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1 Introduction

Today it is widely accepted that education and innovation are the two most impor-

tant engines of per-capita economic growth. In his pioneering contribution to the

New Growth Theory, Lucas (1988) has emphasized the accumulation of workers’

human-capital by education as a decisive source of endogenous growth. Empirical

work by Hanushek and Kimko (2000), Barro (2001), and Hanushek and Wößmann

(2008) has confirmed that the quantity and even more the quality of schooling and

education are positively related to economic growth. Since the early nineties, how-

ever, endogenous growth theory is dominated by R&D-based growth models where

innovation dynamics serve as engine of growth. Romer (1990), Grossman (1990),

Grossman and Helpman (1991a) and Aghion and Howitt (1992, 1998, 2005) have

been the first to explain long-run per-capita growth by intentional R&D activities of

private firms. According to these first-generation R&D-based growth models, tech-

nological change results either from an endless sequence of vertical improvements of

consumer or intermediate goods or from a continuing horizontal expansion of the

variety of goods.

The R&D-based growth models of the first generation share a common property

which is well-known as the “scale effect”. This effect predicts that larger economies

grow faster and that population growth causes increasing per-capita growth rates.

The counterfactual result of increasing growth rates persists when unskilled labor

is replaced by skilled labor and population growth is replaced by human-capital

growth. For this reason, no successful attempts have been made to integrate the

Lucas (1988) mechanism of human-capital accumulation into the first-generation

R&D-based growth models. Instead, education on the one hand and innovation on

the other have been treated as two alternative and independent engines of economic

growth (see, e.g., Barro and Sala-i-Martin 2004).

In the mid-nineties, Jones (1995a) has presented an influential empirical study on

the scale effect. In response to the expressed “Jones critique”, a new class of semi-

endogenous growth models has emerged (see, e.g., Jones 1995b, 2002, Kortum 1997,

Segerstrom 1998). As a distinguishing feature, these second-generation R&D-based

growth models remove the scale effect by the assumption that the difficulty of R&D

increases over time, and instead imply that per-capita growth depends proportion-

ally on the exogenously given population growth rate. As a consequence, constant
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population leads to an equilibrium characterized by a steady state without innova-

tion and growth dynamics. We do not share this pessimistic view on technological

progress in the future. Our assessment is in line with the empirical evidence which

is certainly not in favor of the semi-endogenous growth models (see, e.g., the dis-

cussion in Zachariadis 2003, Laincz and Peretto 2006, Ha and Howitt 2007, Madsen

2008, and Venturini 2012). Thus, theoretical and empirical reasons lead us refrain

from the semi-endogenous growth theory. Instead, we prefer the scale-invariant, fully

endogenous R&D-based growth models of the third and newest generation.1 As in

the semi-endogenous growth theory, the scale effect is removed by an increasing dif-

ficulty of R&D, but this deterioration of technological opportunities is compensated

by a continuous improvement of researchers’ human capital.

This paper takes into account the close interplay of education and innovation in

driving economic growth. Some promising attempts in this direction have been made.

Arnold (1998) and Blackburn, Hung and Pozzolo (2000) have integrated education

in Romer’s (1990) variety-expansion model, whereas Arnold (2002), Stadler (2003,

2012, 2013), Strulik (2005), and Chu et al. (2013) have incorporated education and

skill acquisition in the quality-upgrading model of Grossman and Helpman (1991a,b).

Since we are interested in the stochastic dynamics of innovation, technology transfer

and industrial development, we restrict our analysis to the quality-ladder approach

of the Schumpeterian growth theory which associates innovation and growth with a

process of creative destruction, as was emphasized by Schumpeter (1942).

Of course, the theoretical analysis of R&D-based growth is not restricted to closed

economies. Earlier work has already combined quality-ladder models of all three

generations with the New Trade Theory which builds heavily on the theory of Indus-

trial Organization. To mention just a few examples, Grossman and Helpman (1990,

1991a) have integrated their first-generation R&D-based growth model into the tra-

ditional framework of international trade. Among several other studies, Dinopoulos

and Segerstrom (2007, 2010) have analyzed North-South trade and international

product cycles within various semi-endogenous growth models of the second gener-

ation. Stadler (2007) has modified this intriguing class of North-South trade models

by replacing exogenous population growth by endogenous human-capital accumula-

tion. This reformulation defines his model as Schumpeterian growth model of the

1The basic structure of the alternative versions of fully endogenous growth models of the third

generation is presented in Jones (1999).
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third generation. Accordingly, the present paper extends the analysis to a class of

unified general-equilibrium models of education, innovation and technology transfer

in the global economy in order to explain the dynamics of industrial development

and aggregate growth.

The remainder of the paper is organized as follows. Section 2 presents a basic model

of education and innovation in a closed economy. We derive the balanced path of

endogenous scale-invariant growth and show that fundamental scientific discover-

ies will inevitably induce innovation clusters across industries imposing aggregate

growth cycles. Section 3 opens the economy and analyzes international product cy-

cles with quality innovations realized by firms in the developed North and imitations

realized by firms in the developing South. This allows us to analyze the dynamics

of international technology transfer by imitation. Section 4 studies an alternative

channel of technology transfer from North to South via foreign direct investment by

multinational firms. We compare the complementary models with respect to the in-

fluence of globalization and the strength of protection of intellectual property rights.

Section 5 summarizes and concludes.

2 Education, Innovation and Growth

According to the latest generation of scale-invariant growth models we consider an

economy consisting of a continuum of firms, each producing a differentiated con-

sumer good. The goods are sold to households who have preferences for quantity

and quality. Each household is endowed with one unit of (raw) labor and can in-

crease skills by accumulating its human capital.

Education and Consumer Spending

Households share identical preferences and maximize their discounted utility

U(C) =

∫

∞

0

e−ρt lnC dt , (2.1)

where ρ > 0 is the constant discount rate and

C =

[
∫ 1

0

φ(j)1−αq(j)α dj

]1/α

, 0 < α < 1 (2.2)
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is a quality-augmented Dixit-Stiglitz consumption index which measures instanta-

neous utility. It reflects the households’ preferences for quantity q(j) and quality φ(j)

of the demanded products available from a continuum of industries j indexed on the

unit interval [0, 1].2 According to these preferences, the elasticity of substitution

between any two products across industries is given by 1/(1− α).

Utility maximization follows two steps. First, the across-industry optimization prob-

lem is solved at each point in time. Maximizing the consumption index (2.2) subject

to the budget constraint

I =

∫ 1

0

p(j)q(j) dj ,

where I denotes consumer spending and p(j) is the price of product j, yields the

individual consumer’s demand functions

q(j) =
φ(j)p(j)−

1

1−α I
∫ 1

0
φ(j)p(j)−

α

1−α dj
(2.3)

for all products j ∈ [0, 1]. The consumption index (2.2) can then be rewritten as

C = I/PC , (2.4)

where PC ≡
[

∫ 1

0
φ(j)p(j)−

α

1−α dj
]

−
1−α

α

is the quality-adjusted price index of con-

sumer goods.

Second, the dynamic optimization problem is solved by maximizing the individual

consumer’s discounted utility. Households supply human capital H to production,

R&D, and education. By devoting the share θ of human capital to work in the

production and research sectors, they face the dynamic budget constraint

Ȧ = rA+ wθH − I , (2.5)

where A denotes the value of a household’s asset holdings, r is the interest rate and

w is the wage rate for each unit of human capital which is normalized to w = 1.

2This specification of the consumption index is widely used in the R&D-based growth litera-

ture (see, e.g., Thompson and Waldo 1994, Dinopoulos and Thompson 1998, Li 2001, 2003, and

Segerstrom 2007).
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By devoting the remaining share (1− θ) of human capital to education, households

raise their human capital according to the Uzawa-Lucas technology

Ḣ = κ(1− θ)H − δH , (2.6)

where κ(> δ + ρ) denotes the effectiveness of the educational system and δ is the

constant depreciation rate of human capital. Thus, each household maximizes its

discounted utility (2.1), given (2.4), subject to the dynamic budget constraint (2.5)

and the accumulation function (2.6).

