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1. Introduction  

1.1. Aging and age-related diseases 

The process of aging affects every living creature on the planet and the death 

stands inevitably at the end of life. Since generations scientists try to find a way 

to encode and prevent the deleterious process. The aging of an organism is 

defined as a progressive decline of physiological functions with increased 

probability for disease and death within life span (Harman, 2003, Droge, 2002). 

The life expectancy of human beings has been constantly changing over the 

centuries. The number of people aged over 45 years is increasing, especially in 

the developed countries. In Germany as a developed country the shift towards 

an overaged population is clearly observed. By comparing the population 

pyramids of 1950 and 2015, the progressive change from 1950’s clock-model 

with a large base of people under 30 years to an onion-shaped model in 2015 

displaying a major group of people over 45 years is visible (Figure 1). This trend 

appears in both sexes as well as in other developed countries and even in 

underdeveloped countries (Nations, 2015). 

 

Figure 1: Population pyramid of Germany from 1950 (left) and 2015 (right). Age distribution 

of males and females in 1950 is compared to 2015 visualizing the overaging of the population. 

[adopted from (Nations, 2015)] 
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During the last centuries the life expectancy of people has increased due to less 

infant mortality and improved health care conditions including treatment for 

infections and better management of chronic diseases and cancer (Mathers et 

al., 2015). Life expectancy is defined as the average life time that an individual in 

a certain environment will survive (Tosato et al., 2007). Aims concerning 

extended life expectancy are described as healthy longevity including 

maintenance of functional capacity up to an old age (Jin et al., 2015). Another 

view on the process of aging is the evaluation of the maximum life span defined 

as the maximum number of years that a human being can reach. The maximum 

life span of humans with a total of 125 years has not changed for 100.000 years 

and different approaches are made trying to explain how we age and why 

(Hayflick, 2000). It is hypothesized that different interacting factors exist that lead 

to aging of an organism (Cui et al., 2012). By observing epidemiological factors 

of a population such as mortality and morbidity, scientists were early trying to 

identify the “perfect survival conditions” for human beings but an explanation for 

the cause of aging is still missing (Ferrucci et al., 2008). With increased 

knowledge about molecular pathways, the theory of the accumulation of cellular 

damage as major cause for aging over time was developed (Gems and Partridge, 

2013, Vijg and Campisi, 2008, Kirkwood, 2008). An increasing risk for protein, 

lipid and DNA damage as well as altered intracellular signal pathways and 

ineffective removal of damaged cells was identified in elderly individuals (López-

Otín et al., 2013).  

This thesis focuses on the understanding of accumulated oxidative cell damage 

in aging and age-related molecular changes in an organism. The degenerative 

aging process is characterized by a variety of universal traits such as impaired 

wound healing, poor vision and reduced hearing but it is also closely linked to 

certain diseases (Figure 2). It alters the function and structural integrity of the cell 

and weakens their regeneration abilities with increasing the risk for diseases 

mainly affecting the immune system, the central nervous system, the 

cardiovascular system and the liver (Poulose and Raju, 2014). The risk to suffer 

from Type 2 diabetes known as non-insulin-dependent diabetes increases 
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dramatically in age and up to 70% of patients with Type 2 diabetes are older than 

55 years (Nathan et al., 1986).  

In aged individuals different cells of the immune system are influenced in their 

function leading to a dysfunctional immune response. This increases the 

probability of infectious diseases like pneumonia and influenza, autoimmune 

disorders and cancer (Hawkley and Cacioppo, 2004, Castle, 2000). The acquired 

cell-mediated immunity is mainly affected by aging as the T-cell maturation and 

selection in the thymus is decreased. It is linked to the age-dependent involution 

of the thymus that is finally completed around the age of 60 (Gui et al., 2012, 

Grubeck-Loebenstein, 1997). It has been demonstrated that the amount of naïve 

T-cell production declines with an increase of memory T-cells. T-cell mediated 

signal cascades are altered weakening the specific immune protection against 

pathogens (Miller, 1996). The altered immune response is closely linked to 

malignant degeneration of cells. Certain types of neoplasm show a higher 

incidence in older people mainly affecting prostate gland, colon and breast tissue 

(Suen et al., 1974). Cancerous cells share similarities including cellular 

transformation, dysregulated apoptosis, uncontrolled cell proliferation and 

metastasis (Vasto et al., 2009). One explanation of the age-dependency of 

neoplasm is the increase of DNA mutations due to the cumulative exposure 

towards oxidative stress (DePinho, 2000). But also inefficient apoptosis in elderly 

people, normally useful to regulate the number of cells in tissues, enables the 

uncontrolled proliferation of cancerous cells increasing the resistance against 

their removal (Lowe and Lin, 2000).  

Other age-dependent diseases are neurodegenerative diseases including 

Alzheimer’s disease and Parkinson’s disease that show a significantly increased 

incidence in older individuals (Schon and Przedborski, 2011). It is difficult to 

identify proper causes for brain aging in healthy elderly as diseases mainly 

contribute to the decline in cognitive function in aged individuals (Glorioso and 

Sibille, 2011). Properties of neurodegenerative diseases were also found in 

‘healthy’ aged people and the theory of oxidative damage during aging develops 

with an accumulation of dysfunctional cells. The tissue of central nervous system 

can be characterized by a high metabolic rate, oxygen consumption and lipid 
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content making it more susceptible towards oxidative damage compared to other 

tissues (Kumar et al., 2012). Additionally, nervous cells contain mainly post-

mitotic cells without further ability to divide and regenerate causing more severe 

damage in tissues compared to cells with a high turnover rate (Di Domenico et 

al., 2016). Patients suffering from Alzheimer’s disease have shown increased 

rates of oxidized proteins underlining this theory (Smith et al., 1991).  

Over many years diseases of the cardiovascular system remain the main cause 

of death in industrial countries with an increased risk in elderly for myocardial 

ischemia following arteriosclerosis and congestive heart failure (Sistino, 2003). 

Constitutional differences of the heart with advancing age could be identified even 

in apparently healthy elderly including increase in heart weight as a sign for left 

ventricular hypertrophy as well as altered diastolic filling periods (Fleg and Strait, 

2012). Also the peripheral vascular system is affected as arteries elongate and 

the vascular wall gets more rigid due to structural changes and less elastic 

components (Lee and Oh, 2010). These are signs of early arteriosclerosis that in 

the final state includes focal lesions, stenosis of vessels and plaque formation 

(Ferrari et al., 2003). Both the brain and the heart are organs with a high metabolic 

rate that processes large amounts of oxygen (Dai et al., 2012). Therefore, the 

heart is prone to severe accumulation of oxidative damage and of special interest 

in determining an increase oxidative status in older individuals. Increased 

oxidative stress status was evaluated in the pathogenesis of arteriosclerosis 

(Mashima et al., 2001) as well as in patients suffering from congestive heart 

failure (Belch et al., 1991) and myocardial ischemia (Rodrigo et al., 2013).  

Finally, the liver as a model organ in this study is known to be less affected by 

the aging process compared to other high-blood-flown organs like heart and 

brain. It has a high regenerative capacity and therefore is widely studied in the 

field of oxidative damage (Schmucker, 1998). The liver fulfills numerous functions 

that can be basically summed up as the ability to excrete harmful substances 

such as toxins and drugs, containing parts of carbohydrate, protein and lipid 

metabolism and the secretion of bile produced in the hepatocytes into the bile 

duct (Mangoni and Jackson, 2004, Mitra and Metcalf, 2009). With advancing age, 

the liver undergoes various changes with a loss of hepatic volume up to 20-40% 
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and reduced blood flow through the liver of up to 35-40% (Zeeh and Platt, 2002, 

Grizzi et al., 2013). This could be responsible for the reduced drug elimination 

rate in elderly leading to an altered metabolism for drugs and toxins. Further bile 

synthesis and secretion is halved indicating reduced transport mechanisms in 

aging (Zeeh and Platt, 2002). Finally, the regeneration capacity defined as loss 

of hepatic function declines and old individuals need more time to restore liver 

function after damage (Sanz et al., 1999).  

 

Figure 2: Universal traits of aging (left) and age-related diseases (right). Various general 

aging traits are identified monitoring the aging process including hearing loss, wrinkled skin, 

reduced vision and gray hair. Immune system response is weakened as well as wound healing. 

Age-related diseases interact with aging and display possible cellular alterations [modified from 

(Naylor et al., 2013)]. 

1.2. Oxidative stress, reactive oxygen species and mitochondria 

One of the first biochemical models that links the process of aging and the 

accumulation of oxidative damage in an organism is the ‘free radical theory of 

aging’ of Denham Harman 50 years ago. According to Harman the impact of 

negative effects on the cell defined as free radicals could weaken their ability to 

react to certain levels of ‘stress’ (Harman, 1956). The accumulation of radicals 

inside the cell leads to further damage and finally cell death (Tosato et al., 2007). 
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The oxygen metabolism is identified as a major cause for the generation of 

radicals inside cells (Halliwell and Gutteridge, 2007). In an aerobic environment 

the oxygen is mainly processed into water in the respiratory chain of mitochondria 

producing ATP but small amounts of oxygen (up to 4%) are converted into oxygen 

radicals (Farber, 1994). These so-called reactive oxygen species (ROS) can 

accumulate during aging inside cells and alter the cells metabolism (Masoro, 

2005). The imbalance that occurs between ROS formation and protection 

mechanisms of the cell with favor to the radical site is defined as oxidative stress 

(Sies, 1993). This could be caused either by an increased production of radicals 

or a decreased protection against radicals (Davies, 2000). Protection 

mechanisms were identified to extend the life span as the overexpression of 

genes encoding for elimination of radicals in the fruit fly Drosophila melanogaster 

was found to significantly increase the maximum life span, whereas the 

inactivation of protection mechanisms in the mouse is neonatal lethal (Melov, 

2000). Controversial effects concerning radical formation and possible oxidative 

tissue injury have been described and physiological ROS levels are found to 

trigger signal transduction pathways (Halliwell and Gutteridge, 2007). The 

oxidative modification of kinases, phosphatases and transcription factors 

resulting in their activation regulates physiological functions inside cells as well 

as the ability to react towards stress (Hekimi et al., 2011) (Figure 3). ROS 

enhance signal cascades but it is also necessary to finally end the triggered 

signal. Therefore, it is essential for proper physiological responses to keep the 

sensitive balance between positive oxidative enforcement of signal cascades and 

reducing conditions for their termination (Droge, 2002). This so-called positive 

oxidative stress enables the adaptation of an organism to stressful conditions 

such as hypo-and hyperthermia, hypoxia and ischemia (Yan, 2014, Lu et al., 

2014, Salido et al., 2013). Further studies have shown that ischemic tolerance 

after preconditioning was found to increase the protection of tissue against 

ischemic-induced injury (Eipel et al., 2005, Glanemann et al., 2004, Mori et al., 

2000). However, by passing a sensitive threshold at higher levels ROS target 

different macromolecules of the cell mainly including proteins, nucleic acids and 

lipids. During aging this oxidative damage of macromolecules accumulates as 
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repair processes slow down and detection mechanisms decline leading to 

dysfunctional cells (Kumar et al., 2012). There are different techniques to 

determine the grade of oxidative stress in body fluids and tissues. The oxidation 

of proteins is measured as cross-linked protein aggregates (Stadtman, 2001). 

Alteration in nucleic acid include DNA strand breaks and base modifications 

which affect the genome stability and result in an increased rate of mutations 

(Mecocci et al., 1993) and the oxidation of lipids which initiates the chain reaction 

of lipid peroxidation with increased end-products indicate higher levels of 

oxidative stress (Niki, 2009).  

 

Figure 3: Sources and functions of ROS. Reactive oxygen species (ROS) generated in the 

mitochondria or at other sites fulfill two main functions in cell metabolism. At lower levels ROS 

serve as second messenger molecules and modulate important pathways but at higher levels 

they damage macromolecules including lipids, DNA and proteins. Antioxidants control the ROS 

generation, stop signal cascades and keep the redox balance [modified from (Hekimi et al., 

2011)]. 
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Reactive oxygen species (ROS) and mitochondria 

ROS are generated in an organism from endogenous and exogenous sources. 

The main endogenous source is the respiratory chain of mitochondria but also 

enzymes like NADPH oxidases, lipoxygenases and cytochrome P450 can 

generate ROS (Finkel and Holbrook, 2000). Aging was found to increase the 

release of ROS from the respiratory chain and less energy in form of ATP is 

produced emphasizing the major impact of mitochondrial oxidative damage 

during aging (Moghaddas et al., 2003, Sastre et al., 2000). Exogenous sources 

are ionizing radiation and ultraviolet light as well as toxins and chemotherapeutics 

(Kudryavtseva et al., 2016). ROS include free radicals like superoxide anion (O2
-

•) and hydroxyl radical (OH•) as well as non-radicals like hydrogen peroxide 

(H2O2) and singlet oxygen (O2). They contain one or more unpaired electrons that 

make them highly reactive to other molecules (Shah et al., 2014, Ozcan and 

Ogun, 2015). ROS convert into stabilized molecules by stealing electrons from 

other nearby structures initiating the creation of more radicals or reacting with 

each other forming a stable end-product (Lee et al., 2004). O2
-• is mainly 

generated in the respiratory chain of mitochondria that is located at foldings of 

the inner membrane. It consists of complex I-IV that build up an ionic gradient to 

enable energy production via ATP synthase (Figure 4A). During reactions, 

constantly O2
-• leaks into the mitochondrial matrix as well as into the 

intermembrane space potentially damaging nearby macromolecules. Especially 

mitochondrial DNA (mtDNA), membrane lipids and proteins are vulnerable to 

ROS-mediated lesions leading to mitochondrial dysfunction with higher 

production of ROS and increased apoptosis. 
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Figure 4: ROS generation in mitochondria and their metabolism inside cells. A Mitochondrial 

respiratory chain at the inner membrane consists of complex I-IV that build up a proton gradient 

(H+) to generate energy via the ATP synthase. Superoxide anions (O2
-•) leak in the matrix and in 

the intermembrane space. B ROS (O2
-•, H2O2, OH•) metabolism inside cells. O2

-• is processed 

via superoxide dismutase (SOD) into H2O2 and catalase as well as glutathione system buffers 

H2O2 into water. H2O2 can react with Fe2+ via Fenton reaction forming OH• [adopted from 

(Bigarella et al., 2014)]. 

O2
-• is removed by the enzyme superoxide dismutase (SOD) creating oxygen and 

H2O2 (Figure 4B). H2O2 is a by-product of many reactions in the organism and 

can be decomposed in the presence of reduced iron ions either into highly 

dangerous OH• via Fenton reaction (Fe2+ + H2O2 ↔ Fe3+ + OH + OH•) (Cheng et 

al., 2002) or it is buffered by catalase (CAT) into water and oxygen (Slimen et al., 

2014). H2O2 also targets distant cells as it can diffuse through membranes and 

has a relatively long half-life (Cadenas and Davies, 2000). OH• generated from 

H2O2 is known as the most damaging radical due to its extreme reactivity and 
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short half-life making it mainly responsible for nearby oxidative damage to DNA 

molecules such as base modifications and strand breaks (Zorov et al., 2014). 

OH• reacts with the guanosine base of DNA and forms 8-hydroxydesoxyguanosin 

(8-OHdG) that is found to increase in relation to oxidative stress (Haghdoost et 

al., 2005). It has been shown that mutations in mtDNA are 10 times higher 

compared to chromosomal DNA (Mecocci et al., 1993). In comparison to the 

nuclear DNA, mtDNA is not covered by histone proteins, has a high transcription 

rate and is located near the site of ROS production that makes them more 

susceptible for oxidative injury (Cai et al., 1998). With increasing age and 

accumulation of mtDNA damage the respiratory chain produces more ROS finally 

increasing the risk for diseases and enforcing the aging process (Van Remmen 

and Richardson, 2001).  

Mitochondrial oxidative damage also increases the release of intermembrane 

space proteins into cytoplasm such as cytochrome c by making the outer 

membrane more permeable for these substances (Figure 5) (Murphy, 2009, 

Gellerich et al., 2000). Cytochrome c is part of the respiratory chain transferring 

electrons and when released out of the intermembrane space into cytoplasm it 

serves as a signaling molecule that activates a chain of caspases that finally 

induce apoptosis (Cai et al., 1998). Additionally, the formation of a permeability 

transition pore (PTP) in the inner membrane causes rapid movement of ions that 

lead to mitochondrial swelling and loss of mitochondrial membrane potential. This 

allows small molecules like the apoptosis-inducing factor (AIF) to be released 

more easily into cytoplasm inducing apoptosis (Murphy, 2009, Cai et al., 1998). 

Furthermore lipid peroxidation of the mitochondrial membrane as well as 

oxidization of mtDNA is induced making mitochondria more vulnerable and 

further affect the functionality of the respiratory chain (Sastre et al., 2003).  
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Figure 5: Mitochondrial ROS production and harmful effects of ROS. Mitochondrial ROS are 

produced in the respiratory chain at the inner membrane. ROS damage directly membranes via 

lipid peroxidation, attack mtDNA and alter the functionality of mitochondrial membranes. Outer 

membrane permeability (MOMP) is increased as well as opening permeability transition pore 

(PTP) leading to increased apoptosis and necrosis [adopted from (Murphy, 2009)]. 

Protection against oxidative stress 

Organisms can react to increasing oxidative stress by upregulating certain 

protecting molecules such as antioxidative enzymes and non-enzymatic 

antioxidants that can buffer the ROS (Davies, 2000, Mezzetti et al., 1996). The 

antioxidant system consists of enzymes including superoxide dismutase (SOD), 

catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and 

non-enzymatic molecules such as vitamin E and glutathione (GSH) (Finkel and 

Holbrook, 2000, Yu, 1994, Lee et al., 2004). McCord and Fridovich discovered in 

1969 the role of SOD as an enzyme scavenger protecting tissue against oxidative 

damage (McCord and Edeas, 2005, McCord, 1974). In humans exist three forms 

of SOD: cytoplasmic Cu/ZnSOD, mitochondrial MnSOD and extracellular SOD 

(Matés et al., 1999). All SOD forms have transition metals at their active side 

including copper, magnesium and zinc that are oxidized or reduced while SOD is 
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detoxifying O2
-• (Davies, 2000). SOD activity in erythrocytes of healthy humans 

was found to decrease during aging drawing a link to oxidative injury as radicals 

could not be buffered effectively (İnal et al., 2001). SOD converts O2
-• into oxygen 

and H2O2 which is further processed by CAT into water and oxygen (Figure 6). 

The glutathione redox system consists of GPx that also detoxifies H2O2 by 

oxidizing GSH to glutathione disulfide (GSSG) into water (Tian et al., 1998). GR 

is necessary to re-reduce GSSG into 2 molecules of GSH by oxidizing NADH to 

NAD+ (Circu and Aw, 2010). GSH mainly synthesized in the liver is not only 

substrate for GPx but also antioxidative molecule itself as it buffers OH• and 

singlet oxygen (Sies, 1999). Another defense mechanism of the cell is the ability 

to undergo apoptosis instead of ending up with uncontrolled necrosis harming 

surrounding cells with a secondary stress. During apoptosis the cell is engulfed 

by phagocytes to prevent an immune reaction and re-use valuable nutrients 

(Davies, 2000). It is controversial discussed whether increased antioxidative 

capacity would increase life span as low levels of ROS serve as signaling 

molecules and former studies have shown that the excessive intake of 

antioxidants has severe side effects with increased mortality and even induction 

of cancer (Bjelakovic et al., 2004, Miller et al., 2005, Vivekananthan et al., 2003). 

Higher antioxidant levels can protect from oxidative damage but they also reduce 

the physiological adaptation of the cell towards stress that is necessary for 

metabolic pathways (Sena and Chandel, 2012). 

 

Figure 6: Scavenging reactions of antioxidative enzymes. Removal mechanisms for O2
-• and 

H2O2 are schematically shown. SOD converts O2
-• into O2 and H2O2 and CAT further detoxifies 

H2O2 into H2O and O2. The glutathione redox system consists of GPx that transforms H2O2 into 

water by oxidizing 2 GSH into GSSG. GSSG is reduced into GSH by GR to form new substrate 

[adopted from (Peng et al., 2014)]. 
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1.3. Lipid peroxidation  

The oxidative stress in form of ROS leads via a chain reaction that is called lipid 

peroxidation (LPO) to altered structure and function of lipids mainly in cell 

membranes (Kudryavtseva et al., 2016, Yu, 1994). To evaluate a possible 

oxidative damage, the amount of LPO is found to be significantly increased in 

stressful conditions. Lipids are made up of fatty acid chains with a carbon 

backbone mainly consisting of 14 to 24 carbon atoms that could be categorized 

into saturated or mono- and polyunsaturated fatty acids. Polyunsaturated fatty 

acids (PUFA) contain two or more carbon-carbon double bonds that weaken 

nearby carbon-hydrogen bonds and make them more susceptible for radical 

attacks because they more easily split off hydrogen atoms (Farber, 1994).  

Membranes of aged individuals show an increased amount of long-chain PUFA 

that are more prone to peroxidation creating protein cross-links that increase the 

rigidity of membranes and make the membrane more vulnerable to oxidative 

stress (Laganiere and Yu, 1993). Previous studies have shown that short-living 

species like rats with maximum life span (MLS) of 4 years have more PUFA with 

higher numbers of double bonds that are more easily attacked by ROS in 

comparison to long-living species such as horses (MLS = 46 years) (Pamplona 

et al., 2000). Also naked mole-rats (MLS = 28 years) in comparison to mice (MLS 

= 3-4 years) have less PUFA that are highly affected by LPO underlining the 

theory that membrane composition has influence on the longevity of species 

(Hulbert et al., 2006). So long-living species show a decreased rate of 

unsaturation due to lower levels of highly reactive PUFA in membranes that 

decreases their sensitivity towards LPO and therefore fewer harmful products 

that damage cells are produced (Naudí et al., 2013).  

Cell membranes work as selective barriers protecting the cell, support vital 

functions in signaling pathways and are composed of a phospholipid bilayer (30-

80%) including proteins (20-60%) and some carbohydrates (0-10%) (Catalá, 

2009). The high amount of PUFA in phospholipids of cell membranes are priority 

targets for LPO (Farber, 1994). Especially phospholipids located in the 

mitochondrial membrane are affected due to their near-by location to the 

respiratory chain (Andziak and Buffenstein, 2006). The membrane proteins can 



14 

 

be either located at the inner or outer part of the membrane as well as traversing 

the membrane. Together they create a so-called Fluid Mosaic Model, a two-

dimensional fluid model of orientated proteins and lipids that allows molecules to 

move in the plane of the membrane (Nicolson, 2014). This is essential for the 

cellular function. Oxidative damage via LPO was found to affect the membrane 

fluidity and permeability for certain molecules leading to disturbed metabolic 

processes (Andziak and Buffenstein, 2006). The oxidized membrane lipids 

become rigid, lose selective permeability and in worst case lose their integrity 

(Davies, 2000). The membrane potential declines due to increased permeability 

for H+ and other ions affecting ATP-generated and other ion transport 

mechanisms through membranes (Gutteridge, 1995). By altering the membrane 

structure the resistance to thermo-denaturation declines and end-products of 

LPO such as aldehydes are found to cause severe damage to various molecules 

by forming protein adducts with membrane proteins additionally altering their 

structure (Anzai et al., 1999, Lee et al., 2004). The process of lipid peroxidation 

includes three major steps and is outlined in Figure 7.  

