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Abstract

In the coagulation scenario of planet formation, planets are assembled by subsequent collisions starting
from micron sized dust grains in protoplanetary discs. Three stages can be distinguished: firstly, the dust
grains stick by van-der-Waals forces after collision. Millimetre-sized, highly porous dust aggregates are
produced as a result. In the second growth step, from millimetre to kilometre size, the dust aggregates
are referred to as pre-planetesimals. This step is problematic and addressed in the thesis at hand: pre-
planetesimal growth is endangered by disruptive collisions (fragmentation barrier) and may be halted at
centimetre sizes by compaction and consequential rebound (bouncing barrier). The sticking mechanism
in the pre-planetesimal regime is unknown. The investigation of the second step in global dust coagula-
tion models is difficult since data on the outcome of pre-planetesimal collisions are missing and labora-
tory experiments on these are infeasible beyond centimetre size. However, once a sufficient population of
kilometre-sized planetesimals has formed, planet formation is ensured by gravity-aided accretion in the
third growth step.

Since laboratory experiments with large pre-planetesimals are hard to carry out, in this thesis a realistic
numerical model for the simulation of porous pre-planetesimal material is developed and thoroughly
calibrated with by means oflaboratory benchmark experiments. Smoothed particle hydrodynamics (SPH)
is adopted as a numerical method together with extensions for the simulation of solid media. A preexisting
porosity model is enhanced by more realistic material equations, an improved treatment of tensile forces
and a damage model based on the inhomogeneity of dust aggregates. As a result, the calibration process
yields the only numerical model currently available, which can reproduce compaction, fragmentation,
and bouncing of SiO, dust aggregates quantitatively correct. Additionally, material relations, which are
hard to measure in the laboratory, such as the dynamic compressive and shear strength as well as the bulk
modulus are determined.

The four-population model is presented in this thesis as a new classification scheme for pre-planetesimal
collisions. This is a collision data transfer format accurate enough to capture all combinations of stick-
ing, bouncing, and fragmentation processes in pre-planetesimal collisions and at the same time simple
enough to be implemented in dust coagulation models. It distinguishes between the largest and second
largest fragment, a fragment class whose mass distribution is modelled by a power-law, and a class which
indicates the limit of the numerical resolution.

As an application of the calibrated numerical porosity model this thesis investigates the influence of hard
shells of dust aggregates on the occurrence of bouncing collisions. It is shown that hard shells lead to
bouncing events only for low collision velocities. The probability of bouncing events might be overesti-
mated by current collision statistics due to experimental artefacts involving hard shells. As a consequence,
bouncing might be less dangerous for planet formation than currently assumed.

After several collisions in a protoplanetary disc, pre-planetesimals feature a collisional history and thus
are very likely to be inhomogeneous. By means of the inhomogeneity damage model it is shown, that
inhomogeneous pre-planetesimals are weaker than their homogeneous equivalents. The larger the degree
of inhomogeneity the smaller are the fragments in a fragmenting collision.

As major application of the numerical porosity model a large set data set of the outcomes of collisions
between homogeneous aggregates of low, medium, and high porosity is presented. It is shown, that the
threshold velocities for bouncing and fragmentation depend on the object porosity and object size, which
are both often neglected in current investigations of planetesimal formation.



Zusammenfassung

Dem Koagulationsszenario der Planetenentstehung zufolge entstehen Planeten durch sukzessive Kolli-
sionen in protoplanetaren Scheiben beginnend mit mikrometergro8en Staubkérnern. Dabei kann man
drei Phasen unterscheiden: Anfangs haften die Staubkérner durch van-der-Waals Kréfte nach einem Zu-
sammenstol3. Als Resultat entstehen millimetergrof3e, hochpordse Staubaggregate. Im zweiten GréRen-
schritt, der von einigen Millimetern bis hin zu Kilometern reicht, bezeichnet man die Staubaggregate als
Préplanetesimale. Diesem problematischen Schritt widmet sich die vorliegende Arbeit. Das Wachstum
von Prédplanetesimalen ist einerseits durch Kollisionen bedroht, in denen die Aggregate zerstért werden
(Fragemtationsbarriere), und andererseits angehalten bei GréBen von einigen Zentimetern durch Aggre-
gatverdichtung und daraus folgendem gegenseitigen Abprallen (Abprallbarriere). Der Haftmechanismus
im GréRenbereich der Praplanetesimale ist unbekannt. Die ndhere Untersuchung dieses zweiten Grof3en-
schritts mittels globalen Staubkoagulationssimulationen gestaltet sich schwierig, denn die nétigen Daten
von Pri-Planetesimalkollisionen stehen nicht zur Verfiigung und Laborexperimente, um diese zu gewin-
nen, sind jenseits von Gréfen von einigen Zentimetern nicht realisierbar. Hat sich jedoch eine ausrei-
chende Population von kilometergro8en Planetesimalen gebildet, ist die Entstehung von Planeten durch
den Mechanismus der gravitationsverstirkten Akkretion im dritten Wachstumsschritt sichergestellt.

Da Laborexperimente mit grofen Préplanetesimalen schwer durchzufiihren sind, wird in der vorliegen-
den Arbeit ein numerisches Modell fiir die realistische Simulation des porésen Materials entwickelt, aus
dem Préplanetesimale bestehen. Dieses Modell wird mit Hilfe von Labortestexperimenten sorgfiltig kali-
biert. Als numerische Methode wird Smoothed Particle Hydrodynamics (SPH) mit Erweiterungen fiir die
Simulation von Festkérpern verwendet. Ein bestehendes Porositdtsmodell wird durch realistischere Ma-
terialgleichungen, eine verbesserte Behandlung von Zugkriften und ein Schadensmodell erweitert, das
auf der Inhomogenitét von Staubaggregaten beruht. Das Endergebnis der Kalibrierung ist das gegenwiértig
einzige numerische Modell, das Verdichtung, Fragmentierung und gegenseitiges Abprallen von SiO, Stau-
baggregaten quantitativ reproduzieren kann. Zusétzlich wurden Materialbeziehungen gewonnen, die im
Experiment schwer messbar sind, wie etwa die dynamische Kompressions- und Scherfestigkeit sowie das
Kompressionsmodul.

In dieser Arbeit wird zudem das Four-Population Modell als neues Klassifikationsschema fiir Pra-Plane-
tesimalkollisionen vorgestellt. Dabei handelt es sich um ein Format zum Austausch von Kollisionsdaten,
das zum einen genau genug ist, um jegliche Kombination von Haftungs-, Abprall- und Fragmentierungs-
prozessen in Priaplanetesimalkollisionen abzubilden, und andererseits aber auch einfach genug ist, umin
globale Staubkoagulationsmodelle implementiert zu werden. In diesem Modell werden nach ihrer Mas-
se unterschieden: das gro8te und zweitgroBte Fragment, eine Fragmentklasse, deren Massenverteilung
durch ein Exponentialgesetz dargestellt wird, und eine Klasse fiir die numerische Auflosungsgrenze.

Als Anwendung des kalibrierten numerischen Porositdtsmodells untersucht diese Arbeit den Einfluss von
kompakten Schalen von Staubaggregaten auf das Auftreten von gegenseitigem Abprallen. Es wird gezeigt,
dass das Vorhandensein von kompakten Schalen nur bei niedrigen Geschwindigkeiten zum Abprallen
filhrt. Die Wahrscheinlichkeit von gegenseitigem Abprallen in derzeitigen Kollisionsstatistiken kénnte
durch experimentelle Artefakte {iberschétzt sein, die auf das Vorhandensein von kompakten Schalen zu-
riickzufiihren sind. Folglich konnte gegenseitiges Abprallen weniger bedrohlich fiir die Planetenentste-
hung sein als bisher angenommen.

Nach mehreren St6len in einer protoplanetaren Scheibe weisen die Praplanetesimale eine Kollisionsge-
schichte auf und sind daher sehr wahrscheinlich inhomogen. Mit Hilfe des Inhomogenitidtsschadensmo-
dells wird gezeigt, dass inhomogene Priplanetesimale fragiler sind als ihre homogenen Aquivalente. Je
hoher der Inhomogenitétsgrad ist, desto kleiner sind die Fragmente nach einer fragmentierenden Kollisi-
on.

Als Hauptanwendung des numerischen Porositdtsmodells wird ein Datensatz von Kollisionen zwischen
homogenen Priplanetesimalen mit niedriger, mittlerer und hoher Porositit vorgestellt. Es wird gezeigt,



dass die Grenzgeschwindigkeiten fiir Abprallen und Fragmentierung von der Porositidt der Objekte und
deren Grole abhdngen, was in derzeitigen Untersuchungen von Planetesimalentstehung oft vernachlas-
sigt wird.
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1. Introduction

Pre-planetesimals are the millimetre- to kilometre-sized building blocks of planets. Their pre-
decessors in size are micrometre to millimetre sized fractal dust aggregates which hit each other
and stick by van der Waals forces. The successors of pre-planetesimals are kilometre sized plan-
etesimals for which their self-gravity acts as an enhancing mechanism for accretion. The sub-
ject of this thesis is the development of a numerical model for the simulation of porous pre-
planetesimal dust material to determine the outcome of two-body collisions at parameter ranges
inaccessible to laboratory experiments. The collision statistics are to be determined depending
on parameters such as object size and porosity, collision velocity and impact parameter. The
results are intended for the use in global dust coagulation models. Based on this purpose the
outline of this thesis is as follows.

In Ch. 2 T describe the astrophysical context of this thesis: the role of planetesimals in planet
formation. In Sec. 2.1 protoplanetary discs are introduced as the environment of planet forma-
tion. Observational constraints are discussed as well as theoretical modelling of discs, their inner
structure, and internal motions of the disc components, which are gas and dust. Section 2.2 is
devoted to the evolution of the fractal dust aggregates. Starting from the properties of protoplan-
etary dust grains, their motions in the disc due to particle-gas-interaction, and the conditions for
dust growth, I explain the assembly and properties of the end products of this step: highly porous,
fluffy pre-planetesimals of millimetre to centimetre size, which are the objects to be simulated in
this thesis. The next growth step to planetesimals is problematic and discussed in Sec. 2.3. Two
hypotheses are presented as possible solutions: the coagulation and the gravitational instability
scenario. I treat the advantages as well as the drawbacks of each scenario and explain how each
of them can profit from the work presented here. In particular the fragmentation barrier and
bouncing barrier of the coagulation hypothesis are addressed in this thesis. Assuming a suffi-
cient population of planetesimals, Sec. 2.4 outlines the further path to planets through the stages
of orderly, runaway, and oligarchic growth. Section 2.5 concludes this chapter by integrating this
thesis into the broad picture of planetesimal formation.

Chapter 3 briefly introduces various methods contributing to the investigation of planetesimal
formation. This is to assess the benefits and limitations of the neighbouring disciplines of this
thesis and possible information exchange. Section 3.1 is devoted to laboratory experiments
which provide material parameters and the laboratory reference for the benchmark experiments
of this thesis. Molecular dynamics simulations are discussed in Sec. 3.2. This method may pro-
vide empirically inaccessible material parameters in future collaborations. The dust coagulation
models of Sec. 3.3 are the addressee of the results of this thesis. They combine the dust evolu-
tion with the internal dynamics of the disc and require profound two-body collision statistics.
Section 3.4 justifies the smoothed particle hydrodynamics (SPH) numerical scheme as a suitable
methodological choice for the given topic. This arises from the requirements and drawbacks of
the neighbouring methods.

The numerical method SPH is presented in detail in Ch. 4 with special respect to the simulation of
solid bodies. Section 4.1 describes the fundamental ideas of SPH such as the kernel interpolation

13



1. Introduction

and discretisation. The equations of hydrodynamics and their SPH representation are briefly
reviewed in Sec. 4.2. Since solid body mechanics is rarely used in the astrophysical context, I
derive its basic equations in more detail in Sec. 4.3 and present the SPH representations used
in this thesis. This includes the theories of elasticity and plasticity as well as some equations of
state. The porosity and damage models developed for this work require special attention in this
section. The chapter is concluded with some numerical issues in Sec. 4.4.

The heart of this thesis is the extensive calibration and validation process of the porosity model
(Ch. 5). The benchmark experiments which are carried out numerically in this thesis and at the
same time in the laboratory by collaborators are presented in Sec. 5.1. To establish a profound
basis for the calibration I settle some specific numerical issues such as resolution and conver-
gence in Sec. 5.2. Section 5.3 describes the calibration of the material relations tensile strength,
shear strength, compressive strength, and bulk modulus as well as their numerical determina-
tion where they are not available from laboratory measurements. The results are compared with
the experimental reference. Section 5.4 summarises the calibration process.

Chapter 6 is devoted to pre-planetesimal collisions and a suitable mapping format. In Sec. 6.1 I
develop a new classification scheme for pre-planetesimal collision outcome: the four-population
model. In detail I describe the benefits of this quantitative approach over other categorisation
attempts and show that other mapping models are encompassed by the new method. To demon-
strate its functionality I utilise it to classify my simulation data. In addition, the porosity model
is shown to reproduce all sticking, bouncing, and fragmentation types seen in laboratory exper-
iments. To improve the realistic simulation of dust aggregates I present results from simulations
with my inhomogeneity damage model in Sec. 6.2. It is shown that inhomogeneous aggregates
are more fragile than homogeneous aggregates and smaller fragments are produced for a higher
degree ofinhomogeneity. Section 6.3 addresses the bouncing barrier: experimental results might
overestimate the occurrence of rebound in aggregate collisions. It is also demonstrated how
hard shells influence the bouncing properties of pre-planetesimals. To conclude this chapter,
I present the results of a large number of head-on collisions in Sec. 6.4. Transition threshold
velocities between positive, neutral, and negative growth are determined for homogeneous ag-
gregates of high, intermediate, and low porosity. The study emphasises the dependence of these
thresholds on projectile size and filling factor.

In the conclusions chapter (Ch. 7), I summarise and discuss the results of this thesis (Sec. 7.1)
and give an outlook on future work (Sec. 7.2).

14



2. Planet Formation

2.1. Protoplanetary discs - The stage for planet formation

2.1.1. Formation of star and disc

Before planets can form, the environment for planet formation has to be established. Planets are
thought to be formed in circumstellar discs around a central star. This is the essential setup for
planet formation and it also represents the initial conditions for the evolution of our own solar
system. For the sake of simplicity, the following discussion carries on with this simple starting
point in mind leaving aside other conceivable environments such as discs around binaries. In
this section the formation of the central star and its surrounding disc will be explained. The
passage follows the extensive review articles by Larson (2003) and McKee and Ostriker (2007),
which describe this vast topic in adequate detail. Recent advances in understanding star and
disk formation have been made by Stamatellos et al. (2007) and Tscharnuter et al. (2009).

Stars form from molecular clouds which are massive and dense subregions in spiral arms of
galaxies or in galactic nuclei. These clouds consist mainly of hydrogen and helium in molecular
form and a very small fraction of other material, which is referred to as metallic in astrophysical
terminology. Initially, these objects have a nearly uniform density.

In an widely accepted scenario, which can be traced back to Newton, small density fluctuations
in the almost homogeneous medium are amplified by gravitational forces and, eventually, the
molecular cloud becomes gravitationally unstable. As a consequence, gravitational attraction
exceeds thermal pressure forces and the cloud collapses in a runaway process. The spherical
collapse can, e.g. be modelled based on initial states similar to a Bonnor-Ebert sphere (after the
works of Bonnor 1956 and Ebert 1957), which is an equilibrium isothermal sphere of finite size.
Temperature and boundary pressures are fixed. A stability analysis reveals that this configuration
is unstable to collapse if the following critical values for the sphere’s radius Rgg and mass Mzg
exceed the values

R 048 ct 2.1
BE = GP, .
1.18¢
Mpgg = ) (2.2)

where c; is a fixed sound speed, Py, the boundary pressure and G the gravitational constant. Ne-
glecting an outward pressure gradient, which develops during the collapse, a uniform sphere of
gas requires the free-fall time # to develop from a state of rest to an infinite density peak. Despite

of its simplifying assumptions, the free-fall time remains a good approximation and it is given by
37.[ 1/2
tg=—"—| , 2.3
! (32 Gpme ) &3

15

metallic material

Bonnor-Ebert
sphere

free-fall time



protostar

second collapse

Bondi(-Hoyle)
accretion
star classification

circumstellar disc

angular
momentum
transport
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where pn is the initial density distribution. However, no matter what initial or boundary con-
ditions are chosen, an outward pressure gradient appears at the boundary when the collapse
begins. The collapse is assumed to proceed isothermally. The gradient propagates inward as rar-
efaction wave with the speed of sound and causes the collapse to be highly non-uniform. This is
because the collapse of the outer layers are slowed by the outward pressure gradient compared to
the inner layers. In general, it can be said that the collapse is characterised by a runaway growth
of a central density peak which occurs in a non-uniform way.

In the centre of the collapsing molecular cloud a cloud core forms and increasing thermal pres-
sure counteracts gravitational forces. Therefore, the core must have a minimum mass so that
gravitational forces always exceed thermal counter-forces and an object of stellar density, an em-
bryonic star or protostar, can be formed. This process, which lasts only a few thousand years, can
be divided into two substages. The first core grows in mass and heats up until the temperature
reaches 2000 K. Then the molecular hydrogen starts to dissociate. Now the energy delivered by
contraction under gravitational forces does not only heat the core but also dissociates hydrogen;
at this point the second collapse starts. The further process is a complex interplay between ther-
modynamics, redistribution of angular momentum, and energy transport. The second collapse
lasts until nearly all hydrogen has been dissociated and it decelerates when the stellar density
reaches p ~ 1073 ¢/cm?® and the temperature rises above T ~ 10000K.

In this process, the protostar gains only a small fraction of its final stellar mass by direct collapse
from the molecular cloud core. At the end of the collapse process it has reached less then 1072
solar masses. Most of the mass of the cloud core stays behind in an extended in-falling envelope.
From now on, the protostar acquires its mass by gravitational accretion from this surrounding
envelope, which is referred to as Bondi accretion if the accreting object is stationary and Bondi-
Hoyle accretion of the object is moving. Accretion proceeds in different stages which can be dis-
tinguished according to the dominant wavelengths in the emitted spectrum of the evolving star:
a Class 0 object features sub-millimetre wavelengths which indicates an early phase of rapid ac-
cretion. This phase lasts some 10 years. The main accretion phase (Class I) lasts a few times 10°
years and is characterised by a spectrum dominated by far-infrared wavelengths, which gives rise
to the presence of a circumstellar disc. A pronounced near-infrared spectrum points to a Class II
object which represents a classical T Tauri star with considerable circumstellar dust and an ac-
cretion phase lasting up to 10° years. Finally, a Class IIl object emits mostly at visible wavelengths
and is similar to a weak line T Tauri star with no significant circumstellar material and accretion.
After this short description about the formation of the central star I turn the focus to the forma-
tion of the circumstellar disc, which is the location where planet formation actually takes place.
These discs are formed as a byproduct of stars during the collapse of isothermal axisymmetric
molecular clouds, where the cloud is rotating slowly. Their existence is a consequence of the
conservation of angular momentum. It has been shown, that rotation does not prevent the for-
mation of a density singularity during collapse, but most of the mass of the cloud ends up in a
centrifugally supported disc around the singularity. For the star to grow in mass, material has to
be transported inwards in the disc and accreted by the star, while angular momentum must be
removed or transported outwards. This is only possible if the disc is somehow viscous. Although
it has been clear for a long time, that molecular viscosity is much too small to cause efficient out-
ward transportation of angular momentum, a mechanism that creates sufficient viscosity of the
disc still has to be identified. A complicated interplay between magnetohydrodynmics (MHD),
radiative transfer, chemistry, and also solid state physics is in discussion to aid the accretion
process. Shakura and Sunyaev (1973), Lynden-Bell and Pringle (1974), and others avoided the
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2.1. Protoplanetary discs

problem of exactly determining the viscosity mechanism by introducing a phenomenological
description. In their alpha prescription for angular momentum transport, which is based on di-
mensional grounds, the effective kinematic (or turbulent) viscosity v of the disc has to obey

cs
v=E=a—=acH, (2.4)
K

where c; is the sound speed, Qx the Keplerian angular velocity and H the scale height of the disc
defined as H = cs/Qg. With this model, disc evolution can be studied with pure hydrodynamics
and a represents the strength of turbulence in the disc. Typical values of a range between 1073
and a few 1072 (see, e.g. Johansen and Klahr 2005, Dzyurkevich et al. 2010).
Theory, simulations, and observations suggest that circumstellar discs are a very frequent, if not
inevitable, byproduct of star formation (Hartmann 2009). Hence, the basic environment where
planets form can be expected around nearly every forming star. Therefore, I will stress the aspect
of them as the location of planet formation and call them protoplanetary discs in the further
discussion. Average protoplanetary disc sizes are ~ 200 AU and at most 1000 AU (e.g. Andrews
and Williams 2007). Disc masses of T Tauri systems range from ~ 1073 to 107! solar masses with
a median at 5 x 1073 solar masses (e.g. Andrews and Williams 2005). The largest mass fraction
of a protoplanetary disc is gas mainly in form of molecular hydrogen H,, but also He, CO, CO,,
N, and CH4. The smaller fraction consists of solid dust particles of initially micrometre size.
They are mostly compounds of C, Si, and O. Water is also present in the gas phase in the inner
regions and as water ice in the outer regions of the disc. The gas and dust material of the former
protoplanetary disc of our solar system is the material that planets, gas giants, moons, Kuiper belt
objects, and all other massive objects orbiting around the sun are made of. Now that the stage
for planet formation is set, I focus on the actual planet formation process itself. This process is
closely linked to the dynamics in the disc, which, in turn, is linked to the underlying disc model.
The next sections are devoted to this topic.

2.1.2. Observational constraints for protoplanetary discs

Over the past two decades, inventions and improvements of various observational techniques
have amplified our insight into the structure and dynamics of protoplanetary discs. With the aid
of spectral energy distributions (SED) more and more realistic disc models can be constructed
and constraints for planet formation can be derived. In the first part of this section, the avail-
able observational data and its interpretation will be summarised following the review articles
by Natta et al. (2007), Dullemond et al. (2007), and references therein.

Protoplanetary discs can be found around young, optically visible pre-main sequence stars. Their
structure can, e.g. be analysed with the aid of scattered light measurements at visual and infrared
wavelengths, mid-infrared spectroscopy and millimetre interferometry.

A firstlook on the disc is provided at visible and near-infrared wavelengths, where a dark disc sil-
houette presents itself against the background light originating from the star and scattered by the
disc surface. These images, first of all, demonstrate that a disc shaped object has formed around
the young star. Secondly, the object is optically thick at visible and near-infrared wavelengths.
Further investigation of the disc already involves model assumptions of the disc: the emitted
spectrum of the disc is mainly determined by its temperature. A balance is established between
heating through stellar irradiation and cooling by thermal emission of the dust grains. Under the
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assumption that the dust temperature is equal to the gas temperature, the temperature profile
of the disc can be computed using dust radiative transfer methods and disc model assumptions
presented in the next part of this section. The temperature profile finally determines the SED.
Many possible SEDs are computed by a parameter study and the suitable disc parameters are
chosen as a best fit of computed and observed SED.

The SED can be divided into three wavelength regions (see Fig. 2.1): the energetic domain con-
tains the largest fraction of emitted energy. Its constraining wavelengths (~ 1.5um — 100um) are
determined by the minimum and maximum temperatures of the dust. Smaller wavelengths are
referred to as the Wien domain. For wavelengths greater than 100 um, in the Rayleigh-Jeans do-
main, the SED drops in a steep, nearly power law fashion, whose slope depends on the grain
properties and optical depth of the disc.

In the left panel of figure 2.1 the features of a model disc are connected with the according fea-
tures in the SED. The bump at near-infrared wavelengths indicates that the disc has an inner
rim. In the inner regions very close to the star dust is evaporated and, hence, this region is dust
free. Further outward, somewhere within 1 AU (depending on the luminosity of the star) the dust
condensation radius is located (see Fig. 2.1, right panel). Here, the disc starts off with a relatively
sharp inner edge. This edge possibly is puffed up compared to the remaining vertical profile of
the disc. The region within 1AU is particularly interesting for the energy balance of the disc,
since a huge amount of energy is set free there. However, for planet formation it plays a minor
role. Therefore, I refer the interested reader to the review article by Dullemond and Monnier
(2010) for an extensive discussion.

The infrared dust features in the energetic domain originate from emission of the hot dust sur-
face layer (see Fig. 2.1, right panel). The dust grains in the surface layers are exposed to stellar
irradiation. Therefore, they have a higher temperature than the dust in the interior and emit
at shorter wavelengths. The near and mid infrared emission typically originate from small disc
radii. The far infrared flux (Rayleigh-Jeans domain) comes from the outer regions of the disc.
Here, a shallow SED slope indicates a flaring disc geometry, i.e. the disc is “double-bowl-shaped”.
This is because with a flaring geometry a large portion of the stellar irradiation is captured and
reemitted at the cool outer regions of the disc. For a deeper look into the disc, one has to go
to even longer wavelengths and perform millimetre up to centimetre interferometry. At these
wavelengths more and more regions of the disc become optically thin, which reveals the bulk of
the dust mass in the disc down to the disc’s midplane. These observations provide the strongest
evidence that dust growth by coagulation and dust settling to the midplane take place in proto-
planetary discs. This is regarded as the initial step of planet formation. Particularly the following
facts (Natta et al. 2007) are relevant for modelling this process:

1. Grains in the disc are in average much larger than in the interstellar medium (ISM) and in
molecular clouds. Dust has aggregated to millimetre and centimetre sizes in many of the
observed discs.

2. There is evidence for a vertical stratification of the dust. Small grains at micron sizes exist
closer to the disc’s surface. The largest fraction of dust exists as pebbles in the midplane
of the disc. Hence, most of the solid mass is concentrated in centimetre sized aggregates
once the star becomes optically visible.

3. Grain properties do not show any correlation with star or disc parameter, i.e. all kinds of
discs around all kinds of stars potentially can and normally do process grains.
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Figure 2.1. Build-up of the SED of a protoplanetary disc (left). The near-infrared feature comes
from the inner rim, the mid-infrared bump indicates dust in the warm outer layers of a flar-
ing disc, and the far infrared flux originates from deeper, cooler regions around the midplane
of the disc. Vertical cut trough the dust structure of a protoplanetary disc (right). The region
beyond the dust condensation radius is puffed up. The surface layers of the disc are heated
by stellar irradiation. Dust pebbles accumulate near the midplane of the disc (figures from
Dullemond et al. 2007).

4. Grain properties also do not seem to vary with time. Processed grains are found around
the youngest and oldest pre-main sequence stars.

As valuable as these findings are, they have to be interpreted with caution. When collecting the
data from which the above results are derived, today’s millimetre interferometers act at their sen-
sitivity and resolution limits. In principle grain properties in the upper layers can also be derived
from the polarisation of scattered light at visible and near-infrared wavelengths. However, this
is technically very challenging and data therefrom is still scarce. Furthermore, regions between
the dust condensation radius and a few AU are optically thick even at very long wavelengths and,
thus, the grain properties at the midplane are inaccessible there. Independent of the observa-
tional technique, kilometre-size planetesimals can only be detected through the perturbations
they create, but pre-planetesimals in the size range between centimetres and kilometres cannot
be detected at all.

To summarise, current observations provide plenty of information about the structure and dy-
namics of protoplanetary discs. It could even be shown that grain growth and processing, the
initial step of planet formation, takes place in nearly every disc. However, essential steps of the
planet formation process are still not accessible to contemporary observational instruments and
techniques. Therefore, modelling of the gas and dust dynamics inside the disc is inevitable for a
deeper insight into the genesis of planets. In the next part the basis for this will be laid: the model
of a protoplanetary disc.

2.1.3. The construction of disc models

This part, again following review articles by Natta et al. (2007), Dullemond et al. (2007), and ref-
erences therein, is devoted to the basic disc parameters which represent the cornerstone of each
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disc model and its influence on the dynamics in the disc. Because of the disc’s radial symmetry,
the surface density Z(r) is introduced for its description. For a disc with constant accretion rate
M onto the host star (steady state accretion disc, Shakura and Sunyaev 1973, Pringle 1981) and
sufficiently large radii

M
2(r)=-—, (2.5)
3mv
with the kinematic viscosity v from Eq. (2.4). With the scale height H = ¢;/Qx, the temperature
at the midplane T(r), and some constant K the surface density reads

(=K (2.6)

rlraT.(r)’
Hence, the radial dependence of the surface density critically depends on the radial dependence
of the temperature structure of the disc and this is where the main complexity of the disc model
lies. The vertical density distribution p(r, z) generally is assumed to be gaussian

(2 = =) (—Z—z) @.7)
pz,r—\/ﬁHexp S | - .

Elaborate models distinguish between surface density of the gas Z¢(r) and surface density of the
dust Z4(r) as well as their corresponding vertical density profiles pg(r, z) and pq(r, z). The treat-
ment of gas and dust also differs in their corresponding scale heights, where the dust scale height
depends on the settling and diffusion of the dust (for details see, e.g. Cuzzi and Weidenschilling
2006).

In the literature, three different models, mainly differing in the choice of the gas surface density
24(r), have been proposed and used. Following the nomenclature of Zsom et al. (2010), I will
briefly introduce and discuss the low density model, the minimum mass solar nebular (MMSN)
model, and the high density model.

The low density model has been introduced by Brauer et al. (2008a). On the basis of recent mil-
limetre dust emission maps observed by Andrews and Williams (2007) they chose the gas surface
density profile to be

S4(r) = 45 g/en” (A—rU)(S . (2.8)

Their disk extends from 0.03 AU to 150 AU and its mass is 0.01 M. The choice of the slope of
the profile §, which is —0.8 in this case, is the key issue of all disc models. Although the obser-
vations by Andrews and Williams (2007) have their median at an exponent of —0.5, Brauer et al.
(2008a) justify their slightly steeper choice by the argument that dust emission observations are
restricted to the outer parts of the disc, where dust growth proceeds slower than in the inner
parts. This effect makes gas density profiles seem shallower than they are. Cuzzi and Weiden-
schilling (2006) additionally note that the disc mass will be underestimated once particles have
grown past millimetre size since larger particles are hardly detectable. Despite these corrections
the low mass model features the smallest power law exponent of all presented models. Its density
in the midplane at 1 AU is 2.4 x 10~ g/cm?.

The MMSN model is the oldest of the three models and it is most widely used as a reference
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model. It was introduced by Weidenschilling (1977a) and improved by Hayashi (1981) and Hayashi
et al. (1985). Their gas surface density reads

o
Sg(r) = 17008/ cm? (A—L) , (2.9)

with § = —1.5. This was derived from today’s solar system properties. The model assumes that
the planets have formed at their present positions. Weidenschilling (1977a) augments the planets
with H and He such that solar composition is restored and spreads out the augmented planetary
masses over annuli centred on the planets’ orbits. The main idea of this construction is that
planet formation is somehow the reverse process of the spreading. Hayashi (1981) and Hayashi
et al. (1985) took into account where different solids, especially water ice, have their condensa-
tion radii. The surface density is computed by dividing the augmented mass by the surface area
of its corresponding annulus. The total mass of the MMSN is 0.01 M, and it reaches from 0.4 AU
(Mercury orbit) to 30 AU (Neptune orbit).

However, the MMSN model has some drawbacks (see, e.g. Desch 2007). First, it assumes that
all solid mass of the protoplanetary disc was incorporated in the planets. It does not take into
account that a substantial amount of solid mass could be lost into the sun or otherwise removed
from the planet formation process. Therefore, as already noted by Weidenschilling (1977a), the
disc mass is actually the lower bound of the mass of the original nebula. Second, the MMSN is
only a snapshot, leaving aside that protoplanetary discs evolve with time. Despite these critics
the MMSN model has widely been used as benchmark model.

The last model of importance is the high density model proposed by Desch (2007). In a sense,
it is a revision of the MMSN model. It is also based on our solar system, but it assumes that
the planets have migrated after their formation. This is suggested by the Nice model (Tsiganis
et al. 2005, Gomes et al. 2005, Morbidelli et al. 2005), which places the starting points of the giant
planets between 5 AU and 15 AU and shows that Uranus and Neptune probably switched places
during their orbital evolution because Jupiter and Saturn crossed their mutual 2:1 mean motion
resonance (MMR) causing chaotic behaviour in the solar system. The Nice model explains a
variety of phenomena of the solar system such as the late heavy bombardment (Gomes et al.
2005), the existence of the Kuiper belt, and the trapping of the Jovian Trojans (Morbidelli et al.
2005). Consequently, the planet configuration of the Nice model requires a much more compact
solar nebular. Hence, the surface density has a steeper profile. The original profile by Desch
(2007) depends on the fraction of the mass of all solids that is locked up in planetesimals. It was
adopted by Zsom et al. (2010) as

-2.2
24(1) =51 x 10 glem? (=) . (2.10)
AU

This profile is inconsistent with a steady state accretion disc (Eq. 2.5), but it is consistent with
a photo-evaporated decretion disc. Although Z¢(r) was originally designed for the outer solar
system, it can be extrapolated to 1 AU where the density in the midplane is 2.7 x 1078 g/cm?.

After presenting the most commonly used disc models, the question arises how the choice of the
disc model affects the process of planet formation. Brauer et al. (2008a) and Zsom et al. (2010)
have studied this issue. Summarising, they find that depending on the disc model, dust aggre-
gates have higher (low mass model) or lower (high mass model) relative velocities (see figure 2.2).
This is because the higher the gas density the stronger the coupling between gas and dust. This
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Figure 2.2. Collision velocities for various disc models. Relative velocities (labelled contour lines)
for collisions between dust aggregates of different sizes (axes) at 1 AU in the disc midplane. All
considered disc models are laminar (a = 107°). Surface densities are chosen according to the
minimum mass solar nebula (MMSN) model (left), low density model (middle), high density
model (right) (figure after Weidling et al. 2009).

leads to the effect that the planet formation is stalled at different grain sizes. This problem will
be discussed extensively in section 2.3.1. Before treating the onset of dust growth by coagulation,
some words have to be said about the inner dynamics of a protoplanetary disc.

2.1.4. Turbulence and inner disc dynamics

As already mentioned at the end of section 2.1.1, protoplanetary discs have to be somehow vis-
cous in order to transport angular momentum outwards and material inwards, where it is ac-
creted by the star. The presented alpha prescription for angular momentum transport (Eq. 2.4) is
solely a phenomenological approach to the problem. Since molecular viscosity is far too low to
explain the observed mass accretion rates, turbulence is believed to be responsible for angular
momentum transport. The source of turbulence, however, is still a matter of debate (see, e.g.
McKee and Ostriker 2007).

The most promising candidates for angular momentum transport are magnetic stresses. If the
differentially rotating gas in the protoplanetary disc is moderately or even weakly ionised, a local
instability, the magneto-rotational instability (MRI) (Balbus and Hawley 1991), develops. With
the aid of recent elaborate magnetohydrodynamics (MHD) simulations (e.g. Johansen and Klahr
2005, Ilgner and Nelson 2006, Flaig et al. 2009, Dzyurkevich et al. 2010), the a value caused by MRI
is estimated to be ~ 1073 — 1072, It has to be underlined that turbulence can only be produced
by MRI if the gas is sufficiently ionised and dust plays an important role in this process since it
acts as an electron absorber. Therefore, Gammie (1996) has suggested a layered accretion disc
model: a dead zone around the midplane, where the MRI is not active, is enclosed between two
sufficiently ionised, accreting layers. The exact size of this dead zone depends on the dust distri-
bution in the nebular and detailed chemistry. Based on the dust properties of the ISM, Ilgner and
Nelson (2006) have shown that there is no turbulence caused by MRI in large parts of the disc.
Even in an almost laminar protoplanetary disc, i.e. with very low a values around 107, or in
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dead zones there can be turbulence generated by Reynolds stresses. This can be generated by the
following mechanism: observations suggest that there is vertical stratification in the protoplan-
etary disc (see end of section 2.1.2). Particles accumulate near the midplane and form a dense
dust-rich particle layer there. In regions above and below this particle layer the dust to gas ra-
tio is much lower. Goldreich and Ward (1973), Weidenschilling (1977b), and Cuzzi et al. (1993),
amongst others, demonstrate that the particle layer rotates slightly faster than its adjacent gas
layers. This is because there exists an outward pressure gradient of the gas. The centripetal accel-
eration of the gas is generated by the gravitational attraction as an inward force and an outward
force by the pressure gradient. As already noted by Whipple (1972) large enough dust particles
do not feel the pressure support, hence, they tend to pursue their orbits with Keplerian velocity
Vg = Vk = Qxr = VGM,. r~1, where M, is the mass of the star. Because dust particles dominate
the motion in the midplane, the dense particle layer as a whole rotates at Keplerian speed. The
orbital velocity of the gas layers above and below is given by

B
r p)VK, @2.11)

Ve=|(1+ —
8 2pgVZ Or

where the pressure gradient is outward, i.e. p/0r < 0. This vertical velocity gradient generates
a shear flow between both layers. Numerical investigations by Cuzzi et al. (1993) and Johansen
et al. (2006a) have demonstrated that such shear flows are subject to Kelvin-Helmholtz instability,
which causes turbulence. Weidenschilling (1980) was the first to showed by scaling arguments
that also the particle layer itself becomes turbulent. This effect puffs up the particle layer until
gravity, which lets dust settle to the midplane, and turbulence, that stirs the dust to upper layers,
generate a steady state. The latter determines the final thickness of the layer. However, with
respect to angular momentum transport, Stone and Balbus (1996) have shown that this kind of
turbulence as well as convection due to vertical or radial entropy gradients tends to transport
angular momentum inwards instead of the desired outward direction.

For the sake of completeness, gravitational stresses have to be mentioned as third source for tur-
bulence in a protoplanetary disc. Because of the constant evolution of the discs due to accretion
flows, gravitational energy is constantly released. This energy on its own can also maintain turbu-
lent motions (see, e.g. Cuzzi and Weidenschilling 2006, McKee and Ostriker 2007, and references
therein).

I close this section by drawing the readers attention to the crucial interdependence of dust evo-
lution on the one hand and disc model and dynamics on the other hand. The density and size
distribution of dust in the disc influences angular momentum transport and, hence, accretion
dynamics by generating turbulence via shear instabilities as well as inhibiting MRI by acting as
electron absorber causing low ionisation in large parts of the disc. Furthermore, dust is of major
importance for the thermal structure since dust opacity dominates over gas opacity and, thus,
dust can shield parts of the disc from stellar or cosmic irradiation. However, turbulent motions
in the disc co-determine relative velocities between dust grains and aggregates and, thus, influ-
ence the evolution of the dust density and size distribution, which finally ends up in planets. The
physics of dust agglomerates and their evolution is, therefore, of major importance for disc dy-
namics and planet formation. Consequently, the next section deals with the first step of planet
formation: with the genesis of dust aggregates from dust grains.
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2.2. Dust coagulation - The first phase of planet formation

After the short introduction to the properties of protoplanetary discs as the vast stage of planet
formation, I will now focus on the microscopic building blocks of planet formation: the dust
grains. Entrained in the disc’s gas their relative motions lead to mutual collisions. The outcome
of the collisions, in turn, depends on the sticking properties of the grains and the collision energy.
Consequently, I will first discuss the microscopic properties of the dust grains, then I will turn to
their interaction with the gas and the sources of relative velocities, and finally I will describe the
process of dust coagulation as the first step of planet formation.

2.2.1. Dust grain properties

As we have already seen in section 2.1.2, observational techniques are capable of providing us
with plenty of information about the dust grain properties and distribution in protoplanetary
discs. According to these measurements, these show no dependence on star or disc parame-
ters (Natta et al. 2007). Weidenschilling (2000) conjectured that dust already started coagulating
while the protoplanetary disc was forming from a molecular cloud. (This process was discussed
in section 2.1.1). Using a very elaborate dust coagulation model, Ormel et al. (2009) have demon-
strated recently with numerical simulations that, if cloud lifetimes are restricted to free-fall times
(see Eq. 2.3), this effect has little influence on the dust size distribution. Hence, at the onset of
planet formation the grain size distribution in protoplanetary discs must have been similar to
the ISM. Mathis et al. (1977), Li and Greenberg (1997), and Clayton et al. (2003) derive grain sizes
of 0.1 — 1um from extinction and polarisation measurements.

The chemical composition of dust grains is a topic of ongoing astrochemical and astromineralog-
ical research. It is clear (Henning and Meeus 2010) that the bulk of dust material consists of sili-
cates and carbonaceous material. In particular, silicates such as Mg,SiO4 (forsterite), Mg, SizOg
(enstatite), and carbon compounds such as CO (carbon monoxide), SiC (silicon carbide), CN
(cyanine), and Polycyclic Aromatic Hydrocarbons (PAHs) play an important role as constituents
of dust grains in the warm regions of the inner protoplanetary disc. In the cold outer regions the
grains consist of, or are coated by, H (hydrogen) and H,O (water ice). Hence, in general, proto-
planetary dust is assumed to be nonmagnetic, uncharged, solid, and electrically insulating. The
dust material features a high sublimation temperature, great hardness, high Young’s moduli, and
intermediate or high density (Poppe et al. 2000, Blum and Wurm 2008). Nevertheless, it is a mat-
ter of debate wether long-range forces such as magnetic and electric forces are relevant for the
planet formation process (Dominik et al. 2007).

Wurm (2003) underlines the importance of knowing as much as possible about the properties of
the individual dust grains as well as their initial distribution. This is because these initial con-
ditions might determine the overall fate of growth. Some conditions possibly promote, others
possibly inhibit planet formation. This raises the key question of how dust grains stick together
to form bigger aggregates. This process is synonymously called dust agglomeration, aggregation,
or coagulation (Blum and Wurm 2008). Poppe et al. (2000) have shown in laboratory experiments
with diamond (C), silica (SiO-), enstatite (Mg»Si»Og), and silicon carbide (SiC) that it is rather the
grain shape, size, and roughness, which determines the sticking probability, than the grain ma-
terial.

For the dust agglomeration process it is crucial to know, which collision energies lead to stick-
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ing between two grains!, a grain and an agglomerate? (i.e. particle-cluster-aggregation, PCA),
and two agglomerates (i.e. cluster-cluster-aggregation, CCA). Therefore, laboratory experiments
(see, e.g. Blum and Wurm 2008, Giittler et al. 2010, and section 3.1 for an overview) and nu-
merical simulations, in particular molecular dynamics (MD) simulations (see section 3.2 for an
overview) have to be carried out to determine the sticking probability for various aggregate sizes
and collision velocities. Since realistic protoplanetary material is lacking, hard and expensive
to produce, or difficult in its numerical treatment, protoplanetary dust analogues with similar
properties are chosen. Although there have been experiments with oxides, metals, silicates, and
organic materials, the only systematic study has been carried out with silica (SiO3) (see Blum and
Wurm 2008, and references therein). This material is rather unimportant in astrochemistry (Gail
2004), but it features grain sizes of ~ 1um and all other properties listed in the penultimate para-
graph. In particular, mono-disperse spherical SiO, consists of smooth spheres, which makes it
an ideal candidate for analytical and numerical modelling. Precise knowledge of the properties
of this dust analogue is crucial for understanding the planet formation process in the warm inner
regions of the protoplanetary disc. Recently, progress has also been made in numerical studies
of the aggregation of water ice grains (Wada et al. 2007, 2008, 2009, Suyama et al. 2008), which
may be important for planet formation in the cold outer regions of a disc. However, laboratory
experiments are rather sparse in this field.

In case of SiO, induced electric dipoles, i.e. van der Waals forces, and in case of water ice static
electric dipoles make individual grains stick to each other because of dipole-dipole interaction
between the molecules constituting the grains (e.g. Dominik et al. 2007, Blum and Wurm 2008).
Hereby, static dipole forces are much stronger than induced dipole (van der Waals) forces. In
a simple model of two spherical 1um grains, this attraction causes the two particles to come in
contact with each other. At the contact area both grains will be elastically deformed until an
equilibrium state between attraction and repulsion has been established. This process has been
studied analytically by Johnson et al. (1971), Chokshi et al. (1993) and Dominik and Tielens (1996)
and in the laboratory by Heim et al. (1999).

As a summary of this section it can be said that the microscopic reason for sticking, and hence for
dust agglomeration, are dipole-dipole interactions. Individual dust grains establish contacts to
each other, which can be modified in six degrees of freedom (see section 3.2). Hereby, particles
in larger aggregates can be rearranged without breaking the individual grains. Energy can be
dissipated through irreversible rearrangement of the dust grains. The microscopic, and thus also
the macroscopic, behaviour of dust aggregates is determined by grain size and morphology.

2.2.2. Particle gas dynamics

Dust grains are entrained in the gas of a protoplanetary disc. They follow its motions and, hereby,
gain relative velocities, which leads to mutual collisions and aggregate growth. Therefore, the
coupling between dust and gas plays an eminent role in the planet formation process. In this
section I will present some quantities which have been used throughout the past decades of re-
search in this field (e.g. Whipple 1972, Weidenschilling 1977b, Cuzzi et al. 1993, Dullemond and
Dominik 2004, Cuzzi and Weidenschilling 2006, Dominik et al. 2007).

1A dust grain is a chemically homogeneous solid monomer of spherical or irregular shape. It is the smallest building
block of a dust agglomerate.

2A dust agglomerate consists of several dust grains, which are bound together by static or induced dipole-dipole
forces. The agglomerate has porous or fractal structure.
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The first quantity to introduce is the ratio between mean free path length A, of the gas and the
radius Rq of a dust particle: the Knudsen number is given by

Kn= 20 (2.12)
Rq
For high gas densities or large particle radii it follows Kn « 1 and the particles are in the Stokes
regime (e.g. Weidenschilling 1977b). For low gas densities or small particle radii (Kn > 1) the
particles move in the Epstein regime (e.g. Weidenschilling 1977b). The transition between both
regimes is found at Kn = 4/9 for Reynolds numbers Re < 1. The latter is defined as

20,RqU
Re = %, 2.13)

where pg is the gas density, vgq the relative velocity between the gas and dust particle and 7
the gas viscosity. Weidenschilling (1977b) distinguishes between three different Stokes regimes
depending on Re. However, for most applications the first Stokes regime (Re < 1) is sufficient.
For both regimes the interaction between gas and dust particles is characterised by the stopping
time, or sometimes also called friction time. It is defined as

_ mqUgd

Te= ) (2.14)
* T |F

where myg is the mass of the dust particle and F is the friction force. According to Weidenschilling
(1977b) the stopping time 7 is the time in which vgq is reduced by a factor of e by a constant
friction force F;. It can be interpreted as the time a particle needs to dissipate its kinetic energy
of its relative motion to the gas (Kempf et al. 1999) or as the time the particle equilibrates with a
gas moving at the relative velocity vgq.

In the Epstein regime the stopping time 7 is given by

(2.15)

where o4 = R(ziT[ is the cross section of the dust particle and c¢s the sound speed of the gas.
Whereas in the Stokes regime

4 R4 Img 1 4 R4
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<4 _= - , (2.16)
9 Amfp 4 04 pgcs 9 ﬂmfp

Ts,St = Ts,Ep X

as stated by Zsom et al. (2010). It should be noted that both quantities depend on the ratio of dust
particle mass and cross section mad/a4. This will be of major importance for dust coagulation.
So far, the motions of a dust particle have been characterised for laminar flow. For turbulent
motions in the protoplanetary disc the turbulence parameter a has been introduced in Eq. (2.4).
Now, turbulent eddies have a typical velocity veqq. The parameterisation of this quantity is still
under debate. Here, I follow Dullemond and Dominik (2004) who state

Vedd = acs, 2.17)

where ¢ is a turbulence parameter with 0 < g < 1. Dullemond and Dominik (2004) set g = 1/2.
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With the typical largest eddy size loqq = a'!~9H the eddy turn over time Teqq = ledd/veqq = @' 29/
can be defined. Finally, the motion of dust particles in a turbulent environment can be charac-
terised by the Stokes number

Ts,E 3m Q
St= i d K

Tedd 404 pgCsat 24" (2.18)
It has to be noted that the choice of this quantity varies in the literature (e.g. Cuzzi and Weiden-
schilling 2006, Brauer et al. 2008a). However, again the coupling to turbulent eddies expressed
by the Stokes number depends on the ratio of mass and cross section of the dust particle m4/o4.
The interaction with gas has a great influence on the relative velocities of individual dust particles
and aggregates. These lead to mutual collisions and their result, in turn, depends on threshold
velocities for sticking, bouncing and fragmentation. These thresholds have to be determined
experimentally in the laboratory or by molecular dynamics simulations, which, again, rely on
measured microscopic properties. Thus, before I discuss how dust aggregate growth proceeds, I
will shortly review the conditions for dust coagulation.

2.2.3. Conditions for dust coagulation

For the description of the conditions for dust coagulation, I distinguish three different cases: col-
lisions of two individual grains (particle-particle aggregation, PPA), which is clearly the beginning
of dust coagulation, collisions between a single particle and a dust agglomerate (particle-cluster
aggregation, PCA), and collisions between two dust aggregates (cluster-cluster aggregation, CCA).
In the literature (e.g. Dominik et al. 2007, Paszun and Dominik 2009, Ormel et al. 2009) PCA and
CCA also denote two limiting cases of aggregate growth: PCA describes the collision of a single
grain with a large multi-monomer aggregate, whereas CCA denotes the collision of two almost
equally sized multi-monomer aggregates. Sometimes aggregates themselves are characterised
by the aggregation process (PCA, CCA) they were formed from.

For the sticking condition of PPA Poppe et al. (2000) performed collisions of dust grains with radii
Rq =0.07 - 0.6um and impact velocities of v; = 0 — 100m/s on smooth large targets. They found,
that in most cases the sticking probability can be described by a capture velocity below which
dust grains always stick and above which particles always bounce. This capture velocity is in the
range of v, = 1.2 —2.5m/s. It is higher for irregular shaped grains and lower for spherical grains.
Additionally, the capture velocity decreases with increasing grain size. Irregular sized grains even
have a non-zero sticking probability for v; > 10m/s. Dominik and Tielens (1997) theoretically
derive a capture velocity of

5/6

Y

_ (2.19)
(2Ra)"opy?

Vc,theo X

where 7y is the surface energy of the dust grains and p, the bulk density of the dust material. Blum
and Wurm (2000) show that this theoretical relation is in excellent agreement with results from
experiments.

In the following paragraph I will discuss growth conditions for aggregate-aggregate collisions
in the regime between the limiting cases PCA and CCA. Dominik and Tielens (1997) showed
that these collisions are best characterised by the (effective) impact energy (E.f) of the collision,
which is essentially the impact energy using the reduced mass of the collision partners, the en-
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ergy necessary to break a monomer contact (Epreax) and the energy necessary to roll a contact a
quarter of a monomer’s circumference (E,q);). The following recipe was confirmed and extended
in 2D and 3D simulations by Paszun and Dominik (2006, 2009) and Wada et al. (2007, 2008).

For low impact energies (Eef < 5E;o11), fractal aggregates (see section 2.2.4 for details) are formed
by a simple hit-and-stick mechanism. In this regime, no restructuration of the chain-like aggre-
gates takes place. Wurm and Blum (1998) and Blum and Wurm (2000) confirm these findings
and find fractal hit-and-stick growth for v; < 0.2m/s with SiO, dust aggregates. The sticking effi-
ciency was unity. Dominik and Tielens (1997) argue that rolling is the main reason for aggregate
restructuring, twisting is probably important for small grains, and sliding can be neglected (for a
description of these degrees of freedom see section 3.2).

For higher impact energies (Eef > 5E;011), the chain-like structures are more and more compacted
such that the mass to cross section ratio 4/04 decreases (see also Fig. 2.4). The importance of this
quantity for the dust aggregates’ motion in the protoplanetary disc was discussed in section 2.2.2.
Blum and Wurm (2000) find the onset of compaction for v; ~ 0.7m/s. Maximum compaction is
reached for Eqs ~ ncEron (Dominik and Tielens 1997), where 7. is the number of contacts in the
aggregate. However, Wada et al. (2007) find that the maximum compression depends on the
ratio of rolling to breaking energy. They conclude that ice aggregates have a higher maximum
compaction than SiO,. Dominik and Tielens (1997) underline the fact that aggregate compaction
provides an important energy sink for the collisional evolution in the protoplanetary disc.

