least one internal G line of the 1PI approach is absent
here, since the auxiliary three-particle vertex is neglected.
For the half-filled 2d Hubbard model with the DMFT as
a starting point, this approximation is justified at relatively
strong coupling, where the respective contribution was found
to be largely compensated by the contribution of the other
channels [27,45].

V. RELATIONS TO OTHER METHODS

The key idea presented in the previous sections is to
approach the physical problem of treating strongly interacting
fermions in a channel unbiased way in two essential steps: (i)
Setting up an expansion around a reference system solution
by means of auxiliary fermions, and (ii) solving the auxiliary
problem by the fRG. Step (i), first introduced in Ref. [30],
is the basis of all the studies performed in the DF formalism
[14-22] as well as of the 1PI approach [27] and in the study
of impurity systems within superperturbation theory [31]. An
fRG flow from an interacting starting point, that is, step (ii),
has been recently proposed [7-11].

To be more concrete, in the following, we concentrate on the
cases where the DMFT solution is used as a reference system
solution, which corresponds to the DF approaches regarding
step (i) and which has been also taken as direct input for the
DMF’RG flow. This corresponds to taking an action of the
form of Eq. (22) as the initial action and constructing the flow
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to the final action by interpolating the bare propagator from
the AIM one, gimp, to the final (lattice) one, g. Differently
from the auxiliary field method proposed here, however, this
is done directly in physical space. The important question to be
addressed, then, is whether considering the flow in the auxiliary
or in the physical space is more convenient. In DMF’RG, one
is assuming that the effect of the DMFT three-particle 1PI
vertex in correcting the self-energy of the reference system is
small compared to the effect of the two-particle one. In the
case of conventional fRG this can be justified, at least at weak
coupling, by a power counting argument [6] showing that the
leading order contribution to the three-particle vertex is one
order higher in the interaction compared to the leading one
in the two-particle vertex. At intermediate-to-strong coupling,
however, this argument does not apply anymore. Hence, in
DMF’RG one should rely on the fact that the main contribution
of the higher order vertex functions to the truncated fRG
flow is already included in the initial condition as sketched
in Fig. 1. Obviously, there is no guarantee that the effect
of the three-particle 1PI vertex can be neglected in general.
The difference with the approach discussed here in terms of
the auxiliary fields is the following: In the present approach,
the auxiliary three-particle vertex is neglected as discussed in
Sec. IV (see schematic representation in Fig. 5). At the initial
scale this corresponds to neglecting the connected reference
three-particle vertex [52] instead of the corresponding 1PI
one. From the discussion above, it is clear that the crucial
question is whether the physical 1PI three-particle vertex or
the auxiliary one has a stronger effect on the corresponding
flow. This certainly strongly depends on the problem under
consideration and requires further focused investigations.
Away from weak coupling this question is all but trivial,
apart for some special cases, e.g., the Falicov-Kimball model
[22]. Hitherto, due to its intrinsic numerical complexity,
barely any knowledge about the three-particle quantities is
available in the literature [46]. A noticeable exception is the
case of the Falicov-Kimball model, where it has been shown
[22] that the local auxiliary three-particle vertex y3 , exactly
vanishes in the particle-hole symmetric case. Here, in fact,
perturbation theory considerations and the application of the
Furry theorem [47] would suggest a simultaneous vanishing
of the 1PI three-particle vertex for the physical fields. These

Physical flow Auxiliary flow

gfz()...ga

Effects of 1PI three-particle
vertex fully neglected

Mimic 1PI three-particle

vertex by means of

o

FIG. 5. (Color online) Effects of the truncation in the physical
and auxiliary flow.
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results, however, cannot be directly extended to the Hubbard
model. Therefore one has to critically analyze the results
obtained with each approach and for each specific case. In
order to compare with DF calculations, one can directly
analyze the diagrammatic contributions in auxiliary space
where the DF approach [14-22] usually exploits perturbation
theory or ladder resummations, as additional approximations.
While one cannot expect to capture diverging fluctuations by
means of simple perturbation theory, ladder approaches are per
definition biased towards a selected channel. On the other hand,
by treating the auxiliary problem by means of the fRG one is
able to treat competing scattering channels in an unbiased way.
In particular, our approach allows for an improved computation
of the solution of the auxiliary problem, including, although
approximately, the parquet-approximation diagrams. Let us
note that, differently from other nonperturbative schemes
[24,25,26,29,39], the calculations are based on the 1PI two-
particle vertex, and do not require the two-particle irreducible
(2PI) vertex at any point of the algorithm. This way one can
circumvent the technical problems arising from the recently
shown [18,48,49] divergencies of the 2PI vertex at low
frequencies, which are not associated with any thermodynamic
transition.

VI. CONCLUSION

We have demonstrated how the theory of an fRG-based
expansion around a SC reference system can be rigorously
formulated in the general framework of auxiliary fermionic
variables. In particular, we have derived the explicit expres-
sions for the fRG flow equations starting from a generic
(exactly solvable) SC reference problem in the auxiliary
fermionic fields and the corresponding transformation rela-
tions to calculate the physical quantities of the final solution.
These derivations allow us to clarify the relation to the fRG
flow equations formulated directly for the physical fermionic
fields, including the first pioneering ones reported in the
recent literature [7,8,10—12]. Furthermore, we could also
elucidate the implications of the approximations introduced by
truncating the hierarchy of the flow equations in the different
schemes; see Fig. 5 for a summary. This represents indeed a
pivotal aspect for all strong-coupling fRG algorithms, since
the conventional arguments justifying the truncation do not
hold any longer beyond the weak-coupling regime. Hence,
a precise definition of the diagrammatic content associated
with the truncation of a strong-coupling fRG flow is essential
for adapting the novel algorithms to the nonperturbative
physics of interest. The reported analytic and diagrammatic
results, together with the physical insights which can be
captured within the different formulations of the fRG with
nonperturbative starting points, will provide an important
reference for any future method development in this promising
direction.
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APPENDIX

1. Notation details

Here we present explicitly Eq. (26) and Eq. (27), shown in
compact notation in the main text. The flow equation for the
self-energy reads

2(&@)-——22535,((»2» (€162 6.6). (A)

(0] _y_g

We use the convention that for an m-particle quantity the
first m arguments refer to the outgoing lines, and the last m
to the incoming lines. The loop variables are & = (wy,s$2)
and &)(w),s5). It is implicitly assumed that the energy is
conserved (w; = )), while the multi-index s, consists of a
set of continuous and discrete quantum numbers. Therefore
the summations ), ., have to be understood as integrations
or summations, respectively. For example, in the case where
only spin and momentum are considered for a translationally
invariant system (k, = k), Eq. (A1) reads

S E]) = — Z Z/dk 8 @7
® 0,0}
X (a)lklal,wzkzaz;a)ik'lal',a)'zk'zaz'). (A2)

For the 1PI two-particle vertex the flow equation is usually
subdivided in three channels (particle-particle, particle-hole
direct, and particle-hole crossed) corresponding to the dia-
grammatic contributions

VR E1LE0 E1LEY) = Cpp(E1,625 €1,E3) + Cpp—a(E1,623 €] ,E))
+CI)h—F(§1 752; %‘1/3%‘2/)’ (A3)
with

Cl?p(élfz;él, 52,)
~ 35 Z Z [Ss[:ﬁ(wz)Gs w(@1 + o —w3)

W3 53,5%,54,5)

quz _Y 454

X 5 (1,62 65,605 (63,643 €1,8D),
C;;h—d(i"l 552; 51,352/)

=52 X [55,06) 01— o) + o)

@3 53,53,54,5

+Gh, (@3)S) (01 + 0y — 60%)]

(A4)

+GJ (@)S] (01 — ) +a3)]
x VL (€1 E3 6L EDYS (Ea,03 656D, (A5)
Cph*('(é:l véZ; gl/vé:é
=—Z Y [0, @)GE (@ — @)+ w3)

@3 53,585,854,

+G3, (@3S (01 —

5454

Wy + w3)]
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x s (€1,63: 65,6075 (62,643 €] ED). (A6)

2. Auxiliary fields

Performing the Hubbard-Stratonovich transformation (4)
yields an action

S@.9,0,0) =Sr(@,9) + Sy(@.9,7,v) + (D,nA "' nv),
(AT)

with Sy (@,9,V,v) = (V,n¢) + (@,nv). We determine the inter-
action V of the auxiliary v fermions by integrating out the ¢
fields and obtain

/D(@(p)e—sx(@,«z)—sww,w.v,v) — 7pe OO (Ag)

This relation defines ¥ and 0, where Q is to be chosen such
that ¥ does not contain any quadratic part in the auxiliary
fermions. Note that the left-hand side is closely related to the
generating functional of the reference Green’s functions,

[D((Z’go)efSR(@W)*Sw((;,(ﬂ,I_J,U) — ZR gk(ﬁwn)h]:nv,f]:rﬂ-fw

(A9)
Inserting in Eq. (A8) and solving for VV we obtain

],)(\_),V)Z —[lI'l gR(ﬁ,TY) - (ﬁJli] Ql’lil n)]i]:nv,f]:nTD
=—[=@.Grm+OG@ 1) = (@0~ On™ ' m)y=py -
(A10)

For the quadratic part of % to vanish we have to choose
n~'On~! = —Gpg and hence Q0 = —nGgn. Thus

V@,v) = =[G @0 + @,Grmly=pv.jmnrs, (A1)
in accordance with Eq. (7). This functional generates two-
particle and multi-particle connected Green’s functions, where
n is appended at the outer legs. The free propagation of the
auxiliary fields is then described by

0.,=0—-—nA""n=—-n[Gr+ A 'In (A12)

as shown in Eq. (6) for Q, = g, !.