The current-value Hamiltonian of this control problem is given by

H = ln I − lnPC + ψ1[rA+ θH − I] + ψ2[(κ(1− θ)− δ)H ]

where ψ1 and ψ2 are the costate variables of the states A and H , respectively. The

necessary first-order conditions are

HI = 1/I − ψ1 = 0 , (2.7)

HA = ψ1r = ψ1ρ− ψ̇1 , (2.8)

Hθ = ψ1H − ψ2κH = 0 , (2.9)

HH = ψ1θ + ψ2(κ(1− θ)− δ) = ψ2ρ− ψ̇2 . (2.10)

Conditions (2.7) and (2.8) lead to the Keynes-Ramsey rule

İ/I = r − ρ ,

which explains the growth rate of consumer spending by the difference between the

interest rate and the discount rate. Further, we derive from (2.9) and (2.10) the

costates’ growth rates

ψ̇1/ψ1 = ψ̇2/ψ2 = −(κ− δ − ρ)

and hence from (2.8) the interest rate

r = κ− δ , (2.11)
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such that the Keynes-Ramsey rule can be expressed as

İ/I = κ− δ − ρ . (2.12)

The larger the effectiveness of education κ and the lower the depreciation and dis-

count rates δ and ρ, the larger is the growth rate of consumer spending.3

The Product Markets

In each industry, the products’ quality grades are arrayed along the equidistant

rungs of a quality ladder which is assumed to be equal across industries.4 Each new

generation of products provides a quality level, λ times higher than the previous

one, where the upgrading factor λ > 1 is exogenously given.

The quality level of the top-of-the-line product in industry j is

φ(j) = λ̃m(j) , (2.13)

where λ̃ = λα/(1−α) is an alternative measure of innovation size and m(j) is the

number of sequential upgrading innovations in industry j up to the present time.

All existing consumer goods are produced subject to a constant returns to scale

technology with skilled labor as the single input. There is a fixed mass L of house-

holds which supply human-capital in exchange for wage payments. One unit of skill-

adjusted labor, LH , produces one unit of output, regardless of the quality level.

Therefore, each firm has a constant marginal cost which is equal to the wage rate

w = 1, and the supplier of the highest quality of variety j maximizes the flow of

profits

π(j) = (p(j)− 1)q(j)L .

The price-setting behavior of a quality leader depends on the underlying industry

structure which in turn depends on the technological conditions. In the present

paper, we restrict our analysis to the case of drastic innovations such that the quality

3For an analysis of the impact of education subsidies, see, e.g., Stadler (2012).
4An extension of the presented model allowing for different distances of the rungs within and

across industries is analyzed in Stadler (2013), where the distances are Pareto-distributed as sug-

gested by Minniti, Parello and Segerstrom (2013).
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leaders find it optimal to charge monopoly prices. The constant price elasticity of

demand, −1/(1−α), implies monopolistic competition at prices p(j) = p = 1/α < λ,

being equal across all industries.5

Since all quality leaders charge identical prices, we obtain from (2.3) a firm’s demand

function

Q(j) = αILφ(j)/Φ , (2.14)

where Φ =
∫ 1

0
φ(j) dj is the average quality of all products currently produced by

the incumbent firms. All quality leaders realize the flow of profit

π(j) = (1− α)ILφ(j)/Φ , (2.15)

which differs across industries with respect to the relative quality level φ(j)/Φ. This

heterogeneity provides an incentive for challengers to engage in R&D activities in

the most progressive industries.

Innovation Dynamics

The quality of consumer goods is upgraded by a sequence of product innovations,

each building on its predecessors. The opportunity of realizing profits drives potential

entrants to engage in risky R&D projects in order to develop higher-quality products.

The first firm to succeed in developing the next higher-quality product in an industry

is granted an infinitely-lived patent for the new technology. Competition therefore

takes the form of an endless sequence of patent races between an arbitrary number of

challenger firms.6 Any quality innovation opens up the opportunity for all challenger

firms to search for the next higher quality innovation in this industry. This reflects

an external spillover effect of technological knowledge since even laggard firms can

equally participate in each patent race without having climbed all of the rungs of

the quality ladder themselves. Every firm may target its research efforts at any of

the continuum of state-of-the-art products, i.e., it may engage in any industry. If a

5In case of non-drastic innovations, the leading firms find it optimal to charge the limit price

p = λ = λ̃(1−α)/α. When innovation sizes are random, both types of price-setting behavior occur

in different industries at the same time.
6It can be shown that incumbent firms have no incentive to engage in R&D activities in their

own industries (see, e.g., Li 2001). This is the reason for every quality leader to be one step ahead.
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firm i undertakes R&D at intensity hi(j) for an infinitesimal time interval dt, then it

will succeed in taking the next step up the quality ladder for the targeted product j

with probability hi(j)dt. This implies that the number of realized innovations m(j)

in each industry j follows a Poisson process with the arrival rate h(j) =
∑

i hi(j).

The industry-specific innovation rate

h(j) =
Lh(j)H

µφ(j)
(2.16)

is assumed to depend proportionally on the amount of human capital Lh(j)H de-

voted to R&D activities in industry j. The inverse of the parameter µ relates the

productivity of human capital in R&D relative to its (normalized) productivity in

production and is assumed to be equal across industries. The term φ(j) reflects a

negative externality of the number of industry specific innovations in the past by

indicating that the realization of further innovations becomes progressively more

difficult as the quality level increases. This effect provides a disincentive for chal-

lengers to engage in R&D activities in the most progressiv industries which exactly

compensates for the higher-profit incentive discussed above.

The Stock Market

The expected discounted profits of a challenger firm winning a patent race in indus-

try j is the stock market value Vm(j)+1(j). To participate in an innovation race, firms

have to employ human capital in their research labs. According to (2.16), a challenger

i who devotes Lh,i(j)H units of human capital to R&D at a cost of Lh,i(j)H for an

infinitesimal time interval dt attains the stock-market value Vm(j)+1(j) with proba-

bility [Lh,i(j)H/(µφ(j))]dt. He can finance R&D activities by issuing equity claims

which yield nothing in case that the research effort fails but entitle the claimants

to the flow of dividends πm(j)+1(j) if the effort succeeds.7 Omitting the uninterest-

ing case where firms undertake no R&D at all, free entry into each innovation race

implies Vm(j)+1(j) = λ̃V (j) = µφ(j) such that8

V (j) = µφ(j)/λ̃ . (2.17)

7The impact of a cash-in-advance constraint on R&D investment is analyzed in Chu and Cozzi

(2014).
8We omit the current quality-level index m(j) for brevity.
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Since the quality level φ(j) is constant during every race and only jumping up to

λ̃φ(j) whenever an innovation occurs, it follows that the firm value V (j) is also con-

stant during every innovation race. Every time the quality level increases, however,

R&D in the respective industry becomes more difficult implying that the reward

for innovating must correspondingly increase to induce further R&D activities of

challengers in this industry.

Since there is a continuum of industries and the returns from engaging in innova-

tion races are independently distributed across firms and industries, each household

investor minimizes risk by holding a diversified portfolio of stocks. Absence of arbi-

trage opportunities implies that the expected return on equities of innovators must

equal the return on an equal size investment in a riskless bond, i.e.,

π(j)/V (j)− h(j) = r , (2.18)

where the expected rate of return on equities of innovators consists of the dividend

rates and the risk of losing the dividends due to another firm’s quality innovation in

the future.