With (Egg > 3n¢ Epreak) 0T Vi ~ 1.2m/s (Blum and Wurm 2000) the aggregates lose single monomers
during collision and collisions with Egg > 107 Epreax (Vi ~ 1.9m/s) lead to catastrophic disruption.
This represents the limit for aggregate-aggregate growth for SiO, dust aggregates. Wada et al.
(2009) point out that this threshold velocity is raised to ~ 50m/s for ice aggregates.

So far, only head-on collisions have been considered. Simulations by Paszun and Dominik (2006)
suggest that also rotation plays a role in aggregate-aggregate collisions. Wada et al. (2007) add
the collision offset and Paszun and Dominik (2009) the compactness of aggregates to the list of
parameters that might influence the collisional outcome. A systematic study of these parameters
is far from being complete.

2.2.4. Dust coagulation in the disc

After the discussion of the general growth conditions of dust aggregates in collisions, these now
have to be applied to the dynamics inside the protoplanetary disc. For collisions, some mecha-
nism has to generate relative velocities between the individual dust aggregates. In the literature,
four important mechanisms are mentioned: Brownian motion, differential settling, radial drift,
and turbulence. These act all on dust aggregates at all times in the disc. However, it turns out
that because of a strong dependence on surface and mass of the aggregates these mechanisms
govern growth in distinct size regimes. For the subsequent discussion I will follow the review
articles by Wurm (2003), Cuzzi and Weidenschilling (2006), Dominik et al. (2007), and Blum and
Wurm (2008).

Brownian motion

At the beginning of the coagulation process there are only single dust grains or small aggregates
consisting of a few monomers in the protoplanetary disc (Ormel et al. 2009). Because of their
small mass, these particles have a very small stopping time 75 (Eqns. 2.15 and 2.16), i.e. they
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Figure 2.3. Fractal aggregates. Examples for fractal dust aggregates in molecular dynamics simu-
lations (left, S. Carstens, unpublished data) and in coagulation experiments (middle and left,
J. Blum, unpublished data, black bar represents 1 um).

couple very well to the gas. Depending on the disc model (see section 2.1.3), for a 1 um particle
Ts < 1s at 1 AU (Wurm 2003). The relative velocity induced by Brownian motion is given by

) (2.20)

8kT(md,1 + md,z)
AVB =
tmq,1 Nq,2

where k is the Boltzmann constant, T is the temperature of the gas, and mq,; and mq, are the
masses of the collision partners. Hence, typical collision velocities of micron-sized dust grains
are of the order vg ~ 10mm/s, This is well below the capture velocity v, ~ 1m/s from the previous
section. Because Brownian motion provides the largest relative velocities in this size regime,
collisions will always result in sticking. The mean collision time is about 10 yr.

For very small aggregates, the collision velocities are even below the threshold of restructuration.
Therefore, aggregate growth first proceeds in a fractal way, producing chain like structures (see
figure 2.3). In the case of solid spheres, the mass increases with radius in a cubic fashion (mq
Rf’l) and the cross section depends on the radius quadratically (o4 Rczl). In contrast, fractal
growth is characterised by a fractal dimension D¢ such that

my o< ogoc RY' 2.21)

In general the fractal dimension for mass and cross section are not identical, but on empirical
grounds Wurm (2003) argues that for D¢ < 2 they can be set equal.The growth of fractal aggre-
gates with Df ~ 1.4 has been shown experimentally in microgravity experiments (Blum et al. 1998,
Blum and Wurm 2000, Blum et al. 2002, Krause and Blum 2004). Deviations from results of MD
simulations (Kempf et al. 1999) could be explained after the effect of Brownian rotation was taken
into account (Blum et al. 2006a, Paszun and Dominik 2006). Even elaborate coagulation codes
such as Ormel et al. (2007) can simulate fractal growth in protoplanetary disc environments.

Turbulent mixing

The role of turbulence in the growth process is still under debate. This is because the sources,
their strength, and above all the contribution of local and global turbulence is unknown and is a
field of ongoing research (see section 2.1.4 and references therein). Some dust coagulation mod-
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els (Ormel et al. 2007, Brauer et al. 2008a, Zsom et al. 2010) assume global turbulence (generated,
e.g. by MRI) and its interaction with dust by the formalism presented in section 2.2.2. Others
(e.g. Weidenschilling 2010) assume a laminar protoplanetary disc or a dead zone and only model
(local) shear induced turbulence around the midplane. Therefore, it is difficult to assess how
turbulence influences dust growth. For example, Ormel et al. (2007) find that the second stage
after Brownian motion is governed by turbulence. Due to the assumption of global turbulence
also the dust growth in the upper layers of the disc is affected. If only local turbulence around
the midplane is assumed, particles have to settle to the midplane before they can be affected by
turbulence. As a consequence, differential settling becomes the intermediate growth step be-
tween Brownian motion and turbulent mixing. With these conceptional problems in mind, only
a rough picture of dust coagulation by turbulence can be given.

In a simple explanation (Cuzzi and Weidenschilling 2006), the coupling of a dust aggregate is
analogous to the response of an oscillator to periodic forces of different frequency. The oscillator,
the analogue to the dust particle, responds well to forces varying more slowly than its natural
response time. For dust particles, this is the stopping time 75. Therefore, dust aggregates are
entrained in turbulent eddies with Tegqq > Ts.

Relative velocities due to turbulent motions depend on many parameters such as the stopping
times of the dust particles 7g, the eddy turn over time 7,44, the typical eddy velocity veqq and the
Kepler time 7x = 277/ (see also Sec. 2.2.2). The relative velocities were computed numerically by
Volk et al. (1980) and Mizuno et al. (1988), analytical fit formulae were derived by Weidenschilling
(1984) from their results. These formulae have been used by a number of coagulation codes
(e.g. Dullemond and Dominik 2005, Ormel et al. 2007). Finally, Ormel and Cuzzi (2007) have
presented new formulae which correct the behaviour for particles with large Stokes numbers,
which were used by Brauer et al. (2008a). In a regime where the stopping times of two particles
are small (i.e. small mass to cross section ratio) 75 < Teqq and 751 ~ 72, the relative velocity
induced by turbulence is negligible. This is the reason why Brownian motion is still dominating
the growth for dust grains and fractal dust aggregates. However, for a dispersion in stopping
times 751 # Ts2, i.€. a dispersion in md/oq and 71,2 < Teqq, relative velocities will be increased
because of turbulence. For 75 > T¢qq, relative velocities no longer depend on 7 — 752, but scale
with /md/aq of the largest collision partner. In this regime, turbulence creates relative velocities
between equally sized collision partners, which would not collide because of differential settling
or radial drift as discussed below. Ormel et al. (2007) find collision velocities of the order 0.1 m/s
in the first regime and 10 m/s in the second regime.

This means that for small particles growth can proceed, because relative velocities due to turbu-
lence are still below the capture velocity v.. The growth even proceeds in a fractal way because
the restructuring limit is exceeded. However, for increasing aggregate sizes, compaction takes
place and the mass to cross section ratio changes. This leads to a dispersion in stopping times,
which again promotes collisions at higher velocities. These velocities may exceed the limit of
catastrophic disruption, which produces small dust grains again, which can be swept up by larger
aggregates. Turbulence growth can proceed up to centimetre sizes.

As a conclusion it can be said that turbulence acts as a background mechanism in the regimes
of differential settling and radial drift, which increases collision velocities and collision rates, in
particular between equally sized bodies. Turbulence is active on a large size scale roughly rang-
ing from millimetre to metre until larger bodies fully decouple from the gas motions. Turbulence
promotes growth for small aggregates, but for larger bodies it can also lead to catastrophic colli-
sions.
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Differential settling

In section 2.1.2 it was already mentioned that there is observational evidence for a vertical strat-
ification of the disc and, hence, settling of larger dust aggregates to the midplane. The reason for
settling is the vertical component of gravity acting on the dust, which is not supported by the gas
pressure (Dominik et al. 2007). In the literature, various expressions with differing complexity
can be found for the description of dust settling. Wurm (2003) simply states

Usett = 8z7Ts (2.22)

where g is the vertical component of gravitational acceleration in a laminar disc. Brauer et al.
(2008a) assume that the settling velocity cannot exceed the vertically projected Kepler velocity.
Additionally, via the Stokes number (Eq. 2.18) they take turbulent effects into account and derive

zStQx

— 2.23
1+St ( )

Usett =
where z is the height of the dust particle above the midplane. From these expressions it becomes
clear, why the settling motion is differential. Small particles with small 75 or St, respectively, settle
slower than large particles. As a consequence, the disc becomes vertically stratified with small
particles remaining in the upper layers and larger particles which accumulate near the midplane.
Wurm (2003) estimates that for single dust grains (Rq ~ 1ptm) vseqe ~ 1073 m/s and settling to the
midplane would take ~ 108 yr which is in the order of the lifetime of the disk. Therefore, Brownian
motion and turbulence have to grow aggregates with larger 7. However, during the first growth
phases collision velocities hardly exceed the restructuring limit (~ 0.2m/s, see section 2.2.3). In
this velocity regime fractal growth with D¢ < 2 dominates and, thus, mass and cross section de-
pend on the dust radius Ryq with the same fractal dimension Dy (Eq. 2.21). Therefore, 74("d/04) and
also St(md/o4) hardly change in this regime (Wurm 2003). Consequently, aggregates with D¢ < 2
settle almost as slowly as the initial dust grain population.

Nevertheless, there are small differences in the distribution of the fractal dimension, which are
about 10 % (Kempf et al. 1999). This leads to a dispersion in 74 and St. Wurm (2003) estimates
that for 100 um particles relative velocities due to differences in vger will exceed velocity differ-
ences caused by Brownian motion. Thus, differential settling is the most important source for
collisions of sub-millimetre aggregates (at least in a laminar disc or a dead zone). Growth will
proceed in a fractal way until the aggregates have reached some centimetres in size and settle to
the midplane with speeds comparable to those of the initial dust grains. Small relative velocities
below v. ensure continuous growth. It has to be noted, however, that with increasing aggre-
gate mass the impact energy also increases, although collision velocities remain rather constant.
Larger aggregates get more and more compacted and their mass to cross section ratio increases
(see figure 2.4).

Finally, at centimetre sizes, collision velocities due to settling get larger and larger and growth
is no longer fractal. Now, the dust aggregates grow like spheres, where mg Rg and 04 Rczl.
Hence, stopping times are increasing with 75 o< R4 and collisions between small dust grains and
large aggregates are more frequent. Collision velocities reach a few m/s (Dominik et al. 2007) and
small dust grains are simply swept up by the rapidly growing aggregates. The more these large
aggregates grow, the faster they can collect smaller ones. This inevitably leads to a runaway pro-
cess, which is known as rain-out of dust particles because of its similarity with the formation
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Figure 2.4. Aggregate compaction. Each agglomerate consists of 1,000 monomers. The geometri-
cal filling factor ¢, is a measure for the compactness of the object, R, is the projected surface
equivalent radius, whereas R, is the outer radius of the aggregate. Collisions above the re-
structuring limit lead to an increasing compaction (from left to right) of the aggregate. This
increases the mass to cross section ratio md/o4 and, hereby, stopping time 75 and Stokes num-
ber St (figure from Paszun and Dominik 2009).

of rain drops in clouds. It has been investigated with the aid of more and more sophisticated
coagulation simulations (e.g. Weidenschilling 1980, 1984, 2000, Dullemond and Dominik 2005,
Ormel et al. 2007). Particularly Ormel et al. (2007) emphasise that the porous, i.e. fractal, na-
ture of the dust aggregates in the initial growth stages must not be neglected. They find (with
respect to their MMSN disc model) that compact grains, which grow as spheres, rain out with
masses of 10~*g while porous grains reach the midplane with 1g. For spherical compact par-
ticles this is equivalent to a factor ~ 20 in size, for porous aggregates even larger. Dust settling
happens extremely fast. It takes ~ 103yr in the inner regions and ~ 10*yr in the outer regions
of the protoplanetary disc. The important mechanism here is the sweeping of small dust grains
and aggregates by larger ones. Blum and Wurm (2008) find in laboratory experiments that colli-
sions of two millimetre sized particles never lead to sticking, but rather bouncing at low collision
energies or fragmentation at high collision energies. They favour growth by a large aggregate col-
lecting smaller aggregates and dust grains for the build-up of centimetre sized objects and larger.
However, this will be subject to closer investigation within this thesis.

As asummary it can be said that dust settling is (maybe together with the uncertain impact of tur-
bulent mixing) the dominant growth mechanism for aggregate sizes between the sub-millimetre
and centimetre regime. Initially the process is slow because of the fractal nature of growth, the
rather small dispersion of stopping times, and the resulting small differences in relative veloc-
ities. But the more the aggregates get compacted and the more the mass to cross section ratio
increases, the faster the aggregates settle to the midplane increasing collision rates with smaller
grains and aggregates, which they sweep up. Eventually, they rain out in a runaway growth pro-
cess which is halted once they settle around the midplane.
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Radial drift

The larger the particles get, the more their stopping time increases, i.e. the more they decouple
from the surrounding gas, and accelerate to nearly Keplerian velocity because they lack the pres-
sure support from the gas. The gas, however, is rotating at sub-Keplerian speed (as discussed in
section 2.1.4, in particular Eq. 2.11). Hence, the particles feel a headwind (Whipple 1972, Wei-
denschilling 1977b), which saps their angular momentum. As a consequence, the orbits of the
dust aggregates decay and they drift radially inwards. Additionally, the gas itself flows inwards
because it is being accreted by the star. Hence, the inward drift velocity given by (e.g. Brauer
et al. 2008a)

c2(6+7/4)  3aci(@2-0)

- - 2.24
Vk (St+1/s) Vi (1+St?) (224

Vdrift =

where ¢ is the sound speed of the gas, § the exponent of the gas surface density profile (Eqns. 2.8,
2.9, and 2.10), Vk the Keplerian velocity, and a the turbulence parameter (Eq. 2.4). The first
term accounts for the head wind and the second term for gas accretion. Just like in the case
of differential settling, relative velocities are generated by a dispersion of St or 1, equivalently.
Again, dust aggregates of similar size have almost vanishing relative velocities due to radial drift.
However, drift velocities reach a few m/s for centimetre sized particles (Cuzzi and Weidenschilling
2006) and growth can proceed as for differential settling. Drift velocities reach their maximum
for St = 1. In the MMSN model this is equivalent to metre sized objects, which drift into the host
star within 100 yr. Hence, they are lost very quickly for planet formation. This problem is known
as metre size barrier and will be addressed in section 2.3.

Conclusion

From the observational, experimental, and theoretical point of view it is clear that dust agglomer-
ation takes place in protoplanetary discs. An initial micrometre sized dust grain population can
grow up to centimetre sizes by mutual collisions and sticking due to van der Waals forces (SiO,) or
static electric dipoles (water ice). Relative velocities are first generated by Brownian motion, then,
as aggregates grow and increase their mass to cross section ratio, relative velocities are generated
by velocity differences in turbulent mixing, differential settling, and radial drift. Because of their
porous structure, they stay in the outer layers of the disc for along time, but eventually they settle
to the midplane. The growth mechanisms beyond centimetre size, however, are far from being
clear. Collision velocities increase and fragmentation becomes more and more frequent. Addi-
tionally, they exceed the escape velocity unless objects have grown roughly to kilometre size. As
a consequence, fragments cannot be bound gravitationally as a rubble pile and net growth can-
not be achieved. Radial drift velocities also increase and a considerable amount of material is
probably lost into the star or is photo-evaporated in regions close to the star. These and other
problems and possible solutions for the next phase of planet formation will be presented in the
next section.
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2.3. Collision or Collapse? - Growing Planetesimals

This section is dedicated to an intermediate growth step, which has to bridge a size regime from
centimetre sized pebbles to kilometre sized planetesimals. This is also the thematic location
of the thesis at hand. I will call the objects of this intermediate size regime pre-planetesimals.
The dominant growth mechanism of the first regime is characterised by mutual collisions and
sticking by dipole-dipole interaction. In the planetesimal regime gravitational forces become
dominant and typical collision velocities are below the escape velocity of the planetesimal. This
growth step will be discussed in section 2.4. However, it is a matter of a ongoing and lively debate
how pre-planetesimals grow to planetesimals. In the literature, two main ways of planetesimal
formation have been proposed so far: the coagulation or core accretion scenario and the gravita-
tional instability scenario. The first one is a direct continuation of the hit-and-stick mechanism
of the first growth step. As an alternative, the gravitational instability hypothesis assumes that re-
gions of the protoplanetary disc become unstable enough to collapse into planetesimals or even
larger objects under their self-gravity. Both scenarios have appealing aspects as well as draw-
backs. Therefore, in recent years there have been many attempts to refine and even combine
both theories. This section will give a brief overview of both paths to planetesimals.

2.3.1. The coagulation scenario

In its most basic version, the coagulation scenario assumes that planetesimals form by a con-
tinuous hit-and-stick mechanism from micrometre to kilometre sizes. Indeed, if coagulation
models assume a sticking probability of unity (perfect sticking assumption) then growth pro-
ceeds quickly to planetesimals (see, e.g. Dullemond and Dominik 2005). As we have already seen
in section 2.2.3, this is highly unrealistic, even for small aggregates and impact velocities of a
few m/s. For objects of a few metres to some hundred metres relative collision velocities reach
some tens of m/s depending on the disc model (see, e.g. Weidenschilling and Cuzzi 1993, Brauer
et al. 2008a). Turbulence increases collision velocities even more for metre sized bodies (Cuzzi
and Weidenschilling 2006). The most serious obstacle to the coagulation scenario therefore is a
fragmentation barrier (Zsom et al. 2010). The fragmentation condition mainly depends on two
quantities: the material properties of the colliding objects, in particular the material strength,
and the collision velocities. Consequently, opponents of the coagulation hypothesis argue that
impact velocities are too high and pre-planetesimals are too weak, while supporters try to find
mechanisms to reduce collision velocities and argue for material properties that promote stick-
ing. As a second obstacle, objects of metre size have the highest drift velocities towards the star,
and are therefore endangered to be lost quickly for the planetesimal formation process (drift
barrier). Recently, Zsom et al. (2010) included the effect of restitution (bouncing) in their coagu-
lation simulations, which lead to the discovery of a possible bouncing barrier at centimetre sizes.
All of these barriers emerge roughly around the metre size. Therefore, they are often subsumed
as the metre size barrier in the literature. In the following, I will shortly describe these obstacles
and solutions for them, if available.

34



2.3. Collision or Collapse? - Growing Planetesimals

Fragmentation barrier

Youdin and Shu (2002) and Youdin (2004) suggest that pre-planetesimals in the early solar system
were like rocks. In their pioneering work, Benz and Asphaug (1994, 1995) developed a smooth
particle hydrodynamics (SPH) code for the simulation of rock-like brittle material. With their
code they performed high (some km/s, Benz and Asphaug 1999) and low velocity collisions (5
— 40 ms, Benz 2000) of rocky pre-planetesimals and planetesimals (sizes of 1 m to 10km). The
results of Benz (2000) are of particular interest in this context. He finds, that collisions at low
velocity are even more disruptive than at high velocity and in all cases the largest remnants were
smaller than the large target. Thus, no net growth occurred in these collisions. For bodies of
1m - 1km, critical destruction velocities range from 3.2 mm/s (!) to 3.2 m/s with increasing size.
Evidently, rock-like pre-planetesimals are very easy to disrupt and growth by mutual collisions is
impossible, since collision velocities always exceed the disruption threshold.

Simply assuming an increased material strength does not provide a way out of this issue for two
reasons. Material with increased strength is unlikely to be analogous to protoplanetary dust ma-
terial and even if it was, this does not mean that two collision partners stick to each other. As
a consequence, either collision velocities have to be lower or an efficient way of dissipating en-
ergy has to be found. Weidenschilling (1977b) already conjectured that if the internal structure of
pre-planetesimals was somewhat porous, smaller particles could be embedded in larger particles
by collision. Here, the porous structure provides an efficient energy dissipation mechanism. In-
deed, as we have seen in section 2.2 the objects formed in the first step of the coagulation process
are very likely to be porous. Blum and Schrépler (2004) and Blum et al. (2006b) have generated
highly porous decimetre sized aggregates by a random ballistic deposition (RBD) process with
their dust analogous (SiO,). They measured the aggregates’ material strengths, which mainly de-
pend on the filling factor, the ratio of filled volume to total volume (discussed in detail in 4.3.4).
Sirono (2004) has shown in simulations of porous ice aggregates that, if the compressive strength
(see also section 4.3.4) is smaller than the other strength components (shear strength and tensile
strength), collisional growth is possible. Also Ormel et al. (2007) has stressed the key importance
of porosity for the formation of pre-planetesimals. Such objects can be generated by a hit-and-
stick mechanism below the restructuring limit (Blum and Wurm 2008). Langkowski et al. (2008)
show;, that for collisions between millimetre sized projectiles and centimetre sized highly porous
targets at velocities below 3 m/s, the projectile almost always sticks to the target by partial or full
incorporation.

Compressing highly porous dust aggregates is an efficient energy dissipation mechanism, but it
comes with a drawback, which is pointed out by Youdin (2004): they are very fragile. This has
been shown by Wurm et al. (2005b). In this reference impacts between dusty small (mm) pro-
jectiles and porous dusty targets (cm) at several tens of m/s never lead to sticking but to cratering
and ejection of fragments of more than the projectile’s mass. Collisions with these velocities are
realistic and frequent for similar sizes in the protoplanetary disc. Even if they were rare events,
a single catastrophic disruption is sufficient to destroy the whole pre-planetesimal (Benz 2000).
As a second drawback, porous aggregates get compacted in non-catastrophic collisions. Com-
pact aggregates have a higher compressive and tensile strength, which makes them more robust,
but at the same time their ability to absorb kinetic energy decreases. Weidling et al. (2009) ob-
served that highly porous aggregates can get compacted to higher filling factors in collisions with
~ 0.2m/s. Blum and Miinch (1993) found that compact aggregates never stick for collision veloc-
ities above 4 m/s but instead they fragment (Wurm and Blum 2000). As a consequence of these
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findings, highly porous aggregates either fragment in high velocity collisions, or they get com-
pacted in low velocity collisions and, hence, lose their ability to absorb kinetic energy, and then
fragment in intermediate velocity collisions, or bounce in low velocity collisions. In any case, no
sticking and net growth is observed.

Pre-planetesimal growth does not necessarily start with highly porous dust aggregates but with
objects of intermediate porosity. Teiser and Wurm (2009b) have shown that compact decimetre
sized objects can form by accumulation of 100 um sized dust projectiles well above the restruc-
turing limit (~ 7.7m/s). Collisions between compact millimetre projectiles and compact centime-
tre to decimetre targets at very large impact velocities (a few tens of m/s) do not always lead to frag-
mentation, but to partial sticking of the projectile (Wurm et al. 2005b, Paraskov et al. 2007, Teiser
and Wurm 2009a). In these experiments the total mass of the ejected fragments was even smaller
than the projectile mass and, hence, high velocity collisions can lead to net growth. Wurm et al.
(2001a,b) and Wurm et al. (2004) suggest that even the fragments are not lost for planetesimal
growth but can be re-accreted by aerodynamical effects: in the primary impact a large amount of
energy is dissipated by compaction and friction. Hence, fragments ejected from the surface of
an aggregate in a primary collision possess a low ejection velocity (Wurm et al. 2005b, Paraskov
et al. 2007). Because of gas flows around and through the porous aggregate the small ejecta are
forced back onto the aggregate’s surface and stick in a secondary collision. Based on this idea
Teiser and Wurm (2009a) suggest the following grinding growth model (see figure 2.5): the on-
set of planetesimal growth is fractal as described in section 2.2.4 and produces centimetre to
decimetre sized bodies which get compacted. Collisions between these objects are destructive
and provide a reservoir for millimetre sized objects. When millimetre sized projectiles collide
with centimetre sized targets there will be a lot of rebound and erosion with few or no net growth
in the primary collision. In the secondary collision, the sub-millimetre ejecta can be re-accreted
and planetesimals of kilometre size can form.

However, recent findings indicate that collisions between single grains and large targets may be
erosive at high velocities (Blum and Wurm 2008). A much stronger counterargument comes from
the dynamics in a turbulent protoplanetary disc: centimetre sized dust aggregates have already
settled to the midplane of the disc. There, catastrophic disruptions between them account for
the grinding process that provides sub-millimetre particles, which can be re-accreted. Johansen
et al. (2008) show that the time scales for turbulent diffusion of these small particles are much
shorter than collision time scales. Hence, ejecta are removed from the midplane very efficiently,
which hinders re-accretion. It has to be mentioned, however, that Johansen et al. (2008) neglect
aerodynamically enhanced sticking as suggested by Wurm et al. (2001a,b) and Wurm et al. (2004).

Nevertheless, this example shows that results from laboratory experiments have to be joined
with protoplanetary disc models and dynamics. Of course it is impossible for dust coagulation
models to simulate the collisional physics for each collision taking place in the disc in full detail.
Therefore, thresholds for sticking, bouncing, and fragmentation as well as fragmentation statis-
tics have to be provided from laboratory experiments. Where laboratory experiments no longer
suffice, data from computer simulations of collisions have to bridge the gap. The thesis at hand
contributes to this approach.

Mostly, coagulation simulations simply assume a fragmentation threshold of 1m/s (Blum and
Miinch 1993) for disruptive events and neglect its dependence on porosity or size of the aggre-
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icm

30cm

km-planetesimal

Figure 2.5. Grinding growth model. The beginning of dust growth is fractal. Centimetre sized
pebbles are either compacted in bouncing collisions, ground down to dust grains again, or
they accrete debris grains and, hereby, grow to planetesimals (figure from Teiser and Wurm
2009a).

gates. The resulting fragment distribution of these collision is then described as a power law
n(mydmoc m—dm (2.25)

where n(m) is the number of particles per unit volume within the mass range [m,m+dm]. ¢
is the fragmentation parameter which has been determined experimentally and ranges between
1.3 and 2 (Mathis et al. 1977, Davis and Ryan 1990, Blum and Miinch 1993, Giittler et al. 2010).
With these assumptions, Brauer et al. (2008a) find that, depending on the disc model, dust co-
agulation is halted at centimetre or even millimetre size. Only if an unrealistic fragmentation
threshold of 30 m/s is assumed particles start to break through the fragmentation barrier and grow
to planetesimals. Also a very sophisticated sticking, bouncing, and fragmentation model by Giit-
tler et al. (2010) and Zsom et al. (2010) comes to the conclusion that planetesimal formation is
halted at centimetre sizes. By means of numerical aggregate collision simulations, it is one of the
main purposes of this thesis to provide sticking, bouncing, and fragmentation thresholds and
fragment distributions which are not accessible to laboratory experiments.

An attempt, to raise the fragmentation threshold to this value is to assume that planetesimals
formed from ices or ice-dust mixtures. Wada et al. (2009) find in molecular dynamics simula-
tions that ice has a disruption threshold velocity of 50 m/s. On the other hand, experiments by
Supulver et al. (1997) indicate that ice is not much stickier than dust aggregates. In any case,
this mechanism is only applicable for the outer regions of the protoplanetary disc, where it is
sufficiently cold for water to freeze out.

Recently, Weidenschilling (2010) has argued against the high collision velocities in laminar discs
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or dead zones: as already outlined in section 2.1.4 the settling of dust aggregates to the disc’s
midplane enhances the concentration of solids there. As a consequence, gas in the midplane
is dragged to Kepler velocity and turbulence is generated between the midplane and the slower
rotating adjacent layers above and below. Collective effects due to this turbulence now increase
relative velocities between small particles and decrease them for larger particles. Hence, colli-
sions are less disruptive and larger particles can break through the fragmentation barrier.
Despite of all these attempts to make planetesimal formation by coagulation possible, I will close
the section with the fact noted by supporters (Weidenschilling 2000) and opponents (Youdin
2004) of the coagulation theory: the sticking mechanism for macroscopic bodies is still unclear.

Drift barrier

The drift barrier is one of the oldest arguments against planetesimal formation by coagulation.
It was discovered by Weidenschilling (1977b). As already explained in section 2.2.4, the larger the
dust aggregates become, the more they tend to orbit with Keplerian velocity because they lack
the pressure support of the gas. Hence, they feel a headwind from the gas which orbits at sub-
Keplerian speed. As a consequence, they loose angular momentum and drift radially inwards.
As indicated by Eq. 2.24 this drift velocity depends on the disc model and the Stokes number St
(Eq. 2.18). The latter again depends on the mass to cross section ratio md/o4 of the particle and
on the gas density pg and, thus, on the location in the disc. Typical drift velocities for variations
of the MMSN model are displayed in figure 2.6. Evidently, drift velocities for the MMSN model
are the highest (~ 10 — 100m/s) for bodies of roughly metre size. In general, radial drift reaches
its maximum for particles with St = 1. As a matter of fact, metre sized bodies drift into the star
from 1AU in about 100yr. In contrast millimetre and kilometre sized objects have drift times
of ~ 10°yr. This is because small objects couple well to the gas and follow its motions and big
objects sufficiently decouple from the gas and are only weakly perturbed by the headwind. The
radial drift velocity reaches its peak in the transition between these regimes. This short drift
time scale puts a hard constraint on the time of planetesimal formation. Metre sized objects
originating at 1 AU must grow to kilometre size within a century to escape accretion (or photo-
evaporation) by the host star.

Several ways have been proposed to circumvent or, at least, diminish the problems caused by
the radial drift barrier. Collective effects in the midplane of non-turbulent discs or dead zones in
turbulent discs, which already helped to reduce collision velocities, may be a possible solution. If
the particle density in the midplane becomes sufficiently high, the gas is dragged towards Kepler
velocity and the effect of the headwind felt by metre sized bodies is alleviated. Consequently,
inward drift is slowed considerably (e.g. Cuzzi et al. 1993, Dominik et al. 2007, Weidenschilling
2010).

However, in sufficiently turbulent discs small particles may be stirred up from the midplane,
decreasing dust density there, which in turn decreases the collective effect of gas dragging and
increases the headwind. In this case, dust and also metre sized boulders are efficiently trapped in
local pressure maxima (Whipple 1972). The reason for this can be seen from Eq. 2.11: the head-
wind is essentially caused by the fact that the pressure supported gas rotates at a sub-Keplerian
velocity and pressure support comes from an outward pressure gradient dpg/dr < 0. If locally
0pg/dr =0 on a long timescale, then the gas rotates at Kepler velocity and particles feel no head
wind. Furthermore, if this is a pressure maximum particles will accumulate in this region. This is
because particles move away from local pressure minima and accumulate at local pressure max-
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Log Drift Velocity (cm/s)

Log Particle Size (cm)

Figure 2.6. Radial drift velocities. Drift velocities are plotted as functions of particle radius for
the MMSN (Eq. 2.9 with § = —0.5 (left), —1.0 (middle), and —1.5 (right). The curves are labelled
according to the location in the disc 1 — 30 AU (figure from Cuzzi and Weidenschilling 2006).

ima. The reason is the following: for r > 0 let dpg/0|,,r = 0 and rp a local maximum. Then for
Ar > 0: Opg/0lr,—arr >0 and consequently according to Eq. 2.11 the gas rotates locally at super-
Keplerian velocity. Hence, the particles feel a tailwind which drags them outwards, towards the
maximum. On the other hand, dpg/0|,,+a,r < 0 and the gas rotates locally at a sub-Keplerian
velocity. Thus, the particles feel a headwind, which drags them inwards, again back to the max-
imum. For local pressure minima the contrary takes place. Possible reasons for local pressure
maxima (sometimes called pressure bumps) are, e.g. sublimation processes near the snow line
(Kretke and Lin 2007, Brauer et al. 2008b), gaseous spiral arms (Rice et al. 2004), or MRI generated
turbulence (Johansen et al. 2006b).

Bouncing barrier

The so-called bouncing barrier was introduced recently based on global coagulation simulations
by Zsom et al. (2010). For this approach, Giittler et al. (2010) have compiled and categorised all
available experimental data for dust aggregate collisions into several types of sticking, fragmen-
tation, and also bouncing. The data for bouncing rely on studies by Blum and Miinch (1993),
HeiBelmann et al. (2007), Langkowski et al. (2008), Weidling et al. (2009), Giittler et al. (2010).
Zsom et al. (2010) implemented these findings into their coagulation code, distinguishing be-
tween small and large, porous and compact dust aggregates and simulated dust coagulation
for the three model discs presented in section 2.1.3. For the low density model (Eq. 2.8) they
found that within the first 300 yr aggregates grow by the hit-and-stick mechanism through van
der Waals forces (see section 2.2.4). In a second phase growth is halted by bouncing collisions
in which the dust aggregates mainly get compacted. No sticking or fragmentation occurs in this
phase. In the MMSN model the onset of dust growth is the same, but in the second phase some
mass transfer in bouncing collisions and some sticking occurs. In the high density model the first
phase is again dominated by hit-and-stick collisions, but it lasts only 200 yr. Then bouncing with
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mass transfer dominates and halts dust growth at aggregate masses of 1g. It is remarkable that
fragmentation never occurs for all disc models. So far, no counterarguments or ways around the
bouncing barrier have been found. This issue will be addressed in the thesis at hand.

The grain retention and late pebble problems

The aforementioned barriers stress the problem that planetesimal formation may be halted at a
certain size limit. The grain retention problem deals with the issue that planetesimal formation
might be too efficient. It was already mentioned earlier (section 2.1.2, see also Natta et al. 2007)
that (sub-)micron sized dust is present in the outer layers of the disc for a very long time (108 yr or
even longer). With their coagulation code, Dullemond and Dominik (2005) computed the dust
distribution for various disc ages at every location in the disc using all basic dust coagulation
mechanisms, excluding fragmentation. Subsequently, they fed the acquired data into a contin-
uum radiative transfer code and calculated the resulting spectral energy distributions (SED, see
Sec. 2.1.2). Finally, these were compared with observational data from T Tauri discs. As a result,
they found that the process of planetesimal formation is too quick to mach the observational
data. Without fragmentation, the outer regions of the disc are depleted of small grains within
103 yr. Dullemond and Dominik (2005) suppose that this inconsistency could be resolved, when
collisions in the disc midplane do not result in perfect sticking only but (sub-)millimetre dust is
generated continuously by (at least partially) destructive collisions of larger bodies. The small
dust aggregates are then transported back to the upper layers of the disc by turbulent diffusion.
However, small dust grains are also swept up by larger bodies (see Teiser and Wurm 2009a and
figure 2.5) and, therefore, removed again from the disc. Consequently, the processes of grain re-
tention by fragmentation (or photo-evaporation and re-condensation, see Ormel et al. 2007) and
grain depletion by planetesimal growth have to reach a stable equilibrium for 10®yr. Ormel et al.
(2007) found that in the case of porous particles, the problem is even more severe, since coagula-
tion and, consequently, grain removal is accelerated because of the increased geometrical cross
section of porous aggregates. To reproduce the SED of T Tauri discs, in all cases the protoplane-
tary disc has to be nearly laminar (a ~ 10~%) which contradicts the observed accretion rates onto
the host star and the resulting dynamic turbulent viscosity (see section 2.4). As a follow-up on the
work of Dullemond and Dominik (2005), Birnstiel et al. (2009, 2010) simulated the coagulation in
protoplanetary discs with different fragmentation properties and tried to constrain the required
parameters that allow for a suitable growth-fragmentation steady state. They found, that low val-
ues for the fragmentation parameter ¢ (see Eq. 2.25) and fragmentation threshold velocities of
some m/s reproduce the T Tauri SED observations. Zsom et al. (2010) suggest that dust produc-
tion in partially destructive bouncing collisions could also provide a reservoir for dust grains. To
conclude this issue, it has to be stressed that fragmentation does not only endanger planetes-
imal formation. A suitable amount of fragmentation even seems to be required to explain the
appearance of disc observations. Therefore, a detailed investigation of dust production in stick-
ing, bouncing, and completely disruptive collisions between porous dust aggregates is crucial for
understanding a planet formation process which is consistent with the observations. This is one
of the issues which are a central topic of this thesis.

The late pebble problem is closely related to the grain retention problem. It was investigated by
Brauer et al. (2007) and refers to the observational result (e.g. Natta et al. 2007) that not only
(sub-)millimetre sized dust but also centimetre sized pebbles are present in the outer regions
of the disc. These objects are estimated to drift inwards in time scales of 10°yr. In contrast,
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observations suggest that they are present over 5—10 x 108 yr in the outer disc. Brauer et al. (2007)
found that this can only be explained for very high and very low disc masses. The remaining time
of pebbles in outer regions is also augmented by high porosities. Collective effects like dragging
the gas to nearly Keplerian speed in the midplane slow down the drift rates but are not sufficient
to resolve this problem. Low turbulence values (& ~ 107°) also reduce the drift rate considerably.
Therefore, dead zones could provide a way out of this issue.

Other barriers and loopholes

Barge and Sommeria (1995), Klahr and Henning (1997), and Klahr and Bodenheimer (2006) sug-
gested that particle trapping in vortices could enhance growth rates of pre-planetesimals, such
that they could grow their way through the metre size barrier more quickly before they are lost
into the host star. These vortices are large, slow, two-dimensional circulation patterns with
turnover times similar to the orbital period. They are able to capture metre sized bodies near
their centre. Note that they have to be distinguished from turbulent eddies originating from ho-
mogeneous, isotropic, three-dimensional turbulence (Cuzzi et al. 2001). However, it is unclear
wether these eddies live long enough to capture pre-planetesimals until they have grown to plan-
etesimals.

Youdin and Shu (2002) bring forward a counterargument from investigating meteorites. They
argue, that if the coagulation hypothesis was true, particles of a size range spanning from micron
sizes to metre sizes should be found in the most primitive meteorites. Instead, the maximum
sizes found do not exceed centimetre sizes. Youdin and Shu (2002) conclude, that the solar sys-
tem failed to generate pre-planetesimals larger then centimetre size. Therefore, they propose a
growth mechanism that quickly and directly generates planetesimals from pebbles: the gravita-
tional instability scenario.

2.3.2. The gravitational instability scenario

The gravitational instability (GI) scenario is older than the coagulation scenario. It was proposed
independently by Safronov (1969) and Goldreich and Ward (1973). They hypothesise that plan-
etesimals or even small planets have formed by a gravitational instability. The process is a minia-
ture version of the star formation process presented in section 2.1.1. After dust aggregates have
settled to the midplane (see section 2.2.4) this particle layer becomes dense enough to collapse
under its own gravitational attraction. As a quantitative criterion the Toomre parameter Qq has
to fulfil

_ Qg
B ﬂGZd

Qa <1 (2.26)
(Toomre 1964), where X4 and 74 denote the surface density and velocity dispersion of the dust
aggregates, respectively. Equivalently, Sekiya (1998) proposed particularly for stratified fluids
that the density in the midplane p. = pg+ pp of a protoplanetary disc around a star with mass M.
has to exceed the Roche limit pg

0.62M.,
r3

Pc>PR= (2.27)
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for a GI to occur. Until the 1980’s, it was considered to be sure that planets form via gravitational
collapse of parts of the disc. However, Weidenschilling (1980, 1984, 1995) noted that because of
the Kelvin-Helmholtz instability created by the velocity shear between the faster rotating mid-
plane and the slower rotating adjacent layers (see section 2.1.4) even laminar discs become tur-
bulent. This turbulence stirs up particles from the midplane and puffs up the midplane layer.
As a consequence, the density in the midplane never exceeds the critical limit and no GI will de-
velop. This result has been confirmed by Cuzzi et al. (1993) and Dobrovolskis et al. (1999) with
even more elaborate models and by Sekiya (1998) with a linear stability analysis.

Nevertheless, in recent years there has been renewed interest in planet(esimal) formation by
gravitational instability. Sekiya (1998) pointed out that GI could occur if the dust-to-gas ratiowas
enhanced over the protosolar value. This increases 4 in Eq. 2.26. Chiang and Youdin (2010) esti-
mate that for typical parameters the dust density pq must be over 1,000 times the gas density pg
or equivalently, the dust-to-gas ratio must be increased by a factor of 60,000. Although this task
seems hopeless, having the barriers for the coagulation scenario (section 2.3.1) in mind, Youdin
and Shu (2002) proposed some mechanisms which could enhance the dust-to-gas ratio glob-
ally and above all locally. As global mechanisms they propose removal of gas from the relatively
gas-rich (because of dust settling to the midplane) upper layers of a protoplanetary disc. This
could be done by photo-evaporation, layered accretion, and stripping by stellar winds. As a local
mechanism, they propose that particles pile up while they drift radially inwards in the disc. This
is a consequence of the drift speed vq.is (Eq. 2.24) depending on the Stokes number St, which
in turn depends on the gas density (Eq. 2.18), i.e. on the location in the disc. This is, essentially,
based on the same physics as trapping of particles in pressure maxima (see section 2.3.1).

Since the revival of the GI scenario, however, many counterarguments have also been collected
(see, e.g. Cuzzi and Weidenschilling 2006, and references therein). Firstly, the model assumption
of a one-phase fluid used by Sekiya (1998), Youdin and Shu (2002), Youdin (2004), and others
is criticised. For this assumption to be valid, St < 1072 has to be fulfilled. From Eq. 2.18 we
see that this puts a constraint on the turbulence parameter of the disc. As a consequence, for
enhanced dust-to-gas ratio a global turbulence of @ < 1078 and for nominal solar abundance
even a < 1071°, In Sec. 2.1.1 and 2.1.4 we have seen that the disc has to be more viscous to explain
the observed accretion rates and MRI generated turbulence is estimated to yield a ~ 1073, Hence,
the assumption of fully non-turbulent discs is not applicable. Secondly, it is very hard to find
dust-to-gas ratio enhancing mechanisms for those particles which are tightly coupled to the gas.
Thirdly, the most serious obstacle for a one-phase fluid GI was brought forward by Sekiya (1983):
incipient collapse by the dust aggregates also compresses the entrained gas. This leads to an
outward pressure which inhibits further collapse of gas and also dust particles. To overcome this
hurdle, a dust-to-gas ratio of 107 is required at 2.5 AU, which is illusory. Also in two-phase models
(Weidenschilling 1980, 1984, 1995, Cuzzi et al. 1993, Dobrovolskis et al. 1999, etc.) a quiescent
disc must be assumed to prepare the ground for GI. There, another obstacle is brought forward
by Weidenschilling (1995, 2003) targeting the radial pile up proposed by Youdin and Shu (2002).
There exists not only a velocity dispersion between midplane and adjacent layers. Also in later
stages, when particles drift towards the star, they have different drift velocities given by their
size (Eq. 2.18). Consequently, the size distribution of the dust aggregates generates a velocity
dispersion in radial drift. This, however, results in an increase of the Toomre parameter (Eq. 2.26)
and the criterion for GI is not met.

As a reply to these critics, Chiang and Youdin (2010) more and more draw the focus of GI pro-
moting dust enhancements to locally acting mechanisms. In an admirable way, they turn mech-
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anisms that formerly prevented GI into supporters. In principle, they argue that instabilities
that have been discovered in the past decade work together to make GI assisted planetesimal
growth possible. Firstly, Goodman and Pindor (2000) have proposed a secular instability based
on the formation of over-dense annuli of the disc using a single-fluid approximation. In an un-
perturbed state, dust drifts inwards at a constant rate. If this state is perturbed and aring of width
dr is over-dense, it exerts a gravitational pull inwards at its outer edge. Consequently, dust has
to rotate faster there because the Keplerian velocity is increased locally. The gas velocity remains
unaltered. This causes an inflow of dust into the annulus due to an increased headwind. The
reverse is happening at the inner edge: the Keplerian velocity is locally lowered, dust experiences
a tailwind and flows in the annulus. By this mechanism the instability grows and increases the
dust-to-gas ratio in the annulus. Secondly, the streaming instability was discovered by Youdin
and Goodman (2005) and further explored by Johansen et al. (2006a,b, 2007, 2009). This insta-
bility is a consequence of the sub-Keplerian velocity of the gas and the back-reaction of dust on
the gas. For some reason dust clumps form in the streaming environment of the disc. As high
mass objects tend to orbit with Keplerian speed, clumps with a higher dust-to-gas ratio move
faster than clumps with lower dust-to-gas ratio. The former start to overtake the latter and finally
crash into them, forming an even larger clump. By this process the clumps gain more and more
mass. At the same time, a rarefaction tail forms behind the clump along the sub-Keplerian gas
stream and some mass is lost. The final mass of the clump is determined by the balance of both
processes. Thirdly, Johansen et al. (2006a,b, 2007, 2009) were also able to show, that MRI gener-
ated turbulence does not necessarily obstruct GI. On the contrary, turbulence can generate long
lived pressure maxima, which act as an efficient trap for particles. Also all other particle trapping
mechanisms already presented in section 2.3.1 like pressure bumps (for example near the ice
line, Kretke and Lin 2007, Brauer et al. 2008b), gaseous spiral arms (Rice et al. 2004), and vortices
(Barge and Sommeria 1995, Klahr and Henning 1997, Klahr and Bodenheimer 2006) may act as
particle concentration mechanisms, which, in turn, create seedlings for other instabilities, which
can concentrate particles long enough for GI to work. Johansen et al. (2007) demonstrated im-
pressively that with a compilation of most of these physics objects of Ceres size can form within
a few orbital times.

To conclude this section, it has to be said that planetesimal formation by gravitational instabil-
ity is an attractive alternative to the coagulation scenario. Focussing on local dust-to-gas ratio
enhancements it presents a very fast way out of all barriers outlined in section 2.3.1. However,
both scenarios do not exclude each other. As Weidenschilling (1980) already conjectured plan-
etesimal formation might be a composite process of both. Weidenschilling (1980, 1995, 2000),
and Johansen et al. (2007), to name only a few, point out that for GI to work it might require the
assembly of boulders of metre size and larger to provide sufficient dust density in the midplane
and to overcome the radial dispersion problem. This has to be done by coagulation, which again
underlines the importance of investigating the metre size barrier, which is the focus of this thesis.
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2.4. Gravity Takes Over - Growing Planets

In the previous section it has been shown that the process of planet formation is still enigmatic.
On the one hand, it is unclear whether the conditions for a gravitational instability are met. On
the other hand in the coagulation scenario the sticking mechanism is unknown. However, under
the assumption that kilometre sized planetesimals have formed somehow, the last step of planet
formation can be investigated starting from a population of planetesimals. Here, the velocities
are in the order of the escape velocity of the planetesimal and the sticking mechanism in col-
lisional growth is gravitational attraction. The process of planet formation from planetesimals
is rather well understood and the results of this research are presented in this section, which is
mainly based on the review articles by Lissauer and Stewart (1993), Chambers (2004), and Gol-
dreich et al. (2004a,b).

2.4.1. Methods and characteristic quantities

Unlike metre sized pre-planetesimals, kilometre sized planetesimals can be detected via obser-
vational methods through the perturbations they create (Natta et al. 2007). The last stage of
planet formation itself, however, cannot be observed. Therefore, semi-analytical and numerical
methods have been developed to investigate this process.

The most obvious way is to integrate the equations of motion of a population of planetesimals
orbiting around a host star with all gravitational interactions in an N-Body simulation. This ap-
proach is the most accurate one, but it has two main drawbacks. First of all, the computational
costs are proportional to the square of the number of planetesimals. Simulating a population
of planetesimals that are sufficient to assemble only one planet exceeds current computational
resources by far. Secondly, there are fundamental uncertainties regarding initial sizes and ve-
locities of the planetesimals as well as the question of whether they stick or fragment. However,
this method has been proven extremely valuable in the late stages of planet formation, where the
number of bodies decreases considerably (e.g. Kokubo and Ida 1996, 1998, 2000).

For the early stages of the growth step from planetesimals to planets, the particle-in-a-box ap-
proach has widely been used (e.g. Greenberg et al. 1978, Wetherill and Stewart 1989, Weiden-
schilling 1997). This method is similar to the dust coagulation simulations (application in sec-
tions 2.2 and 2.3, method in section 3.3). All bodies with similar masses are grouped together in
mass bins. These groups interact with each other using a coagulation equation and a collision
probability. The velocity distribution is computed by means of kinetic theory. As a drawback, the
positions of the bodies are not taken into account. Consequently, the method is only valid for a
nearly uniform spatial distribution of planetesimals, which is only true for the early stages of the
last growth step.

The previous approach is simplified even further with the statistical method. Only two groups
of bodies are considered: protoplanets and planetesimals and their velocity dispersions. This
assumption is valid for the late stages of planet formation, where big protoplanets already have
formed. Ormel et al. (2010b) even define the beginning of this late stage as the time when the
two-component approximation becomes valid. With the statistical method (e.g. Wetherill and
Stewart 1989, Ida and Makino 1993) analytical formulae for growth rates of protoplanets can be
derived. Although it is valid only for late times, the statistical method allows a good categorisa-
tion of the growth modes in the last step of planet formation. I will rely on this approach through-
out this section. Recently, Ormel et al. (2010b) have presented a hybrid model which preserves
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the individual particle nature of bodies (like the N-Body approach) and also has a statistical na-
ture. Essentially, they confirm the results of ordinary N-Body codes.

For the following description of the growth from planetesimals to planets some characteristic
quantities based on the statistical method have to be defined: protoplanets (sometimes also
called planetary embryos) are of intermediate size between planetesimals and planets. They are
specified by their surface density Z,;,, velocity dispersion w, radius S, and mass M;p. The bulk
of mass, however, is represented by planetesimals with surface density oy, velocity dispersion
i, radius s, and mass my,s. The respective escape velocities are defined as

GM
Wesc = PP (2.28)
S
Gm
Uesc = Be , (2.29)
s
where G is the gravitational constant. As another important quantity, the Hill radius
M. 1/3
pp
Su~a , 2.30
H (3 M. ) (2.30)

where M, is the mass of the host star, helps to distinguish between two areas of gravitational
influence on a planetesimal. Inside Sy; around a protoplanet, the gravitational field of the star is
negligible and the planetesimal’s motion is dominated by the protoplanet’s gravitational attrac-
tion. Outside, the behaviour is vice versa. At a distance Sy the orbital frequency of a planetesimal
around the protoplanet is comparable to the orbital frequency of the protoplanet around the star.
Associated with the Hill radius is the Hill velocity

*

WH ~ QKSH ~ SH y (2.31)

a3
where a is the semi-major axis around the star. Equivalent to the above distinction, for & > wy
the protoplanet-planetesimal system is dispersion dominated and the situation is well approxi-
mated by two-body mechanics. Whereas for wy > i the tidal gravity of the sun must be taken
into account and the system is shear dominated.

The velocity dispersions w and i evolve by three important processes: cooling by dynamical
friction, heating by dynamical friction, and viscous stirring. These originate from gravitational
stirring that converts energy of orbital motion of a swarm of planetesimals into random mo-
tions. Dynamical friction describes the equipartition of random kinetic energies, i.e. more mas-
sive bodies are damped to lower velocities while the velocities of smaller bodies are increased.
In contrast, viscous stirring increases random kinetic energies. Planetesimals dominate the dy-
namical friction, whereas protoplanets provide most of the viscous stirring. Protoplanets heat
the surrounding planetesimals faster than they accrete them. Therefore, planetesimals have to
be cooled via dynamical friction in inelastic collisions. Otherwise planet formation would have
taken far too long.

The most important mechanism in this epoch of planet formation is gravitational focussing, i.e.
the enlargement of the effective scattering cross section by self-gravity of the protoplanet, which
is equivalent to the condition it = wegc. Without gravitational focussing the formation of Neptune
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would have taken about 4 x 10! yr which is about 85 times the age of the solar system (Goldreich
et al. 2004a). Kokubo and Ida (2000) showed that the effect of gas can almost be neglected for the
growth process. This is consistent with the fact that planetesimals almost fully decouple from
the gas.

In the following the characteristics of the substages of the last step of planet formation will be
described. These are orderly growth, runaway growth, and oligarchic growth.