LPO is induced by a free radical (R•) and starts with the initiation step ( ) by 

abstracting a hydrogen atom (H+) from the fatty acid chain near a double bond 

leaving a lipid radical (LR•) behind. Under aerobic conditions the propagation (

) continues with the lipid radical (LR•) that combines with oxygen (O2) forming a 

lipid peroxyl radical (LOO•). LOO• reacts with the next unsaturated fatty acid 

chain forming another LR• by abstracting H+ and lipid hydroperoxide (LOOH). 

The LR• serves as a new substrate for the propagation phase and triggers a chain 

reaction creating more LOO• ( ). The termination step ( ) ends the chain 

reaction either by donation of H+ from antioxidants to LOO• forming a non-radical 

and more stable product or with final decomposition of LOOH into end-products 

such as aldehydes (Dobrian et al., 2000). The highly reactive OH• can generate 

LR• and H2O2 out of LOOH. LOO• and LR• can restart the chain reaction of lipid 

peroxidation leading to the accumulation of radicals (Catalá, 2009).  
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Figure 7: Process of lipid peroxidation.  In initiation (1) radicals (R•) attack unsaturated lipids 

(LH) and form a lipid radical (LR•) by abstracting a hydrogen atom (H+). LR• reacts with O2 in 

propagation phase (2) forming lipid peroxyl radical (LOO•) which starts the chain reaction (3) by 

reacting with another LH and forms lipid hydroperoxide (LOOH). Termination (4) includes the 

decomposition of LOOH into aldehydes and donation of H+ to LOO• from antioxidants [adopted 

from (Ayala et al., 2014)]. 

Marker of lipid peroxidation 

Aldehydes such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) 

mainly derive in vivo from PUFA with three or more double bonds. They are 

reactive end-products of lipid peroxidation that serve as toxic messengers by 

initiating the formation of free radicals leading to oxidative tissue damage (Catalá, 

2009). The generation of MDA and 4-HNE as oxidative breakdown products of 

lipids in membranes via LOO• and LO• is shown in Figure 8. Both oxidative stress 

markers are widely studied for their role in tissue damage as well as signaling 

molecules in metabolism. In numerous age-dependent diseases increased 

amounts of MDA and 4-HNE were found including Alzheimer’s disease 

(Markesbery and Lovell, 1998, Butterfield et al., 2006) and Parkinson’s disease 
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(Navarro et al., 2009, Castellani et al., 2002), cancer (Gonenc et al., 2001, Cai et 

al., 2012), cardiovascular diseases (Walter et al., 2004), and liver diseases (Dou 

et al., 2012, Sampey et al., 2003). Further investigations are needed concerning 

cellular injury as it is not yet identified whether LPO is the cause for the damage 

or the outcome of earlier cell injury (Grotto et al., 2009). As aldehydes are 

relatively stable and water-soluble they diffuse through the altered oxidized 

membrane reaching targets even outside the membrane distant from their site of 

origin (Davies, 2000). To evaluate the amount of oxidative damage in cells, MDA 

and 4-HNE are determined as stable end-products of the chain reaction of LPO 

initiated by ROS attacks. MDA shows a great reactivity to molecules with free 

amino acid groups and forms partly stable products via cross-links (Janero, 

1990). Further MDA is known to be mutagenic by forming different adducts with 

DNA bases (Esterbauer et al., 1991). These MDA-DNA adducts mainly induce 

base pair substitutions with increased mutation frequencies as seen in normal 

breast tissue of breast cancer patients with higher amounts of MDA-adducts 

compared to breast tissue of women without breast cancer (Wang et al., 1996).  

4-HNE mainly derived from arachidonic and linoleic acid was identified to be even 

in small amounts highly toxic to cells with inhibition of protein and DNA synthesis 

as well as lowering GSH contents in membranes (Benedetti et al., 1980, White 

and Rees, 1984). The reactivity of 4-HNE is based on its reactivity to the amino 

acids cysteine, lysine and histidine forming 4-HNE-protein adducts (Poli et al., 

2008). 4-HNE also affects the DNA as mutagenic agent by binding to guanosine 

bases of DNA forming 4-HNE-DNA adducts (Csala et al., 2015). Additionally, 

binding of 4-HNE to key signal proteins via sulfhydryl groups modulates 

physiological pathways also inducing pathological responses (van der Vliet and 

Bast, 1992). Increased levels of 4-HNE were found in oxidative stress-related 

pathologies such as during reperfusion of rat myocardium (Blasig et al., 1995), in 

plasma of premature infants with chronic lung disease (Ogihara et al., 1999) and 

in patients with alcohol-induced liver injury (Aleynik et al., 1998, Meagher et al., 

1999).  
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Figure 8: Formation of MDA and 4-HNE as end-products of lipid peroxidation. OH• attack 

unsaturated lipid (LH) and initiate the process of lipid peroxidation finally leading to formation of 

LOO• and LO• that further decompose into MDA and 4-HNE. These aldehydes indicate the 

amount of oxidative stress in an organism in form of lipid peroxidation [adopted from (Jomova and 

Valko, 2011)]. 

1.4. Oxidative stress-induced liver damage 

The liver used as a model organ in this study is found to be highly affected by 

increased oxidative stress in form of ROS (Muriel, 2009). Liver tissue contains 

high amounts of PUFA that are priority targets of ROS as well as iron that in its 

free form can catalyze ROS-releasing reactions (Meng and Zhang, 2003). 

Increased age-dependent oxidative stress is linked to hepatic injury as old 

individuals are more likely to suffer from liver diseases with poorer clinical 

outcome due to reduced regeneration capacity (Tajiri and Shimizu, 2013). Figure 

9 outlines the effects of oxidative stress on the liver that finally cause hepatic 

pathologies including fatty degeneration (steatosis), chronic inflammation 

(hepatitis), scar tissue formation (fibrosis) and further destruction of liver structure 

(cirrhosis) as well as hepatocellular carcinoma (HCC) (Li et al., 2015). ROS-

induced pathways harm liver cells via oxidation of DNA that increases the risk for 

HCC and initiation of LPO with accumulation of fatty acids leading to steatosis. 

The ROS-induced formation of protein adducts and mitochondrial dysfunction 
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affect signaling molecules and increase inflammation reactions that lead to 

chronic hepatitis (Cichoz-Lach and Michalak, 2014). Hepatic stellate cells are 

particular sensitive towards ROS attacks and once activated secret collagen to 

form scar tissue that finally remodels liver structure into fibrotic and further 

cirrhotic tissue (Dunning et al., 2013). Oxidative stress-induced liver injury is well 

studied in animal models after the application of carbon tetrachloride (CCl4) or 

ethanol as pro-oxidant agents (Kadiiska et al., 2005, Weber et al., 2003, 

Natarajan et al., 2006). CCl4 has been identified as effective in vivo inducer of 

LPO in membranes causing steatosis in liver tissue (Recknagel et al., 1989). 

Various studies observed that the prior application of antioxidative substances 

including herbal extracts and dietary supplements prevents hepatotoxic effects of 

CCl4 (Lin et al., 2008, Feng et al., 2011, Reyes-Gordillo et al., 2007). 

 

Figure 9: Oxidative stress in the liver causing liver diseases. Exogenous and endogenous 

sources lead to increased oxidative stress in the liver. ROS-induced pathways include oxidation 

of DNA resulting in hepatocellular carcinoma (HCC) and lipid peroxidation with accumulation of 

fatty acids that forms steatosis. Protein adduct formation and mitochondrial dysfunction affect 

signaling molecules and increase inflammation leading to chronic hepatitis. Hepatic stellate cells 

activated by ROS secret scar tissue and remodel liver structure into fibrotic/cirrhotic tissue 

[adopted from (Li et al., 2015)]. 
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The alcohol-induced liver disease (ALD) is one of the leading causes of death 

and disability worldwide and oxidative stress is intensively studied in liver 

pathologies linked to excessive alcohol consumption (Louvet and Mathurin, 

2015). Ethanol is mainly metabolized in the liver by alcohol dehydrogenases but 

also cytochrome P450 oxidases further metabolize toxins and drugs (Wu and 

Cederbaum, 2009). During these reactions in the liver increased ROS are 

generated that could be measured as increased LPO products and oxidative DNA 

damage markers displaying oxidative stress caused by ethanol (Seki et al., 2003, 

Albano et al., 1996). Especially the isoform cytochrome P450 2E1 (CYP2E1) is 

identified to be induced after alcohol ingestion and intragastrical feeding of 

ethanol to rats has been reported to increase CYP2E1 activity and LPO products 

underlining the theory of ROS-induced injury in ALD (French et al., 1993, Rouach 

et al., 1997, Takahashi et al., 1992). Further studies observed that chronic alcohol 

intake weakens the protection against oxidative stress in form of hepatic 

antioxidant defense system mainly measured as reduced antioxidative enzymes 

activities including SOD, CAT and GPx as well as reduced GSH levels (Husain 

et al., 2001, Molina et al., 2003). The prophylactic application of antioxidative 

substances including Gingko bilboa extract (Yao et al., 2006), quercetin (Nussler 

et al., 2010, Liu et al., 2010) and curcumin (Rong et al., 2012) prior to alcohol 

intake is observed to partially reduce ethanol-induced oxidative injury and 

displays a possible approach towards pharmaceutically preventing oxidative 

stress. 

1.5. Heat stress in aging 

During prolonged periods of environmental heat in form of heat waves especially 

people older than 65 years have a higher risk of mortality (Semenza et al., 1996, 

Vandentorren et al., 2006, Vanhems et al., 2003, Conti et al., 2005). Old 

individuals are less tolerant to hyperthermia and more affected by repeated heat 

stress (Semenza et al., 1996). To keep the physiological homeostasis in balance, 

the body has various adaptation mechanisms towards elevated temperatures. 

The production and evaporation of sweat is important to keep the core 

temperature within its range as well as the increase of cutaneous blood flow by 
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distributing the blood from central to peripheral vessels via vasodilatation 

(Kenney et al., 2014). Aging was found to decrease sweat production, prolong 

sweating during long heating times with loss of plasma volume and decrease 

cutaneous blood flow (Dufour and Candas, 2007, Armstrong and Kenney, 1993, 

Kenney et al., 2014). The plasma viscosity increases caused by the loss of fluids 

leading to a higher possibility of coronary blockage with increased risk of 

cardiovascular death (Kenney et al., 2014). To further investigate the relationship 

between the aging process and heat stress, changes that take place in an aged 

organism when confronted to increased temperatures need to be studied. As 

shown by Kenney and Munce in Figure 10, older individuals have a decreased 

sweat gland function with less sweat secretion and a lower cutaneous blood flow 

probably due to altered structure in aged skin compared to their younger 

counterparts in heat stress conditions (Kenney and Munce, 2003). Other studies 

comparing the cardiovascular system under passive heating investigated a 

reduced increase in cardiac output and less redistribution from visceral circulation 

(Minson et al., 1998). Former studies in gold miners suffering from severe heat 

stroke have also shown that the liver is highly affected from heat stress in form of 

liver injury (Kew et al., 1970, Kew et al., 1971). 

 

Figure 10: Age-related changes in heat stress conditions.  Older people sweat less, have a 

reduced cutaneous blood flow, a smaller increase in cardiac output and the blood redistribution 

from renal and splanchnic circulations is reduced [adopted from (Kenney and Munce, 2003)]. 
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By focusing on the molecular level, elevated temperatures as a form of external 

stress stimulate the ROS production and further increase the oxidative stress in 

an organism (Flanagan et al., 1998). Studies have shown that the respiratory 

chain of mitochondria gets uncoupled (i.e. loss of repspiratory control) when the 

temperature rises above a certain level and increased amounts of O2
-• and H2O2 

accumulate (Salo et al., 1991). Near-by structures inside the mitochondria are 

attacked and H2O2 additionally affects distant structures as it diffuses easily 

through cell membranes (Slimen et al., 2014). Different mechanisms have been 

identified as protection of the cell in heat stress. In hyperthermia the organsim 

produces so-called heat shock proteins (HSP) to repair denaturated proteins 

(Ristow and Schmeisser, 2014). The HSP synthesis and their function as 

chaperones for proteins is shown in Figure 11 (Slimen et al., 2014). Under the 

influence of physiological stressors like hyperthermia and oxidative stress protein 

degeneration occurs inside cells. Heat stress transcription factors (HSF) are 

activated and induce the production of mRNA encoding for HSP and finally lead 

to HSP synthesis. HSP serve as so-called molecular chaperones and facilitates 

the correct folding of degraded proteins. Different HSP have been identified and 

they are divided into groups according to their molecular masses. Especially the 

70 kDa HSP family (HSP70 and HSP72) was found to be strongly induced in heat 

shock conditions (Kiang and Tsokos, 1998, Li and Srivastava, 2001). HSP70 

supervises during heat stress the correct folding of intracellular proteins and 

detects misfolded or denatured proteins (Yamamoto et al., 2000). They form a 

complex with these proteins and either support the transformation into the correct 

form or assist with their removal (Hightower, 1991). The cell is protected from 

stress injury and the ability to recover from higher levels of stress is enhanced by 

HSP (Blake et al., 1991). Various studies on heat shock protein formation after 

heat stress in aging organism showed reduced HSP formation in old individuals 

that might be caused by a weakened response to stress signals (Kregel and 

Moseley, 1996, López-Otín et al., 2013). 
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Figure 11: Schematic diagram of HSP synthesis. Physiological stressors (e.g. heat stress) 

induce the accumulation of denatured proteins and activate heat stress transcription factors 

(HSF). They are further processed in the nucleus and lead to transcription of HSP mRNA. HSP 

are synthesized and convert the denatured protein into is original formation [adopted from (Slimen 

et al., 2014)]. 

In heat stress conditions upregulated levels of protection mechanisms including 

GSH redox metabolism with increasing GSH production to buffer ROS are 

measured (Flanagan et al., 1998). Low intracellular GSH levels were identified to 

weaken the resistance of cells against hyperthermia (Flanagan et al., 1998) and 

increased levels of oxidized GSH as GSSG in the liver were found after ischemia 

indicating increased scavenging reactions of GSH (Abdalla et al., 1990). 

1.6. BMBF joint research project OXISYS  

This thesis is part of the subproject OXISYS that is integrated in the joint research 

project GerontoSYS II of the Federal Ministry of Education and Research (BMBF) 

under the title “Role of oxidative injury in aging and therapeutic implications” 

consisting of 6 partners. OXISYS research groups analyze aging processes 

through oxidative stress in the liver as model organ whereas other projects of 

GerontoSYS II examine various cells including brain tissue, fibroblasts of skin 

tissue and stem cells (BMBF, 2016). The aim of OXISYS subproject is to identify 

and further analyze potential biomarkers for clinical diagnosis involved in ROS-

induced hepatic aging and to discover and evaluate their possible target 

structures in cell metabolism. The importance of these targets might further be 

proved by application of certain target-directed substances that interact and 

protect highly affected structures in the human liver during cellular aging. 

Therefore, the project is not only important for basic research of cell aging and 
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organ regeneration but also relevant for clinical usage. The understanding of key 

factors and metabolic pathways is necessary to improve diagnostic and 

therapeutic interventions resulting in higher quality of life allowing better 

prediction and prevention of aging processes. The experimental study of ROS-

induced hepatic aging processes in rats and humans including in vivo and in vitro 

experiments in line with OXISYS subproject are performed by Charité Berlin, 

Pharmacelsus GmbH Saarbrücken, Eberhard Karls University 

Tübingen/Siegfried Weller Institut and University of Saarland. To mathematically 

analyze the generated data in the experiments and to establish in silico models 

that further allow simulation of aging processes and potential influencing factors 

two industrial partners, Hans-Knöll-Institut e.V. Jena and Insilico Biotechnology 

AG Stuttgart, are included as well.  

 

Figure 12: Structure of joint research project OXISYS [modified from (Kraft, 2012)]. 

1.7. Aim of the project  

As part of the in vivo experimental setup of the OXISYS subproject, the aim of 

this thesis is to analyze the influence of oxidative stress in form of hyperthermia 

(up to 41°C) on differently aged male Wistar rats by measuring markers for lipid 

peroxidation (MDA, 4-HNE) and cell damage (LDH, ALT) in serum and liver tissue 

before and after two heat stress episodes. The hypothesis is an age-related 

increase of liver damage in old rats caused by oxidative stress after heat stress. 
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Untreated control groups divided into young, middle-aged and old rats were 

included to display the basal level of markers. The heat-stressed group consists 

of middle-aged and old rats that were liquidated at four points in time after the 

heating (0 h, 2 h, 6 h, 24 h). The liver was chosen as model organ as it has various 

diverse functions in the body and was identified to be affected by ROS-induced 

tissue damage from environmental stressors such as heat stress. Further H&E-

stained liver sections before and after heat stress were histologically analyzed to 

visualize age-dependent hepatocellular damage. Focus lays on adaptation as 

well as protection mechanisms against tissue injury from higher stress levels after 

hyperthermia. The animal model is an important step towards the identification of 

biomarkers in vivo as diagnostic tools for detecting liver aging processes that later 

might be therapeutically used in humans to display and prevent the aging of an 

organism. 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Chemicals 

Table 1: List of used solutions, solids and buffers. 

1,1,3,3-Tetraehtoxypropane (TEP) Sigma-Aldrich Chemie GmbH   

2-Thiobarbituric acid (TBA) Sigma-Aldrich Chemie GmbH   

4-HNE ELISA Kit Cusabio Biotech Co. Ltd. 

Acetic Acid  Carl Roth GmbH + Co. KG 

Bovine Serum Albumin (BSA) Carl Roth GmbH + Co. KG 

CuSO4 stock solution (Cfinal 1%) 1 g CuSO4*5 H2O  
100 ml ddH2O 

Copper(II) sulfate pentahydrate  
(CuSO4*5 H2O) 

Carl Roth GmbH + Co. KG 

Deoxycholic acid sodium salt (DOC) Carl Roth GmbH + Co. KG 

Ethylenediamine tetraacetic acid  
disodium salt (EDTA) 

Carl Roth GmbH + Co. KG 

Fluitest GPT/ALT Kit   
Order No. 1186 

Analyticon Biotechnologies AG 

Fluitest LDH-L  
Order No. 2222 

Analyticon Biotechnologies AG  

Folin & Ciocalteu’s phenol Sigma-Aldrich Chemie GmbH   

Na-K-Tartrate stock solution (Cfinal 2%) 2 g Na-K-Tartrate  
100 ml ddH2O 

Na-K-Tartrate Sigma-Aldrich Chemie GmbH   

Na2CO3 stock solution (Cfinal 2%) 20 g Na2CO3  
950 ml ddH2O 
50 ml 2 M NaOH 

n-Butanol  Sigma-Aldrich Chemie GmbH   

Pyridine  Carl Roth GmbH + Co. KG 

RIPA stock solution 0.121 g TRIS Base  
0.58 g NaCl 
500 µl Tergitol solution 
0.3 g DOC  
0.372 g EDTA  

Sodium carbonate (Na2CO3) Carl Roth GmbH + Co. KG 

Sodium chloride (NaCl) VWR International GmbH 

Sodium hydroxide (NaOH) Carl Roth GmbH + Co. KG 

Tergitol solution  Sigma-Aldrich Chemie GmbH   

TRIS Base  Sigma-Aldrich Chemie GmbH   
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2.1.2. Equipment 

Table 2: List of used equipment. 

AF80 Ice flaker Scotsman Ice Systems 

Aqualine AL 25 Lauda Dr. R. Wobser GmbH 
& Co. KG 

Cellstar 96 Well Microplate Greiner Bio-One 
International GmbH 

Cellstar Tube 15 ml Greiner Bio-One 
International GmbH 

Cellstar Tube 50 ml Greiner Bio-One 
International GmbH 

Costar Stripettes 5 ml  Corning Incorporated 

Costar Stripettes 10 ml Corning Incorporated 

Costar Stripettes 25 ml  Corning Incorporated 

Costar Stripettes 50 ml  Corning Incorporated 

Digital Disruptor Genie Scientific Industries, Inc. 

Disposable Scalpel Feather Safety Razor Co., 
Ltd. 

FLUOstar Omega Microplate Reader BMG Labtech GmbH 

Fridge +4°C   Liebherr-International 
Deutschland GmbH 

Fridge -20°C  Liebherr-International 
Deutschland GmbH 

Fridge -80°C Thermo Fisher Scientific Inc. 

Heraeus Fresco 17 Centrifuge Thermo Fisher Scientific Inc. 

Heratherm Oven Thermo Fisher Scientific Inc. 

Incubator Binder GmbH 

Lambda Multichannel Pipettor 5 - 50 µl Corning Incorporated 

Lambda Multichannel Pipettor 20 - 200 µl Corning Incorporated 

Lambda Multichannel Pipettor 50 - 300 µl  Corning Incorporated 

Lambda Single-channel Pipettor 2 - 20 µl Corning Incorporated 

Lambda Single-channel Pipettor 10 - 100 µl Corning Incorporated 

Lambda Single-channel Pipettor 20 - 200 µl Corning Incorporated 

Lambda Single-channel Pipettor 100 - 1000 µl Corning Incorporated 

LSE Vortex Mixer Corning Incorporated 

Megafuge 40 R Thermo Fisher Scientific Inc. 

Microscope Primo Vert Carl Zeiss AG 

Pipette Tips 0.1 - 10 µl Colorless Sorenson BioScience, Inc. 

Pipette Tips 2 - 200 µl Yellow Sarstedt AG & Co. 

Pipette Tips 100 - 1000 µl Blue Ratiolab GmbH 

Precellys Ceramic Kit 1.4/2.8 mm Peqlab GmbH 

Rotilabo-microcentrifuge tubes 1.5 ml Carl Roth GmbH + Co. KG 

Sky Line Digital Orbital Shaker  ELMI Ltd.  

Spatula Set Carl Roth GmbH + Co. KG 

Sterile Bench Safe 2020 Thermo Fisher Scientific Inc. 

Thermo-Shaker TS-100 Biosan 
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Weight ABJ 120-4M KERN & SOHN GmbH 

Weight PCB 250-3 KERN & SOHN GmbH 

2.1.3. Animals 

72 male Wistar rats (RjHan: WI) of three different age groups were obtained from 

Janvier Labs (Genest-St-Isle, France). They were housed in a temperature-

controlled room (20-24°C) and adapted to a 12 h light/ 12 h dark cycle. The 

animals were given free access to food (ssniff ® R/M-H, 10 mm) and water before 

and during the study. Experiments were started after an acclimatization period of 

at least 1 week. All experimental procedures employed were approved by and 

conducted in accordance with the regulations of the local Animal Welfare 

authorities (Landesamt für Gesundheit und Verbraucherschutz, Abteilung 

Lebensmittel- und Veterinärwesen, Saarbrücken, file number C1 2.4.2.2. Nr. 