By substituting (2.11), (2.15) and (2.17) into (2.18) we obtain the no-arbitrage

condition

h(j) + κ− δ = (1− α)λ̃IL/(µΦ) ,

from which we conclude that innovation rates are equal across industries, i.e., h(j) =

h ∀ j .

Industrial Dynamics and Quality Growth

The average quality of the top-of-the-line consumer products is Φ =
∫ 1

0
φ(j) dj.

Due to (2.13) the quality of product j jumps up from φ(j) to λ̃φ(j) whenever an

innovation occurs. Since the innovation rate h is equal across industries, the time

derivative of the average quality index is

Φ̇ =

∫ 1

0

(λ̃− 1)φ(j)h dj = (λ̃− 1)hΦ ,

such that its growth rate

Φ̇/Φ = (λ̃− 1)h (2.19)
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depends proportionally on the innovation rate.

The Labor Market

The labor market is perfectly competitive. The share (1 − θ) of workers’ human

capital is devoted to education. The remaining amount of human capital is employed

either in production or in R&D. It follows from (2.14) that the aggregate demand

for human capital in the production sector is

LqH =

∫ 1

0

Q(j)dj = αIL ,

and from (2.16) that the aggregate demand in the research sector amounts to

LhH =

∫ 1

0

µhφ(j) dj = µhΦ .

Thus, full employment of workers implies

LH = (1− θ)LH + αIL+ µhΦ . (2.20)

This labor-market clearing condition will be used to analyze the balanced-growth

equilibrium for a given level of scientific knowledge and to study growth cycles in

response to fundamental scientific discoveries.

The Balanced-Growth Equilibrium

First, we solve the model for a balanced-growth path as an equilibrium path in which

all endogenous aggregate variables grow at a constant rate over time. We conclude

from (2.6), (2.12) and (2.20) that

Ḣ/H = κ(1− θ)− δ = İ/I = κ− δ − ρ ,

implying a constant share of human capital

1− θ = 1− ρ/κ (2.21)

devoted to education. It depends positively on the effectiveness of the educational

system but negatively on the discount rate. This is the basic growth mechanism as
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has been emphasized by Lucas (1988). We further conclude from (2.12), (2.19) and

(2.20) that

Φ̇/Φ = (λ̃− 1)h = İ/I = κ− δ − ρ .

The steady-state innovation rate is therefore determined as

h∗ = (κ− δ − ρ)/(λ̃− 1) . (2.22)

In contrast to predecessor models of R&D-based economic growth, the steady-state

innovation rate neither depends on the exogenous labor force as in the scale-variant

growth models of Grossman and Helpman (1991a), Aghion and Howitt (1992), and

Stokey (1995) nor on the population growth rate as in the semi-endogenous growth

model of Segerstrom (1998). Instead, economic growth is endogenously explained in

terms of educational and technological parameters. Education and innovation are

closely related to each other. The realization of innovations becomes progressively

more difficult as technology evolves, but researchers compensate for this deteriora-

tion of technological opportunities by continuously improving their skills. Education

and innovation appear as in-line engines of economic growth.

Given (2.19) and (2.22), the consumption index (2.4) reads

C = αΦ(1−α)/αI

and grows at the scale-invariant rate

Ċ/C = (1/α)(κ− δ − ρ) ,

which can be decomposed into quantity growth at rate κ− δ−ρ and quality growth

at rate (1/α− 1)(κ− δ − ρ).

Proposition 1: The long-run innovation rate of the economy depends positively on

the effectiveness of education and human-capital accumulation but negatively on the

innovation size and the depreciation and discount rates. Education and innovation

are the two in-line engines of scale-invariant economic growth.

Whereas the technological development in any particular industry evolves stochas-

tically, the economy at the aggregate level experiences smooth and non-random

processes of human-capital accumulation, innovation and growth.
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Scientific Discoveries, Innovation Clusters and Growth Cycles

We now consider a certain point in time where technological opportunities improve,

triggered for example by a fundamental scientific discovery. Stadler (2013) has ex-

tended the framework of the presented model by adding a Poisson jump process

to the movement equation (2.6) of human capital. To illustrate the consequences

of such a jump, let us instead consider a single downward jump of parameter µ,

reflecting an upward shift of R&D productivity.9

Since neither human capital LH nor the quality index Φ can increase discontinuously,

it is obvious from (2.20) that the innovation rates h jump up such that aggregate

labor demand in the R&D sector remains constant. A cluster of innovations across

industries occurs since the pace of technological progress in all industries accelerates.

In response to the higher innovation rates, the quality index Φ grows at a higher rate.

It follows from the labor-market clearing condition (2.20) that the sum of growth

rates of h and Φ must equal the growth rate of H , implying that

ḣ/h+ (λ̃− 1)h = κ− δ − ρ .

Substituting the steady-state innovation rate h∗ from (2.22) leads to the non-linear

first-order differential equation

ḣ/h = − (λ̃− 1)(h− h∗) < 0 ,

which describes a declining adjustment path of the innovation rate h which converges

to the steady-state value h∗ when time approaches infinity and no further scientific

discovery appears. However, as soon as a further scientific discovery occurs, the

innovation rates jump up again and, hence, initialize a new growth cycle, as is

illustrated in Figure 1.

Proposition 2: Scientific discoveries lead to a temporary increase in the innovation

and growth rates of the economy, thereby inducing innovation clusters across indus-

tries and generating growth cycles.

If patent protection is imperfect, rival firms are able to imitate the top-of-the-line

products. In case of Bertrand competition, entry of imitating firms reduces the flow

9A similar mechanism forms the basis for models on general-purpose technologies (see, e.g.,

Bresnahan and Trajtenberg 1995, Helpman and Trajtenberg 1998, Bresnahan 2010, and Carlaw

and Lipsey 2006, 2011).
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Figure 1: Innovation Clusters and Growth Cycles

h

t

h∗

of profits for all incumbent firms to zero. Therefore, under the assumptions holding

so far, there is no incentive for firms to engage in imitative activities. However, under

more general assumptions it may be profitable for firms to imitate. At least three

extensions in this direction are discussed in the literature. First, if the discount factor

is sufficiently high, a subgame perfect equilibrium may exist where quality leaders

collude and share monopoly profits (see, e.g., Segerstrom 1991, Houser 1998 and

Cheng and Tao 1999). Second, imitation of the state-of-the-art technology may be

a necessary precondition for firms to participate in the next innovation race (see,

e.g., Mukoyama 2003). Third, imitation may be profitable if the copying firm is able

to produce at a lower unit cost. This is obviously the case if the imitating firm is

located in another country or region which is characterized by a lower wage rate.

The next step is therefore to open the economy and to analyze international product

cycles characterized by sequences of innovation and imitation.

3 Innovation, Imitation and International Prod-

uct Cycles

The observation that innovative goods are manufactured in a developed country

(the North) until production is relocated to a less developed country (the South),
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has been the basis for Vernon’s (1966) product-cycle theory of international trade.

As he claimed, innovative goods are developed and produced in the North until

the underlying production technologies are standardized. At this point in time, the

production of goods shifts to the less developed South where the wage rate is lower.

A product’s life comes to its end and a new cycle begins when the product is replaced

by a higher-quality one, again developed in the North.

Krugman (1979) has been the first to formalize North-South trade in this spirit,

albeit with an exogenous rate of innovation in the North and an exogenous rate of

technology transfer to the South. Therefore, his model is concerned with the effects

of innovation and imitation, but not with their causes. Models with endogenous inno-

vation by profit-maximizing firms in the North have been presented by Segerstrom,

Anant and Dinopoulos (1990), Helpman (1993), and Lai (1998). However, since tech-

nology transfer is assumed to be costless in these models, they cannot account for

endogenous imitation by profit-maximizing firms in the South.