3. Relation between physical and auxiliary space

We here relate the physical to the auxiliary Green’s
functions. For this we determine the relation between the
generating functional of the physical Green’s functions,

011 = 5o | D@0 D) & SEwmtimien,

(A13)

Z detD

and of the auxiliary Green’s functions,

—S8(@,¢,0,)+ )+

ga(ﬁ#}) = 7

(A14)
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We evaluate

- S((ﬁ,gﬂ,\_),\)) + (ﬁs(p) + (‘Ps’?)

= —Skr(@,9) + (71 + 1" 0,0) + (@,n + nv) — (5,nA™'nv)
(A15)

Ty _ i
— Sr(@,9) + (V,ng) + (@,nv") — (V' ,nA™'n1)
—{A ') + @,A ) + (P ,nAT )
= =S8(g,9, 7' V) = @A ) + (" AT,V
+ (@ .nA"p).

and substitute nv — nv' — pand n’v — n

(A16)

Thus
GG = GanT A Tiin A ) x e AT (A1)

Taking the second derivative with respect to the source fields
and setting 7 = n = 0 yields

G=A"+A"nG;nA™", (A18)
or
G, =n"'"AGAn""' —n7'An"". (A19)
This translates into a physical self-energy
T=g ' [AT"+ A MGanATT, (A20)
which can be simplified to
X=X+ Gf}f:':nlzlz (A21)

as reported in Eq. (17).

After deriving the relation (A17) between the generating
functionals of the physical and auxiliary Green’s functions,
we can now establish corresponding relations for the effective
actions. Taking the logarithm of the above equation yields

W) = Wan" A Ti,nA ) — (7,47 '), (A22)
from which we get
V(®,v)
= [W@,m) + @,8m1 ;= g1y
=g7Tv
= Wa" AT in AT ) — (@, A7 ) + (lgm] = ITU
—g T

= [Wa(f_},ﬂ) + (7_7’81177) - (ﬁvgar))] n=nA""g "y

7=n"TATgTp
+@g™ — g7 AT g™ )
- [Wa(ﬁ,ﬂ) + (ﬁ,gaﬂ)] n= g;lg(,nA’lg’lu

=g g A Tg Ty
—" AT, gun A g W+ (g —g AT g )
=Y, (anTA’Tg’Tﬁ,ganA’lgflv)
—(n'A e g g )+ [g T =g AT ).
(A23)
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Some algebra yields

v = ganATlgTy = —n’lG_l;v

’ a4 R ]—ng ’

1
k. T TA—T —T— _ _ —T T -
voi=g,n A 8 V=—n GR ml), (A24)
and finally [19]
p))
V@) = Va(@* 0% — (5,—2 ). (A25)
1 —gER

Aside from the relation of the physical and auxiliary self-
energy, a corresponding relation for the respective 1PI two-
particle vertices is easily derived by making use of relation
(A22). Taking the fourth derivative with respect to the source
fields we find

GO =GPUA A AT AT (A26)

Amputating the full one-particle Green’s functions yields
2= 724G A'nG,.GT AT NGy,
x GanA™'G7,GnAT'GT', (A27)

which simplifies to
V2 = ¥24l6,6,8,E1 (A28)
4. Connection between fRG and the flow in the auxiliary space

To understand how the flow for the auxiliary fields is related
to the conventional fRG flow, we will in the following derive
the relations between the flow equations. For this we assume
that the scale dependence in Q2 is governed by a physical
cutoff Q? only. The self-energy relation (A21) holds also in
the scale-dependent case, and we find

A = Gp'n 'S8 (Grn + n’lEé\)il
— GE'nilEé\(GRn + nilEé\)iln*l
x EM(Ggn + n_IEé\)il
= G;1n71[1 — E([,\(GRn + nilE(’,\)iln*l]
X Z.J(II\(GRn + nilEé\)il
= [G;lif1 —(zA - ER)nfl]E.]f(GRn + nilﬁé\)_l
=[Gg'n ' = (=" — Zpin ']
x B [Grn+ GrI(E™ = Zp) ! = Grl™'Gpn] ™!
=(Qr = ZHn 7807 (Qr — B = ¢ 8REN,
(A29)
with
G =[0r %",
where we have already included a possible scale dependence

in the factors ¢* = nG*)~' and ¢* = (G*n)!. It can also
be shown easily that

(A30)

Y- _yA _ !
G, =n"(Qr E)<Q—EA QR—EA)

x(Qr — T~ = NG - GMEE. (A3
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FIG. 6. Diagrammatic structure of Eq. (A39). The factors {* appended at each leg of y3", are implicitly included in the diagram.

Let us now proceed with the single-scale propagator S» =
9 G2 s, fixed- Note that keeping the auxiliary self-energy fixed
in the derivative is equivalent to keeping the physical self-
energy fixed. Therefore by taking the derivative of Eq. (A31)
we find

Sp = tMOAG  pn et = £ SAEN, (A32)
as G and thus ¢* only depend on A through the self-energy.
Looking at the flow in the physical system we find that any
vertex in the diagrams effectively gets (nG*)~! appended at
each connection point and internal propagators are given by
G" — G". Let us now consider the fRG truncation at second
order, thus including the vertex flow. To achieve this we solve
the scale-dependent version of Eq. (A28) for yz{‘a:

Vo = v L@ @HLENHTENH .
When constructing the diagrams contributing to the auxiliary
flow, the (¢™)~' factors exactly cancel the outer expres-
sions in G2 of (A31) and S/ of (A32) that connect to a

vertex. The diagrams for the flow can thus be translated
according

(A33)

vie = v, Sh—>Sh Gh > GM-Gh (A34)

and the orders in y» , translate to the corresponding orders in
¥». Let us now come back to the task of deriving a connection
between the flow equations in physical and auxiliary space.
To this end, we start by looking at the flow equation for the
two-particle vertex. Since we also want to understand the effect
of the truncation we first consider the exact flow equations
(i.e., without truncation) that involve the 1PI three-particle
vertex. This reads, respectively for the physical and auxiliary
fermions,

W= o(8* 0 Gr +G oSN oy + ¥ 0 S, (A35)
)./2/,\0 = )/QAa o (Sci\ © G(/I\ + Gclz\ © ch\) © VZ/,\a + y3l,\a © Sci\
(A36)

Differentiating Eq. (A28) with respect to A, substituting
Eq. (A36), and using Egs. (A32), (A31), and (A28), we obtain

V= yzl}a[fAﬁfAfAfA] - Vzl,\a[i:Anfl,CA,g:A,fA]
— yaalet 207NN
S P R SR RN S B W [ SN SN NI RY
=y o (Y o (GY =GM +(GH =G o SY oy
SR ISR SN WSS N ER
— yAMEAGA 1L1,1] — YL, 246 1,1

— Y LG A ] - AL 1L,1,GA S (A3T)

Neglecting the term proportional to yfa, consistently with
a one-loop approximation in auxiliary space, one directly
obtains Eq. (39). To understand the connection between the
three-particle physical and auxiliary vertexes, instead, let us
keep all the terms and compare Eq. (A37) with Eq. (A35). A
moment of inspection shows that

)/3A ] SA = y;}{l[é‘A’é‘AvCA’EA’EAﬂgA] o SA
-y oS oG+ G oSN oy
-y [20GM 1, 1,1] - 1,24 G 1,1

— yPLL,GAEA 1] — p L1, 1L, GA AL
(A38)

Using the flow equation for the self-energy in physical space,
Eq. (26), and Eq. (A32) yields

vt oSt =y Ieh e e e e e o st
—y o (8P 0 GA+ G oSN oyl
-y St oyt 0 GALILTT
-y L8203t 0 GM 1]
-y [LL,G" oyt 0 881
[

— 7 [LLL,G" o 0 S, (A39)

which can be depicted diagrammatically as shown in Fig. 6.
The last six terms on the right-hand side of this equation
can be seen diagrammatically as the possible distinct ways
of connecting two out of the six external points of the quantity
¥ o G* oy, and therefore acquire the same diagrammatic
structure of the first two terms. Hence by performing a
functional derivative with respect to S* we can finally write a
relation between the three-particle vertex:

VBA = y}éa[CAazAaé‘A’EA’EA’EA] - yZA o GA o VZA’ (A40)

as depicted diagrammatically in Fig. 4. Let us also note
explicitly that this equation is consistent with the fact that in
the beginning of the flow the auxiliary 1PI three-particle vertex
is equal to the amputated connected three-particle Green’s
function of the reference system.