12/2012). The heat stress experiments as well as the sampling of serum and 

tissue samples were performed by Pharmacelsus GmbH (Saarbrücken, 

Germany). The rats were divided into two groups: 28 young, middle-aged and old 

rats in the untreated control group as shown in Figure 13 and 44 middle-aged 

and old rats in the heat-stressed group that were liquidated at four points in time 

after heat stress as presented in Figure 14. Untreated young rats are 7 weeks 

old, middle-aged rats are 6 to 7 months old and old rats 23 months. The average 

body weight constantly increases from young to middle-aged rats with highest 

weight in old rats. Heat-stressed middle-aged rats are 7 months old and old rats 

aged 23 months. The average body weight in old heat-stressed rats is higher in 

every time group compared to middle-aged heat-stressed rats.  

 

Figure 13: Overview of untreated control group. Young (7 weeks), middle-aged (6/7 months) 

and old (23 months) rats are included in the untreated control group. This figure shows the 

average body weight and number of individuals per age group. 
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2.1.4. Heat stress experiments 

Middle-aged and old male Wistar rats were heat-stressed according to a modified 

protocol of the described heat stress experiment of Zhang et al. (Zhang et al., 

2003). To record and supervise the exact body temperature during the heat 

stress, a temperature transponder (IPTT-300, Plexx B.V., The Netherlands) was 

implanted subcutaneously in the neck region under a short anaesthesia using 

isoflurane. To determine baseline data, a serum sample (300 µl) was 

simultaneously taken from the tail artery. After 3-5 days of implanting the 

transponder, the heat stress sessions were performed. Therefore, two rats with 

nearly the same weight at a time were put into a warming cabinet (small animal 

recovery chamber, Harvard Apparatus GmbH, Germany) provided with bedding, 

but no food or water. To minimize other stress factors, the animals were 

familiarised one day before the actual heat stress sessions to the warming 

cabinet without any heating by keeping them in the experimental environment for 

one hour. Each rat of the heat-stressed group was exposed to two periods of 

identical heat stress in the morning of two consecutive days. During the heat 

stress, their body temperature was registered every 5 minutes via the 

subcutaneous temperature transponder. The animals were heated in the 

warming cabinet for exactly 60 minutes to achieve a body temperature above 

40°C (target heating rate: 0.06°C/min), followed by exactly 30 minutes keeping 

the body temperature between 40 and 42°C. After the second heat stress on day 

2, each rat was eliminated using an overdose of isoflurane anaesthesia after a 

certain defined point in time (0 h (i.e. directly after heat stress), 2 h, 6 h, 24 h) and 

blood was drawn by cardiac puncture for preparation of serum. At the end, livers 

were dissected for preparation of tissue samples. All serum and liver tissue 

samples were stored in a freezer at -80°C and aliquoted to prevent repeated 

freeze-thaw cycles, which would affect measured enzyme activities due to altered 

protein conformation. 
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Figure 14: Overview of middle-aged and old rats after heat stress. 44 middle-aged (7 months) 

and old (23 months) male Wistar rats are included in the heat stress experiment, subdivided into 

four groups after heat stress according to time of liquidation (0 h, 2 h, 6 h, 24 h). This figure shows 

the average body weight and number of individuals per age group at four points in time. 

2.2. Methods 

2.2.1. Human serum for preliminary experiments 

The serum of young people (Ø age: 27 years) and the serum of old patients (Ø 

age: 72 years) was used for preliminary experiments trying to proof the 

experimental setup. The young control group (N = 8, 4 men and 4 women) were 

healthy non-smokers whereas all in the group of older patients (N = 8, 4 men and 

4 women) were suffering from liver diseases such as hepatocellular carcinoma, 

liver metastasis of colorectal carcinoma and cholangiocarcinoma.  

2.2.2. Isolation of cytosol from liver tissue  

The homogenization of liver tissue was performed using a disruptor, pre-cooled 

tubes with ceramic beads and always chilling the tubes on ice immediately to 

avoid loss of enzymatic activity. The liver tissue samples stored at -80°C were 

thawed on ice. After thawing a piece of liver tissue (about 50 mg) was chopped 

using a scalpel. The exact weight was noted and the tissue was further cut into 

little pieces with the scalpel and then transferred to pre-cooled tubes filled with 
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ceramic-beads (Precellys Ceramic Kit Ø 1.4 and 2.8 mm, Peqlab). 300 µl of RIPA 

stock solution was added per tube and spinned down shortly in the 

microcentrifuge at 4°C. Afterwards the tissue samples were homogenized in a 

disrupter at 2850 rpm for 1 minute and immediately chilled on ice for another 3 

minutes. This disruption cycles with cooling time were repeated three times for 

each sample until the solution appeared homogeneous. The homogeneous 

lysates were transferred to new 1.5 mL Eppendorf tubes and then centrifuged for 

30 minutes (800 g, 4°C) to separate cell nuclei and other cell particles. The 

supernatant containing cytosol was frozen immediately by using liquid nitrogen 

and stored in the freezer at -80°C.  

2.2.3. Lowry protein assay 

Every cell in an organism contains various proteins, including enzymes. The 

determination of total protein levels in a sample is necessary to compare 

measured protein amounts in liver tissue. Lowry protein assay was used in a 

modified method based on Lowry et al. 1951 and generally consists of two steps 

outlined in Figure 15. Step 1 is the Biuret reaction including the reaction of copper 

ions (Cu2+) with peptide bonds of proteins in an alkaline solution by reducing Cu2+ 

into Cu+ forming a purple colored complex (Waterborg, 2009). The Folin & 

Ciocalteau’s reaction in step 2 contains phosphomolybdate and 

phosphotungstate that reduce the copper-protein complex, enhance the color 

and turn it into blue (Lowry et al., 1951, Smith et al., 1985). 

 

Figure 15: Lowry protein assay reactions step by step. Cu2+ ions react with peptide bonds of 

proteins forming a complex that is further processed with Folin & Ciocalteau’s reagent creating a 

blue colored product [adopted from (Johnson, 2012)]. 

The Standard operating procedure of the lab served as guideline. Briefly, the 

protein content was measured photometrically as intensity of blue color.       
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Bovine Serum Albumin (BSA) was used in the following concentrations to 

generate the standard curve. 

Table 3: BSA standard curve mass concentrations. 

BSA standard [µg/µl] 

10 8 6 4 2 1 0 

Solution A (20 µl Na-K-Tartrate stock solution, 20 µl CuSO4 stock Solution, 1960 

µl Na2CO3 stock solution) and B (500 µl Folin & Ciocalteu’s phenol, 1000 µl 

ddH2O) were prepared freshly each time before measurement. 2 µl of each BSA 

standard concentration as well as 2 µl of each sample were pipetted into a 96-

well-plate in triplicates. 150 µl of Solution A was added per well and incubated 

shaking for 10 minutes at room temperature. Then 30 µl of Solution B is added 

per well and again incubated shaking at room temperature for 2 h. The adsorption 

was measured at 750 nm using a microplate reader. The measured optical 

density of the samples was calculated from the generated standard curve. As 

samples were diluted (1:3) and cytosol of liver tissue (1:6) the results of the 

calculation were multiplied by the dilution factor.  

2.2.4. Lactate dehydrogenase activity assay 

The lactate dehydrogenase enzyme (LDH) is a cytosolic enzyme present in 

various body fluids and tissues, mainly in the heart, liver, muscles and kidneys 

(Kopperschlager and Kirchberger, 1996). LDH is a tetramer composed of two 

types of subunits (heart: H or muscle: M) that can be randomly matched forming 

five isoenzymes (Bais and Philcox, 1994b). LDH catalyzes in anaerobic 

conditions the reversible reaction of lactate to pyruvate by using the reduction of 

NAD+ into NADH as electron transfer. 

 

Figure 16: Principle of LDH activity assay. [adopted from (Bais and Philcox, 1994a)]. 

The formation of NADH is proportional to the LDH activity and can be 

photometrical measured. As LDH is located in the cytosol of cells, high LDH 

serum levels indicate leakage through the cell membrane after certain cell 
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damage. An increased LDH activity is not specific for liver injury and other 

markers for liver damage should be measured additionally to identify other 

sources for increased LDH in serum. High levels of increased serum LDH could 

be measured in megaloblastic anemia and disseminated carcinoma 

(Kopperschlager and Kirchberger, 1996). The increase of NADH is directly 

proportional to LDH activity and can be detected photometrically at 340 nm. To 

quantify LDH activity in serum and liver tissue a commercial test kit was used 

following manufacturers’ instructions (Fluitest LDH-L Kit, Analyticon 

Biotechnologies AG). According to the user manual five parts of reagent 1 (2-

Aminomethylpropanol pH 9.4 and Lithium lactate) and one part of reagent 2 

(Imidazole and NAD+) were mixed freshly each time before usage. First 5 µl of 

sample was pipetted onto a 96-well-plate in duplicates followed by 180 µl of 

working solution (5 R1 + 1 R2) per well. After an incubation time of 90 seconds 

the absorbance was measured at a wavelength of 340 nm once every minute 

over 10 minutes using a microplate reader. The liver tissue samples were diluted 

(1:100) preventing too high concentration that interferes with photometric 

measurements and the results were multiplied by the dilution factor. The LDH 

activity was calculated by using the following formula: 

 

Figure 17: Formula for calculation of LDH activity.  A is activity, ∆ɛ is molecular extinction 

coefficient, Vtotal is total volume per well, Vsample is sample per well and d is liquid layer thickness.  

2.2.5. Alanine-aminotransferase activity assay  

The alanine-aminotransferase enzyme (ALT) (formerly named glutamate-

pyruvate-transaminase, GPT) is known as liver specific enzyme mainly located 

in hepatocytes but also minor amounts in kidneys and heart tissue (Dufour et al., 

2000). As ALT activity is about 3000 times higher in cytoplasm of hepatocytes 

compared to serum, increased serum levels of ALT are diagnostically used to 
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detect liver parenchymal damage (Kim et al., 2008). ALT belongs to 

aminotransaminases and transfers the amino group of L-alanine to 2-

oxoglutarate revealing L-glutamate and pyruvate as described in Figure 18 

(Senior, 2012). Pyruvate formed in reaction (I) is immediately further processed 

in the indicator reaction (II) and ALT activity is measured via the rate of oxidation 

of NADH by LDH (Bergmeyer et al., 1986). The decrease of NADH is directly 

proportional to ALT activity and is measured photometrically at a wavelength of 

340 nm.  

 

Figure 18: Principle of ALT activity assay. Two coupled reactions lead to decreased levels of 

NADH proportional to ALT activity in the sample that are measured photometrically at 340 nm. 

For quantification of ALT activity in serum a commercial test kit was used 

following manufacturers’ instructions (Fluitest GPT/ALT Kit, Analyticon 

Biotechnologies AG). According to the user manual five parts of reagent 1 (Tris 

buffer pH 7.8, L-alanine and LDH) and one part of reagent 2 (NADH2 and 2-

oxoglutarate ) were mixed each time freshly before usage. First 20 µl of sample 

was added onto a 96-well-plate followed by 165 µl of working solution (5 R1 + 1 

R2) per well. After an incubation time of 60 seconds the absorbance was 

measured at a wavelength of 340 nm once every minute over 10 minutes using 

a microplate reader. The ALT activity was calculated by using the following 

formula: 

 

Figure 19: Formula for calculation of ALT activity. A is activity, ∆ɛ is molecular extinction 

coefficient, Vtotal is total volume per well, Vsample is sample per well and d is liquid layer thickness.  
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2.2.6. Malondialdehyde assay 

To determine the degree of oxidative stress, MDA is measured as marker for 

increased lipid peroxidation. MDA is a decomposition product mainly of 

arachidonic acid that is generated via lipid peroxidation processes and can be 

mutagenic by reacting with DNA forming MDA-DNA adducts (Lykkesfeldt, 2007, 

Marnett, 1999). The MDA Assay used in this setting is based on the thiobarbituric 

acid (TBA)-Method outlined in Figure 20 according to Ohkawa et al. with 

modifications (Ohkawa et al., 1979). Two molecules of TBA react under heating 

and acidic conditions with one molecule of MDA to molecule-bound MDA forming 

a fluorescent red product that could be photometrically measured (Spiteller, 

2001).  

 
Figure 20: Principle of TBA-method for determination of MDA level in serum and liver 

tissue. One molecule of MDA reacts with two molecules of TBA forming a fluorescent red product 

[modified from (Yahyavi et al., 2016)]. 

The TBA-Method for determination of MDA level in serum was performed in 

triplicates and distilled water was used as blank value. The breakdown product 

of Tetraehtoxypropane (TEP) via acid hydrolysis as form of pure MDA was used 

to generate the standard curve (Seljeskog et al., 2006). First 45 µl of serum 

sample and 45 µl of TEP solution with highest concentration of 25 µM were 

transferred to separate Eppendorf tubes. Then 5 parts of 0.6% TBA (0.12 g TBA 

in 20 ml ddH2O) and 4 parts of 25% acetic acid (10 ml acetic acid in 30 ml ddH2O) 

were mixed. 135 µl of TBA-acetic acid mixture (5:4) was added to each sample 

and standard. The samples and standard were heated at 100°C shaking at 250 

rpm for 1 h. After heating all tubes were immediately kept on ice to stop the 
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reaction. After that, 125 µl of n-Butanol mixed with pyridine in a 15:1 ratio was 

added per sample and 250 µl of this solution per standard. From now on the tubes 

needed protection from daylight and were covered with aluminum foil. After 10 

minutes of incubation on ice the tubes were vortexed thoroughly for 15 seconds 

per tube and then centrifuged for 5 minutes (7000 g, 4°C). Now the upper phase 

which appears red and contains organic material is loaded with a quantity of 50 

µl per sample and 100 µl per standard on the plate. The TEP standard (25 µM) 

is diluted with n-Butanol via a two-fold dilution series as described in Table 4 to 

generate the standard curve.  

Table 4: Standard curve for TBA-Method generated as two-fold dilution series. 

Standard TEP solution  Applied chemicals 

25 µM 100 µl of standard 

12.5 µM 50 µl n-Butanol + 50 µl of 25 µM standard 

6.25 µM 50 µl n-Butanol + 50 µl of 12.5 µM standard 

3.13 µM Continue as above 

1.56 µM Continue as above 

0.78 µM Continue as above 

0.39 µM Continue as above 

0 µM 50 µl n-Butanol 

 

The fluorescence was measured at excitation wavelength of 544 nm and 

emission wavelength of 590 nm using a microplate reader. For the analysis of 

results the software GraphPad Prism 6.0 was used to plot the fluorescence 

intensities of each standard concentration against the corresponding 

concentrations and perform linear regression to determine the sample 

concentrations by using the resulting linear equation. For each MDA assay a 

standard curve was created to validate that sample concentrations of MDA are in 

the linear range of the standard curve (Zhang et al., 2003).  

For determination of MDA in liver tissue samples the isolation of cytosol from liver 

tissue was necessary as described above. Instead of distilled water RIPA stock 

solution was used as blank value. First 30 µl of supernatant and 30 µl of TEP 

solution (25 µM) were transferred to separate Eppendorf tubes. Then 150 µl of 

TBA-acetic acid mixture (5:4) was added to each sample and standard. The 

following steps were identical to determination of MDA in serum.  
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2.2.7. 4-Hydroxynonenal ELISA  

Derived as relatively stable end-product of lipid peroxidation from PUFA in 

membranes, 4-HNE is a well-studied marker for oxidative stress (Uchida et al., 

1999). For quantification of 4-HNE concentrations in this setting, the 4-HNE 

Sandwich enzyme-linked immunosorbent assay (ELISA) was carried out using a 

commercial 4-HNE ELISA kit (Cusabio Biotech Co. Ltd, China). The assay was 

performed following the instructions in the manufacturers’ manual. The principle 

of 4-HNE ELISA is outlined in Figure 21. An antibody specific for 4-HNE has been 

pre-coated onto a microplate. Any 4-HNE present in the sample or standard is 

bound to the immobilized antibody. After removing any unbound substances, a 

biotin-conjugated antibody specific for detection of 4-HNE is added to the wells. 

After washing, avidin-conjugated Horseradish Peroxidase (HRP) is added to the 

wells. Following another wash to remove any unbound avidin-enzyme reagent, a 

substrate solution is added to the wells and color develops in proportion to the 

amount of 4-HNE bound in the initial step. The color development is stopped 

using stop solution and the intensity of the color is measured.  

 

Figure 21: Principle of 4-HNE Sandwich ELISA method. Pre-coated antibodies specific for 4-

HNE react with 4-HNE in sample and bound 4-HNE is detected via detection antibody conjugated 

with HPR that forms a coloured product with substrate solution [modified from (Technology, 

2016)]. 

First Biotin-Antibody, HRP-avidin and wash buffer were prepared freshly before 

each usage. The standard curve was created with stock solution (40 ng/ml) and 

sample diluent provided in the kit. Therefore, 250 µl of sample diluent were 

pipetted into each tube S0-S6 and a two-fold dilution series was produced with 

stock solution as described in Table 5. The sample diluent serves as a blank 

value (S0). 
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Table 5: Standard curve for 4-HNE ELISA generated as two-fold dilution series. 

Tube S7 S6 S5 S4 S3 S2 S1 S0 

ng/ml 40 20 10 5 2.5 1.25 0.625 0 

First 100 µl standard and cytosol of liver tissue were added to each well that is 

pre-coated with HNE specific antibody. After covering with an adhesive strip 

incubation for 2 h at 37°C followed. Afterwards the liquid of each well was 

removed without washing. 100 µl of the Biotin-antibody is added to each well, 

covered again with a new adhesive strip and incubated for 1 h at 37°C. Then 

each well was aspirated and washed three times in total applying 200 µl of the 

enclosed wash buffer per wash leaving buffer in wells for 2 minutes of soaking 

time. After the last wash, the liquid was removed completely by inverting the plate 

and blotting it against clean paper towel. For the next step 100 µl of HRP-avidin 

is added to each well, again covered with an adhesive strip and incubated for 1 

h at 37°C. The aspiration-washing process was repeated for five times in total as 

described above. Then 90 µl of TMB substrate is added per well and from now 

on the plate was protected from light by a wrapping of aluminum foil followed by 

incubation for 25 minutes at 37°C. Afterwards the reaction is stopped by pipetting 

50 µl of stop solution into each well and the color appeared blue. To determine 

the optical density, the absorbance is measured at a wavelength of 450 nm using 

a microplate reader. The readings at 540 nm were subtracted from the readings 

at 450 nm to correct optical imperfections in the plate. GraphPad Prism version 

6.0 was used to create a dose-response curve and concentration of 4-HNE in 

samples was calculated from the generated standard curve. The tissue samples 

were diluted (1:2000) preventing too high concentration that interferes with 

photometric measurements and the results of the calculation were multiplied by 

the dilution factor. 

2.2.8. H&E-staining of liver sections 

The Hematoxylin & Eosin-staining (H&E-staining) of liver sections was performed 

to visualize possible damage in liver tissue of untreated and heat-stressed rats 

comparing different ages and points in time after heat stress (0 h, 2 h, 6 h, 24 h). 

Basic hematoxylin stains the basophile DNA blue/violet and the acidophil 
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cytoplasm is stained red by eosin (Fischer et al., 2008). After cutting paraffin 

slices from liver tissue, the slides were stained according to the protocol of the 

Department of Pathology from University of Tuebingen in an automatic staining 

machine (Feldman and Wolfe, 2014). Histological images of liver sections were 

made using Microscope Primo Vert (Carl Zeiss AG). Focus was on examination 

of hepatic lobules with central vein for various signs of hepatocellular damage 

such as fatty degeneration, hepatocellular vacuolization, ballooning degeneration 

and apoptosis (Grizzi et al., 2013). For quantitative analysis, three liver sections 

were used per age group and at each point in time after heat stress.  

2.2.9. Statistical analysis  

All Data were expressed as mean ± standard deviation (SD). All calculations and 

graphics were created using the statistic software GraphPad Prism 6.0 (San 

Diego, CA, USA). Means of age groups within heat-stressed and control animals 

were compared by one-way analysis of variance (ANOVA). Differences between 

young and old human serum were calculated by Mann-Whitney U t-test. 

Statistical outliers were determined with ROUT outlier test and excluded from 

calculations. Differences were considered statistically significant at values of 

p<0.05. 
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3. Results 

By measuring markers for cell damage and oxidative stress, this thesis analyzes 

age-related differences in stress response after in vivo heat stress. Young (7 

weeks), middle-aged (6/7 months) and old (23 months) rats are included as 

control group. Middle-aged (7 months) and old (23 months) rats were exposed to 

two-phase heat stress and liquidated at four points in time after the second heat 

stress (0 h, 2 h, 6 h, 24 h). For preliminary experiments and to proof 

measurements human serum of young (Ø 27 years) and old (Ø 72 years) 

individuals is included. General cell damage is measured using LDH activity and 

ALT activities display specifically possible hepatic injury. Further H&E-staining of 

liver sections are examined to visualize hepatocellular damage. Lipid 

peroxidation markers MDA and 4-HNE are determined as indicators for increased 

oxidative stress.  

3.1. Human serum for preliminary experiments 

The serum of young individuals (Ø 27 years) obtained from healthy non-smokers 

and the serum of old patients (Ø 72 years) with liver diseases were compared in 

their amount of LDH and ALT activity as well as MDA (Figure 22). LDH activity 

increases significantly in old patients indicating higher general cell damage. The 

LDH activity is nearly two times higher in older patients compared to the young 

group. ALT as an indicator of hepatic damage is measured in both groups. The 

mean value of old individuals is slightly higher compared to young but there is 

high variation in the old group indicating fluctuations that could be caused by 

different liver diseases. The serum of the young group is directly processed after 

blood withdrawal, whereas the serum of older patients is taken during liver 

surgery and processed after a transport period. Due to the transport period of the 

serum of old patients the enzyme activities could be affected and measured 

activities might not display the actual in vivo situation. Results of MDA assay 

indicates slightly higher MDA levels for old individuals compared to their younger 

counterparts. Prior to the experiments a significant increase of markers for 

cellular damage (LDH), especially liver damage (ALT) and increased levels of 

oxidative stress marker MDA in older patients were suggested. 
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Figure 22: LDH, ALT and c(MDA) in human serum of young and old individuals. Serum 

levels of LDH significantly increase in old patients whereas ALT activity and MDA levels show 

mild elevated amounts in old. ***p<0.01 (young versus old group). 

Table 6: Serum levels of LDH, ALT and MDA in serum of young and old patients. Values are 

presented as mean ± SD. ns (not significant). 

 Young patients (N = 8) Old patients (N = 8) 

Protein content [mg/ml] 84.89 ± 13.05  71.11 ± 7.16 (ns) 

LDH activity [U/L] 36.82 ± 14.38  67.74 ± 13.54 (***p<0.01) 

ALT activity [U/L] 13.72 ± 9.50 26.47 ± 19.17 (ns) 

MDA Assay [nmol/ml] 4.02 ± 1.04 5.20 ± 1.41 (ns) 

 

3.2. H&E-staining of liver sections 

Images for the histological evaluation of Hematoxylin & Eosin-stained liver 

sections of untreated rats are shown in Figure 23. The liver morphology appears 

homogenous in young rats (A+B) with normal configurated nuclei. In liver sections 

of old rats (E+F) forms of severe liver injury including hepatocellular 

vacuolization, lipid-filled hepatocytes and sinusoidal congestion are observed 

that indicate increased liver damage in aged individuals. In comparison to old rats 

show middle-aged rats minor liver injury with signs of apoptosis and few fatty 

infiltrates (C+D). The liver sections of different aged untreated rats show a slight 

increase of liver damage during aging.  
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Figure 23: H&E-stained liver sections of young, middle-aged and old untreated rats. Liver 

morphology was normal in young rats (A+B) and more severe liver injury was found in old rats 

(E+F, arrows) including fatty degeneration and hepatocellular vacuolization. Middle-aged rats 

(C+D) show only slight liver damage. Scale bars A, C, E: 200 µm and B, D, F: 100 µm.  