Grossman and Helpman (1991c) have developed a model of interrelated innova-

tion and imitation processes by profit-maximizing firms in the North and the South

which, however, cannot capture a sequence of product cycles in a particular indus-

try since innovative activities are directed to variety expansion via the creation of

new industries. In a complementary article, Grossman and Helpman (1991d) have

presented a complementary model with quality improvements instead of variety ex-

pansion. This seminal model generates stochastic North-South product cycles as the

result of a continuing process of innovation and imitation within each single indus-

try. Both versions of the Grossman and Helpman North-South trade model belong

to the R&D-based growth models of the first generation.

Dinopoulos and Segerstrom (2007) have extended the Grossman and Helpman (1991c)

model of North-South product cycles to a semi-endogenous growth model of the sec-

ond generation. In their model, the single driving force for innovation and growth

is a positive rate of world-population growth which is not only assumed to be time-

invariant, but also exogenously given and identical in the North and the South. The

increasing labor force goes along with an increasing difficulty of realizing innovations

such that the model generates a constant steady-state innovation rate. However, this

scenario is rather unrealistic. In fact, population growth rates in the Northern and

Southern countries differ to a large extent and decline over time, taking zero or even

negative values in some Northern countries. The balanced population-growth prop-
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erty is also theoretically fragile. It can be shown that without population growth, the

Dinopoulos and Segerstrom (2007) model generates a stationary equilibrium without

innovation, imitation and economic growth.

To avoid this shortcoming, which is common to all semi-endogenous growth models,

Stadler (2007) has extended the Dinopoulos and Segerstrom (2007) approach by

considering the skill acquisition of workers in order to replace exogenous population

growth by endogenous human-capital accumulation. This modification prevents the

global economy from reaching a steady state without technological dynamics when

the population growth goes down to zero. In the following, we present that extended

version of the Dinopoulos and Segerstrom (2007) North-South trade model to study

the industrial dynamics and aggregate growth in a global economy.

The Product Markets

We consider a world economy consisting of two countries or regions, the North and

the South, indexed by ι ∈ {N, S}. The North consists of the developed countries,

whereas the South consists of those developing countries which have already joined

the world trading system and participate in free trade without restriction.

The global economy is populated by a fixed measure of households in the North,

LN , and in the South, LS. Human capital per capita is HN in the North and HS

in the South, such that (LNHN + LSHS) is the global supply of human capital.

As already stated in Section 2, households share identical preferences and maximize

their discounted utility (2.1), subject to their budget constraints, such that

qι(j) =
φ(j)p(j)−

1

1−α I ι
∫ 1

0
φ(j)p(j)−

α

1−α dj
, ι = N, S . (3.1)

The production technologies in both regions coincide. However, each firm in the

North has a constant unit cost equal to wN and each firm in the South has a

constant unit cost equal to wS. We normalize the wage rate in the South, such that

the relative wage ω = wN/wS is constant on a balanced growth path.

As in Section 2, we restrict our analysis to the case of drastic innovations, i.e.,

1/α < λ. This implies that all Northern quality leaders charge the unconstrained

monopoly price pN(j) = pN = (1/α)wN .10 Hence, we derive from (3.1) each Northern

10The condition (1/α)wN < λwS is sufficient to generate this price-setting behavior.
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firm’s demand function

QN(j) = φ(j)(pN)−
1

1−αP
α

1−α

C (INLN + ISLS) , (3.2)

where PC is the quality-adjusted price index as defined in (2.4), and the flow of

profits

πN(j) = (1/α− 1)wNφ(j)(pN)−
1

1−αP
α

1−α

C (INLN + ISLS) (3.3)

from selling to Northern and Southern consumers.

A Southern firm that succeeds in imitating the quality of a top-of-the-line product

manufactured by a Northern firm gains a cost advantage over the Northern competi-

tor if wN > wS, which will be assumed to hold in the steady-state equilibrium. The

copying firm is assumed to undercut the price of the previous Northern producer by

setting the unconstrained monopoly price pS(j) = pS = (1/α)wS.11 From (3.1) we

derive each Southern firm’s demand function

QS(j) = φ(j)(pS)−
1

1−αP
α

1−α

C (INLN + ISLS) (3.4)

and the flow of profits

πS(j) = (1/α− 1)wSφ(j)(pS)−
1

1−αP
α

1−α

C (INLN + ISLS) . (3.5)

We now turn to the dynamics of technological progress in the North and the transfer

of the improved technologies to the South.

Dynamics of Innovation and Imitation

R&D competition takes the form of stochastic innovation races between Northern

firms. The number of innovations realized in each industry j follows a Poisson process

with the arrival rate h(j) =
∑

i hi(j) which is specified according to (2.16) as

h(j) =
LN
h (j)H

N

µφ(j)
. (3.6)

Firms in the South are assumed to undertake only imitative research targeted at

imitating the quality of the top-of-the-line products which are actually produced

11The condition (1/α)wS < wN is sufficient to generate this price-setting behavior.
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in the North. Corresponding to the innovation races, this kind of competition is

assumed to take the form of stochastic imitation races between Southern firms.

Each Southern firm i may target its imitative activities at any of the state-of-the-art

products currently manufactured in the North. If it undertakes imitative activities

at intensity ki(j) for an infinitesimal time interval dt, it will succeed in copying

the targeted product j with probability ki(j)dt. This implies that the number of

imitations realized in each industry j follows a Poisson process with the arrival rate

k(j) =
∑

i ki(j), given by

k(j) =
LS
k (j)H

S

νφ(j)
, (3.7)

where ν is a measure of the technological difficulty in realizing an imitation and

is closely related to the strength of protection of intellectual property rights. The

arrival rate of imitations is assumed to depend proportionally on the amount of

human capital LS
k (j)H

S devoted to imitative activities. The presence of the term

φ(j) again reflects a negative externality of the technology level reached in industry

j in the past.

The Global Stock Market

The expected discounted flow of profits of a Northern challenger winning an innova-

tion race is the stock market value V N
m(j)+1(j). To participate in an innovation race,

Northern firms have to employ workers’ human capital in their research labs. As

derived in (2.17), free entry into each innovation race implies

V N(j) = µwNφ(j)/λ̃ . (3.8)

The firm value V N(j) is constant during an innovation race until the next innovation

of a Northern firm or an imitation of a Southern firm occurs. This leads to the no-

arbitrage condition

πN(j)/V N (j)− h(j)− k(j) = r . (3.9)

By substituting (2.11), (3.3) and (3.8) into (3.9) we obtain

h(j) + k(j) + κ− δ = (1/α− 1)µ−1λ̃(pN)−
1

1−αP
α

1−α

C (INLN + ISLS) . (3.10)
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In the South, free entry into each imitation race implies

V S(j) = νwSφ(j) (3.11)

and the no-arbitrage condition reads

πS(j)/V S(j)− h(j) = r . (3.12)

The product manufactured by a Southern incumbent will not be imitated by another

Southern firm since there is no reward for copying already copied products under

Bertrand competition. By substituting (2.11), (3.5), and (3.11) into (3.12) we obtain

h(j) + κ− δ = (1/α− 1)ν−1(pS)−
1

1−αP
α

1−α

C (INLN + ISLS) . (3.13)

It can be concluded successively from (3.13) and (3.10) that both, innovation and

imitation rates, are equal across industries, i.e., h(j) = h and k(j) = k ∀ j.

To solve for the relative product price in the North, we divide (3.13) by (3.10) to

obtain

pN

pS
=
wN

wS
= ω =

(

νλ̃(h+ κ− δ)

µ(h+ k + κ− δ)

)1−α

, (3.14)

which is increasing in the rate of innovation but decreasing in the rate of imitation.

As noted in footnote 11 above, we have to assume that ω > 1/α.