2.4.2. Orderly growth

In orderly growth mode gravitational focussing is weak (i > wesc) and the growth of the veloc-
ity dispersion in the disc is dominated by the protoplanet (Rafikov 2003), i.e. dynamical friction
is neglected and there is no sufficient cooling mechanism for the planetesimals. This phase is
characterised by very long time scales (108 — 10°yr in the terrestrial zone, Safronov 1969). Many
small protoplanets compete for the same population of planetesimals. Imagine two neighbour-
ing protoplanets: the larger one has the larger escape velocity, but at the same time, because the
velocity dispersion is dominated by the protoplanet, it stirs its surrounding planetesimals to a
bigger amount. As a consequence, the smaller one grows relatively faster, but never overtakes
the bigger one, since in both cases the accretion rate decreases with increasing size. It is given by
1 dMp, 1dS 1
— X T —— X <. (2.32)
My, di Sdr S

However, Rafikov (2003) has pointed out that the conditions for orderly growth might be never
met. He proposes that the protoplanet’s accretion cross section is always strongly increased over
its gravitational cross section and that cooling by dynamical friction is effective. Hence, gravita-
tional focussing is always strong and the protoplanet never grows in an orderly way, but starts off
in the runaway mode. It was shown in multi-zone simulations that different growth modes apply
for different regions of a planetary system. Cooling by dynamical friction depends on the surface
density of the planetesimals, which drops with increasing distance from the star. Additionally,
the velocity dispersion is influenced by non-linear effects, such as fluctuating spiral features in
the disc (Weidenschilling 2008, Clarke and Lodato 2009). As a consequence, the velocity disper-

sion might prevent runaway growth in the outer parts. Orderly growth might dominate there.

2.4.3. Runaway growth

In a classic view (Wetherill and Stewart 1989, also Ida and Makino 1993 and Weidenschilling
2000, 2008), the situation changes when cooling by dynamical friction is considered. Firstly, be-
cause of the equipartition of energy between bigger bodies and smaller bodies the velocity dis-
persion of the protoplanets w is decreased and @ is increased. Consequently, relative velocities
between protoplanet and planetesimals are decreased, which in turn enhances the gravitational
focussing of protoplanets. And at the same time, gravitational focussing of planetesimals is de-
creased owing to the increasing velocity dispersion . Hence, big protoplanets grow even more
rapidly and small planetesimals grow slowly. The evolution results in runaway growth. This
phase can, therefore, be characterised by a growth of velocity dispersion, which is dominated
by the planetesimals, and a strong gravitational focussing (Rafikov 2003). Additionally, velocities
of planetesimals are cooled by mutual inelastic collisions.

46



2.4. Gravity Takes Over - Growing Planets

Goldreich et al. (2004a) and Ormel et al. (2010b) correct this view. Runaway growth does not take
place, when the system is in the shear dominated regime. It is also prohibited in the dispersion
dominated regime when the velocity dispersion of the protoplanets is chosen to be w > wesc.
In this case dynamical friction reduces i relative to & and as a side effect w evolves such that
Wesc > W. Dynamical friction is not required to sustain runaway growth as long as the system is
in the dispersion dominated regime and wesc > w.

The bigger a protoplanet grows, the more gravitational attraction is increased. Therefore, the
mass accretion rate is often stated as

x ——0 S, (2.33)

for wege > @ > wy. This is true for the very first phase of runaway growth (see, e.g. Kokubo and Ida
1996). However, the bigger the protoplanets grow the more they viscously stir their surrounding
planetesimals. This effect increases the relative velocities between both populations and, as a
consequence, gravitational focussing of the protoplanet is also reduced with increasing velocity
dispersion of the planetesimals. Taking this into account Goldreich et al. (2004a) formulate

—_—— ~

My, dt o Sdr @’

(2.34)

for wesc > @ > wy. Often the time when protoplanets dominate their surrounding by viscous
stirring is proclaimed as the end of runaway growth (e.g. Ida and Makino 1993, Rafikov 2003,
Thommes et al. 2003). However, according to Eq. 2.34 the growth is still runaway, but it increas-
ingly turns from a global to a local one.

Runaway growth can end in several ways (Goldreich et al. 2004a). As a first possibility, protoplan-
ets grow large enough that wy > ii. Subsequent growth then no longer depends on the size of the
protoplanet. This is called neutral growth. Secondly, planetesimals are stirred sufficiently such
that & > wesc. Then growth proceeds in an orderly way. Thirdly, the system enters the oligarchic
growth phase.

The transition from runaway growth to the next step is still under debate. Goldreich et al. (2004a)
suggest that a protoplanet must solely dominate viscous stirring in its surrounding. Ormel et al.
(2010b) define that runaway growth must be local and the local system must be isolated. This is
quantified by Ormel et al. (2010a): the transition takes place at transition radii of 300 km, 600 km,
and 1,000 km at 1 AU, 6 AU, and 35 AU, respectively.

2.4.4. Oligarchic growth

The growth phase presented in this section was investigated by Kokubo and Ida (1998, 2000), who
coined the term oligarchic growth. No matter when the transition point from runaway growth is
set, this mode is characterised by its self-limiting nature. The reason for this is similar to the pro-
cesses in orderly growth: the more massive a protoplanet is, the more it viscously stirs the plan-
etesimals in its area of influence, which in turn reduces its gravitational focussing. The accretion
rate drops from runaway (o S) to orderly (< S™1). In oligarchy, neighbouring protoplanets main-
tain approximately even orbital spacings of ~ 5 —10Sy. This is because dynamical friction and
occasional gravitational interactions generate some orbital repulsion. The area of influence of
each oligarch is called feeding zone, from which the protoplanet accretes most of its mass. While
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in oligarchy, the growth proceeds in locksteps with almost similar mass accretion rates. In this
time, orbits of the accreting bodies rarely cross.

The more the oligarchs grow the more their feeding zones also grow. Eventually, two feeding
zones overlap. Now the two competing protoplanets share the same population of planetesimals.
As a consequence, the growth mode switches to runaway again and the larger of the oligarchs
outgrows the smaller one and finally accretes it. Goldreich et al. (2004a) describe this situation
as battling oligarchs, where protoplanets battle for local dominance in a winner-takes-all war.
At the end of oligarchy, the number of planetesimals in the feeding zones decreases and the oli-
garchs become more and more isolated from each other. Consequently, dynamical friction also
decreases and viscous stirring cannot be balanced anymore. As a result, orbital repulsion breaks
down and protoplanets no longer stay within their feeding zones. They start to interact strongly
with neighbouring protoplanets and collisions take place. The oligarchic growth phase, which
lasts a rather short time of about 0.1 — 1 x 10%yr, is terminated by chaos. Thommes et al. (2003)
propose that oligarchic growth was not required to form the terrestrial planets of the solar sys-
tem. Goldreich et al. (2004a) suppose that oligarchy is the final stage of planet formation in the
outer solar system.

2.4.5. Final stages

In the final stages of planet formation at about 108yr the protoplanets are still embedded in a
disc of gas and sparsely distributed debris. As already mentioned above, the protoplanets start to
gravitationally interact with each other. In the inner solar system, where the ratio of the escape
velocities from the surface of the protoplanets to the escape velocities from their orbits around
the star is smaller than unity, the protoplanets collide and merge. For the protoplanets in the
outer solar system, this ratio rises above unity and random velocities of the protoplanets rise
until they are ejected and reside, e.g. in the Oort cloud (Goldreich et al. 2004b). Eventually, the
protoplanetary system was populated by a few dozen protoplanets of the size of Moon or Mars
(Chambers 2004), which were still scattered inwards and outwards, destroying the order estab-
lished in the oligarchic phase and mixing material from the inner solar system outwards and vice
versa.

The end of this chaotic behaviour is marked by the process of orbit regularisation. It is widely
accepted that dynamical friction with the residual debris and gas drag circularise and flatten
the orbits of the surviving protoplanets. However, in a recent study Leinhardt et al. (2009) have
shown that catastrophic planetesimal collisions provide not enough background material to pro-
vide significant dynamical friction for this process.

At the same time, protoplanets open gaps in the gas-debris disc and accrete material by the pro-
cess of gap clearing. Dynamical friction is still active in this phase. This planet disc interaction
leads to various types of planet migration. The influence of this effect and the direction of migra-
tion under various conditions are subjects of ongoing research (e.g. Papaloizou et al. 2007, Kley
et al. 2009). The clean up of the remaining debris and gas by the protoplanets terminates the
process of planet formation.
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2.5. The Focus of this Thesis: Planetesimal Formation

As a conclusion to this chapter, the thematic location of the thesis at hand has to be specified.
It became clear from the preceding sections, that, despite some unresolved questions, the first
and last epochs of planet formation are thoroughly investigated and well understood. In Sec. 2.2
the growth mechanism from dust grains to centimetre sized pre-planetesimals was lined out.
The onset of dust growth is fractal: dust grains collide and stick due to dipole-dipole interactions
forming fractal, chain-like structures. These get compacted as collision velocities increase. As a
result porous dust balls of centimetre size are generated. Skipping the problematic intermediate
step, Sec. 2.4 describes the epoch from kilometre sized planetesimals to planets: typical veloc-
ities in a planetesimal swarm no longer exceed the escape velocity of the planetesimal. Grav-
ity assisted growth is the consequence. The onset may be slow in orderly growth mode, then
proceeds (or even starts) in a runaway fashion until protoplanets dominate their surroundings.
Then, growth proceeds in a self-limiting way, where protoplanets are more and more isolated
from each other. The growth has become oligarchic. After a short phase of chaos, where the
oligarchs scatter each other inwards and outwards, the orbit of the remaining almost-planets be-
come regularised, gaps open in the disc and remaining material is cleaned up by accretion onto
the planets.

The intermediate growth step from centimetre sized pre-planetesimals to kilometre sized plan-
etesimals is still full of mysteries. With the core accretion and gravitational instability hypothe-
ses (Sec. 2.3) two possibly competing theories have been developed extensively to overcome this
problem. Maybe in the end the efforts of both have been joined to successfully explain this enig-
matic epoch. The core accretion theory assumes that collisions between pre-planetesimals lead
to a net growth, which finally generates a sufficient population of planetesimals. This theory
is mainly endangered by increasing collision velocities which increasingly lead to catastrophic
disruption of the pre-planetesimals. Furthermore, the sticking mechanism is unclear and a con-
siderable amount of collisions could result in restitution with the collision partners bouncing off
each other without net growth. Things become more complicated if observational constraints
are considered. It seems inevitable that some fragmentation occurs if the dust emission features
in SEDs are to be explained successfully (grain retention problem). These and other problems
were discussed in Sec. 2.3.1. On the other hand, the gravitational instability theory assumes that
parts of the disc become dense enough to collapse under their own gravity. Planetesimals or
even larger objects could be generated by this process. However, it is unclear how the required
enhancement of the dust-to-gas ratio can be achieved. For this it could be necessary that boul-
ders of a few metres in size have to exist in the midplane of the protoplanetary disc. The size
step from centimetre sized pebbles to metre sized boulders has to be bridged by collision and
sticking.

Consequently, for both theories collisions of centimetre to at least metre sized dust aggregates
have to be investigated more thoroughly. A gap opens between the need that metre sized boul-
ders have to grow somehow by collisions and the need that, at the same time, a sufficient por-
tion of dust has to be generated in these collisions. For a long time, the question for a sticking
mechanism for these collisions was in the spotlight. The new problems brought up in recent
years require a modification of this question: what is the right balance between sticking and frag-
mentation in the collisions? Therefore, this thesis is dedicated to the investigation of two-body
collisions between porous dust aggregates. Thresholds for sticking, bouncing and fragmenta-
tion have to be quantified as thoroughly as possible. The amount of dust produced in sticking,

49

from grains to
pre-planetesimals

from

planetesimals to
planets

from

pre-planetesimals
to planetesimals

right amount of
growth and
fragmentation



applicability of
data from this
thesis

2. Planet Formation

bouncing and fragmenting collisions has to be estimated. The outcome of these collisions has
to be explored depending on parameters such as collision velocities, collision parameter, object
porosity, object size, etc. For methodological reasons these data cannot, or only insufficiently, be
provided by laboratory experiments or molecular dynamics simulations (see Sec. 3).

The brought description of planet formation in this chapter is justified by the equally brought
possible applications of the data produced for and presented in this thesis. The dust size distri-
bution produced in pre-planetesimal collisions has considerable influence on the predictions of
SEDs for model discs (Sec. 2.1.2). The amount of dust generated by these collisions has an influ-
ence on generating shear instabilities, on the size of dead zones where MRI is inhibited, and on
the thermal structure of the disc. All together these effects have influences on the dynamics in-
side the disc and its accretion rate (Sec. 2.1.4). Energy dissipation in pre-planetesimal collisions
through compaction or fragmentation influence might lower collision velocities and therefore
promote growth (Sec. 2.2.4 and 2.3.1). Detailed data from collisions help to improve dust co-
agulation models, which follow the planetesimal formation process by core accretion in detail.
Detailed fragmentation statistics could help to resolve the grain retention and late pebble prob-
lems (Sec. 2.3.1). Sticking, bouncing, and fragmentation data is probably also required to un-
derstand the collision processes in particle trapping mechanisms, which are important for both
the core accretion and the gravitational instability hypotheses (Sec. 2.3.1 and 2.3.2). Addition-
ally, data presented in this thesis could help to lay out the ground for a gravitational instability
(Sec. 2.3.2). Above all, these data may provide the answer to the key question, whether gravita-
tional instability is needed or whether planetesimal formation can be achieved with coagulation
alone (Sec. 2.3). Based on this data, planetesimal formation simulations of either hypothesis
could provide information on the initial population of planetesimals, which then proceeds in
orderly, runaway, and/or oligarchic growth (Sec. 2.4).

Finally it can be said, that this thesis is not bound to any special hypothesis. It tries to provide
data on a very basic, but essential process which takes place in nearly every location in the pro-
toplanetary disc: the collision of two porous dust aggregates from centimetre sizes onwards in a
wide parameter space. Because of this fundamental setup, the application of the data obtained
is applicable to many aspects of the planet formation process.
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In this chapter I briefly review some important methods, which have been used to investigate
planet formation. The insights presented in the previous chapter originate from these branches.
Each of the following sections describes basic concepts, results, and limitations of the specific
method. At the end of this chapter the methodological choice of this thesis will be justified con-
sidering the aims presented in Sec. 2.5 and the given methodological limitations.

3.1. Dust Growth in the Laboratory

Dust growth in the laboratory has been reviewed and categorised by Blum and Wurm (2008) and
Giittler et al. (2010). Results from this approach were already presented in Sec. 2.2.3, 2.2.4, and
2.3.11in the relevant contexts of dust coagulation and planetesimal growth by coagulation. In this
section the focus lies on the experimental method and its limitations.

3.1.1. Basic concepts

Since realistic protoplanetary material is difficult or expensive to produce, laboratory experi-
ments mostly work with protoplanetary dust analogues (e.g. Poppe et al. 2000, Blum and Wurm
2008). The broadest systematic studies were carried out with silica (SiO,). To simulate proto-
planetary disc conditions most of the experiments were performed in microgravity and many in
a vacuum environment.

Hereby, laboratory experiments tried to cover both, a broad size and collision velocity range.
The onset of dust aggregation takes place in the micrometre regime. Coagulation from individual
grains was studied by Blum et al. (1998, 2000, 2002), Wurm and Blum (1998), Poppe et al. (2000),
and Krause and Blum (2004). Collision velocities ranged from 103 — 100m/s. Aggregates in this
regime grow by a hit-and-stick mechanism. At low velocities (vy < 0.2m/s) aggregates grow as
chain-like fractal structures. At higher velocites (0.2 < vy < 0.7m/s) they get compacted. At 0.7 m/s
partial fragmentation occurs until for vy > 2m/s catastrophic disruption takes place. In these
experiments, dust growth could be observed directly. The vacuum chamber served as represen-
tative piece of a protoplanetary disc.

In contrast, collisions in the millimetre to centimetre regime are investigated as single events. For
this regime, the experiments can be subdivided into two types. I call the first one the impact
type. There, a (often millimetre sized) projectile impacts a larger (centimetre to decimetre sized)
target. The second type is the collision type, where two nearly equally sized (mostly centimetre
sized) objects collide. Impact type experiments have been carried out in a quite large number.
This category can be subdivided into low velocity impacts (vy < 5m/s) investigated by Langkowski
et al. (2008), where sticking and bouncing was observed. More frequently this type was used for
high velocity impacts (vy > 5m/s) by Wurm et al. (2005a,b), Paraskov et al. (2007) and Teiser and

51

dust analogues

protoplanetary
disc conditions

pum regime

mm — cm regime

impact type



collision type

analogous type

sweeping type

material
parameters

3. Investigating Planetesimal Formation - A Selection of Methods

Wurm (2009b). These experiments resulted in parts of the target and projectile being ejected in
the impacts, but mostly net growth was observed. Real collision type experiments are very rare.
They have been performed by Blum and Miinch (1993) and Heielmann et al. (2007).
Particularly collisions with low velocity, a third type of experiment was frequently used in recent
times. This is the analogous type of experiments, where collisional outcome for dust aggregates
is derived not directly from dust aggregate collisions but from collisions with a hard surface or
impacts of other material into dust. Weidling et al. (2009) investigated low velocity collisions
(~ 0.2m/s) with a vibrating plate (no microgravity, no vacuum). They found bouncing and com-
paction. Giittler et al. (2010) shot micrometre and millimetre sized dust aggregates bottom-up
onto a solid glass plate with velocities of some m/s (no microgravity, no vacuum). They found
sticking, bouncing, and fragmentation. In another experiment, Giittler et al. (2010) collided a
millimetre sized dust aggregate with a free falling glass bead of the same size. They found frag-
mentation and partial sticking on the glass bead.

As a last experimental type, the sweeping type setup has to be mentioned. There, the direct as-
sembly of centimetre to decimetre sized dust aggregates from micrometre sized grains or aggre-
gates is investigated. This situation is analogous to large aggregates sweeping up very small ones
in the protoplanetary disc. This process is essential for the grinding growth model (see Sec. 2.3.1
and Fig. 2.5). Recently, Teiser and Wurm (2009b) studied the aggregation of decimetre sized dust
agglomerates from 100pum small dust agglomerates at impact speeds of vy ~ 8m/s. They found,
that objects of intermediate porosity (¢p ~ 0.3) form. With random ballistic deposition (RBD)
experiments, Blum and Schrépler (2004) and Blum et al. (2006b) (vg < 2.2m/s) generated highly
porous dust aggregates (“dust cakes”) of some centimetres in size.

As an essential ingredient for this thesis, Blum and Schrapler (2004), Blum et al. (2006b) and Giit-
tler et al. (2009) measured the material parameters of macroscopic SiO, aggregates such as the
bulk modulus and the compressive and tensile strengths. This topic will be discussed in more
detail in Sec. 5.3. As an input for molecular dynamics (MD) simulations (see Sec. 3.2), micro-
scopic material parameters were also measured: the pull-off force and rolling friction between
two spherical grains were determined by Heim et al. (1999) with the aid of atomic force and op-
tical microscopy.

3.1.2. Results

Without a doubt, laboratory dust experiments provide the key to understanding pre-planetesi-
mal and planetesimal formation. All numerical simulations have to be put onto this empirical
basis. The main results can be summarised as follows:

1. Dust growth starts from micrometre sized dust grains. Under protoplanetary disc condi-
tions growth in the beginning is very efficient. Initially, it proceeds in a fractal way. With
higher collision energies the aggregates get compacted (see also Sec. 2.2.3 and 2.2.4).

2. Fractal growth and compaction produces fluffy, highly porous dust aggregates. Pre-plane-
tesimals, therefore, are presumably more similar to dust balls than to brittle rocks (see also
Sec. 2.3.1).

3. Inthe centimetre size regime, collisions can result in (partial) sticking, bouncing, and frag-
mentation. Collisional outcome types were suggested by Giittler et al. (2010). Velocity-size
maps (Glittler et al. 2010) and maps which corelate collision partner size (Blum and Wurm
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Figure 3.1. Laboratory dust experiments. Overview of laboratory dust experiments (alphanu-
meric labelling) with mass conservation, loss, and gain (colour coded) for collisions of dust
agglomerates of different sizes (axes). Group A are collision type experiments from millimetre
to centimetre size, group B are sweeping type and group C impact type experiments. Mass
gain is ensured for hit-and-stick growth and the grinding growth model up to centimetre size.
In larger size regimes, particularly for collision type experiments, mass loss or fragmentation
dominates (figure from Blum and Wurm 2008).
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2008, and Fig. 3.1) with mass gain, conservation, and loss were produced. For disruptive
collisions fragment statistics were derived.

. Decimetre sized dust agglomerates can form by the aggregation of showers of microme-

tre sized dust particles. Depending on the impact speed, they gain high or intermediate
porosity.

. Macroscopic and microscopic material parameters of dust aggregates and grains, respec-

tively, were measured. These parameters serve as input for Molecular Dynamics Simula-
tions (see Sec. 3.2) and simulations based on continuum methods (see Sec. 3.4).

3.1.3. Limitations

Despite their importance for pre-planetesimal and planetesimal formation, laboratory exper-
iments struggle with some drawbacks. These mostly deal with the difficult treatment of dust
material under realistic protoplanetary disc conditions. The main critics and limitations are:
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. Experiments have been carried out with different materials and different grain sizes and

shapes. Poppe et al. (2000) showed that grain sizes and shapes have considerable influence
on stickiness and other mechanical properties such as compressive and tensile strength
(see also Blum et al. 2006b). Despite these findings, results from experiments with dif-
fering grain properties in different size regimes have been compiled as if it was the same
material (Giittler et al. 2010). A systematic study with one material covering the broad pre-
planetesimal size regime is still missing. This thesis enables a numerical treatment of this
issue.

. To investigate dust coagulation in realistic protoplanetary disc conditions, microgravity

and vacuum are necessary. Size limitations of the experimental apparatus make it unfea-
sible to examine dust growth by coagulation beyond decimetre size.

. Collisions of macroscopic dust aggregates are investigated as single events. Because of in-

homogeneities in these dust aggregates, a large number of individual collisions for each
aggregate size and collision velocity is needed to obtain statistically significant results for
sticking, bouncing, and fragmentation thresholds and fragment distributions. Compared
with these uncertainties the number of investigated events for each velocity-size combi-
nation was very low. Sometimes only a single collision was carried out. The same criticism
was brought forward by Teiser and Wurm (2009a).

. Single event collisions are not unique in their prediction (Blum and Miinch 1993, Wurm

et al. 2005a,b, Langkowski et al. 2008). Instead, adding mass, bouncing, or mass loss was
observed in experiments with individual projectiles (see also Teiser and Wurm 2009a)

. Particularly for highly porous aggregates, pre-processing, which alters the aggregate prop-

erties, cannot be excluded when preparing the experiments (C. Giittler, personal commu-
nication).

. It is questionable whether a realistic outcome of collisions of two dust aggregates can be

derived from analogous type experiments without any correction. Because of differing
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surface properties and other mechanical quantities such as the bulk modulus and com-
pressive, tensile, and shear strengths, colliding a dust aggregate with a glass surface might
be essentially different from colliding two highly porous dust aggregates. This problem will
be addressed in the thesis at hand.

3.2. Molecular Dynamics Simulations

3.2.1. Basic concepts

Molecular dynamics (MD) codes numerically simulate the behaviour of dust aggregates based on
the microscopic forces between individual dust grains. Under the influence of external forces, the
particles have six degrees of freedom to move around this contact (see Fig. 3.2): vertical (pull-off,
Chokshi et al. 1993), tangential (rolling, sliding, Dominik and Tielens 1995), and torsional (twist-
ing, Dominik and Tielens 1996). Chokshi et al. (1993) showed that stresses between grains are
transported on sound speed time scales. Thus, for the external forces (e.g. by collision) changing
on time scales shorter than the sound travel time, adjustments of the contact can be treated as
quasi-static. Additionally, as long as external forces stay below some limit, the deformation of
the contact area is reversible, i.e. elastic. If the force exceeds this limit, irreversible deformation
takes place and energy is dissipated. For example, pulling forces in the vertical direction first
diminish the contact area and finally, irreversibly, break the contact. Each degree of freedom
shows this kind of resistance and consequential energy dissipation. Hence, there is resistance to
pull-off, rolling, sliding, and twisting. The exact amount of resistance depends on grain size and
morphology (Dominik et al. 2007), e.g. small grains break rather than allow rolling (Dominik and
Tielens 1996). These findings from the microscopic physics of dust grains underline that dust
analogues for protoplanetary dust have to be chosen carefully.

MD simulations have been performed, e.g. by Dominik and Tielens (1995, 1996, 1997), Paszun
and Dominik (2006, 2008, 2009), Suyama et al. (2008), and Wada et al. (2007, 2008, 2009) for ice
and silica grains. In order to simulate large particle numbers and approach the continuum limit,
recent works (Seizinger 2010, in prep.) develop parallel MD codes which are also able to run on
graphic cards. With this technique it will be possible to simulate millions of particles.

3.2.2. Results

With MD simulations some important results, particularly for the onset of dust growth, have
been attained (see Sec. 2.2.4). These and other insights can be summarised as follows:

1. MD simulations augmented the understanding of the first growth step from dust grains to
macroscopic dust aggregates. The essential mechanisms, already proposed by laboratory
experiments, are fractal hit-and-stick growth, restructuring, and aggregate compaction.

2. Using the breaking (Epyeak), rolling (Eyop), and collision energies (Eef), thresholds for stick-
ing without restructuring, for restructuring, maximum compression, erosion, and catas-
trophic disruption of aggregates with some hundred monomers have been derived (see
also Sec. 2.2.3 and Tab. 3.1).

3. The importance of the impact parameter and aggregate rotation for the collisional out-
come became evident in MD simulations (e.g. Paszun and Dominik 2009, Wada et al. 2009).
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(a) (b) (c) (d)

Figure 3.2. Degrees of freedom in MD simulations. Two dust grains have six degrees of freedom
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(and respective motions) around their contact (a) vertical (pull-off, 1 degree), (b) tangential
(rolling, 2 degrees), (c) tangential (sliding, 2 degrees), and (d) torsional (spinning, 1 degree).
Each degree of freedom has its own resistance and associated friction (figure from Dominik
and Tielens 1997).

4. Taking into account the masses, porosities, collision energy, and impact parameter, elab-
orate recipes were developed for the collisional outcome. Tabulated values for fragment
distribution and change in porosity after a collision served as input for coagulation simu-
lations such as Ormel et al. (2007, 2009).

5. Mainly because of rolling (but also sliding) friction and breaking contacts, energy is dis-
sipated in the restructuring process. Hence, restructuring in compressing collisions may
provide an important energy sink for reducing collision velocities in the disc (Dominik and
Tielens 1997). Energy dissipation in collisions will also be addressed in this thesis.

6. Even at maximum compression the dust aggregates remain rather fluffy (Wada et al. 2008,
Suyama et al. 2008). This emphasises that dust aggregates behave more like porous fluffy
material rather than brittle rock-like material (if sintering processes are neglected).

7. Comparisons between ice and silica revealed that ice features a 25 times larger velocity
threshold for catastrophic disruption (50m/s, Wada et al. 2009) than silica. This stresses the
importance of water ice and dust-ice mixtures for planet formation in disc regions beyond
the snowline.

8. Coming from the microscopic properties of individual dust grains, MD simulations with
particle numbers close to the continuum limit can provide macroscopic material param-
eters such as the compressive strength and the sound speed (Paszun and Dominik 2008,
Seizinger 2010, in prep.). These and other material parameters are the key ingredient of
continuum solid body and porosity models such as the one used in this thesis.



3.3. Dust Coagulation Models

impact energy impact velocity [ m/s ] collisional outcome

Eetf <5E;on 0.2 sticking without restructuring
(fractal growth)

Eeff ~ 5E;on 0.7 onset of local restructuring

Egts ~ 3n¢cEpreak 1.2 onset of erosion

Eeif ~ 100 Epreak 1.9 catastrophic disruption

Table 3.1. Submillimetre aggregate collision thresholds. Impact energy and velocity thresholds for
sticking, restructuring, and disruption of submillimetre SiO, dust aggregates, derived in MD
simulations by Dominik and Tielens (1997). Velocities are taken from Blum and Wurm (2000).
Epreak and E;q) denote the energy to break a grain-grain contact and to roll a contact a quarter
of a grain’s circumference, respectively.

3.2.3. Limitations

As promising as it seems to simulate dust coagulation on the basis of microscopic grain proper-
ties, this bottom-up approach has some drawbacks. Some of them have already been collected
by Paszun and Dominik (2009):

1. Contemporary MD codes simulate collisions of aggregates with a few thousand particles
in reasonable time. This is still far from the continuum limit. Aggregates of about 100pum
in size already consist of a billion of particles.

2. Current MD models are based on the interactions between spherical grains. The simula-
tion of irregularly shaped grains is theoretically possible, but in fact computationally un-
feasible. However, irregular grains show different material strengths (Blum et al. 2006b)
and might be relevant for the planetesimal formation process.

3. Like all numerical models, MD simulations depend on microscopic material parameters
such as surface energy, displacement potentials and critical displacements. These have to
be determined in laboratory experiments as accurately as possible. Small changes in these
quantities might alter the behaviour of aggregates significantly.

3.3. Dust Coagulation Models

3.3.1. Basic concepts

For the complete picture of planetesimal formation from dust grains to kilometre sized boulders,
the dynamics of gas flows in the disc, which drive dust coagulation, and the physics of aggregate
collisions (see Sec. 2.2.3, 3.1, 3.2 and 3.4) have to be combined via particle gas interaction (see
Sec. 2.2.2). This is the task of dust coagulation models. With their aid, dust motions such as
Brownian motion, differential settling, turbulent mixing, and radial drift (see Sec. 2.2.4) and their
influence regarding dust coagulation can be studied (e.g. Dullemond and Dominik 2005, Brauer
et al. 2008a).

Essentially, these models follow the evolution of the number density N; of dust particles with
mass m;, where particle masses are divided into mass bins. Depending on the complexity of the
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coagulation model, N; is computed for a range of vertical and/or radial locations in the proto-
planetary disc. At the heart of each coagulation model lies the Smoluchowski coagulation equa-
tion (Smoluchowski 1916, as stated in Brauer et al. 2008a)

Ni: Z AvkjakjchkNj_ZAUijaijchiNj (3.1)
J

mi:mk+mj

where Av;; is the relative velocity between particles with mass m; and mj, g their collisional
cross section and p. the sticking probability. The first term of Eq. 3.1 is the gain rate of particles
with mass m; due to the coagulation of smaller particles with m; and m;. The second term is the
loss rate of particles with m;. Nj is the change rate of the number density of particles with mass
m;.

The quantity Av; jo; j p is often called the collision kernelwhich includes all the collisional physics
is hidden, particularly in the collision/fragmentation probability p.. Since the collision kernel is
essentially based on the interaction between two particles, all collisional physics can be reduced
to a two-body collision. However, this simplicity is misleading. In contrast, a realistic collision
kernel may become very complex if it is to contain all parameters which influence the outcome
of a dust aggregate collision. These include the collision velocity, the impact parameter, the
porosities of the bodies, their sizes, their spin, and probably even their collisional history. For
understandable reasons, computing the complex collisional physics cannot be included in the
coagulation simulations. Therefore, these are based on velocity thresholds, simple recipes, and
analytical formulae for fragment distributions (such as Eq. 2.25). In the literature, assumptions
for collision kernels range from the perfect sticking assumption (p. = 1) to very elaborated ver-
sions with several sticking, bouncing, and fragmentation types (Giittler et al. 2010, Zsom et al.
2010).

Global dust coagulation simulations, which consider the vertical and radial dimensions of a pro-
toplanetary disc, are numerically very challenging (Dominik et al. 2007). Therefore, in the past
decades important results on the dust aggregation process have been gained with local coagu-
lation models. An overview of the most important work is shown in Tab. 3.2. The effect of dust
settling in the inner and outer region were investigated with vertical slices of disc models. In con-
trast, radial drift motions were studied with vertically averaged radial models. Also the effect of
global turbulence was considered in both. Particularly Weidenschilling stressed the importance
of collective motions of dust in the midplane, which may dominate over individual particle mo-
tions.

Mainly in the last decade, computational power and numerical techniques allowed global coag-
ulation simulations to be performed. These were carried out, e.g. by Mizuno (1989), Kornet et al.
(2001), Dullemond and Dominik (2004, 2005), Barriére-Fouchet et al. (2005), Ciesla and Cuzzi
(2006), Ormel et al. (2007), Brauer et al. (2008a), Laibe et al. (2008), Zsom and Dullemond (2008)
and Zsom et al. (2010). In most of them the effects of Brownian motion, global turbulence, dif-
ferential settling, and radial drift were included.

3.3.2. Results

The insight gained by coagulation models, both global and local, into the planetesimal formation
process are too numerous to be stated completely. Therefore, I will restrain to the most important
ones:
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publication disc region model type global collective
inner | outer | vertical | radial | turbulence effects

Weidenschilling (1980) v v v

Nakagawa et al. (1981) v v

Weidenschilling (1984) v v v v

Mizuno et al. (1988) v v v

Schmitt et al. (1997) v v v v

Weidenschilling (1997) v v v v

Weidenschilling (2000) v ve v

Weidenschilling (2003) v v v v

Weidenschilling (2006) v v v

Weidenschilling (2010) v v v

Table 3.2. Local dust coagulation models. Exemplary overview of local dust coagulation models.
Items are classified according to the following categories: Coagulation processes are investi-
gated in the inner (around 1 - 3 AU) or outer (several tens of AU) disc regions. The model type
can either average over the vertical structure (radial model) or focus on a vertical slice at a cer-
tain radial distance (vertical model). The protoplanetary disc is considered to be laminar or
with global turbulence. Some models consider collective effects of the dust population in the
midplane, which can lead to shear induced local turbulence.

1. Collective effects induce shear turbulence due to faster rotation of a dust-rich midplane
layer and a resulting Kelvin-Helmholtz-instability. This is one of the main obstacles of a
gravitational instability (see also Sec. 2.1.4 and 2.3.2) but also problematic for the grinding
growth model (see Sec. 2.3.1).

2. Studies with different disc models resulted in a strong dependence of relative collision ve-
locities between aggregates in the respective disc (see Sec. 2.1.3). With certain assumptions
about fragmentation, growth is halted at different aggregate sizes.

3. Coagulation models allowed the investigation of the influence of Brownian motion, turbu-
lent mixing, differential settling, and radial drift both separately and in concert. The details
are presented in Sec. 2.2.4.

4. Joining data from coagulation models with radiative transfer methods permitted direct
comparisons of observed discs with their model analogues. This revealed the grain re-
tention and late pebble problems and consequently the necessity of fragmentation (see
Sec. 2.3.1).

5. With coagulation models it became possible to investigate the different aspects of the metre-
size barrier, namely the fragmentation, drift, and bouncing barriers (see Sec. 2.3.1).

6. Certain regions have been identified to promote planetesimal formation, e.g. the snow line.

3.3.3. Limitations

Limitations of coagulation models arise mostly from an inadequate treatment of the collisional
physics by means of the collision kernel:
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1. Via the collision kernel, coagulation simulations crucially depend on velocity thresholds
for sticking, bouncing, and fragmentation. Simplifying assumptions such as velocity inde-
pendent perfect sticking or catastrophic disruption leads to unphysical results, which are
not in agreement with observations.

2. The fragmentation barrier and grain retention problems show that simple threshold veloc-
ities, which separate perfect sticking from catastrophic disruption, do not suffice to model
aggregate collision behaviour with the necessary accuracy. Elaborate fragmentation statis-
tics, which depend on impact velocity, object sizes and porosities and other parameters,
may provide the right amount of fragmentation.

3. Porous objects are able to dissipate a considerable amount of energy by compaction in
sticking as well as in bouncing and disruptive collisions. The reduction in kinetic energy
comes from collisional physics and has to be fed back into the coagulation simulation as
an altered velocity distribution.

4. The complex collisional physics has to be mapped to fit formulae for fragment distribu-
tions and other simplifications to make it numerically treatable for coagulation models.

5. Coagulation simulations might have to trace different materials which possibly dominate
the planetesimal formation process in different regions. For example, dust might be the
dominant material in inner regions of the disc while ice and ice-dust mixtures might be
more important beyond the snow line.

6. Important physical processes such as re-accretion of grains due to gas flow or photophore-
sis are mostly neglected.

7. Kempf et al. (1999) find that the Smoluchowski theory is not suitable for describing the
kinetics of dust growth at densities typical for the cold part of a protoplanetary disc.

3.4. The method used in this thesis: Collisions with solid body
mechanics

3.4.1. Methodological motivation

The methodological motivation of this thesis arrises as a consequence from the limitations of the
methods presented in Sec. 3.1, 3.2, and 3.3. I begin with the latter. An adequate implementation
of the collisional physics of dust aggregates is essential for dust coagulation models. Zsom et al.
(2010) have shown this in an impressive way: until their works fragmentation was the most se-
rious obstacle to planetesimal formation. By considering the effect of bouncing they found that
hardly any dust aggregates fragment. Instead, these simply bounce off each other and growth
is halted at pebble sizes, which no longer stick due to insufficiently strong surface forces. The
important point is not wether this is a realistic scenario, but that by introducing novel collision
physics the whole picture of planetesimal formation changed. Because of the form of the colli-
sion kernel, studying dust aggregate collisions can be reduced to studying two-body collisions.

Therefore, the task of this thesis is to investigate the outcome of two-body collisions of porous
dust aggregates in full depth. Velocity thresholds for sticking, bouncing, and fragmentation are
to be derived. In all cases the reduction in kinetic energy is to be determined. With the grain
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retention problem in mind, the possible production of dust has to be considered for the three
collisional types. Since porosity is a key parameter in aggregate collisions, the change in this
quantity also must be studied for sticking, bouncing, and disruptive collisions. For the latter,
velocity dependent fragment distributions are to be derived. The dependence of the collisional
outcome on parameters such as object size, porosity, and homogeneity as well as collision veloc-
ity and impact parameter must be verified and, where applicable, quantified.

Since microscopic dust growth is very well understood thanks to laboratory experiments and
MD simulations, the collisional physics is unclear roughly from centimetre to kilometre sizes —
still five orders of magnitude. Because of size restrictions of the experimental apparatus (see
Sec. 3.1.3), these sizes are inaccessible to laboratory experiments. As a consequence one has to
switch on numerical simulations of larger dust aggregates. MD simulations are the physically
most accurate way to fill in the gap because they rely on well known microscopic physics. How-
ever, not every material can be simulated and due to limitations in computational resources a
100 micron aggregate is nearly impossible to simulate. The study of metre sized boulders with
MD simulations is illusory.

Therefore, for this thesis a different numerical method was chosen. Based on the theory of con-
tinua it works with continuous quantities such as the density. In principle, mesh based as well as
particle based methods come into consideration for the given task. Because of its advantages in
treating collisions the Lagrangian particle method smoothed particle hydrodynamics (SPH) was
chosen to simulate the collisions in this thesis.

By adopting measured (laboratory) or simulated (MD simulations) material parameters and by
supplying attained data to coagulation simulations, this thesis not only closes the size gap from
the smallest pre-planetesimals to planetesimals, it also bridges the abyss between simulations
and experiments. With the concept of close collaboration between experimentalists and disc
modellers this thesis has its place between laboratory experiments and disc simulations.

3.4.2. Drawbacks and solutions

Of course the methodological choice of this thesis comes with some drawbacks. In the following,
these are listed together with the solutions that are used and proposed by this work. At the same
time, the below enumeration also contains a short overview of Ch. 4 and 5.

1. SPH at first sight is designed for pure hydrodynamics (see Sec. 4.2), but it was extended to
simulate solid bodies as discussed in Sec. 4.3.

2. The essential effect of porosity has to be modelled. This is accomplished by the choice of a
suitable porosity model (see Sec. 4.3.4).

3. Any numerical model depends on the right choice of material parameters such as bulk and
shear moduli as well as compressive, shear, and tensile strengths. In principle, laboratory
experiments are able to provide values or relations for these. In fact, in this thesis some
could be adopted without any problem, but others had to be found in an iterative process
between experiments and simulations, which was a main task of this thesis (see Sec. 5.3).
Also contemporary MD simulations are more and more able to provide macroscopic ma-
terial properties (Paszun and Dominik 2008).
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. Even if realistic material parameters from laboratory experiments are adopted, the correct

functionality of the numerical model has to be demonstrated. This has been done by re-
producing three benchmark experiments, which were carried out in the laboratory and
reproduced by simulations (see Sec. 5.1).

In continuum models the choice of resolution and purely numerical parameters could
significantly alter the results. For this reason these dependences have been checked in
Sec. 5.2.

For addressing the grain retention problem, high resolutions are desirable to resolve the
small size of dust fragments as well as possible. Therefore, this thesis relies on a parallel
SPH code with trusted and profound scaling properties.

Itis impossible for SPH to simulate dust aggregates in the size regime where the continuum
limit does not apply. However, simulations in this regime are not necessary because dust
growth from individual grains has been studied extensively by laboratory experiments and
MD simulations.

3.4.3. Advantages over other methods

The following listing directly answers the limitations of the other methods presented in this chap-
ter. It is shown how this thesis’ methodological choice tries to fill the data gap, which exists be-
cause of the given limitations of other methods:

1.
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Different materials can easily be simulated by implementing the respective material pa-
rameters. Unlike MD simulations, aggregate simulations with SPH are not bound to mate-
rial with spherical monomers.

. Collisions can be studied in realistic protoplanetary environments without expensive ex-

perimental setups.

The initial conditions for the dust aggregates can be controlled easily. Object inhomo-
geneities can be excluded or generated and quantified, if desired. Therefore, many colli-
sions for a reliable statistical basis are not necessary. Unintentional pre-processing is also
excluded and there are negligible errors in all relevant quantities.

. The collisional outcome can be quantified in many aspects without loss of information

through the choice of a particular experimental technique. This makes sticking, bouncing,
and fragmentation statistics more accurate and reliable.

. Because of the continuum ansatz, there is in principal no upper size limitation for the dust

aggregates.

. Dust aggregate collisions can be simulated directly without circumventive analogous ex-

periments (see Sec. 3.1).

All quantities used in the solid body SPH approach can be traced spatially and in time. This
provides valuable insight into the physical processes taking place inside the aggregates
during the collision. Therefore, simulations enhance our understanding of the behaviour
of highly porous dust aggregates.



4. Smoothed Particle Hydrodynamics and
Solid Bodies

4.1. Basics

The numerical method smoothed particle hydrodynamics (SPH) was developed by Lucy (1977)
and afterwards, butindependently, by Gingold and Monaghan (1977). Originally designed for the
simulation of compressible flows in astrophysical contexts, it was enhanced in the past decades
and is nowadays applicable for a variety of physical problems. The research contexts where SPH
is used are too numerous to be listed here. To the interested reader, I recommend the works by
Benz (1990), Monaghan (1992), Speith (1998), Monaghan (2005) and Speith (2007), which offer
a broad overview of research fields and method improvements. Particularly, Rosswog (2009) re-
views the application of SPH in astrophysics. In this section I will restrain to the topics which are
related to the context of this thesis.

Since external and self-gravity can be implemented easily into the SPH scheme, it became a pop-
ular method to investigate the collapse of a molecular cloud as sketched in Sec. 2.1.1 (e.g. White-
house and Bate 2006, Stamatellos et al. 2007, Forgan et al. 2009). Besides dust coagulation mod-
els (see Sec. 3.3), grain growth by coagulation (see Sec. 2.2.4 and 2.3.1) was also simulated with
two-phase SPH codes (e.g. Barriére-Fouchet et al. 2005, Laibe et al. 2008). Concerning the final
stages of planet formation (see Sec. 2.4.5), the interaction between a gaseous disc and a planet
was studied with SPH, e.g. by Lufkin et al. (2004), Schifer et al. (2004) and Schifer (2005).

In the above examples, SPH was used because of its advantages in pure hydrodynamics. How-
ever, by including stress-strain relations this scheme can be expanded for the simulation of solid
bodies instead of flows and fluids. This was carried out by Libersky and Petschek (1991) and later
pursued, e.g. by Libersky et al. (1993), Benz and Asphaug (1994), Randles and Libersky (1996), and
Libersky et al. (1997). Since the simulation of porous pre-planetesimals belongs to the realm of
solid body mechanics, the numerics of this thesis is based on these works. Firstly, solid body SPH
was applied in hyper-velocity collisions and explosions for military and industrial purposes (e.g.
Libersky et al. 1993, Stellingwerf and Wingate 1994). Later its suitability for impact simulations
also became valuable in astrophysical contexts: Benz and Asphaug (1994, 1995) implemented
a model for brittle fracture which made it possible to simulate collisions between rocky aster-
oids. This model was applied to study the formation of asteroid families in high-velocity impacts
(Benz and Asphaug 1999, Michel et al. 2002, 2003, 2004). Under the assumption that planetesi-
mals consist of rock-like material, also planetesimal collisions were simulated (Benz 2000).

All these works did not involve the treatment of porosity. Sirono (2004) proposed a model with
porosity-dependent strength quantities which he applied to the collision of ice aggregates. This
thesis extends his model. A different approach was developed by Jutzi et al. (2008, 2009b). Based
on a different porosity model by Herrmann (1969), they expanded the works by Benz and As-
phaug (1994, 1995) for the simulation of porous rock-like brittle material. Again, asteroid colli-
sions and the influence of porosity were studied (Jutzi et al. 2009a, 2010).
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mesh-free  As a short characterisation it can be noted, that SPH is a mesh-free Lagrangian particle method.
Lagrangian The SPH particles are the sampling points of the scheme. Particularly with fragmentation in
particle method mind, they must not be confused with real particles. Instead, the continuum of a solid body is
discretised into small mass packages, which interact with each other. For example, the density
at a certain point X is given by the contribution of all surrounding SPH particles and not only
by the SPH particle at xy. The contribution of each SPH particle is weighted by the smoothing
kernel.
The method is Lagrangian, because it is based on the Lagrangian form of the continuity, mo-
mentum, and energy equation. Therefore, the SPH particles follow the flow, concentrate at high
densities and rarefy at low densities. Each SPH particle represents a fluid element and carries its
mass, momentum, energy, velocity, and so forth. As time evolves, the SPH particles interact with
each other and exchange momentum.
advantages of In Sec. 3.4.3 I described the advantages of continuum based computer simulations over other
SPH methods of investigating pre-planetesimal collisions. Several benefits of SPH over other (mainly
mesh-based) numerical methods are listed. Again, I will restrain to those relevant for this thesis.
Some of them were also pointed out, e.g. by Monaghan (2005) and Speith (2007) to name only
the most recent reviews:

1. The SPH formalism allows an easy implementation of different materials by assigning ma-
terial properties to different sets of SPH particles. In this work this feature will be used to
distinguish a glass sphere impacting into porous dust or a dust ball hitting a glass surface.

2. Inpre-planetesimal collisions fragmentation plays an essential role. The SPH scheme mod-
els fragmentation very naturally by the separation of particle clusters. Singularities caused
by the absence of particles are consequently avoided.

3. Because SPH is a mesh-free method and SPH particles are understood as sampling points
of the scheme, this allows large deformations of solid bodies to be simulated. Since the
method is Lagrangian, the SPH particles follow the deformation of the material. Compu-
tation only takes place where there is material. This avoids large computational domains
with overhead evaluation at grid points where no interesting physical processes take place.
In simulations with fragmentation, all fragments carry their computational domain with
them. In grid-based simulations, these fragments can leave the domain.

4. The SPH scheme is potentially adaptive. Because SPH particles follow the flow, they con-
centrate at regions with high density and they are sparse in low density regions.

5. By simple SPH particle placement, deliberately complex geometries can be generated. In
this thesis, spheres, half-spheres, boxes and cylinders will be simulated.

disadvantages of Unfortunately, the SPH numerical method also comes with some disadvantages, which also af-
SPH fect the results of this thesis:

1. The most important disadvantage of SPH is given by its high level of noise which originates
from the stochastic nature of the method. The noise level is higher than in grid-based
method.

2. Local accuracy and spatial resolution are lower than in grid-based simulations with a cor-
responding number of grid points.
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3. The treatment of fixed boundaries can cause problems in SPH. High density contrasts be-
tween two adjacent sets of particles can induce spurious particle oscillations and particle
separation.

4. To model shocks accurately, artificial viscosity has to be introduced in the scheme. As a
consequence, spurious dissipation and viscous shear may occur.

5. Because of the special form of the particle kernel, it is difficult to use other than cartesian
coordinates with SPH (see e.g. Omang et al. 2006, 2007). Consequently, geometrical sym-
metries (e.g spherical and cylinder) cannot be utilised to reduce the computational costs.

6. In solid body and magnetohydrodynamics simulations SPH is prone to a tensile instability
due to the low order of consistency of standard SPH.

Despite these disadvantages, the benefits of SPH outweigh the drawbacks for the topic of this
thesis (see also Sec. 3.4).

4.1.1. Kernel interpolation and discretisation

In this section I will give a short overview of the basic numerical principle of SPH. The kernel
interpolation, the interpolation of the spatial derivatives, and their discretisation will be intro-
duced.

For the subsequent description I will follow the works of Schifer (2005) and Speith (2007). The
latter particularly offers a profound insight into the numerical properties of SPH. I will restrain to
the relations which are directly relevant for this thesis. Throughout this section latin superscripts
index SPH particles and particle dependencies. Greek subscripts denote vector components. The
Einstein sum convention is applied to Greek indices, unless otherwise stated.

Kernel interpolation

In the SPH scheme, the continuous numerical quantities (e.g. density) appearing in the conti-
nuity, Euler, and energy equation have to be interpolated and discretised. For this an arbitrary
function f(x) can be expressed by the delta distribution function § (x):

fx = fv fx)sx-x)d3x'. (4.1)

The §(x —x) is smoothed out over a distance h, the smoothing length. The latter controls the
width of the function W (x,X’; h), which determines the range of interactions with other SPH par-
ticles. The kernel function is required to converge for vanishing smoothing length

}lin}) Wx,x;h) =6x-X). 4.2)
W (x,X; h) is the kernel function. Hence, the approximation of f(x) is given by

(f&x) = fvf(X') W (x,x'; h)d>x’. (4.3)

65

smoothing length

kernel function



normalisation

spherical
symmetry

differentiability

spatial derivative

4. Smoothed Particle Hydrodynamics and Solid Bodies

It can be shown that this approximation is first order if Eq. 4.2 holds and the following normali-
sation condition is met:

f W, x;h)d3x' =1. (4.4)
14

It proves to be convenient to choose W (x,x’; h) such that it is spherically symmetric
Wx,x';h) = W(x-x|;h) = W(F;h), (4.5)

where 7 = |x— x’|, and with compact support, i.e. W (#; h) = 0 for 7 > h. As alast condition W (#; h)
has to be differentiable at least to first order.

Kernel interpolation and spatial derivatives

It can be shown that for compact, first order differentiable kernels, which fulfil the conditions of
Eq. 4.2, 4.4 and 4.5, the following relations hold

OW(Fh) _ OW(F;h)

= , 4.6

0xq 0x,, (4.6)
oW (7;

f(—r,’h)d%c’:o. 4.7)
v 0xgy

By partial integration and exploiting the antisymmetry of the kernel derivative in Eq. 4.6, the
approximation of a spatial derivative is obtained

0W(r h)
<6xa X> f f&®)—— ) (4.8)

where the surface term of the partial integration has been neglected. This is only valid if the
computational domain is unlimited. If a fixed boundary problem is simulated with the standard
algorithm anyway, this may cause severe numerical problems. Within this thesis boundary par-
ticles are used, which interact directly with the remaining set of particles. By this approach the
boundary problem is avoided.