Images for the histological evaluation of H&E-stained liver sections of middle-

aged and old rats after heat stress are shown in Figure 24.The middle-aged rats 

(MA) show few signs of liver damage at all points in time (A: 0 h, C: 2 h, E: 6 h, 

G: 24 h). More severe liver damage appears in old rats (O) compared to MA at 

all points in time including fatty infiltration, sinusoidal congestion, hepatocellular 
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vacuolization and ballooning degeneration (B: 0 h, D: 2 h, F: 6 h, H: 24 h, arrows). 

By comparing old rats at different points in time after heat stress no significant 

increased damage is found. There is a higher grade of liver damage with 

increased rate of necrosis, fatty infiltration and ballooning degeneration in old rats 

after heat stress compared to untreated control group. 
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Figure 24: H&E-stained liver sections of middle-aged and old rats at different points in time 

(0 h, 2 h, 6 h, 24 h) after heat stress. Middle-aged rats (MA) show few signs of liver damage at 

all points in time (A: 0 h, C: 2 h, E: 6 h, G: 24 h). More severe liver damage appears in old rats 

(O) compared to MA at all points in time including fatty infiltration, sinusoidal congestion, 

hepatocellular vacuolization and ballooning degeneration (B: 0 h, D: 2 h, F: 6 h, H: 24 h, arrows). 

Scale bars: 200 µm. 

3.3. Serum and liver tissue of untreated rats  

3.3.1. Protein content  

The results of the Lowry protein assay in serum and liver tissue of young, middle-

aged and old untreated rats are shown in Figure 25. The protein content in serum 

and liver tissue comparing the different age groups is nearly equal with slightly 

increased mean liver tissue protein levels. The protein mass concentrations are 

used to normalize measured enzyme activities of LDH and ALT as well as levels 

of MDA and 4-HNE in liver tissue. 

 

Figure 25: Protein mass concentration [mg/ml] in young, middle-aged and old untreated 

rats. The protein content of serum and liver tissue is nearly equal in the different age groups. 

There is no significant difference calculated between the age groups using statistical analysis. 

Values are represented as mean ± SD.  
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3.3.2. Markers for cell damage  

LDH activity assay  

The results of LDH activity assay in serum and liver tissue of young, middle-aged 

and old untreated rats are shown in Figure 26. The graph shows equal activities 

of LDH in serum by comparing different aged rats with higher error bars in the 

middle-aged group. Regarding LDH activity in liver tissue in contrast to serum, 

the present results show a decline from young to middle-aged and significantly 

lower levels in old rats. These differences in LDH activity may be explained by 

underlying influencing factors including grade of exercise and diseases that might 

affect the measured levels. High LDH activities have been documented in 

pathological conditions such as different types of cancer, hemolysis and 

infections (Erez et al., 2014). The results of the present study indicate that LDH 

activity as marker for general cellular damage is not specific for measuring the 

level of oxidative stress injury in the liver. In addition to reduced specificity of LDH, 

display the high error bars difficulties regarding preservation of enzyme activity 

over time and LDH might get inactivated during storage and not displaying the 

actual situation. 

 

Figure 26: LDH activities in serum [U/l] and liver tissue [mU/mg] of young, middle-aged and 

old untreated rats. LDH activity is almost equal in serum of all age groups. The LDH in liver 

tissue shows a decline from young to middle-aged with lowest amount in old rats. *p<0,05 (young 

versus old rats per one-way ANOVA). 
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ALT activity assay  

The results of ALT activity assay in serum of young, middle-aged and old 

untreated rats are shown in Figure 27. In comparison to serum LDH activities 

which stay almost equal in aging, the ALT activities in serum show a clear age-

dependent increase. The old rats have the highest level of ALT activity followed 

by the middle-aged group. The lowest amount of ALT was detected in the serum 

of young rats. The measured ALT activities differ significantly between young, 

middle-aged and old rats that is consistent with the histological findings that 

visualize higher liver damage in old rats compared to young and middle-aged.  

 

Figure 27: ALT activities [U/l] in serum of young, middle-aged and old untreated rats. ALT 

activities in old rats increase significantly compared to young and middle-aged rats. Lowest 

amount of ALT was detected in young rats. ***p<0.01 (young versus old rats per one-way 

ANOVA). 

3.3.3. Lipid peroxidation marker 

MDA assay 

The results of MDA assay in serum and liver tissue of young, middle-aged and 

old untreated rats are shown in Figure 28. The serum concentration of MDA stays 

nearly equal by comparing the different age groups. In the serum of old rats 

slightly increased MDA concentrations are observed. The values in the middle-

aged group show high fluctuations. In the liver tissue the MDA concentration is 

almost similar in every age group and high fluctuations appear in all ages.            
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No clear trend for increased MDA content could be evaluated in serum and liver 

tissue of different aged untreated rats.  

 

Figure 28: c(MDA) in serum [nmol/ml] and liver tissue [nmol/mg] of young, middle-aged 

and old untreated rats. There could be no significant difference calculated between the age 

groups using statistical analysis.  

4-HNE ELISA  

The results of 4-HNE ELISA measured in liver tissue of young, middle-aged and 

old untreated rats are shown in Figure 29. Before measurements were carried 

out different dilutions were tested. The values that fitted best in the standard curve 

were seen by diluting the sample 1:2000. The lowest level of 4-HNE is measured 

in old rats followed by young and with highest amount in the middle-aged group. 

In contrast to the MDA concentrations in liver tissue, the 4-HNE amounts rise 

from young to middle-aged and fall to the lowest amount in old rats. As 4-HNE 

increases in relation to oxidative damage the results do not verify earlier findings. 

The serum levels of 4-HNE could not be measured due to high interference of 

serum proteins that could not be removed using common methods.  
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Figure 29: c(4-HNE) [ng/mg] in liver tissue of young, middle-aged and old untreated rats. 

Lowest level of 4-HNE appears in old rats and there is an increase from young to middle-aged 

rats. There could be no significant difference calculated between the age groups using statistical 

analysis. 

3.4. Serum and liver tissue after the heat stress  

3.4.1. Protein content  

The results of Lowry protein assay of middle-aged and old rats after heat stress 

in serum and liver tissue are shown in Figure 30. The protein content of old rats 

before and after the heat stress is slightly higher compared to the middle-age 

group with higher error bars. By looking at the different points in time after heat 

stress (0 h, 2 h, 6 h, 24 h), the protein content in serum and liver tissue of old and 

middle-age rats is almost similar. The protein mass concentrations are used to 

normalize enzyme activities of LDH and ALT as well as levels of MDA and 4-HNE 

after heat stress at different points in time in liver tissue samples. 
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Figure 30: Protein mass concentration [mg/ml] in serum and liver tissue of untreated and 

heat-stressed middle-aged and old rats. Almost equal protein amounts in serum and liver 

tissue of old and middle-aged rats are shown at different points in time after heat stress (0 h, 2 h, 

6 h, 24 h). There is no significant difference calculated between the age groups and points in time 

using statistical analysis. Values are represented as mean ± SD.  

3.4.2. Markers for cell damage  

LDH assay  

The results of the LDH activity assay in serum of middle-aged and old rats before 

and at four points in time after heat stress are shown in Figure 31. The LDH 

activities in serum of old rats slightly increase directly after heat stress (0 h) and 

decline until the lowest level 6 h after heat stress. 24 h after heat stress is the 

level of LDH activities in old rats nearly the same as in untreated old rats. In the 

middle-aged group the LDH activities first drop directly after the heat stress (0 h) 

and then rise again in 2 h and 6 h until reaching the peak at 24 h after heat stress. 

The mean values for older rats are in all points in time except for 24 h-group 

higher compared to middle-aged rats. The high error bars indicate a great 

variance of values, whereas there is no significant difference between the age 

groups detected. In comparison to the untreated control group, the heat-stressed 

rats reveal no further detectable cell damage measured as higher LDH activity in 

the serum. The results of the LDH activity assay in liver tissue of middle-aged 

and old rats before and at four points in time after heat stress are shown in Figure 

32. In the liver tissue, the heat-stressed middle-aged rats present 2 h after heat 

stress a peak increase of LDH activities followed by a mild decrease until 24 h 

after heat stress. In the old heat-stressed rats the LDH activities rise directly after 
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heat stress (0 h) in comparison to untreated animals and remain at this higher 

level for the following points in time. The total increase of LDH compared to basal 

levels of untreated animals is higher in both age groups after the heat stress. 

However, these findings are only tendencies and no significant differences could 

be calculated using statistical analysis.  

 

Figure 31: LDH activities [U/l] in serum of untreated and heat-stressed middle-aged and 

old rats. LDH activities are higher in old rats compared to middle-aged rats in untreated control 

group as well as after heat stress except for middle-aged at 24 h. There is no significant difference 

calculated between the age groups and points in time using statistical analysis. Values are 

represented as mean ± SD. 

  

Figure 32: LDH activities [mU/mg] in liver tissue of untreated and heat-stressed middle-

aged and old rats. Increase of LDH activities compared to basal levels of untreated animals is 

higher in both age groups after the heat stress with a peak 2 h after heat stress in middle-aged 

rats. There is no significant difference calculated between the age groups and points in time using 

statistical analysis. Values are represented as mean ± SD. 
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ALT activity assay  

The results of the ALT activity assay measured in serum of middle-aged and old 

heat-stressed rats are shown in Figure 33. In accordance with the serum ALT 

activities of untreated rats, the ALT activities after application of heat stress are 

at all points in time higher in old individuals compared to the middle-aged. In the 

old heat-stressed rats ALT activities stay nearly the same until a drop between 6 

h and 24 h after heat stress. The middle-aged group seems to be less affected of 

the heat stress with nearly equal amounts over time in the heat stress experiment. 

 

Figure 33: ALT activities [U/l] in the serum of untreated and heat-stressed middle-aged and 

old rats. ALT activities remain higher in old animals at all points in time compared to their middle-

aged counterparts. There is no significant difference calculated between the age groups and 

points in time using statistical analysis. Values are represented as mean ± SD. 

3.4.3. Lipid peroxidation marker 

MDA assay  

The results of the MDA assay in serum of heat-stressed middle-aged and old rats 

are shown in Figure 34. In accordance with the serum LDH activities after heat 

stress, the MDA concentration in old heat-stressed rats is at all points in time 

higher compared to the middle-aged group and nearly stays at the same level for 

old rats. Middle-aged rats after heat stress show a decrease directly after heat 

stress (0 h) with lowest level of MDA 2 h post heating that increases again 6 h 

and 24 h after heat stress. There are high standard deviations in the old group 

and no significant difference could be calculated using statistical analysis. 
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Figure 34: c(MDA) [nmol/ml] in serum of untreated and heat-stressed middle-aged and old 

rats. Old rats have higher levels of MDA in untreated and all heat-stressed groups. Middle-aged 

rats show a slight decline until 2 h after heat stress and MDA level rises again 6 h and 24 h after 

heat stress. There is no significant difference calculated between the age groups and points in 

time using statistical analysis. Values are represented as mean ± SD. 

The results of the MDA assay in liver tissue of heat-stressed middle-aged and old 

rats are shown in Figure 35. The MDA concentration in liver tissue shows a mild 

decline in both age groups from untreated rats to groups directly after heat stress 

(0 h). During heat stress the level of MDA in liver tissue in old rats rises up to the 

highest amount at 6 h after heating and falls again 24 h after heat stress reaching 

the level of untreated rats. The MDA concentration in middle-aged rats shows no 

tendency to increase after heat stress and stays at similar levels in untreated and 

heat-stressed groups at all points in time after heat stress.  
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Figure 35: c(MDA) [nmol/mg] in liver tissue of untreated and heat-stressed middle-aged 

and old rats.  The level of MDA in liver tissue before and at different points in time after heat 

stress (0 h, 2 h, 6 h, 24 h) stays nearly the same in both age groups with a peak 6 h after heat 

stress in old rats. There is no significant difference calculated between the age groups and points 

in time using statistical analysis. Values are represented as mean ± SD. 

4-HNE ELISA  

The results of the 4-HNE ELISA in liver tissue for untreated and heat-stressed 

middle-aged and old rats are shown in Figure 36. The levels of 4-HNE in both 

age groups are slightly higher after heat stress compared to the untreated group. 

Middle-aged rats have higher levels of 4-HNE in every group and there is a 

constant increase of 4-HNE up to 6 h after heat stress that remains at this higher 

level 24 h after heat stress. Also 4-HNE levels in old rats show this trend to 

increase directly after heat stress with a peak after 2 h and a following decrease 

until nearly reaching the base level of untreated animals 24 h after heat stress. 

Although a tendency becomes visible no significant difference could be 

calculated using statistical analysis due to high standard deviation. The serum 

levels of 4-HNE after heat stress could not be measured due to high interference 

of serum proteins that could not be removed using common methods.  
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Figure 36: c(4-HNE) [ng/mg] in liver tissue of untreated and heat-stressed middle-aged and 

old rats. Both age groups indicate increased levels of 4-HNE after heat stress with a peak at 6h 

for middle-aged and 2 h for old rats. Middle-aged rats remain at higher 4-HNE levels 24 h post-

heating compared to old rats that nearly reach level of untreated group. There is no significant 

difference calculated between the age groups and points in time using statistical analysis. Values 

are represented as mean ± SD.  
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4. Discussion  

Every organism has a stress level tolerance and former research indicates a 

higher vulnerability of older individuals to attacks of reactive oxygen species. 

Different theories and methods have been designed to measure in vivo oxidative 

stress levels and their impact on cellular aging. The aim was to prevent or slow 

down the aging process leading to a longer and healthier life. Nevertheless, there 

is not yet a verifiable method established to inevitably prove that accumulated 

oxidative damage is responsible for the aging process. Numerous former studies 

have shown that macromolecules including proteins, membrane lipids and DNA 

are susceptible to oxidative damage after having been exposed to higher levels 

of oxidative stress with impact on the metabolic pathways of the organism 

resulting in cellular aging (Stadtman, 2001, Holmes et al., 1992, Catalá, 2009). 

This thesis was designed to show age-related differences in oxidative damage 

measured as enzyme activity and lipid peroxidation products in serum and liver 

tissue of different aged male Wistar rats before and after heat stress. The 

question was whether aged individuals have higher levels of oxidative damage 

after heat stress indicating that they are more affected by the heat.  

Summing up, our studies could not prove earlier findings since age-related 

differences in untreated control groups as well as in heat-stressed groups were 

not statistically significant concerning cell damage, liver injury and lipid 

peroxidation. Young and old rats might have the same amount of oxidative stress 

levels and effective protective methods to buffer ROS attacks or the oxidative 

damage could not be visualized in this series of experiments and further modified 

studies are necessary to evaluate the level of age-related oxidative stress. 

4.1. Review of current studies  

The concept of this study was based on the findings of Zhang et al. that proposed 

young rats have an effective protecting system that buffers oxidative damage in 

stressful conditions such as heat stress (Zhang et al., 2003). The previous 

findings suggested that aging in combination with heat stress produces higher 

levels of ROS and induces hepatic injury that increases in vivo oxidative damage 

to lipids and DNA (Zhang et al., 2003). Additionally, the GSH redox system is 
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affected and ROS strengthen the redox balance towards the pro-oxidant side 

leading to increased oxidative stress levels. The authors of recent studies 

revealed controversial results for lipid peroxidation products as evaluation of the 

amount of oxidative stress that accumulates during the aging process (Cini and 

Moretti, 1995, Barja de Quiroga et al., 1990, Castro et al., 2012).  

On the one hand in accordance to the findings of Zhang et al., studies in heat-

stressed broiler chickens presented elevated levels of plasma and mitochondrial 

MDA measured via TBA-method that indicate a higher level of lipid peroxidation 

and increased oxidative damage to macromolecules after heat stress (Mujahid et 

al., 2007). Increased 4-HNE-adducts were also measured in rat brains using 

immunohistochemistry after ischemic-reperfusion injury that is related to higher 

ROS formation (Yoshino et al., 1997). The clinical relevance of increased MDA 

as a marker for lipid peroxidation was investigated in various oxidative stress-

related diseases that show higher incidence in aged individuals. Elevated MDA 

levels in serum were found in various forms of cancer such as lung and breast 

cancer (Gonenc et al., 2001) as well as gastric cancer (Bakan et al., 2002). 

Patients suffering from Alzheimer’s disease showed higher MDA levels in brain 

tissue compared to healthy individuals (Lovell et al., 1995). In brain tissue of 

patients suffering from Parkinson’s disease accumulation of 4-HNE-protein 

adducts were measured in immunochemical studies (Yoritaka et al., 1996). 

Arteriosclerosis has been found to correlate with increased serum MDA levels 

and decreased antioxidants (Tamer et al., 2002). Also patients suffering from 

congestive heart failure had higher MDA levels in serum compared to the healthy 

control group (Belch et al., 1991, Ide et al., 1999).  

On the other hand, Tian et al. presented results showing that the amount of lipid 

peroxidation measured as MDA content in liver and brain tissue did not differ 

significantly in aged rats (Tian et al., 1998). An explanation might be that oxidative 

damaged lipids in vivo are fast degraded due to efficient repair mechanisms of 

the cell preventing the disturbance of membrane integrity. MDA in vivo was found 

to be oxidized by aldehyde dehydrogenase enzymes into metabolites such as 

malone semialdehyde and acetate and finally into CO2 and H2O (Marnett et al., 

1985, Siu and Draper, 1982). Therefore, the measured MDA levels in our setup 
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might not display the exact in vivo oxidative stress level of animals as MDA is 

further metabolized and escapes the detection. Also Oberley et al. presented no 

significant differences after a two-phase heat stress experiment performed in 

young and old rats in the amount of 4-HNE-protein adducts measured by 

immunohistochemistry after 90 minutes of recovery (Oberley et al., 2008). They 

came to the conclusion that less 4-HNE protein adducts were formed due to 

increased interfering protection mechanisms.  

Studies analyzing lipid peroxidation levels of different strains and sexes of rats 

including male and female Fischer 344, Wistar and Sprague-Dawley rats 

indicated that the amount of lipid peroxidation might differ species- and sex-

dependent. Rikans et al. showed an age-related increase of MDA in liver 

homogenates of male Fischer 344 rats but in female Fischer 344 rats MDA 

decreased during aging (Rikans et al., 1991). In former study of Zhang et al. male 

Fischer 344 rats were examined whereas in this study male Wistar rats were used 

since no old rats were available from various distributors in Europe. Therefore, 

the gender as well as strain of rats in animal models need to be considered when 

comparing controversial results. In addition to that tissues from different organs 

such as heart, brain, liver as well as muscle tissue presented varying results for 

lipid peroxidation. Female Sprague-Dawley rats exposed to exercise stress that 

was found to increase oxidative stress levels showed elevated MDA levels in 

liver, heart and muscle tissue after acute exercise whereas chronic exercise 

reduces MDA content in brain tissue (Liu et al., 2000). Perez et al. examined lung 

tissue of young (8 months) and old (27 months) male Wistar rats using TBA-

Method with no significant change in MDA level in the old group (Péréz et al., 

1991). Further studies performed by Barja et al. in liver and brain tissue of young 

(8 months) and old male (27 months) Wistar rats also showed no age-dependent 

difference in old rats (Barja de Quiroga et al., 1990). Further studies are 

necessary to establish an animal model that evaluates the oxidative stress level 

identifying differences in strains, genders and tissues of rats.  

The histological evaluation of liver section in accordance to the increased ALT 

activities indicates a higher grade of hepatocellular damage in older individuals. 

Such morphological changes are often accompanied by increased oxidative 
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stress markers including lipid peroxidation products and oxidized DNA. MDA is 

known to be mutagenic and reacts with DNA forming MDA-DNA adducts via 

cross-links that hinder DNA replication and damage DNA in form of DNA strand 

breaks and mutations (Niedernhofer et al., 2003). Former studies of Draper et al. 

showed that higher concentrations of MDA-DNA adducts occur in liver and kidney 

tissue but not in testes of old rats (25 months) compared to young (4 months) rats 

(Draper et al., 1995). This theory is underlined by findings that DNA repair 

mechanisms might slow down during aging leading to the accumulation of DNA 

mutations with more dysfunctional cells. Intano et al. presented that in 

hepatocytes of old mice DNA base excision repair mechanisms decrease up to 

50% compared to young mice (Intano et al., 2003). The accumulation of oxidative 

DNA damage was observed by Hamilton et al. that reported significant increased 

oxidative DNA damage in liver tissue of aged mice as well as senescent Fischer 

344 rats (Hamilton et al., 2001). They compared several tissues of Fischer 344 

rats with different mice strains leading to the conclusion that the amount of age-

related accumulated oxidative DNA damage is tissue- as well as strain- 

dependent. In general, more DNA damage was found in heart and brain tissue 

compared to liver tissue and Fischer 344 rats showed overall a higher increase. 

However, in contrast to the findings of Intano et al. they suggested that a higher 

sensitivity towards ROS attacks is responsible for the accumulation of oxidized 

DNA during aging and to a lesser degree deficient repair mechanisms.  

Another possible explanation for not significantly age-related increased levels of 

liver damage and oxidative stress markers in this setting might be the ability of 

the liver to adapt to increased stress levels as well as efficient protection 

mechanisms that prevent cell damage. The liver is known for its high ability to 

regenerate after injury which is reduced during aging of an organism. A loss of 

regenerative capacity up to 30% in old rats was observed in rodents after 

removing two-thirds of liver tissue also called partial hepatectomy (Timchenko, 

2009). Nevertheless, numerous studies showed protective effects in form of 

preconditioning in the liver. Preconditioning is defined as preadaptation to mild 

levels of stress that partly reduce the grade of severe injury when confronted to 

high and continuous levels of stress. Two forms of liver preconditioning are 
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distinguished: early preconditioning within minutes after stimulus and late 

preconditioning after 12-24 h (Carini and Albano, 2003). In our setting, the liver 

might be preconditioned for increased temperatures after exposure to the first 

heat stress and therefore the second heat impulse 24 h later is weakened. 

Beneficial effects of liver preconditioning such as reduced ischemic-reperfusion 

injury and improved liver regeneration were shown in animal models after partial 

hepatectomy and liver transplantation (Fernandez et al., 2003, Bedirli et al., 

2005). In general, liver preconditioning is observed after short phases of mild 

ischemia or hyperthermia prior to actual liver surgery (Yamada et al., 2001, Oba 

et al., 2010). The ischemic preconditioning (IPC) is defined as a short period of 

ischemia followed by slight reperfusion of the organ prior to the unavoidable long 

ischemia during liver surgery (Wang et al., 2013). Peralta et al. presented that 

aminotransaminase levels (AST and ALT) in rat serum were reduced after 10 

minutes of liver ischemia followed by 10 minutes of reperfusion prior to 

continuous ischemia (Peralta et al., 1999, Tsuyama et al., 2000). The first study 

that demonstrates these protective effects of IPC in the human liver was designed 

by Clavien et al. (Clavien et al., 2000). The ischemic-reperfusion injury is clinically 

relevant as it often occurs during liver surgery when the common Pringle 

maneuver is applied including the temporary occlusion of portal vein and hepatic 

artery to prevent major bleeding for resection of liver tissue (Selzner et al., 1999). 