Industrial Dynamics and Quality Growth

At each point in time, a share nN of industries, called “N -industries” have North-

ern incumbents and a share nS of industries, called “S-industries” have Southern

incumbents whereby nN + nS = 1. Northern firms undertake innovative activities

in all industries while Southern firms undertake imitative activities only in the N -

industries where production is currently in the North. Due to Bertrand competition,

imitations in the S-industries would not be profitable. However, if a Southern firm is

successful in imitating the product of a Northern quality leader, production shifts to

the South because the unit cost of production is lower there. As soon as a Northern

firm is successful in a quality innovation of a product which is currently manufac-

tured in the South, production shifts back to the North. As is illustrated in Figure
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2, each product switches randomly across the two types of industries with transition

probabilities depending on the Poisson arrival rates associated with innovative and

imitative activities.

Figure 2: Innovation, Imitation and Industrial Dynamics

N-industries S-industries

k

h

h

Since nN is constant over time in a steady-state equilibrium, the flow into the N -

industries must equal the flow out of the N -industries, i.e. nSh = nNk, such that

nN =
h

h+ k
; nS =

k

h + k
. (3.15)

The share of industries with Northern incumbents is an increasing function of the

rate of innovation and a decreasing function of the rate of imitation. The opposite

holds for the share of industries with Southern incumbents.

The average quality of all products can be decomposed to Φ = ΦN + ΦS, where

ΦN ≡

∫

nN

φ(j)dj =

∫

nN

λ̃m(j)dj

is the aggregate quality of the Northern products and

ΦS =

∫

nS

φ(j)dj =

∫

nS

λ̃m(j)dj

is the aggregate quality of the Southern products. The time derivative of ΦN is

Φ̇N =

∫

nN

(λ̃m(j)+1 − λ̃m(j)) h dj +

∫

nS

λ̃m(j)+1 h dj −

∫

nN

λ̃m(j) k dj

= (λ̃− 1)hΦN + λ̃hΦS − kΦN

and the time derivative of ΦS is

Φ̇S =

∫

nN

λ̃m(j)k dj −

∫

nS

λ̃m(j) h dj = kΦN − hΦS .
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This implies the growth rates

Φ̇N/ΦN = (λ̃− 1)h+ λ̃hΦS/ΦN − k

and

Φ̇S/ΦS = kΦN/ΦS − h .

Obviously, the growth rates of ΦN and ΦS are constant over time only if they are

equal. It follows from Φ̇N/ΦN = Φ̇S/ΦS that ΦN/ΦS = λ̃h/k and, by definition,

ΦN =
λ̃h

λ̃h+ k
Φ ; ΦS =

k

λ̃h + k
Φ , (3.16)

Using (3.15), this implies

ΦN

nN
=
λ̃(h+ k)

λ̃h+ k
Φ >

ΦS

nS
=

h+ k

λ̃h+ k
Φ ,

indicating that the average quality of products manufactured in the North is gener-

ally higher than the average quality of products manufactured in the South.

The Labor Markets

It is assumed that workers can move freely across firms and sectors within each

region but not across the regions. According to (2.21), in both regions a constant

share 1 − ρ/κ of human capital is devoted to education. The remaining amount of

human capital is devoted to production and to R&D. It follows from (3.2) that the

aggregate demand for human capital in the Northern production sector is
∫

nN

LN
q (j)H

Ndj =

∫

nN

QN (j)dj = ΦN (pN)−
1

1−αP
α

1−α

C (INLN + ISLS)

and from (3.6) that the aggregate demand for human capital in the Northern research

sector amounts to
∫ 1

0

LN
h (j)H

Ndj =

∫ 1

0

µhφ(j)dj = µhΦ .

Thus, full employment of Northern workers implies that

LNHN = (1− ρ/κ)LNHN + ΦN(pN )−
1

1−αP
α

1−α

C (INLN + ISLS) + µhΦ . (3.17)
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Similar calculations apply for the Southern labor market. It follows from (3.4) that

the aggregate demand for human capital in the Southern production sector is
∫

nS

LS
q (j)H

Sdj =

∫

nS

QS(j)dj = ΦS(pS)−
1

1−αP
α

1−α

C (INLN + ISLS) ,

and from (3.7) that the aggregate demand for human capital in the Southern research

sector is
∫

nN

LS
k (j)H

Sdj =

∫

nN

νkφ(j)dj = νkΦN .

Thus, full employment of Southern workers implies that

LSHS = (1− ρ/κ)LSHS + ΦS(pS)−
1

1−αP
α

1−α

C (INLN + ISLS) + νkΦN . (3.18)

The equation system (3.11), (3.14), (3.16), (3.17), and (3.18) is sufficient to solve

the model for a steady-state equilibrium.

The Balanced-Growth Equilibrium

In the balanced-growth equilibrium, the growth rates are determined by

İ ι/I ι = Ḣ ι/H ι = (κ− δ − ρ) = Φ̇ι/Φι = Φ̇/Φ = (λ̃− 1)h ; ι = N, S ,

such that the innovation rate is again

h∗ =
κ− δ − ρ

λ̃− 1
.

The steady-state innovation rate of the open economy coincides with the one derived

in (2.22) for the closed economy. To derive the explanatory factors of the imitation

rate k, we substitute (3.10) and (3.16) into (3.17) to obtain the Northern steady-state

condition

ρ/κ = µ
Φ

LNHN

[

α

1− α

(h+ k + κ− δ)h

λ̃h+ k
+ h

]

, (3.19)

and substitute (3.13) and (3.16) into (3.18) to obtain the Southern steady-state

condition

ρ/κ = ν
Φ

LSHS

[

α

1− α

(h+ κ− δ)k

λ̃h+ k
+

λ̃hk

λ̃h + k

]

. (3.20)
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In the balanced-growth equilibrium, the innovation and imitation rates, and the

ratios Φ/HN and Φ/HS are constant over time.

The products in each industry follow stochastic life cycles with rather different his-

tories. A particular product might be manufactured in the North for a while before

a Southern firm succeeds in imitating the technology. Then production shifts to the

South where the product is manufactured until being upgraded again in the North.

Alternatively, the product might be improved several times in succession by various

Northern firms before it is imitated by a Southern firm. An appropriate measure of

the average length of a North-South product cycle is (1/k + 1/h). The first term

indicates how long, on average, a product will be produced in the North before be-

ing imitated by a Southern firm. Analogously, the second term indicates how long,

on average, a product will be manufactured by that Southern firm before being

upgraded again by a Northern innovator.

Globalization and Intellectual Property Rights

The steady-state equilibrium of the model enables us to derive some comparative-

static effects of globalization on the dynamics of innovation and imitation. Global-

ization is modeled as an expansion in the size of the South. Even if less developed,

each country joining the world trading system will increase the labor force LS. To

keep the analysis tractable, we assume that the per-capita human capital of the

joining country equals that of the already integrated countries in the South. In or-

der to concentrate on a steady-state equilibrium, we further have to assume that the

effectiveness of education, measured by education parameter κ, is equal in the North

and the South.12 However, the influence of different human-capital growth rates can

be captured within the model by a sequence of jumps in the relative stock of human

capital HS/HN .

To derive the comparative-static effects, we totally differentiate the equation system

12A smaller effectiveness parameter in the South would induce developing countries to contin-

uously fall behind the developed counties. A higher effectiveness parameter in the South would

induce developing countries to continuously catch up which would contradict the assumption of

only Northern firms being able to innovate. Of course, both alternative assumptions are not com-

patible with a balanced steady-state growth equilibrium of the global economy.
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(3.19) and (3.20). Making use of

∂

∂k

(

h+ k + κ− δ

λ̃h+ k

)

= −
ρ

(λ̃h+ k)2
< 0

and

∂

∂k

(

k

λ̃h+ k

)

=
λ̃h

(λ̃h + k)2
> 0

we obtain dk/dLS > 0 and dk/dν < 0. An increase in the size of the South LS

leads to an increase in the innovation rate. It follows from (3.19) that this in turn

increases the ratio ΦN/HN and thus implies a short-run increase in the innovation

rate. The long-run innovation rate h∗, however, is not affected by dLS.