As for the flow of the self-energy one can see from Eq.
(37) that no further diagrams appear by performing the flow in
the auxiliary space, i.e., the self-energy flow equation Eq. (26)
remains the same, and the only differences arise indirectly
due to the change of the vertex during the flow discussed
above.
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We present an efficient implementation of the parquet formalism that respects the asymptotic structure of
the vertex functions at both single- and two-particle levels in momentum and frequency space. We identify
the two-particle reducible vertex as the core function that is essential for the construction of the other vertex
functions. This observation stimulates us to consider a two-level parameter reduction for this function to simplify
the solution of the parquet equations. The resulting functions, which depend on fewer arguments, are coined
“kernel functions.” With the use of the kernel functions, the open boundary of various vertex functions in
Matsubara-frequency space can be faithfully satisfied. We justify our implementation by accurately reproducing
the dynamical mean-field theory results from momentum-independent parquet calculations. The high-frequency
asymptotics of the single-particle self-energy and the two-particle vertex are correctly reproduced, which turns

out to be essential for the self-consistent determination of the parquet solutions. The current implementation is

also feasible for the dynamical vertex approximation.
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I. INTRODUCTION

Strong electronic correlations have led to arguably some of
the most fascinating and least understood phenomena in solid-
state physics, including the breakdown of Landau’s [1,2] Fermi
liquid theory and high-temperature superconductivity [3].
However, solving the correlated electron problem poses a great
challenge to theoretical physics, since the competition between
interaction and kinetic energy prohibits a simple perturbative
treatment of such many-body systems. The minimal model
covering this competition between localizing and delocalizing
electrons is the Hubbard model [4]. Only in the special
cases in which one energy scale dominates are weak- [5—10]
or strong-coupling [11-13] perturbative treatments actually
reliable.

Many of these perturbative approximations are functional-
derivable, which is a key criterion that Baym and Kadanoff [ 14]
discovered for a many-body theory to be conservative. They
found that for any functional that is derivable with respect
to the single-particle propagator, the resulting self-energy
function and the Green’s function satisfy the continuity
equations. The central object in these conservative theories is
the single-particle self-energy, which, in the Baym-Kadanoff
formalism, can be calculated self-consistently. An alternative
to the Baym-Kadanoff formalism, which is self-consistent
also at the two-particle level, was developed by Landau,
Dominicis, and Martin [15-17], and it is referred to as the
parquet formalism. The central object in this theory is the
two-particle vertex functions, from which the single-particle
self-energy can be self-consistently calculated. The parquet
formalism has built-in self-consistency at both the single- and
two-particle levels, which by construction can be better than

“Author to whom all correspondence should be addressed:
gangli.phy @gmail.com

2469-9950/2016/93(16)/165103(13)

165103-1

the Baym-Kadanoff theorem in this respect. However, unlike
the Baym-Kadanoff theorem, the parquet equations do not
explicitly guarantee that the conservation laws, such as the
continuity equations, will be satisfied.

The generalization of the self-consistency from the single-
particle to the two-particle level is essential to describe the
behavior of individual particles and their collective excitations
on an equal footing. One example of such complexity is the
spin-fluctuation-mediated pairing interaction in the cuprate
superconductors [18,19]. To explain how two individual
particles form a Cooper pair in the particle-particle channel,
one must have knowledge of the spin fluctuations in the
particle-hole channel. In this problem, both the single-particle
delocalization and the two-particle excitations need to be
determined simultaneously, which calls for a theory with
self-consistency at both the single- and the two-particle
level. However, this is not limited to this particular example.
In general, for any collective order that arises from the
competition between different fluctuations and low-energy
excitations, one needs a theory such as the parquet formalism,
which satisfies the self-consistency at both the single- and
the two-particle level. However, the application of the parquet
equations has been limited thus far to only a few cases [20-28].
The main reason why the parquet equations are not widely
applied is their numerical feasibility. The two-particle vertex
depends on three independent arguments, each of which
consists of both momentum and frequency. Even in the SU(2)
symmetric case, solving the four coupled parquet equations
for a reasonably large system at low temperature is still
numerically very challenging. Here, the difficulty concerns
not only the storage of the large two-particle vertices, but
also how to actually preserve the asymptotic structure of
the single-particle self-energy and the two-particle vertices
simultaneously during the calculation. Due to the fact that the
parquet self-consistency is performed on both the single- and
the two-particle level, the truncation of the two-particle vertex
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structures will unavoidably result in a wrong evaluation of
the single-particle self-energy, and vice versa. In a consistent
solution of the parquet equations, the correct self-energy as
well as all vertex functions should be simultaneously obtained
at convergence.

In this paper, we present an efficient implementation of
the parquet equations that satisfies a number of important
conditions. The primary goal of our implementation is to
correctly reproduce the asymptotics for the single-particle
self-energy and the two-particle vertex functions at each
self-consistent step by employing a precise inner and an
asymptotic outer frequency window, which ensures that the
converged solutions are consistent and asymptotically correct.

The paper is organized as follows: For completeness,
we introduce the necessary notations for the single- and
two-particle vertex in Appendix. We also briefly derive the
corresponding formalism for the parquet equations and the
self-energy in this notation. Those readers who are familiar
with the parquet formalism and are only interested in its
detailed implementation can safely skip this part. In Sec. 1I,
which is the main part of this paper, we present our philosophy
for solving the parquet equations. In accordance with previous
findings [29], we identify the dominant structures in the
two-particle vertex. We reduce their complexity by focusing
only on the parts that are reducible in a specific channel,
motivating our two-level kernel approximation. In Sec. III, we
solve the Anderson impurity model and a 2 x 2 cluster within
the full parquet and the dynamical vertex approximation,
respectively. For the former, we have the exact results from
the dynamical mean-field theory (DMFT) [30], which in
turn justifies our implementation of the parquet equations.
An excellent agreement is achieved at both the single- and
two-particle levels. A summary and outlook are provided in
Sec. IV.

II. SOLUTION OF THE PARQUET EQUATIONS

The parquet equation is a classification of the full vertex
into the (two-particle) fully irreducible contributions A and the
reducible contributions in the particle-hole (®), the transversal
particle-hole (followed by symmetry), and the particle-particle
channel (V). Employing SU(2) symmetry, one can decouple
their spin components into the density (d)/magnetic (m)
and singlet (s)/triplet (¢) channel, respectively. In these four
channels, the parquet equation reads

FER (@) = Y () + @4 (g) + ™ok k — k)
+cmakkta g — k)
+ I MWE (k4 K+ q)
+cf’/m\yk,k’(k +k +q), (1)
v/r f (@) = Af/k, (61)+\IJY/, (q)+cv/f ka K gy
+ ;/’qﬂ;;qfk K —k) +c”’CI>“‘ (G —k—K)
+c kK (g —k =K. (1b)
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k = (Kk,iv) is a compound index consisting of wave vector k
and Matsubara frequency iv. The coefficients cd/ "I take
different values in the four different channels. We only briefly
list here the necessary equations for the convenience of the
discussions in the main part of the paper; more detailed
notations and derivations can be found in Appendix. In Eq. (1),
the reducible contributions are given by the Bethe-Salpeter
equation (BSE) in the four channels formally as ®/W¥ =
I'GGF [Eq. (A6)]. Here, I' is the irreducible vertex in the
given channel, which contains the reducible contributions from
the other channels and the fully irreducible A; see Eqs. (A10)
and (A13). The self-consistency at the single- and two-particle
level are synchronized by means of the self-energy, which
depends on the resulting two-particle vertex as shown in the
Schwinger-Dyson equation of motion (A15).