Different studies presented that decreased levels of aminotransferases (AST and 

ALT) as well as reduced caspase activities displaying fewer apoptosis are found 

after IPC of the liver (Clavien et al., 2000, Glanemann et al., 2004). To understand 

the underlying processes of IPC two different mechanisms are considered. First 

the short period of ischemia at the beginning might directly interfere with signaling 

pathways induced by cell damage and prevent more severe damage. Second the 

sublethal stress during ischemia is essential for the adaptation of the liver to build 

up a defense mechanism that enables the liver later to be more effective against 

high levels of stress (Rüdiger et al., 2003). It is further hypothesized that the 

protection generated by IPC is a form of positive oxidative stress mediated by a 

short sublethal release of oxygen radicals that activate protection mechanisms in 

the cell (Sindram et al., 2002). 
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Another form of liver preconditioning is the heat stress preconditioning (HPC). It 

was performed as sublethal heating before ischemia followed by reperfusion in 

rat livers (Saad et al., 1995, Yamagami et al., 1998). Recent studies showed 

positive effects of heat shock pretreatment on different organs such as reduced 

ischemic-reperfusion injury in rabbit hearts and rat kidneys (Currie et al., 1993, 

Stokes et al., 1996), reduced damage of rat retina after light injury (Barbe et al., 

1988) and protection against sepsis-induced injury in humans (Bruemmer-Smith 

et al., 2001). Different mechanisms take place in an organism when confronted 

to elevated temperatures. Among these is the ability to upregulate the production 

of heat shock proteins (HSP) that serve as protection in hyperthermic conditions 

by decreasing irreversible cell damage (Li et al., 2013). It is proposed that cells 

with the ability to highly upregulate HSP production react more efficiently to 

oxidative stress in form of heating. Early studies about HSP in vitro showed 

species-dependent differences in temperatures that are needed to trigger the 

induction of HSP varying from 45°C in sheep to rodents and humans where 

temperatures between 41°C and 43°C suffice to elevate HSP synthesis (Polla, 

1988). Saad et al. and Kume et al. observed that heat shock prior to ischemic 

liver injury in rats increases gene expression and synthesis of HSP72 and 

reduces severe hepatocellular damage indicated by decreasing ALT and LDH 

activities in serum (Saad et al., 1995, Kume et al., 1996). Further Yamamoto et 

al. investigated the effect of heat shock preconditioning on HSP72 induction and 

liver injury focusing on lipid peroxidation and presented increased levels of MDA 

measured via TBA-method in preconditioned rats but declined amounts of 4-

HNE-protein adducts (Yamamoto et al., 2000). They concluded that lipid 

peroxidation seems to remain unaffected from increased levels of HSP72 but the 

denaturation of proteins induced by LPO product 4-HNE is reduced leading to 

decreased oxidative damage rather than prevention of the LPO process. HSP 

might interfere with the specific antibody making it unable to detect 4-HNE in the 

ELISA. In accordance to these findings, Yamagami et al. confirmed the 

upregulation of HSP72 production in liver tissue of heat shock preconditioned rats 

as well as decreased formation of 4-HNE-protein adducts and reduced ALT and 

LDH activities after ischemic-reperfusion injury (Yamagami et al., 1998). Also 
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decreased ALT and LDH activities as well as higher survival rates were observed 

after heat shock prior to warm ischemia in form of Pringle maneuver and 

correlated to higher amounts of HSP in comparison to the control group (Saad et 

al., 1995). Another approach presented by Oba et al. combined exposure to heat 

shock with application of mild electric current that leaded to higher HSP72 

production, decreased aminotransaminase activities (AST and ALT) and less 

histologically evaluated hepatic injury (Oba et al., 2010). These results support 

the theory that there is a strong protective function of HSP induced by heat stress 

preconditioning of the liver against ischemic hepatic injury finally reducing the 

amount of oxidative liver injury.  

The two-phase heat stress was utilized in this study to simulate heat stress 

conditions of elderly humans during heat waves with multiple periods of heating 

(Bloomer et al., 2014). Especially in heat wave conditions the body is exposed to 

multiple following periods of heat stress and there is a significantly increased rate 

of mortality in people older than 65 years emphasizing the importance of heat 

stress in aging (Kenney et al., 2014, Conti et al., 2005). Heat stress shifts the 

redox balance towards oxidative stress by enhancing ROS production and 

weakening the mitochondrial antioxidant defense system (Slimen et al., 2014). 

This leads to the assumption that heat stress preconditioning might reduce 

hepatocellular damage and therefore in this study the expected increase of 

oxidative damage in the liver of aging rats after heat stress was weakened by the 

first heat stress and could not be measured. 

By evaluating possible pathways for liver damage increased activation of 

caspases was found to increase apoptosis leading to a loss of liver tissue. Cursio 

et al. observed that inhibition of caspase activity protects rats from lethal liver 

damage normally occurring 12-24 h after surgery (Cursio et al., 1999). Other 

studies showed that apoptosis measured via caspase activity is modulated by 

induction of HSP during chronic heat stress in mice and there is correlation 

between HSP levels and heat-induced liver injury (Li et al., 2013). 

Although the possibility of preconditioning after the first heat stress could not be 

excluded as discussed above, different studies indicated that heat stress models 

with two heat shocks induce higher rates of oxidative damage and reduce the 
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tolerance towards heating in old rats compared to single heat stress (Hall et al., 

2000, Kregel et al., 1990). The use of animal models instead of human heating 

experiments is reasonable due to higher target temperatures in animals up to life 

threatening high levels. In animals core temperatures could be raised up to 41 °C 

with control of surrounding conditions such as level of exercise and loss of fluid 

whereas in vivo human heating experiments achieved only mild hyperthermia 

(37-38°C) (Armstrong and Kenney, 1993, Pandolf et al., 1988).  

4.2. Limitations of methods 

Restrictions of the methods used in our study need to be mentioned for the 

correct interpretation of the results that lay the basis for further research in this 

field. The amount of lipid peroxidation product MDA was measured applying the 

TBA-method that is based on the reaction of MDA with thiobarbituric acid (TBA) 

forming MDA-TBA adducts. These MDA-TBA adducts could be measured 

photometrically but the results display all substances that are reactive with TBA 

(TBARS). Therefore, the actual amount of MDA in the sample is higher when 

measured via TBA-method due to other TBA-adducts (Dalle-Donne et al., 2006). 

In addition to that, the heating and acidic conditions in vitro during the assay are 

prone to produce additional oxidative products (Del Rio et al., 2005, Seljeskog et 

al., 2006). The results of the MDA assay using TBA-method should be analyzed 

carefully because the results are often overestimated not displaying the actual 

amount of MDA in the sample. Other detection methods of MDA in serum and 

tissue samples were discussed in former studies. The combination of high 

performance liquid chromatography (HPLC) with the TBA-method was applied to 

receive more exact values for MDA-TBA adducts in samples without further 

generating in vitro oxidative products (Janero, 1990, Fukunaga et al., 1995, 

Mateos et al., 2005). The HPLC method increased the specificity of MDA 

measurements but components in serum were found to interfere and they had to 

be removed beforehand finally artificially reducing the MDA levels (Agarwal and 

Chase, 2002). Newer methods presented the quantification of MDA by using gas 

chromatography (GC) coupled with mass spectrometry (MS) that could be 

performed at room temperature with a two to six times higher sensitivity 
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compared to the common TBA-method (Liu et al., 1997). Although the 

derivatization of samples is needed prior to GC-MS that alters the structure of 

molecules, the newer methods have a higher specificity compared to the common 

TBA-Method but their use is still limited as they are more expensive, time-

consuming and require experts for performing the procedure (Del Rio et al., 

2005). Therefore, the TBA based test is still widely used and offers a facile 

sensitive method to compare MDA amounts when results are carefully interpreted 

(Carbonneau et al., 1991). As MDA reacts with DNA molecules forming MDA-

DNA adducts, the measurement of oxidized DNA molecules in serum and tissue 

indicating increased oxidative stress will more closely replicate the in vivo 

accumulated oxidative damage.  

For the detection of 4-HNE, an aldehyde discovered after MDA as stable end-

product of lipid peroxidation, different methods were presented in former studies. 

Immunoassays such as the sandwich ELISA method use the high reactivity of 4-

HNE to macromolecules to measure the amount of 4-HNE in tissue samples by 

adding specific antibodies that recognize and trap 4-HNE (Borovic et al., 2006). 

Other methods such as HPLC or GC-MS directly detect 4-HNE but due to its high 

reactivity the major amount of free 4-HNE is bound in 4-HNE-adducts and 

escapes direct measuring (Spickett, 2013). For the evaluation of 4-HNE in liver 

tissue in addition to the ELISA assay, the immunohistochemical staining of 4-

HNE based on the theory of 4-HNE accumulation in hepatocytes might visualize 

more clearly higher levels of lipid peroxidation in older rats. Haak et al. presented 

that the amount of 4-HNE in mitochondria of liver tissue measured via 

immunoblotting technique significantly increased after a two-phase heat stress 

experiment in young and old male Fischer 344 rats at 24 h after the second 

heating leading to the conclusion that oxidative damage appears to a greater 

extend (Haak et al., 2009). 

The determination of enzyme activity in serum and tissue samples might be 

affected by repeated freeze-thaw cycles that could reduce enzyme activities. 

Therefore, the results of LDH and ALT activity assays performed in this study 

might be affected as enzymes are inactivated and therefore no significant 

difference could be displayed. Finally, the possibility of preconditioning after the 
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first heat stress needs to be further examined by comparing different heat stress 

experiments. The following questions for researchers include how the heat stress 

upregulates age-depending protection mechanisms and whether HSP play a role 

for protecting tissues in heat stress conditions.  

4.3. Conclusion 

Our data showed controversial results concerning the heat stress experiment to 

the earlier findings of Zhang et al. and therefore three main aspects need 

consideration in following studies: a) role of preconditioning in two-phase heat 

stress experiments, b) if other organs are affected by oxidative injury, c) role of 

antioxidative protection. This thesis was a first approach to identify useful 

biomarkers that display age-related in vivo oxidative stress levels by analyzing 

the effect of heat stress on different aged rats. Further investigations will be 

necessary to evaluate the level of oxidative damage in heat stress experiments 

with altered settings including one- and two-phase heat stresses. Studies showed 

that lipid peroxidation products differ between sexes and strains of animals and 

therefore might also vary in humans. In addition to that, the identification of 

protection mechanisms in form of antioxidants is essential to prevent oxidative 

stress damage. Antioxidative substances including vitamin E and quercetin were 

investigated in various studies for their protective function. Vitamin E was found 

to inhibit lipid peroxidation in rat liver microsomes (Pulla Reddy and Lokesh, 

1992). Quercetin a plant-derived substance contained in different foods was 

found to protect rat livers against injury caused by sodium fluoride-induced 

(Nabavi et al., 2012) as well as alcohol-induced oxidative stress (Liu et al., 2010). 

An antioxidative substance that efficiently reduces oxidative damage from ROS 

attacks and still enables proper cell signaling might contribute essentially to the 

control of oxidative stress and the prevention of cellular aging. As the liver has a 

high regenerative capacity, it might be not as affected by oxidative tissue injury 

as e.g., nerve or brain tissue of the central nervous system. In different 

neurodegenerative diseases, higher levels of lipid peroxidation products were 

measured that support this hypothesis. Especially age-dependent diseases such 

as Alzheimer’s disease and Parkinson’s disease clearly indicate a correlation to 
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oxidative stress injury. Age-related differences in stress response, oxidative 

damage and protection mechanisms might be seen by comparing brain tissue of 

healthy elderly with patients suffering from neurodegenerative diseases. Newer 

approaches for in vivo studies of oxidative stress observing the effect of caloric 

restriction (CR) presented interesting results. Researchers showed extended life 

spans for different species and reduced oxidative DNA damage in CR animal 

models. Species-dependent extended life spans after CR were studied in yeast 

Saccharomyces cerevisiae, the fruit fly Drosophila melanogaster and mice 

(Gems and Partridge, 2013). In theory, the caloric restriction leads to decreased 

metabolic rate and lower body temperature due to less energy metabolism that 

leads to fewer oxygen processing in mitochondria with decreased formation of 

ROS and therefore is thought to reduce the oxidative damage (McCarter et al., 

1985). Hamilton et al. showed that CR significantly reduces age-related 

accumulation of oxidative damage DNA in rodents (Hamilton et al., 2001). Sohal 

et al. discovered that CR alters the age-related production of O2
-• and H2O2 and 

weakens further accumulation of oxidative damage (Sohal et al., 1994a, Sohal et 

al., 1994b). CR further reduced the loss of membrane fluidity seen in older rats 

(Chen and Yu, 1994). Future animal models designed for examination of in vivo 

age-related effects of heat stress should include caloric restriction and further 

observe whether caloric intake influences accumulation of oxidative damage.  

Our study serves as a window for the understanding of oxidative stress-induced 

damage as well as age-related deterioration caused by accumulated damage 

over time. On balance, further studies are needed to establish useful animal 

models that could be transferred to humans. The next steps following are the 

regulation of cellular aging without increased susceptibility to diseases or even 

the prevention of aging processes to enable the human being to live a healthy life 

within its maximum life span.  
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5. Abstract 

Aging of an organism is defined as progressive decline of physiological functions 

with increased probability for disease and death within the life span. Increased 

production of reactive oxygen species (ROS) combined with a reduced capability 

of protection in form of antioxidants represents oxidative stress that is thought to 

be a major contributor to cellular aging. This study is integrated in the joint 

research project OXISYS of the Federal Ministry of Education and Research 

(BMBF) and investigates age-related changes of enzyme activity, liver damage 

and oxidative stress before and after a two-step heat stress experiment in serum 

and liver tissue of different aged male Wistar rats. Young (7 weeks, N = 8), 

middle-aged (6/7 months, N = 10) and old (23 months, N = 10) rats were included 

in the control group without treatment. The heat-stressed group was divided into 

middle-aged (7 months, N = 22) and old (23 months, N = 22) rats liquidated at 

four points in time after the second heat stress (0 h, 2 h, 4 h, and 6 h). Based on 

former findings of Zhang et al., lactate dehydrogenase (LDH) activity indicating 

general cellular damage as well as alanine-aminotransferase (ALT) activity 

specifically monitoring liver damage were measured. As oxidative stress affects 

macromolecules such as proteins, DNA and lipids, two lipid peroxidation end-

products, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were 

analyzed in the samples. Hematoxylin & Eosin Staining of liver sections was 

performed to histologically evaluate hepatocellular damage. Our data shows that 

the expected increase of enzyme activity and lipid peroxidation markers before 

and after the heat stress could not be significantly verified in this setup. 

Histological liver damage appeared more severe in older rats whereas the liver 

morphology in young rats was normal. Controversial results of oxidative stress in 

animal models after heating lead to the hypothesis that age-related oxidative 

damage in the liver is less in comparison to other organs. The role of precondition 

after the first heat stress due to high regenerative capacity of the liver needs to 

be further investigated. To finally understand the molecular pathways of oxidative 

stress in aging, the analysis of protection mechanisms in form of enzymatic and 

non-enzymatic antioxidative protection is necessary. Further research in the field 

of oxidative stress is essential to finally encode the mystery of cellular aging. 
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6. Zusammenfassung 

Das Altern ist definiert als ein fortschreitender Prozess begleitet von konstanter 

Abnahme der physiologischen Eigenschaften eines Organismus, der im Laufe 

der Zeit zu Krankheit und letztendlich unweigerlich zum Tode führt. Als eine der 

Hauptursachen für den zellulären Alterungsprozess wurde eine erhöhte 

Zellschädigung durch vermehrten oxidativen Stress entdeckt, die definiert ist als 

Ungleichgewicht zwischen zunehmender Freisetzung reaktiver 

Sauerstoffspezies (ROS) und dem Abfall protektiver Antioxidantien. Diese Studie 

ist ein Bestandteil des über das Bundesministerium für Bildung und Forschung 

geförderten Verbundprojektes OXISYS und untersucht altersabhängige 

Zellschäden vor und nach einem zweiphasigen Hitzestressversuch in Serum und 

Lebergeweben von männlichen Wistar-Ratten in verschiedenen Altersgruppen. 

Die Kontrollgruppe ohne Hitzestressbehandlung besteht aus jungen (7 Wochen, 

N = 8), mittelalten (6/7 Monate, N = 10) und alten (23 Monate, N = 10) Ratten. Im 

Hitzestressversuch wurden mittelalte (7 Monate, N = 22) mit alten (23 Monate, N 

= 22) Ratten verglichen und die Probenentnahme sowie die Liquidation erfolgte 

an vier verschiedenen Zeitpunkten (0 h, 2 h, 4 h, 6 h) nach dem zweiten 

Hitzestress je Altersgruppe. Basierend auf Vorstudien von Zhang et al wurden 

die generelle Zellschädigung mittels Lactatdehydrogenase (LDH)-Aktivität und 

die spezifische Leberschädigung zusätzlich anhand der Alaninaminotransferase 

(ALT)-Aktivität bestimmt. Oxidative Schäden an zellulären Bestandteilen wie 

Proteinen, DNA und Fetten akkumulieren im Alter und es wurden zwei 

Endprodukte der Lipidperoxidation, Malondialdehyd (MDA) und                                  

4-Hydroxynonenal (4-HNE) bestimmt, um den Grad des oxidativen Stresses zu 

verdeutlichen. Ergänzend wurde die Leberzellschädigung durch histologische 

Beurteilung Hämatoxylin & Eosin eingefärbter Schnitte von Lebergewebe 

dargestellt. Die Untersuchungen dieser Studie zeigten ein Ausbleiben des 

erwarteten signifikanten Anstieges der Enzymaktivitäten und Markern der 

Lipidperoxidation vor und nach Hitzestress in älteren Ratten. Histologisch konnte 

eine höhere Leberzellschädigung in alten Ratten im Vergleich zu weitgehend 

normalem Lebergewebe in jungen Ratten gezeigt werden. Kontroverse 

Ergebnisse im Tiermodell nach Hitzestress könnten eine geringere 
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Beeinträchtigung der Leber im Vergleich zu anderen Organen nahelegen. 

Besonders aufgrund der hohen Regenerationsfähigkeit der Leber sollte die 

Möglichkeit einer Präkonditionierung in dieser Untersuchung nach dem ersten 

Hitzestress in Betracht gezogen werden. Dazu kommt die mögliche Rolle 

protektiver Antioxidantien, die in weiteren Studien zusätzlich untersucht und 

ebenfalls miteinbezogen werden sollte. Eine endgültige Entschlüsselung des 

menschlichen Alterungsprozesses ist weiterhin grundlegender Bestandteil der 

molekularen Alterungsforschung und weitere Untersuchungen sind notwendig 

um effektive Gegenmaßnahmen zu entwickeln und dem Menschen ein langes 

gesundes Leben zu ermöglichen. 



68 

 

7. References 

ABDALLA, E. K., CATY, M. G., GUICE, K. S., HINSHAW, D. B. & OLDHAM, K. T. 1990. Arterial 
levels of oxidized glutathione (GSSG) reflect oxidant stress in vivo. Journal of Surgical 
Research, 48, 291-296. 

AGARWAL, R. & CHASE, S. D. 2002. Rapid, fluorimetric–liquid chromatographic determination 
of malondialdehyde in biological samples. Journal of Chromatography B, 775, 121-126. 

ALBANO, E., CLOT, P., MORIMOTO, M., TOMASI, A., INGELMAN-SUNDBERG, M. & FRENCH, 
S. W. 1996. Role of cytochrome P4502E1-dependent formation of hydroxyethyl free 
radical in the development of liver damage in rats intragastrically fed with ethanol. 
Hepatology, 23, 155-163. 

ALEYNIK, S. I., LEO, M. A., ALEYNIK, M. K. & LIEBER, C. S. 1998. Increased circulating products 
of lipid peroxidation in patients with alcoholic liver disease. Alcoholism: Clinical and 
Experimental Research, 22, 192-196. 

ANDZIAK, B. & BUFFENSTEIN, R. 2006. Disparate patterns of age-related changes in lipid 
peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell, 5, 525-32. 

ANZAI, K., OGAWA, K., GOTO, Y., SENZAKI, Y., OZAWA, T. & YAMAMOTO, H. 1999. 
Oxidation-dependent changes in the stability and permeability of lipid bilayers. Antioxid 
Redox Signal, 1, 339-47. 

ARMSTRONG, C. G. & KENNEY, W. L. 1993. Effects of age and acclimation on responses to 
passive heat exposure. Journal of Applied Physiology, 75, 2162. 

AYALA, A., MUNOZ, M. F. & ARGUELLES, S. 2014. Lipid peroxidation: production, metabolism, 
and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell 
Longev, 2014, 360438. 

BAIS, R. & PHILCOX, M. 1994a. IFCC methods for the measurement of catalytic concentration 
of enzymes. Part 8. IFCC method for lactate dehydrogenase (L-lactate: NAD 
oxidoreductase, EC 1.1.1.27). J Automat Chem, 16, 167-82. 

BAIS, R. & PHILCOX, M. 1994b. IFCC methods for the measurement of catalytic concentration 
of enzymes. Part 8: IFCC method for lactate dehydrogenase (L-lactate: NAD+ 
oxidoreductase, EC 1.1.1.27). Ann Biol Clin (Paris), 52, 475-91. 

BAKAN, E., TAYSI, S., POLAT, M. F., DALGA, S., UMUDUM, Z., BAKAN, N. & GUMUS, M. 2002. 
Nitric oxide levels and lipid peroxidation in plasma of patients with gastric cancer. Jpn J 
Clin Oncol, 32, 162-6. 

BARBE, M. F., TYTELL, M., GOWER, D. J. & WELCH, W. J. 1988. Hyperthermia protects against 
light damage in the rat retina. Science, 241, 1817. 

BARJA DE QUIROGA, G., PEREZ-CAMPO, R. & LOPEZ TORRES, M. 1990. Anti-oxidant 
defences and peroxidation in liver and brain of aged rats. Biochem J, 272, 247-50. 

BEDIRLI, A., KEREM, M., PASAOGLU, H., ERDEM, O., OFLUOGLU, E. & SAKRAK, O. 2005. 
Effects of ischemic preconditioning on regenerative capacity of hepatocyte in the 
ischemically damaged rat livers. J Surg Res, 125, 42-8. 

BELCH, J. J., BRIDGES, A. B., SCOTT, N. & CHOPRA, M. 1991. Oxygen free radicals and 
congestive heart failure. British Heart Journal, 65, 245-248. 

BENEDETTI, A., COMPORTI, M. & ESTERBAUER, H. 1980. Identification of 4-hydroxynonenal 
as a cytotoxic product originating from the peroxidation of liver microsomal lipids. 
Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 620, 281-296. 