Proposition 3: Globalization measured by an increase in the size of the South leads

to a temporary increase in the innovation rate and to a permanent increase in the

imitation rate so that the average length of a North-South product cycle decreases.

The intuition behind this result is obvious. More demand in the South increases the

rate of imitating the top-of-the-line products currently manufactured by Northern

firms. This higher rate of technology transfer implies that production is relocated

from the high-wage North to the low-wage South such that Northern workers are set

free for employment in R&D. As can be seen from (3.14), the Northern relative wage

rate falls and gives Northern firms an incentive to raise their innovative activities.

The innovation rates jump up and accelerate technological progress, but workers are

partially shifted back into production as innovation becomes more difficult as the

quality level increases. In the long run, globalization increases the fraction of North-

ern human capital devoted to R&D whereas the innovation rate remains constant.

Nowadays, the question of the strength of protection of intellectual property rights

has become an important topic in the theory of international trade. We capture a

stronger protection of intellectual property rights by an increase in the parameter ν

measuring the difficulty of imitation. The comparative statics correspond to those

of a variation of LS.

Proposition 4: Stronger protection of intellectual property rights measured by an

increase in the difficulty for Southern firms to realize imitations leads to a temporary

decrease in the innovation rate and to a permanent decrease in the imitation rate so

that the average length of a North-South product cycle increases.
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Of course, stronger protection of intellectual property rights induces Southern firms

to devote less human capital to imitative activities. The lower rate of imitation in-

creases the demand for Northern workers. The Northern relative wage rate increases

until the additional employment of human capital in production is offset by an equal

decrease in the demand for human capital in the Northern R&D labs. The innova-

tion rate temporarily declines. In the long run, however, the innovation rate remains

constant, even if a smaller fraction of Northern human capital is devoted to R&D.

Imitation is an important channel through which for the technology transfer from de-

veloped countries to developing countries. However, as examined, e.g., by Branstetter

et al. (2006), international technology transfer occurs not only across rival firms via

imitation, but also within multinational firms via foreign direct investment. Such a

complementary model of technology transfer by multinational firms is presented in

the next section.

4 Innovation and Technology Transfer via Foreign

Direct Investment

North-South trade models with technology transfer within multinational firms in-

clude Glass and Saggi (2002), Sener (2006), and Glass and Wu (2006). In these

models, however, a stronger protection of intellectual property rights leads to a

lower rate of technology transfer from North to South. The empirically observed

increase in the rate of technology transfer that results from stronger protection

is consistent with the implications of the North-South trade models developed by

Helpman (1993), Lai (1998), and Branstetter et al. (2007). However, these papers

assume that international technology adaption within multinational firms is costless

and thus cannot account for the observed increase in R&D spending by foreign af-

filiates of multinationals. Several empirical studies have documented that research

activities conducted by affiliates in developing countries is focused on the absorption

of parent-firm technology (see, e.g., Kuemmerle 1999).

Recently, Dinopoulos and Segerstrom (2010) have developed a North-South trade

model that is consistent with the above-mentioned empirical evidence. As the prede-

cessor model of Dinopoulos and Segerstrom (2007), this model is a semi-endogenous
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R&D-based growth model. In order to develop a fully endogenous Schumpeterian

growth model of the third generation, we adopt the idea from Dinopoulos and

Segerstrom (2010) but again replace the assumption of exogenous population growth

by endogenous human-capital accumulation. This extension allows us to present a

model of multinational firms in line with the models presented in the former sections.

As before, we consider a global economy consisting of two countries or regions: a

high-wage North and a low-wage South. Human capital is the only factor of pro-

duction and grows at an endogenous rate in both regions. It is employed in four

distinct activities: education, manufacturing of consumption goods, innovative re-

search activities and adaptive research activities. Innovations are realized by firms in

the North, adoptions are realized by firms in the South. There is free trade between

the two regions.

In this global economy, Northern firms hire workers to engage in R&D with the aim

of developing higher-quality products. A successful firm becomes a Northern quality

leader and earns global monopoly profits from producing and selling the state-of-the

art quality product in its industry. As an additional feature, compared to Section 3,

a Northern quality leader can hire Southern workers to engage in adaptive research

with the aim of transferring this technology to the low-wage South. When successful,

a firm establishes a foreign affiliate and earns even higher global monopoly profits

because of lower wages in the South. A fraction of profits is repatriated back to

the Northern stockholders. Adaptive research can be interpreted as foreign direct

investment because it represents the cost that Northern quality leaders have to incur

in order to transfer their technology to foreign affiliates. Further, Northern quality

leaders control the intensity of adaptive research such that their global profits are

maximized.

The Product Markets

Each Northern quality leader faces constant unit cost of production equal to the

Northern wage rate wN . Likewise, each foreign affiliate in the South has constant

unit cost equal to the Southern wage rate wS. We solve the model for a steady-

state equilibrium where the North has a higher wage rate than the South such that

production shifts from North to South as soon as a Northern leader is successful in

adaptive research. In addition, we assume that the quality improvement is sufficiently

large for a Northern quality leader to produce at lower quality-adjusted unit costs
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than a foreign affiliate producing a product with a quality one step below. As a

result, Northern quality leaders can drive foreign affiliates producing lower quality

products out of business even though the latter have a wage-based cost advantage.

Both, the Northern quality leaders N as well as the Southern affiliates F maxi-

mize the flow of global profits by setting the unconstrained monopoly prices, pN =

(1/α)wN and pF = (1/α)wS.

Each foreign affiliate, but not the Northern leaders, faces an exogenously given risk

that its technology becomes imitated. At each point in time, there is an instantaneous

probability k that a foreign affiliate’s product is imitated by a competitive fringe of

Southern firms S. All imitated products are produced in the South and offered at

the Bertrand price pS = wS.

This leads to firms’ demand functions

Qι(j) = φ(j) (pι)−
1

1−α P
α

1−α

C (INLN + ISLS) , ι = N,F, S (4.1)

and the profits

πN(j) = (1/α− 1) wN φ(j) (pN)−
1

1−α P
α

1−α

C (INLN + ISLS) (4.2)

and

πF (j) = (1/α− 1) wS φ(j) (pF )−
1

1−α P
α

1−α

C (INLN + ISLS) . (4.3)

Due to Bertrand competition, the imitating firms in the South realize no profits such

that πS(j) = 0.

Dynamics of Innovation, Adaption and Imitation

Innovation dynamics are captured analogously to Sections 2 and 3. If Northern

challenger firms employ LN
h (j)H

N units of human capital in innovative research,

they are successful in developing the next higher-quality product in industry j with

instantaneous probability

h(j) =
LN
h (j)H

N

µφ(j)
. (4.4)
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The returns to R&D activities are independently distributed across firms, industries

and over time. If the foreign affiliate of a Northern quality leader employs LS
ℓ (j)H

S

units of human capital in adaptive research, then the Northern firm is successful in

shifting its production to the South with instantaneous probability

ℓ(j) =
LS
ℓ (j)H

S

ηφ(j)
, (4.5)

where η measures the difficulty of technology adaption. A Northern quality leader

is more likely to be successful in transferring its production to the South when it

employs more human capital.