A more general version of Eq. 4.8 can be obtained by introducing a constant of integration f (x)

<%x> f(f(x)—f( ))aw” ) 4.9)

(X
which will prove to be useful for the following discretisation of the derivatives. It has to be under-
lined, that in Eq. 4.8 and 4.9 the interpolations of the derivatives were expressed by the derivative
of an analytically known kernel function. This is one of the most important advantages of the
SPH approach.
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Discretisation

For the discretisation of Eq. 4.3 and 4.8 or 4.9, respectively, into a particle distribution some other
quantities have to be introduced. The particle density n(x) of N particles is given by

N
nx =) 6x-x9, (4.10)
a=1

where x“ are the coordinates of the particles and a = 1,..., N. Using the convergence property of
the kernel function (Eqg. 4.2), the interpolation of the particle density can be expressed as

N
lim (n(x)) =lim ) W', x%h) = n(x). (4.11)
h—’O h—»O a=1

By multiplying Eq. 4.3 by n(x')/ {n(x’)) one finds

flx b)

x%x%; h). (4.12)
1{nx b))

(f&xD)) = Z
For the subsequent discussion the following abbreviations apply
fi=fxh and WP=wxx"h). (4.13)

Eq. 4.12 can now be related to the interpolated density p% and the mass m“ associated with the
SPH particle at x“. Together with the definition

m = oy’ (4.14)
the discretised version of Eq. 4.3 reads
mb
fH=Y—r'w*, (4.15)
b P

where it is summed over the interaction partners of SPH particle b, i.e. all particles within a radius
h around x”. This relation is commonly known as the SPH sum. Remarks on the approximation
and the consistency of the SPH scheme can be found in Speith (2007).

The interpolation of the spatial derivative (Eq. 4.8) can be obtained in a similar way

ofa b aWab
< fa>=Zm—bfb _ (4.16)

0x§ 5 0 0x§

The discretisation obtained from Eq. 4.9 is used more frequently. It ensures that derivatives of
constant functions always vanish, and hence leads to zeroth order consistency. It reads

(55)-=% MRy @.17)

0x§ xg

where in the further discussion the approximation brackets will be omitted. This representation
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of the SPH derivative will be used in this thesis. The relations obtained for the discretisation
of the kernel interpolation and its spatial derivatives can now be applied to the equations of
hydrodynamics, which will be presented in the next section. The angle brackets, indicating the
approximate character of (f%), will be omitted from now on.

4.2. Hydrodynamics

The Euler and Navier-Stokes equations will be stated in the subsequent description without ex-
plicitly deriving them. This section closely follows an earlier work (Geretshauser 2006, and ref-
erences therein). A more comprehensive treatment of the physics is given, e.g. by Landau and
Lifshitz (1966). The interested reader is referred to this reference and other standard textbooks.

The theory of hydrodynamics is a macroscopic theory. Hence, it describes fluids and flows not in
terms of moving molecules, but in terms of continua. That is, the physical behaviour of fluids and
flows is completely determined by their spatially and temporally continuous velocity distribution
v(x, f) and two arbitrary thermodynamic quantities. Commonly the pressure p(x, ) and density
p(x, t) are chosen for this purpose. The theory of continua also assumes that an infinitesimally
small fluid element is small compared to the whole of the fluid. However, it is large enough to
contain a sufficient number of molecules for the continuum approximation to be satisfied. This
is the important difference between the approach utilised in this thesis and MD simulations (see
Sec. 3.2), which reach the continuum limit only for very large particle numbers. Therefore, an
SPH particle is more similar to a fluid element, than to a molecule.

4.2.1. Equation of Continuity

The equation of continuity originates from the fundamental idea of the conservation of mass in-
side a finite volume element. The relation ensures that any change in density inside this volume
element is caused only by flux of mass inwards or outwards. The equation of continuity reads in
its (stationary) Eulerian form

9 __dlpva)

= 4.18
ot 0xq ( )

The Einstein notation is applied for spatial (Greek) indices throughout the section. Since SPH is
a Lagrangian method, the sampling points (SPH particles) are co-moving with the flow. There-
fore, the Eulerian time derivative 8/9¢ has to be replaced by the Lagrangian (substantial) time
derivative d/d¢. Both are related by

d dxg 0+0_U 6+6 4.19)
dr~ dtr dx, 9t “0x, Ot '
Consequently, the total derivative of the density is given by
do 0 0
R L (4.20)

ar ot "ox,’
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and using this relation the continuity equation in Lagrangian form reads
dp 0vg
—=—-p0—. 4.21
dr p 0xg ( )

With the aid of Eq. 4.15, the density p can be directly converted into SPH representation for
f%=p*“ which yields

p“=Y mPwab. (4.22)
b

This representation works fine for purely hydrodynamical simulations. Therefore, it is widely
used in astrophysical applications. By construction, the density is always positive and an ad-
ditional time integration can be avoided. However, this representation is not suitable for solid
body mechanics (see, e.g. Schifer 2005, Geretshauser 2006, Speith 2007). This is because solid
bodies usually have sharp boundaries. Particles at these edges have fewer interaction partners
than particles in the centre of the body. As a consequence, the density associated with particles
at an edge is lower, which can be seen from

N M
Pedge = P = Z mPwe < Z mPweb = P° = Pmiddie » (4.23)
b b

where N < M. Because the pressure is computed from the density distribution, the pressure for
particles at the edge is negative, while particles in the centre have zero pressure. This effect can
lead to unphysical particle motions and an unstable solid body.

For this reason, Randles and Libersky (1996) derive the SPH representation of the continuity
equation from the alternative expression of the spatial derivative (Eq. 4.17). They find

dp a mb b a
—_—=- — - 4.24
=P % o5 Wa = v 75 (4.24)

This representation is used for all simulations in this thesis. Other possibilities are listed by Speith
(2007).

4.2.2. Euler and Navier-Stokes Equations

While the continuity equation takes care of the conservation of mass, the Euler equation is de-
rived from the conservation of momentum. In general fluid elements can exchange momentum
in motions tangential and perpendicular to each other. Therefore, the rate of change of momen-
tum depends on a tensor

dya B aUaﬁ
PYar = oxg

(4.25)

where 0 4p is the stress tensor. For an ideal fluid, tangential interactions of fluid elements is ne-
glected and the stress tensor only depends on the pressure p

Oap= —p5aﬁ . (4.26)
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4. Smoothed Particle Hydrodynamics and Solid Bodies

Hence, the Euler equation for ideal fluids reads

dvg op

— = 4.27
L (4.27)

B 0xg

where p is the pressure. For the conservation of linear and angular momentum (Monaghan
1992), the pressure gradient term is symmetrised by

1
_EELZ_E_(B)+(11)QB” (4.28)
p axd 0x“ p p2 axa

inserted in Eq. 4.27 and discretised with Eq. 4.16 the SPH representation of the Euler equation is

dllg b pa pb owab
=— . 4.29
dr ;m ((p“)2 T2 ) oxa 429

A different representation (Schifer 2005, Speith 2007)

dv? b pb + p® owab

—_a _ _
QoL

) plp®  0xa

(4.30)

is proposed to be more suitable and stable for solid body simulations. However, this was not
tested within this work.

For the treatment of viscous fluids, the stress tensor (Eq. 4.26) has to be expanded by the viscous
stress tensor Gqp. SO far, only the translation of the fluid elements was considered. Viscosity,
however, goes along with an irreversible momentum transfer (internal friction). Friction only
appears, when moving fluid elements have different velocities with respect to each other. There-
fore, the viscous stress tensor 6,4 depends on the spatial derivatives of the velocity field. As a
consequence, the stress tensor is given by

aaﬁz—péaﬁ+&aﬁ. (4.31)
Thus, the Lagrangian formulation of the obtained Navier-Stokes equation reads

dva ap aéaﬁ
o __IP [ Zab 4.32
p dt 0xg - 0xp ( )

where the viscous stress tensor is defined as

0vgy avp 2 0127/ OUY

_— = — Oup— . 4.33
6xﬁ+6xa 3 “ﬁaxy ¢ “”axy ( )

5043517

The term in brackets is symmetric and traceless. It is called viscous shear tensor. The quantity n is
the corresponding shear viscosity coefficient' and describes the strength of energy dissipation by
pure shearing of fluid elements. Pure shearing is characteristic for viscous incompressible fluids.

1The shear viscosity coefficient 7 is also known as dynamic viscosity

70



4.2. Hydrodynamics

The ratio between the shear viscosity coefficient and density is the kinematic viscosity
v=-=. (4.34)

In protoplanetary accretion discs, the effective kinematic viscosity is used to model the angular
momentum transport in the accretion process (see Eq. 2.4, Sec. 2.1.1, and Sec. 2.1.4).

The last term in Eq. 4.33 is a diagonal tensor named bulk viscosity’ and { is the bulk viscosity
coefficient. The expression describes the energy dissipation by pure compression in compress-
ible viscous fluids, for example by shocks. The according coefficient represents the dissipative
strength. For incompressible fluids the bulk viscosity term vanishes.

In general, the viscosity coefficients depend on pressure and temperature which are not constant
throughout the fluid. Consequently, { and 77 depend on the location in the fluid. For most fluids,
this dependence can be neglected and the coefficients are treated as scalar constants. However,
for the following discussion it is assumed that n% and {* depend on x*. Thus, they are attached
to an SPH particle a and can assume different values for different SPH particles.

With the alternative representation of the spatial derivative (Eq. 4.17) the components of the
velocity fields in Eq. 4.33 can be discretised to

ov? mb owab
a _ a b a
Vap = 5% = Eb —5 (Vg = V) g . (4.35)

With this expression the viscous stress tensor (Eq. 4.33) can be written as

2
vgﬁ+vga—§6aﬁv$y +(“5aﬁvﬁy. (4.36)

Gap=1"

In analogy to Eq. 4.29, the SPH representation of the viscous part (e.g. Speith 1998) of the Navier-
Stokes equation is given by

G 5'b aWab
=y mt | T 4.37)
visc b (P (p?) axﬁ

dvd
dt

and with 4.29 and Eq. 4.31 the full equation can be written as

dvg_z b (—p“éaﬁ+63ﬁ) (—pb5a5+62ﬁ) owab
ar &M P92 (e ox

ol ob wab
=Y mb ob | _ab 9

4.38
> (p9>  (p?)? ] Oxg (4.39)

A closer analysis (Speith 1998) reveals that this approach conserves linear momentum, but an-
gular momentum is not conserved. Other possibilities of modelling this physical viscosity are
listed, e.g. by Speith (1998, 2007) and Schéfer (2005). The ability of SPH to model viscous fluids
was used to model protoplanetary accretion discs in various situations. Here, the SPH repre-

2Bulk viscosity is sometimes synonymously called volume viscosity.
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sentation of the Navier-Stokes equations is only stated for the sake of completeness. However,
the presented relations are related to the those of solid body SPH, which is described in Sec. 4.3.
Physical viscosity can also be modelled by means of artificial viscosity by adding an extra pres-
sure term I1%? inside the square brackets. This will be discussed in Sec. 4.4.2.

4.2.3. Energy equation

Using the mass (Eq. 4.21) and momentum (Eq. 4.32) conservation equations, the conservation of
internal energy u can be formulated. It reads in Lagrangian form

L P (4.39)
Par = Pox, " 7%ax, '

The derivation of the SPH representation of the energy equation for ideal fluids consistent with
Eq. 4.35 and 4.38 is given by

du? 1 b pa pb . b awab
== - . 4.40
dz 2§m ((P“)2+(Pb)2 (U“ V"‘) 0xq (440

For viscous fluids the viscous stress tensor G, (Eq. 4.33) has to be taken into account again and
the SPH representation reads

b
du 1« | % Tap (., OWD
= - + - . 4.41
ar “25" ((p“)2 oo |14 5, Ay

The set of continuity (Eq. 4.21), Euler (or Navier-Stokes) (Eq. 4.27 and 4.32), and energy (Eq. 4.39)
equations has to be closed by the equation of motion of the SPH particles and a suitable equation
of state (EOS). For the simulations in this thesis the EOS is energy independent, and therefore the
energy equation will not be used.

4.2.4. Equation of motion

With the equations presented so far the system of partial differential equations is underdeter-
mined. To close this set, the equation of motion of the SPH particles has to be specified. Gener-
ally it is assumed that the particles move according to the velocity field at their respective location

deg
=v,. 4.42
ar e (4.42)
After sketching the application of SPH to pure hydrodynamical problems, I now turn to the sec-
ond numerical basis of this thesis: the equations of solid body mechanics and their SPH interpo-

lation and discretisation.
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4.3. Solid Body Mechanics

Because the continuum theory of solid bodies is rarely used in astrophysical contexts, I will pro-
foundly review its derivation and its most important quantities such as stress and strain tensors,
bulk and shear moduli. In this description, I will stress the differences between fluids and solid
bodies, which lead to additional material equations. This section closely follows an earlier in-
troduction (Geretshauser 2006, and references therein). Firstly, the relations for the elastic be-
haviour of solid bodies are derived. As a second step, a theory for plasticity is described. In the
third section, the relations obtained will be closed by a suitable porosity model, which appears as
an equation of state. The SPH representations used in this thesis are presented at the appropriate
locations.

4.3.1. Elastic behaviour of solid bodies

Both, the equations of hydrodynamics (presented in Sec. 4.2) and solid body mechanics belong
to the theory of continua. Thus, molecules are again described as a collective by means of ther-
modynamical quantities such as density, pressure, and temperature. Therefore, the continuity
equation can be transferred directly. The conservation laws for momentum and energy, however,
have to be reformulated using different relations for the stress tensor o44. The reason for this
lies in the fundamental difference between a fluid and a solid body: While in a fluid molecules
can move around freely, in a solid body the intermolecular bonds are strong. As a consequence,
elastic and plastic deformation of a solid body become possible. This constraint leads to new
relations, which are derived in the following.

Deformation and the strain tensor

Let x, be a (continuous) position inside a solid body. For some external force, acting on the solid
body, each of its points is displaced to a new position %,. Then the displacement vector is given
by

Iqg = Xa - xa . (4.43)

The displacement vector, as a function of the old coordinates, contains all information about the
deformation of a solid body. The displacement vector can also be written as

d§? = d(%e)? = (dxgq +dra)?, (4.44)

where ds = v/d(xy)? and d§ = \/d(%,)? are infinitesimal distances between two points before and
after the deformation, respectively. By means of the total differential

dr = —dx;, 4.45
r oxy X (4.45)
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the infinitesimal displacement can be written as

0 or ory Or
A =ds? + | 2%+ L 4 Z X 2T dx,dag (4.46)
0xg 0xqg 0xq0xp
=ds®+ 2¢qpdxqdxg . (4.47)

By this construction the information of the deformation is transferred to the Green’s strain tensor
€ap which can be derived from Eq. 4.47 in its exact form as

1(0 or or, Or
r“+_/3+_7’_7’

cap=3 (4.48)

@ 0xq 0xq0xp) "
A quick look shows that €44 is symmetric. Therefore, it can be diagonalised using principle axis
transformation (PAT). However, the specific diagonal form of ¢, gis only valid for (an infinitesimal
region around) a chosen location. In general, the diagonal form does not apply for the whole
solid body.

With the diagonal form of ¢, 5, any deformation can be understood as the superposition of three
independent deformations. Hence, Eq. 4.47 can be rewritten

d5? = (1+2€17)dx? + (1 + 2€25)d x5 + (1 +2€33)dx3 (4.49)

=d# +dx5 +dis. (4.50)

For the elastic case, it can be assumed that in a solid body molecules do not fully detach from
each other. Otherwise the body fractures or becomes a fluid. Hence, homogeneous deforma-
tions are assumed, where neighbouring points have similar displacements, i.e. displacements
do not vary largely with location and |07 /0x4| < 1. As a consequence, second order terms can be
omitted. This leads to the definition of the (infinitesimal) strain tensor

)
L (ar“ + ﬁ) . 4.51)

€qp=—|—
ap =5 0xg  0xq
While Green’s strain tensor (Eq. 4.48) vanishes for rigid body motion in the case of finite strains,
the infinitesimal strain tensor does not. Therefore, it has to be made sure that the latter is small

for each timestep (Wegner and Haddow 2009). With Eq. 4.50 the deformation of an infinitesimal
volume dV; to dV> can be expressed by means of the strain tensor €44 in the following way

dVo =dVi(1+€11)(1 +e22)(1 +€33)
=dVi(1 +e11 +€22 +€33)
=dVi(1 +eqq), (4.52)

where, again, higher order terms are neglected. The trace e, is invariant under coordinate trans-
formation and Eq. 4.52 holds for any coordinate system.
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Forces and the stress tensor

From the deformation of a solid body the focus now turns to the resulting inner stresses. These
are described by the stress tensor. With no external forces, the inner forces between adjacent
volume elements vanish and the body is in thermal equilibrium. From the microscopic point
of view, the Brownian motion of all molecules is balanced, such that there is no macroscopic
motion.

When external forces are applied, inner stresses arise and try to restore the original shape of the
body, bringing it back to thermal equilibrium. The microscopic reasons for this are short range
forces by molecular bonds. Transferring this to the macroscopic picture, this means that in con-
tinuum theory the inner stresses have to be formulated as forces acting on volume elements.
Thus, the microscopic forces have to be expressed in terms of surface forces.

The resulting force F, on a finite volume element V is given by
F, = f FodV (4.53)
v
where &, is the force density. Because the resulting force can be expressed in terms of the surface

forces, the Gaussian Divergence Theorem can be applied. This reformulates the surface force as
divergence of a vector. The force density can therefore be expressed as a tensor

F fgz dv faa“’jdv f df, (4.54)
= = = ag y B
Y v 0xg sy PP

where dfp is an infinitesimal surface element with the normal vector pointing outwards. In a
Cartesian coordinate system with z||df, o, is a surface density acting perpendicular to the sur-
face, while o, and 0,y are tangential. Thus, 0,4 is symmetric.

For the case of hydrostatic compression, there are no shear forces. Thus, o =0 for a # B and for
the diagonal elements it holds that 0,4 = —p, where the direction of the pressure is antiparallel
to df. Consequently, the stress tensor can be written as

Oap= —p(saﬁ. (4.55)

Stress strain relations

Relations connecting the deformation (strain) of a material with its response (stress) are called
(mechanical) constitutive equations. However, the term is used ambiguously throughout the lit-
erature. I regard constitutive equations to be the subset of the equations of state (discussed in
Sec. 4.3.3), which relate thermodynamic state variables with each other. In this sense, constitu-
tive equations connect the specific thermodynamic variables stress 0,4 and strain €, and their
time derivatives with each other. For the derivation of such constitutive relations, €,5 and o4
have to be related to thermodynamic quantities such as the internal energy and free enthalpy.
For this, the deformation work W carried out by internal forces F, has to be defined. With small
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displacements 61y, the change in work density is given by 6% = %,6r, and the total work reads
W= / swav’
1%

oo
=/ aﬁ6radV'
174 aXﬁ

. fv O apbeapdV’ (4.56)

where from the second to the third line, partial integration with a vanishing surface term is used.
In the fourth line, the symmetry of 044 is exploited. As a result, the work density for small dis-
placements is given by

oW = —aaﬁﬁeaﬁ (4.57)

In this section only elastic deformations will be considered. In other words, the deformations are
reversible and inner stresses restore the original shape of a body, once external forces vanish. As
a second assumption, deformations shall take place slowly enough that for any point in time, the
body is in thermal equilibrium. Plastic deformations are treated in Sec. 4.3.2.

The infinitesimal change of internal energy is given by the sum of deformation work and heat
produced in this process

dU =TdS+dwW
= TdS+0’aﬁd€aﬂ , (4.58)

where dS is the infinitesimal change of entropy and T is the temperature. With Eq. 4.57 dU is
related to 0 4p and €4p. For hydrostatic compressions 045 = —845p (Eq. 4.55) and

dU=TdS- péaﬁdé‘aﬁ
= TdS - pdeaa
=TdS-pdV, (4.59)

where for the last line Eq. 4.52 is used®. By means of Laplace transformations of the thermody-
namic variables, two other forms of energy can be derived from Eq. 4.58

F=U-TS free energy (4.60)
G=F—-0qp€ap Gibbs energy, (4.61)

3Please note that in Eq. 4.52 dV denotes a infinitesimal volume, whereas in Eq. 4.59 deyq = dV denotes an infinites-
imal change in volume.
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and their respective infinitesimal changes are given by

dF =-8dT +04pdeqp (4.62)
dG = —SdT—eaﬁdaaﬁ . (4.63)

At the same time, the total differentials for U (S,€ap), F(T,€qp), and G(T, Oap) read

ou ou

(2] 5522 s s
0S J¢ 5 Ocap) g
OF OF

dFZ(—) dT+( ) deap, (4.65)
oT €ap OEaﬁ T
oG oG

dG:(—) dT+( ) dogg. (4.66)
oT Tap 00 qp T

For S = const. in Eq. 4.64 and for T = const. in Eq. 4.65 the total differentials can be compared
with Eq. 4.58 and 4.62, respectively, which yields the following relations for the stress tensor

( ou ) ( OF ) 4.67)
Ogp = = . .
ap aeaﬁ S aé‘aﬁ T

In analogy, the strain tensor can be expressed with Eq. 4.63 and 4.66 under the condition T =
const.

€ ——( oG ) (4.68)
ap = 00ap ), '

In order to derive a stress-strain relation, the isothermal condition in Eq. 4.67 is used. For small
deformations F can be expanded into a Taylor series

. 1 0°F
eaﬁ — >
€ap=0 26€aﬁ

Fleqp) = F(0) + gt (4.69)

Eaﬁ:()

aEaﬁ

where 6‘21 represents a scalar constructed from the strain tensor €,4. At constant temperature?
and in an undeformed state (¢4 = 0) all internal stresses are expected to vanish. Therefore,

according to Eq. 4.67, the linear term of the expansion also has to vanish

=0 (4.70)

Neglecting terms of third and higher order, Eq. 4.69 can be expressed as

A
F=Fy+ E(em)2 + UEapEap (4.71)

where A and u are the Lamé coefficients, which are scalars for isotropic media. For this equation,
the second order term 6‘21 s is decomposed into two independent scalar quantities: the square of

4The isothermal condition excludes deformation by change of temperature such as thermal expansion.
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the trace (e,w)2 and the sum over the squares of all components €apEap-

Since €,p is a symmetric tensor, it can be decomposed into a symmetric traceless and a diagonal
tensor

1 1
€ap = (Gaﬁ - 5504,66)/)/) + 550:,66)/)/ . (4.72)
The first part accounts for pure shear whereas the physical meaning of the second part is hy-

drostatic compression. For hydrostatic compression the volume of the body changes (see also
Eq. 4.52), whereas for pure shear only the shape changes while the volume remains constant.

Inserting the decomposition of €, into Eq. 4.71 and omitting the constant Fy yields
1 2K,
F=pleqp— géaﬁew + 5(6,,},) 4.73)
with the bulk modulus K and the shear modulus i, where the former is defined as

2

Because the free energy F is always positive, it holds K > 0 and p > 0. Finally, for the stress-strain
relation Eq. 4.73 is differentiated. This yields

1 1
dF = Keyydegq +2u (eap - §6aﬁew) d (eaﬁ - géaﬁeﬂ,)
1
= Keyydega +2u (eap - §5aﬁ€w) deqp

= (Ke,méaﬁ +2u

1
6‘043 - §5aﬁ677)) dé‘aﬁ
=0gpdeqp . (4.75)
From the first to the second line the term in brackets vanishes by multiplication with § ap be-
cause this term is a traceless tensor. In the third line deqq = §4pdeqp is used. The last line is

given by Eq. 4.62 under the condition of constant temperature, where —SdT vanishes. Finally,
this yields the desired stress-strain relation

1
Oap=Keyybop+2u (eaﬁ - §5aﬁ€w) . (4.76)

This is a more general form of Hooke’s law, which states that the force is proportional to the
elongation of, e.g. a spring. Conversely, the strain tensor can be expressed as

1 1 1
€ap = 9—K5aﬁaw + a (Uaﬁ - §5aﬁ0w) ’ @.77)

where 044 = 3Keqq is used, which follows directly from Eq. 4.76. For the case of hydrostatic
compression the shear term in Eq. 4.76 vanishes and with Eq. 4.55 the change in volume solely
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depends on the bulk modulus and the pressure p

€aa = _g =—-px, (4.78)

where x = K™! is the compressibility. Consequently, the stress tensor can be expressed as
Oap=—P0ap+Sap, (4.79)

with the deviatoric stress tensor S, 5 defined as

1
Sap=2u (Eaﬁ 50:[567/)/) (4.80)

The general equation for the conservation of momentum in solid body mechanics is identical
to the pure hydrodynamics case (Eq. 4.25). The essential difference is in the form of the stress
tensor. For the Euler and Navier-Stokes equations the stress tensor depends on the velocity field
of the fluid. In contrast, for a solid body the stress tensor depends on the strain, i.e. on the defor-
mation of a body. The Lagrangian momentum equation for solid body mechanics is given by

Ve _9%ap __9p , 95ap

= = . 4.81
PYdr ~oxs  oxa  Oxg (.81
The SPH representation of this equation used throughout this thesis reads
b
dv? o2 o aWab
T Y b | 2B _ab (4.82)
dr 4 (pD%  (p?)?* ] dxg

with 04p as defined in Eq. 4.79. However, while p is given by a suitable EOS for every point in
time, the time evolution of the deviatoric stress tensor and hence the time evolution of the strain
tensor has to be specified.

Stress and strain rates

For the time evolution of the strain, one has to define the velocity field v, (x, t) of the points con-
stituting the solid body. In general, this velocity field depends on time and location. Infinitesimal
displacements are given by dr, = v,dt. With the definition of the strain tensor (Eq. 4.51) for ho-
mogenous deformations (|0rq/ xg| < 1) the strain rate tensor is given by

deaﬁ

Eap = (4.83)

dt
_1(ddr, dOrp
E(dtaxﬁ dtaxa)
1(0 dra 9 drp
25 |
1

o

dxp dt | Oxq dt
0vgy al/‘g

N 4.84
0xp - Oxa) ( )
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Its SPH representation is given by

1 mb owab owab
Egﬁ:5§y (Ua—l/g)a—xg-i'(l/g—l/g)a—xg . (4.85)
Eringen (1962) introduced the axiom of objectivity, which states that the constitutive equation
must be invariant under changes of reference frame. Based on this work, Truesdell and Noll
(1965) investigated the concept of frame invariance and its significance for mechanics. A quan-
tity or equation is frame invariant if it transforms in a defined way with the frame of reference.
The transformation between two frames of reference can be written as

x(1) = Qx(1) +c(1), (4.86)

where Q is an orthogonal rotation tensor of second order, and c is a vector. The time dependence
will not be stated explicitly for the following discussion. For Qup = 644 and c(t) = const. the
transformation is Galilean.

Any vector w and tensor T is called objective or frame invariant if they fulfil the conditions

W=Qw (4.87)
T=Q'TQ, (4.88)

where Q' denotes the transpose of Q. With Eq. 4.86 the transformation of the spatial partial
derivative is given by

0 0 dx OO(QT 0 OQT (4.89)
—_——— = — — X — = - ) .

0x oxdx O0x0x 0x

and, consequently, the partial derivative is not objective. The displacement vector r = xy — X3
(Eq. 4.43) is objective, which follows directly from Eq. 4.86. However, the velocity field given by
differentiating Eq. 4.86, denoted by the common dot-abbreviation,

V== Qx+Qx+¢
=Qv+e+Q&E-0), (4.90)
is not objective. In this relation the common abbreviation x = %x is used. From this one can
define two useful quantities
- Or or T
G=—=0Q0—Q =0QGQ (4.91)
0x 0x
. OV ov 1 .. T T T
L=—=Q-Q +QQ =QLQ +QQ". (4.92)
0x 0x
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It follows that the strain tensor
== (L+L7)

(GQ+QGQ))

NID—‘[\JI»—‘NI»—I

(QGQ" +QG'Q")
=QeQ’, (4.93)

is objective. However, for an arbitrary objective tensor T the time derivative is not frame invariant
since

T=Q1Q" + QTQ" + QTQ" . (4.94)
For the construction of arbitrary frame invariant tensors, a rotation rate tensor is defined as rotation rate
e[ (@)T)
2\0x \o0x
Loy

1 .
=3 (QLQ" -QL'Q" +2QQ")

=QRQ"+QQ", (4.95)
where the identity d/dz (QQ" = QQT+QQ" = 0is used. In SPH formalism the rotation rate tensor ~ SPH rotation rate
is formulated as (this thesis)
1 mb owab owab
a _ e b_ a (b _a
Rep =525 | (Ve = va) o D o (4.96)
From this quantity one obtains
Q=RQ-QR (4.97)
Q"=-Q'R+RQ", (4.98)

which can be inserted into Eq. 4.94. Together with the definition for an objective tensor (Eq. 4.88)
this yields the relation

T-RT+RT=Q(I-RT+RDQ", (4.99)

which states that the quantity in brackets on the right is an objective tensor rate. This is the Jaumann rate
co-rotational or Jaumann rate proposed by Jaumann (1911).

With Eq. 4.99 the constitutive equation for the deviatoric stress rate can be formulated from deviatoric stress

Eq. 4.80 in a frame invariant form as rate
dSap 1
dr =2u eaﬁ 6aﬁ€mf + SayRyﬁ Raysyﬁ (4.100)
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Figure 4.1. Schematic stress-strain relation. With increasing strain, the material develops a stress,
which is proportional to the strain. This is synonymous with Hooke’s law. In this regime the
deformation is elastic and reversible. Once the strain reaches the yield limit, the stress re-
mains constant with increasing strain. This behaviour is referred to as yield plateau. Various
behaviours are possible after this regime. Either the material ruptures or the stress increases
again with higher strain. The latter behaviour is called strain hardening.

Its SPH representation is given by substituting Eq. 4.85 and Eq. 4.96 into this expression. Before
the set of equations is closed with a suitable EOS by the applied porosity model, a short intro-
duction on the theory of plasticity has to be given.

4.3.2. Plastic behaviour of solid bodies

As a motivation for the theory of plasticity used in this thesis, I present a short example: A small
steel spherule is dropped not too far from the surface of a wooden desk. After hitting the solid
surface, the ball will bounce off before it falls down again. A closer look reveals that neither the
ball nor the desk show any kind of damage. During the impact both materials are deformed
elastically and thus returned to their previous states. This experiment can be repeated with in-
creasing height and at a certain height a little dint in the desk appears. Because of the higher
impact speed, which yields higher dynamic pressure onto the surface, the material of the desk
leaves the elastic regime and is deformed plastically. Therefore, it is reasonable to assume that
there is some kind of pressure threshold which marks the transition from the elastic to the plastic
regime. A schematic stress-strain relation for the elastic and plastic regimes is shown in Fig. 4.1.
Initially, the material shows elastic behaviour with stress responding proportionally to increasing
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strain (Hooke’s law). Then it reaches the yield plateau, where stress remains constant while the
strain is increased. It can easily be seen why this condition leads to irreversible plastic deforma-
tion. Increasing strain is equivalent to increasing deformation. If stress in the elastic regime is
understood as the ability of a material to restore its original shape for vanishing external forces,
then constant stress for increasing deformation means that internal stress only partially restores
the original shape once external stresses cease. The consequence is plastic deformation. The be-
haviour after the yield plateau depends on the material type. For some materials stress increases
with strain again. This phenomenon is called strain hardening. Other materials rupture in plastic
flow or simply fracture.

Since the stress tensor 04 is symmetric, it can be diagonalised by means of principle axis trans-
formation (PAT). As a result, any stress can be represented by the principle stresses o1, 02, and
o3 with o] = 0 = 03 (see Kachanov 1971, for a comprehensive introduction). For most materials
the change in shape is caused by shear deformations. Therefore, at first a criterion for the plastic
deformation by shear is formulated. Such criteria are often referred to as yield criteria, which
cause the yield plateau in Fig. 4.1. The principle is simple: once the shear exceeds a certain limit,
the deformation is plastic and the shear is reduced in a suitable way. By the reduction of the
shear stress, the material deviates from Hooke’s law and follows the yield plateau path. Because
yielding by shear is the most prominent plasticity criterion, the threshold value is often simply
called yield strength. Since in Sec. 4.3.4 two other yield criteria for pure hydrostatic pressure will
be introduced, I will use the more appropriate term shear strength for the shear threshold.

For isotropic media, the shear strength has to be a symmetric function of the principal stresses
f(o1,02,03) =const.=K . (4.101)

Because the influence of the mean pressure p on plastic deformations by shear can be neglected,
the plasticity criterion for shear can be formulated by means of the deviatoric stress tensor Sy
and its principal deviatoric stresses sj, s, and s3, which are parallel to the respective principal
stresses. Thus, it is

f(s1,82,83) =const. =K. (4.102)

From the deviatoric stress tensor three invariants can be constructed. These are

L (Sap) = Saa =0, (4.103)
1 1 2 2 2

I(Sep) = ESaﬁSaﬁ =5 ((01-02)"+ (02— 03)° + (03— 01)7) , (4.104)
1

[3(Saﬁ) = gSaﬁSﬁysya = 515253 . (4.105)

The first invariant I; vanishes because Sy is constructed to be traceless. The second invariant is
expressed by the principal axes of 0,4 and the third invariant by the principal axes of S, 5. Now,
the plasticity criterion can be reformulated

F(11(Sap), I(Sap), I3(Sap)) = f (12(Sap), I3(Sap)) = K . (4.106)

From experiments, the French engineer Tresca conjectured that for a material in a yield state (on
the yield plateau) the maximum tangential stress 1/20; is the same at all points of the medium.
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From that he formulated the Tresca-Saint Vernant criterion

lo1—02| <05
oz —03| <05

los—01| <0y (4.107)

Because of mathematical difficulties in three-dimensional problems, von Mises approximated
this by what became known as the von Mises criterion

(01-02)* + (02— 03)° + (03— 01)* =207 . (4.108)

Both criteria are clearly constructed from the second invariant I, of the deviatoric stress tensor.
In this thesis the more commonly used van Mises criterion is applied.

This criterion can be interpreted geometrically (Fig. 4.2) in stress space (see Kachanov 1971, for
an approach to the geometrical interpretation). In this space every possible stress is represented
by a point given as a linear combination of the principle stresses 01, 02, and o3, which represent
the axes of stress space. In there, the van Mises criterion takes the form of a Cylindelr5 with radius
Y = V2/30, and infinite extensions in the z-direction. The cylinder is centred around the hydro-
static axis given by 01 = 02 = 03, which represents the set of stresses with pure hydrostatic com-
pression (p > 0) or tension (p < 0) and vanishing shear. Any parallel line to the hydrostatic axis
not intersecting the origin represents a set of stresses with hydrostatic compression or tension at
constant shear. Conversely, the plane perpendicular to the hydrostatic axis intersecting the ori-
gin is called deviatoric plane, which is identical to a set of stresses with pure shear and vanishing
mean pressure. Any parallel plane represents shear stress at constant mean pressure.The points
inside this cylinder represent stresses in the elastic regime; those outside represent stresses in
the plastic regime. The points on the surface are stresses, where the transition takes place.

In Fig. 4.2 the cylinder has finite length® given by X + T, where the compressive strength X, is
given by the distance from the deviatoric plane to the bottom plane, limits hydrostatic compres-
sion and the fensile strength T limits hydrostatic tension. These quantities are introduced by the
porosity model (see Sec. 4.3.4). From this point of view entering the plastic regime can happen in
two ways: leaving the cylinder at its top or base and leaving it at its lateral surface. Exiting at the
bottom corresponds to compressing the material until it reaches the critical transition point for
plastic compression. Leaving the cylinder at the top is equivalent to the material rupturing dur-
ing expansion. Exiting through the lateral surface corresponds to exceeding the shear strength
Y.

4.3.3. Equations of state

In general, equations of state (EOS) relate thermodynamic state variables such as pressure, tem-
perature, density, etc. with each other. They are essential for the description of the behaviour of
solids and fluids, since they close the system of partial differential equations given by the conti-
nuity equation (Eq. 4.21), the momentum equation (Eq. 4.81), and the energy equation (Eq. 4.39).
While these equations are derived from fundamental conservation principles, the EOS contain
all the material-dependent physics. In this section I will shortly introduce some important EOS.

5The Tresca-Saint Vernant criterion has the shape of a hexagon.
6Distances in stress space are measured in pressure units, i.e. Pa.
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Figure 4.2. Porosity model yield conditions. In stress space given by the principal stresses 01, 0,
and o3 the yield conditions can be interpreted geometrically. The von Mises yield criterion is
represented as a cylinder around the hydrostatic axis, which is perpendicular to the deviatoric
plane. Pure shear stresses at a given mean pressure p are represented as points on a surface
parallel to the deviatoric plane intersecting the point oy = 0, = 03 = p of the hydrostatic axis.
Pure pressure increase and decrease at constant shear is represented by lines parallel to the
hydrostatic axis. The elastic regime is given by the set of points inside the cylinder. Outside
applied stresses lead to plastic deformations. Pure shear is delimited by the shear strength Y,
while the hydrostatic pressure thresholds are the compressive (X) and tensile (T) strengths,
respectively.
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Liquid equation of state

For liquids, the pressure p depends linearly on the density p of the liquid, if the compressions and
expansions remain small, then the continuity equation and momentum equation are connected
by

p=cip-po), (4.109)

where ¢ is the sound speed and py is the density for an uncompressed liquid. This EOS is in-
dependent of the specific internal energy u. Therefore, the energy equation does not need to be
solved for liquids governed by Eq. 4.109. The sound speed is related to the bulk modulus

K

=22 (4.110)

Po
The liquid equation of state looses its validity once p becomes significantly smaller than pg. For
values of 80-95% of the ratio p/py Melosh (1989) recommends setting the pressure to zero in
simulations.

Perfect gas equation

The equation for a perfect gas is given by
p=-1Dpu, (4.111)

where u is the specific internal energy and the adiabatic coefficient y = C,/Cy. Cp, and Cy are
the specific heat at constant pressure and volume, respectively. The quantity y is related to the
number of degrees of freedom of the gas. For example for a monoatomic gas y = 5/3. For the
perfect gas equation all three conservation equations have to be solved.

Murnaghan equation of state

This equation of state is an expansion of the liquid equation of state. In contrast to the latter the
dependency of the pressure on the density here is nonlinear

(2]

where Kj is the bulk modulus at zero pressure. The constant 7 is one of the Murnaghan param-
eters of which a list can be found in Melosh (1989) for various materials. This equation of state
has a wide range of applications.

Within this thesis, the Murnaghan EOS is used to simulate glass in the benchmark experiments
presented in Ch. 5. Since it does not depend on the internal energy its use is limited to the con-
dition of isothermal compression.
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Tillotson equation of state

The Tillotson EOS was originally developed by Tillotson (1962) for high-velocity impacts of met-
als in military context. Two regimes are distinguished using the specific internal energy u

(“+ u/(uvl;]2)+1)pu+A(n_1)+B(77_1)2 U< Uiy
- bpu B0 0-1) o—alpo/o-1) , (4.113)
apu+(u/(un2)+1+A(n_1)eﬁPOP )e“POP U> Uey

where ujy and ucy are the specific energies for incipient and complete vaporisation, respectively.
The former characterises a compressed state, while the latter refers to an expanded state. The
quantity uy is a fit parameter close to the vaporisation energy. p denotes the material density
and pg the density at zero external pressure and 1 = p/py. The quantities «, 8, a, b, A, and B
are material constants. For internal energies u;y < u < Uy a linear interpolation between com-
pressed and expanded states is applied.

The relatively simple analytical form of the Tillotson EOS has the advantage of low computational
costs. The numerous free material parameters open a wide field of possible applications. In
particular, the sophisticated treatment of the internal energy makes the equation applicable to
processes where melting and (partial) vaporisation plays a role, e.g. in high-velocity collisions.
However, the needed material parameters are difficult to determine, and thus known only for a
few materials.

In astrophysics the Tillotson EOS was used for asteroid collisions in the km/s regime. Many simu-
lations based on the code by Benz and Asphaug (1994, 1995) apply the Tillotson EOS. Michel et al.
(2002, 2003, 2004) utilise material parameters for basalt and Jutzi et al. (2008, 2009b,a, 2010) im-
plemented a simplified version of the Tillotson EOS with basalt parameters except for the density,
which was set to the value of pumice.

For this thesis the Tillotson EOS is not applied for two reasons: Firstly, this work focuses on low
velocity impacts where the processes of vaporisation and melting do not play a significant role.
Secondly, the material parameters needed are not available for SiO; dust. For this reason, I utilise
an approach which combines a suitable porosity model with the equation of state. This is pre-
sented in the next section.

4.3.4. The porosity model
Sub-resolution porosity

Colloquially, a porous material is a solid which is interspersed with small hollow spaces. In
molecular dynamics simulations (see Sec. 3.2) voids are naturally simulated, where no monomers
are present. In contrast, combining a continuum approach with a suitable porosity model reveals
a subtle but striking difficulty. As long as the typical size of the voids is larger than the spatial reso-
lution, then voids can simply be modelled as regions with vanishing density. As in this thesis, the
continuum approach is usually chosen because it allows averages over microscopic structures
to be carried out and to simulate objects of arbitrary sizes by adjusting the spatial resolution.
However, this area of application conflicts with resolving the microscopic structures of porous
aggregates. In other words, a way has to be found to implement the influence of porous struc-
tures below the spatial resolution of the macroscopic material properties.
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For this, the two continuous quantities

Vh

Vs
®=— and ¢=—
v ¢

v (4.114)

are defined, where ® is the porosity and ¢ denotes the filling factor. V, W, and V; are the total,
hollow, and solid volumes, respectively. Both quantities are related by
Vs V-1 W

p=—=—"TR-1_D_1_oq (4.115)
|4 |4 |74
The filling factor ¢ will be the primary quantity that describes the porous properties of dust ag-
gregates in this thesis. To express ¢ in terms of the density of the solid matrix material pg and
the actual density p of the porous body, which is averaged over hollow and filled volumes, the
relation

ms
m mg+mpy mg A Ps
p=—= = = = , (4.116)
Vo Vs+W Vet W 1+% 1+ V‘—/th
is used, where the mass of the hollow space my, = 0. This yields the definition of ¢
V- W
P By 4.117)
Ps 14 14
A third quantity to describe the porosity of a body is the distention which is defined as
1 1
q=Ps_2__~ (4.118)
P ¢ 1-0

where a = 1 refers to a completely compressed state, where p = ps. In contrast to the distention,
filling factor and porosity have the advantage of depicting the ratio between filled and hollow
volume.

Porosity models

Various porosity models for hydrodynamics codes were proposed in the past. They can be di-
vided into two classes: matrix-based models and plasticity-based models (e.g. Arena and Speith
2011).

Matrix based porosity models originate from the p — « model developed by Herrmann (1969).
Offsprings of this family are the p — @ model by Benz and Jutzi (2007) and the € — @ model by
Wiinnemann et al. (2006). A comparison between these kinds of models is given by Jutzi et al.
(2008) and on a wider theoretical basis by Arena and Speith (2010, 2011).

The basic assumption behind all matrix-based models is that the pressure in the porous material
p can be obtained by scaling the pressure of the solid material ps with the inverse of the disten-
tion. Mostly, the surface energy of the pores is neglected and the internal energy of the porous
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material is # = ug. The system of EOS closing the system of conservation laws is then given by

1 1
p= Eps(ps; us) = Eps(ap, u) (4.119)
u=ulp,p). (4.120)

These equations are complemented by a suitable relation for the distention. As a whole, this
system of equations is named Hugoniot relation.

For the p—a model the distention relation is given as a function of the pressure a(p) = a(p(ap, u),
which is split into an elastic and a plastic part. This yields an implicit relation for @. In the ap-
proach by Jutzi et al. (2008) the internal energy (Eq. 4.119) is considered implicitly through the
EOS of the matrix p(ap, u).

Wiinnemann et al. (2006) introduced the € — @ model, where the distention is related to the volu-
metric strain

EVZLVO 4 ZIH(K) . (4.121)

Hence, the distention is given by a(ey) and a relation for ey, which is also split into an elastic and
a plastic part. a can therefore be computed directly and not via an implicit relation.

The p — a model was introduced by Benz and Jutzi (2007) as a simplified porosity model, where
the distention depends directly on the density via Eq. 4.118. An analysis by Jutzi et al. (2008)
revealed that the p — a model has similarities with the € — @ model with a = agexp(ey) with an
initial distention of ay.

In test simulations Jutzi et al. (2008) found that the p—a and e—a models are inappropriate for the
treatment of highly porous material, which shows anomalous behaviour in the fully compressed
state (a = 1). There, the density happens to be below the initial density of the matrix. Later, Arena
and Speith (2010, 2011) were able to demonstrate that the p — a@ and € — a models are subject to
a singularity in their governing equations. Therefore, these models are incapable of reproducing
this physical anomalous behaviour.

An essential disadvantage of the matrix-based models considered so far, is that only the devia-
toric part Sup of the stress tensor o4 is considered for plastic deformations of the porous body.

In contrast, plasticity based porosity models (see, e.g. Gurson 1977, for an introduction) in-
volve the whole stress tensor 0 qp- Given the geometrical interpretation in stress space (Fig. 4.2),
matrix-based models work with an infinite cylinder. Therefore, plastic deformation can only
happen by exceeding the shear strength Y (crossing the side surface from inside out). Plasticity-
based porosity models also allow plastic deformation via pure hydrostatic pressure by putting
limiting surfaces at the top (compressive strength X) and the bottom of the cylinder (tensile
strength 7). For this thesis, I adopt the plasticity-based porosity model by Sirono (2004) with
some modifications, as specified below.

The porosity model adopted in this thesis

As already briefly outlined in Sec. 4.3.2 plasticity can be modelled by deviating from the elastic
path given by Hooke’s law. This is done by reducing inner stress according to a given EOS. Inner
stress is the response of a material to external deformation. In the elastic case, these stresses
restore thermal equilibrium and hence the original shape of the body. Once stress is reduced
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in an ongoing deformation, the material partially loses the ability to return to its original shape.
After external deformation ceases, the remaining stresses only partially restore the body’s state
before deformation begins. This behaviour can be illustrated by applying tension to a rubber
band. In the elastic regime, inner stresses restore the original length. If the band is overstretched,
i.e. the tension has exceeded the tensile strength, inner stresses are relieved and it becomes easier
to tear the rubber band apart. If the applied tension is then taken away, the band still contracts,
but in its final state it is longer than before. The porosity model used in this thesis was already
described in Geretshauser et al. (2010). Following the approach by Sirono (2004) the plasticity of
hydrostatic pressure p and the deviatoric stress tensor Sy is treated separately. As an EOS for
the elastic regime, [ adopt Sirono’s modification of the Murnaghan equation. That is

p(p) = K(¢g) (3,—1), (4.122)
Po
where ¢, = p,/ ps. The quantity p;, denotes the reference density, i.e. the density of the material
at zero external stress, and K(¢) is the bulk modulus. Eq. 4.122 is represented by the elastic
paths E;(¢) in Fig. 4.3, which intersect the ¢-axis at gb’].. Their slope varies according to the bulk
modulus.

Following Sirono furthermore, the filling factor dependence of the bulk K(¢) and shear p(¢})
moduliis modelled by a power law

K(¢p) =2u(gp) = Ko (/)7 (4.123)

where ¢; = pi/ps. For the simulations in Ch. 6 the values for Ky = 5.0kPa and y = 4 are used.
This choice is motivated in Sec. 5.3.5. According to Sirono (2004) p; is the initial density of the
material at the beginning of the simulation. In contrast, for this thesis it has to be ensured that
the dust material possesses the same bulk modulus relation K(p) even for simulations with dif-
ferent initial densities. In Sec. 5.3.5 this relation will be determined by numerical experiments,
where the dust material has two different densities at the beginning of a bouncing and fragmen-
tation benchmark setup. According to Sirono (2004), the materials should feature two different
pi- As a consequence, K(p) and in particular Ky, depends on the initial setup. Because these
two quantities are to be validated by using two different setups, a unique p; has to be fixed for
all simulations. We choose p; such that K(p;) = Kp is the bulk modulus of the generic uncom-
pressed dust material that is produced by the random ballistic deposition (RBD) method (Blum
and Schrépler 2004).

Directly connected with the bulk modulus K(p) is the sound speed of the material during elastic

deformation, which reads
cs(pg) =/ K(pp)/ pg- (4.124)

Together with Eq. 4.123, this relation shows that the sound speed is a strong function of density.
This behaviour was seen in molecular dynamics simulations by Paszun and Dominik (2008).

After the EOS for the elastic case, I now turn to the relations governing the plastic behaviour. For
the deviatoric stress tensor, it is assumed that the dust material is isotropic, which makes the von
Mises yield criterion applicable (see Sec. 4.3.2). For this criterion, the shear strength Y (see also
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Figure 4.3. Porosity model. In the porosity model used in this thesis, the regime of elastic, purely
hydrostatic deformation is limited by the compressive strength X(¢) and the tensile strength
T (¢) relations. Z(¢p) represents the transition threshold to plastic compression for p > Z(¢),
while T'(¢p) marks the transition to plastic tension for p < T'(¢). In between these regimes the
material moves on elastic paths. Two examples are given by Ey(¢p) and E; (¢p), which intersect
the ¢-axis at the reference filling factors ¢, and ¢, respectively. These represent the filling
factors of the material at vanishing external pressure. Each pair of E;(¢) and gb’]. has two criti-
cal filling factors ¢, and ¢ with E;(¢,) and E;(¢/) intersecting the tensile and compressive
strength curves, respectively. The elastic filling factor regime around, e.g. ¢y, is ¢, < ¢ < ¢.
The blue arrows represent an example for the plastic compression path, where a solid body
element is compressed from ¢}, to ¢}. The red arrows exemplarily show a typical tension path,
where the material is stretched from ¢ to ¢»;. In general the reference densities can be arbi-
trary for both paths as long as compression and tension proceed in positive and negative ¢
direction, respectively. In this figure the compression and tension paths are closed to demon-
strate the damage restoration capability of the approach of this thesis.
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Sec. 5.3.2) is given as a composite of the compressive and tensile strengths

Y () =\/Z() | T@)]. (4.125)

Sirono (2004) uses a pre-factor of V/2/3 for this relation, which I drop. The suitability of this
choice is demonstrated in Sec. 5.3.2. Additionally, for the model of this thesis the power laws
for the compressive strength X(¢) and tensile strength T'(¢) (after toner particle measurements
by Valverde et al. 1998) are replaced by more suitable relations for SiO» dust, which are worked
out based on laboratory measurements as a part of this thesis. This procedure is presented in
Ch. 5. The von Mises plasticity criterion is based on the second irreducible invariant of the devi-
atoric stress tensor (Eq. 4.104). The implementation of the deviatoric stress reduction also devi-
ates from the approach by Sirono (2004) and follows Benz and Asphaug (1995) and Schéfer et al.
(2007)

sap _, fSaﬁ, (4.126)

where f = min [Y?(¢)/3]2,1]. The hydrostatic pressure is limited by the tensile strength T (¢) for
p < 0 and by the compressive strength Z(¢) for p > 0:

2(p) > ¢
plp) — »e ¢>C_ . (4.127)
T ¢<oc
The compressive strength relation in this porosity model is given by
(pz _ (Pl )A]HIO
2(p) = (— -1 (4.128)
$) = pm b2 —

for ¢y +€ < ¢ < ¢, and € = 0.005. The quantities ¢p; = 0.12 and ¢» = 0.58 denote the mini-
mum and maximum filling factors, respectively, in the compressive strength relation. However,
the material can exceed both of these values. The power of the compressive strength relation
is In(10) times the parameter A with A = 0.58. The mean pressure of the relation is given by
pm = 0.26kPa.The choice of the parameters is motivated in Sec. 5.3.3. For ¢ < ¢; + € the com-
pressive strength relation is continuously extended by the constant function X(¢) = Z(¢p; +¢) and
for ¢, < ¢p I set Z(¢p) = co. The tensile strength relation (see Sec. 5.3.1) is given by a power law

T(¢) = —10“"9pa (4.129)

where a =2.8 and b = 1.48.

For ¢p; < ¢ < ¢F, the material is in the elastic regime and Eq. 4.122 is applied. The symbols
¢. and ¢} denote the filling factors where the elastic path intersects the tensile strength and
compressive strength, respectively (see Fig. 4.3).

For pure hydrostatic compression, the resulting compression path of an SPH-particle (blue ar-
rows) in the EOS-diagram (Fig. 4.3) can be described as follows. Initially, the dust material pos-
sesses the filling factor ¢, and therefore ¢; = ¢»;. With increasing pressure 0 < p < Z(¢;), the
filling factor is increased on the elastic path Ey(¢). After a purely elastic compression with p <
Z(¢{), the filling factor returns to its original value ¢, once external pressure vanishes. However,
if the pressure increases such that Z((/)j) < p, then the compression becomes plastic. Conse-
quently, ¢ follows the plastic compression path given by the compressive strength relation Z(¢).
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If external pressure decreases again, the material follows a new elastic path E; (¢) until it reaches
the new filling factor ¢ = ¢ at vanishing external pressure. The latter elastic response describes
a slight expansion of the material, which can be seen in the laboratory experiments as well as
in the simulations in Ch. 5. At the end of a plastic compression, ¢ is increased from ¢;, to ¢} at
p =0, i.e. the material is compressed irreversibly.