BERGMEYER, H. U., HORDER, M. & REJ, R. 1986. International Federation of Clinical 
Chemistry (IFCC) Scientific Committee, Analytical Section: approved recommendation 
(1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 
3. IFCC method for alanine aminotransferase (L-alanine: 2-oxoglutarate 
aminotransferase, EC 2.6.1.2). J Clin Chem Clin Biochem, 24, 481-95. 

BIGARELLA, C. L., LIANG, R. & GHAFFARI, S. 2014. Stem cells and the impact of ROS 
signaling. Development, 141, 4206-18. 

BJELAKOVIC, G., NIKOLOVA, D., SIMONETTI, R. G. & GLUUD, C. 2004. Antioxidant 
supplements for prevention of gastrointestinal cancers: a systematic review and meta-
analysis. The Lancet, 364, 1219-1228. 



69 

 

BLAKE, M. J., FARGNOLI, J., GERSHON, D. & HOLBROOK, N. J. 1991. Concomitant decline in 
heat-induced hyperthermia and HSP70 mRNA expression in aged rats. Am J Physiol, 
260, R663-7. 

BLASIG, I. E., GRUNE, T., SCHÖNHEIT, K., ROHDE, E., JAKSTADT, M., HASELOFF, R. F. & 
SIEMS, W. G. 1995. 4-Hydroxynonenal, a novel indicator of lipid peroxidation for 
reperfusion injury of the myocardium. The American journal of physiology, 269, H14-22. 

BLOOMER, S. A., KREGEL, K. C. & BROWN, K. E. 2014. Heat stress stimulates hepcidin mRNA 
expression and C/EBPalpha protein expression in aged rodent liver. Arch Gerontol 
Geriatr, 58, 145-52. 

BMBF. 2016. GerontoSYS Teilprojekte [Online]. Bundesministerium für Bildung und Forschung. 
Available: http://www.gesundheitsforschung-bmbf.de/de/6395.php [Accessed 30.11. 
2016]. 

BOROVIC, S., RABUZIN, F., WAEG, G. & ZARKOVIC, N. 2006. Enzyme-linked immunosorbent 
assay for 4-hydroxynonenal-histidine conjugates. Free Radic Res, 40, 809-20. 

BRUEMMER-SMITH, S., STÜBER, F. & SCHROEDER, S. 2001. Protective functions of 
intracellular heat-shock protein (HSP) 70-expression in patients with severe sepsis. 
Intensive Care Medicine, 27, 1835-1841. 

BUTTERFIELD, D. A., REED, T., PERLUIGI, M., DE MARCO, C., COCCIA, R., CINI, C. & 
SULTANA, R. 2006. Elevated protein-bound levels of the lipid peroxidation product, 4-
hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neuroscience 
Letters, 397, 170-173. 

CADENAS, E. & DAVIES, K. J. A. 2000. Mitochondrial free radical generation, oxidative stress, 
and aging. Free Radical Biology and Medicine, 29, 222-230. 

CAI, F., DUPERTUIS, Y. M. & PICHARD, C. 2012. Role of polyunsaturated fatty acids and lipid 
peroxidation on colorectal cancer risk and treatments. Current Opinion in Clinical Nutrition 
& Metabolic Care, 15, 99-106. 

CAI, J., YANG, J. & JONES, D. P. 1998. Mitochondrial control of apoptosis: the role of cytochrome 
c. Biochim Biophys Acta, 1366, 139-49. 

CARBONNEAU, M. A., PEUCHANT, E., SESS, D., CANIONI, P. & CLERC, M. 1991. Free and 
bound malondialdehyde measured as thiobarbituric acid adduct by HPLC in serum and 
plasma. Clinical Chemistry, 37, 1423-1429. 

CASTELLANI, R. J., PERRY, G., SIEDLAK, S. L., NUNOMURA, A., SHIMOHAMA, S., ZHANG, 
J., MONTINE, T., SAYRE, L. M. & SMITH, M. A. 2002. Hydroxynonenal adducts indicate 
a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. 
Neuroscience Letters, 319, 25-28. 

CASTLE, S. C. 2000. Clinical relevance of age-related immune dysfunction. Clin Infect Dis, 31, 
578-85. 

CASTRO, M. D. R., SUAREZ, E., KRAISELBURD, E., ISIDRO, A., PAZ, J., FERDER, L. & 
AYALA-TORRES, S. 2012. Aging increases mitochondrial DNA damage and oxidative 
stress in liver of rhesus monkeys. Experimental Gerontology, 47, 29-37. 

CATALÁ, A. 2009. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals 
and oxidized phospholipids active in physiological and/or pathological conditions. 
Chemistry and Physics of Lipids, 157, 1-11. 

CHEN, J. J. & YU, B. P. 1994. Alterations in mitochondrial membrane fluidity by lipid peroxidation 
products. Free Radic Biol Med, 17, 411-8. 

CHENG, F. C., JEN, J. F. & TSAI, T. H. 2002. Hydroxyl radical in living systems and its separation 
methods. J Chromatogr B Analyt Technol Biomed Life Sci, 781, 481-96. 

CICHOZ-LACH, H. & MICHALAK, A. 2014. Oxidative stress as a crucial factor in liver diseases. 
World J Gastroenterol, 20, 8082-91. 

CINI, M. & MORETTI, A. 1995. Studies on lipid peroxidation and protein oxidation in the aging 
brain. Neurobiology of Aging, 16, 53-57. 

CIRCU, M. L. & AW, T. Y. 2010. Reactive oxygen species, cellular redox systems, and apoptosis. 
Free Radic Biol Med, 48, 749-62. 

CLAVIEN, P. A., YADAV, S., SINDRAM, D. & BENTLEY, R. C. 2000. Protective effects of 
ischemic preconditioning for liver resection performed under inflow occlusion in humans. 
Ann Surg, 232, 155-62. 



70 

 

CONTI, S., MELI, P., MINELLI, G., SOLIMINI, R., TOCCACELI, V., VICHI, M., BELTRANO, C. & 
PERINI, L. 2005. Epidemiologic study of mortality during the Summer 2003 heat wave in 
Italy. Environ Res, 98, 390-9. 

CSALA, M., KARDON, T., LEGEZA, B., LIZAK, B., MANDL, J., MARGITTAI, E., PUSKAS, F., 
SZARAZ, P., SZELENYI, P. & BANHEGYI, G. 2015. On the role of 4-hydroxynonenal in 
health and disease. Biochim Biophys Acta, 1852, 826-38. 

CUI, H., KONG, Y. & ZHANG, H. 2012. Oxidative stress, mitochondrial dysfunction, and aging. J 
Signal Transduct, 2012, 646354. 

CURRIE, R. W., TANGUAY, R. M. & KINGMA, J. G. 1993. Heat-shock response and limitation of 
tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation, 87, 963-971. 

CURSIO, R., GUGENHEIM, J., RICCI, J. E., CRENESSE, D., ROSTAGNO, P., MAULON, L., 
SAINT-PAUL, M. C., FERRUA, B. & AUBERGER, A. P. 1999. A caspase inhibitor fully 
protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis. 
FASEB J, 13, 253-61. 

DAI, D. F., RABINOVITCH, P. S. & UNGVARI, Z. 2012. Mitochondria and cardiovascular aging. 
Circ Res, 110, 1109-24. 

DALLE-DONNE, I., ROSSI, R., COLOMBO, R., GIUSTARINI, D. & MILZANI, A. 2006. Biomarkers 
of oxidative damage in human disease. Clin Chem, 52, 601-23. 

DAVIES, K. J. A. 2000. Oxidative stress, antioxidant defenses, and damage removal, repair, and 
replacement systems. Iubmb Life, 50, 279-289. 

DEL RIO, D., STEWART, A. J. & PELLEGRINI, N. 2005. A review of recent studies on 
malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, 
Metabolism and Cardiovascular Diseases, 15, 316-328. 

DEPINHO, R. A. 2000. The age of cancer. Nature, 408, 248-54. 
DI DOMENICO, F., TRAMUTOLA, A. & BUTTERFIELD, D. A. 2016. Role of 4-hydroxy-2-nonenal 

(HNE) in the pathogenesis of alzheimer disease and other selected age-related 
neurodegenerative disorders. Free Radic Biol Med. 

DOBRIAN, A. D., DAVIES, M. J., SCHRIVER, S. D., LAUTERIO, T. J. & PIEWITT, R. L. 2000. 
Oxidative stress in a rat model of obesity-induced hypertension. Hypertension, 36, 685-
686. 

DOU, X., LI, S., WANG, Z., GU, D., SHEN, C., YAO, T. & SONG, Z. 2012. Inhibition of NF-κB 
Activation by 4-Hydroxynonenal Contributes to Liver Injury in a Mouse Model of Alcoholic 
Liver Disease. The American Journal of Pathology, 181, 1702-1710. 

DRAPER, H. H., AGARWAL, S., VOPARIL NELSON, D. E., WEE, J. J., GHOSHAL, A. K. & 
FARBER, E. 1995. Effects of peroxidative stress and age on the concentration of a 
deoxyguanosine-malondialdehyde adduct in rat DNA. Lipids, 30, 959-961. 

DROGE, W. 2002. Free radicals in the physiological control of cell function. Physiol Rev, 82, 47-
95. 

DUFOUR, A. & CANDAS, V. 2007. Ageing and thermal responses during passive heat exposure: 
sweating and sensory aspects. European Journal of Applied Physiology, 100, 19-26. 

DUFOUR, D. R., LOTT, J. A., NOLTE, F. S., GRETCH, D. R., KOFF, R. S. & SEEFF, L. B. 2000. 
Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory 
tests. Clin Chem, 46, 2027-49. 

DUNNING, S., UR REHMAN, A., TIEBOSCH, M. H., HANNIVOORT, R. A., HAIJER, F. W., 
WOUDENBERG, J., VAN DEN HEUVEL, F. A. J., BUIST-HOMAN, M., FABER, K. N. & 
MOSHAGE, H. 2013. Glutathione and antioxidant enzymes serve complementary roles 
in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell 
death. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832, 2027-
2034. 

EIPEL, C., GLANEMANN, M., NUESSLER, A. K., MENGER, M. D., NEUHAUS, P. & VOLLMAR, 
B. 2005. Ischemic preconditioning impairs liver regeneration in extended reduced-size 
livers. Annals of surgery, 241, 477-484. 

EREZ, A., SHENTAL, O., TCHEBINER, J. Z., LAUFER-PERL, M., WASSERMAN, A., SELLA, T. 
& GUZNER-GUR, H. 2014. Diagnostic and prognostic value of very high serum lactate 
dehydrogenase in admitted medical patients. Isr Med Assoc J, 16, 439-43. 

ESTERBAUER, H., SCHAUR, R. J. & ZOLLNER, H. 1991. Chemistry and biochemistry of 4-
hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 11, 81-
128. 



71 

 

FARBER, J. L. 1994. Mechanisms of cell injury by activated oxygen species. Environmental 
Health Perspectives, 102, 17-24. 

FELDMAN, A. T. & WOLFE, D. 2014. Tissue Processing and Hematoxylin and Eosin Staining. 
In: DAY, C. E. (ed.) Histopathology: Methods and Protocols. New York, NY: Springer New 
York. 

FENG, Y., WANG, N., YE, X., LI, H., FENG, Y., CHEUNG, F. & NAGAMATSU, T. 2011. 
Hepatoprotective effect and its possible mechanism of Coptidis rhizoma aqueous extract 
on carbon tetrachloride-induced chronic liver hepatotoxicity in rats. J Ethnopharmacol, 
138, 683-90. 

FERNANDEZ, L., HEREDIA, N., PERALTA, C., XAUS, C., ROSELLO-CATAFAU, J., RIMOLA, 
A., MARCO, A., SERAFIN, A., DEULOFEU, R., GELPI, E. & GRANDE, L. 2003. Role of 
ischemic preconditioning and the portosystemic shunt in the prevention of liver and lung 
damage after rat liver transplantation. Transplantation, 76, 282-9. 

FERRARI, A. U., RADAELLI, A. & CENTOLA, M. 2003. Invited Review: Aging and the 
cardiovascular system. Journal of Applied Physiology, 95, 2591-2597. 

FERRUCCI, L., GIALLAURIA, F. & GURALNIK, J. M. 2008. Epidemiology of Aging. Radiologic 
clinics of North America, 46, 643-v. 

FINKEL, T. & HOLBROOK, N. J. 2000. Oxidants, oxidative stress and the biology of ageing. 
Nature, 408, 239-47. 

FISCHER, A. H., JACOBSON, K. A., ROSE, J. & ZELLER, R. 2008. Hematoxylin and Eosin 
Staining of Tissue and Cell Sections. Cold Spring Harbor Protocols, 2008, pdb.prot4986. 

FLANAGAN, S. W., MOSELEY, P. L. & BUETTNER, G. R. 1998. Increased flux of free radicals 
in cells subjected to hyperthermia: detection by electron paramagnetic resonance spin 
trapping. FEBS Letters, 431, 285-286. 

FLEG, J. L. & STRAIT, J. 2012. Age-associated changes in cardiovascular structure and function: 
a fertile milieu for future disease. Heart Failure Reviews, 17, 545-554. 

FRENCH, S. W., WONG, K., JUI, L., ALBANO, E., HAGBJORK, A. L. & INGELMAN-SUNDBERG, 
M. 1993. Effect of Ethanol on Cytochrome P450 2E1 (CYP2E1), Lipid Peroxidation, and 
Serum Protein Adduct Formation in Relation to Liver Pathology Pathogenesis. 
Experimental and Molecular Pathology, 58, 61-75. 

FUKUNAGA, K., TAKAMA, K. & SUZUKI, T. 1995. High-Performance Liquid Chromatographic 
Determination of Plasma Malondialdehyde Level without a Solvent Extraction Procedure. 
Analytical Biochemistry, 230, 20-23. 

GELLERICH, F. N., TRUMBECKAITE, S., OPALKA, J. R., SEPPET, E., RASMUSSEN, H. N., 
NEUHOFF, C. & ZIERZ, S. 2000. Function of the mitochondrial outer membrane as a 
diffusion barrier in health and diseases. Biochem Soc Trans, 28, 164-9. 

GEMS, D. & PARTRIDGE, L. 2013. Genetics of longevity in model organisms: debates and 
paradigm shifts. Annu Rev Physiol, 75, 621-44. 

GLANEMANN, M., STRENZIOK, R., KUNTZE, R., MÜNCHOW, S., DIKOPOULOS, N., LIPPEK, 
F., LANGREHR, J. M., DIETEL, M., NEUHAUS, P. & NUSSLER, A. K. 2004. Ischemic 
preconditioning and methylprednisolone both equally reduce hepatic 
ischemia/reperfusion injury. Surgery, 135, 203-214. 

GLORIOSO, C. & SIBILLE, E. 2011. Between destiny and disease: genetics and molecular 
pathways of human central nervous system aging. Prog Neurobiol, 93, 165-81. 

GONENC, A., OZKAN, Y., TORUN, M. & SIMSEK, B. 2001. Plasma malondialdehyde (MDA) 
levels in breast and lung cancer patients. J Clin Pharm Ther, 26, 141-4. 

GRIENDLING, K. K., TOUYZ, R. M., ZWEIER, J. L., DIKALOV, S., CHILIAN, W., CHEN, Y. R., 
HARRISON, D. G., BHATNAGAR, A. & AMERICAN HEART ASSOCIATION COUNCIL 
ON BASIC CARDIOVASCULAR, S. 2016. Measurement of Reactive Oxygen Species, 
Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular 
System: A Scientific Statement From the American Heart Association. Circ Res, 119, 
e39-75. 

GRIZZI, F., DI CARO, G., LAGHI, L., HERMONAT, P., MAZZOLA, P., NGUYEN, D. D., RADHI, 
S., FIGUEROA, J. A., COBOS, E., ANNONI, G. & CHIRIVA-INTERNATI, M. 2013. Mast 
cells and the liver aging process. Immun Ageing, 10, 9. 

GROTTO, D., MARIA, L. S., VALENTINI, J., PANIZ, C., SCHMITT, G., GARCIA, S. C., 
POMBLUM, V. J., ROCHA, J. B. T. & FARINA, M. 2009. Importance of the lipid 



72 

 

peroxidation biomarkers and methodological aspects FOR malondialdehyde 
quantification. Química Nova, 32, 169-174. 

GRUBECK-LOEBENSTEIN, B. 1997. Changes in the Aging Immune System. Biologicals, 25, 
205-208. 

GUI, J., MUSTACHIO, L. M., SU, D. M. & CRAIG, R. W. 2012. Thymus Size and Age-related 
Thymic Involution: Early Programming, Sexual Dimorphism, Progenitors and Stroma. 
Aging Dis, 3, 280-90. 

GUTTERIDGE, J. M. 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. 
Clinical Chemistry, 41, 1819-1828. 

HAAK, J. L., BUETTNER, G. R., SPITZ, D. R. & KREGEL, K. C. 2009. Aging augments 
mitochondrial susceptibility to heat stress. Am J Physiol Regul Integr Comp Physiol, 296, 
R812-20. 

HAGHDOOST, S., CZENE, S., NÄSLUND, I., SKOG, S. & HARMS-RINGDAHL, M. 2005. 
Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro. 
Free Radical Research, 39, 153-162. 

HALL, D. M., XU, L., DRAKE, V. J., OBERLEY, L. W., OBERLEY, T. D., MOSELEY, P. L. & 
KREGEL, K. C. 2000. Aging reduces adaptive capacity and stress protein expression in 
the liver after heat stress. J Appl Physiol (1985), 89, 749-59. 

HALLIWELL, B. & GUTTERIDGE, J. M. C. 2007. Free radicals in biology and medicine, Oxford ; 
New York, Oxford University Press. 

HAMILTON, M. L., VAN REMMEN, H., DRAKE, J. A., YANG, H., GUO, Z. M., KEWITT, K., 
WALTER, C. A. & RICHARDSON, A. 2001. Does oxidative damage to DNA increase with 
age? Proceedings of the National Academy of Sciences, 98, 10469-10474. 

HARMAN, D. 1956. Aging: a theory based on free radical and radiation chemistry. J Gerontol, 11, 
298-300. 

HARMAN, D. 2003. The Free Radical Theory of Aging. Antioxidants & Redox Signaling, 5, 557-
561. 

HAWKLEY, L. C. & CACIOPPO, J. T. 2004. Stress and the aging immune system. Brain, 
Behavior, and Immunity, 18, 114-119. 

HAYFLICK, L. 2000. The future of ageing. Nature, 408, 267-9. 
HEKIMI, S., LAPOINTE, J. & WEN, Y. 2011. Taking a “good” look at free radicals in the aging 

process. Trends in Cell Biology, 21, 569-576. 
HIGHTOWER, L. E. 1991. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell, 66, 

191-7. 
HOLMES, G. E., BERNSTEIN, C. & BERNSTEIN, H. 1992. Oxidative and other DNA damages 

as the basis of aging: a review. Mutation Research/DNAging, 275, 305-315. 
HULBERT, A. J., FAULKS, S. C. & BUFFENSTEIN, R. 2006. Oxidation-Resistant Membrane 

Phospholipids Can Explain Longevity Differences Among the Longest-Living Rodents 
and Similarly-Sized Mice. The Journals of Gerontology Series A: Biological Sciences and 
Medical Sciences, 61, 1009-1018. 

HUSAIN, K., SCOTT, B. R., REDDY, S. K. & SOMANI, S. M. 2001. Chronic ethanol and nicotine 
interaction on rat tissue antioxidant defense system. Alcohol, 25, 89-97. 

IDE, T., TSUTSUI, H., KINUGAWA, S., UTSUMI, H., KANG, D., HATTORI, N., UCHIDA, K., 
ARIMURA, K.-I., EGASHIRA, K. & TAKESHITA, A. 1999. Mitochondrial Electron 
Transport Complex I Is a Potential Source of Oxygen Free Radicals in the Failing 
Myocardium. Circulation Research, 85, 357-363. 

İNAL, M. E., KANBAK, G. & SUNAL, E. 2001. Antioxidant enzyme activities and malondialdehyde 
levels related to aging. Clinica Chimica Acta, 305, 75-80. 

INTANO, G. W., CHO, E. J., MCMAHAN, C. A. & WALTER, C. A. 2003. Age-related Base 
Excision Repair Activity in Mouse Brain and Liver Nuclear Extracts. The Journals of 
Gerontology Series A: Biological Sciences and Medical Sciences, 58, B205-B211. 

JANERO, D. R. 1990. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of 
lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med, 9, 515-40. 

JIN, K., SIMPKINS, J. W., JI, X., LEIS, M. & STAMBLER, I. 2015. The Critical Need to Promote 
Research of Aging and Aging-related Diseases to Improve Health and Longevity of the 
Elderly Population. Aging Dis, 6, 1-5. 

JOHNSON, M. 2012. Materials and Methods - Protein Quantitation [Online]. Labome Available: 
http://www.labome.com/method/Protein-Quantitation.htm [Accessed 15.10.2016]. 



73 

 

JOMOVA, K. & VALKO, M. 2011. Advances in metal-induced oxidative stress and human 
disease. Toxicology, 283, 65-87. 

KADIISKA, M. B., GLADEN, B. C., BAIRD, D. D., GERMOLEC, D., GRAHAM, L. B., PARKER, 
C. E., NYSKA, A., WACHSMAN, J. T., AMES, B. N., BASU, S., BROT, N., FITZGERALD, 
G. A., FLOYD, R. A., GEORGE, M., HEINECKE, J. W., HATCH, G. E., HENSLEY, K., 
LAWSON, J. A., MARNETT, L. J., MORROW, J. D., MURRAY, D. M., PLASTARAS, J., 
ROBERTS II, L. J., ROKACH, J., SHIGENAGA, M. K., SOHAL, R. S., SUN, J., TICE, R. 
R., VAN THIEL, D. H., WELLNER, D., WALTER, P. B., TOMER, K. B., MASON, R. P. & 
BARRETT, J. C. 2005. Biomarkers of Oxidative Stress Study II: Are oxidation products 
of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radical Biology and 
Medicine, 38, 698-710. 

KENNEY, W. L., CRAIGHEAD, D. H. & ALEXANDER, L. M. 2014. HEAT WAVES, AGING, AND 
HUMAN CARDIOVASCULAR HEALTH. Medicine and science in sports and exercise, 
46, 1891-1899. 

KENNEY, W. L. & MUNCE, T. A. 2003. Invited review: aging and human temperature regulation. 
J Appl Physiol (1985), 95, 2598-603. 

KEW, M., BERSOHN, I. & SEFTEL, H. 1971. The diagnostic and prognostic significance of the 
serum enzyme changes in heatstroke. Trans R Soc Trop Med Hyg, 65, 325-30. 

KEW, M., BERSOHN, I., SEFTEL, H. & KENT, G. 1970. Liver damage in heatstroke. Am J Med, 
49, 192-202. 

KIANG, J. G. & TSOKOS, G. C. 1998. Heat shock protein 70 kDa: molecular biology, 
biochemistry, and physiology. Pharmacol Ther, 80, 183-201. 