The Global Stock Market

Free entry into each innovation race implies that the expected benefit from innovative

R&D must be equal to the corresponding R&D cost. This implies V N
m(j)+1(j) =

wNµλ̃φ(j) such that

V N(j) = wNµφ(j)/λ̃ . (4.6)

Foreign affiliates of Northern quality leaders engage in adaptive research. If suc-

cessful, the expected discounted profit earned by the firm is V F (j)− V N(j), where

V F (j) is the market value of the foreign affiliate after success. When a technology

transfer occurs, the foreign affiliate has to pay its Northern parent firm the royalty

payment V N (j) for the use of its technology in the South. Therefore, what matters

for adaptive research is the gain in expected discounted profits, V F (j)− V N(j). A

foreign affiliate engages in adaptive research activities if

V F (j)− V N (j) = wSηφ(j) ,

such that

V F (j) = (wNµ/λ̃+ wSη)φ(j) . (4.7)

Consumers finance both types of innovative and adaptive activity through a global

stock market. At each point in time there are two types of firms having positive stock-

market values, Northern quality leaders producing in the North, and foreign affiliates
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producing in the South. Since the returns to innovative and adaptive investments

are independent across firms, consumers can completely diversify the idiosyncratic

risk by holding a diversified portfolio of stocks. At each point in time, the rate of

return from holding any of the stocks must be the same as the rate of return r from

holding a risk-free bond. The no-arbitrage condition for holding a stock issued by

an incumbent Northern quality leader is

πN(j)/V N (j)− h(j) = r . (4.8)

Substituting (2.11), (4.2) and (4.6) into (4.8) gives

h(j) + κ− δ = (1/α− 1)µ−1λ̃(pN)−
1

1−αP
α

1−α

C (INLN + ISLS) (4.9)

such that innovation rates are equal across markets, h(j) = h. The no-arbitrage

condition for holding a stock issued by a multinational firm that produces in the

South is

πF (j)/V F (j)− h− k = r . (4.10)

Substituting (2.11), (4.3) and (4.7) into (4.10) gives

(h+ k + κ− δ)(η + ωµ/λ̃) = (1/α− 1)(pF )−
1

1−αP
α

1−α

C (INLN + ISLS) . (4.11)

From (4.9) and (4.11) the relative prices and wages ω = wN/wS = pN/pF are

determined implicitly by the polynomial

[(h+ κ− δ)/(h+ k + κ− δ)]ω1/(1−α) − ω = ηλ̃/µ , (4.12)

The long-run innovation rate is again determined by (2.22). Then the expression on

the left hand side of (4.12) is negative at ω = 1, strictly increasing in ω for ω > 1

and approaching infinity for ω → ∞.

Industrial Dynamics and Quality Growth

At each point in time, there are three types of industries in the global economy:

a share nN of N -industries where products are manufactured by Northern quality

leaders, a share nF of F -industries where products are manufactured in the South
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by foreign affiliates of multinational firms and a share nS of S-industries where

products are manufactured in the South by competitive-fringe firms. As is illustrated

in Figure 3, each product can switch randomly across these three types of industries

with transition probabilities that depend on the Poisson arrival rates associated with

innovative, adaptive and imitative activities.

Figure 3: Innovation, Adaption, Imitation, and Industrial Dynamics

N-industries F -industries S-industries

ℓ k

h

h

h

The shares of industries must be constant in a steady-state equilibrium. This implies

that the flow into the N -industries must be equal to flow out of the N -industries,

that is (nF +nS)h = nNℓ. Additionally, the flow into the S-industries must be equal

to the flow out of the S-industries, nFk = nSh. Together with the requirement that

nN + nF + nS = 1, these flow equations imply that

nN =
h

h+ ℓ
; nF =

hℓ

(h+ k)(h+ ℓ)
; nS =

kℓ

(h+ k)(h + ℓ)
. (4.13)

The average quality of all products can be decomposed into three parts, Φ = ΦN +

ΦF + ΦS, where

ΦN ≡

∫

nN

φ(j)dj =

∫

nN

λ̃m(j)dj

is a measure of product quality for all products manufactured in the North,

ΦF ≡

∫

nF

φ(j)dj =

∫

nF

λ̃m(j)dj ,

is a measure of product quality for products manufactured by foreign affiliates and

ΦS =

∫

nS

φ(j)dj =

∫

nS

λ̃m(j)dj .
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is a measure of product quality for products manufactured by Southern firms. The

time derivative of ΦN is

Φ̇N =

∫

nN

(λ̃m(j)+1 − λ̃m(j)) h dj +

∫

nF+nS

λ̃m(j)+1 h dj −

∫

nN

λ̃m(j) ℓ dj

= (λ̃− 1)hΦN + λ̃h(ΦF + ΦS)− ℓΦN ,

the time derivative of ΦF is

Φ̇F =

∫

nN

λ̃m(j)ℓ dj −

∫

nF

λ̃m(j) h dj −

∫

nF

λ̃m(j) k dj = ℓΦN − hΦF − kΦF ,

and the time derivative of ΦS is

Φ̇S =

∫

nF

λ̃m(j)k dj −

∫

nS

λ̃m(j) h dj = kΦF − hΦS .

This implies the growth rates

Φ̇N/ΦN = (λ̃− 1)h+ λ̃hΦS/ΦN − k ,

Φ̇F/ΦF = ℓΦN/ΦF − h− k ,

and

Φ̇S/ΦS = kΦN/ΦS − h .

The growth rates of Φ, ΦN , ΦF and ΦS are constant over time only if ΦN/ΦS = λ̃h/k

and (due to Φ = ΦN + ΦF + ΦS)

ΦN =
λ̃h

λ̃h+ ℓ
Φ ; ΦF =

λ̃hℓ

(λ̃h+ k)(λ̃h+ ℓ)
Φ ; ΦS =

kℓ

(λ̃h+ k)(λ̃h+ ℓ)
Φ . (4.14)

Using (4.13), this implies

ΦN

nN
=
λ̃(h+ ℓ)

λ̃h+ ℓ
Φ >

ΦF

nF
=

λ̃(h+ k)(h+ ℓ)

(λ̃h+ k)(λ̃h + ℓ)
Φ >

ΦS

nS
=

(h+ k)(h + ℓ)

(λ̃h+ k)(λ̃h + ℓ)
Φ .

Thus, the average quality of products manufactured in the North is higher than

the average quality of products manufactured by Southern affiliates which in turn
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is higher than the average quality of products manufactured by competitive-fringe

firms in the South.

The Labor Markets

Full employment of labor prevails at each instant in time and wages adjust to equalize

labor demand and supply. Northern labor is employed in three activities: education,

production of consumer goods, and innovative research. It follows from (4.1) that

the aggregate demand for human capital in the Northern production sector is
∫

nN

LN
q (j)H

Ndj =

∫

nN

QN (j)dj = ΦN (pN)−
1

1−αP
α

1−α

C (INLN + ISLS) .

All industries are targeted by Northern firms engaged in innovative activities. It

follows from (4.4) that the aggregate demand for human capital in the Northern

research sector is
∫ 1

0

LN
h (j)H

Ndj =

∫ 1

0

µhφ(j)dj = µhΦ .

Thus, full employment of Northern workers implies that

LNHN = (1− ρ/κ)LNHN + Φ[λ̃h/(λ̃h+ ℓ)](pN)−
1

1−αP
α

1−α

C (INLN + ISLS) + µhΦ .

(4.15)

Human capital of Southern workers can be employed in four activities: education,

production by foreign affiliates of multinational firms, adaptive research, and produc-

tion by Southern firms. It follows from (4.1) that the aggregate demand for human

capital in Southern production sector is
∫

nF

LS
q (j)H

Sdj =

∫

nF

QF (j)dj = ΦF (pF )−
1

1−αP
α

1−α

C (INLN + ISLS)

by the foreign affiliates and
∫

nS

LS
q (j)H

Sdj =

∫

nS

QS(j)dj = ΦS(wS)−
1

1−αP
α

1−α

C (INLN + ISLS)

by the competitive-fringe firms. Finally, it follows from (4.5) that the aggregate

demand for human capital in adaptive research is
∫

nN

LS
ℓH

Sdj =

∫

nN

ηℓφ(j)dj = ηℓΦN .
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Thus, full employment of Southern workers implies that

LSHS = (1− ρ/κ)LSHS + [Φℓ/(λ̃h+ ℓ)][(pF )−
1

1−αP
α

1−α

C (INLN + ISLS)Ψ(k) + ηλ̃h] ,

(4.16)

where Ψ(k) ≡ (λ̃h+ ξk)/(λ̃h+ k); ξ(k) ≡ (1/α)1/(1−α) > 1, is increasing in the rate

of imitation, i.e. Ψ′(k) > 0.