The pressure reduction process is implemented such that at each time step, p is computed using
Eq. 4.122. If for a given ¢, p(¢p) > Z(¢p) and ¢ > ¢, then the pressure p(¢p) is reduced to Z(¢p). The
deformation becomes irreversible once the new reference density pj, is computed using Eq. 4.122
and the elastic path is shifted towards higher densities. Hereby the limiting filling factors ¢ and
¢¢ are also set anew. In principal, there are two possible implementations of this: (1) Plasticity
becomes effective immediately and p;, is computed whenever p > X; and (2) plasticity becomes
effective after pressure decrease, which is equivalent to ¢ < ¢¢. The latter procedure was used
by Schiéfer (2005) and Schéfer et al. (2007). In this thesis I tested both implementations and find
that possibility (1) is closer to the underlying physical process. In addition, it proves to be more
stable. Therefore, option (1) is used throughout this thesis.

For the tensile regime, i.e. for ¢ < ¢-, I do not adopt the damage and damage-restoration model
presented by Sirono (2004). This damage model for brittle material (see Sec. 4.3.5) such as rocks
or pumice was developed for SPH by Benz and Asphaug (1994, 1995) and used by Jutzi et al. (2008,
2009b,a, 2010). It is assumed that a material contains flaws, which are activated and develop
under tensile loading (Grady and Kipp 1980). Schifer et al. (2007) found that the model is not
applicable to their simulations of porous ice because it includes compressive damage effects.
Brittle material such as pumice and rocks tend to disintegrate when compressed, i.e. they are
crushed. In contrast, for highly porous SiO, dust, both the tensile and compressive strengths
increase with compression. This is because the monomers are able to form new bonds when
they come into contact.

Therefore, I mirror Sirono’s prescription for the compression regime to the tensile regime. The
result is displayed in Fig. 4.3. If tension is applied to a solid body element it follows the ten-
sion path (red arrows). At first, the response is elastic. Starting, e.g. from an initial filling factor
¢}, the material follows the elastic path E; (¢) for T(¢) < p < 0. Once the pressure exceeds the
tensile strength, the deformation becomes plastic and the material follows T(¢b) in the negative
¢-direction until the external tension drops below the tensile strength limit. Then the material
slightly contracts (from ¢ to ¢;) along the elastic path Ey(¢) and reaches the final filling factor
¢p at p = 0. As a result of the tension path, the material is irreversibly expanded to a lower fill-
ing factor. Please note that this works for arbitrary ¢, < ¢|. In Fig. 4.3 they have been chosen
to be identical to the reference densities of the compression path to demonstrate the damage
restoration effect of the porosity model adopted in this thesis.

Damage restoration is implemented in a very natural way. Following the blue and red arrows
in Fig. 4.3 illustrates this effect. The filling factor of the material can be increased from ¢} to
¢! via the compression path. This compression is, from the thermodynamical point of view,
irreversible. This is because it needs an external force to stretch the material via the tension path
from ¢/ to ¢;,. For this model I implicitly assume that the material possesses no memory of its
deformation history. The model becomes unrealistic for fast compressions and tensions. In Sec.
5.3.1 I demonstrate how this model is applicable for porous SiO» dust.

In the SPH scheme with this porosity model, rupturetakes place because of plastic flow as in duc-
tile materials. The more two sets of SPH particles are torn apart, the more the density decreases
in the middle region and inner tension is relieved according to the tensile strength relation T'(¢b).
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Finally, the sets of SPH particles are torn apart such that their smoothing lengths no longer over-
lap and are completely separated. Separated sets of SPH particles are considered as fragments.

Energy considerations

Since the porosity model presented as EOS in the previous section does not include an energy de-
pendence, the energy equation (Eq. 4.39) is not explicitly solved in my simulations. However, in
this section I show that the construction of the used porosity and plasticity models are consistent
with the assumption that kinetic energy is converted into heat by plastic deformations.

I consider an energetically closed system, where heat transfer is possible between the deformed
object and its environment. The total energy U of this system is initially given by the kinetic
energy of the collision partners. According to the first law of thermodynamics

dUu = TdS+0’aﬁd€a’3 (4.130)
=TdS- p5aﬁd€aﬁ + Saﬁdé‘aﬁ (4.131)
=TdS—pdV + Saﬁdeaﬁ (4.132)

where T is the temperature, S is the entropy, p is the pressure, €4p is the strain tensor, V = €qq
is the volume, 04p = —pdap + Sqp is the stress tensor and Sy is the deviatoric stress tensor.
6Q = TdS is the heat that is introduced into the system to perform work. With the relation

1 1
€ap = Zsaﬁ + gaaﬁeyy , (4.133)

Eqg. 4.132 can be rewritten as
dU =TdS dv + L d(IS Sas) (4.134)
- p ZH 2 afapl .
where d(SqpSap) = 2S4pdSqp and 4pSap = Saa = 0 have been used and I = /25,4844 is the

second irreducible invariant of the deviatoric stress tensor.

The volume V can be replaced by the filling factor via V = m(ps¢) "' and the differential reads

d
dv=-"99 (4.135)
ps ¢
and the first law of thermodynamics is given by
mp 1
dU =TdS+ ——dop+—d(SepSep) - 4.136
Ps¢2¢ 4H(aﬁ ap) ( )
For elastic deformations the process is reversible, i.e., dS = 0 and, hence
mp 1
dU = ——d¢p+ —d(SesSap) , 4.137
0s ¢>2 Qb 4/-1 ( af aﬁ) ( )

for the pure pressure term this corresponds to moving along the elastic paths in Fig. 4.3 or along
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the hydrostatic axis in Fig. 4.2 inside the von Mises cylinder with
p(p) = K(¢p) (Pl —1). (4.138)

For the pure shear term this means moving on the yield surface within the cylinder of Fig. 4.2.
With increasing pressure and/or increasing shear, internal energy is stored in the body. Con-
versely, energy can be decreased by decreasing the pressure or filling factor.

In plastic deformations, part of the energy will always be stored in the solid body by elastic de-
formation. This energy is released by an elastic swing back at the end of plastic deformations.
When considering plastic deformations, I neglect the little portion of energy stored in the solid
body and assume that energy is conserved, i.e., dU = 0. For slow deformations (below the sound
speed), where no shocks appear, the temperature of the body is nearly constant T = const. and
the entropy is increased dS > 0. This yields the condition

~TdS = E%d([ﬁ id(saﬁsaﬁ) >0. (4.139)
Since 6Qj, = TdS is defined as the heat that is introduced into the system, Qo = —7dS is
the heat transported out of the system. Given the condition that heat energy leaves the system
6 Qout > 0, and with ¢ > 0, m > 0, and p > 0 this yields the conditions

for dp>0 — p(p)>0 (4.140)
for dp<0 — p)<0. (4.141)

These conditions are fulfilled by following the arrows in Fig. 4.3. For compressions (p > 0) the
system evolves towards greater ¢. In contrast, for tension (p < 0) the filling factor is reduced.

With the von Mises criterion for plastic deformation the pure shearing term can be written as
d(SapSap) = dY* (@), (4.142)

and with Y (¢p) = +/Z(¢)| T(¢)| this expression can be differentiated (not explicitly stating the ¢-
dependence)

T|dX+2d|T
dy? = ! T4z +2dIT| (4.143)
T
0x oT
=—||T|—d¢p—-Z—d 4.144
ST | |6<p ¢ 3¢ ¢ ( )
For the compressive strength Z(¢b) holds

0z
for dp>0 — —=>0 (4.145)

3¢

0z
for d¢<0 —- —<0, (4.146)

3¢
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and the derivative term of X is always positive. The tensile strength develops as follows

oT

for dp>0— —<0 (4.147)
0
T

for dp<0— —>0, (4.148)
0

hence the derivative term of T is always negative. Consequently, the term in brackets in Eq.
4.144 is always positive as well as the fraction outside the brackets. As a result, 0 Qoy¢ > 0 for the
assumed relations of 2(¢), T(¢p), and Y (¢h).

As a conclusion, the porosity and plasticity models presented in this thesis are consistent with
the assumption that kinetic energy in the plastic deformation process is converted into heat. This
can also be seen from the microscopic picture, where energy is dissipated by breaking molecular
bonds. In MD simulations this is modelled by exceeding the critical rolling, twisting, and dis-
placement lengths. These thresholds can be seen as the microscopic reason for the macroscopic
compression, tension, and shear thresholds.

4.3.5. Damage models
Brittle material

In contrast to ductile media, brittle materials, such as basalt, granite, or porous pumice, do not
rupture by plastic flow. This is because the material is not completely homogeneous but contains
little flaws. These are little defects in the medium. With increasing strain, cracks develop origi-
nating from these flaws and start to pervade the solid body. In brittle media, stress is relieved by
developing cracks.

Benz and Asphaug (1994, 1995) developed an SPH implementation for dynamic fracture model
by Grady and Kipp (1980). A description of the implementation can also be found, e.g. in Schifer
(2005) and Jutzi et al. (2008). Sirono (2004) used a modified version of this damage model and
included the effect of damage restoration. However, Schéfer et al. (2007) found that Sirono’s dam-
age model was not applicable for their simulations of porous ice because it includes damage by
compression. As already pointed out in Sec. 4.3.4, some materials such as porous ice and porous
SiO; dust form new molecular bondings when they are compressed. Thus, their strengths in-
crease and do not decrease as supposed by the Sirono damage model. Other materials however,
such as porous pumice, crush when they are compacted and do not form new molecular bond-
ings. This behaviour makes the damage model by Grady and Kipp (1980) applicable, which was
carried out by Jutzi et al. (2009b,a, 2010).

To model damage, Grady and Kipp (1980) introduced a scalar parameter 0 < D < 1, where D =0
and D = 1 represent undamaged and fully disintegrated material, respectively. Please note that
neither the von Mises yield criterion nor pressure limitation by compressive and tensile strength
is applied here as for ductile materials. In general, the plasticity model presented in Sec. 4.3.2
and 4.3.4, which is compiled in Fig. 4.3, is not valid for brittle material (for a combination of von
Mises plasticity with a damage model for porous materials (see Jutzi et al. 2008). Instead, stress
reduction via flaws and cracks enters via the damage parameter

Odam = (1—D)o . (4.149)
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This can be split into the pure hydrostatic and pure shear part

Odam = POap+ (1 —D)Sup, (4.150)
>0

with p=14" p=" (4.151)
(1-D)p p<0

While for compressions (p > 0) the pressure is unlimited, tension and shear stresses are relieved
via the dynamically evolving damage parameter D. Thus, damaged material can be interpreted
to feel less stress than undamaged material. If the damage parameter is transferred to the bulk
and shear moduli

Kqam = (1-D)K, (4.152)
Hdam = 1- D),U , (4.153)

one can see that for tension and shear, damaged material deviates from the elastic path in the
stress-strain diagram (Fig. 4.1. This deviation represents a reduction in the strength of the mate-
rial with respect to the elastic case. From this perspective, Eq. 4.152 and 4.153 are analogous to
the tensile and shear strength relations. In the porosity model in Sec. 4.3.4, the strength quan-
tities depend on the filling factor and hence evolve with the time evolution of the density. In
contrast, the damage D has its own local time evolution, which can be derived from its defini-
tion: a crack of half length a relieves stress in a volume given by its circumscribing sphere. If a
given sphere with radius Rq is filled out by a crack, all the stress is relieved and the sphere is totally
damaged. Consequently, the local damage D is defined as the ratio between the volume defined
by the growing crack and the volume V in which the crack is growing

%7’(613 a3
D= =—. (4.154)
1% R
The time evolution is then given by
do™ s (4.155)
= Nact— .
dr act Ry

where 1, accounts for crack accumulation and denotes the number of activated flaws. The
quantity cg is the crack growth velocity. The concept of flaw activation originates from the idea
that cracks do not start to grow for any strain applied, but they get activated for some strain
threshold €,¢¢. The number of flaws 7 per unit volume with €, is mostly given by a power law

n(€act) = kellt, . (4.156)

This distribution for flaws in a brittle material was proposed by Weibull (1939). It is based on two
material parameters k and m, where k is the number of flaws per unit volume and typically 3 <
m < 9. Materials with a strong variation of €, normally feature small m, whereas homogeneous
rock with uniform thresholds have large values of m. The flaw distribution according to Eq. 4.156
is set as an initial condition for the material before the simulation.

As a disadvantage, the material parameters k and m are rarely available, because they are hard to
measure. Unfortunately, small variations of k and m lead to highly differing activation thresholds
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and simulation results (e.g. Schéfer 2005).

Because this damage model is only suitable for brittle material, it is not applicable to the ma-
terial this thesis is dealing with: SiO, dust, which possesses properties between a ductile and a
brittle material. Therefore it is desirable, to develop a simple damage model, which is consistent
with the porosity model of Sec. 4.3.4 and its damage restoration properties. Based on the ideas
presented up to here, I propose the following inhomogeneity damage model.

Inhomogeneity damage model

The starting point again is the inhomogeneous nature of the material. In case of brittle mate-
rial, small defects in the crystal lattice are the seeds of cracks. Within the close collaboration
between experimentalists and the author of this thesis, investigations of the macroscopic dust
aggregates created by the random ballistic deposition (RBD) method reveal that the aggregates
are not completely homogeneous (Giittler et al. 2009). Instead, the filling factor was found to
follow a Gaussian distribution around a median of ¢ ~ 0.15.

According to the porosity model of Sec. 4.3.4, regions of lower filling factor also represent regions
of weaker compressive, tensile, and shear strengths, whereas regions of higher filling factor are
stronger. Therefore, as an analogue to the Weibull distribution I propose an initial distribution
of the filling factor given by the Gaussian function

n(¢) =

! L ¢_¢”) (4.157)

Nz eXp(_E o

where n(¢) is the number density for a filling factor ¢, ¢, the width of the distribution function,
and ¢, the median filling factor.

Associated with each filling factor ¢ are two critical filling factors ¢¢ and ¢, (see also Fig. 4.3).
These threshold values mark the transition from the elastic to the plastic hydrostatic regime,
where stress is relieved. The pressure limits of compressive, tensile, and shear strengths X(¢),
T(¢), and Y (¢p), respectively, are analogues to the activation threshold e,¢.. Hence, associated
with each ¢ are analogues to the activation threshold.

Damaged areas in this simple inhomogeneity scheme are therefore represented by areas of low
filling factor. Under constant tension, ¢ continues to decrease in these regions and due to the
¢-dependence of the tensile T'(¢) or shear strength Y (¢p) the strength decreases with increasing
D in these regions just as in Eq. 4.152 and 4.153.

This illustrates the twofold role of the filling factor ¢. On the one hand, it represents a quantity
which determines the activation thresholds for the plastic regime and on the other hand, it also
represents the damage parameter D, which decreases the strength quantities. Therefore, in the
inhomogeneity damage model, the time evolution of the damage is given by the time evolution of
¢, or equivalently, the density. For increasing filling factor, the strength quantities also increase.
This is the effect of damage restoration as already discussed in Sec. 4.3.4.

Test simulations of the proposed inhomogeneity damage model are presented in Sec. 6.2. A great
advantage of this approach is that the material parameters ¢, and ¢, can be determined in lab-
oratory measurements by X-ray tomography (Giittler et al. 2009).
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4.4. Numerical Issues

4.4.1. The kernel function

In section 4.1.1 the replacement of the § function by an integral kernel W (Eq. 4.3) is described
as the first step in the SPH discretisation scheme. To achieve the convenient handling of spatial
derivatives (Eq. 4.8), the kernel is required to have the following properties: convergence to the
0-function for small smoothing lengths h (Eq. 4.2), normalisation (Eq. 4.4), spherical symmetry
(Eq. 4.5), compactness, and first order differentiability. Anumber of kernel choices fulfilling these
criteria can be found, e.g. in Speith (1998, 2007) and Monaghan (2005). For the scheme used in
this thesis I use the kernel introduced by Monaghan and Lattanzio (1985), which has become the
standard choice in the past decades. The kernel is constructed as a B-spline cubic function and
reads (having regard to a factor of two for the smoothing length, see Speith 1998 or Schifer 2005
for details)

6(F/h)3—6(F/h)%+1 0<7/h<1/2
2(1=7F/h)3 1/2<7lh<1, (4.158)
0 Flh>1

X

W(F; h) = T

with dimension d and the constant y

$ d=1
8 _
> d=3
Then, the first derivative of kernel reads
3(FIh)?—-2(f/h) 0<Flh<1/2
OW (F; h) _ 6y oy gD _
o7 = i1 —(1-7/h) 1/2<flh=<1. (4.160)

0 Flh>1

It can be shown that this choice of the kernel fulfils all conditions stated above.

4.4.2. Artificial viscosity

In impact simulations, particularly if shocks develop, particles move with high velocities. In this
case the use of the SPH Lagrangian numerical scheme causes the problem of mutual particle
interpenetration. To avoid this unphysical behaviour and to be able to resolve shocks an artificial
viscosity is introduced. In this thesis, I follow the approach by Monaghan and Gingold (1983),
who include an additional scalar pressure term I1%? in the SPH equations. For ideal and viscous
fluids, this term is added to the respective SPH representations of the momentum (Eq. 4.29 and
4.38) and energy equations (Eq. 4.40 and 4.41). In case of solid body SPH, 1% is added to Eq.4.82
and to the corresponding energy equation. In any case, the hydrostatic pressure term in brackets
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is replaced in the following way

a b
p + p
((pa)z (pb)z

a b
p p b
((pa)z + )2 +114°] . (4.161)

The Monaghan artificial viscosity term I1%? is defined as

_ =ab ,,ab aby2
Hab ~ QayCq ,Upa‘;]'ﬁav(ﬂ ) (V(,l _ vb) . (Xa —Xb) <0
0 v —vb). x7—xb) >0

(4.162)

which is now established as a standard implementation. The first term in the numerator cor-
responds to an artificial bulk viscosity, whose strength is regulated with a,, > 0. Whereas the
second term represents a von Neumann and Richtmyer (1950) viscosity scaled with ., > 0. The
term u“? approximates the divergence. It is given by

b _ }_lab(va _Vb) . (Xa _xb)

(x4 —XD)2 + €qy (RD)2

a

U

(4.163)

where h%? is the averaged smoothing length 7%? = (h® + hP)/2. In case of very small particle
separations, i.e. |x“ —xb | ~ 0, the €4y (79P)2 prevents a singularity of the factor u“b . mab only acts
on particles approaching each other, it vanishes if they move apart. Usually the parameters are
chosen to be of order one tenth to unity: e.g. aay = 1 and Bay = 2, or @ay = 0.1 and B,y = 0.2. In
contrast, €,y is usually smaller. A typical value is 1072,

The quantities p*? and c"fb are the average density and sound speed, respectively, of the particles
a and b. They read

ay b Ca+cb
pb =P 2p and &= 2= (4.164)

For porous materials, Sirono (2004) restricted the application of artificial viscosity only to parti-
cles that approach each other faster than the sound speed. This is to avoid unnecessary energy
dissipation which can promote spurious aggregate sticking.

In contrast to Sirono’s simulations, I find it necessary to apply artificial viscosity for the simula-
tions of dust and glass material. This is carried out for mainly two reasons: firstly, it increases the
stability of the simulation and secondly, the dust material possesses dissipative features which
can easily be simulated with artificial viscosity. This energy dissipation and its advantages for
the simulation of pre-planetesimal collisions and the benchmark experiments are discussed in
Sec. 5.2.4. As a result of this investigation, I will only make use of the bulk viscosity term with
a small a,y value of 0.1. The effect of the von Neumann-Richtmyer term is negligible and I set

ﬁav = 0

For small gradients of density and sound speed and B,y = 0, the effect of artificial viscosity can
be quantified in terms of the kinematic viscosity (Eq. 4.34) with the approximation by Meglicki
etal. (1993)

V= yYQavCsh, (4.165)
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with

_2 TR 5 i o
8 F
0 (4.166)

o0 .
2n [ =z30W(FHh 1=
-4 of P 22dr in3D

Other approaches for a artificial viscosity are discussed in Monaghan (2005), Speith (2007) and
Rosswog (2009).

4.4.3. Tensile instability and artificial stress

In solid body and magnetohydrodynamics simulations with SPH a frequently arising problem is
the tensile instability. This numerical instability phenomenon is caused by the inaccuracies of
the function approximation, which is not even of zeroth order consistency (Speith 2007, and ref-
erences therein). The stability of SPH was analysed by Morris (1996) and Swegle et al. (1995). The
analysis of the latter revealed that SPH becomes unstable for compression if the second deriva-
tive of the kernel function (W*?)" < 0 and for tension if (W?)"” > 0. The tensile instability results
in artificial particle clumping, which finally leads to unphysical results. For example in the colli-
sion of two rubber rings the tensile instability leads to spurious fracture (see, e.g. Schifer 2005).
Many approaches have been proposed to cure the tensile instability by increasing the order of
consistency. Besides his own suggestions iSPH and eSPH, Speith (2007) lists the following (and
the according references): normalised SPH, corrected SPH (CSPH), moving least squares interpo-
lation (MLSPH), additional stress points, conservative smoothing (CSA), regularised SPH (RSPH),
and many more.

Within this thesis the approach by Monaghan (2000) is used. Following this approach a small
artificial stress is added to the SPH equations. This stress acts as a repulsive force between the
SPH particles and prevents the clumping caused by tensile instability. Similar to the procedure
presented for the artificial viscosity (Sec. 4.4.2) an additional term is added to the hydrostatic
pressure term in the momentum equations (Eq. 4.29, 4.38, or 4.82)

a b a b
p p p p ab  pab\n
+ — + +A . 4.167
((pa)z (pb)z) ((pa)z (pb)z aﬁ(f ) ( )

This can be combined with artificial viscosity by also adding I1*? in the brackets. AZ% is the
artificial stress given by

b _ b
ALl = AL+ AL, (4.168)

with
Tap .
Aa _ —€as (p)? O-?Zﬁ >0 (tensmn)

7Y, (4.169)

agﬁ < 0 (compression) '

where €55 determines the strength of the artificial stress. Typical values are € ~ 0.01 —0.2. The
artificial stress in Eq. 4.167 is scaled with the quantity f*” and an exponent n > 0, typically 2 <
n < 6. Since the repulsive force has to decrease with increasing particle separation £’ is chosen
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such that

W(lb
T W(Ap)

fab (4.170)
where Ap is the mean particle distance. The tensile instability fix by Monaghan has very low
computational costs and usually removes the tensile instability. Within this thesis this approach
is tried to settle some numerical difficulties in simulating the benchmark experiments. As de-
scribed in Sec. 5.2, the application of Monaghan’s fix has negligible influence on the results.

4.4.4. Rotational instability and correction factors

A phenomenon called rotational instability is another consequence of the low order consis-
tency of the standard SPH scheme, which already was the reason for the tensile instability (see
Sec. 4.4.3). Here, the conservation of angular momentum of a rigidly rotating solid body is sig-
nificantly violated. Speith (2007) showed through simulations of a rotating plate, that at first the
rotation speed decreases and finally the rotation changes direction. He found that this behaviour
does not originate from an inaccuracy caused by the kernel interpolation. Instead, this unphysi-
cal effect is due to increasing particle disorder, and hence is a discretisation effect.

Similar to an earlier correction by Randles and Libersky (1996), Speith (2007) proposed a cor-
rection to the velocity derivatives such that the scheme is linearly consistent. In contrast to the
former reference, Speith only corrects the velocity derivatives of the strain rate (Eq. 4.85) and ro-
tation rate (Eq. 4.96) tensors. According to the standard SPH scheme the spatial derivative of the
velocity components is given by

ovd mb oweab
=Y —whk-vd (4.171)
oxg Gt * Y oxg
This expression is replaced by
ovg ml owab
m% :%F(va—vg) > Crp- (4.172)
Y
where C, 4 is the inverse of
> Mb(xb xy 2V 4.173)
el Tt T o '
which is
b ab
m b a 0W
- — Cs=0,4. 4.174

By construction the errors caused by particle disorder cancel out, which allows correct simula-
tions of rigid body rotation. I apply this correction to most of the simulations of Ch. 5 and to all
simulations of Ch. 6.
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The key ingredients of the elasticity, plasticity, and porosity models described in Sec. 4.3 are the
material parameters and relations. Only with a precise knowledge of these specific macroscopic
properties a realistic simulation of the material is possible. At the same time, reliable measure-
ments are sparse. As already pointed out in Sec. 3.1 and 3.2, the material which is studied best in
the laboratory and in molecular dynamics simulations consists of mono-disperse SiO, spheres
with a diameter of 1.5um. For this reason, I use this as the reference material for the whole cali-
bration process. A detailed specification of this dust analogue can be found in Blum and Schri-
pler (2004) and Blum et al. (2006b). Despite the difficult handling of highly porous SiO» dust, lab-
oratory experiments provided data for the compressive Z(¢) and tensile strength T'(¢) at the start
of the calibration process described in this chapter. In contrast, relations for the shear strength
Y (¢), bulk modulus K (¢) and, shear modulus p(¢) were missing and only possible relations were
available.

However, implementing realistic parameters alone is not sufficient for a valid numerical model.
The applicability of the solid body and porosity models and also the correct functionality of the
code need to be validated in suitable benchmark experiments, which are carried out numerically
and in the laboratory. Alike comparisons were performed earlier, for example Jutzi et al. (2009b)
validated their porosity model for brittle material with pumice impact experiments. In contrast
to their calibration, the thesis at hand does not rely on one type of experiment (impact) only, but
it uses three different setups to validate the elastic, compression, and fragmentation properties
of SiO, dust.

In the course of the calibration process, it is found that the data provided by Blum and Schrapler
(2004) and Blum et al. (2006b) are not directly applicable for the porosity model at hand. This is
because their relations are quasi-static, whereas in pre-planetesimal collisions dynamic relations
are needed. As a consequence, the correct material parameters have to be found by numerical
parameter studies using the benchmark setups. This results in a profound calibration process in
intensive and close collaboration with experimental physicists. In the end, all benchmark tests
can be reproduced with a consistent set of material parameters. Finally, the calibration process
not only yields a validated numerical model but also estimates for material parameters, which
were unknown before. The results of this fruitful collaboration are published in Giittler et al.
(2009) and Geretshauser et al. (2010).

In this chapter I describe the calibration process. As a basis the benchmark experiments are
introduced in Sec. 5.1. The influence of numerical parameters on the outcome of the benchmark
simulations are investigated in Sec. 5.2. The actual calibration process and the resulting material
parameters are presented in Sec. 5.3. In Sec. 5.4, I summarise the results of this chapter.
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5. Calibration

5.1. Benchmark Experiments

5.1.1. Compaction setup

The following setup is chosen as an easy and well-defined calibration experiment: A glass sphere
drops with known impact velocity v into a dust sample (¢ = 0.15) generated by random ballistic
deposition (RBD Blum and Schrépler 2004). The calibration parameters are quantities describ-
ing the dynamic behaviour of the sphere. These include the deceleration curve, stopping time,
and intrusion depth for various velocities and projectile diameters. Additionally, the compaction
of the dust under the glass bead for a 1.1 mm projectile with a velocity of 0.65m/s is considered.
Compaction of porous dust aggregates is an efficient way of dissipating kinetic energy in mu-
tual collisions. Lower collision velocities decrease the probability and amount of fragmentation
and increase the probability of sticking (see Sec. 2.3.1). Therefore, a correct reproduction of the
compaction properties is highly important for the planetesimal formation process.

Laboratory setup

In this section, I give a short summary of the laboratory compaction calibration setup, which has
been described by Giittler et al. (2009) in detail.

A glass sphere with a diameter of 1 to 3 mm impacts into the dust aggregate material with a ve-
locity between 0.1 and 1 m/s under vacuum conditions (pressure 0.1 mbar). For the measurement
of the dynamic behaviour (see Fig. 5.1, left), an elongated epoxy projectile is used instead of the
glass sphere. The bottom shape and the mass resemble the glass bead while the lower density and
the therefore longer extension makes it possible to observe the projectile during the intrusion.
The projectile is observed by a high-speed camera (12,000 frames per second) and the position
of the upper edge is followed with an accuracy of ~ 3um. With this setup three calibration quan-
tities can be determined: the maximum intrusion, stopping time, and (normalised) deceleration
curve.

Firstly, the maximum intrusion is defined by the distance from the bottom of the spherule to
the upper surface plane of the dust sample. The elongation is necessary because in most of the
experiments the maximum intrusion is deeper than the diameter of the sphere.

Secondly, the stopping time is defined by the time difference between first contact of the spherule
with the sample surface and the moment of maximum intrusion.

Thirdly, the deceleration curve h(t) is given by tracing the intrusion depth for every point in
time from first touch until maximum intrusion. To make several experiments with different im-
pact velocities and maximum intrusions comparable, the deceleration curve is normalised by the
maximum intrusion and stopping time. The normalised data can be fitted well by a sine curve
(Fig. 5.17, also Giittler et al. 2009).

While the dynamic properties are measured for various sphere diameters and impact velocities,
the compaction of dust underneath the impacted glass bead is only determined for a 1.1 mm
projectile with vy = 0.65m/s. The density structure is reconstructed by X-ray micro-tomography
(see Fig. 5.1, right). The glass bead diameter and velocity in these experiments correspond to
the compaction calibration setup described in Table 5.1. The dust is enclosed in a plastic tube
with 7 mm diameter. After the impact, the sample with an embedded glass spherule is positioned
onto a rotatable sample carrier between an X-ray source and the detector. During the rotation
through 360°, 400 transmission images are taken, from which a 3D density reconstruction is com-
puted with a spatial resolution of 21 um. This setup yields the density structure underneath the
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Figure 5.1. Laboratory compaction setup. Setup for deceleration and intrusion depth measure-
ment (left): an elongated projectile as a glass bead analogue is dropped into the dust sample
from a height of 1 to 40 mm. It is initially suspended on a fibre with negligible mass to avoid
rotational motion. A high-speed camera observes the deceleration of the projectile. Setup for
density profile measurement in an X-ray micro-CT device (left): The dust sample is rotated
between an X-ray source and a detector. A 3D density reconstruction is computed from the
transmission images (figures from Giittler et al. 2009).

glass bead generated by the impact. From these data another three calibration quantities can be
derived: the vertical density profile, vertical density cross-section, and density distribution of the
cumulated volume.

Firstly, the vertical density profile or - because of Eq. 4.117 synonymously - vertical filling factor
profile displays the filling factor along a straight line after the impact. The line intersects the cen-
tre of the impacted spherule and is perpendicular to the sample surface, which represents the
origin of the profile (see Fig. 5.2 for an illustration). Vertical density profiles from laboratory data
are exclusively produced in presence of the spherule, which is not removed when creating the
X-ray tomography images (see the experimental data, e.g. in Fig. 5.12, 5.13, and 5.18). The ver-
tical density profile represents a one-dimensional insight into the most important region of the
density structure. In the calibration process it proves to be one of the most sensible instruments.
Secondly, the vertical density (or filling factor) cross-sectionis a two-dimensional expansion of the
vertical density profile. For this the density data from the X-ray tomography is radially averaged
around the vertical density profile axis. The result is a two-dimensional image with the density
structure colour coded (Fig. 5.19, left).

Thirdly, the density distribution of the cumulated volume provides insight into the three-dimen-
sional density structure of the dust sample after the impact. It is computed from the full data set
of the X-ray tomography measurements and displays the volume (in sphere volumes) which is
compacted to filling factors greater than a given ¢. This calibration parameter is very sensitive
to changes in the compressive strength relation X(¢) (Eq. 4.128). Examples are shown in Fig. 5.13
(middle), 5.14 (bottom), 5.16 (bottom), and 5.18 (bottom).
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. sphere particles

dust particles

Vo

boundary particles vertical density profile

Figure 5.2. Numerical compaction setup. Both panels show a vertical cut through the midplane of
the setting. As initial setup (left), a glass sphere impacts into the centre of an SiO, dust sample
with initial velocity vg. The sample with radius rsample is bowl-shaped in 3D and hemicircle-
shaped in 2D. In any case the dust is surrounded with boundary particles at its bottom. After
the impact (right) the bottom of the sphere rests at intrusion depth D. Underneath, the dust
material is compressed (indicated by the yellow area). This leads to a vertical density profile
which is measured along an axis through the centre of the sphere and perpendicular to the
sample surface. During the impact the bottom of the sphere is tracked for the deceleration
curve. The parameters for the bouncing calibration setup are displayed in Tab. 5.1.

Numerical setup

The numerical equivalent (see Fig. 5.2) of the experimental setup described above is designed
as follows: the glass spherule (diameter 1.1 mm) is modelled with the Murnaghan equation of
state (Eq. 4.112) with the parameters specified in Tab. 5.1. The sphere hits a dust sample (¢ =
0.15) with impact velocity vy. Gravity is taken into account. The influence of the shape of the
sample is investigated in Sec. 5.2.3. A bowl shaped target consisting of a hemisphere with radius
T'sample = 3.3mm is found to be the most suitable setup with the lowest computational costs. The
dust material is simulated with the plasticity and porosity models presented in Sec. 4.3.4. The
sample is enclosed in a few layers of boundary SPH particles, which are treated as dust material
but their acceleration is set to zero in every time step. This is equivalent to reflecting boundary
conditions. Fixing the sample within a bowl reproduces the situation of the sample enclosed in
the plastic tube. The diameter of the boundaries in the numerical setup is comparable to the
laboratory setup. By this enclosure, dust material cannot evade to the side, which may alter the
vertical density profile. This is an important improvement to earlier simulations (Geretshauser
2006).

For the evaluation, the bottom of the sphere is traced during the simulation to determine stop-
ping time, maximum intrusion, and deceleration curve. For the vertical density profile, the eval-
uation program described in Appx. A.1 determines the dust density along a line perpendicular
to the sample surface going through the centre of the resting spherule (see Fig. 5.2, right). The
density structure of the vertical density profile, vertical density cross-section, and density dis-
tribution is evaluated by means of the SPH sum (Eq. 4.15) and converted into the volume filling
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factor via Eq. 4.117. Vertical density profiles from the simulation data are produced in the pres-
ence (e.g. Fig. 5.6) and absence of the spherule (e.g. Fig. 5.8, and 5.10). Due to the perfect cylin-
der symmetry of the setup around the impact site the data for the vertical density cross-section
is not averaged azimuthally as in the laboratory setup but a simple vertical 2D cross-section in-
tersecting the vertical density profile line is produced from the simulation data. For the density
distribution of the cumulated volume, the setup is divided into small volume cubes for which the
density is averaged. The volume cubes are then cumulated with their respective densities.

In order to reduce computational costs, many simulations are carried out in 2D. In these cases the
dust bowl reduces to a hemicircle and the glass sphere to a circle of the respective radius. The nu-
merical setup uses cartesian coordinates although the symmetry of the problem would be more
accurately described by cylindrical coordinates. However, the SPH scheme in cylindrical or polar
coordinates battles with the problem of a singularity at the origin of the kernel function. There
are only few attempts to resolve this issue (e.g. Omang et al. 2006), which are still under develop-
ment and require high implementation efforts. Since 2D simulations provide only an indication
of the calibration required and 3D simulations are aimed at, I stick to cartesian coordinates in
this work.

In order to damp high frequency oscillations in the glass material, artificial viscosity (aay = 1,
Bav = 0) is applied to the sphere particles. In order to prevent instabilities the dust particles are
generally simulated with a,y = 0.1 and B,y = 0. Those dust particles which are in contact with
the sphere are an exception: They feature the same artificial viscosity parameter as the glass:
Qay = 1.0 and B,y = 0. In this way, glass and dust material are separated from each other by
an artificial pressure (see Sec. 4.4.2 and in particular Eq. 4.162) and spurious energy dissipation
among the dust particles is minimised. The actual choice of these values is motivated in Sec. 5.2.4
where the influence of artificial viscosity on the simulation outcome is also quantified and its
curing effect on instabilities is discussed.

The compaction calibration setup is the most important and most elaborate benchmark experi-
ment in this chapter. Therefore, the size and shape of the dust sample (Sec. 5.2.1) as well as the
difference between 2D and 3D setup (Sec. 5.2.3) are studied carefully before the setting is used
for calibration purposes. Subsequently, the compaction calibration setup is used to investigate
the influence of the numerical parameters (1) spatial resolution, (2) numerical resolution, and
(3) artificial viscosity. In detail, (1) the spatial resolution is given by the lattice constant /., which
determines the distances between the SPH particles in the initial distribution. (2) The numerical
resolution is governed by the smoothing length h. It regulates the number of interaction part-
ners of each SPH particle. The resolution parameters are studied in Sec. 5.2.2. (3) The artificial
viscosity is responsible for numerical stability and dissipative features of the dust material. It is
investigated in Sec. 5.2.4. After establishing a profound numerical basis, the compaction cali-
bration setup provides information on the shear strength (Sec. 5.3.2) and compressive strength
(Sec. 5.3.3).

5.1.2. Bouncing setup

The bouncing calibration setup tests the porosity model for a combination of compaction and
mainly restitution. To date, numerical simulations of porous dust aggregates (in particular MD
simulations, see Sec. 3.2) were not able to reproduce the rebound at low impact velocities. In
this work, this feature is simulated for the first time for porous SiO, dust. The setup is rather
simple: A spherical dust aggregate of defined size hits a hard surface with a certain (low) velocity
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Physical Quantity Symbol Value Unit
Glass bead

Bulk density™ 00 2,540 kgm™3
Bulk modulus™ Ko 5x 107 Pa
Murnaghan exponent® n 4 -
Radius r 0.55x 1073 m
Impact velocity Vo 0.65 ms!
Dust sample

geometry (2D) ®) box/semicircle -
geometry (3D) (b) hemisphere -
sample size® dsample, Tsample 3.3mm

Initial filling factor ¢ 0.15 -
Bulk density Ps 2,000 kgm™3
Reference density Py 300 kgm™3
Filling factor RBD dust sample dRBD 0.15 -
Bulk modulus Ko 3x10° Pa
ODC mean pressure® Pm 260 Pa
ODC max. filling factor Gmax 0.58 -
ODC min. filling factor ¢min 0.12 -
ODC slope@ A 0.58 -
Numerical parameters®

Lattice type (2D) triangular

Lattice constant (2D) Ic 25x 107 m
Smoothing length (2D) h 140 x 1076 m
Min. no. interaction partners (2D) Inin ~30 -

Av. no. interaction partners (2D) Iy ~ 100 -
Max. no. interaction partners (2D) Trnax ~ 180 -
Lattice type (3D) cubic

Lattice constant (3D) Ie 50x 1076 m
Smoothing length (3D) h 187.5x 1076 m
Min. no. interaction partners (3D) Inin ~70 -

Awv. no. interaction partners (3D) Iy ~ 240 -

Av. no. interaction partners (3D) Imax ~ 370 -
Artificial viscosity (bulk) Moy 0.1 -
Artificial viscosity (von Neumann-Richtmyer) Bav 0 -

Table 5.1. Selected parameters for the compaction calibration setup. ODC stands for omni-
directional compressive strength relation (Eq. 4.128). RBD denotes the random ballistic de-
position method by Blum and Schrépler (2004). Quantities marked by (*) represent the pa-
rameters for sandstone in Melosh (1989) which I adopt for glass here. The material parameters
calibrated by means of this setup in Sec. 5.3.3 are denoted by (a). The numerical and geomet-
rical parameters marked by (b) are varied and tested in Sec. 5.2. The values shown in this table
represent the final choices resulting from these studies.

108



5.1. Benchmark Experiments

vo. The calibration parameter is the rebound velocity vf or equivalently the dissipated energy.
Since bouncing might be an obstacle to planetesimal formation (see Sec. 2.3.1), it is of partic-
ular importance to simulate the restitution behaviour of dust aggregates correctly to accurately
determine the transitions between sticking, bouncing, and fragmentation. Inelastic restitution
might also reduce the collision velocities of pre-planetesimals, which in particular affect the frag-
mentation barrier. Therefore, the dissipation of kinetic energy also has to be calibrated for in this
benchmark setup.

Laboratory setups

HeiBelmann et al. (2007) performed collisions between two cubic millimetre sized dust aggre-
gates in an evacuated microgravity environment. From highly porous SiO, dust aggregates cre-
ated by RBD (Blum and Schrépler 2004), they cut out cubes with ¢ ~ 0.15. The collision velocity
was vy ~ 0.4m/s. In most of the collision experiments the aggregates became compacted and
rebounded. From the velocities of the projectiles after the collision, it was estimated that only
~ 5% of the translational energy was preserved. The same result was obtained by shooting a
highly porous cube onto a compact dust target with vy ~ 0.2m/s.

The numerical bouncing calibration setup described below (see also Fig. 5.3 and Tab. 5.2) is de-
signed after the bouncing experiments by Weidling et al. (2009). Just like in the experiments by
HeiBelmann et al. (2007) highly porous SiO; dust cubes were obtained by cutting RBD aggregates
(¢ = 0.15) into millimetre sized pieces. They were put onto a vibrating plate. In the subsequent
collisions, the plate and dust aggregate hit each other with a mean velocity of vy ~ 0.2m/s. In
each collision the aggregate became slightly compacted and rebounded with a velocity, which
is smaller than the collision velocity. The energy dissipation was consistent with the findings of
Heiflelmann et al. (2007).

Numerical setup

In contrast to Weidling et al. (2009), a dust sphere is simulated instead of a dust cube. The latter
was easier to cut from the RBD sample in the laboratory setup. For the simulations I choose
the geometrically more regular object to circumvent uncertainties of the impact area and impact
angle of a cube. As a second difference from the laboratory setup, I simulate only one impact
and not hundreds of subsequent impacts with increasing compaction of the aggregate. This is
because of limited computational resources.

The solid surface is a cylinder of radius rpjate = 0.8 mm and height dpjae = 0.1 mm (see Fig. 5.3),

which is simulated with 115,677 SPH particles on a cubic lattice with lattice constant! I = 12.5um.

This is motivated in Sec. 5.2.2. The plate consists of glass material for which the Murnaghan EOS
(Eq. 4.112) is applied with the material parameters specified in Tab. 5.2.

Under the influence of gravity a dust sphere with radius r = 0.5 mm hits the glass plate from above
with a rather low velocity of vy = 0.2m/s, which matches the setups by Weidling et al. (2009) and
by Heiflelmann et al. (2007) for collisions with a stationary target. The dust material is simulated
with the plasticity and porosity models presented in Sec. 4.3.4 and the parameters in Tab. 5.2. In
particular, the dust ball features an initial filling factor of ¢ = 0.15 and it is composed of 267,737
SPH particles on a cubic lattice with /. = 12.5um.

IThe constant [ of the cubic lattice is the edge length of one elementary cube of the lattice.
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Figure 5.3. Numerical bouncing setup. Both panels show a vertical cut through the midplane of
the setting. As a starting point (left), a dust sphere (¢p = 0.15) with radius r = 0.5mm hits a glass
plate (radius rpjae = 0.8mm and thickness dpjae = 0.1mm) with a low velocity vg = 0.2m/s.
During the impact the lower part of the dust sphere gets compacted (right, yellow area). The
flattened area Ag, = (0.5a)?7tis estimated from the distance a of the outermost SPH particles
enclosing the flattened bottom. The aggregate bounces off with a final velocity vy. The SPH
particles representing the glass plate are simulated as boundary particles with zero acceler-
ation at each time step. The parameters for the bouncing calibration setup are compiled in
Tab. 5.2.

The parameters of the artificial viscosity are chosen as in the compaction calibration setup: The
glass particles and all dust particles in contact with them have a4,y = 1 and S,y = 0 to prevent
spurious mutual penetration of both materials. The dust particles are simulated with a,, = 0.1
and S,y = 0 to minimise spurious energy dissipation. These choices are motivated in Sec. 5.2.4.
Regarding numerical resolution the smoothing length is set to h = 3.75 x [, ~ 46.9um. This choice
is justified in Sec. 5.2.2. This yields a minimum number of interaction partners of Ijyin, ~ 65. The
average is I,y ~ 230, and the maximum Ij4x = 340. All interaction numbers are averaged over the
total simulation time.

At the low chosen speed the dust sphere bounces off the plate. The calibration parameter is the
coefficient of restitution érest = vV, 1 which is calculated from vy and vf, which denote the initial
and final velocity of the dust aggregate, respectively. For future comparison with experiments,
which have not been carried out yet, I determine the contact time f.on¢, which is defined as the
time in which SPH particles of the sphere interact with plate particles®. Furthermore, I estimate
the flattened area Afqy: = (0.5 a)’m by determining the distance a between the outermost particles
at the flattened bottom of the dust ball after the collision.

5.1.3. Fragmentation setup

The fragmentation calibration setup tests the porosity model for a complex interplay between
tensile and compressive strength and in particular the bulk modulus. In the end the latter quan-
tity proves to be most important for the final fragment mass distribution after a collision. The
setup is similar to the bouncing setup: A dust ball hits a solid surface from below with a rather
high impact speed vy such that the aggregate fragments. The fragment mass distribution is

2Interaction of SPH particles takes place when their smoothing lengths overlap.
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Physical Quantity Symbol Value Unit
Glass plate

Bulk density™ 00 2,540 kgm™
Bulk modulus™ Ko 5x 107 Pa
Murnaghan exponent*) n 4 -
Radius Tplate 0.8x1073 m
Thickness dplate 0.1x1073 m
Dust sample

Initial filling factor 0) 0.15 -

Bulk density Os 2,000 kgm™3
Reference density Py 300 kgm™3
Filling factor RBD dust sample ®RrRBD 0.15 -

Bulk modulus® Ko 5,000 Pa
ODC mean pressure® Pm 260 Pa
ODC max. filling factor b2 0.58 -

ODC min. filling factor b1 0.12 -

ODC slope A 0.58 -
Impact velocity 1) 0.2 ms™!
Radius r 0.5x1073 m
Numerical parameters

Lattice type (3D) cubic

Lattice constant (3D) . 12.5x 1078 m
Smoothing length (3D) h 46.875x 1076 m
Min. no. interaction partners (3D) Inin ~ 65 -

Av. no. interaction partners (3D) Iy ~ 230 -

Max. no. interaction partners (3D) TImax ~ 340 -
Artificial viscosity (bulk) Aay 0.1 -
Artificial viscosity (von Neumann-Richtmyer) Bav 0 -

Table 5.2. Numerical parameters for the bouncing calibration setup. ODC stands for omni-
directional compressive strength relation (Eq. 4.128). RBD represents the random ballistic
deposition method by Blum and Schrépler (2004). Quantities marked by (*) represent the pa-
rameters for sandstone in Melosh (1989), which I adopt for glass here. The material parameters
marked by (a) are varied and tested with this calibration setup (see Sec. 5.3.3 and 5.3.5). The
values listed in this table are the final choices resulting from this study.
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the calibration parameter. As it is pointed out in Sec. 2.5, not only fragmentation but the right
amount of fragmentation might be essential to understand the planet formation process. There-
fore, a quantitatively accurate reproduction of the fragmentation behaviour is particularly im-
portant for the intended field of application of the porosity model presented in this thesis.

Laboratory setup

This setup was described in Giittler et al. (2009, 2010) and Geretshauser et al. (2010). In an evacu-
ated environment a device accelerates a nearly spherical dust aggregate with radius r ~ 0.285 mm
and filling factor ¢ = 0.35 bottom up. This hits a polished solid surface from below with a colli-
sion speed of vy = 8.4m/s, Only about 2 % of the projectile sticks to the target (Giittler et al. 2010).
Most of the projectile shatters and the fragments fall down under the influence of gravity. The
collision is observed by means of a high speed camera with a resolution of 16 um per pixel. The
measurement of the fragment masses is carried out by determining the projected surface area
from the 2D images. With the assumptions of spherical shapes and unchanged filling factor of
the fragments, the mass of the fragments can be calculated. Due to these assumptions, the filling
factor is underestimated since compaction can be expected. The fragment distribution is then
fitted by a power law (see also Eq. 5.9) whose parameters serve as calibration parameters.

Numerical setup

The numerical fragmentation calibration setup (Fig. 5.4) is very similar to the bouncing cali-
bration setup described above (see Sec. 5.1.2). A flat cylindrical object (radius Iplate = 0.8 mm,
thickness dpjaie = 0.04mm) composed of 188,478 SPH particles and simulated by means of the
Murnaghan EOS (Eq. 4.112) serves as an equivalent for the polished fixed target surface. The
spherical dust aggregate consists of 189,296 SPH particles. Its filling factor is ¢p = 0.35, which
corresponds to a medium porosity aggregate in contrast to the high porosity aggregates of the
compaction and bouncing calibration setups. For both objects the particles are placed on a cu-
bic lattice with /. = 8.0um. With respect to the other setups, an increased spatial resolution is
chosen such that a single SPH particle has less than 5 x 1076 times the mass of the whole aggre-
gate (6.8 x 10~8kg).

The smoothing length is & = 30jum, which is 3.75 x . as motivated in Sec. 5.2.2. With this choice
the minimum, average, and maximum number of interaction partners are Iy ~ 20, Iy ~ 200,
and Imax ~ 350, respectively. These values are averaged over the total simulation time.

As in the previous two setups the artificial viscosity parameters are set in the following way (de-
tails are explained in Sec. 5.2.4): The dust particles have @,y = 0.1 and B,y = 0. This minimises dis-
sipation by artificial viscosity. The glass particles and all dust particles in contact with them have
aay = 1 and By = 0, which separates the two materials and prevents instabilities. The material
separation leads to an important difference between the numerical and experimental fragmen-
tation setups. In the laboratory some portion of dust is observed to stick on the target surface.
This behaviour cannot be reproduced in the simulations because of the artificial separation by
means of artificial viscosity. In the simulation results, the sticking portion of the laboratory is
accounted for as a large fragment in the fragment distribution.

After the collision, the SPH particle distribution is evaluated by means of the fragment evaluation
tool described in Appx. A.2. In the SPH scheme, fragmentation occurs when SPH particles within
a solid body lose contact with their adjacent particles, i.e. when the SPH particles no longer in-
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boundary particles (glass)
T dplate 1

Fplate

Vo . . -

‘ dust particles

Figure 5.4. Numerical fragmentation setup. Both panels show a vertical cut through the mid-
plane of the setting. As an initial condition (left), a dust ball (¢p = 0.35) with radius r = 0.285mm
hits a glass plate (radius rpjae = 0.8 mm and thickness dpjaee = 0.04mm) from bottom up with a
high velocity vy = 8.4m/s. During the impact the aggregate gets disrupted into a fragment dis-
tribution (right), which serves as a calibration parameter. The initial parameters for this setup
are shown in Tab. 5.3.

teract. Two fragments are completely separated as soon as their respective subsets of particles
reach a distance of more than 2/ so that their kernels do not overlap onward. The fragment
evaluation tool detects all separated sets of particles and calculates the centre of mass (CoM),
the CoM velocity, and the mass of the fragment, amongst other quantities. In contrast to the
method of determining the fragment masses in the laboratory setup, the change in filling factor
and an inhomogeneous filling factor distribution of a fragment can be taken into account when
the fragment mass is computed. Additionally, the simplifying assumption of a spherical shape
is not necessary and the mass can be evaluated exactly for irregularly shaped fragments. While
in the experimental setup the resolution of the smallest fragments is limited by the resolution of
the camera, in the numerical setup the mass of an SPH particle is the smallest particle mass that
can be resolved. For this numerical reason, I introduce the sub-resolution population in my sug-
gestion for a new classification scheme for pre-planetesimal collision outcomes (see Sec. 6.1).
As stated above, in the fragmentation calibration setup the resolution is chosen such that the
numerical resolution is finer than the experimental resolution.