KIM, W. R., FLAMM, S. L., DI BISCEGLIE, A. M., BODENHEIMER, H. C. & PUBLIC POLICY 
COMMITTEE OF THE AMERICAN ASSOCIATION FOR THE STUDY OF LIVER, D. 
2008. Serum activity of alanine aminotransferase (ALT) as an indicator of health and 
disease. Hepatology, 47, 1363-70. 

KIRKWOOD, T. B. L. 2008. A systematic look at an old problem. Nature, 451, 644-647. 
KOPPERSCHLAGER, G. & KIRCHBERGER, J. 1996. Methods for the separation of lactate 

dehydrogenases and clinical significance of the enzyme. J Chromatogr B Biomed Appl, 
684, 25-49. 

KRAFT, B. 2012. Verbundprojekt OXISYS. Klinik für Unfallchirurgie, BG Traumaklinik, Siegfried 
Weller Institut, Tübingen. 

KREGEL, K. C. & MOSELEY, P. L. 1996. Differential effects of exercise and heat stress on liver 
HSP70 accumulation with aging. J Appl Physiol (1985), 80, 547-51. 

KREGEL, K. C., TIPTON, C. M. & SEALS, D. R. 1990. Thermal adjustments to nonexertional heat 
stress in mature and senescent Fischer 344 rats. J Appl Physiol (1985), 68, 1337-42. 

KUDRYAVTSEVA, A. V., KRASNOV, G. S., DMITRIEV, A. A., ALEKSEEV, B. Y., KARDYMON, 
O. L., SADRITDINOVA, A. F., FEDOROVA, M. S., POKROVSKY, A. V., MELNIKOVA, 
N. V., KAPRIN, A. D., MOSKALEV, A. A. & SNEZHKINA, A. V. 2016. Mitochondrial 
dysfunction and oxidative stress in aging and cancer. Oncotarget. 

KUMAR, H., LIM, H. W., MORE, S. V., KIM, B. W., KOPPULA, S., KIM, I. S. & CHOI, D. K. 2012. 
The role of free radicals in the aging brain and Parkinson's Disease: convergence and 
parallelism. Int J Mol Sci, 13, 10478-504. 

KUME, M., YAMAMOTO, Y., SAAD, S., GOMI, T., KIMOTO, S., SHIMABUKURO, T., YAGI, T., 
NAKAGAMI, M., TAKADA, Y., MORIMOTO, T. & YAMAOKA, Y. 1996. Ischemic 
preconditioning of the liver in rats: Implications of heat shock protein induction to increase 
tolerance of ischemia-reperfusion injury. Journal of Laboratory and Clinical Medicine, 
128, 251-258. 

LAGANIERE, S. & YU, B. P. 1993. Modulation of Membrane Phospholipid Fatty Acid Composition 
by Age and Food Restriction. Gerontology, 39, 7-18. 

LEE, H. Y. & OH, B. H. 2010. Aging and arterial stiffness. Circ J, 74, 2257-62. 
LEE, J., KOO, N. & MIN, D. B. 2004. Reactive Oxygen Species, Aging, and Antioxidative 

Nutraceuticals. Comprehensive Reviews in Food Science and Food Safety, 3, 21-33. 
LI, C.-M., LI, L., BAI, J.-Y., WU, J., HUANG, S. & WANG, G.-L. 2013. Correlation between heat 

shock protein 32 and chronic heat-induced liver injury in developing mice. Journal of 
Thermal Biology, 38, 513-519. 

LI, S., TAN, H. Y., WANG, N., ZHANG, Z. J., LAO, L., WONG, C. W. & FENG, Y. 2015. The Role 
of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci, 16, 26087-124. 



74 

 

LI, Z. & SRIVASTAVA, P. 2001. Heat-Shock Proteins. Current Protocols in Immunology. John 
Wiley & Sons, Inc. 

LIN, H.-M., TSENG, H.-C., WANG, C.-J., LIN, J.-J., LO, C.-W. & CHOU, F.-P. 2008. 
Hepatoprotective effects of Solanum nigrum Linn extract against CCl4-iduced oxidative 
damage in rats. Chemico-Biological Interactions, 171, 283-293. 

LIU, J., YEO, H. C., DONIGER, S. J. & AMES, B. N. 1997. Assay of aldehydes from lipid 
peroxidation: gas chromatography-mass spectrometry compared to thiobarbituric acid. 
Anal Biochem, 245, 161-6. 

LIU, J., YEO, H. C., ÖVERVIK-DOUKI, E., HAGEN, T., DONIGER, S. J., CHU, D. W., BROOKS, 
G. A. & AMES, B. N. 2000. Chronically and acutely exercised rats: biomarkers of oxidative 
stress and endogenous antioxidants. Journal of Applied Physiology, 89, 21-28. 

LIU, S., HOU, W., YAO, P., ZHANG, B., SUN, S., NÜSSLER, A. K. & LIU, L. 2010. Quercetin 
protects against ethanol-induced oxidative damage in rat primary hepatocytes. 
Toxicology in Vitro, 24, 516-522. 

LÓPEZ-OTÍN, C., BLASCO, M. A., PARTRIDGE, L., SERRANO, M. & KROEMER, G. 2013. The 
Hallmarks of Aging. Cell, 153, 1194-1217. 

LOUVET, A. & MATHURIN, P. 2015. Alcoholic liver disease: mechanisms of injury and targeted 
treatment. Nat Rev Gastroenterol Hepatol, 12, 231-242. 

LOVELL, M. A., EHMANN, W. D., BUTLER, S. M. & MARKESBERY, W. R. 1995. Elevated 
thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in 
Alzheimer's disease. Neurology, 45, 1594-601. 

LOWE, S. W. & LIN, A. W. 2000. Apoptosis in cancer. Carcinogenesis, 21, 485-95. 
LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L. & RANDALL, R. J. 1951. Protein 

measurement with the Folin phenol reagent. J Biol Chem, 193, 265-75. 
LU, M.-J., CHEN, Y.-S., HUANG, H.-S. & MA, M.-C. 2014. Hypoxic preconditioning protects rat 

hearts against ischemia–reperfusion injury via the arachidonate12-
lipoxygenase/transient receptor potential vanilloid 1 pathway. Basic Research in 
Cardiology, 109, 414. 

LYKKESFELDT, J. 2007. Malondialdehyde as biomarker of oxidative damage to lipids caused by 
smoking. Clinica Chimica Acta, 380, 50-58. 

MANGONI, A. A. & JACKSON, S. H. 2004. Age-related changes in pharmacokinetics and 
pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol, 57, 
6-14. 

MARKESBERY, W. R. & LOVELL, M. A. 1998. Four-Hydroxynonenal, a Product of Lipid 
Peroxidation, is Increased in the Brain in Alzheimer’s Disease. Neurobiology of Aging, 
19, 33-36. 

MARNETT, L. J. 1999. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res, 424, 83-
95. 

MARNETT, L. J., BUCK, J., TUTTLE, M. A., BASU, A. K. & BULL, A. W. 1985. Distribution and 
oxidation of malondialdehyde in mice. Prostaglandins, 30, 241-54. 

MASHIMA, R., WITTING, P. K. & STOCKER, R. 2001. Oxidants and antioxidants in 
atherosclerosis. Current Opinion in Lipidology, 12, 411-418. 

MASORO, E. J. 2005. Overview of caloric restriction and ageing. Mechanisms of Ageing and 
Development, 126, 913-922. 

MATEOS, R., LECUMBERRI, E., RAMOS, S., GOYA, L. & BRAVO, L. 2005. Determination of 
malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver 
as a biomarker for oxidative stress: Application to a rat model for hypercholesterolemia 
and evaluation of the effect of diets rich in phenolic antioxidants from fruits. Journal of 
Chromatography B, 827, 76-82. 

MATÉS, J. M., PÉREZ-GÓMEZ, C. & DE CASTRO, I. N. 1999. Antioxidant enzymes and human 
diseases. Clinical Biochemistry, 32, 595-603. 

MATHERS, C. D., STEVENS, G. A., BOERMA, T., WHITE, R. A. & TOBIAS, M. I. 2015. Causes 
of international increases in older age life expectancy. Lancet, 385, 540-8. 

MCCARTER, R., MASORO, E. & YU, B. P. 1985. Does food restriction retard aging by reducing 
the metabolic rate? American Journal of Physiology-Endocrinology And Metabolism, 248, 
E488-E490. 

MCCORD, J. M. 1974. Free radicals and inflammation: protection of synovial fluid by superoxide 
dismutase. Science, 185, 529-531. 



75 

 

MCCORD, J. M. & EDEAS, M. A. 2005. SOD, oxidative stress and human pathologies: a brief 
history and a future vision. Biomedicine & Pharmacotherapy, 59, 139-142. 

MEAGHER, E. A., BARRY, O. P., BURKE, A., LUCEY, M. R., LAWSON, J. A., ROKACH, J. & 
FITZGERALD, G. A. 1999. Alcohol-induced generation of lipid peroxidation products in 
humans. The Journal of clinical investigation, 104, 805-813. 

MECOCCI, P., MACGARVEY, U., KAUFMAN, A. E., KOONTZ, D., SHOFFNER, J. M., 
WALLACE, D. C. & BEAL, M. F. 1993. Oxidative damage to mitochondrial DNA shows 
marked age-dependent increases in human brain. Ann Neurol, 34, 609-16. 

MELOV, S. 2000. Mitochondrial oxidative stress. Physiologic consequences and potential for a 
role in aging. Ann N Y Acad Sci, 908, 219-25. 

MENG, Z. & ZHANG, B. 2003. Oxidative damage of sulfur dioxide inhalation on brains and livers 
of mice. Environmental Toxicology and Pharmacology, 13, 1-8. 

MEZZETTI, A., LAPENNA, D., ROMANO, F., COSTANTINI, F., PIERDOMENICO, S. D., DE 
CESARE, D., CUCCURULLO, F., RIARIO-SFORZA, G., ZULIANI, G. & FELLIN, R. 1996. 
Systemic oxidative stress and its relationship with age and illness. Associazione Medica 
"Sabin". J Am Geriatr Soc, 44, 823-7. 

MILLER, E. R., PASTOR-BARRIUSO, R., DALAL, D., RIEMERSMA, R. A., APPEL, L. J. & 
GUALLAR, E. 2005. Meta-analysis: high-dosage vitamin E supplementation may 
increase all-cause mortality. Annals of internal medicine, 142, 37-46. 

MILLER, R. A. 1996. The aging immune system: primer and prospectus. Science, 273, 70-4. 
MINSON, C. T., WLADKOWSKI, S. L., CARDELL, A. F., PAWELCZYK, J. A. & KENNEY, W. L. 

1998. Age alters the cardiovascular response to direct passive heating. J Appl Physiol 
(1985), 84, 1323-32. 

MITRA, V. & METCALF, J. 2009. Metabolic functions of the liver. Anaesthesia & Intensive Care 
Medicine, 10, 334-335. 

MOGHADDAS, S., HOPPEL, C. L. & LESNEFSKY, E. J. 2003. Aging defect at the QO site of 
complex III augments oxyradical production in rat heart interfibrillar mitochondria. Arch 
Biochem Biophys, 414, 59-66. 

MOLINA, M. F., SANCHEZ-REUS, I., IGLESIAS, I. & BENEDI, J. 2003. Quercetin, a flavonoid 
antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse 
liver. Biological and Pharmaceutical Bulletin, 26, 1398-1402. 

MORI, T., MURAMATSU, H., MATSUI, T., MCKEE, A. & ASANO, T. 2000. Possible role of the 
superoxide anion in the development of neuronal tolerance following ischaemic 
preconditioning in rats. Neuropathology and Applied Neurobiology, 26, 31-40. 

MUJAHID, A., PUMFORD, N. R., BOTTJE, W., NAKAGAWA, K., MIYAZAWA, T., AKIBA, Y. & 
TOYOMIZU, M. 2007. Mitochondrial Oxidative Damage in Chicken Skeletal Muscle 
Induced by Acute Heat Stress. The Journal of Poultry Science, 44, 439-445. 

MURIEL, P. 2009. Role of free radicals in liver diseases. Hepatology International, 3, 526-536. 
MURPHY, M. P. 2009. How mitochondria produce reactive oxygen species. Biochemical Journal, 

417, 1-13. 
NABAVI, S. M., NABAVI, S. F., ESLAMI, S. & MOGHADDAM, A. H. 2012. In vivo protective 

effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. 
Food Chemistry, 132, 931-935. 

NATARAJAN, S. K., THOMAS, S., RAMAMOORTHY, P., BASIVIREDDY, J., PULIMOOD, A. B., 
RAMACHANDRAN, A. & BALASUBRAMANIAN, K. A. 2006. Oxidative stress in the 
development of liver cirrhosis: A comparison of two different experimental models. 
Journal of Gastroenterology and Hepatology, 21, 947-957. 

NATHAN, D. M., SINGER, D. E., GODINE, J. E. & PERLMUTER, L. C. 1986. Non-insulin-
dependent diabetes in older patients. The American Journal of Medicine, 81, 837-842. 

NATIONS, U. 2015. United Nations, Department of Economic and Social Affairs, Population 
Division. World Population Prospects: The 2015 Revision  

NAUDÍ, A., JOVÉ, M., AYALA, V., PORTERO-OTIN, M., BARJA, G. & PAMPLONA, R. 2013. 
Membrane lipid unsaturation as physiological adaptation to animal longevity. Frontiers in 
Physiology, 4. 

NAVARRO, A., BOVERIS, A., BÁNDEZ, M. J., SÁNCHEZ-PINO, M. J., GÓMEZ, C., MUNTANÉ, 
G. & FERRER, I. 2009. Human brain cortex: mitochondrial oxidative damage and 
adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radical 
Biology and Medicine, 46, 1574-1580. 



76 

 

NAYLOR, R. M., BAKER, D. J. & VAN DEURSEN, J. M. 2013. Senescent Cells: A Novel 
Therapeutic Target for Aging and Age-Related Diseases. Clinical Pharmacology & 
Therapeutics, 93, 105-116. 

NICOLSON, G. L. 2014. The Fluid—Mosaic Model of Membrane Structure: Still relevant to 
understanding the structure, function and dynamics of biological membranes after more 
than 40 years. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838, 1451-1466. 

NIEDERNHOFER, L. J., DANIELS, J. S., ROUZER, C. A., GREENE, R. E. & MARNETT, L. J. 
2003. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J 
Biol Chem, 278, 31426-33. 

NIKI, E. 2009. Lipid peroxidation: Physiological levels and dual biological effects. Free Radical 
Biology and Medicine, 47, 469-484. 

NUSSLER, A. K., HAO, L., KNOBELOCH, D., YAO, P., NUSSLER, N. C., WANG, Z., LIU, L. & 
EHNERT, S. 2010. Protective Role of HO-1 for Alcohol-Dependent Liver Damage. 
Digestive Diseases, 28, 792-798. 

OBA, M., SUICO, M. A., MORINO, S., YANO, S., MATSUNO, T., KOGA, T., SATO, T., SHUTO, 
T. & KAI, H. 2010. Modified Mild Heat Shock Modality Attenuates Hepatic 
Ischemia/Reperfusion Injury. Journal of Surgical Research, 162, 213-220. 

OBERLEY, T. D., SWANLUND, J. M., ZHANG, H. J. & KREGEL, K. C. 2008. Aging results in 
increased autophagy of mitochondria and protein nitration in rat hepatocytes following 
heat stress. J Histochem Cytochem, 56, 615-27. 

OGIHARA, T., HIRANO, K., MORINOBU, T., KIM, H.-S., HIROI, M., OGIHARA, H. & TAMAI, H. 
1999. Raised concentrations of aldehyde lipid peroxidation products in premature infants 
with chronic lung disease. Archives of Disease in Childhood-Fetal and Neonatal Edition, 
80, F21-F25. 

OHKAWA, H., OHISHI, N. & YAGI, K. 1979. Assay for lipid peroxides in animal tissues by 
thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358. 

OZCAN, A. & OGUN, M. 2015. Biochemistry of Reactive Oxygen and Nitrogen Species. Basic 
Principles and Clinical Significance of Oxidative Stress. Rijeka: InTech. 

PAMPLONA, R., PORTERO-OTı́N, M., RUIZ, C., GREDILLA, R., HERRERO, A. & BARJA, G. 
2000. Double bond content of phospholipids and lipid peroxidation negatively correlate 
with maximum longevity in the heart of mammals. Mechanisms of Ageing and 
Development, 112, 169-183. 

PANDOLF, K. B., CADARETTE, B. S., SAWKA, M. N., YOUNG, A. J., FRANCESCONI, R. P. & 
GONZALEZ, R. R. 1988. Thermoregulatory responses of middle-aged and young men 
during dry-heat acclimation. Journal of Applied Physiology, 65, 65. 

PENG, C., WANG, X., CHEN, J., JIAO, R., WANG, L., LI, Y. M., ZUO, Y., LIU, Y., LEI, L., MA, K. 
Y., HUANG, Y. & CHEN, Z. Y. 2014. Biology of ageing and role of dietary antioxidants. 
Biomed Res Int, 2014, 831841. 

PERALTA, C., PRATS, N., XAUS, C., GELPI, E. & ROSELLO-CATAFAU, J. 1999. Protective 
effect of liver ischemic preconditioning on liver and lung injury induced by hepatic 
ischemia-reperfusion in the rat. Hepatology, 30, 1481-9. 

PÉRÉZ, R., LÓPEZ, M. & BARJA DE QUIROGA, G. 1991. Aging and lung antioxidant enzymes, 
glutathione, and the lipid peroxidation in the rat. Free Radical Biology and Medicine, 10, 
35-39. 

POLI, G., BIASI, F. & LEONARDUZZI, G. 2008. 4-Hydroxynonenal–protein adducts: A reliable 
biomarker of lipid oxidation in liver diseases. Molecular Aspects of Medicine, 29, 67-71. 

POLLA, B. S. 1988. A role for heat shock proteins in inflammation? Immunol Today, 9, 134-7. 
POULOSE, N. & RAJU, R. 2014. Aging and Injury: Alterations in Cellular Energetics and Organ 

Function. Aging and Disease, 5, 101-108. 
PULLA REDDY, A. C. & LOKESH, B. R. 1992. Studies on spice principles as antioxidants in the 

inhibition of lipid peroxidation of rat liver microsomes. Molecular and Cellular 
Biochemistry, 111, 117-124. 

RECKNAGEL, R. O., GLENDE, E. A., DOLAK, J. A. & WALLER, R. L. 1989. Mechanisms of 
carbon tetrachloride toxicity. Pharmacology & Therapeutics, 43, 139-154. 

REYES-GORDILLO, K., SEGOVIA, J., SHIBAYAMA, M., VERGARA, P., MORENO, M. G. & 
MURIEL, P. 2007. Curcumin protects against acute liver damage in the rat by inhibiting 
NF-κB, proinflammatory cytokines production and oxidative stress. Biochimica et 
Biophysica Acta (BBA) - General Subjects, 1770, 989-996. 



77 

 

RIKANS, L. E., MOORE, D. R. & SNOWDEN, C. D. 1991. Sex-dependent differences in the 
effects of aging on antioxidant defense mechanisms of rat liver. Biochim Biophys Acta, 
1074, 195-200. 

RISTOW, M. & SCHMEISSER, K. 2014. Mitohormesis: Promoting Health and Lifespan by 
Increased Levels of Reactive Oxygen Species (ROS). Dose-Response, 12. 

RODRIGO, R., LIBUY, M., FELIU, F. & HASSON, D. 2013. Oxidative stress-related biomarkers 
in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers, 35, 
773-90. 

RONG, S., ZHAO, Y., BAO, W., XIAO, X., WANG, D., NUSSLER, A. K., YAN, H., YAO, P. & LIU, 
L. 2012. Curcumin prevents chronic alcohol-induced liver disease involving decreasing 
ROS generation and enhancing antioxidative capacity. Phytomedicine, 19, 545-50. 

ROUACH, H., FATACCIOLI, V., GENTIL, M., FRENCH, S. W., MORIMOTO, M. & NORDMANN, 
R. 1997. Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in 
relation to liver pathology. Hepatology, 25, 351-355. 

RÜDIGER, H. A., GRAF, R. & CLAVIEN, P.-A. 2003. Sub-lethal oxidative stress triggers the 
protective effects of ischemic preconditioning in the mouse liver. Journal of Hepatology, 
39, 972-977. 

SAAD, S., KANAI, M., AWANE, M., YAMAMOTO, Y., MORIMOTO, T., ISSELHARD, W., MINOR, 
T., TROIDL, H., OZAWA, K. & YAMAOKA, Y. 1995. Protective effect of heat shock 
pretreatment with heat shock protein induction before hepatic warm ischemic injury 
caused by Pringle's maneuver. Surgery, 118, 510-6. 

SALIDO, E. M., DORFMAN, D., BORDONE, M., CHIANELLI, M., GONZÁLEZ FLEITAS, M. F. & 
ROSENSTEIN, R. E. 2013. Global and Ocular Hypothermic Preconditioning Protect the 
Rat Retina from Ischemic Damage. PLoS ONE, 8, e61656. 

SAMPEY, B. P., KOROURIAN, S., RONIS, M. J., BADGER, T. M. & PETERSEN, D. R. 2003. 
Immunohistochemical Characterization of Hepatic Malondialdehyde and 4-
Hydroxynonenal Modified Proteins During Early Stages of Ethanol-Induced Liver Injury. 
Alcoholism: Clinical and Experimental Research, 27, 1015-1022. 

SANZ, N., DIEZ-FERNANDEZ, C., ALVAREZ, A. M., FERNANDEZ-SIMON, L. & CASCALES, M. 
1999. Age-related changes on parameters of experimentally-induced liver injury and 
regeneration. Toxicol Appl Pharmacol, 154, 40-9. 

SASTRE, J., PALLARDO, F. V. & VINA, J. 2000. Mitochondrial oxidative stress plays a key role 
in aging and apoptosis. IUBMB Life, 49, 427-35. 

SASTRE, J., PALLARDO, F. V. & VINA, J. 2003. The role of mitochondrial oxidative stress in 
aging. Free Radic Biol Med, 35, 1-8. 

SCHMUCKER, D. L. 1998. Aging and the liver: an update. J Gerontol A Biol Sci Med Sci, 53, 
B315-20. 

SCHON, ERIC A. & PRZEDBORSKI, S. 2011. Mitochondria: The Next (Neurode)Generation. 
Neuron, 70, 1033-1053. 

SEKI, S., KITADA, T., SAKAGUCHI, H., NAKATANI, K. & WAKASA, K. 2003. Pathological 
significance of oxidative cellular damage in human alcoholic liver disease. 
Histopathology, 42, 365-371. 

SELJESKOG, E., HERVIG, T. & MANSOOR, M. A. 2006. A novel HPLC method for the 
measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a 
commercially available kit. Clinical Biochemistry, 39, 947-954. 

SELZNER, M., CAMARGO, C. A. & CLAVIEN, P. A. 1999. Ischemia impairs liver regeneration 
after major tissue loss in rodents: protective effects of interleukin-6. Hepatology, 30, 469-
75. 

SEMENZA, J. C., RUBIN, C. H., FALTER, K. H., SELANIKIO, J. D., FLANDERS, W. D., HOWE, 
H. L. & WILHELM, J. L. 1996. Heat-related deaths during the July 1995 heat wave in 
Chicago. N Engl J Med, 335, 84-90. 