Given the fully irreducible vertex A, the par-
quet formalism provides a set of five exact equations
[(1), (A6), (A10)/(A13),(A15),(A16)] which can be solved for
the five unknowns (F,®/W,I',G,X) (where the former three
equations and vertices consist of four channels each). Hence,
if we know the exact A, we can calculate all physical, one-
and two-particle, quantities exactly. However, since the exact
A of the Hubbard model is not known, we need to make
approximations. In the parquet approximation (PA) [6,31],
A ~ U is taken; a more sophisticated approximation that takes
into account all local fully irreducible diagrams is referred to
as the dynamical vertex approximation [32,33].

In this paper, we mainly discuss two problems that are
practically unavoidable in solving the parquet equations, which
are of critical importance for keeping the self-consistency in
the single- and two-particle levels simultaneously.

The first problem arises due to the finite numbers of
Matsubara frequencies that are available in the calculations.
Each vertex in the parquet equation depends on three in-
dependent arguments k, k', and ¢, which take arbitrary
values in (—o00,00). In practice, a finite cutoff a has to be
introduced. A consequence of this cutoff is that after each
self-consistency step, the interval on which the vertex is known
shrinks. This can be seen as follows: take Eq. (la) as an
example and suppose k, k', and ¢ take values in [—a,a]. For
calculating the the right-hand side of (1a), we would need the

solutions of @} " (k" — k) in [2a,2a], and \pf/f k+k —q)

in [—3a,3a]. Assuming that d)f,‘//‘;,(q) and \IJJ/, (g) are only

available in [—a,a], F!,‘/’,‘n (g) can then be calculated only in the
smaller interval [—a/3,a/3]. Such aboundary issue only exists
in the Matsubara frequency space. In momentum space, the
periodic boundary condition can be applied whenever k' — k
or K+ K + q exceed the finite parameter range. However,
none of the vertex functions is periodically dependent on the
Matsubara frequencies iv, v/, and iw [27]. As a result, there
exist two different parameter spaces for the vertex functions,

i.e., in the bigger space ([—a,a]), <I>d/m(q) and \Ilf/’]f,(q) are

known, while through the parquet equations F(, mys)(@) can
be determined only in a smaller parameter space ([—a/3,a/3]).

The second problem is related to the finite frequency
parameter range as well. To evaluate the self-energy function
in Eq. (A15), a sum over the two internal arguments k" and ¢
has to be carried out. An example of the vertex functions
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(a) DMFT (CT-INT)

(b) Major structures

__— diagonal

g

secondary diagonal

background

Fy(k,¥)

FIG. 1. (a) The green dots are the full vertex F, j'kr (q) for a fixed
value of ¢ calculated from the DMFT (CT-INT) at 8t = 2and U/t =
4 on a square lattice. The bottom shows the intensity of Flf‘k’(q),
which illustrates three major structures of the vertex functions. These
structures are the background, diagonal, and secondary diagonal
components, as illustrated in (b).

F;’”’(w) is shown in Fig. 1. As was already observed in

Ref. [29,34], F, (@) has structures that span the whole
Matsubara frequency space. In particular, they do not decay at
the boundary of any given parameter box. Thus, a sum over
a finite parameter range corresponds to a truncation of these
vertex functions at the boundary, which can lead to a wrong
evaluation of the self-energy function.

In this paper, we propose a feasible scheme to solve
these two problems, improving upon the Matsubara-frequency
periodization employed hitherto [27]. Our idea is based
on the observation of the central role that the reducible
vertex functions play in the parquet equations, which will be
explained in the following.

A. Two-level kernel approximations

To satisfy the crossing symmetry explicitly in every self-
consistency step, we evaluate the full vertex Fy;,, s/ directly

from the parquet equations [27]. Figure 1 displays F l’;’k,(q) as
a function of k and k’ for a fixed ¢. The left plot is obtained
from a DMFT calculation with the interaction-expansion
continuous-time quantum Monte Carlo (CT-INT) [35,36] as
an impurity solver, thus it represents a numerically exact (up
to the statistical errors of the CT-INT) evaluation of the full
two-particle vertex for the DMFT impurity. We will calculate
this vertex in the parquet theory as well; see Sec. I1I. A detailed
analysis of the two-particle vertex function can be found in
Refs. [29,34]. In the following, we will use the exact results
from DMFT as a reference to further show that, among the
various two-particle vertex functions, the reducible vertex,
which plays the central role in our implementation of the
parquet equations, is the most important.

The right plot shows a schematic representation of the major
structures of the left one. The full vertex Fy;,/s/; can be
decomposed into three main parts, i.e., the background, the
diagonal, and the secondary diagonal component. Figure 1
clearly shows that the boundary of the vertex function is
not periodic in frequency space, instead all three components
extend to infinite values of k and k’. Due to the restricted
parameter space available in practical calculations, one has to
be careful with the boundary effect on these vertex functions.
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The background is contributed by AS/I‘m /s/¢(@), which is the
input for the parquet equation, and it is further supplemented by
the reducible vertex functions ®% d /m (q) \IJY It (q) The diagonal
and the secondary diagonal components are predominant for

d/m/s/,(q) with k = k" and k = —k’ — ¢ in the d /m channel,
and for k =k’ — ¢ in the s/t channel, respectively. The
diagonal and secondary diagonal components are generated,
in the parquet equations, by the reducible vertex & Hq(k’

k), ‘I’;\/Ir‘ (k+k'+¢g) in the d/m channel and cpf»q k(k B

k), d>d/m(q k — k') in the s/t channel; see Eq. (1) ‘We note

that the above analysis on the complete vertex F i /m ss7¢(@) 1s
not specific to the Hubbard model. In principle, it is general
to any single-band model for fermions that preserves SU(2)
symmetry. Among the various terms in the parquet equations,
the background given by Ad 7m/s/:(@) is model-dependent, i.e.,
its asymptotic can be different for different models, while the
main and secondary diagonal structures are fully determined
by the parquet equations, which are general. As a result, our
approximation to the reducible vertex function, which will be
discussed in the rest of this work, can in principle be applied
to other models as well.

Furthermore, we also notice that these two components
only depend significantly on the center-of-mass momentum
and frequency (which is the momentum/frequency in the
brackets); the dependence on the other two arguments (the
superscript momentum/frequency) is much weaker, as will
be shown in the following. Hence, the reducible vertex can
be effectively approximated by single-argument-dependent
functions ®, /m(q) and 0, /1(q), which we call kernel functions.
The approximation of replacing the three-argument-dependent
reducible vertex with a single-g-dependent kernel function,
ie., Pyl — k)~ Bgym(G =Kk — k). etc., is called the
first- level kernel approximation. We name it the “kernel
approximation” because, on the one hand, ®(g) contains the
most essential, i.e., core or “kernel,” information of <I>k'k’(q).
On the other hand, we use this term because, mathematically,
the kernel of our mapping F : ¢,k,k’ — ¢ defines classes of
equivalent frequency triples, whose reducible vertex ®** (¢)
is (approximatively) the same, i.e., ®(g). The parameter-
reduction of the reducible vertex functions, i.e., the kernel
approximation, will greatly simplify our implementation of the
parquet equations. Let us emphasize that we only employ the
kernel approximation when the Matsubara frequency is outside
the interval [—a,a] in which the vertex is known explicitly.
We also note that a parametrization related to the first-level
kernel approximation is used in a different context: Karrasch
et al. use a sum of single-frequency full vertex functions for
the functional renormalization-group calculations [37], where,
however, this parametrization is employed for all frequencies.

We verify the simple structure of the reducible vertex
functions from a DMFT calculation in Fig. 2(a), where @Z‘k, (q)
is displayed as a function of k and k" for a fixed transfer
frequency g = iw = —i40m/B. First of all, we notice that
the overall amplitude of the reducible vertex function for
the given parameters is much smaller than that of the full
vertex shown in Fig. 1 for the same parameters. Compared
to Fig. 1, the reducible vertex can rather be viewed as a flat
plane. Secondly, the detailed structure of the reducible vertex
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(b)

®u(k, K)
S665 ocooo
PLUN~O~=NDWE

FIG. 2. (a) Reducible vertex in the density channel calcu-
lated from the DMFT (CT-INT) for the same parameter as in
Fig. 1. (b) Schematic illustration of our philosophy of the kernel-
approximation(s) for solving the open boundary issue in the parquet
equations; see the main text for more details.

is found to consist of only two main parts, i.e., a constant
background and two crossing stripes. The first-level kernel
approximation discussed above corresponds to considering
only the constant background. In practice, as the first-level
kernel function &Dd/m(q) (¥, /1(q)], we take for every g the

value of de/m(q) [llls/, (q)] at this ¢ and a k,k’ that is far away
from the diagonal components and the stripes in Fig. 2(b).
There is a certain freedom in this choice that has yet to be
investigated.