The Balanced-Growth Equilibrium

To derive the factors explaining the technology-adaption rate ℓ, we substitute (4.9)

into (4.15) to obtain the Northern steady-state condition

ρ/κ =
µhΦ

LNHN

[

α

1− α

h+ κ− δ

λ̃h + ℓ
+ 1

]

(4.17)

and substitute (4.11) into (4.16) to obtain the Southern steady-state condition

ρ/κ =
ℓΦ

(λ̃h + ℓ)LSHS

[

α

1− α
(η + µω/λ̃)(h+ k + κ− δ)Ψ(k) + ηλ̃h

]

. (4.18)

In the balanced-growth equilibrium, the innovation and adaption rates, the relative

prices and wage rates and the ratios Φ/HN and Φ/HS are constant over time.

The products in each industry follow stochastic life cycles with different patterns. A

particular product might be improved several times in succession by various Northern

firms before it is adapted by a multinational firm. Then production shifts to the

South where the product is manufactured by the multinational firm an perhaps by

a competitive-fringe firm later on until being upgraded again by an innovative firm

in the North. An appropriate measure of the average length of a North-South cycle

is (1/ℓ + 1/h). The first term indicates how long, on average, a product will be

produced in the North before being adapted by a multinational firm, the second

term indicates how long, on average, a product will be manufactured in the South

before a further quality innovation occurs.

Globalization and Intellectual Property Rights

The steady-state equilibrium of the model enables us to derive some comparative-

static effects of globalization on the dynamics of innovation and adaption.
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As in the former model, an increase in size of the South has no impact on the long-run

innovation rate h∗. Comparative statics of (4.19) show that dℓ/dLS > 0. Southern

countries joining the world trading system have no direct effect on the Northern

steady-state condition (4.17), but imply that the ratio Φ/HS increases for a given

value of ℓ in the Southern steady-state condition (4.18). This generates a higher

steady-state rate of foreign direct investment ℓ and a higher steady-state value of

the ratio Φ/HS (or Φ/HN , respectively). The permanent increase in this ratio is

associated with a temporary increase in the innovation rate h above its steady-state

value h∗.

Proposition 5: Globalization measured by an increase in the size of the South leads

to a temporary increase in the innovation rate and to a permanent increase in the

adaption rate so that the average length of a North-South product cycle decreases.

Furthermore, the adaption rate ℓ depends on the exogenous imitation rate k, which

captures the effect of a stronger protection of the intellectual property rights, and

parameter η, which measures the difficulty of realizing a technology transfer within a

multinational firm. Comparative statics of (4.19) show that dℓ/dk < 0 and dℓ/dη <

0. A decrease in the imitation rate k has no direct effect on the Northern steady-

state condition (4.17), but implies that Φ/HS increases for a given value of ℓ in the

Southern steady-state condition (4.18). The latter effect works directly and through

a reduction in the North-South wage gap ω as determined in (4.12). This generates a

higher steady-state rate of foreign direct investment ℓ and a higher steady-state value

of the ratio Φ/HS (or Φ/HN , respectively). The permanent increase in this ratio is

associated with a temporary increase in the innovation rate h above its steady-state

value h∗. A reduction of η, implying less costly opportunities for multinational firms

to transfer technologies to Southern affiliates, induces comparative-static effects in

the same direction.

Proposition 6: Stronger protection of intellectual property rights measured by a de-

cline in the imitation rate of the competitive fringe in the South leads to a temporary

increase in the innovation rate and to a permanent increase in the rate of technol-

ogy transfer to the South within multinational firms. Improved conditions for foreign

direct investment, measured by a decrease in the difficulty for multinational firms to

transfer technology to the South generates similar steady-state equilibrium effects.

Improved conditions for foreign direct investment provide additional incentives for
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multinational firms to increase their adaptive R&D activities and transfer produc-

tion to the lower-wage South faster. The more rapid international technology transfer

in turn increases the demand for Southern human capital employed in adaptive re-

search and decreases the demand for human capital in Northern production. These

two effects cause a permanent decline in the North-South wage gap and make it

more attractive for firms to engage in innovative R&D in the North. Northern firms

respond by innovating more frequently such that the difficulty of realizing innova-

tions rises at a higher than usual rate. This increase causes the innovation rate to

gradually slow down and to converge to the long-run innovation rate again.

A comparison of the results of this innovation-adaption model to those of the

innovation-imitation model analyzed above shows that the mode of international

technology transfer is crucial. When technology transfer occurs through imitation of

Northern products, stronger intellectual property rights lead to a temporary decrease

in the innovation rate and to a permanent increase in the North-South wage gap.

The opposite holds when technology transfer is driven by foreign direct investment.

In the real world, technology transfer occurs both, within multinational firms via

foreign direct investment and across rival firms via imitation. This leads Dinopoulos

and Segerstrom (2010, p. 15) to conjecture that the total effect depends on how im-

portant each mode of technology transfer is. We agree that the two mechanisms of

imitation and adaption complement each other. In order to assess the combined ef-

fect of both transfer mechanisms, Sener (2006) has attempted to formulate a unified

model. Unfortunately, such a generalized model is no longer analytically solvable.

Nevertheless, his numerical solutions are in accordance with the results derived in

the more restrictive models analyzed in this paper.

5 Summary and Conclusion

We have presented a class of dynamic general-equilibrium models of education, in-

novation and international technology transfer to explain the dynamics of industrial

evolution and aggregate growth. Recent semi-endogenous models of closed and open

economies have accomplished a valuable task by removing the scale effect present

in endogenous growth models of the first generation. A disturbing property of these

non-scale models is, however, that the innovation and per-capita growth rates de-
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pend proportionally on population growth. This property is clearly at odds with the

empirical evidence.

We have offered an alternative interpretation of labor by pointing out the impor-

tance of education and human-capital accumulation. The skill acquisition of workers

has not only a direct effect on economic growth but also an indirect effect via an

acceleration of the innovation processes. The effectiveness of the educational system

is therefore most important for the dynamics of innovation and growth. The scale

effect is eliminated by the assumption that the realization of innovations becomes

more difficult as the products climb up the quality ladders, but this deterioration

of technological opportunities is compensated by an improvement of the workers’

skills. Education and innovation appear as the two in-line engines of endogenous

scale-invariant growth.

The industrial dynamics induced by innovation and international technology transfer

correspond to those derived by the semi-endogenous growth models. Globalization by

Southern countries joining the world trading system lead to a temporary increase of

the innovation rates and to a permanent increase in the imitation or adaption rates.

The effects of stronger intellectual property rights depend crucially on the mode of

international technology transfer. In case of imitation across rival firms, stronger

protection induces a temporary decrease in innovation and a higher North-South

wage gap. In case of technology adaption within multinational firms the opposite

holds.

As several empirical studies have pointed out, both modes of international technol-

ogy transfer are important. Our results concerning technology adaption via foreign

direct investment describe the dynamics in the consumer electronics industry and

the office machinery industry since the 1960s very well. However, more recently the

rapid advances in the technological capabilities of engineers in the newly industrial-

ized (Southern) countries have made imitation an even more important channel for

international technology transfer. In the personal computer industry, for instance,

product cycles have been characterized not only by increasing offshore production by

multinational firms which originally developed the computers, but also by imitations

realized by competitors in the less developed South. The copies themselves, however,

have again been replaced by superior computers and laptops developed by Northern

firms. This evidence suggests the formulation of more general models appropriate to
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analyze the different modes of technology transfer within a single unified framework.

This challenging task is left for future research.
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