5.2. Numerical Setting

In this section, the influence of geometrical and numerical parameters on the outcome of simu-
lations with the porosity model presented in Sec. 4.3.4 is tested. For this task I use the compaction
calibration setup of Sec. 5.1.1. The basic parameters are specified in Tab. 5.1 and utilised where
not stated otherwise. Since a relatively large dust sample with a considerable number of particles
has to be simulated in the compaction calibration setup, the computational costs have to be min-
imised. As a first step (Sec. 5.2.1), a minimum size dust sample is chosen with a suitable shape,
such that no artefacts due to size and shape are produced. This study is carried out in 2D. As a
second step (Sec. 5.2.2), a suitable numerical and spatial resolution is determined in 2D and 3D
simulations. After that, the effect of the dimension on the setup is quantified in Sec. 5.2.3. Finally
in Sec. 5.2.4, the influence of artificial viscosity and other numerical parameters is discussed.

113

numerical
calibration
parameters



5. Calibration

Physical Quantity Symbol Value Unit
Glass plate

Bulk density™ 0o 2,540 kgm™3
Bulk modulus™ Ko 5x10% Pa
Murnaghan exponent™ n 4 -
Radius Tplate 0.8x1073 m
Thickness dplate 0.04 x 1073 m
Dust sample

Initial filling factor 0) 0.35 -

Bulk density 0s 2,000 kgm™3
Reference density 04 700 kgm™3
Filling factor RBD sample ¢RrRBD 0.15 -

Bulk modulus® Ko 4,500 Pa
ODC mean pressure Pm 260 Pa
ODC max. filling factor b2 0.58 -

ODC min. filling factor b1 0.12 -

ODC slope A 0.58 -
Impact velocity ) 8.4 ms™!
Radius r 0.285x 1073 m
Numerical parameters

Lattice type (3D) cubic

Lattice constant (3D) I 8x10°6 m
Smoothing length (3D) h 30x107° m
Min. no. interaction partners (3D) Inin ~20 -

Awv. no. interaction partners (3D) Iy ~ 200 -

Max. no. interaction partners (3D) TImax ~ 350 -
Artificial viscosity (bulk) Moy 0.1 -
Artificial viscosity (von Neumann-Richtmyer) Bav 0 -

Table 5.3. Numerical parameters for the fragmentation calibration setup. ODC stands for omni-
directional compressive strength relation (Eq. 4.128). The random ballistic deposition method
by Blum and Schrépler (2004) is abbreviated by RBD. Quantities marked by (*) represent the
parameters for sandstone in Melosh (1989), which I adopt for glass here. The material param-
eters marked by (a) are varied and tested with this calibration setup (see Sec. 5.3.5). The values
of this table are the final choices resulting from the fragmentation study.
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Figure 5.5. Influence of dust sample size and shape on the compaction calibration setup. Vertical
density profile at maximum intrusion for different shapes of the 2D dust sample. For the semi-
circle (top) rsample denotes the radius of the semicircle and for the 8 mm wide box (bottom)
dsample Stands for the depth of the box. In both cases spurious boundary effects appear for
T'sample < 3.3 mm and dsample < 3.3 mm, respectively.

5.2.1. Computational domain and boundary conditions

In 2D simulations, the effect of changing the size and shape of the dust sample is tested. Initially
the particles are placed on a triangular lattice with a lattice constant of 25 um. The elementary
structure of this lattice is an equilateral triangle. In this way, all SPH particles initially have the
same distance. To be geometrically consistent with the cylindric experimental setup of a dust
sample enclosed in a plastic tube, firstly a box with width 8 mm is chosen. Its depth is varied in
the following range: 1.375 mm, 2.2 mm, 3.3 mm, and 5.5 mm. This is equivalent to 2.5 x,4 x,6 x,
and 10 x the radius of the sphere r. The impact velocity is vy = 0.65m/s and the vertical density
profile (see Sec. 5.1.1 and Fig. 5.2) is used for result comparison. For this, the filling factor is
evaluated along a line through the centre of the sphere perpendicular to the dust sample surface
(see Fig. 5.2). Comparing the curves (Fig. 5.5, bottom), two features are remarkable: (1) The
maximum filling factor at the top of the dust sample (¢ ~ 0.27 at D ~ —0.8 mm) and the intrusion
depth D is nearly the same for all dust sample sizes. Because the filling factor ¢ and pressure p
are connected by the compressive strength relation (Eq. 4.128), the maximum filling factor gives
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h hil Inmin Ly Imax Tcomp Nsteps
0.050 mm 2 3 13 25 16.2 h 132401
0.075 mm 3 10 30 55 14.8h 96912
0.100 mm 4 16 53 92 19.8h 71175
0.125 mm 5 23 82 142 19.0 h 56347
0.150 mm 6 32 116 205 21.6h 46782
0.175 mm 7 43 158 274 243 h 39980

Table 5.4. Parameters for the convergence study regarding interaction numbers. In this table, h is
the smoothing length and [ the lattice constant determining the distance of two SPH particles
in the initial distribution. Iin, lav, and I;max are the minimum, average, and maximum number
of interaction partners, respectively. These quantities are averaged over the total simulation
time. Teomp denotes the computation time of each simulation on a machine specified in the
text and Ngeeps is the number of integration steps.

an indication for the maximum pressure that occurrs during the compaction phase. For ¢ ~ 0.27
this gives pmax ~ 170Pa for the finally calibrated relation. (2) For dsample < 3.3 mm, density peaks
appear at the lower boundaries (D ~ —1.4mm and D ~ —2.2mm). These peaks are generated by
density waves that were reflected at the lower boundary.

The box-shaped 2D sample resembles the laboratory setup more but for the purpose of reducing
computation time, the geometrical shape of the dust sample is now changed: the dust sample is
simulated as a semicircle using the same size variation as above for the box but with one addi-
tional step rsample = 1.1 mm. The resulting density profiles are shown in Fig. 5.5 (top). In contrast
to the corresponding simulations with the box-shaped samples, for rsample < 1.375mm an in-
creased maximum filling factor and a slightly reduced intrusion depth is found. Because of the
greater volume lateral to the intrusion channel, material can be pushed aside more easily than
inside the narrow boundaries of the semicircle. Therefore, a higher fraction of the material is
compressed to higher filling factors. For rsample > 3.3 mm, the spurious boundary effects become
negligible within the compaction calibration setup and the density structure shows no significant
difference between box-shaped and semicircle-shaped dust samples.

As aresult from this study, all further simulations with the compaction calibration setup are con-
ducted on the basis of a semicircle in 2D or a hemisphere in 3D with a radius of r = 3.3 mm.

In all cases, the dust sample is bordered by a few layers of boundary particles whose acceleration
is set to zero at each integration step. This simulates reflecting boundary conditions. The equa-
tion of state is that of dust particles. I also tested damping boundary conditions by simulating
two layers of boundaries. The outer layer was treated as described before, the inner (sufficiently
large) layer was simulated with a high artificial a-viscosity. Since there was no significant dif-
ference in the outcome, all boundaries are fixed by zeroing their accelerations. Thus, they are
considered to be reflecting.

5.2.2. Resolution and convergence

Within the SPH scheme two kinds of resolution are of importance (Speith 2007, and references
therein). Firstly, the spatial resolution accounts for the number of particles that resolve a spatial
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Figure 5.6. Convergence study of spatial resolution I. Convergence study of the vertical density
profile for 2D (top) and 3D (bottom) compaction calibration setups with respect to the spa-
tial resolution represented by the lattice constant /.. The increase in filling factor towards the
surface of the dust sample accounts for the glass bead, which is not removed in this plot. All
curves show a characteristic density minimum between the sphere and dust sample and a
characteristic density peak indicating the dust sample surface. The reason for these character-
istic features is explained in the text.
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Figure 5.7. Convergence study of spatial resolution I1. Convergence study of the maximum intru-
sion depth for the 2D (top) and 3D (bottom) compaction calibration setups. Filled symbols
represent the position of the density peak of the dust material whereas empty symbols denote
the position of the density minimum at the gap between the glass bead and dust material. The
values are derived from the density profiles in Fig. 5.6. The smoothing length in the respec-
tive simulation is indicated by the error bars. While the density peak position remains almost
constant at D ~ —0.9mm (2D) and D ~ —0.65mm (3D) with increasing spatial resolution, the
position of the density minimum quickly converges to the same value. This is because of the
artificial separation between dust and glass materials, which is of the order of a smoothing
length. Further explanations are given in the text.
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Figure 5.8. Convergence study of numerical resolution. Convergence study of the density profile
using the 2D compaction calibration setup with varying smoothing length h. Through this
variation, the number of interaction partners is varied according to Table 5.4 where a higher
number of interaction partners denotes a higher numerical resolution. The glass bead is re-
moved in this plot. For & < 0.075mm clear signs of instabilities are visible. For i = 0.1 mm the
filling factor has the same value and its position remains constant. The smoothing of the dust
sample surface is increased for increasing h.

element. In the context of this thesis, the spatial resolution corresponds to the smoothing length
h and, if the numerical resolution is fixed, also to the lattice constant I., which is a measure for
the distance between two SPH particles for the various lattice types. Secondly, the numerical res-
olution is given by the number of interaction partners of a single SPH particle. It was shown that
within the SPH scheme an increase in spatial resolution may result in convergence problems if
not at the same time the numerical resolution is increased (Speith 2007, and references therein).
For this reason, in this section spatial resolution as well as numerical resolution are tested.
Geretshauser (2006) showed with a setting similar to the compaction calibration setup (Sec. 5.1.1)
that the intrusion depth D may strongly depend on the spatial resolution of the dust sample. In
particular, the intrusion depth of the glass bead can be doubled by doubling the spatial resolu-
tion. Since the benchmark experiments presented in this thesis are extremely sensitive even to
minor changes in the setup, the convergence properties of the porosity model and the underlying
SPH method are investigated carefully in this section.

The spatial resolution study utilises the compaction calibration setup (see Sec. 5.1.1, and Fig. 5.2)
with the numerical and geometrical parameters presented in Tab. 5.1 except for a higher mean
pressure pp, = 1.3kPa. In addition, the lattice type and lattice constant are varied in this investi-
gation. The smoothing length is varied such that the number of interaction partners (numerical
resolution) is roughly constant.

For the 2D convergence study, particles are initially placed on a triangular lattice. The lattice
constants [ are 100, 50, 25, and 12.5 um. The smoothing length # is kept constant relative to I at
aratio of 1 =5.6 x [.. This leads to a constant number of interaction partners for each pair of &
and [.. Averaged over the total simulation time, the maximum, average, and minimum numbers
of interaction partners are Iax ~ 180, Iy ~ 100, and I ~ 30, respectively.
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In the 3D convergence study, a cubic lattice is used. The edge lengths of one elementary cube
are [, = 100, 50, and 25um. Consequently, the distances between single SPH particles are not
exactly equal. The 25pum resolution is simulated with 3.7 million SPH particles, which represents
the current limit of the available computational resources. The ratio between smoothing length
and lattice constant is fixed at h = 3.75 x [, which yields Iimax ~ 370, Iay ~ 240, and Inpin ~ 70 as
resulting interaction numbers, which are averaged over simulation time.

The resulting vertical density profiles are presented in Fig. 5.6. In contrast to the plots in Fig. 5.5,
the glass sphere is not removed here. Coming from the right side of the plot, the filling factor
rapidly decreases from a high value beyond the edge of the plot describing the sphere. The filling
factor reaches its minimum at an artificial gap between sphere and surface of the dust sample.
This minimum is referred to as a density minimum in the further discussion. The width of this
gap is about one smoothing length &. The existence of the gap has two reasons: (1) The sphere
and dust material have to be separated by artificial viscosity for stability reasons. This issue is
discussed in Sec. 5.2.4. (2) The volume of the sphere represents an area of extremely high density
and pressure with respect to the dust sample. This area is smoothed out by the SPH method and
the width of the smoothing is given by the smoothing length.

Although a clear convergence behaviour is evident in Fig. 5.6 for both the 2D and the 3D cases,
a more unique convergence criterion has to be found. For this purpose, the maximum intrusion
depth is more appropriate since it proved to be very sensitive to resolution changes (Geretshauser
2006). The shape of the filling-factor profile provides two ways in which the intrusion depth can
be determined: (1) the density minimum, which is in between a sphere and a dust sample; and
(2) the filling factor maximum of the dust material on the left of the gap between sphere and dust
sample. The latter is referred to as density peak in the following discussion.

Figure 5.7 shows the results for both cases in 2D (top) and 3D (bottom). The error bars around
the minimum values represent the smoothing length in the respective simulation and provide
an indication of the maximum error. The position of the density peak remains almost constant,
converging to D ~ —0.9mm (2D) and D ~ —0.65mm (3D), respectively, at higher resolutions. The
position of the density minimum at low resolutions differs significantly from the position of the
density peak but converges quickly to the same intrusion depth at higher resolutions. However,
the differences between the extrema remain well within one smoothing length. This is because
of the separation of the sphere and dust sample discussed above. Comparing 2D and 3D conver-
gence, the 3D case seems to converge more quickly.

Based on the findings of this study, I choose a spatial resolution of [, = 25um for additional sim-
ulations in 2D. In the 3D case, [. = 50um is sufficient but /. < 50um is desirable if feasible.

After defining suitable values for the spatial resolution, the numerical resolution has to be in-
vestigated. To test this feature, the 2D compaction calibration setup is utilised with [, = 25pum.
The ratio of smoothing length and lattice constant /[ is varied from 2 to 7 in unit steps. This
determines the initial number of interaction partners that is smoothed over. The resulting max-
imum, average, and minimum interactions Imax, lay, and Imin, respectively, and the correspond-
ing smoothing lengths & can be found in Table 5.4.

Please note that in this test the spatial resolution & changes. Hence, a mixture of spatial and nu-
merical convergence is investigated here. For a pure test of numerical resolution & must be fixed
and /. must be changed. However, for decreasing [ this test is infeasible due to limited compu-
tational resources. Therefore, I choose this mixed test as an indication for sufficient numerical
resolution.

Comparing the density profiles in Fig. 5.8, where the glass bead is removed, instabilities in the
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form of filling factor fluctuations due to insufficient interaction numbers appear for smoothing
lengths & < 0.075mm, i.e. for I;y < 30. For h = 0.1 mm, the density profile has essentially the
same shape: the position and height of the filling factor peak remains nearly the same and ¢
drops smoothly to ~ 0.18 towards the bottom of the dust sample. Only the sharp edge at the
top of the dust sample at D ~ —0.7mm is smoothed across a wider range due to the increased
smoothing length.

Additionally, I measure the time T¢omp the computations take, simulated on 4 cores of a cluster
with Intel Xenon Quad-Core processors (2.66 GHz) for a simulated time of 5ms and the number
of integration steps Nep 0f the adaptive Runge-Kutta Cash-Karp integrator.

Table 5.4 shows that the number of integration steps Ngep decreases with increasing interaction
numbers. This is because the elastic waves inside the dust sample are smoothed over a wider
range causing the adaptive integrator to increase the duration of a time step. This is because
density fluctuations do not have to be resolved as sharply as when a lower amount of smooth-
ing is applied. As expected, the computation time T¢omp generally increases with the increasing
number of interactions. There are two exceptions: i = 0.075mm and h = 0.125mm. Here, the
decrease in Ngeeps overcompensates for the increase in the interactions leading to a decrease in
Tcomp- Hence, a ratio h/l; ~ 5 yields the necessary accuracy and an acceptable amount of com-
putation time. This study justifies the choice of h/l. = 5.6, which is used for the 2D compaction
calibration setup in the further course of this thesis.

According to these findings, for 3D simulations an average interaction number of theoretically
13/2 ~ 750 would be needed to achieve a numerical resolution comparable to the 2D setup. How-
ever, such simulations are infeasible and the choice of I, ~ 240 in 3D is equivalent to I3y ~ 40 in
2D, which should provide sufficient and reliable accuracy.

The final choices for the numerical parameters of the compaction calibration setup are compiled
in Tab. 5.1

5.2.3. Geometrical difference of 2D and 3D setups

As one can easily see in Fig. 5.7, 2D and 3D simulations have significantly different convergence
values for the intrusion depth. This deviation is caused by the geometrical difference of the 2D
and 3D setup. The 2D setup (glass circle impacts into dust semicircle) represents a slice through
a glass cylinder and a semi-cylindrical dust sample, which implies an infinite expansion into the
third spatial direction. In contrast, the 3D setup represents a real sphere dropping into a “bowl”
of dust.

In the reference experiments for the compaction calibration setup, a linear dependence

2
_,m"s

( )mvo
D=(83x10"" —|——
kg

1 (5.1

between intrusion depth D, cross section A = 7tr? and momentum muy of the glass sphere is
found for a series of impacts with 1 mm and 3 mm spherules at various impact velocities vg (Gtit-
tler et al. 2009). This linear relation contains the cross section A, and thus a geometrical depen-
dence. Hence, Eq. 5.1 can be utilised to determine a rough correction factor between 2D and 3D
simulation setups
msplo ;‘17'”'390”0 _ 8 7Tr2p()l/0 _ 8 mupry
Asp - T2 a ;’[ 2r a 5‘[ Asp

(5.2)
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Figure 5.9. Verification of the 2D-3D correction factor. The filled symbols denote the position of
the density peak of the dust material in Fig. 5.6. Triangles represent 3D and squares 2D values.
The conversion from 2D to 3D intrusion depth utilising the correction factor from Eq. 5.1 and
5.2 due to the geometrical difference is indicated by the line without symbols. The 3D values
are in very good agreement with the very rough theoretical prediction. They lie well within the
errors.

where py is the bulk density of the spherule, m3p is the mass of a real 3D spherule and m;p is the
mass of the spherule per unit length. The 3D cross section Asp is the area of a circle with radius
r and the 2D equivalent Ayp is a line with length 27r.

Hence, the 2D intrusion depth has to be corrected by a factor of ~ 8/37 to determine the 3D
intrusion depth. The comparison is shown in Fig. 5.9. For this figure I use the 2D and 3D data
gained in the convergence study for the peak filling factor values shown in Fig. 5.7. Figure 5.9
shows the original 2D data, the corrected 2D data, and the corresponding 3D data (with error
bars that indicate the smoothing length). The 3D values closely agree with the rough correction
and remain well within the maximum error.

This comparison justifies the prediction of the mean pressure pp, of the compressive strength
relation (Eq. 4.128) in Fig. 5.15 of Sec. 5.3.3. The higher peak filling factor visible in Fig. 5.6 re-
sulting from 2D simulations compared to 3D is also taken into account in this prediction. As a
consequence of Eq. 5.2, all calibration tests involving the intrusion depth can be carried out in
2D, saving a significant amount of computation time.

Comparing the vertical density profiles in Fig. 5.6 reveals another difference between the 2D and
3D setups. According to the experimental data (Fig. 5.12, Fig. 5.13, bottom, and Fig. 5.18, top, also
Giittler et al. 2009), the filling factor drops to a value of ¢ ~ 0.16 within a distance of ~ 0.6 mm
from the bottom point of the glass bead at maximum intrusion toward the bottom of the dust
sample. For high-resolution 2D simulations (Fig. 5.6, top), the filling factor does not drop to this
value for the entire dust sample. However, the 3D simulations (Fig. 5.6, bottom) show that this is
because of the difference between the 2D and 3D geometry. Using the 3D setup, the filling factor
drops to ¢ ~ 0.16 within ~ 0.9mm. All deviations from experimental findings in 2D numerical
calibration experiments caused by this effect, in particular the large volume with ¢ < 0.2 in the
cumulated volume over filling factor diagrams (Fig. 5.14, bottom, Fig. 5.16, bottom, also Fig. 15
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Figure 5.10. Artificial viscosity study for the vertical density profile. Density profile for different
values of artificial a-viscosity in the frame of the compaction calibration setup. The shape of
the density profile hardly changes, but increasing the a-viscosity decreases both the maximum
filling factor and the maximum intrusion depth.

in Giittler et al. 2009), can be removed by switching to 3D simulations. They do not represent a
fundamental error in the porosity model.

5.2.4. Artificial viscosity and other numerical parameters

Since artificial viscosity (AV, see Sec. 4.4.2) plays an eminent role in the stability of SPH sim-
ulations, its influence on the outcome of the compaction calibration setup (see Sec. 5.1.1 and
Fig. 5.2) has to be investigated thoroughly to ensure a correct calibration. Deviating from the
values in Tab. 5.1, the viscosity study is carried out with py, = 1.3kPa. For all of the three cases
below, the influence of B-viscosity on all benchmark parameters is tested but is found to be neg-
ligible. Hence, only artificial a-viscosity is applied for the compaction calibration setup. This has
a threefold effect:

1. The a-viscosity dampens high oscillation modes of the glass bead caused by the stiff Mur-
naghan EOS (Eq. 4.112). Thereby it enlarges the time step of the adaptive integrator and
saves computation time.

2. The a-viscosity is used to provide the dust material with a basic stability.

3. The a-viscosity separates the areas of Murnaghan EOS and dust EOS and prevents a so-
called cannonball instability.

For case (1) the exact choice of the a-viscosity of the glass bead proves to be unimportant. Hence,
I stick to the canonical value of @,y = 1.0. No influence on the physical benchmark parameters is
detected for all a,y, values, except for @,y = 0, which produces an instability. Values of aay > 1.0
have no significant effect on the damping, and the influence for 0.1 < @,y < 1.0 is not too high,
but still observable.
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Figure 5.11. Artificial viscosity study for various quantities. Evolution of the maximum intrusion
(top), the peak filling factor (middle), and the amount of compressed volume for filling factors
greater than a given value (bottom) for different values of artificial a-viscosity. Intrusion depth
and peak filling factor decrease with increasing values for a4y,. This is an indication for the
dissipative feature of the a-viscosity. The decrease of the peak filling factor and the amount
of material which is compressed to ¢ = 0.24, shows that the peak pressure during the impact

drops with larger values of ay.
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Regarding case (2), Sirono (2004) applied no artificial viscosity to his porous ice material to avoid
dissipation. The results of my study are shown in Fig. 5.10 and 5.11 and confirm this choice in
terms of the dust material. For the 2D compaction calibration setup (with the numerical param-
eters calibrated in Sec. 5.2.2, i.e. [, =25um, h/l; =5.6), aay is varied from 0 to 2 and its influence
on the vertical density profile (Fig. 5.10) is observed. Offering a different view, Fig. 5.11 shows the
evolution of the maximum intrusion represented by the filling factor peak of the dust material
(top), the peak filling factor itself (middle), and the amount of material which is compressed to
filling factors greater than a certain value (bottom).

The essential effects of a-viscosity can be seen in the evolution of the vertical density profile
(Fig. 5.10). While the profile maintains nearly the same shape, the maximum intrusion (given by
the position of the density peak as in Sec. 5.2.2) and the height of the filling factor peak decrease
with increasing a4y. The filling factor distribution of the compressed material also changes: more
volume is compacted to lower filling factors and less material reaches high filling factors.

These features are broken down into the three panels in Fig. 5.11. The maximum intrusion ranges
from D ~ —0.92mm with a4y = 0.0 to D ~ —0.62mm at a,y = 2.0 (Fig. 5.11, top). This clearly
demonstrates the dissipative feature of the a-viscosity: a lower amount of kinetic energy of the
glass bead is transformed into plastic deformation with higher a,y. As a consequence, the depth
at which the spherule stops is not so deep. The residual energy must have been dissipated. How-
ever, the a-viscosity-intrusion curve seems to saturate at a value of D ~ —0.6 mm. Additionally,
the peak filling factor itself decreases with increasing a,y (Fig. 5.11, middle). The little increase
for very small a,y is caused by instabilities, which occur for these a,y values. The peak filling fac-
tor reaches a maximum of ¢ ~ 0.274 for a5, = 0.1 and decreases to ¢ ~ 0.234 for a,, = 2.0. Since
the filling factor is directly related to the peak pressure by the compressive strength relation X (¢)
(Eq. 4.128) it can be concluded that an increasing artificial viscosity diminishes the peak pressure
during compaction. According to Z(¢), the peak pressures for the given setup are ppeak ~ 520 Pa
for aay = 0.1 and ppeak ~ 295 Pa for a,y = 2.0. The decrease in the peak pressure can also be seen
in the filling factor distribution of the compressed material (Fig. 5.11, bottom). In units of the
sphere volume, the figure shows the variation of the amount of compacted dust material, which
is compressed to filling factors ¢ = 0.155, 0.18, 0.20, and 0.24. The initial dust sample features
a uniform filling factor of ¢ = 0.15. The total amount of compressed material (represented by
¢ = 0.155) hardly changes for higher values of agy: it decreases by 4.80 % from ~ 6.66 (aay, = 0)
to ~ 6.34 Vsphere (@ay = 2.0). In contrast, the material with ¢ = 0.18 decreases by 54.1% (from
2.03 t0 0.938 Vphere) and for ¢p = 0.24 the amount of compressed dust drops by 66.2 % (from 1.03
t0 0.380Vsphere). Material with ¢ > 0.24 after the impact nearly disappears (decreases by 99.8 %
from 0.167 to 2.71 x 1074 Vsphere)- The filling factor distribution can be regarded as a fingerprint
of the peak pressure in the material. The altered filling factor distribution shows that with higher
values of a,y, not only is the peak pressure in the contact area of the spherule and dust reduced,
but the overall pressure is also decreased in large areas of the material.

In contrast to Sirono (2004), I find that it is necessary to apply a small amount of a-viscosity to
the dust material. For a4y < 0.1, the results show evidences of an instability, which is also respon-
sible for a rapid increase in the maximum intrusion (Fig. 5.11, top). Therefore, it is convenient to
apply an artificial viscosity with a4, = 0.1 to the dust material, which holds for the previous sim-
ulations in this chapter as well as the following. The choice of a non-zero a,y is also justified by
experimental findings (Giittler et al. 2009): after impacting into the dust sample, the glass bead
shortly oscillates because of the elastic properties of the dust. This oscillation is damped by in-
ternal friction, which can be modelled with artificial viscosity. Therefore, by choosing a non-zero
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a .y the natural dissipative properties of the dust material are taken into account. A quantitative
calibration of this parameter is not carried out within this thesis and is left to future work.

Effect (3) of the use of artificial viscosity concerns the stability of the simulation: during the first
simulations with the 2D compaction calibration setup, a so-called cannonball instability is ob-
served. During the compaction process, when the glass bead intrudes into the dust material,
single SPH particles at the sphere’s surface begin to oscillate between the domains of the Mur-
naghan EOS (Eq. 4.112) and dust EOS (porosity model, Sec. 4.3.4). Because of the significant dif-
ference in the stiffness of these two equations of state, the particles acquire an enormous amount
of unphysical kinetic energy until they move fast enough to generate a pressure on the dust ma-
terial that exceeds the compressive strength X(¢) (Eq. 4.128). Eventually they disengage from
the sphere’s surface like a cannonball and dig themselves into the dust sample causing a huge
amount of unphysical compaction. I tackle this problem for all dust SPH particles which inter-
act with glass bead SPH particles by applying the same amount of a-viscosity to them as for the
sphere, i.e. aay = 1.0. In the simulations for all three of the benchmark experiments, this is suf-
ficient to prevent the cannonball instability. The spurious dissipation caused by this measure is
negligible.

5.3. Adopting and Adapting Empirical Material Parameters

At the start of the collaboration between experimentalists carrying out the laboratory bench-
mark setups and the author of this thesis, the calibration process of code and porosity model was
designed to be a one-way information flow: material parameters were to be measured empiri-
cally as well as benchmark parameters from the test experiments. The material parameters were
supposed to be implemented directly into the porosity model and the three benchmark experi-
ments presented in Sec. 5.1 were intended to be a test for the code and porosity model. However,
in the course of the collaboration it turned out that some important material parameters were
unfeasible to measure (shear strength Y (¢), see Sec. 5.3.2), not applicable to the dynamic case
(compressive strength X(¢), see Sec. 5.3.3), or ambiguous (bulk modulus K(¢), see Sec. 5.3.5).
For this reason the benchmark experiments, originally intended to check the correct function-
ality of the code and the porosity model, are utilised to constrain the material parameters by
numerical parameter studies. Thus, the cooperation, eventually yields new insights into the
properties of the porous SiO, dust material, which are not easily accessible by laboratory ex-
periments. With numerical simulations it becomes possible to investigate the effect of different
material relations and their governing parameters on the simulated dust material. The result of
this intensive study is presented in this section.

Due to the altered usage of the benchmark experiments in these parameter studies, their in-
tended purpose as a strong check of the code and porosity model is weakened. However, the fact
that unknown material parameters such as a dynamic compressive strength can be determined
by computer simulations underlines the predictive power of the porosity model. Eventually, the
calibration process is successful in the sense that the three test experiments can be simulated
with one consistent set of material parameters. This fact is regarded as sufficient criterion for
the successful calibration of the porosity model. The reproduction of all collision types found in
a comprehensible collection of laboratory dust experiments (Gdittler et al. 2010) with this code
(see Sec. 6.1.1) supports this claim.

This section is composed as follows: the tensile strength T'(¢), described in Sec. 5.3.1, is the only
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strength quantity which is not altered during the calibration process. The determination of the
shear strength Y (¢b), which was not at all available from laboratory measurements, is outlined in
Sec. 5.3.2. The quantity which is investigated most thoroughly is the compressive strength Z(¢).
Therefore, in Sec. 5.3.3 a suitable functional expression is firstly constrained and subsequently
the specific parameters of this expression are defined. After the successful investigation of the
strength quantities which govern the plastic regime, the bulk modulus as an elasticity parameter
is determined in Sec. 5.3.5. Finally, a short summary of the calibration process is given in Sec. 5.4.

5.3.1. Tensile Strength

The tensile strength of the mono-disperse SiO, dust material was measured for highly porous
and compacted aggregates by Blum and Schrépler (2004): for packing densities of ¢ = 0.15,
¢ =0.41, ¢ =0.54, and ¢ = 0.66, tensile strengths of |T| = 1,000Pa, |T| = 2,400Pa, |T| = 3,700 Pa,
and |T| = 6,300Pa, respectively, were found. These measurements support a linear dependence
between the tensile strength and the number of contacts per monomer (increasing with increas-
ing ¢), which yields the tensile strength as

T(p) = —10>8+148¢pg (5.3)

As the tensile strength is a threshold for tension forces, the relation is denoted with a minus
sign. The tensile strength was measured in an uniaxial, quasi-static setup (Blum and Schrépler
2004, Blum et al. 2006b). However, by definition pressure is homogeneous and omnidirectional.
Consequently, for the compressive strength calibration (see Sec. 5.3.3) it turns out that a dynamic
measurement in an omnidirectional setup is more appropriate to measure this quantity. It is
very likely that the tensile strength relation is also altered for the dynamic, omnidirectional case.
However, even static tensile strength measurements require a difficult experimental setup. Thus,
the adequate empirical determination is unfeasible in the laboratory. Because of the excellent
final results of the calibration, the influence of this strength quantity is not studied numerically
within this thesis. The tensile strength relation T'(¢) is plotted in Fig. 5.24.

5.3.2. Shear Strength

Since no experimental data is available for the shear strength, Y (¢) is assumed to depend on the
other strength quantities, i.e. the compressive strength Z(¢p) and the tensile strength T'(¢). In
parameter studies (see also Giittler et al. 2009), the following three different simple relations for
Y(|T|,Z) are tested: Y = |T|, Y = X and, following Sirono (2004), Y = \/Z|T]|, which represents
the geometric mean of both quantities. For all simulations, the 2D compaction calibration setup
(see Sec. 5.1.1) is used. Deviating from the parameters in Tab. 5.1, the dust sample is a box and
the ODC mean pressure is varied. The reason for the latter is discussed below and in Sec. 5.3.3.
Particularly the vertical density profile (see Fig. 5.2 for an illustration) proves to be a suitable cal-
ibration parameter to constrain the shear strength relation. The results of this study are depicted
in Fig. 5.12.

Using the statically measured compressive strength relation (Eq. 4.128) with pp, = 13.0kPa, each
of the shear strength models the simulation results in a much too shallow intrusion depth and an
insufficiently high maximum filling factor underneath the sphere (Fig. 5.12). The experimental
reference, denoted by crosses in this figure, is derived from the X-ray tomography measurements
presented in Sec. 5.1.1 (see also Fig. 5.1) and for practical reasons, the sphere is not removed for
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Figure 5.12. Shear strength models. Study of the three different shear strength models Y = /Z|T|
(top), Y = X (middle), and Y = |T| (bottom) by means of the compaction calibration setup.
The mean pressure py, of the compressive strength relation is varied for each model. The fig-
ure shows the vertical density profile, which is measured after the impact along a line through
the centre of the spherule and perpendicular to the surface of the dust sample, which is rep-
resented by a sample height of 0mm. The laboratory reference, where the sphere was not
removed for the measurement, is presented by crosses. The model Y = Z (middle) yields fill-
ing factors that are too small and the Y =|T| model produces intrusions that are too shallow
and filling factors that are too high. Hence, the Y = /Z|T| model is the best suitable choice.
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these measurements. This results in a rapid filling factor increase at D ~ —1 mm. However, for
the simulation results the sphere is removed to focus on the density structure of the dust only.
The initial surface of the dust sample is at 0 mm.

The shallow intrusion in the simulations using the static compressive strength relation are a first
indication that this relation has to be modified in order to reproduce the experimental data. This
is because X(¢) determines the threshold pressure which is necessary to compress a dust ag-
gregate of a given filling factor ¢p. Lowering the mean pressure pp, results in lower threshold
pressures and a deeper intrusion can be achieved. Therefore, I perform a parameter study vary-
ing the parameter py,, i.e. I shift the compressive strength curve to lower pressures (see Fig. 5.14,
top) for the different shear strength models, which depend on X. The effect of lowering pn, is
studied in detail in Sec. 5.3.3.

A significant increase in the intrusion depth is only observed in the cases where Y =X and Y =
VZIT] (Fig. 5.12, top and middle). In case of Y = |T|, the intrusion depth hardly changes with
decreasing pp, (Fig. 5.12, bottom). Since the shear strength is unaltered and varying X(¢) via pm
does not have a significant effect on the intrusion depth, it can be concluded that shearing plays
an important role during the intrusion.

Compared to the other cases, the shear strength reaches its highest values in the Y = |T| case.
Hence, the material can hardly be pushed away due to shear and has to be compressed. Lowering
pm lowers the pressure necessary to compress the material to a certain filling factor ¢. Together
with the fact that the material cannot escape to the side by shearing, this results in the highest
filling factors for the Y = |T| model compared to the other models (Fig. 5.12, bottom). The Y =
Y model yields the lowest shear strength values. Hence, material is mostly sheared aside, less
material is compressed and therefore this model leads to filling factors below the reference data
(Fig. 5.12, middle).

As a result from this study two models can be excluded: the Y = Z model cannot reproduce the
high values in the vertical filling factor profile (Fig. 5.12, middle) and the Y = |T| model produces
intrusion depths that are too shallow and peak filling factors that are too high (Fig. 5.12, bottom).
In contrast, the Y = y/Z|T| model yields an almost perfect match (Fig. 5.12, top) of the vertical
density profile for a lowered pp,. Therefore, the shear strength model after Sirono (2004) is used
for further simulations.

Looking at Fig. 5.12 (top), it has to be kept in mind that this study is carried out in 2D. The geomet-
rical differences between the 2D and 3D compaction calibration setup were already discussed in
Sec. 5.2.3. The filling factor for the best fit (p, = 1.3kPa) only slowly drops to the filling factor of
the unaltered dust sample (¢ ~ 0.15) compared to the experimental reference. This is a 2D effect.
For the 3D simulation (Fig. 5.18, top) the behaviour follows the laboratory measurements more
closely.

Secondly, the intrusion depth for the mean pressure pr, = 1.3kPa producing the best fit for the
Y = vZ|T| model cannot be the final calibration value. This is because of the geometrical differ-
ence between 2D and 3D. As discussed in Sec. 5.2.3, a correction factor has to be applied to the
intrusion depth (Eq. 5.2). The 2D intrusion depth is expected to be deeper than the respective 3D
value.

Therefore, I conclude this section with the summary that Y = v/X|T| is a suitable model for the
shear strength, but the compressive strength relation has to be modified. The amount and effects
of this modification are discussed in the next section.
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5.3.3. Compressive Strength

Besides the tensile strength relation T'(¢), the compressive strength relation Z(¢) is one of the few
relations that are available from laboratory experiments. Blum and Schrépler (2004) measured
this quantity in an uniaxial quasi-static setup. Their relation is labelled “BS” in the further course.
They put an SiO, dust sample between two glass plates and consecutively applied defined pres-
sures on the sample. In between the pressure increases they measured the filling factor of the
dust sample. However, the uniaxial setup does not reproduce the homogeneous omnidirectional
nature of pressure. For this reason, Giittler et al. (2009) measured the compressive strength rela-
tion in an omnidirectional setup within the calibration project. This relation is labelled by “ODC”.
The measurements by Blum and Schripler (2004) as well as Giittler et al. (2009) can be interpo-
lated by different functional expressions. At first, the effects of these expressions are studied.
After a suitable function is found, the effect of the free parameters of this expression are studied
and fixed.

Functional expression

The laboratory data for the compressive strength relation can be implemented into the poros-
ity model in two ways: using a lookup-table and interpolating between the data points or as a
functional expression. For this thesis both approaches were tried with respect to the relation
provided by Blum and Schrépler (2004). However, with discontinuities in the interpolated curves
the simulations are highly prone to instabilities. Therefore, it is more suitable to approximate the
measured data by functional expressions. In the experimental context, the inverses of the tested
functions are more common. They are plotted in Fig. 5.13 (top).

Giittler et al. (2009) found that their ODC data as well as the BS data can be approximated by a
Fermi-Dirac distribution function with the maximum filling factor ¢pax, minimum filling factor
¢min, Mmean pressure pp, and slope A. The result is the compressive strength relation Z(¢p) which
was already introduced in Sec. 4.3.4 (Eq. 4.128)

_ (pmax - (Pmin Aln10
2gs/onc(@P) = pm|————— —1 ) (5.4)
$Pmax — ¢

for ¢pmin < ¢. The function is continuously extended by a constant function for ¢ < ¢ppin. The
minimum filling factor is nearly the same for both relations: ¢mnin = 0.15 (BS) and ¢min = 0.12
(ODC). Due to the uniaxial setup of BS, material can escape to the sides and the maximum filling
factor is lower than for the ODC case where the dust sample is enclosed from all sides: ¢yax = 0.33
(BS) and ¢ppmax = 0.58 (ODC). The experimental setup is also the reason why in the BS case, higher
pressures are necessary to achieve the same filling factor (see Fig. 5.13, top, for a comparison).
This slightly changes the shape of the curve and consequently the mean pressure and the slope
of the distribution: the BS-relation features p;, = 5.6kPa and A = 0.33, whereas for the ODC-
relation py, = 13.0kPa and A = 0.58.
However, in Sec. 5.3.2 it turned out that the static compressive strength relation is not applicable
for the dynamic case, which is given when simulating pre-planetesimal collisions. Therefore, the
compressive strength relation has to be shifted toward lower pressures to explain the experimen-
tal results. Further below I therefore study the BS-relation with lower values of pp,.
Although the Fermi-Dirac shaped function has already proven to be a suitable choice for the
compressive strength, it is worthwhile to study other possible fits for two reasons: firstly, this
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Figure 5.13. Dynamic compressive strength models. Study of two linear (linl, lin2), a power-
law (pwlw), and two shifted Blum-Schripler (BS) relations as dynamic compressive strength
models. The inverse of these relations, which is more common in experimental contexts, is
depicted (top) for all possible dynamic relations together with the static ODC-curve (py, =
13.0kPa) and the static BS-curve (pr, = 5.6kPa) as references. The effects are studied by means
of the density distribution (middle) and vertical density profile (bottom). While the power-law
and linear models produce an excess of compressed volume, the BS-curve yields good but not

sufficient, approximations in both cases. 131
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choice can be strengthened by excluding other models. Secondly, the influence of the shape
of the compressive strength curve on the density structure produced in the compaction can be
studied and certain features of the curve can be identified with density structure features.

The following possibilities for fits to compressive strength data were provided by C. Giittler with-

out being published. These already take into account the shift of the compressive strength rela-
tion. The available models include two linear fits

25x1073Pa for0<¢p<0.11
Ziin1 (¢) =4 2,500.0 ¢ —275.0Pa  for0.11 < ¢ <0.64 , (5.5)
1,325.0 pPa for0.64 < ¢
and
0.01Pa for0=¢=<0.21
Ziin2(¢p) =< 10%¢p—2,100.0Pa for 0.21 < <0.64 . (5.6)
4,300.0 ¢pPa for 0.64 < ¢

In both cases the respective middle line is based on the measurements and the lower and upper
filling factor is set by the author of this thesis to fill the data gap.

Another possibility is the following power-law
%t () = 10©¢-0.06)/0.12 5.7)

The effect of the different compressive strength models is studied by means of the 2D com-
paction calibration setup as presented in Sec. 5.1.1 and Fig. 5.2. The parameters are the same
as in Tab. 5.1, but the ODC-relations are replaced by the respective X(¢b). The tensile strength
and shear strength relations are the same as presented in Sec. 5.3.1 and Sec. 5.3.2, respectively.

Since the ODC-relation already proved to be a suitable choice in Sec. 5.3.2 and is studied further
below in more detail, I do not consider it in the study of this section for reasons of clarity. A
comparison of the ODC relation with the experimental reference data can be found in Fig. 5.18 of
Sec. 5.3.4. Since the original, static BS-relation with py, = 5.6kPa yields unrealistic results and has
to be shifted towards lower filling factors, I include only the BS-relation with three different values
of pm, the two linear models, and the power-law model for comparison. Looking at Fig. 5.13
(top), the BS-curves are similar to the static ODC-curve in the range of 0.1 to 10kPa. Since the
shapes of the curves remain the same but only a shift towards lower pressures takes place, similar
density structures should be produced but with higher filling factors. The linear and power-law
models are shifted toward lower pressures and higher filling factors. Consequently, these models
should result in density structures with higher densities but different in shape.

The effect of the different compressive strength models is studied by means of the vertical density
profile (Fig. 5.13, bottom) and density distribution of the cumulated volume (Fig. 5.13, middle).
These calibration properties are described in Sec. 5.1.1 in detail. Starting with the density distri-
bution, one can see that the the two linear models and the power-law model produce too much
volume at high filling factors. The power-law model and the lin1-model yield similar density dis-
tributions but the latter leads to slightly less volume at high filling factors and more volume at
low filling factors. This is because for both linear models very high pressures (some hundreds
of Pa) are necessary to achieve high filling factors (¢p ~ 0.3). Within the lin2-model it is easier
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to compress to low filling factors (¢ ~ 0.2) than to high filling factors (¢p ~ 0.3) compared to the
linl-model. Consequently, for the lin2-model more material features ¢ = 0.2. Conversely, less
material is compacted to ¢ = 0.3. Finally, the two linear models and the power-law model pro-
duce filling factors much larger than in the experimental reference. In contrast, the BS-relations
resemble the laboratory data. Both relations result in a similar density profile shape. This reflects
the fact that the compressive strength relations feature the same shape. However, the BS-relation
with pp = 2.8kPa results in filling factors that are too low. The BS-relation with py, = 1.12kPa
produces too much volume compacted to ¢ ~ 0.25 to 0.27 and insufficient volume with ¢ = 0.26.
This assessment is confirmed by looking at the vertical density profile (Fig. 5.13, bottom). The
power-law and linear models produce peak filling factors that are too high and too much com-
pacted material at high filling factors. The high mean pressure BS-relation produces a peak filling
factor that is too low. The shape of the low mean pressure relation fits the experimental data quite
well, although below D ~ —1.5mm the filling factor is too high. All relations yield an intrusion
depth that is too shallow.

In this section, it is demonstrated how some features of the compressive strength relation can
be identified with features in the calibration parameters. Concluding the comparison, the BS-
relations, which are similar to the ODC-relation, yield the best reproduction of the experimental
data. However, none of the presented relations is satisfactory. Therefore, the ODC-relation is
studied in more detail below.

Mean pressure pp,

In Sec. 5.3.2 it was already found that by lowering the mean pressure pp, of the compressive
strength relation, most of the features of the vertical density profile within the compaction cali-
bration setup can be reproduced in a very satisfactory manner. This is confirmed by the preced-
ing study using the shifted curves of the relation by Blum and Schrépler (2004). However, their
uniaxial setup is not appropriate for the omnidirectional nature of the compressive strength re-
lation. Therefore, in the following I return to the more appropriate ODC data by Giittler et al.
(2009), which I shift towards lower pressures by reducing py,. As a result, the yield pressure for
compression is lowered, which is illustrated in Fig. 5.14 (top), where the curve with pp, = 13.0kPa
represents the static ODC relation, which is depicted as a reference.

Since no empirical data are available for py, of the dynamical compressive strength curve, a pa-
rameter study is performed to determine a suitable choice for this important quantity. For this
study, the 2D compaction calibration setup (see Sec. 5.1.1 and Fig. 5.2) and the parameters of
Tab. 5.1 are utilised, except for p, which is varied from 0.13 to 13.0kPa. The effect of the mean
pressure is studied by means of the vertical density profile (Fig. 5.14, middle), the density distri-
bution (Fig. 5.14, bottom), and a maximum intrusion over stopping time diagram (Fig. 5.15). For
a detailed description of these calibration parameters see Sec. 5.1.1.

The effect of lowering pp, can most clearly be seen in the vertical density profile (Fig. 5.14, mid-
dle). More material can be and is compressed to higher filling factors. The peak filling factor
is increased from ~ 0.2 to 0.34. As a consequence, the glass bead intrudes more deeply (from
D ~ —0.4 to —1.4mm into the dust sample. From experimental results, an intrusion depth of
about one sphere diameter (~ 1 mm) is expected. With the aid of the empirical relation between
the ratio of momentum to impactor cross-section mvyA~! and intrusion depth D (Eq. 5.1) as
well as the correction factor between 2D and 3D intrusion depth (Eq. 5.2), it can be estimated
that D3p ~ 1mm corresponds to Dop ~ 1.42mm. Fig. 5.15 shows the maximum intrusion over
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Figure 5.14. Mean pressure study of the ODC compressive strength I. Lowering the mean pres-
sure pp, for the static omnidirectional compressive strength relation (Eq. 5.4, py, = 13.0kPa) by
Giittler et al. (2009) yields possible relations for the dynamic compressive strength (top). The
effects of lowering py, are studied by means of the vertical density profile (middle) and the
density distribution (bottom) within the 2D compaction calibration setup. By decreasing pn,,
the amount of compressed material is increased as well as the filling factors it is compacted to.
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Figure 5.15. Mean pressure study of the ODC compressive strength II. Maximum intrusion over
stopping time for different values of the mean pressure py, (labels, in kPa) of the compressive
strength relation (Eq. 5.4) using the 2D compaction calibration setup. The dashed line indi-
cates the 2D intrusion depth that is equivalent to a 3D intrusion depth of ~ 1 mm according
to Eq. 5.1 and the 2D-3D correction factor from Eq. 5.2. This supports the choice of the mean
pressure ppy, = 0.26kPa for further 3D simulations.

the stopping time for various values of py, (labels). The estimated Dp is indicated by a dashed
line. In terms of intrusion depth, it follows that a dynamic mean pressure py,, = 0.26kPa is a
suitable choice.

This is supported by looking at the peak filling factor of the vertical density profile (Fig. 5.14,
middle). For the compaction calibration setup, empirical data indicate that a peak filling factor
of ~ 0.3 can be expected. The comparison between 2D and 3D results (Sec. 5.2.3, Fig. 5.6) has
shown that the peak filling factor in the vertical density profile in the 2D case is generally higher
than for the same situation in 3D. The equivalent of ¢sp ~ 0.3 is a maximum filling factor of
¢op ~ 0.34 in 2D. This points to a choice of p,, ~ 0.3kPa, which is consistent with the findings for
the intrusion depth.

The density distribution (Fig. 5.14, bottom) reveals the effect of changing pp, on the total com-
pressed volume. The total amount of compacted material is increased from ~ 3 to ~ 9 sphere vol-
umes. The maximum filling factor is also increased from ~ 0.19 to ~ 0.34. However, the slope of
the material remains roughly the same. While the BS-curves in Fig. 5.13 (middle) approximately
describe a straight line in the density distribution diagram, the ODC curves better describe the
shape of the experimental data. This is evident when finally comparing the 3D simulations with
the laboratory reference (Fig. 5.18, bottom).

As aresult from this study the mean pressure can be fixed to p, = 0.26kPa, which will be used in
the further studies. Using a completely different setting, this choice is also confirmed by means
of the bouncing calibration setup, which is discussed in Sec. 5.3.5.
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Figure 5.16. Slope study of the ODC compressive strength. For this study an ODC relation with
Pm = 0.26kPa is used. Changing the slope A of the compressive strength results in tilting the
respective inverse relation (top). As a consequence, the threshold for plastic compression is
lowered in the low pressure regime. This produces vertical density profiles (middle) of nearly
the same shape but with deeper intrusions for higher values of A. The total amount of com-
pressed volume in the density distribution (bottom) hardly changes but a shift towards higher
filling factors occurs.
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Slope A

Besides the mean pressure pp,, the ODC relation X(¢) (Eq. 5.4) contains a second free param-
eter A, which accounts for the slope of the Fermi-shaped curve. In the previous studies, this
parameter was chosen to be identical to that of the static omni-directional compressive strength
curve and a more careful investigation was not carried out. To understand the effect of A on the
compaction properties of the dust sample, the 2D compaction calibration setup (Sec. 5.1.1 and
Fig. 5.2) is utilised again. Besides the variation of A from 0.55 to 0.80, the parameters of Tab. 5.1
are applied, in particular the previously calibrated mean pressure py, = 0.26kPa. The effect of A
on the inverse compressive strength is shown in Fig. 5.16 (top): with increasing A the slope of
the curves becomes shallower. This means that for dynamic pressures below the mean pressure,
higher filling factors are achieved. Conversely, for dynamic pressures above the mean pressure
the filling factors are lower. Since for the compaction calibration setup the dynamic pressures are
below the mean pressure, more compacted material with higher filling factors can be expected.
The resulting density structure is again studied by means of the vertical density profile (Fig. 5.16,
middle) and the density distribution (Fig. 5.16, bottom). Both calibration parameters are de-
scribed in detail in Sec. 5.1.1. From the vertical density profile, it can be seen that increasing A
increases the intrusion depth but not as effectively as lowering the mean pressure py, (Fig. 5.14,
middle). This is because the curve is only slightly tilted towards lower pressures. Increasing A
hardly increases the peak filling factor in the vertical density profile (Fig. 5.16, middle). Looking
at the density distribution (Fig. 5.16, bottom) the intersection of the curves with the y-axis rep-
resents the total compressed volume, which is increased from ~ 7 to ~ 9.5 sphere volumes. The
corresponding experimental measurements infer a value of roughly one sphere volume for this
quantity. The total amount of compressed volume and the maximum filling factor only slightly
increase with A but the distribution is shifted towards higher filling factors. In contrast, by lower-
ing pm the total amount of compressed volume and the maximum filling factor increase, main-
taining nearly the same distribution. Comparing the distribution variation for A and pp,, the
compacted volume fraction is increased in particular for 0.18 < ¢» < 0.23 in the former case.

By comparing the 2D and 3D calibration setups (see Sec. 5.2.3), it can be deduced that a sig-
nificant amount of this compaction (especially in the lower filling factor regime) is caused by
the geometrical difference, which is resolved by using the 3D setup (Fig. 5.18). The experimental
data do not indicate a particularly high amount of compaction to lower filling factors (rather the
contrary). This suggests the choice of A = 0.58.

Summary

In this section, a dynamic relation for the compressive strength Z(¢p) has had to be found. In
Sec. 5.3.2 it was already shown that the physically more appropriate omnidirectional compres-
sive strength relation measured by Giittler et al. (2009) provides satisfactory results. Nevertheless,
other possible fits for dynamic relations (linear and power-law) have been studied at the begin-
ning of this section. In this investigation, it has been possible to relate certain features of the
model equations to respective features in the density structure. This has provided a valuable
insight into the importance of the exact shape of the compressive strength relation and the sen-
sitivity of the benchmark setup. After choosing the static ODC as a basis, the insight has been
broadened further by studying the effect of the mean pressure p,, which has turned out to be
the essential quantity to convert the static ODC into a dynamic ODC for which pp, = 0.26kPa has

137

numerical setting

vertical density
profile

density
distribution

geometrical
difference

A choice



numerical setting

5. Calibration

0.0 ) - - r - - - 1 - 1 - 1 ]

! experiment data o o o ]

- sine curve ———— |

—0.2F simulation (p.=0.26kPa) ------ -

C L N -

(o) «

‘B - & ]

2 [ & l

-.E _0'4 B o\c\ -

£ i X .