For an intuitive understanding of this approximation,
let us examme, the first 1terat10n of the PA. Here,
A][‘,/km/x/,(q) F(],‘/m/v/[(q) and Fd/m/v/r(q) are simply taken as

(U, —-U,2U0,0). From Eq. (A6), we learn
ol (q) = ZG(k”)G(k” +q),
k!/
k¥ (g) = Z G(k")G(g — k"), ©)
m
PE(g) =0,

which depend on ¢ only. For any given ¢, CDI[‘,‘/]‘,;(Q) and

f/’l,"'(q) are constant for all k and k’. Since in the second
iteration Fd/m/m(q) and Fz‘/;;/v/,(q) are no longer taking
the simple values (U, — U, 2U 0), the strlpcs appear in the
reducible vertex. Although Fd/m/s/,(q) and Fd/m/x/r(q) contain
structures that strongly deviate from the constant background
the only structure of the reducible vertex ' 4 m(q) and W, it “@)
extending in Matsubara frequency space is thc stripes. Other
local structures inside the smaller parameter range (the light-
red region), which can be pronounced in some cases, will be
treated without the kernel approximation. Thus, as the first-
level approximation, the choice of single-g-dependent kernel
functions &, /m(q) and W, /1(q) 1s justified as an approximation
for large Matsubara frequencies.

Further improvement of this kernel approximation is pos-
sible. For the second level kernel approximation we consider
kernel functions & d /m (¢) and ‘If ,(q) depending on two
arguments, which is in line with the analysis of Ref. [29].
The additional dependence on k in the second-level kernel ap-
proximation allows us also to incorporate the crossing stripes
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of the reducible vertex functions; see Fig. 2(a). In practice,
we take @f{’/k,;q (g) and \Il‘f/’f,(q) at one of the edges of the given
parameter range, for instance at A’ = —30 in Fig. 2(a), to be the
new kernel @ (q)~ @4 *(g) and W&, (q) ~ Wi, " (q).
The kernel function, in the second-level approximation, is then
givenas 5 (q) + Y, (q) — ®4/m(q), where D4/, (q) is the
first-level kernel function representing the background of the
reducible vertex. A similar expression can be formulated for
the particle-particle channel.

The kernel approximations have strong implications for the
two problems we discussed before. As our numerical study be-
low shows, the open boundary problem of the vertex functions
can be efficiently solved by supplementing the reducible vertex
functions with the corresponding kernel functions whenever
their arguments exceed the parameter space available in the
calculations. Toward that end, we illustrate our philosophy of
the kernel approximation in Fig. 2(b), where we show the two
different parameter spaces discussed in the beginning of this
section as light-blue and light-red squares. Only inside the
smaller parameter space (light-red square) can the full vertex
F (l,‘/';n /s /T(q) be calculated from the reducible vertex functions

<I>§ /k,;, (¢) and \Iff/’]f,(q). Outside of the light-red region, in the
first-level kernel approximation, the full vertex functions are
calculated from ®,4,,(g) and W,,;(g), or in the second-level

kernel approximation from bei/m(Q) + é(ki,/m(‘l )= Pa/m(q)
and \Pf/r(Q) +95),(9) — Wy/i(q)- In this way, Ff;];/s/,(q) and

Fd’/m /s;(¢) can be calculated in the full parameter space
defined in the calculations.

B. High-frequency regulation

To close the self-consistent loop for the parquet equations,
the self-energy also needs to be updated. As explained before,
the sum in Eq. (A15) is performed in a finite interval, which
corresponds to a truncation of the vertex functions at the
boundary. Generally, for a sum in a finite interval (—a,a),
the truncation effect can only be eliminated when a is large
enough so that the quantity to be summed becomes negligibly
small at the boundary. However, this is not the case for the
vertex functions, which extend to infinite values of k£ and
k’. In this section, we show that, based on the two-level
kernel approximation introduced above, we can write down
auxiliary vertex functions that match the exact complete vertex
Fd Jm/s/1(@) at and beyond the interval boundary. Thus their
difference becomes zero at the boundary, and they can be
safely summed over in the finite interval. As a principle, such
an auxiliary function has to be free of the boundary issue, as it
is supposed to account for the asymptotics that is not available
in the finite parameter space.

We propose the following auxiliary function for the full ver-
tex in the density channel (very similar asymptotic functions
can be readily formulated for other channels):

Fy¥ (@) = U + ®a(@) = 30tk — k) = 38, (K — k)
Ik +K + )+ 30k +K +q).  (3)

In terms of Fig. 2(b), this is equivalent to calculating F[’;’k/(q)
from the (approximate) kernel functions in both the smaller
and larger intervals. Here, for a simple demonstration, Eq. (3)
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is constructed from the first-level kernel functions. Similarly,
one can also construct this function by using the second-level

kernel functions. The resulting auxiliary functions F [’,"’k,(q)
will then become a better approximation to the exact complete
vertex F(],"’k,(q).

Instead of using Eq. (A15), with the help of this auxiliary
vertex function we now calculate the self-energy as

UT?
4N

(k) = S(k) — Y Gk +q)GK + q)G(K')
K.q

x[AFE¥ (@) = AFEY ()]

ur?
— 2 Gla —K)Glg = hiGK)
k'.q
x[AFH @)+ AFF (@) @)

Here, AFyy (@) = Fypm (@) — Fyiv (), and (k) is
the self-energy calculated from the kernel functions in all
channels.

To faithfully account for full vertex functions at arbitrary
k, k', and ¢ in (—o0,00), we further split £(k) into (k)
and £,(k), where £;(k) contains only the contribution from
the (U, — U,2U,0) components, while 35, (k) contains the rest
of the auxiliary functions [see Eq. (3)]. $,(k) can then be
efficiently calculated as follows:

U2r?
2N

Sik) = — Y IGtk + )Gk + )G(K)

K.q
+G(g —k)G(g — k)G
= —U*FFT ' G*(r)G(—r)). 5)

Here, G(r) is the Fourier component of G(k), and FF T~
is the (fast) Fourier transformation between these (in this
transformation, the antiperiodic boundary condition in the
imaginary-time space has been taken into account). Thus,
$1(k) incorporates the contribution from the lowest-order
complete vertex function, i.e., the bare Coulomb interaction,
for all frequencies and momentum variables. (k) is merely
the self-energy from the second-order Feynman diagram. As
for $,(k), we perform the direct sum over k" and ¢ in a much
larger parameter space, which is possible thanks to the kernel
approximation. In practice, we usually take this space two or
three times larger than the bigger parameter space used for
calculating the various vertex functions [the light-blue region
in Fig. 2(b)].

The full vertex does not decay asymptotically but extends
with finite values to the largest k, k’, and g. However, due
to the three single-particle propagators G in Eq. (A15), the
product GGGF still goes to zero asymptotically for large
k, k', and g. While it is usually difficult for the full vertex
functions to work in a large parameter space in practice, this
is not a problem for the kernel functions, which depend only
on one or two arguments. Thus, the evaluation of 3, (k) can
be carried out in a much larger parameter space. We note
that the high-frequency regulation explained above is very
important for £(k) to reproduce the asymptotic tail of the
self-energy function in frequency space correctly, which is
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crucial for maintaining the correct high-frequency behavior of
the two-particle vertex functions, and vice versa.

III. RESULTS
A. Validation against DMFT at half-filling

In this section, we present numerical results to justify
our implementation of the parquet equations and to validate
the accuracy of the kernel approximation. Toward that end,
we consider the Hubbard model on a 2D square lattice
with nearest-neighbor hopping ¢ and interaction U at inverse
temperature . We solve this model using both the DMFT
methodology and the parquet equations at a single-momentum
point. Unless mentioned otherwise, the results presented in this
section represent the solutions with the second-level kernel
function and the high-frequency regulation for the self-energy
asymptotics introduced in the previous section.

More specifically, we use CT-INT as an impurity solver
for the DMFT equations, yielding both the single-particle
self-energy and the two-particle vertex function, in a nu-
merically precise way. The DMFT solution provides an
unbiased reference for benchmarking our implementation of
the parquet equations. For a fair comparison, we take the
converged DMFT Weiss function G(iv,) as input for the
parquet equations. For the other input, i.e., the fully irreducible
vertex function Afi/km /s /T(q), we take two different values:
In one calculation, we take the lowest-order approximation
Af,’/k,;q/s/[(q) ~ (U, —U,2U,0), which corresponds to the PA
for the DMFT impurity model. In the other (full parquet)
calculation, we take the CT-INT calculated Ai‘i/"m /s /[(q) as
input. Since (in contrast to DI'A) we do not include a
k dependence here, this calculation exactly reproduces the
DMFT results for F and X if the parquet equations are solved
on an infinite frequency interval and if statistical errors in
CT-INT are negligible. For the given finite frequency interval,
this is hence a test for the accuracy of the proposed kernel
approximation.