SENA, L. A. & CHANDEL, N. S. 2012. Physiological roles of mitochondrial reactive oxygen 
species. Molecular cell, 48, 158-167. 

SENIOR, J. R. 2012. Alanine aminotransferase: a clinical and regulatory tool for detecting liver 
injury-past, present, and future. Clin Pharmacol Ther, 92, 332-9. 

SHAH, D., MAHAJAN, N., SAH, S., NATH, S. K. & PAUDYAL, B. 2014. Oxidative stress and its 
biomarkers in systemic lupus erythematosus. J Biomed Sci, 21, 23. 

SIES, H. 1993. Strategies of antioxidant defense. Eur J Biochem, 215, 213-9. 



78 

 

SIES, H. 1999. Glutathione and its role in cellular functions. Free Radic Biol Med, 27, 916-21. 
SISTINO, J. J. 2003. Epidemiology of cardiovascular disease in the last decade: treatment options 

and implications for perfusion in the 21st century. Perfusion, 18, 73-7. 
SIU, G. M. & DRAPER, H. H. 1982. Metabolism of malonaldehyde in vivo and in vitro. Lipids, 17, 

349-55. 
SLIMEN, I. B., NAJAR, T., GHRAM, A., DABBEBI, H., BEN MRAD, M. & ABDRABBAH, M. 2014. 

Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A 
review. Int J Hyperthermia, 30, 513-23. 

SMITH, C. D., CARNEY, J. M., STARKE-REED, P. E., OLIVER, C. N., STADTMAN, E. R., 
FLOYD, R. A. & MARKESBERY, W. R. 1991. Excess brain protein oxidation and enzyme 
dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A, 88, 
10540-3. 

SMITH, P. K., KROHN, R. I., HERMANSON, G. T., MALLIA, A. K., GARTNER, F. H., 
PROVENZANO, M. D., FUJIMOTO, E. K., GOEKE, N. M., OLSON, B. J. & KLENK, D. C. 
1985. Measurement of protein using bicinchoninic acid. Anal Biochem, 150, 76-85. 

SOHAL, R. S., AGARWAL, S., CANDAS, M., FORSTER, M. J. & LAL, H. 1994a. Effect of age 
and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. 
Mech Ageing Dev, 76, 215-24. 

SOHAL, R. S., KU, H. H., AGARWAL, S., FORSTER, M. J. & LAL, H. 1994b. Oxidative damage, 
mitochondrial oxidant generation and antioxidant defenses during aging and in response 
to food restriction in the mouse. Mech Ageing Dev, 74, 121-33. 

SPICKETT, C. M. 2013. The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in 
chemistry and analysis. Redox Biol, 1, 145-52. 

SPITELLER, G. 2001. Lipid peroxidation in aging and age-dependent diseases. Exp Gerontol, 
36, 1425-57. 

STADTMAN, E. R. 2001. Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci, 
928, 22-38. 

STOKES, K. Y., ABDIH, H. K., KELLY, C. J., REDMOND, H. P. & BOUCHIER-HAYES, D. J. 
1996. Thermotolerance attenuates ischemia-reperfusion induced renal injury and 
increased expression of ICAM-1. Transplantation, 62, 1143-9. 

SUEN, K. C., LAU, L. L. & YERMAKOV, V. 1974. Cancer and old age. An autopsy study of 3,535 
patients over 65 years old. Cancer, 33, 1164-8. 

TAJIRI, K. & SHIMIZU, Y. 2013. Liver physiology and liver diseases in the elderly. World J 
Gastroenterol, 19, 8459-67. 

TAKAHASHI, H., JOHANSSON, I., FRENCH, S. W. & INGELMAN-SUNDBERG, M. 1992. Effects 
of Dietary Fat Composition on Activities of the Microsomal Ethanol Oxidizing System and 
Ethanol-Inducible Cytochrome P450 (CYP2E1) in the Liver of Rats Chronically Fed 
Ethanol. Pharmacology & Toxicology, 70, 347-351. 

TAMER, L., SUCU, N., POLAT, G., ERCAN, B., AYTACOGLU, B., YÜCEBILGIÇ, G., ÜNLÜ, A., 
DIKMENGIL, M. & ATIK, U. 2002. Decreased Serum Total Antioxidant Status and 
Erythrocyte-Reduced Glutathione Levels Are Associated with Increased Serum 
Malondialdehyde in Atherosclerotic Patients. Archives of Medical Research, 33, 257-260. 

TECHNOLOGY, O. M. I. O. 2016. 4-HNE ELISA method [Online]. Available: 
https://ocw.mit.edu/courses/biological-engineering/20-109-laboratory-fundamentals-in-
biological-engineering-spring-2010/labs/module-3-day-5-transcript-level-analysis 
[Accessed 15.09.2016]. 

TIAN, L., CAI, Q. & WEI, H. 1998. Alterations of antioxidant enzymes and oxidative damage to 
macromolecules in different organs of rats during aging. Free Radic Biol Med, 24, 1477-
84. 

TIMCHENKO, N. A. 2009. Aging and liver regeneration. Trends in Endocrinology & Metabolism, 
20, 171-176. 

TOSATO, M., ZAMBONI, V., FERRINI, A. & CESARI, M. 2007. The aging process and potential 
interventions to extend life expectancy. Clin Interv Aging, 2, 401-12. 

TSUYAMA, H., SHIMIZU, K., YOSHIMOTO, K., NEZUKA, H., ITO, H., YAMAMOTO, S., 
HASEBE, K., ONISHI, I., MURAOKA, K., NINOMIYA, I., TANI, T., HASHIMOTO, T., 
YAGI, M. & MIWA, K. 2000. Protective effect of ischemic preconditioning on hepatic 
ischemia-reperfusion injury in mice. Transplant Proc, 32, 2310-3. 



79 

 

UCHIDA, K., SHIRAISHI, M., NAITO, Y., TORII, Y., NAKAMURA, Y. & OSAWA, T. 1999. 
Activation of stress signaling pathways by the end product of lipid peroxidation. 4-
hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem, 
274, 2234-42. 

VAN DER VLIET, A. & BAST, A. 1992. Effect of oxidative stress on receptors and signal 
transmission. Chemico-Biological Interactions, 85, 95-116. 

VAN REMMEN, H. & RICHARDSON, A. 2001. Oxidative damage to mitochondria and aging. Exp 
Gerontol, 36, 957-68. 

VANDENTORREN, S., BRETIN, P., ZEGHNOUN, A., MANDEREAU-BRUNO, L., CROISIER, A., 
COCHET, C., RIBERON, J., SIBERAN, I., DECLERCQ, B. & LEDRANS, M. 2006. August 
2003 heat wave in France: risk factors for death of elderly people living at home. Eur J 
Public Health, 16, 583-91. 

VANHEMS, P., GAMBOTTI, L. & FABRY, J. 2003. Excess rate of in-hospital death in Lyons, 
France, during the August 2003 heat wave. N Engl J Med, 349, 2077-8. 

VASTO, S., CARRUBA, G., LIO, D., COLONNA-ROMANO, G., DI BONA, D., CANDORE, G. & 
CARUSO, C. 2009. Inflammation, ageing and cancer. Mechanisms of Ageing and 
Development, 130, 40-45. 

VIJG, J. & CAMPISI, J. 2008. Puzzles, promises and a cure for ageing. Nature, 454, 1065-1071. 
VIVEKANANTHAN, D. P., PENN, M. S., SAPP, S. K., HSU, A. & TOPOL, E. J. 2003. Use of 

antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of 
randomised trials. The Lancet, 361, 2017-2023. 

WALTER, M. F., JACOB, R. F., JEFFERS, B., GHADANFAR, M. M., PRESTON, G. M., BUCH, 
J. & MASON, R. P. 2004. Serum levels of thiobarbituric acid reactive substances predict 
cardiovascular events in patients with stable coronary artery disease: A longitudinal 
analysis of the PREVENT study. Journal of the American College of Cardiology, 44, 1996-
2002. 

WANG, M., DHINGRA, K., HITTELMAN, W. N., LIEHR, J. G., DE ANDRADE, M. & LI, D. 1996. 
Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast 
tissues. Cancer Epidemiology Biomarkers &amp; Prevention, 5, 705-710. 

WANG, M., SHEN, J., FENG, B., GUI, L., CHEN, Q., ZHANG, B., TANG, J. & LI, X. 2013. Remote 
ischemic preconditioning promotes early liver cell proliferation in a rat model of small-for-
size liver transplantation. J Surg Res, 179, e245-53. 

WATERBORG, J. H. 2009. The Lowry Method for Protein Quantitation. In: WALKER, J. M. (ed.) 
The Protein Protocols Handbook. Totowa, NJ: Humana Press. 

WEBER, L. W. D., BOLL, M. & STAMPFL, A. 2003. Hepatotoxicity and mechanism of action of 
haloalkanes: Carbon tetrachloride as a toxicological model. Critical Reviews in 
Toxicology, 33, 105-136. 

WHITE, J. S. & REES, K. R. 1984. The mechanism of action of 4-hydroxynonenal in cell injury. 
Chemico-Biological Interactions, 52, 233-241. 

WU, D. & CEDERBAUM, A. I. 2009. Oxidative stress and alcoholic liver disease. Semin Liver Dis, 
29, 141-54. 

YAHYAVI, H., KAYKHAII, M. & HASHEMI, M. 2016. A rapid spectrofluorimetric method for the 
determination of malondialdehyde in human plasma after its derivatization with 
thiobarbituric acid and vortex assisted liquid-liquid microextraction. RSC Advances, 6, 
2361-2367. 

YAMADA, F., ABE, T., SAITO, T., TSUCIYA, T., ISHII, S. & GOTOH, M. 2001. Ischemic 
preconditioning enhances regenerative capacity of hepatocytes after prolonged ischemia. 
Transplant Proc, 33, 956. 

YAMAGAMI, K., YAMAMOTO, Y., KUME, M., KIMOTO, S., YAMAMOTO, H., OZAKI, N., 
YAMAMOTO, M., SHIMAHARA, Y., TOYOKUNI, S. & YAMAOKA, Y. 1998. Heat shock 
preconditioning ameliorates liver injury following normothermic ischemia-reperfusion in 
steatotic rat livers. J Surg Res, 79, 47-53. 

YAMAMOTO, H., YAMAMOTO, Y., YAMAGAMI, K., KUME, M., KIMOTO, S., TOYOKUNI, S., 
UCHIDA, K., FUKUMOTO, M. & YAMAOKA, Y. 2000. Heat-shock preconditioning 
reduces oxidative protein denaturation and ameliorates liver injury by carbon tetrachloride 
in rats. Res Exp Med (Berl), 199, 309-18. 

YAN, L.-J. 2014. Positive oxidative stress in aging and aging-related disease tolerance. Redox 
Biology, 2, 165-169. 



80 

 

YAO, P., LI, K., JIN, Y., SONG, F., ZHOU, S., SUN, X., NÜSSLER, A. K. & LIU, L. 2006. Oxidative 
damage after chronic ethanol intake in rat tissues: Prophylaxis of Ginkgo biloba extract. 
Food Chemistry, 99, 305-314. 

YORITAKA, A., HATTORI, N., UCHIDA, K., TANAKA, M., STADTMAN, E. R. & MIZUNO, Y. 1996. 
Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson 
disease. Proceedings of the National Academy of Sciences, 93, 2696-2701. 

YOSHINO, H., HATTORI, N., URABE, T., UCHIDA, K., TANAKA, M. & MIZUNO, Y. 1997. 
Postischemic accumulation of lipid peroxidation products in the rat brain: 
immunohistochemical detection of 4-hydroxy-2-nonenal modified proteins. Brain 
Research, 767, 81-86. 

YU, B. P. 1994. Cellular defenses against damage from reactive oxygen species. Physiol Rev, 
74, 139-62. 

ZEEH, J. & PLATT, D. 2002. The aging liver: structural and functional changes and their 
consequences for drug treatment in old age. Gerontology, 48, 121-7. 

ZHANG, H. J., XU, L., DRAKE, V. J., XIE, L., OBERLEY, L. W. & KREGEL, K. C. 2003. Heat-
induced liver injury in old rats is associated with exaggerated oxidative stress and altered 
transcription factor activation. FASEB J, 17, 2293-5. 

ZOROV, D. B., JUHASZOVA, M. & SOLLOTT, S. J. 2014. Mitochondrial reactive oxygen species 
(ROS) and ROS-induced ROS release. Physiol Rev, 94, 909-50. 

 



81 

 

8. Appendix 

Table 7: Protein content, LDH, ALT and MDA in human serum for preliminary experiments. 

Values are represented as mean ± SD. ***p<0.01 (young vs. old group), ns (not significant).  

 Young people Old patients 

Number  8 8 

Mean age [Years] 26.75 71.75 

Male [m] or female [w] 4 m + 4 w 4 m + 4 w 

Protein mass concentration [mg/ml] 84.89 ± 13.05 71.11 ± 7.16 (ns) 

LDH activity serum [U/L] 36.82 ± 14.38 67.74 ± 13.54 (***p<0.01) 

ALT activity serum [U/L] 13.72 ± 9.50 26.47 ± 19.17 (ns) 

MDA serum [nmol/ml] 4.02 ± 1.04 5.20 ± 1.41 (ns) 

 

Table 8: Protein content, LDH, ALT, MDA and 4-HNE in serum and liver tissue of young, 

middle-aged and old untreated rats. Values are represented as mean ± SD. *p<0.05 (young 

vs. old group), ***p<0.01 (young vs. old group), ns (not significant).  

 
Young  Middle-aged  Old 

Protein content 

serum [mg/ml] 

22.09 ± 6.07 (N = 8) 27.13 ± 9.23 (N = 10, ns) 29.56 ± 5.67 (N = 10, ns) 

Protein content liver 

tissue [mg/ml] 

31.44 ± 7.61 (N = 8) 30.57 ± 6.52 (N = 10, ns) 30.89 ± 2.60 (N = 10, ns) 

LDH activity serum 

[U/L] 

66.13 ± 26.39 (N = 8) 83.60 ± 39.29 (N = 9, ns) 77.71 ± 33.37 (N = 9, ns) 

LDH activity liver 

tissue [mU/mg] 

8.58 ± 2.39 (N = 8) 7.64 ± 2.24 (N = 10, ns) 6.96 ± 2.49 (N = 7, 

*p<0.05) 

ALT activity serum 

[U/L] 

6.83 ± 3.89 (N = 8) 

 

10.68 ± 0.93 (N = 9, ns) 

 

15.85 ± 5.92 (N = 9, 

***p<0.01) 

MDA serum 

[nmol/ml] 

9.39 ± 1.14 (N = 7) 10.28 ± 4.29 (N = 10, ns) 10.41 ± 1.13 (N = 10, ns) 

MDA liver tissue 

[nmol/mg protein] 

0.38 ± 0.13 (N = 8) 0.43 ± 0.11 (N = 10, ns) 0.40 ± 0.1 (N = 10, ns) 

4-HNE ELISA liver 

tissue [ng/ml] 

0.52 ± 0.07 (N = 8) 0.57 ± 0.17 (N = 9, ns) 0.42 ± 0.1 (N = 8, ns) 
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Table 9: Protein content, LDH, ALT, MDA and 4-HNE in serum and liver tissue of middle-

aged heat-stressed rats at four points in time. Values are represented as mean ± SD. There 

is no significant difference calculated between the age groups and points in time. 

Middle-aged 0 h (N = 6) 2 h (N = 6) 6 h (N = 6) 24 h (N = 4) 

Protein content 

[mg/ml] serum 

29.51 ± 4.29 27.04 ± 5.93 25.46 ± 2.72 25.07 ± 3.02 

Protein content 

[mg/ml] liver tissue 

32.02 ± 3.53 29.47 ± 4.73 31.12 ± 5.22 26.01 ± 2.11 

LDH serum [U/L] 54.26 ± 27.71 72.65 ± 31.12 62.33 ± 16.22 99.74 ± 51.19 

LDH liver tissue 

[mU/mg] 

7.24 ± 1.62 10.65 ± 2.17 9.18 ± 2.87 9.94 ± 0.49 

ALT serum [U/L] 12.11 ± 2.96 10.95 ± 3.44 9.90 ± 2.41 11.67 ± 5.34 

MDA serum [nmol/ml] 8.38 ± 1.47 7.42 ± 1.59 8.66 ± 1.41 8.98 ± 0.18 

MDA liver tissue 

[nmol/mg protein] 

0.39 ± 0.07 0.40 ± 0.10 0.39 ± 0.14 0.41 ± 0.13 

4-HNE liver tissue 

[ng/ml] 

0.59 ± 0.11 0.60 ± 0.08 0.82 ± 0.38 0.83 ± 0.16 

 

Table 10: Protein content, LDH, ALT, MDA and 4-HNE in serum and liver tissue of old heat-

stressed rats at four points in time. Values are represented as mean ± SD. There is no 

significant difference calculated between the age groups and points in time. 

Old 0 h (N = 6) 2 h (N = 6) 6 h (N = 6) 24 h (N = 4) 

Protein content 

[mg/ml] serum 

31.57 ± 6.78 32.41 ± 11.07 30.46 ± 9.57 25.95 ± 5.57 

Protein content 

[mg/ml] liver tissue 

31.46 ± 5.48 31.19 ± 6.41 28.93 ± 8.28 28.86 ± 6.08 

LDH serum [U/L] 86.31 ± 34.13 81.22 ± 40.26 75.24 ± 10.00 85.28 ± 26.97 

LDH liver tissue 

[mU/mg] 

8.63 ± 3.96 8.74 ± 2.66 9.15 ± 3.83 8.86 ± 4.88 

ALT serum [U/L] 18.79 ± 8.93 16.97 ± 5.67 16.98 ± 8.37 10.94 ± 8.15 

MDA serum [nmol/ml] 10.96 ± 3.33 11.03 ± 4.14 10.91 ± 2.81 11.62 ± 3.37 

MDA liver tissue 

[nmol/mg protein] 

0.36 ± 0.07 0.41 ± 0.10 0.43 ± 0.14 0.40 ± 0.08 

4-HNE liver tissue 

[ng/ml] 

0.56 ± 0.21 0.63 ± 0.46 0.60 ± 0.21 0.46 ± 0.05 
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Figure 37: Decision tree for measuring oxidant status in clinical tissue. [adopted from 

(Griendling et al., 2016)]. 



84 

 

9. Erklärung zum Eigenanteil 

Die Arbeit wurde im Siegfried Weller Institut für Unfallmedizinische Forschung 

der Berufsgenossenschaftlichen Unfallklinik Tübingen unter Betreuung von 

Professor Dr. A.K. Nüssler durchgeführt.  

Die Durchführung der Hitzestressexperimente und die Bereitstellung der Seren 

und Lebergewebe der Ratten erfolgte durch die Pharmacelsus GmbH 

(Saarbrücken, Deutschland).  

Das Anfertigen der Leberschnitte und deren Hämatoxylin- und Eosin-Färbungen 

erfolgte in Zusammenarbeit mit Nicole Hebel sowie des pathologischen Instituts 

der Universität Tübingen. 

Sämtliche Versuche und die statistischen Auswertungen wurden nach 

Einarbeitung von Dr. Britta Burkhardt von mir eigenständig durchgeführt.  

Ich erkläre hiermit, dass ich diese Dissertation selbstständig verfasst und keine 

anderen als die angegebenen Hilfsmittel genutzt habe. Alle wörtlich oder 

inhaltlich übernommenen Stellen habe ich als solche gekennzeichnet.  

Ich versichere die Richtlinien zur Sicherung guter wissenschaftlicher Praxis und 

zum Umgang mit wissenschaftlichem Fehlverhalten an der Eberhard Karls 

Universität beachtet zu haben.  

Ich erkläre außerdem, dass die hier vorliegende Dissertation nur in diesem und 

in keinem anderen Promotionsverfahren eingereicht wurde und dass diesem 

Promotionsverfahren keine endgültig gescheiterten Promotionsverfahren 

vorausgegangen sind. 

  

 

 

 

  

Tübingen, den_______________ 

 



85 

 

10. Publication 

Results of this thesis were partially published in the following publication: 

Title:  

Age-dependent changes of the antioxidant system in rat livers are 

accompanied by altered MAPK activation and a decline in motor signaling. 

Authors:  

Yang, W., Burkhardt, B., Fischer, L., Beirow, M., Bork, N., Wonne, E. C., Wagner, 

C., Husen, B., Zeilinger, K., Liu, L., Nüssler, A. K. 

Journal: 

Experimental and Clinical Sciences International online journal for advances in 

science (EXCLI Journal), 22. December 2015, Volume 14, Pages: 1273-90. 



86 

 

11. Acknowledgements  

Foremost, I would like to express my sincere gratitude to my advisor, Prof. Dr. A. 

K. Nüssler for the continuous support of my doctoral thesis and his great patience, 

motivation and immense knowledge.  

 

Besides my advisor, I would like to thank Dr. Britta Burkhardt for answering all 

my questions, giving patiently explanations and supporting me in finding my way 

through the topic. 

 

I am also grateful to Nicole Hebel who prepared the H&E-staining of liver tissue 

in cooperation with the Department of Pathology of the University of Tübingen 

and was good company during daily lab work.  

 

My thanks also go to my laboratory colleagues during lab time at Siegfried Weller 

Institut for their support and company.  

 

Finally, I would like to thank my family and my friends for being always by my side 

and for their everlasting support with patience and love in all projects of my life 

that I have started, cancelled and successfully finished.  

  

 



87 

 

12. Lebenslauf 

Cornelia Wagner 

Schulausbildung 
1996 – 2000     Teichwiesenschule Korntal 
2000 – 2009     Königin-Olga-Stift Gymnasium Stuttgart 

Hochschulausbildung 
Oktober 2009 – Mai 2016  Studium der Humanmedizin an der 

Eberhard Karls Universität Tübingen 

August 2011     1. Staatsexamen 
April 2015     2. Staatsexamen 
10. Mai 2016     3. Staatsexamen 
10. Juni 2016    Approbation als Ärztin  

Seit Januar 2013     Dissertation im Siegfried Weller Institut 
für Unfallmedizinische Forschung bei  

      Prof. Dr. A. K. Nüssler:  
    „Age-related differences in stress 

response: Increase markers for 
oxidative stress and liver damage after 
heat stress in aged rats?” 

Famulaturen 
September/Oktober 2012  Gynäkologie, Broomfield Hospital, 

Chelmsford (GB) 
März/April 2013   Kinderarztpraxis Dr. med. Chr. Doering, 

Korntal 
August/September 2013   Anästhesie/Intensivmedizin, Helios 

Spital, Überlingen  
Oktober 2013  Unfallchirurgie, Bezirkskrankenhaus 

Kufstein (AUT) 

Praktisches Jahr 
Mai 2015 – Juli 2015  Innere Medizin, Wellington Regional 

Hospital (NZL) 
Juli 2015 – September 2015   Innere Medizin, Diakonie Klinikum 

Stuttgart 
September 2015 – Dezember 2015  Pädiatrie, Olgahospital Stuttgart 
Dezember 2015 – April 2016   Chirurgie, Luzerner Kantonsspital 

Sursee (CH) 

 