§ : 0\086 :

% -0.6 @\ 5 =

€ [ BN ]
(@) ~ 9

C B 0\3\ o b

-0.8 ON B .

- 1 ,O I L " N 1 N N N 1 N " 1 M M M 1 ]

0.0 0.2 0.4 0.6 0.8 1.0

normalized time

Figure 5.17. Comparison with benchmark experiments I — deceleration curve. Comparison be-
tween deceleration curves from drop experiments using 1 and 3 mm spheres and a 3D simu-
lation using the compaction calibration setup (ODC relation, p;, = 0.26 kPa). The curves are
normalised such that the origin represents the first touch of sphere and dust sample and (1,-
1) denotes stopping time at maximum intrusion.The simulated curve lies slightly underneath
the fit to the experimental data but well within the errors. The deviation is due to a shorter
stopping time than in the experiments (figure from Geretshauser et al. 2010).

been suggested. As remaining parameter the ODC slope has been studied and fixed to A = 0.58.
All these studies have been carried out in 2D and inferences have been drawn for the 3D setup
by means of the findings of the 2D-3D comparison (see Sec. 5.2.3). In the next section, the labo-
ratory experiments are finally compared to 3D simulations of the compaction calibration setup.

5.3.4. Comparing the plastic properties with benchmark experiments

Finally, after the tensile, shear, and compressive strengths governing the plastic behaviour of
the dust aggregates have been defined, the final comparison with the laboratory experiments is
carried out by means of the 3D compaction calibration setup (see Sec. 5.1.1 and Fig. 5.2). The nu-
merical, geometrical, and material parameters are chosen as calibrated in the previous sections
and presented in Tab. 5.1. The only exception is the bulk modulus of the dust material, which is
set to Ky = 2kPa (instead of Ky = 300kPa) since findings presented in Sec. 5.3.5 indicated a much
lower bulk modulus. However, the choice of Kj has little influence on the plastic compaction
properties calibrated for in the compaction calibration setup. It governs the elastic properties,
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Figure 5.18. Comparison with benchmark experiments II — vertical density profile and density dis-
tribution. Experimentally measured (crosses, sphere not removed) and simulated (solid line,
sphere removed) density profiles (top) at maximum intrusion for the compaction calibration
setup. The dashed line indicates the position of the simulated maximum intrusion depth given
by the density peak at Dpax ~ —1.02mm. The simulation is carried out in 3D using an ODC
mean pressure pp, = 0.26kPa. Both profiles are in excellent agreement. That the step-like
structure of the experimental data cannot be seen in the simulation is a minor drawback since
it is clearly interpolated. The bottom panel shows the density distribution for drop experi-
ments (crosses and triangles) and the 3D simulation with the same setup (solid line). The plot
displays the cumulated volume with a filling factor > ¢ over ¢. The cumulated volume is nor-
malised by the sphere volume. The simulation is in good agreement with the experimental
findings. However, a greater amount of volume being compressed to high filling factors leads
to an almost constant deviation for ¢p < 0.26. The slope is reproduced very well.
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Figure 5.19. Comparison with benchmark experiments III — vertical density cross-section. Cross-
section through the glass bead (red) and dust sample (light blue) at maximum intrusion for the
drop experiment (left) and a 3D simulation (ODC, py, = 0.26kPa, right). The colour indicates
the spatially averaged filling factor. The density structures beneath the glass bead match very
well. Even the slight compression along the tight intrusion channel can be reproduced. In the
simulated plot, a gap between glass bead and the most dense area is clearly visible. This is
caused by the smoothing of the sphere and is discussed in Sect. 5.2.2. The gap has roughly the
size of one smoothing length h (figure from Geretshauser et al. 2010).

which are more important for bouncing and fragmentation as shown below.
The following features of the compaction calibration setup, described in full depth in Sec. 5.1.1,
are measured in the laboratory and are used here for comparison:

1. stopping time T

2. deceleration curve of the projectile

3. vertical density profile

4. vertical density cross-section through both the sphere and the dust sample

5. density distribution of the cumulated volume

Starting with (1), the experiments show that the stopping time T of the glass bead is nearly con-
stantat T, * = 3.0+ 0.1 ms for 1 mm projectiles over different impact velocities (see Giittler et al.
2009). The corresponding simulation yields 7$'™ = 2.42 + 0.05ms which is not in excellent agree-
ment but also not too far off the experimental results.

Continuing with (2), the intrusion curve h(t) was cleared from gravity effects and normalised by
evaluating h'(t') = h(t)/ Dmax and t' = t/ Tg, where h(¢) is the position of the bottom of the glass
bead as a function of time, Dy ax the maximum intrusion depth, and T the stopping time. At
first contact, t is given by h'(¢' = 0) = 0 and at deepest intrusion /'(t' = 1) = —1 (see also Giittler
et al. 2009, Sect. 3.2.2). The comparison is shown in Fig. 5.17: the intrusion curve generated by
our simulation lies well within the data from the experiments with 1 and 3 mm spheres and only

slightly below the fitted sine curve
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(8) = — Dy sin | = — 5.8
= — maxsm(g?) ()

S

for which Dpax = Ts = 1 in its normalised form ' (¢').

Turning to the density structure (3), the experimentally measured vertical density profile and the
results of the corresponding simulation are compared as shown in Fig. 5.18 (top). The crosses
represent the data from the two experiments in which the sphere is not removed during mea-
surement. For this reason, the filling factor reaches extremely high values at D ~ —1 mm, which
corresponds to the bottom of the glass bead. The vertical density profile of the simulation is given
by the solid line and the vertical dashed line is placed at its filling factor peak at D ~ —1.02mm
representing the maximum intrusion depth. Compared with the experimentally measured maxi-
mum intrusion depth of Dy, ~ —1.07 mm, this is an excellent result. Since a depth of D ~ —1mm
was required using Eq. 5.1 and 5.2 and the 2D intrusion depth study of Sec. 5.3.3, this result also
supports the validity of these relations. In addition to the exact value of the intrusion depth, the
simulation also reproduces the shape of the given experimental vertical density profile very well.
The step-like structure at D ~ —1.5mm is not exactly mapped by the simulation but is instead
interpolated.

A two-dimensional representation of the density structure is investigated (4) by comparing the
cross-sections through both the sphere and dust sample along the z-axis (Fig. 5.19). This reveals
where there is an excess of compressed volume. Firstly, the cross-section of the sphere is artifi-
cially enhanced by the smoothing of its boundaries, which is inherent to the SPH method. One
effect of the smoothing is the existence of a gap between the sphere and dust sample, as already
discussed in Sec. 5.2.2, and clearly visible in Fig. 5.19 (right). Hence, it is assumed that the dust
sample actually begins where it possesses its maximum compression. The sphere pokes out of
the dust sample a bit more than in the experiment because of the artificial enlargement of the
cross-section. Secondly, it can be seen that in the experimental reference (Fig. 5.19, left) the
compressed region is much narrower and more concentrated beneath the sphere. In the simu-
lated result, the compacted region is a bit broader. This indicates that the shear strength seems
to be slightly lower than assumed. Thirdly, the compression extends to high filling factors that
are too high, which was already visible in the cumulated volume diagram. Nevertheless, both
cross-sections match very well, especially with respect to the mediocre resolution. Remarkably;,
even the slight intrusion channel on the left and right side of the sphere, which features a slight
compression, can be reproduced.

Since the vertical density profile shows only a cut through the compressed volume. It contains
information about the exact structure of the compression. (5) The density distribution (Fig. 5.18,
bottom) has the advantage of representing the total compressed volume and its filling factors.
Hence, these features are not fully independent but focus on different aspects of the compres-
sion. The cumulated volume is normalised by the sphere volume. In general, the experimental
reference and our simulation show close agreement. Slightly too much volume is compressed to
high filling factors in the simulation, which leads to an almost constant deviation for ¢ < 0.26.
This excess was already seen in the vertical density cross-section (Fig. 5.19). However, the slope
is reproduced very well.

To conclude, all of the calibration features of the compaction calibration setup can be repro-
duced with good or even very good accuracy with the tensile strength relation of Sec. 5.3.1,
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Figure 5.20. Bouncing sequence. Bouncing sequence for t = Oms (a), t = 10ms (b), £ = 18ms
(c), and t = 25ms (d). The colour code indicates the filling factor. An aggregate consisting
of dust particles (Sirono EOS, see Sec. 4.3.4, diameter 1.0 mm) hits a solid surface simulated
by boundary glass particles (Murnaghan EOS, Eq. 4.112, diameter 1.6 mm, thickness 0.1 mm)
with a velocity of vy = 0.2m/s. For this simulation a bulk modulus and mean pressure of Ky =
5.0kPa and py, = 0.26kPa, respectively, are used. The aggregate hits the surface and starts to
be compacted at its bottom (b). While the plastic deformation at the bottom increases, the
aggregate is also deformed elastically: it becomes broader (c). Eventually it leaves the surface
with a final velocity vf (d). It features a permanent compaction while the elastic deformation
vanishes.

the shear strength relation calibrated in Sec. 5.3.2, and the compressive strength calibrated in
Sec. 5.3.3 and the material parameters in Tab. 5.1. As a result, the plastic properties of the SiO, dust
material are described very well by the aforementioned relations and the compaction calibration
setup has proven to be a sensitive and powerful instrument in the calibration and testing process.

5.3.5. Bulk Modulus

From laboratory measurements there are two estimates of the bulk modulus Kj for the uncom-
pressed material with ¢ ~ 0.15. It can be determined from sound speed measurements (Blum
and Wurm 2008, Paszun and Dominik 2008) which provide cs = 30m/s. With Eq. 4.124 this yields
Ko = 300kPa. Other plausible derivations from bouncing experiments by Weidling et al. (2009) in-
dicate a value which is two orders of magnitude smaller: Ky = 1kPa. The exact knowledge of this
value is essential for the porosity model of this thesis (see Sec. 4.3.4) because Kj is the pre-factor
for computing the bulk modulus of higher filling factors with the aid of a power law (Eq. 4.123).
As it turns out, the bulk modulus governs the bouncing and fragmentation properties of the dust
aggregates. For this reason, I use the bouncing calibration setup and the respective laboratory
experiment to determine this quantity on the basis of the previously calibrated plastic material
properties. The final choice of Kj is counterchecked by means of the fragmentation calibration
setup and its empirical reference data.

Bouncing

Simulating the bouncing calibration setup of Sec. 5.1.2 (see also Fig. 5.3), a 3D dust sphere drops
onto a solid surface with initial velocity vy = 0.2m/s (see Fig. 5.20). The material parameters are
shown in Tab. 5.2. Since the bouncing dust sphere is also plastically deformed during the impact,
the bulk modulus Kj is varied with respect to two values of the mean pressure py, = 0.26kPa and
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Figure 5.21. Bouncing for different bulk moduli. Coefficient of restitution g (top), filling fac-
tor increase in units of the initial filling factor ¢ = 0.15 (second panel), flattened area Acont,
and contact time f¢on for different bulk moduli Ky and a high (py, = 1.3kPa) and a low
(pm = 1.3kPa) of the mean pressure of the compressive strength (Eq. 5.4). The determination

of these quantities is described in Sec. 5.1.2.
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Ky [kPa] ¢ increase Erest Afjat [mm?] Icont [MS]

1 0.020 0.70 0.215 1.45

5 0.026 0.38 0.215 0.99
10 0.028 0.27 0.221 0.90
30 0.039 0.17 0.228 1.00
50 0.028 0.16 0.228 0.83
100 0.030 0.14 0.230 0.83
500 0.040 0.13 0.252 0.87

Table 5.5. Results of the bulk modulus study for pm = 1.3kPa. Coefficient of restitution &gy, filling
factor increase in units of the initial filling factor ¢ = 0.15, flattened area Acont, and contact
time ¢ for different values of the bulk modulus Kj. The determination of these quantities is
described in Sec. 5.1.2.

Ky [kPa] ¢ increase Erest Aflat [mm?] tcont [MS]
5 0.12 0.19 0.2248 1.25
10 0.11 0.14 0.2596 1.42
50 0.097 0.10 0.2946 1.43
100 0.098 0.097 0.3042 1.46
500 0.089 0.085 0.2933 1.43

Table 5.6. Results of the bulk modulus study for py = 0.26kPa. Coefficient of restitution epegt,
filling factor increase in units of the initial filling factor ¢ = 0.15, flattened area Agont, and
contact time t.on for different values of the bulk modulus Ky. The determination of these
quantities is described in Sec. 5.1.2.
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pPm = 1.3kPa in the ODC relation for the compressive strength (Eq. 5.4). This is a further check
for the correct mean pressure p,, which was calibrated in Sec. 5.3.3 with a different setup. The
main calibration parameter for this study is the coefficient of restitution &res; = Vi 1 for which
an experimental reference value is available. The quantities vy and v denote the impact and
final velocities of the aggregate, respectively. Additionally, the average filling factor increase is
computed for the initially highly porous (¢ = 0.15) aggregate and compared with the experimen-
tally based considerations by Weidling et al. (2009). For experiments which may be carried out
in the future, the flattened surface Aq,; and the contact time f.qn: are determined as described in
Sec. 5.1.2. The results are depicted in Fig. 5.21 and listed in Tab. 5.5 for the high pp, and in Tab. 5.6
for the low pp,.

Describing the bouncing process, during the impact (see Fig. 5.20) a small region of the bottom
of the dust sphere is compressed. The deformed sphere then bounces off the target with reduced
velocity vs. The latter effect was already observed by Giittler et al. (2009) and demonstrates the
ability of the code and the implemented porosity model to simulate the elastic properties of the
dust correctly. This is the first time that bouncing of highly porous macroscopic dust aggregates
can be reproduced in numerical simulations. From the laboratory experiments €yest ~ 0.2 and
~95% energy dissipation are expected.

For both values of py, the coefficient of restitution decreases with increasing Ky (Fig. 5.21, top).
For pm = 0.26kPa more energy is dissipated and &g is generally lower. This is because the lower
mean pressure causes the pressure threshold for plastic deformation to be lowered. Both curves
intersect the experimental value represented by the dashed line. Based on the results of Sec. 5.3.3,
where pp, = 0.26kPa turned out to be a good choice for the mean pressure, the results for this ex-
periment favour a bulk modulus Ky ~ 5kPa. This value is close to the value Ky = 1kPa computed
by Weidling et al. (2009) with a simplified model. The simulations yield a coefficient of restitu-
tion grest = 0.19 (~ 96 % energy dissipation) for Ky = 5.0kPa, which is in excellent agreement with
the experimental results. On the other hand, for Ky = 500kPa I find &gt = 0.085 (~ 99 % energy
dissipation), which is too far away from the reference value. A high value for the bulk modulus
Ky as given by the sound speed measurements is therefore excluded.

Given the higher value py, = 1.3kPa for the compressive strength curve, €5 increases for all
choices of Kp. For Ky = 1.0kPa it becomes ¢est ~ 0.7 and only ~ 50 % of the energy are dissipated.
On the other hand, for Ky = 300kPa I find that €.t ~ 0.13, which is equivalent to ~ 98 % energy
dissipation. From these findings, a bulk modulus of Ky ~ 20kPa is theoretically also possible
but the higher value for the mean pressure is excluded by the results presented in Sec. 5.3.3 and
Ky ~ 20kPa is not supported by experiments.

According to Weidling et al. (2009) the filling factor increase after one collision is ~ 2 x 1073 times
the initial filling factor. However, because of their model assumptions their relation (Eq. 4) for the
filling factor variation is only valid for more than 150 subsequent collisions of the same aggregate.
In the simulations presented in the thesis at hand (Fig. 5.21, second panel), the resulting filling
factor in units of the initial filling factor exceeds the experimentally based value by about one
(pm = 1.3kPa, Tab. 5.5) and even two orders of magnitude (py, = 0.26kPa, Tab. 5.6). The increase
in filling factor remains almost constant with increasing Ky: ~ 0.03 and ~ 0.1 times the initial fill-
ing factor for the higher and the lower mean pressure, respectively. The reason for this difference
is again the lower threshold for plastic deformation for the p, = 0.26kPa case. Interestingly, the
variation for higher bulk moduli is not uniform: in the low mean pressure case the filling factor
increase slightly decreases for larger Ky, while for the high mean pressure it increases.

The area, which is flattened during the collision (Fig. 5.21, third panel), Ag,¢ increases in both
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Ko [kPa] Slope x Norm. largest fragment iy,
3.00 0.361 + 0.004 0.200 + 0.008
3.50 0.429 + 0.002 0.172 + 0.002
4.00 0.518 + 0.011 0.230 + 0.009
4.25 0.523 + 0.006 0.194 + 0.004
4.50 0.673 + 0.017 0.234 + 0.007
4.75 0.834 + 0.025 0.196 + 0.005
5.00 0.832 + 0.063 0.198 + 0.011
5.50 0.836 + 0.052 0.220 + 0.010
6.00 2.027 + 0.121 0.171 + 0.002
6.50 0.910 + 0.053 0.390 + 0.013

Table 5.7. Results of the fragmentation calibration setup. Results from the fragmentation calibra-
tion setup. The slope « of the power law increases with increasing bulk modulus K. Remark-
ably, the size of the normalised largest fragment remains nearly constant around gy, ~ 0.2 for
Koy < 6.0kPa.

mean pressure cases with increasing bulk modulus Kj. It increases more rapidly for the low mean
pressure (see Tab. 5.6) case: from 0.225mm? (28.6 % of the sphere’s cross section) to 0.293 mm?
(37.3 %). The values for the high mean pressure case (see Tab. 5.5) are: from 0.215 mm? (27.4 %) to
0.252mm? (32.1%). In general, the flattened area is larger for the low pressure case. The reason
for this is again due to the fact that the material can be plastically deformed more easily because
of the lowered compressive strength.

The contact time tcon: (Fig. 5.21, bottom) is nearly constant for py, = 0.26kPa: the aggregate
touches the glass plate for ~ 1.4ms (see also Tab. 5.6). For the higher mean pressure fon¢ de-
creases from ~ 1.45ms to ~ 0.85ms and then remains constant (see Tab. 5.5). The reason for this
behaviour is unclear. Contact times are in general longer for the case with higher plasticity. This
is because a larger amount of the aggregate gets plastically deformed which takes more time.

In summary, this bouncing experiment fixes the choice of the bulk modulus to Ky ~ 5kPa while
pm = 0.26kPa is confirmed to be derived from the compaction calibration setup in Sec. 5.3.3.
The bouncing calibration setup, just like the compaction calibration setup, is very sensitive to
changes in the compressive strength curve. The effects between higher and lower plasticity can
be clearly seen: the former case results in generally larger values for the filling factor increase,
flattened area, and contact time. The lower coefficient of restitution €5 indicates a larger degree
of energy dissipation, which is again caused by the lower plastic deformation threshold. In the
following, it is shown that Ky ~ 5kPa is also consistent with the fragmentation behaviour of the
dust aggregates.

Fragmentation

Since the intended field of application of the calibrated SPH code and porosity model is the sim-
ulation of pre-planetesimal collisions, it is of major importance to calibrate and test the fragmen-
tation behaviour of the simulated material. For this reason, the fragmentation calibration setup
described in Sec. 5.1.3 (see also Fig. 5.4) is utilised. The numerical, geometrical, and material

146



5.3. Adopting and Adapting Empirical Material Parameters

Figure 5.22. Fragmentation sequence. The snapshots are taken at the following times: (a) ¢ =
0.02ms (b) £ =0.03ms (c) t =0.275ms (d) ¢ = 0.7ms. The initial aggregates have an intermedi-
ate porosity of ¢p = 0.35. For the left sequence the calibrated bulk modulus Ky = 4.5kPa is used.
The collision on the right is simulated with Ky = 50.0kPa. Both collisions illustrate the impor-
tance of the bulk modulus for fragmentation. Fragmentation occurs for the low bulk modulus
while for high K the aggregate gets compacted to a flat disc of nearly maximum filling factor.
In the latter case only a few small fragments are chipped off.
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Figure 5.23. Fragmentation for different bulk moduli. Cumulative mass distribution of the frag-
ments of a dust aggregate impacting on a glass plate for different values of Ky. The distribu-
tion is evaluated 0.8 ms after the collision. For low fragment masses the shape of all simu-
lated curves differs from the experimental curve due to the limited resolution of the experi-
mental setup. An increase in Ky leads to an increase in the slope « of the power-law fit. The
best agreement with the experimentally measured slope 0.67 is found for the simulation with
Ko=4.5 kPa.

parameters are as listed in Tab. 5.3 except for Ky which is varied in this study.

In this setup, a medium porosity (¢ = 0.35) dust aggregate hits a glass plate from below with an
impact velocity of vy = 8.4m/s. The spatial resolution is chosen such that a single SPH particle
has less than 5 x 107° times the mass of the whole aggregate (6.8 x 10~8kg) to be able to resolve
the same fragment masses as the experimental reference. Gravity is taken into account.

As it can be seen from Fig. 5.22, the bulk modulus has a significant influence on the fragmen-
tation behaviour. The illustration shows a fragmentation sequence for Ky = 4.5kPa (left) and
Ko =50kPa (right). In the first case, the aggregate shatters completely and the fragments bounce
off at all angles. In the second case, the aggregate hardly produces any fragments but is com-
pressed into a flat disc of nearly maximum filling factor. As the following study reveals, the frag-
ment distribution is very sensitive to changes in the bulk modulus Kj.

For this reason, the value Kj is varied in the order of the bulk modulus which was calibrated by
means of the bouncing calibration setup, i.e. from 3.0kPa to 6.5kPa. For comparison with the
reference experiment, the fragmentation data is plotted in a cumulative way (Fig. 5.23) and can
be fitted in good agreement with a power-law
my ms \¥
Meum (772) =f n(mymdm = (—) (5.9)
0 Hpw

where m; is the fragment mass, n(m) dm is the number of fragments in the mass interval [m, m +
dm], and pyp,y is the mass of the most massive member of the distribution. All of these quantities
are normalised by the total mass of the distribution. The quantity y, can be regarded as a mea-
sure for the strength of the fragmentation. Finally, x is the power-law index and accounts for the
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slope of the power-law distribution. The reference experiment provides pp,, = 0.22 and x = 0.67.
The simulation is evaluated 0.8 ms after the impact. The mass of a fragment is given by the sum
of the mass of the SPH particles belonging to it. Two fragments are considered as being separated
when they are not linked by SPH particles that interact with each other, i.e. when the closest SPH
particles of two fragments are separated by a distance greater than 2.

The results of the simulation are presented in Fig. 5.23 and Tab. 5.7. In general, it can be said
that an increase in the bulk modulus leads to an increase in the slope « of the fragment distri-
bution indicating a larger fraction of more massive fragments. In contrast, the size of the largest
fragment (normalised through the total mass of the distribution) ppy remains roughly constant
at ~20% up to Ky = 6.0kPa. For higher Kp, small chunks and single SPH particles mainly origi-
nate in the aggregate, which is only compressed but does not fragment (similar to the high bulk
modulus simulation presented in Fig. 5.22).

I now calibrate x, which is more sensitive to changes in Ky (see Table 5.7). Given the measured
value of x = 0.67, I find excellent agreement with the simulation results using Ky = 4.5kPa, which
yields k¥ = 0.673 + 0.017. This simulation also reproduces the experimentally measured nor-
malised mass of the largest fragment ppy = 0.22 to a very high accuracy (upw = 0.234 + 0.007).
The slight difference may be caused by the increase in the filling factor not being taken into ac-
count in the analysis of the experimental data, whereas in the simulation it is. The fragment
distributions for different Ky and the best fit for the power-law are shown in Fig. 5.23. The setup
and outcome of the simulation are displayed in Fig. 5.22 (left). The choice of py, = 0.26kPa and
Ky = 4.5kPa is consistent with the results of the compaction and bouncing experiments. The
fragmentation experiment proves the validity of these choices and the consistency of the under-
lying porosity model.

Since no empirical data is available for the shear modulus, I maintain the choice of the original
Sirono porosity model and set p(¢) = 0.5 K(¢p). Hence, the shear modulus is also fixed with the
calibration of Ky. I do not investigate the influence of the free parameter y of Eq. 4.123, which
regulates the variation of the bulk modulus with the filling factor. This is because the bouncing
benchmark test has been carried out with a highly porous aggregate (¢ = 0.15) and the frag-
mentation calibration with an aggregate of intermediate porosity (¢p = 0.35). Both experiments
are very sensitive to changes in the bulk modulus and can be reproduced with Ky ~ 4.5kPa and
Y = 4. This serves as a good indication for an adequate value of y although a more accurate study
on this parameter could be carried out in future works.

In contrast to the experiments, no material sticks to the glass plate because of the simulation
setup. As in Sec. 5.2.4, the artificial viscosity is used to separate the glass and dust materials. This
leads to an additional pressure on the dust material which prevents sticking.

5.4. Summary

In this chapter, I have successfully calibrated the porosity model presented in Sec. 4.3.4 for the
simulation of highly porous SiO, dust aggregates. These serve as pre-planetesimal analogues
in the astrophysical context. Jointly with experimentalists, I designed three benchmark experi-
ments to calibrate and test the correct functionality of this model: (1) compaction of dust by a
dropped glass bead (compaction setup, Sec. 5.1.1), (2) rebound of a dust aggregate from a solid
plate (bouncing setup, Sec. 5.1.2), and (3) shattering of a dust aggregate at a solid wall (fragmen-
tation setup, Sec. 5.1.3).
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Figure 5.24. Calibrated strength curves. The compressive X(¢), tensile T'(¢p), and shear strength
Y (¢) as aresult of the calibration in this chapter.

Physical Quantity Symbol Value Unit
Bulk density Qs 2,000 kgm
Filling factor RBD sample ®RBD 0.15 -
Bulk modulus RBD sample Ko 4.5x 103 Pa
ODC mean pressure Pm 260 Pa
ODC max. filling factor b2 0.58 -
ODC min. filling factor b1 0.12 -
ODC slope A 0.58 -
Numerical parameters®

Lattice type (2D) triangular

Av. no. interaction partners (2D) Iy ~ 100 -
Lattice type (3D) cubic

Awv. no. interaction partners (3D) Iy ~ 240 -
Artificial viscosity (bulk) Qay 0.1 -
Artificial viscosity (von Neumann-Richtmyer) Bav 0 -

Table 5.8. Selection of numerical and material parameters after the calibration. ODC stands for
omnidirectional compressive strength relation (Eq. 5.4). The values presented in this table
represent the final choices resulting from the completed calibration process.
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Before the actual calibration process, the compaction setup has been used to profoundly inves-
tigate the numerical properties of the model and code (Sec. 5.2). As the first step (Sec. 5.2.1), I
have determined the adequate size of the computational domain to exclude spurious boundary
effects. As a second step (Sec. 5.2.2),  have tested to ensure adequate numerical and spatial res-
olutions, to exclude resolution effects on the calibration process. An average number of ~ 100
SPH particles in 2D and of ~ 240 SPH particles in 3D provides a sufficient numerical resolution. I
have also shown that the results for this setup converge at higher spatial resolutions. For the pur-
pose of saving computing time, many parameter studies have been carried out in 2D. Therefore,
as a third step in Sec. 5.2.3, fundamental differences between these two setups have been found
and qualified. In particular, a conversion relation for the intrusion depth (Eq. 5.2) between the
dimensions has been derived and verified. As a fourth step (Sec. 5.2.4), the dissipative proper-
ties of the artificial viscosity and its role in the stability of the simulation have been investigated.
It has been necessary to apply @,y = 0.1 and S,y = 0 to the dust material to provide numerical
stability and to account for its physical dissipative features caused by internal friction. To damp
internal oscillations of the glass, this material has been simulated with @,y = 1.0 and B4y = 0.
Artificial viscosity has also been used to separate dust and glass material, which differ highly in
the “stiffness” of their equations of state, therefore dust particles in contact with glass have been
simulated with glass artificial viscosity. The numerical parameters derived from this study are
collected in Tab. 5.8.

At the beginning of the calibration process, a static uniaxial compressive strength relation, a ten-
sile strength relation and two possible values for the bulk modulus have been available from lab-
oratory measurements. These data have been insufficient to apply the porosity model at hand.
Therefore, the benchmark experiments - originally designed to test the model - have been used
to determine the missing quantities (Sec. 5.3). However, the number of calibration features has
still been larger than the number of missing quantities. Finally, the calibration has been regarded
to be successful once all features could be simulated with a consistent set of material parameters.
The tensile strength relation T'(¢) has been adopted without modification (Sec. 5.3.1). The com-
paction calibration setup, in particular the vertical density profile has been used to constrain
a shear strength relation Y (¢) = /Z(¢)|T(¢p)| as a function of the other plasticity thresholds
(Sec. 5.3.2). Since the static compressive strength relation has proven to be unrealistic with re-
spect to simulations and experiments, in Sec. 5.3.3 at first some possible functional expressions
for a dynamic compressive strength relations have been excluded. Finally, a static omnidirec-
tional (ODC) relation, measured by Giittler et al. (2009) (Eq. 5.4) specifically for this calibration
process, has been turned into a dynamic relation by lowering the mean pressure pyy, of its Fermi-
Dirac fit function. The latter has been constrained to py, = 0.26kPa by a numerical study utilising
the compaction calibration setup. In addition, the effects of the slope of the Fermi-Dirac function
have been studied and fixed to A = 0.58 by means of the same setup. To conclude the calibration
process of the plastic properties, the result of the compaction simulation have been compared
to laboratory data of the stopping time, deceleration curve, filling factor distribution, and verti-
cal density cross-section. The results of the experimental references have been reproduced with
good to excellent accuracy. The final material parameters are listed in Tab. 5.8. A graphical illus-
tration of the final strength curves is shown in Fig. 5.24.

After calibrating the plastic properties of the SiO, dust, the bulk modulus Ky governing the elas-
tic properties has had to be fixed (Sec. 5.3.5). With the bouncing calibration setup it has been
possible to simulate bouncing of highly porous macroscopic dust aggregates for the first time.
As a result, it has been constrained that Ky = 5kPa, similar to the value proposed by Weidling
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et al. (2009), is more realistic than Ky = 300kPa as suggested by sound speed measurements. The
results have proven to be consistent with the calibrated py, = 0.26kPa for the ODC relation. Since
an important application of this code is pre-planetesimal collisions, the ability to correctly sim-
ulate the fragmentation of dust aggregates quantitatively is highly important. To test this, [ have
used the fragmentation calibration setup, which has proven to be very sensitive to changes in the
bulk modulus. For py, = 0.26kPa, the closest agreement with the empirical reference has been
achieved with Ky = 4.5kPa. Remarkably, this is consistent with the findings of the bouncing cali-
bration setup, which represents a test for a totally different behaviour of the dust aggregates. The
value for Ky can also be found in Tab. 5.8. Since no empirical data was available for the shear
modulus, this quantity is set to p(¢) = 0.5 K(¢).

As afinal result from this calibration process, the presented porosity model and code are fully cal-
ibrated for the simulation of SiO, dust. The procedure presented in this chapter represents the
most extensive code calibration for protoplanetary material which is currently available. Fur-
thermore, the testing has been carried out for many aspects: compaction, bouncing, and frag-
mentation. Additionally, up to date unknown and hardly measurable material parameters have
been constrained and determined. Consequently, the procedure described in this chapter can
be used as a paradigm to calibrate and determine unknown material of other highly porous ma-
terial.
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6. Pre-Planetesimal Collisions

This section is dedicated to the investigation of pre-planetesimal collisions. In Sec. 6.1 I develop
a new classification scheme for the outcome of pre-planetesimal collisions. This scheme cate-
gorises according to the mass of the resulting fragments. It provides sufficient accuracy to in-
vestigate possible obstacles of planetesimal formation such as the fragmentation and bouncing
barriers as well as the dust emission features of late T Tauri discs. In Sec. 6.2 I present the first test
simulations using the inhomogeneity damage model (Sec. 4.3.5), which is developed for a more
realistic simulation of pre-planetesimals. The results provide valuable insight into the function-
ality of the model as well as the influence of inhomogeneity on the outcome of pre-planetesimal
collisions. Bouncing of homogeneous aggregates and aggregates with hard shells is investigated
in Sec. 6.3. This directly addresses the probability of a bouncing barrier. To conclude this chap-
ter, I present the results of a broad head-on collision study of pre-planetesimals in the centimetre
to decimetre regime in Sec. 6.4. In this section I focus on the influence of porosity on the veloc-
ity thresholds for transitions between positive, neutral, and negative growth of the aggregates.
Hereby, I utilise the four-population classification scheme.

6.1. The four-population model: a new classification scheme
for pre-planetesimal collision outcome?

As already pointed out in Sec. 2.3.1 and 2.5, the formation of planetesimals by core accretion re-
quires the right amount of sticking, bouncing, and fragmentation to be consistent with observa-
tions. Therefore, collisions of pre-planetesimals have to be investigated as thoroughly as possible
and their outcome has to be mapped as precisely as possible taking into account all the relevant
parameters such as initial porosity, collision partner size, impact velocity, mass ratio, and rota-
tion. To classify collision outcomes, Giittler et al. (2010) compiled 19 experiments and mapped
them according to their sticking, bouncing, and fragmentation classification (Fig. 6.1). However,
due to experimental restrictions they covered only small parts of the relevant parameter space.
Many of their findings were not deduced from collisions between porous dust aggregates but
from dust collisions with a solid object. Collisions between aggregates larger than decimetre size
were not possible due to restrictions of their experimental apparatus. In addition, not all experi-
ments could be carried out in protoplanetary disc conditions, i.e. in a vacuum and microgravity
(see also Sec. 3.1).

After the successful code calibration with benchmark experiments in Ch. 5, itis shown in Sec. 6.1.1
that the code furthermore can reproduce all sticking, bouncing, and fragmentation types pro-
posed by Giittler et al. (2010). However, I find that this categorisation can also introduce un-
necessary complexity and on some occasions may lack the required accuracy. It is possible that
in a collision more than one process of sticking, bouncing and fragmentation could take place
and qualitative models do not make it clear whether the overall growth is positive, negative, or

I This section was previously published in Geretshauser et al. (2011) in a slightly altered version.

153



sticking,
bouncing, and
fragmentation
classification

6. Pre-Planetesimal Collisions

before collision O\ B1 (bouncing with compaction)
$1 (hit & stick) B2 (bouncing with mass transfer)
Q0 o
/
S2 (sticking through surface effects) F1 (fragmentation)
o _o° (] °
@ Co0y0 —
© 6. "
S3 (sticking by penetration) F2 (erosion) ’
\o o

S4 (mass transfer) F3 (fragmentation with mass transfer)

N o No -
Q 0: _o 'OOO /
o OOo /) ooooo

o . O o

Figure 6.1. Four-population model I - sticking, bouncing, and fragmentation classification. Giit-
tler et al. (2010) classify the outcomes of 19 experimental collision setups with dust aggregates
into four types of sticking (S), two types of bouncing (B), and three types of fragmentation (F).
The initial situation is distinguished according to collisions between objects of similar size and
collisions with a projectile much smaller than the target. The experimental setups involved
aggregate-aggregate collisions or collisions between a dust aggregate and a solid object. The
classification is only qualitative and not always consistent in the choice of the categories (fig-
ure from Giittler et al. 2010).

neutral. Therefore, I find it necessary to improve the suggestion of qualitatively categorising into
sticking, bouncing, and fragmentation events and propose a new, simpler but at the same time
more quantitative model for mapping collisional data. This model is presented in Sec. 6.1.2 as the
four-population model. To show its applicability, I present the first results of simulations of colli-
sions between macroscopic objects consisting of realistic pre-planetesimal material in Sec. 6.1.3.
Finally, the findings are summarised in Sec. 6.1.4.

6.1.1. Reproducing sticking, bouncing, and fragmentation collision types

The classification of laboratory experiments by Giittler et al. (2010) suggested categorising into
four types of sticking, two types of bouncing, and three types of fragmentation (Fig. 6.1). The
sticking events (S) were subdivided according to sticking mechanisms (hit-and-stick for micron
sized monomers, surface effects, or deep penetration) and a quantitative criterion (mass trans-
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fer). With respect to rebound (B), growth neutral bouncing with compaction and bouncing with
mass transfer were distinguished. Fragmentation (F) was split up according to its degree (com-
plete fragmentation or erosion) and whether some sticking was involved (fragmentation with
mass transfer).

In this section it is shown that the code and its underlying calibrated porosity model can repro-
duce these empirical outcome types in numerical simulations. Images of the final result of each
example simulation are presented in Fig. 6.2 according to this categorisation. The end times of
the simulations are chosen by visual control of the fragment evolution and particle velocities
close to the thermal equilibrium for each fragment. For each category an exterior view (left) and
a cut through the centre of the resulting aggregate(s) (right) is shown (except for type F1). The
initial particle distribution is setup by the program initgrid (Appx. A.3). The target is always a
dust aggregate with radius r; = 10cm modelled using 238,238 SPH particles. The projectiles are
modelled using 1,905 and 51,477 SPH particles for projectile radii r, = 2cm and rp = 6 cm, respec-
tively, and placed on a cubic lattice with edge length 2.6 mm. The collision partners were aligned
head-on with a shift of half a lattice constant into each direction perpendicular to the collision
axis to avoid particle interpenetration. In all simulations (except F2), both objects are set up with
¢ = 0.35 and the masses of the target, the 6 cm-, and 2 cm-projectiles were 2.93 kg, 0.63 kg, and
0.023 kg, respectively. An overview of the initial conditions of the simulations is given in Tab. 6.1.
The colour in Fig. 6.2 indicates the filling factor ¢. In the following the simulation outcomes are
discussed in detail. I adopt the notation by Giittler et al. (2010).

S1 (hit & stick) is not represented in Fig. 6.2 as it is not applicable within the continuous SPH
scheme. This category describes the outcome of collisions in which microscopic fractal dust
aggregates are involved. In this regime, the continuum limit, which is a fundamental assumption
of the model, is not valid. I focus on collisions of macroscopic dust since for the fractal regime
the numerical and empirical basis is profound.

S2 (sticking through surface effects) The example is the result of the impact of an aggregate with
radius r, = 6¢cm with collision velocity vy = 2.0m/s. The image shows the situation 250 ms after
the impact. The filling factor of the outer shell of the aggregates remains nearly unchanged as
indicated by the exterior view. In contrast, large parts of the interior are compressed to ¢ ~ 0.45.
The target and the projectile merge into one object. The initial setup matches that used for the B2
case but with higher impact velocity. As a consequence, the contact area is larger and compressed
to higher filling factors. This leads to a higher tensile strength in this region, which prevents the
objects from rebounding each other. This situation is referred to as sticking through surface
effects. A single aggregate remains and no fragments are ejected.

83 (sticking by deep penetration) is found in the simulations if the projectile is sufficiently smaller
than the target. In the example case the projectile features r, = 2cm and hits the target with
vo = 10.0m/s. The image is taken 388 ms after the impact. A small crater is formed on the target
and a small number of single SPH particles are ejected. This characterises deep penetration. The
crater is visible in the cross section. Material is compressed to a maximum of ¢ ~ 0.52 down to a
depth of about one target radius.

S4 (mass transfer) happens if the projectile is large and moves fast enough to stick but still slow
enough to not fully disrupt the target. As an example an impact of a 6 cm aggregate onto a target
with the same filling factor is chosen. The impact velocity is vy = 10.0m/s and the image shows
the result after 50 ms. During the collision the target is highly deformed and compressed to filling
factors of ¢p ~ 0.45 to 0.52. Single SPH particles are ejected. Most of the projectile merges, which
accounts for the mass transfer. The final mass of the largest fragment is 3.56 kg.
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Figure 6.2. Four-population model Il — reproducing sticking, bouncing, and fragmentation types.
The outcome of the simulations of pre-planetesimal collisions encompasses all sticking (S),
bouncing (B), and fragmentation (F) types proposed by Giittler et al. (2010). The initial con-
figurations for each simulation are summarised in Tab. 6.1, in particular a sphere with radius
re = 10cm is chosen as resting target and a sphere with r,, = 6cm as projectile except for S3 and
F2, where rp, = 2cm. The colour code indicates the filling factor ¢. Both objects are initially
set up with ¢ = 0.35 except for the F2 case, where ¢ = 0.55. The simulations are carried out
with different impact velocities and the snap shots are taken at different times. The details are
given in the text.
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B1 (bouncing with compaction) is only seen with objects of medium and low porosity at low col-
lision speeds. Highly porous objects feature an extremely low compressive strength. As a con-
sequence, low pressures suffice to plastically deform the target and the highly porous aggregates
do not gain enough elastic loading for bouncing. In the example, the projectile is 6 cm in radius.
It impacts at vy = 1.0m/s. In Fig. 6.2, the final state at 500 ms is shown. In the collision, both ob-
jects are flattened at the impact site and the elastic loading is sufficient to make them rebound
after the impact. A part of the interior of the target and projectile is compressed to ¢ ~ 0.45.
Note that this is exactly the same setup as in the S2 case but with a lower impact velocity. The
bouncing event is a result of a smaller contact area and a lower tensile strength in this region,
which is indicated by the lower filling factor. As a consequence, the two objects rebound. A close
investigation reveals that in nearly every simulation with bouncing a small amount of material
is transferred between the projectile and target. Thus, it is very unlikely that pure growth neutral
bouncing without any mass transfer exists. In this particular simulation ~ 0.54 g are transferred
from the projectile to the target. Hence, the result could also be classified into the next category.
B2 (bouncing with mass transfer) occurs in simulations where the compressive strength is suf-
ficiently large to allow for elastic loading and consequential bouncing, and where the tensile
strength is small enough such that the impactor can rip out a small fraction of mass from the tar-
get. This happens at very low impact speeds. The final state at 1.7 s after the collision is a result
from a collision with v = 0.2m/s. The projectile has r, = 6cm. During the impact a small region
of target and projectile is compressed to ¢ ~ 0.45. In the consequential rebound this region sticks
to the projectile and is ripped out of the target. The remaining crater on the target can be seen in
the cross section. In this collision 29.5 g are transferred from the target to the projectile.

FI1 (fragmentation) is generally the outcome of collisions with high impact velocities. Highly
porous objects effectively dissipate energy by deformation because of their low compressive
strength but they are also easy to disrupt because of their low tensile strength. In contrast, objects
with low porosity feature high tensile strengths but lack the ability to dissipate large amounts of
kinetic energy. The degree of fragmentation is therefore strongly porosity dependent. The exam-
ple shows the result of a collision between objects, where the projectile features r, = 6¢cm. The
impact speed is vy = 17.5m/s. During the collision both the target and the projectile completely
shatter and the result of this collision (shown only in exterior view 800 ms after the impact) is a
continuous fragment distribution, whose masses range from 285 g down to single SPH particles
with 12 mg. The fragments consist of target and projectile material which are combined together.
The filling factors of the fragment distribution are ¢ ~ 0.54, which is close to the maximum filling
factor of 0.58 (see Tab. 5.8).

F2 (erosion) is observed particularly for high filling factors and small projectile radii. The initial
setup for the example case involves two objects with ¢ = 0.55. The target and projectile masses
are 4.60kg and 0.037 kg, respectively. The projectile radius is r, = 2cm and the impact velocity
vo = 20.0m/s. During the intrusion of the projectile, fragments consisting of a small number of
SPH particles are ejected opposite to the impact site. The figure shows the situation 438 ms after
the collision, where small fragments and SPH particles are ejected from the crater. In this colli-
sion 63.2 g are eroded from the target. The projectile intrudes to the centre of the target and the
intrusion channel is clearly visible in the cross section. Because of the high compressive strength
elastic deformation also takes place on the target. The figure shows a snap shot of a decompres-
sion wave of lower filling factor, which appears as vertical ring on the target.

F3 (fragmentation with mass transfer) contains conceptual difficulties. The first reason for this
is that in simulation outcome of category F1 and F2 always some mass is transferred to the tar-
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Type Vo [m/s] re [cm] my [kg] rp [cm] mp (kg $up
S2 2.0 10 2.93 6 0.63 0.35
S3 10.0 10 2.93 2 0.023 0.35
S4 10.0 10 2.93 6 0.63 0.35
Bl 1.0 10 2.93 6 0.63 0.35
B2 0.2 10 2.93 6 0.63 0.35
F1 17.5 10 2.93 6 0.63 0.35
F2 20.0 10 4.60 2 0.037 0.55

Table 6.1. Parameters for reproduction of collision types. Initial parameters of the simulations
shown in Fig. 6.2. The quantities are: collision velocity vy, target radius r; and mass m, pro-
jectile radius r, and mass m,,, and the filling factor of the collision partners ¢/p.

get. Secondly, the demarcation between sticking with mass transfer (S4) and F3 is unclear and a
continuous transition between these categories can be expected. This issue is solved by the new
model proposed below. The simulations include category F3 by reproducing the S4 and F1 types.
In conclusion, the code is not only capable of quantitatively reproducing sticking, bouncing,
and fragmentation in general, as shown in Ch. 5, but can also correctly simulate the sub-types
for each macroscopic collision outcome. However, I also experienced difficulties classifying the
results of our simulations according to the model by Giittler et al. (2010). This motivates a new
approach.

6.1.2. A new model for mapping collision outcome

In this section a new model is introduced to classify the outcome of pre-planetesimal collisions.
At first I describe and motivate its structure. Then I show that all sticking, bouncing, and frag-
mentation events of the previous section are encompassed by the new model.

Motivating a new classification scheme

The model by Giittler et al. (2010) was clearly developed with the respective laboratory setups
in mind. In several of these, one of the collision partners was not a dust aggregate but a solid
surface or a glass bead, which itself cannot fragment. Therefore, applying this categorisation to
pre-planetesimal dust collisions, which here are solely carried out as simulations between dust
aggregates, leads to some difficulties.

In the simulations, collision outcomes of the S3 (sticking by penetration) are always accompa-
nied by the production of ejected dust. Therefore, it is unclear whether they should be sorted
into S3 or rather S4 (mass transfer). On the other hand, S2 (sticking through surface effects) is
also a mass transfer but without the production of fragments. It can also be expected that there is
a continuous transition from S2 to S3 with increasing impact velocity. The demarcation between
the sticking types is also conceptually difficult. The types S1 to S3 are distinguished according to
the sticking mechanism, whereas for S4 the criterion is an increase in target mass and the genera-
tion of some fragments. In the context of pre-planetesimal growth the exact sticking mechanism
is of minor importance. The distinction between growing and disruptive events is simply given
by comparing the largest fragment before and after the collision.
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Also applying the bouncing categories to collision data contains some difficulties. Pure bounc-
ing with compaction (B1) events are never seen in the simulations. Analysing the final mass of
both collision partners after the impact reveals that some mass is always transferred either from
the projectile to the target or vice versa. In the first case growth is taking place and the result
should be categorised under S4 with a growing target, but with one remaining fragment instead
of a fragment distribution. If mass is transferred to the projectile, then the event belongs to B2
(bouncing with mass transfer). However, since the largest object is losing mass, B2 is also a type
of erosion (F2), where instead of a fragment distribution only one big fragment (the enlarged
projectile) is present. Since bouncing may be an obstacle to planetesimal growth (see Sec. 2.3.1),
the effect of bouncing has to be included into any collision map. But instead of distinguishing
between two types of bouncing, I find it sufficient to distinguish between the mass of the largest
and the second largest fragment.

Analysing the numerical results for disruptive events, it is also hard to distinguish between the
types F1 (fragmentation) and F3 (fragmentation with mass transfer). As already mentioned above,
in any fragmenting collision mass is transferred from the projectile to the target and the frag-
ments consist of both projectile and target material. In eroding events (F2) mass is also trans-
ferred to the target and a fragment distribution is produced. Once again the continuous transi-
tion between the three fragmentation types and between sticking and fragmentation events can-
not adequately be mapped with the given model. In my view it is sufficient to characterise the
outcome of disruptive events by the size of the largest fragment (which for F2 is much larger than
the other fragments) and a power-law distribution of the remaining fragments. Thus, for correct
mapping of any combination of sticking, bouncing, and fragmentation the following objects have
to be considered: largest and second largest fragment and a power-law fragment distribution.
This discussion shows that the classification of different sticking, bouncing, and fragmentation
events is not sufficient. This is because there exist many intermediate events. For example, a
bouncing event can involve some sticking and some fragmentation, whereas a sticking event
can also involve some fragmentation. The model by Giittler et al. (2010) tries to capture these
intermediate events. However, it is based on physical mechanisms rather than collision outcome.
Due to this discrete approach, this model generates some unnecessary complexity and cannot
easily describe transitions between categories. To improve this, I propose a model which is solely
oriented on quantitative aspects. It distinguishes between four types of fragment populations,
which are characterised by continuous quantities such as their mass, filling factors, velocities,
and size. This enables mapping of all types of sticking, bouncing, and fragmentation events but
also modelling continuous transitions between these types.

Fragment populations

The fundamental idea of the new classification is that any outcome of a collision can adequately
be modelled by distinguishing four kinds of fragment “populations”. This is illustrated in Fig. 6.3.
Example input parameters for the collision include the masses of the target (label “t”) m; and pro-
jectile (Iabel “p”) my,, their filling factors ¢ and ¢y, their rotational energies Eyot ¢ and Eyoy,p, their
impact parameter b and, most importantly, their collision velocity vy (see Fig. 6.3, left). Depend-
ing on these parameters, the collision between two bodies produces a well defined outcome of
populations. To be able to map sticking, bouncing, and fragmentation events it is suitable to sort
this distribution according to the mass of the fragments into the respective population. For these,
output parameters such as mass, filling factor, rotational energy, and velocity are determined as
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Figure 6.3. Four-population model III - illustration. The left side displays the situation before
the collision: Two pre-planetesimals collide with impact velocity vy and impact parameter
b. The target and projectile are characterised by their defining quantities, e.g. mass m, filling
factor ¢, and rotational energy E;o;. Depending on these parameters an outcome population
is generated in the collision (middle). The four-population model distinguishes the fragments
according to their mass. The population classes are: (a) the largest fragment, (b) the second
largest fragment, (c) the power-law population, and (d) the sub-resolution population. This
categorisation is sufficient to describe the outcome types of Fig. 6.2 as well as intermediate
outcomes.

exact or averaged values, or as distributions depending on the population. Specifically, the new
scheme consists of the following four types: (1) largest fragment, (2) second largest fragment, (3)
power-law population, and (4) sub-resolution population.

(a) Largest fragment: Comparing the mass of the largest fragment before and after a collision
distinguishes between positive and negative growth. The characteristic output quantities are
supplied.

(b) Second largest fragment: This enables bouncing events to be mapped. In pure bouncing
events the largest and the second largest fragment will be the only members of the fragment
population. The quantities describing this fragment are supplied. The second largest fragment
only exists if it consists of more than a single SPH particle.

(c) Power-law population: Particularly in disruptive collision events, the mass distribution of the
fragments can be modelled by a power-law to describe the fragment distribution. Instead of de-
scribing each fragment of the power-law population with quantities as done so for the largest
and second largest fragment, the number of parameters is significantly reduced by utilising dis-
tribution functions.

(d) Sub-resolution population: This population is introduced for numerical reasons. Fragments
of the sub-resolution population consist only of a single SPH particle. The existence of this pop-
ulation represents the resolution limit of the simulations and therefore gives only an upper limit
for the smallest dust fragments, which are produced in a collision. This population is also conve-
nient to control sufficient resolution. The SPH numerical scheme is capable of simulating objects
of metre size and more. However, because of limited computational resources, single SPH par-
ticles then represent objects of centimetre size and larger. The sub-resolution population keeps
track of these objects. It is convenient to describe this population with averaged characteristic
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quantities. Note that also in laboratory experiments a sub-resolution population exists when the

fragment distribution is determined by high speed cameras.

With this approach I considerably reduce the complexity of the sticking, bouncing, and fragmen-  complexity
tation classification from nine types of collision outcomes to four fragment populations. More- reduction
over, the model presented is solely based on continuous quantities characterising the collision

outcome and not on physical mechanisms. This allows for modelling of any mixed types of col-

lisions and transitions between growth and disruption with the necessary accuracy.