We show the corresponding full parquet self-energy in
Fig. 3 as empty circles. It nicely reproduces the DMFT
solution (empty squares), validating the accuracy of the kernel
approximation. Also, the PA solution (open triangles) agrees
well with the DMFT, except for a small deviation at the first two
Matsubara frequencies. In particular, the high-frequency tail of
the self-energy is nicely reproduced by both parquet solutions.
This is an essential check for the algorithm. As explained
before, a direct truncation of the vertex at the boundary of the
available parameter space will lead to the wrong solution of
the self-energy, which is mainly reflected in the violation of
the high-frequency behavior.

Such a violation is a rather common issue appearing in
most of the diagrammatic approaches when evaluating the
self-energy with only a finite numbers of Matsubara frequency.
To achieve a correct high-frequency tail in the self-energy,
a few hundred or even more Matsubara frequencies usually
have to be adopted in these approaches [10,18], which is
significantly larger than the number taken in our parquet
calculations for similar parameters. That is, in all calculations
presented in this paper, no more than 60 Matsubara frequencies
in each argument are taken, which significantly reduces the

165103-5



LI, WENTZELL, PUDLEINER, THUNSTROM, AND HELD

0.00 : :
-0.10 |
-0.20 |-
£-0.30 |
2 040 -
-0.50 |- DMFET i
full parquet —o—
-0.60 parquet approximation —a— 4
-0.70 I I I I
0 20 40 60 80 100

Un

FIG. 3. Single-particle self-energy obtained from the parquet
equations in the PA and the (local) full parquet calculation employing
the kernel approximation. The latter reproduces the DMFT solution
with high precision, but the PA also shows quite good agreement,
except for the lowest two Matsubara frequencies. The parameters for
the 2D Hubbard model in DMFT are § = 1,U =4 (here and in the
following, t = 1). In the parquet equation, 60 Matsubara frequencies
have been taken into account in the inner interval of Fig. 2(b), with
the kernel approximation being employed in the outer interval.

demand on the memory for storing all vertex functions. Cor-
rectly reproducing the high-frequency tail with significantly
fewer Matsubara frequencies is one of the highlights of our
algorithm.

At a lower temperature 8 = 2, the full parquet calculation
still yields results that agree very well with the DMFT solution,
as shown in Fig. 4. The PA results, on the other hand, deviate
more strongly from the DMFT at low frequencies. This is
expected since approximating the fully irreducible vertex by
the bare Coulomb interaction is correct only asymptotically
for small U. As discussed before, the difference between the
PA and the full parquet solutions results from the different

000 T T T T T
—=&— parquet approximation
010L 9 full parquet
Y|----2--- DMFT

-0.20 .
=
=
@’ -0.30 .

040F /R Fowl F 1 -

050 s .
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v

FIG. 4. Same as Fig. 3 but for U = 4 and 8 = 2. The inset shows
the convergence of ImX(iv, ) with the increase of the frequency cutoff
in Agymyse; see the main text for more details.
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density channel

magnetic channel

20°< 20 (s

singlet channel

FIG. 5. Two-particle full vertex functions in the four channels as
calculated from the parquet equations taking the fully local irreducible
vertex from DMFT as an input. The parameters are the same as in
Fig. 3.

values for the fully irreducible vertex function A][‘,'/k,; /s/1(@)
used in the calculations. More specifically, in the full parquet
calculation, we take Af,’/k,;? /s /,(q) obtained from the DMFT
(CT-INT) with 30 Matsubara frequencies for each argument,
i.e., k, k', and g are in [—na,na] = [—14,15], and then we
extend Aﬁ,’/k,; ss/¢(q) to [=30,30] by supplementing it with the
lowest-order values of these vertices, i.e., (U, — U,2U,0). In
the PA calculations, we take AZ’/k,;l/X/r(q) as (U, —U,2U,0)
everywhere in [—30,30]. To see the convergence of the full
parquet calculation with respect to n 5, the inset of Fig. 4 shows
solutions of the full parquet calculation for three different
cutoffs n. We find a converged solution for ny > 5. As is
known, to obtain the fully irreducible vertex Ak’k’(q) with
large frequency cutoff is numerically very challenging. The
inset of Fig. 4 shows that a relatively small value of cutoff
ny is sufficient to converge the solution (if there exists a
convergence) to the correct values.

Such excellent agreement is not only achieved for the self-
energy. We also find that the full parquet equations give almost
identical two-particle vertex functions in all channels (Fig. 5)
when compared to the DMFT. In Fig. 6, we calculate their rel-

. . W DMFT, v,/

ative difference ), , IAF;/"m,/X/,(a))|/| Do IFd/m/s/;’ V()]
by summing up the two fermionic frequencies v,v’, and
we show it as a function of the transfer frequency w,.

Here, AF) (@) = Fypedir " (@) — 5" (w). The
overall amplitude of their differences is small, and the biggest
deviation appears at w, = 0. This is expected as, in the
reducible vertex, for any v and v’ the largest absolute value is
at w, = 0. Itis then easier for an error of the reducible vertex at

w, = 0to propagate to the complete vertex £/, d”/”m/ /s/¢(@n). Inthe
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FIG. 6. The relative error of the complete vertices in Fig. 5 with
respect to those calculated in DMFT using CT-INT. The relative error
is summed up for the two fermionic frequencies and is shown as a
function of the transfer frequency w,; see the text for more details.
Note that this relative error is also subject to the propagation of the
statistical error of CT-INT.

triplet channel, we also notice that the relative error is large at
larger frequencies, too. This is due to the statistical error of the
CT-INT and the extrapolation error in the fully localized vertex
function A" (w), which was only calculated up to |w,| = 15
in the CT-INT. Let us emphasize that the two-particle vertex
F, (’,‘/];; ;s,:(@) at larger frequencies is calculated from the kernel
approximation. The small error in this regime, especially in
the density, magnetic, and singlet channels, shows that the
kernel approximation correctly reproduces the asymptotics of
the two-particle vertex functions.

The agreement in both the single- and two-particle quan-
tities clearly demonstrates that our implementation of the
parquet equations fully respects the self-consistency at both
the singe- and two-particle levels. It should be noted that
the availability of the two-particle vertex function as output
is one of the striking features of the parquet theory. The
two-particle vertex functions play a crucial role in various
diagrammatic approaches [32,38—44] that construct nonlocal
correlations starting from a local DMFT [30] solution. In the
dual-fermion (DF) [39—41] functional renormalization-group
enhanced DMFT (DMF?RG) [45], the nonlocal expansion
(NLE) [44] and the three-leg vertex (TRILEX) [46] approaches
to the full vertex functions F [’i‘ /fr/, /s /r(q) are used to restore the
nonlocal dependence in the self-energy. In ladder DI"A [32,38]
and the one-particle irreducible (1PI) approach [43], the
channel-dependent irreducible vertex functions Fs/km /s/¢(q) are
the building blocks for the nonlocal self-energy diagrams.
Full parquet DT"A [28] starts, as we do here, with the most
compact and local object, i.e., the fully irreducible vertex
Af,/l‘m /s /,(q). To obtain these necessary vertex functions is
not a trivial task. Exact numerical methods, such as quantum
Monte Carlo (QMC) or exact diagonalization (ED), are usually
employed. We have shown in this paper that, in addition
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0.00
-1.00 g
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Unp

FIG. 7. With the kernel approximation and high-frequency regu-
lation, the convergence at U = 6 and 8 can also be achieved in the
PA. Here the inverse temperature is the same as in Fig. 4.

to these approaches, the parquet equations provide another
tool that is more flexible than the QMC and ED in many
situations, as it can be applied to cases out of half-filling,
cluster systems, multiorbital materials, etc. We believe that
our implementation of the parquet equations paves the way for
other many-body methods [39—41,44,45] that are based on the
two-particle vertex.

Another feature of our parquet implementation is the
improved convergence of the algorithm. As displayed in
Fig. 7, with the kernel approximation, U = 6 and 8 can
also be converged, which is difficult to achieve in other
implementations [26,27]. The improved convergence is mainly
due to the correct understanding of the vertex structure and the
subsequently proposed kernel approximation. In implementa-
tions without auxiliary high-frequency functions, one has to
enlarge the frequency range to achieve a better convergence.
However, the rapid growth in the memory demand usually
forbids one to do so. Comparing Fig. 7 with Fig. 4 immediately
implies that, with the increase of interaction strength, the
deviations of the PA from the DMFT become more and
more pronounced. The parquet approximation works better
in the weak-coupling regime. This is corrected when the full
parquet calculations are performed. However, we noticed that
the convergence in the full parquet calculation is generally
slower than in the PA, and for these values of interactions, i.e.,
U = 6,8 and even larger, we did not achieve the convergence
in the full parquet calculations, which is mainly due to the
almost singular value of A][‘,/I”,;, J5,1(q) occurring at larger values
of U [47].

B. Validation against DMFT away from half-filling

The parquet formula decouples the complete two-particle
vertex functions according to its reducibility in different
channels. As a result, the parquet formula entangles particle-
particle and particle-hole channels. Both, the full two-particle
vertex functions and the single-particle self-energy are subject
to contributions from both particle-hole and particle-particle
fluctuations. At half-filling, the particle-hole, especially the
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FIG. 8. The self-energy functions calculated from the parquet approximation and full parquet at Bz = 10.0 and U/t = 4.0 with average
particle number (n) = 0.8. (a) Both the real and imaginary parts are compared to the corresponding DMFT solution. (b) and (c) The same
self-energy functions as in (a) but in the real-frequency domain. Analytical continuation is carried out with the Padé approximation.

magnetic channel, is the channel displaying the strongest
fluctuations. Thus, the low-energy physics at half-filling
is dominated mainly by magnetic fluctuations from the
particle-hole excitations. Here we further benchmark our
kernel approximation for the hole-doped case, where the
magnetic fluctuations are suppressed while the charge and
pairing fluctuations are enhanced. The doped single-band
Hubbard model is very appealing due to the interest in the
pseudogap of unconventional superconductors. In the normal
phase of cuprate superconductors, it is believed that due to
the strong competition between particle-hole and particle-
particle fluctuations, a pseudogap forms as a precursor of the
superconducting gap below the transition temperature.

As the parquet formulation equally describes particle-
particle and particle-hole fluctuations, the doped Hubbard
model is indeed a good testing case for our implementation.
In Fig. 8, we show the results for Bt = 10 and U/t = 4.0, and
we compare the parquet approximation (red square), the full
parquet (blue circle) calculations, and the numerically exact
DMFT solutions (green triangle). The particle concentration
is taken as (n) = 0.8. To keep (n) fixed in the self-consistent
parquet calculations, we adjust the chemical potential u in each
self-consistency iteration. Compared to the results presented
in the previous section, the temperature is much lower and
the doping level is close to the optimal doping for cuprate
superconductivity.

In the doped case, the real part of the self-energy becomes
nonzero. For this effective single impurity problem, the static
part of the self-energy is completely given by the Hartree
contribution, which accounts for the hole doping. As is clearly
displayed in Fig. 8, the asymptotics of both real and imaginary
parts of the self-energy from the parquet approximation and
the full parquet solutions agree well with that of the DMFT. In
the low-frequency regime, the imaginary part of the parquet
approximation and the full parquet solutions is similar to the
DMFT exact solution, while in the real part the discrepancy

between the parquet approximation and the DMFT is nicely
improved by the full parquet solution with a local fully
irreducible vertex as an input. Such an improvement is also
seen for real frequencies [see Figs. 8(b) and 8(c)], where the
low-frequency part of the DMFT solution is nicely reproduced
by the full parquet results, while the parquet approximation
solution deviates slightly from the other two. Here, of course,
the Padé fit leads to some numerical noise.

As already noted before, in the full parquet calculations
we take the fully irreducible vertex function AV (w) obtained
from DMFT (QMC) as input. In this low-temperature study,
we have A" (w) only in a limited parameter space v,v’ €
[—8.48 : 8.48] and w € [—8.8 : 8.8], which corresponds to
a Matsubara frequency index in [—14 : 15]. Increasing the
number of Matsubara frequencies in DMFT (QMC) is basi-
cally hindered by a fundamental problem of QMC, i.e., the
statistical error of the two-particle vertex functions at larger
frequencies. The inversion of the Bethe-Salpeter equation in
DMFT (QMC) becomes unstable in this case. The problem of a
limited number of Matsubara frequencies available in AV (w)
is more serious in this study than in the high-temperature cases
studied before. This numerical noise may be the source of the
discrepancies in the imaginary part. Let us note that for this set
of parameters, it is not even necessary to work with the A (w)
calculated by means of QMC. As one can see from Fig. 8, the
parquet approximation with A(‘;/”m ss(@) = U, —U,2U,0)
behaves reasonably at both high and low frequencies. By
doping, electronic correlations are reduced so that the parquet
approximation, which works better at weak coupling, becomes
more justified. Of course, a better estimation of A"V (@) can
further improve the parquet approximation.

C. Dynamical vertex approximation

In this section, we go beyond the DMFT solution of the
Hubbard model discussed in the preceding section, where
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density channel

magnetic channel

triplet channel

FIG. 9. Nonlocal full vertex obtained by DI'Aat ft =2,U/t = 4
for a2 x 2 momentum patch. F, j/",‘,l /s7:(q) is shown as a function of k
and k' for fixed ¢ = 0.

the parquet equations are solved without k dependence (for
a single k point). Instead, we solve the parquet equations
for a 2 x 2 patch-grid in momentum space using the local
fully irreducible vertex as an input. This is the parquet DI'A,
which includes nonlocal correlations beyond DMFT [28].
Figure 9 shows the nonlocal, full vertex functions at g = 2
and U =4 (t = 1) as functions of k and k" with ¢ = 0. In
each compound index k, there are four different momenta,
which results in 64 momentum patches for each vertex
function. Figure 9 shows the 16 patches for ¢ = 0. It is
obvious from Fig. 9 that the full vertex shows a strong
momentum dependence that is also very channel-dependent.
While we only show results here fora2 x 2 patch-grid, solving
the parquet equations for larger clusters is possible due to
the economic use of memory in our kernel approximation.
We found our implementation to be feasible also for calcu-
lations on 4 x 4 clusters. Further algorithmic improvements
regarding parallelization and memory management should
allow for even larger cluster sizes.

IV. SUMMARY AND OUTLOOK

In this paper, we have proposed an implementation of the
parquet equations and applied it to the one-band Hubbard
model in DMFT and DI" A. We found that it is crucial to respect
the correct structure of the vertex functions to simultaneously
maintain the self-consistency at both single- and two-particle
levels. Among the various two-particle vertex functions, the
reducible vertex in each channel plays an important role in the
parquet equations in the sense that it generates the major struc-
ture of the other vertex functions. This important observation
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motivates us to propose a two-level kernel approximation on

the reducible vertex CDfi/km (¢) and \I{f/”,"'(q), which effectively
reduces its three-argument dependence to a one-/two-argument
dependence. Employing this two-level kernel approximation
in a larger frequency interval greatly simplifies the calculation.
In particular, it faithfully respects the open boundary condition
of the vertex functions in Matsubara frequency space. Based on
the kernel function, we also proposed an auxiliary function to
carefully incorporate the high-frequency information missing
in the finite sum evaluation of the self-energy.

We showed that the two-level kernel approximation and the
high-frequency regulation are efficient for solving the parquet
equations. For the single-impurity Anderson model, a very
impressive agreement with the DMFT can be achieved that
validates our approach. We also demonstrate that the PA works
quite well as long as U is not too large. Let us note that
the kernel approximation and the high-frequency regulation
also improve the convergence, which further enhances the
applicability of this approach. The calculated two-particle
vertex functions can be used as a starting point by other
many-body approaches, such as the ladder-DI'A, the 1PI
approach, DMF?RG, DF, NLE, and TRILEX.

The proposed two-level kernel approximations and the
high-frequency regulations are compatible with the PA and
the full parquet DI'A, which we were able to perform in
two dimensions. Physically, the advantage over previously
employed ladder DI'A [48,49] is that in the full parquet
DTI'A the particle-particle (Cooper) channel is also included.
This allows us to study spin-fluctuation mediated supercon-
ductivity [18,19] and instabilities toward stripe phases [50].
Let us note that nonlocal interactions can also be included
straightforwardly. For example, it is possible to study an
extended Hubbard model with nearest-neighbor interaction
and the competition between the long-range magnetic and
charge instabilities.
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APPENDIX: FORMULATION OF THE
PARQUET EQUATIONS

In this appendix, we present the necessary notations that
are used in this paper. Based on these notations, the parquet
equations are derived under SU(2) symmetry. The complete
derivation of the parquet formulation concerns two parts: the
coupled equations for the two-particle vertex functions in all
channels, and the one-particle self-energy.

Throughout this paper, we considered the half-filled single-
band Hubbard model on a square lattice and used its DMFT
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solution as a benchmark for testing the numerical feasibility
of our approach. The Hubbard Hamiltonian reads

H = ZEkClT(’aCk,o + UZI’I,'TR,'L.
k.o i

Here, k represents a momentum vector in the two-dimensional
(2D) square lattice, ex = —2¢(cos k, + cos ky),cfm (ck,o) cre-
ates (annihilates) an electron with momentum k and spin

(A1)

oef{t,l}, and n;,, = ciTac,-,U is the number operator on
lattice site i.

1. Notations

First, we introduce the definition for the two-particle
susceptibility x, from which other vertex functions can be
derived. The particle-hole and particle-particle susceptibilities
are defined as

Xllihk,gg (q) = Z e—ikr,-ei(k+q)rje—i(k’+q)rkeik’r,

ijkl

X (Tycl (ri)eq (rp)el (r)co(n)),  (A2a)
pr o (q) Z e*ikr,-ei(qfk’)rje*i(qfk)rkeik’r,

ijkl

X (Tech (ri)eo (r)el (r)eq (). (A2b)

Here, r = (r,7) with lattice site r and imaginary time 7,k =
(k,iv) with wave vector k and Matsubara frequency iv,
and ¢ = (q,iw) with the transfer momentum and bosonic
frequency. } ,; ;, will beunderstoodas 7'}, . foﬁ dz; ---d7,
where T is the temperature. Note that the particle-hole and
particle-particle excitations are encoded in the same four point
correlator in the above equation, thus x*; ph vo'(@) and xh 1)1) vo (@)
are not independent but relate to each other by means of
a frequency shift That is, they are related to each other as
Xﬁ}f;a (@)= xph vo'(@ — k — k). The same relation also holds
for the complete vertex F and the fully irreducible vertex A.

From the susceptibilities Xllj’hk;m,(q) and xlljl',k;m (q), the

complete (full) vertex functions F ph vo(@)and F 11517 »o(g) can
be easily obtained as

k,k' 0,kk’
Fk,k’ _ Xph oo’ (C]) - Xph oo’ (q) A3
])h,oa'(q) - Gk Gk+qu, Gk T s ( a)
F]]j;,lf;,gf( ) _ X])}),O’O”(q) - XI,};,M/(CZ) ’ (A3b)

GkGIM Gk GaTt
with the bare bubble Xk (q) =

[Gk Gk q 0— Gk Gk+q8k,k'8<7(r'] and X]?pklzro’ (q) =
N[G/;Go,ak,q,kf — G GY 8 180001, SUQ)

susceptibilities

Under the
symmetry, the full vertex functions (including also the other
vertex functions) with different spin configurations can be
cast into a more compact form in the density (d), magnetic
(m), singlet (s), and triplet (¢) channels; see Fig. 10:

P M(q) + Fyb @), (Ada)

Fys (g) £ WN()

Frlz\/];n(Q)

¥ = (Adb)
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FIG. 10. Graphical representation of the vertex functions in the
particle-hole (d/m) and the particle-particle (s/¢) channels, which
apply to all the vertices in this work.

In each channel, the full vertex function can be further
decomposed into the two-particle irreducible vertex (I' g/ /s/1)
and the reducible vertex (®g/,,¥;/) through the Bethe-
Salpeter equation (BSE), which has been thoroughly discussed
in many works; see, e.g., [6,34]. Here, we will only recall
the BSE formulas as used in the derivation of the parquet
equations:

Fz?/fn (g) = Thl @ + o4 (@), (ASa)

FiE @) =T @+ v @),

where the reducible vertex functions depend on the irreducible
and full vertex as follows:

(ASb)

Z Lhr (GKGK + q)F;
k!/

o YT @GWNGG ~ KOS @),
k//

@yt (q) = “(q), (A6a)

[/c (CI)

(A6b)

2. Derivation of the parquet equations

With the above notations and definitions, we now proceed
to derive the parquet equations. The irreducible vertex I/ /51
is only irreducible in a given channel, while it becomes
reducible in other channels. Ay /51, as the most fundamental
one among all vertex functions, is fully irreducible in all
channels. Given A g/, /5,1, the full vertex Fy,,/4/:, the channel-
dependent irreducible vertex I'g/n s, and the reducible
vertices @4/, Vs, can be readily calculated from the parquet
equation, as represented graphically in Fig. 11. The parquet
equation is merely a classification of diagrams in terms of
their two-particle irreducibility. Mathematically, by taking the
spin dependence of each diagram into account, we obtain the
parquet equation in the particle-hole channel as

k.k kK’ kK gphkt

Doni1(@ = A (@) + @50 () = W 3 (k + K + ),
(A7a)

kK phkt

Conr (@ =A ,,h N(CI)-I-CD hN(q) 1?11 T‘j(k+k + q).

(A7b)
After applying the crossing relations [34]
O @) =~ K k), (ASa)
k.k' _ _ akktqqs

oL (@) = @K — k), (A8b)
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O
rDD = ADD

FIG. 11. Coupled diagrams for the parquet equations in the
particle-hole and particle-particle channels. Here the corresponding
diagrams in the particle-hole transverse channel have been omitted, as
they do not lead to independent contributions to the parquet equations
and can be derived from the particle-hole channel.

\I'f;;f"mq) = W) = w1 (g), (A8
k q—k
pp Ti(q) l’l’ T (Q)

to Egs. (A7a) and (A7b), we have

(A8d)

Dot @ = Ay (@) = @K =)

+ U ke + K+ g), (A9a)
T (@) = ASE L (@) — 54K — k)

+ W (kK +q), (A9b)

which can be equivalently written in the density and magnetic
channels as

Y (@) = A¥ (@) = Lo W — k) — 3ok — k)
F RV kK + )+ 3V kK +g),
(A10a)
r&¥(g) = ALK () = 305 W — k) + ok — k)

— IR G K+ )+ UK R+ K+ ).
(A10b)

Similarly, for the particle-particle channel in Fig. 11, the
equations read

k.k _ AkK kz] —k’ k,q—k'
F])]) Ti(Q) - A])]),T¢(q) - )h T (k k) o PhT (k - k)
(Alla)

_ /»q kK . kq kK
P @ = A (@) = @40 — k) — @ K = k).
(A11b)

To simply these equations, we need again Eq. (A8b) and the
following relation:

b (g) = — ) (K — k), (Al2a)
b @) = 2K (@). (A12b)
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FIG. 12. The Feynman diagram for the self-energy, which con-
tains contributions from both the particle-hole and the particle-
particle channel.

The parquet equations for the particle-particle channel are then
found to be

A (g) = A¥ () + 15 0 — k) — Joka ¥ & — k)
+lobk g —k— k)= 20kK (g —k =K,
(Al3a)
@) = A @) = 3o T K — k) = Jl ke — k)
+1ok (g —k— 1)+ 1K (g — k= k).

(A13b)

3. Crossing symmetry

An important symmetry that the parquet equations satisfy
but that is violated in the Baym-Kadanoff formalism is the
crossing symmetry, which for the full vertex reads

F¥¥q) = JFM¥ e+ K + @) + 3FFY (k + K + ),

Fi¥(q) = —3FF k+ K +q) + 3F (e + K + ),
FE¥(q) = SFy (g —k — k) = 3FE¥ (g — k= k),
F¥ @) = 3Fi =k =K) + 3FN (g = k= k).

(A14)

These equations can be easily verified in the parquet equa-
tion (1) by substituting Egs. (A10) and (A13) into Eq. (AS5).
A correct solution of the parquet equations certainly should
respect this symmetry. It has been understood that the above
crossing symmetry can be explicitly enforced at each self-
consistent step by solving the parquet equations for the full
vertex Fgm/s/1,1.€., Eq. (1), instead of those for Iy, 5/ [27].
We note that a similar crossing symmetry also applies to the
fully irreducible vertex Ag /s

4. Self-energy from the full vertex

To close the self-consistent loop in the parquet theory, we
also need to connect the two-particle full vertex functions
Fy/ms;i with the single-particle self-energy X(k), which is
graphically shown in Fig. 12. This connection can be derived
through the Heisenberg equation of motion and is also known
as the Schwinger-Dyson equation.
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In this context, it reads
UT?
4N

k) = ———Y_ Gk +)GK + q)G(K)

k'.q
x [F5* () — FE¥ ()]
UT?
4N

Y Glg —K)Glg —k)G(K)
k'.q

x [FE¥ (@) + F¥ @] (A15)
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Here, the sum over k" and ¢ should be done over all Matsubara
frequencies. In principle, the Hartree and Fock terms need to be
added to Eq. (A15), but they are not relevant for the one-band
Hubbard model in the paramagnetic phase.

From X in turn, the Green function is obtained through the

Dyson equation, which for the sake of completeness reads
Gk)=liw—ex — (k)" (A16)

This Green function enters Eq. (A6), which closes the set of
equations in the parquet formalism.
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