Compared to fragmentation data which are mapped to a power-law distribution alone (e.g. Mathis accuracy increase
etal. 1977, Davis and Ryan 1990, Blum and Miinch 1993, Giittler et al. 2010) the new model is also

more accurate. In some of the simulations a fragment distribution contains one large fragment

and many small ones. The small ones can be accurately modelled with a power-law mass dis-

tribution. However, the mass of the largest fragment often does not match the power-law. This

is particularly the case for grazing collisions between highly porous aggregates, where the filling

factor of the largest remnant significantly differs from those of the other fragments. Since this

has a major impact on subsequent collisions, the largest fragment together with its filling factor

is treated separately. Furthermore, power-law distributions cannot map bouncing collisions. For

these reasons, I separate out the largest and second largest fragment from the rest of the fragment
distribution.

With the four given fragment populations and their defining properties I present a closed model

which is capable of modelling any collision outcome of pre-planetesimals with minimum com-

plexity but with the accuracy necessary to model the dust aggregation in global coagulation mod-

els. In the next section it is shown how the model by Giittler et al. (2010) can be represented in

the new model.

Mapping sticking, bouncing, and fragmentation to the new model

The key idea behind mapping the sticking, bouncing, and fragmentation sub-types to the four- mapping
population model is to describe the collision outcome by the characteristic quantities of each of  principle
the four populations. If one of the populations does not exist, its characteristic quantity is simply

set to zero. In principle, a number of quantities can be used to determine the population. To

illustrate the use of this model, I select the characteristic quantities mass m and filling factor ¢

as examples. Tab. 6.2 demonstrates the successful mapping of the Giittler et al. (2010) types into

the quantitative four-population model. The indices “t”, “p”, “17, “2”, “pw”, and “sr” denote target,

projectile, largest, second largest, power-law, and sub-resolution quantities, respectively. For the

illustration it is assumed that the mass of the target m; is greater than or equal to the projectile

mass my, i.e. my = my,. In contrast to many results presented by Giittler et al. (2010), who cannot

always determine the change in the filling factor, I find a filling factor increase in all collisions if

the initial filling factor is smaller than the maximum compaction at ¢ppax = 0.58 (see Fig. 6.8 for

the largest fragment).

For pure sticking (S1 to S3 types) only one fragment in the final population exists, which is iden-  S-fypes
tified as the largest fragment. Consequently, this fragment contains the mass of the total system,

i.e. my = m¢+ my,. Within the four-population approach, the S1 to S3 sub-types can be combined

with respect to the mass and filling factor. In general, the filling factor of the target ¢; was in-

creased during the impact such that the filling factor of the largest fragment ¢; > ¢;. For sticking

with mass transfer (S4) a range of fragments exists. Since sticking is identified with growth of

the largest fragment it is m; > m. If there are only fragments below the resolution limit, then
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the mass of the second largest fragment m; and the mass of the power-law population m,, are
vanishing. Otherwise there exists a range of fragments with non-zero masses.

Bouncing is characterised by two fragments in the final fragment distribution. For bouncing with
compaction (B1) the masses are unaltered, i.e. m; = mg and my = my, but the filling factors are
increased: ¢, > ¢ and ¢ > ¢pp. For the case of bouncing with mass transfer (B2) the filling
factors are also increased but the masses are altered such that m; + my = m¢ + m;, and my # my
as well as my # my,. By definition, no fragments are produced in the bouncing events such that
Mpw = Mg = 0. Also for B2 the filling factors are increased, i.e. ¢1 > ¢ and ¢ > ¢y,

The fragmentation events (F1 to F2 types) are characterised by the fact that the mass of the largest
fragment is smaller than the largest mass before the collision, i.e. m; < m;. The distinction be-
tween F1 and F2 in terms of the collision outcome is not clear. In both cases a power-law as well
as a sub-resolution population is generated, i.e. mpy > 0 and mg; > 0. It seems that for F2 the
mass of the target is only reduced by a small amount such that m; < my (Giittler et al. 2010).
Also in this reference, F3 is characterised by the fact that the target (solid plate) gains mass, i.e.
my > my. This is inconsistent with the idea that fragmentation is equivalent to m; < my. The
mass of the second largest fragment has some value m, > 0 and total masses of the power-law
and sub-resolution populations are my,, >0 and ms; > 0.

The transition between sticking and fragmentation can consequently be characterised by the
transition m; > my — m; < my, since for the S4 type power-law and sub-resolution population
are already present. In contrast, the transition from bouncing (which also includes the change of
target and projectile masses by mass transfer in B2) can be defined by the appearance of a power-
law and sub-resolution population, i.e. mpy = 0 — mypy > 0 and mg = 0 — mg; > 0, together with
a non-growing target m; < m;. These and other transitions are discussed in Sec. 6.4 in more
detail.

In this section, I have shown that the four-population model for collision outcomes is capable
of encompassing all the sticking, bouncing, and fragmentation sub-types. Furthermore, it was
demonstrated that also the transition between these types can be modelled continuously by util-
ising the masses of each of the four populations.
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outcome type ny &1 my (073 Mpw Mgy
hit & stick (S1) mg+ My 0 0 0 0 0
sticking through surface effects (S2) mg+ mp b1 > Py 0 0 0 0
sticking by penetration (S3) mg+ mp b1 > P 0 0 0 0
mass transfer (S4) my > my pr1>¢r mp<mpy  G2>¢p Mpw =0 mg >0
bouncing with compaction (B1) my = my Pr>Ppr mp=my P>y 0 0
bouncing with mass transfer (B2) my # mg Pr1>Ppr mpFEmy  P2>Pp 0 0
fragmentation (F1) my < my b1 > Py my >0 P2 > Py Mpw >0 Msr >0
erosion (F2) my < my P1 > Py my =0 b2 > Py Mpw =0 mg >0
fragmentation with mass transfer (F3) mp > my b1 > Pt my >0 P2 > Py Mpw >0 mg >0
sticking — fragmentation transition mp > my — my < my 03 my =0 b2 Mpw =0 Mg =0
bouncing - fragmentation transition my < my &1 my =0 b2 Mpw =0 — Mpw >0 Mg =0— mg >0

Table 6.2. Mapping sticking, bouncing, and fragmentation to the four-population model. In this table it is illustrated how the collision
outcome types in Sec. 6.1.1 can be mapped to the four-population model using the characteristic quantities mass m and filling factor
¢ as examples. The masses of the largest and second largest fragment, the power-law population, and the sub-resolution population
are given by my, mp, mpy, and myg;, respectively. I assume for the target mass m and projectile mass my, before the collision m; = my,.
The filling factors are represented by ¢ for the target, ¢, for the projectile, ¢ for the largest fragment, and ¢ for the second largest
fragment. Examples are given for transition criteria between the types in Sec. 6.1.1. A list of symbols can be found in the appendix and

further explanations are given in the text.
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6.1.3. Applying the new model to simulation data

In this section, the four-population model is applied to a study of collisions of medium porosity
pre-planetesimals with different velocities to demonstrate that the outcomes of pre-planetesimal
collisions can be described quantitatively using the model. I carry out 24 simulations of head-on
collisions involving spherical dust aggregates with target and projectile radii of r; = 10cm and
rp = 6¢cm modelled using 238,238 and 51,477 SPH particles, respectively. I choose the initial fill-
ing factor of the aggregates to be ¢ = 0.35 resulting in target and projectile masses of 2.93 and
0.63 kg, respectively. The collision velocity is varied between 0.1 and 27.5m/s. The initial particle
distributions are set up by means of the program initgrid (Appx. A.3). Table 6.3 summarises the
simulations carried out. The program fragment (Appx. A.2) is used to evaluate the final particle
distribution. I broadly categorise the simulations by eye into bouncing, sticking, or fragmenta-
tion so that a comparison can be made between the results of the four-population model and
the categorisations used previously. It is important to note that these broad categorisations are
only present to show where the boundaries between these regimes lie and are not used for the
quantitative approach of my model.

As discussed in Sec. 6.1.2, the outcome of pre-planetesimal collisions can be quantitatively de-
scribed by a number of parameters such as the final mass, size, energy, velocity, porosity, and
rotation and each of these parameters can be used to describe the four populations. In this pre-
liminary study I focus on the final mass, porosity, and energy of the different populations in the
four-population model.

Figure 6.4 shows how the mass distribution amongst the four populations varies with collision
velocity. At low collision velocities, the contact energy and thus the tensile strength is too low
to hold the objects together. This results in bouncing causing the overall mass distribution be-
ing similar to the initial distribution. The collision with 0.2m/s shows evidence of mass transfer
resulting in a largest fragment smaller than the target. As the collision velocity increases, the en-
ergy is dissipated by plastic deformation resulting in sticking such that all the mass is stored in a
single object. At even higher collision velocities in which fragmentation is seen, the mass stored
in the largest fragment is reduced but is increasingly present in the power-law population. Fig-
ure 6.4 also shows how the mass of the largest fragment varies with collision velocity. It can be
seen that three distinct regions exist, which justify the broad classification of Tab. 6.3. However,
there do not appear to be distinctions within these regions which promote the further division
into sticking, bouncing, and fragmentation sub-types. A sharp transition between the bouncing
and sticking regions exists at ~ 1m/s. The velocity threshold for the bouncing-sticking transition
varies with object porosity and projectile size. This is shown and discussed in more detail in Sec.
6.4. Above 10.5m/s, pure sticking no longer occurs and the mass of the largest fragment begins
to decrease as the transition between sticking and fragmentation takes place. As a result of very
high collision velocities the mass contribution of the sub-resolution population dominates over
the largest and second largest fragment indicating violent disruption. I note that the simulation
with collision velocity 11.5m/s still results in collision growth but above this velocity the mass gain
of the largest fragment is negative.

Figure 6.4 clearly shows that at velocities 2 11.5m/s, pure sticking no longer occurs and a transi-
tion into the fragmentation regime begins. For the simulation with a collision velocity of 11.5m/s
(see Fig. 6.5, top, for an illustration of the resulting fragments), the mass of the largest fragment
clearly increases but according to the model by Giittler et al. (2010) it is unclear whether this sim-
ulation would be classed as sticking with mass transfer (S4) or fragmentation with mass transfer
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Collision Broad

Velocity [m/s]  categorisation
0.1 bouncing
0.2 bouncing
1.0 bouncing
1.25 sticking
1.5 sticking
1.75 sticking
2.0 sticking
2.2 sticking
2.5 sticking
4.0 sticking
5.0 sticking
6.0 sticking
7.5 sticking
10.0 sticking
11.5 fragmentation
12.5 fragmentation
15.0 fragmentation
17.5 fragmentation
25.0 fragmentation
27.5 fragmentation

Table 6.3. Applying the four-population model - collision velocities and categorisation. The target
and projectile are homogeneous and feature an intermediate porosity (¢ = 0.35). These simu-
lations have been carried out to show how the proposed model can quantitatively demonstrate
the results of pre-planetesimal collisions. Each simulation is assigned a broad categorisation
so that the transition regions between the categories can be investigated.
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Figure 6.4. Four-population model IV — population masses. Cumulative plot of the contributions
to the total mass in the system from the largest (grey slashed), second largest (solid grey),
power-law (black slashed), and sub-resolution (solid black) populations after the aggregate
collisions at various velocities. At low velocities, where bouncing occurs, the mass is wholly
within the first and second largest fragments while at intermediate velocities, where sticking
occurs, the contribution to the mass is in the largest fragments. At high velocities, the mass
contribution from the power-law population becomes significant. To save computing time,
particles are removed when they exceed a sphere of 20 m radius around the impact site. The
slight drop in mass is visible for the highest collision velocities (figure from Geretshauser et al.
2011).
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Figure 6.5. Four-population model V - sticking-fragmentation transition for intermediate poros-
ity. Outcome of the dust collision simulation with 11.5m/s (top) and 12.5m/s (bottom) at a time,
t=0.8s. The collision with 11.5m/s results in the growth of the target but also a large chunk does
break off such that pure sticking does not occur. The situation is adequately mapped with the
appearance of a second largest fragment. For 12.5m/s the target breaks apart and the power-
law population becomes as significant as the largest fragment. The transition from sticking to
fragmentation occurs in between the presented collision velocities.
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(F3). Using our model, such an intermediate region can be described quantitatively. At ~ 12.5m/s
(see Fig. 6.5, bottom, for an illustration), the mass contribution from the power-law population
becomes as significant as the contribution from the largest fragment. In this region, the target
fragments into a small number of large pieces. I expect that the transition from the sticking to
fragmentation regime, described in Sec. 6.1.2, occurs between 11.5 and 12.5m/s. The sticking-
fragmentation threshold depends also on object porosity and projectile size (see Sec. 6.4). In
addition there is evidence that for inhomogeneous aggregates the threshold velocity for frag-
mentation is lowered (Sec. 6.2). Other factors such as impact parameter and rotation might also
influence the fragmentation threshold. Further investigation into the factors that determine the
fragmentation boundary is crucial to ultimately understand under what conditions fragments
may grow to planetesimal sizes. It is important to note that to decrease the computational ex-
pense, the SPH particles that move out of a radius of 20 m are removed from the simulation.
Therefore, the total mass at the end of the higher velocity simulations is smaller than the ini-
tial mass. However, the total mass removed from the simulation is ~ 2% in the highest velocity
simulation.

Figure 6.6 shows how the mass of the second largest fragment varies. For low collision velocities
itis evident that bouncing occurs and the projectile, whose mass is indicated by the dashed line
in Fig. 6.6, appears as second largest fragment with unaltered or slightly increased mass in the
final distribution. For higher collision velocities the projectile sticks to the target and no second
largest fragment results, which is indicated by vanishing masses in this regime. As the veloc-
ity further increases, the resulting mass of the second largest fragment increases again but is
smaller than the projectile mass, which indicates fragmentation. The increase is followed by a
sharp decrease in the mass of the largest fragment. Such simulations that are reasonably close
to the sticking-fragmentation boundary not only cause the two aggregates to fragment, but they
also cause mass to be transferred between the target and projectile. At higher velocities still, the
impact is sufficiently violent for the second largest fragment to also decrease sufficiently.

Figure 6.4 shows that as the collision velocity increases, the contribution to the mass from the
power-law population also increases. As an outcome of pre-planetesimal collisions, the cumula-
tive mass distribution of the fragments is often described by a power-law

mg mg K
Meum(mg) = Y mf=f n(m)mdmz(—) ) (6.1)
0

ME<fpw Hpw

where n(m)dm is the number of fragments within the mass range [m, m+dm], myis the fragment
mass, and ppy is the most massive member of the power-law population. The quantities m, m,
and pp, are normalised by the total mass of the power-law population my,, and « is the power-
law index.

Figure 6.7 shows the cumulative mass distribution mcym(m4) against the fragment mass nor-
malised by mpy. For higher fragment masses my, a power-law fit can be obtained which de-
scribes the mass distribution of the power-law population. As the velocity increases, the slope
of the power-law decreases. This is because at higher collision velocities, the destruction of the
dust aggregates is more violent and a larger number of smaller fragments results. At low fragment
masses, it is currently unclear whether the deviation from the power-law distribution is physical,
or whether it is a result of a low number of SPH particles (< 100) per fragment. Such a deviation
is also seen in the experimental results of Giittler et al. (2010).

I now consider how much compaction takes place in each of the simulations by considering the
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Figure 6.6. Four-population model VI — mass (second largest fragment). The broad categorisation
into bouncing (open triangles), sticking (closed triangles), and fragmentation (open squares)
can be identified by masses of the second largest fragments being approximately the projectile
mass (dashed line), nearly vanishing, and smaller than the projectile mass, respectively. For
the fragmenting collisions, the mass of the second largest fragment initially increases with
collision velocity. However, at higher collision velocities, the fragment mass decreases due to
the collision nature of the simulations (figure from Geretshauser et al. 2011).
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Figure 6.7. Four-population model VII — mass distribution (power-law population). Cumulative
mass distribution (given by equation 6.1) against fragment mass of the power-law populations
resulting from the simulations with 17.5 (open triangles), 25.0 (closed triangles), and 27.5m/s
(open squares). Both axes are normalised by my,y. For high fragment masses, the gradient of
the slope decreases with increasing velocity. For low masses, the deviation from the power-law
requires further investigation as to whether this is a physical or numerical artefact (figure from
Geretshauser et al. 2011).
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Figure 6.8. Four-population model VIII - filling factor (largest fragment). Final average filling fac-
tor of the largest fragment in each of the simulations. The simulations have been broadly
categorised into bouncing (open triangles), sticking (solid triangles) and fragmentation (open
squares). The filling factor varies smoothly as the collision velocity is increased (figure from
Geretshauser et al. 2011).
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resulting filling factors of the various populations. Figure 6.8 shows the average filling factor of
the largest fragment, ¢;, compared to the initial filling factor. As the velocity increases the com-
paction also increases, causing the filling factor to increase with velocity. This forms a smooth
curve between the initial filling factor of 0.35 and the maximum filling factor of ~ 0.58 for SiO,.
The curve resembles the Fermi-Dirac shape of the compressive strength relation (Eq. 4.128),
which directly links the dynamic pressure to the obtained filling factor. I note that the appear-
ance of fragmenting events coincides with the largest fragment reaching a filling factor close to
the maximum filling factor. This suggests that fragmentation sets in when the material is max-
imally compressed. Furthermore, I stress that the transition of the filling factor is smooth right
from the low velocity (bouncing) collisions, through to the medium velocity (sticking) collisions
to the high velocity (fragmentation) collisions. For simulations with higher initial filling factors,
a transition is expected to occur directly between the bouncing and fragmentation regimes, as
discussed in Sec. 6.1.2. Simulation results showing this transition are presented in Sec. 6.4.

The transition is particularly important since for planet formation, one is primarily concerned
with the evolution of the largest fragment. This demonstrates that the four-population model
can quantitatively capture the results of the collisions over a wide region of velocity parameter
space. The preliminary results for the second largest fragment suggest that only a small amount
of compaction takes place for the second largest fragment for low velocity bouncing simulations
such that the final filling factor is very close to the initial filling factor, while for high velocity
fragmentation simulations, a large amount of compaction takes place resulting in filling factors
close to the maximum value of 0.58. Further investigation will be carried out in a future study.
Figure 6.9 shows the average, maximum and minimum filling factors of the power-law popu-
lation. At higher velocities when more violent fragmentation occurs, the spread in the filling
factor is greater than at lower velocities. This suggests that at lower velocities, fragments may
be chipped off without too much change to their compaction, whereas in the more violent cases
with higher collision velocities, the fragments may get compacted before being chipped off or
rupture due to plastic flow occurs where parts of the dust are stretched before they rip off. Fig-
ure 6.10 shows the filling factor distribution of the power-law populations resulting from the sim-
ulations with 17.5, 25.0, and 27.5m/s. As the collision velocity increases, the number of fragments
increases. In particular, most of the particles have filling factors smaller than the initial value
of 0.35. This suggests that during the collision, fragments rip off rather than being compressed
before breaking apart.

Finally, the contributions to the total energy (normalised by the initial energies) from the differ-
ent populations are explored. The total energy is the sum of the energy stored in translation,
rotation, and vibration. Figure 6.11 shows that at low velocities the major energy contribution
comes from the largest fragment, while at higher velocities the contribution from the power-law
population becomes somewhat equally significant (at ~ 12.5m/s) and is even more significant at
even higher velocities. At low velocities the energy is stored in elastic deformation and released
into kinetic energy again so that a smaller fraction of the initial energy is dissipated. As the ve-
locity increases plastic deformation occurs causing energy dissipation. At even higher velocities,
though energy is still dissipated (since bonds are broken in the fragmentation process), the dis-
sipated energy as a fraction of the initial energy due to bonds being broken is not as large as the
energy dissipation due to plastic deformation. For very high impact velocities a considerable
amount of energy is stored in the sub-resolution population. Figure 6.12 shows the absolute en-
ergy dissipated at each collision velocity as well as the initial energy. The total amount of energy
dissipated increases smoothly with increasing velocity, irrespective of the bouncing, sticking or
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Figure 6.9. Four-population model IX - average filling factor (power-law population). Final av-
erage filling factor (black line) of the power-law populations in each of the simulations. Also
plotted are the maximum (upper grey line) and minimum (lower grey line) filling factors for
each simulation as well as the initial filling factor (dashed line). As the collision velocity in-
creases, the range of filling factors for any one simulation increases (figure from Geretshauser
etal. 2011).
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Figure 6.10. Four-population model X - filling factor distribution (power-law population). Fill-
ing factor distribution for the simulations with 17.5 (solid line), 25.0 (short dashed line) and
27.5m/s (long dashed line). The size of a filling factor bin is 0.01. As the collision velocity in-
creases, the number of fragments increases. For higher collision velocities, the majority of frag-

ments have lower filling factors than the original value (dotted line) (figure from Geretshauser
etal. 2011).
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Figure 6.11. Four-population model XI - total residual energy. Cumulative plot of the contribu-
tions to the total energy in the system from the largest (grey slashed), second largest (solid
grey), power-law (black slashed) and sub-resolution (solid black) populations after the aggre-
gate collisions at various velocities. At low velocities, the energy is primarily from the largest
fragment whereas at higher collision velocities where more fragments form, the contribu-
tion from the power-law population becomes more significant (figure from Geretshauser et al.
2011).
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Figure 6.12. Four-population model XII — dissipated energy. Initial (dotted line) and dissipated
(solid line) energies against the collision velocity. The amount of energy dissipated changes
smoothly with collision velocity, regardless of whether the simulations involves bouncing
(open triangles), sticking (closed triangles) or fragmentation (open triangles) (figure from
Geretshauser et al. 2011).
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fragmentation regime. Note that in these examples, the final rotational energies are not very sig-
nificant since the collisions are head-on. The difference between the rotational and translational
energies will become more important in simulations with non-zero impact parameters.

The results presented here are simply a small number of simulations which show that transi-
tions between the bouncing, sticking and fragmentation regions occurs and that the results of
pre-planetesimal collisions can be described quantitatively. This can be extended further to ex-
plore a vast parameter space of inputs. The four-population model has been shown to not only
encompass previous qualitative models (Sec. 6.1.2) but also provides an alternative model that
focuses on the quantitative outcome of pre-planetesimal collisions. Furthermore, it can provide
an accurate input into global models which may then carry out detailed calculations on the re-
sult of pre-planetesimal collisions. In addition, this model provides a powerful aid to determine
the region of parameter space that allows growth of pre-planetesimals to occur.

6.1.4. Discussion and QOutlook

I have demonstrated that the SPH code, extended and calibrated for the simulation of porous
SiO; dust, is capable of reproducing all sticking, bouncing, and fragmentation types that appear
in collision experiments with macroscopic porous dust aggregates. In addition to the quanti-
tatively correct simulation of laboratory benchmark experiments (see Ch. 5), this consolidates
the validity of the applied porosity model and shows its readiness for the application in the field
of investigating pre-planetesimal collisions. Since the continuum approach of the SPH method
does not place an upper bound on the aggregate size, collision data of a parameter space inacces-
sible so far in laboratory experiments can now be provided for further use in global coagulation
models.

For this transfer, a suitable mapping of collision data has to be chosen, which is accurate enough
to quantitatively capture the most important features of any combination of sticking, bouncing,
and fragmentation and which is simple enough to be implementable in global coagulation mod-
els. I have attempted to map the simulation data to the categorisation by Giittler et al. (2010),
which represented the most elaborate collision model available. On the one hand, the distinc-
tion between four sticking, two bouncing, and three fragmentation types introduces unnecessary
complexity caused by distinguishing between a mixture of qualitative and quantitative attributes
and by adhering to the classification into sticking, bouncing, and fragmentation events. On the
other hand, I have found collision outcome which could not clearly be attributed to one of the
proposed categories.

Because of this ambiguity, I have proposed a new model, which is based on quantitative aspects.
For this purpose, I have divided the set of fragments of a collision into four populations: the
largest and second largest fragment are described by distinct values for the characteristic quan-
tities of mass, filling factor, and kinetic energy to name only a few. The power-law population is
described by distributions and the sub-resolution population by averaged values for the charac-
teristic quantities. The largest fragment indicates growth or erosion, the second largest fragment
accounts for bouncing, the power-law population quantitatively describes the amount of frag-
mentation, and the sub-resolution population gives an upper limit for smaller fragments, which
are not captured due to insufficient resolution. Since the SPH code is not restricted to small ag-
gregate sizes, the importance of the sub-resolution population becomes significant for aggregate
collisions between objects of approximately metre size and more. Also for growth models which
rely on the sweeping up of small particles (Teiser and Wurm 2009a) the sub-resolution popula-
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tion plays an important role. I have demonstrated that this model is in general encompassing
the model proposed by Giittler et al. (2010) but is also capable of capturing intermediate events.
Finally I have applied the new model to map data for head-on collisions of aggregates with in-
termediate (¢p = 0.35) porosity and varying impact velocity. I have shown that the broad sticking,
bouncing, and fragmentation categorisation can still be found in the four-population model.
But in addition I also have shown that continuous transitions in the variation of the mass of the
largest fragment, the filling factor, and the final kinetic energy of the fragments with collision
velocity exhibit a more quantitative description. The ability to capture these transitions justifies
the design of the four-population model and demonstrates its descriptive power.

Despite its narrow parameter range, the following conclusions can be drawn from the velocity
study presented in Sec. 6.1.3. For the transition between bouncing and sticking a threshold ve-
locity of ~ 1m/s is found and the transition from sticking to fragmentation lies between 11.5 and
12.5m/s. Since the initial filling factor ¢ = 0.35 is close to the critical filling factor 0.4, which sepa-
rates porous from compact aggregates in Giittler et al. (2010), the simulation outcomes cannot be
compared directly to their results. For collisions between equally sized highly porous and very
compact aggregates they found a direct transition from bouncing to fragmentation at ~ 1m/s,
However, for collisions between a compact target and a porous projectile of equal size they find
a bouncing-sticking transition at 1m/s and a transition from sticking to no mass gain at 9.4m/s,
These thresholds resemble my findings for intermediate porosity very well. The simulation re-
sults for fragmenting collisions indicate that the power-law index of the fragment mass distribu-
tion is velocity dependent. This is supported by the collection of laboratory fragmentation data
(Mathis et al. 1977, Davis and Ryan 1990, Blum and Miinch 1993, Giittler et al. 2010). Further-
more, it is physically reasonable that in more violent collisions the fraction of smaller fragments
increases. This suggests a velocity dependent power-law index.

I note that the results presented in Sec. 6.1.3 are valid for collisions between homogeneous ag-
gregates of intermediate porosity. Increasing inhomogeneity might affect the presented thresh-
old velocities as discussed in Sec. 6.2. Furthermore, rotation of the largest and second largest
fragments might cause them to fall apart beyond the simulated time, which eventually affects
their final size. The results presented here, in particular for fragmenting collisions, are based
on one simulation for each collision velocity. Although I do not expect a large variation in out-
come because of the symmetry given by a head-on collision of two spheres, a profound statistical
investigation has to be carried out. As a further issue, it has to be investigated whether the de-
viation of the power-law mass distribution for low fragment masses is a numerical or physical
effect. Despite these drawbacks, it has been possible possible to demonstrate the applicability
and functionality of the four-population model by means of the simulation results.

Despite increased experimental efforts only small spots of the required parameter space of pre-
planetesimal collisions are actually covered by empirical data. In fact, vast regions of these maps
are terra incognita and collision data for pre-planetesimal sizes larger than centimetre are miss-
ing.

With a code calibrated for the simulation of pre-planetesimals (see Ch. 5) and the four-population
model as an adequate mapping model, I have established a basis to profoundly investigate all
aspects of pre-planetesimal collisions and transferring acquired data to global dust coagulation
models. In future works these tools can be utilised to generate a catalogue of pre-planetesimal
collisions. Below, the four-population model is applied to investigate the collision behaviour
depending on important parameters such as aggregate inhomogeneity (Sec. 6.2) as well as ag-
gregate porosity, mass ratio of the collision partners, and impact velocity. The latter three pa-
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rameters are considered in the head-on collision study presented in Sec. 6.4. In future work,
impact parameter and rotation will be considered. Furthermore, I will assess the statistics of the
fragmentation results.

6.2. Inhomogeneity damage model

In this section, simulations are carried out using the inhomogeneity damage model approach
presented in Sec. 4.3.5. Inhomogeneity is important for many aspects of investigating pre-plane-
tesimal collisions. (1) Since pre-planetesimals are formed by subsequent collisions with differ-
ent impact velocities, this collisional history creates an inhomogeneous aggregate. Any realistic
simulation of pre-planetesimal collisions must include this effect. (2) It is very likely that inho-
mogeneity varies with the size of objects of comparable filling factor. Thus including this aspect
introduces a length scale into the numerical porosity model. So far, the compressive, tensile, and
shear strengths of the latter are scaling with the dimensionless parameter ¢. For this reason, the
fragment distribution resulting from a collision with the same impact velocity scales with the size
of the collision partners. The use of a damage model with an inhomogeneity scaling law could
tackle this problem. (3) Randomly assigning an inhomogeneity with constant standard deviation
to bodies of equal size makes it possible to profoundly investigate statistical fluctuations of frag-
ment distributions. So far, a collision of homogeneous objects with the same input parameters
results in the same fragment distribution.

The outline is as follows: in Sec. 6.2.1 I discuss the implementation of the inhomogeneity damage
model. Subsequently, I present the results of a series of simulations with varying inhomogeneity
and two different impact velocities in Sec. 6.2.2. The velocities are chosen such that the lower lies
below and the higher lies above the fragmentation threshold for homogeneous medium poros-
ity (¢ = 0.35) aggregates. The simulation outcome is analysed by means of the four-population
model presented in Sec. 6.1. To conclude, I summarise the findings, discuss the relevance of
inhomogeneity, and give an outlook on future work in Sec. 6.2.3

6.2.1. Implementation issues

The inhomogeneity is imposed on the simulated aggregate as an initial condition. At first, a ho-
mogeneous aggregate is generated by assigning an initial filling factor ¢;. As a second step, ¢;
is modified according to a Gaussian distribution with standard deviation ¢,. For this purpose, a
particle a is picked randomly and its density is set to a new ¢;“ following the Gaussian (Eq. 4.157).
The same ¢;“ is assigned to all interaction partners. The mass of all individual SPH particles takes
a constant value in the simulation. This value is computed to be consistent with the initial ho-
mogeneous aggregate (here ¢; = 0.35). Therefore, the modification of the density introduces a
slight inconsistency into the SPH particle distribution. However, as the density is determined by
solving the continuity equation and not by the usual approach evaluating the number density of
the particles, this inconsistency should be marginal. Moreover, the time evolution of a resting
inhomogeneous dust aggregate has been simulated and no spurious particle motion has been
detected. In addition, the aggregate has not shown signs of instabilities within simulation times
much larger than the collision time scale. Consequently, the presented approach produces sta-
ble aggregates. Evaluating the generated SPH particle distribution using the particle distribution
evaluation tool sph3deval (Appx. A.1) yields the resulting filling factor distribution: the num-
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Figure 6.13. Inhomogeneity model I - initial filling factor distributions. Initial filling factor distri-
butions of the target and projectile as binned (top) and cumulative (bottom) diagrams. For the
binned distribution the number density 7(¢) of volumes with filling factor ¢, is plotted against
¢. In the cumulated diagram the cumulated volume with filling factor ¢ is displayed against ¢.
A larger degree of inhomogeneity is characterised by the increasing standard deviation ¢, of
the Gaussian (Eq. 4.157) around the initial filling factor ¢; of the homogeneous aggregate (here

¢; = 0.35).
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Figure 6.14. Inhomogeneity model Il - inhomogeneous aggregates. Interior and exterior view of
the targets for different inhomogeneities with the filling factor colour coded. The inhomo-
geneity increases from the homogeneous target (a) to the most inhomogeneous target (f). In
particular, the standard deviations are ¢, = 0 (a), ¢ = 0.01 (b), ¢ = 0.02 (c), ¢s = 0.03 (d),
¢s =0.04 (e), and ¢p5 = 0.05 (f). All targets have a similar brindle pattern which originates from
considering interacting particle passages in the implementation. With increasing ¢, the max-
imum and minimum filling factor of the different spots increase and decrease, respectively.
The projectiles have a similar appearance. The result of collisions among these aggregates
with 10m/s are depicted in Fig. 6.15.
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Symbol algorithmic value FWHM value
b1 0.010 0.0085
bo2 0.020 0.018
b3 0.030 0.027
boa 0.040 0.034
bos 0.050 0.042

Table 6.4. Inhomogeneity standard deviations. Selection of the standard deviations ¢ as they are
used in the inhomogeneity algorithm. They are compared with the achieved value deduced
from the FWHM of the resulting filling factor distribution in Fig. 6.13.

ber density n(¢) of the volume fraction with filling factor ¢ is shown in Fig. 6.13 as binned and
cumulative plots for various ¢-.

For a Gaussian distribution of the density of single SPH particles only, i.e. not considering their
interaction partners as well, no macroscopic deviation from the initial filling factor ¢; is visi-
ble after evaluating the particle distribution with sph3deval (Appx. A.1). This is because in the
evaluation process the contribution from a number of SPH particles is taken into account for
computing the density of a physical volume element. However, for Gaussian distributed particle
densities this yields ¢;. For this reason, a macroscopic density deviation is generated by consid-
ering interacting particle packages.

These packages with different filling factors are clearly visible in Fig. 6.14, where the density
structure of the target is colour coded for different ¢,. The packages are picked randomly but
the random pattern is the same for all aggregates to ensure that the results are comparable. Due
to the increasing ¢, the regions with ¢ # ¢; gain higher maximum and lower minimum filling
factors. Consequently, the inhomogeneity patterns for ¢, and ¢4 (see Tab. 6.4) are barely vis-
ible in Fig. 6.14 (aggregates b and c). In contrast, for ¢45 the difference between the extreme
values of the filling factor create a clearly visible pattern with high contrast.

The standard deviation of the Gaussian filling factor curve ¢ is supplied to the distribution rou-
tine as an input parameter. However, because interacting particle packages are considered the
real standard deviation computed from the full width at half maximum (FWHM) is smaller than
the desired ¢ (algorithmic value). The FWHM values are listed in Tab. 6.4. For the sake of sim-
plicity, I use the algorithmic value in the further course of the analysis.

The algorithm for generating inhomogeneous dust aggregates is implemented in the program
initgrid (Appx. A.3), which is utilised to set up the initial particle distributions in this chapter.

6.2.2. Simulation results

In this section, I perform test simulations with the inhomogeneity damage model. The initial
setup consists of two colliding spheres with ¢; = 0.35. The radii of the target and projectile are
re=10cmand rp = 6cm, and they consist of 238,238 and 51,477 SPH particles, respectively. I con-
sider two impact velocities vy = 10m/s and vy = 12.5m/s. For homogeneous aggregates, the lower
velocity leads to sticking of the projectile to the target (see Fig. 6.15, a). In contrast, the higher
velocity results in fragmentation (see also Sec. 6.1.3, in particular Fig. 6.5). For these two colli-
sion velocities, the inhomogeneity of both the target and the projectile is defined by the standard
deviation of the Gaussian ¢, which is varied from 0 to 0.05 yielding the distributions depicted
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in Fig. 6.13. The resulting targets are shown in Fig. 6.14. The projectiles show a similar density
pattern. After the collision the resulting SPH particle distribution is evaluated by means of the
program fragment (Appx. A.2)

For vg = 10m/s the final fragment distribution is shown in Fig. 6.15 from the impact direction. For
homogeneous aggregates (a) and the small standard deviation (¢, = 0.01, b) the target remains
intact and the target and projectile form one big aggregate. For ¢, = 0.01 some small fragments
are visible. For ¢, = 0.02 the target fragments and with greater inhomogeneity the largest frag-
ments of the distribution decrease in size.

The first impression from the visual control of the collision outcome is confirmed by the more
detailed analysis. For this purpose, I utilise the four-population model presented in Sec. 6.1,
which divides the fragment distribution into four fragment populations: the largest and second
largest fragment, a power-law population, and a sub-resolution population. The latter represents
the limit of our resolution and consists of single SPH particles only, whose masses for the given
setup are 1.23 x 10~°kg each.

The variation of the masses of each population with ¢, is shown in Fig. 6.16 as a fraction of the
total mass. The upper and the lower plot display the results for vy = 10m/s and vy = 12.5m/s, re-
spectively. The exact values can be found in Tab. 6.6. For the lower collision velocity (Fig. 6.16)
and ¢4 < 0.01 nearly all mass is stored in the largest fragment m,. For ¢; > 0.1 a second largest
fragment and a power-law population appears. With increasing inhomogeneity m, rapidly de-
creases, while the mass of the second largest fragment m, only slightly decreases. The masses
m; and my become comparable in the end. For high inhomogeneity values most of the mass
is stored in the power-law population my,y, which will be discussed further below. However, for
high inhomogeneities mp,,, seems to remain fairly constant while the mass of the sub-resolution
population myg; increases. For the higher collision value (bottom plot of Fig. 6.16) the evolution
is similar but already starting of with myy # 0. The value of m; constantly decreases, but not
as rapidly as for the low velocity case. The quantity m. at first increases, then slightly decreases
until the largest and second largest fragments become comparable. The mass of the power-law
population rapidly increases for 0.01 < ¢, < 0.04. For larger ¢, the power-law population only
slightly increases, whereas mg, increases at a faster rate. The mass evolution with increasing
inhomogeneity can be summarised as follows: (1) inhomogeneity leads to fragmentation at col-
lision velocities where homogeneous aggregates do not fragment. (2) For the two investigated
velocities, larger ¢, leads to a decrease in mass of the largest and second largest fragments in
mass. (3) The masses of the power-law and dust populations are increased with a higher degree
of inhomogeneity.

I turn to the analysis of the distribution of the residual total energy after the collision, which
is shown in Fig. 6.17 as a fraction of the initial kinetic energy. The residual total energy is the
sum of translational energy and the energy stored in the internal degrees of freedom (e.g. rota-
tion, vibration) of the respective populations. The tabulated values can be found in Tab. 6.6. In
Fig. 6.17 the low velocity case with vy = 10m/s is shown in the upper plot and the high velocity
case with vy = 12.5m/s in the lower plot. For the former, a large amount E| is stored in the largest
fragment, but also a considerable amount E; is stored in the sub-resolution population. While
E; decreases, the contribution of the second largest fragment at first increases, then decreases
slightly with larger ¢,. As for the mass, the energy contribution of the power-law population
Epw increases with a higher degree of inhomogeneity. Remarkably, the total energy fraction of
these three populations almost remains constant. In contrast, the energy contribution of the
sub-resolution population Eg, increases more strongly than its mass contribution in Fig. 6.16.
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Figure 6.15. Inhomogeneity model III — collision outcomes. Outcome of a collision between a
target and projectile with the same ¢, for different inhomogeneities. In all cases, the target
and projectile radii were r = 10cm and r, = 6cm, respectively, and the collision velocity was
vo = 10m/s. Analogous to the initial targets in Fig. 6.14, the standard deviations for the Gaus-
sian were ¢ =0 (a), g = 0.01 (b), b5 = 0.02 (c), ¢ps = 0.03 (d), ps = 0.04 (e), and ¢ = 0.05 (f).
The collision outcome is shown in the impact direction. In the homogeneous case (a) and for
small inhomogeneities (b) the target stays intact and forms one massive object with the pro-
jectile. For ¢p; = 0.02 the target fragments (c-f). The fragment sizes decrease with increasing
¢ and at the same time the number of fragments increases.
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Figure 6.16. Inhomogeneity model IV — population masses. Variation of the total masses of the
four populations with inhomogeneities measured by ¢,. The collision velocities are vy = 10m/s
(top) and vy = 12.5m/s (bottom). The masses of the largest fragment m,, of the second largest
fragment my, of the power-law population my,y, and of the sub-resolution population m;, are
stacked up and normalised by the total mass of the system m;,¢. For both cases m; and m,
decrease with increasing ¢,. Conversely, my,, and ms, increase. For the homogeneous case
(¢ps = 0), sticking is found for the low velocity collision, whereas for vy = 12.5m/s my # 0 and
Mpw # 0, which indicates fragmentation.
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Figure 6.17. Inhomogeneity model V — residual energy. Variation of the energy of each popula-
tion for increasing inhomogeneity parameter ¢, and collision velocity vy = 10m/s (top) and
vo = 12.5m/s (bottom). The energy of each population is the sum of the translational, rota-
tional and vibrational energy and normalised by the initial kinetic energy Einj; - The latter two
energy contributions are negligible for the head-on collisions presented here. Because of the
strong correlation with mass, this diagram shows a similar behaviour as Fig. 6.16. The energy
contributions are split up into Ej, Ez, Epw, and Eg; for the largest and second largest fragments,
the power-law and sub-resolution populations, respectively. In both velocity cases E; and E»
decrease with increasing ¢,. In contrast, Ep,, and E; increase. In particular the high fraction
of kinetic energy stored in the sub-resolution population is remarkable.
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The overall residual energy is increasing with a higher degree of inhomogeneity and this energy
excess is mostly stored in the sub-resolution population. For the high velocity case (bottom plot
of Fig. 6.17) this is even more evident: E1, E», and Epy behave similar to the low velocity case but
with Ep # 0 and Epy # 0 for ¢, = 0. Again, with a higher degree of inhomogeneity less energy
can be dissipated and the total residual energy of the three largest populations remains nearly
constant for increasing ¢,. As a consequence, the residual energy excess is mainly stored in the
sub-resolution population for large values of ¢,. The conclusions from the energy analysis are:
(1) with increasing impact velocity less energy can be dissipated by the system and the residual
energy increases, which was already found in Sec. 6.1.3. (2) With increasing inhomogeneity the
ability of energy dissipation decreases for the two investigated velocities. (3) The energy contri-
butions of all populations show a similar dependence on ¢, compared to their mass contribu-
tions: the fractions stored in the largest and second largest fragment show a decreasing trend.
The contribution of power-law and sub-resolution populations increase. (4) While the overall
energy contribution of the largest fragment populations remains nearly constant with ¢, the
fraction stored in the sub-resolution population drastically increases, such that the energy which
cannot be dissipated due to increasing inhomogeneity is stored in fast single SPH particles.

In comparison to the initial filling factor distribution of Fig. 6.13, the final filling factor distribu-
tionreveals that the largest mass fraction is compressed to filling factors close to ¢ppax = 0.58 (see
Tab. 5.8). Additionally, in Fig. 6.18 I analyse the number distribution of fragments with average
filling factor ¢ as a function of ¢ for vy = 10m/s (top) and vy = 12.5m/s (bottom). In the homoge-
neous cases (¢, = 0) a slightly bimodal distribution exists for both cases, which is barely visible
because of the small fragment numbers. There are a number of fragments which feature the ini-
tial filling factor ¢; = 0.35. A slightly larger number of fragments possesses filling factors which
are distributed around ¢ ~ 0.2, the rest are distributed around ¢ ~ 0.4. For a higher degree of
inhomogeneity this bimodal distribution is peaked and shifted towards lower filling factors. For
both velocity cases the distributions look similar.

So far all members of the four-population model have been considered. Now I constrain the
analysis to the power-law population. Its mass distribution is shown in the cumulative plot of
Fig. 6.19 again for vy = 10m/s (top) and vy = 12.5m/s (bottom). The figure shows the cumulated
mass Mcym over fragment mass m;. Both are normalised by the total mass of the power-law
population my,y, which can be found in Tab. 6.6. As in Sec. 6.1.3, the cumulative distribution is
described by a power-law (Eq. 6.1). The cumulative mass distributions of Fig. 6.19 are fitted by
this relation. The results are listed in Tab. 6.5. Figure 6.20 shows that the power-law index, or
fragmentation parameter, x slightly decreases with a higher degree of inhomogeneity for both
collision velocities indicating shallower slopes in Fig. 6.19. This can be interpreted as the pro-
duction of smaller fragments with increasing ¢,. Additionally, the k values for the higher impact
velocity (v = 12.5m/s) are systematically below the k values of the lower velocity (vy = 10.0m/s)
except for small values of ¢, where a low number of fragments result (see Tab. 6.6) and hence the
statistics are insufficient. This finding indicates that a larger fraction of less massive fragments is
produced at higher impact velocities, which is expected.

As shown in Fig. 6.21, the normalised mass of the largest member of the power-law population,
given by p, at first increases for larger values of ¢,. It has a maximum at ¢, ~ 0.02 for vy =
10m/s and at ¢p5 ~ 0.01 for vy = 12.5m/s and then decreases in an exponential fashion. Comparing
both velocity cases (see Tab. 6.6), more fragments are produced in the high velocity case. This
has already been observed in Sec. 6.1.3. The influence of the inhomogeneity on the power-law
population can be summarised as follows: (1) the overall mass of the power-law distribution is
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Figure 6.18. Inhomogeneity model VI - filling factor distribution. Final filling factor distribution
of the number of fragments ng.g against average filling factor ¢ for each standard deviation
¢s. The collision velocities are vy = 10m/s (top) and vy = 12.5m/s (bottom). In the high velocity
case the distribution is slightly shifted towards smaller ¢.
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Figure 6.19. Inhomogeneity model VII — mass distribution (power-law population). Cumulative
mass distribution power-law population for different inhomogeneity parameters ¢, and col-
lision velocities vy = 10m/s (top) and vy = 12.5m/s (bottom). In both velocity cases the mass
of the largest member of the power-law population and the power-law slope decrease. This
indicates fragmentation to smaller aggregates for increasing ¢,. For equal ¢, the slopes are
shallower for the higher velocity. The power-law fit parameters can be found in Tab. 6.5.
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Figure 6.21. Inhomogeneity model IX — fragmentation strength (power-law population). The
quantity u represents the normalised mass of the most massive member of the power-law
population and serves as an indicator of the fragmentation strength, where a lower value of
1 indicates a more destructive collision. For increasing inhomogeneity, represented by larger
values of ¢, u at first increases and then decreases again. The increase may result from a lack

of statistics caused by a low number of fragments.
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6.2. Inhomogeneity damage model

bo Vo K 1%

0 10.0 0.44 +0.027 0.10+2.4x1073
0.01 10.0 0.88+0.035 0.10+2.3x1073
0.02 10.0 0.88 +0.046 0.36+0.012
0.03 10.0 0.59+0.011 0.24+6.9x1073
0.04 10.0 0.60+6.4x1073 0.11+1.7x1073
0.05 10.0 0.38+5.4x1073 40.10+4.0x 1073

0 12.5 3.88+0.254 0.20+1.4x1073
0.01 12.5 0.92 +0.030 0.52+1.0 x 1072
0.02 12.5 0.54+0.017 0.18+1.0x 1072
0.03 12.5 0.46 +0.006 0.10+3.0x1073
0.04 12.5 0.41 +0.004 0.06+1.3x1073
0.05 12.5 0.23+0.003 0.02+1.0x1074

Table 6.5. Collisions of inhomogeneous aggregates I — power-law population fits. Fit values of the
power-law population.The quantities x and u denote, respectively, the slope of the power-law
fit and the mass of the most massive member, which is normalised by the total mass of the
power-law population 1. The standard deviation of the inhomogeneity Gaussian is denoted
by ¢s and the impact velocity by vyg.

increased with larger values of ¢,. (2) A higher degree of inhomogeneity leads to the production
of smaller fragments. (3) The largest member of the power-law population reaches its largest
mass for small ¢p,. Then its mass decreases with increasing ¢ .

6.2.3. Discussion and Outlook

In this section I have presented the first damage model which is based on the inhomogeneity of
SiO, dust aggregates as measured by Giittler et al. (2009). The approach is based on the concept
that according to the porosity model (see Sec. 4.3.4) inhomogeneities in the filling factor cause
fluctuations in compressive, shear, and tensile strength in the aggregate. These fluctuations can
be regarded as flaws in the material. In contrast to previous approaches designed for brittle ma-
terial (Grady and Kipp 1980), the propagation of these flaws is not explicitly evolved. Instead, the
defects in the dust material, which behaves more like a fluid, are determined by the time evo-
lution of the filling factor or - equivalently - the density. The inhomogeneity of an aggregate is
imposed on the initial SPH particle distribution as a Gaussian distribution of the filling factor.
The measure for the inhomogeneity is the standard deviation ¢, of the Gaussian.

Using this inhomogeneity damage model, I have performed test simulations of collisions be-
tween dust aggregates of intermediate porosity. Two collision velocities have been chosen: one
below and one above the fragmentation threshold for homogeneous aggregates. The results have
been analysed using the four-population model presented in Sec. 6.1. For the lower collision ve-
locity I have shown that inhomogeneity leads to fragmentation. For both velocities the masses
of largest and second largest fragment are decreased with a higher degree of inhomogeneity
whereas the masses of the power-law and sub-resolution population are increased. Focussing on
the power-law population, the number of fragments and the fraction of small fragments increase
with increasing ¢,. These findings demonstrate the qualitative and also quantitative functional-
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ity of the inhomogeneity approach as a damage model.

The findings indicate that inhomogeneous dust aggregates are weaker than their homogeneous
equivalents. A slight inhomogeneity is sufficient to result in catastrophic disruption instead of
growth as a result of a dust aggregate collision. Therefore, inhomogeneity might explain the lower
velocity thresholds for fragmentation in laboratory experiments (~ 1m/s, see also Sec. 6.1.4 and
6.4.3) compared to a higher value found in simulations.

Furthermore, macroscopic dust aggregates in protoplanetary discs are produced by subsequent
impacts of smaller aggregates at different impact velocities, i.e. pre-planetesimals feature a col-
lision history and thus are very likely to be inhomogeneous. With the model presented in this
section it is possible to capture this feature. Further studies might be carried out which inves-
tigate the inhomogeneity created by subsequent multiple impacts. The result can be classified
according to the presented inhomogeneity model.

So far the simulations of collisions between homogeneous aggregates carried out by means of
the porosity model described in Sec. 4.3.4 produce the same fragment distribution for the same
set of input parameters. By randomly assigning an inhomogeneity pattern it is now possible
to profoundly investigate the statistics of a fragment distribution. Statistical fluctuations of the
quantities of the four-population model can now be estimated, in particular, for simulations with
a low number of fragments.

In high velocity grazing collisions the target is caused to rotate. For highly porous aggregates,
which feature a low tensile strength, it is likely that high spinning rates lead to fragmentation of
the target. With increasing inhomogeneity this might also be true for aggregates with medium
and low porosities. A quantitative investigation of this effect can be carried out by means of the
inhomogeneity damage model.

The filling factor distribution of dust aggregates can be determined in the laboratory by X-ray to-
mography measurements (Glittler et al. 2009). These empirical data can be directly implemented
into the inhomogeneity damage model whose input parameters can obtained more easily than
the values for the Weibull distribution (Weibull 1939), which is used for brittle material. Besides
the successful material calibration of Ch. 5, the obtained inhomogeneity parameters can be used
to further improve the realistic simulation of porous dust aggregates. By considering laboratory
measurements of a size range of aggregates of the same filling factor, scaling laws of the inhomo-
geneity with size could be derived. This eventually introduces a length scale for simulations of
pre-planetesimals of sizes ranging from centimetre to hundreds of metres.
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bo Vo Eiot my E; ny E; Mpw Epw Npw Mgy Eq Ny
[m/s] (J] (kg] (J] (kg] [J] (kg] [J] (kg] [J]
0.00 10.0 5.81 3.56 5.64 5x107° 1x107* 5x1073 3x1073 17 2x1073 0.17 158
0.01 10.0 5.99 3.55 5.61 3x107% 7x1074 3x1073 0.01 36 0.01 0.36 610
0.02 10.0 6.72 1.62 2.75 0.52 0.82 1.39 2.30 290 0.04 0.84 2854
0.03 10.0 7.35 1.25 2.28 0.49 0.80 1.75 3.03 588 0.07 1.24 6043
0.04 10.0 7.80 0.55 0.91 0.35 0.75 2.55 4.64 1057 0.11 1.50 9292
0.05 10.0 9.09 0.43 0.71 0.32 0.54 2.56 5.54 3056 0.25 2.30 20657
0.00 125 9.78 1.92 4.47 0.31 0.78 1.33 4.14 123 0.01 0.39 861
0.01 125 10.12 1.74 4.42 0.67 1.83 1.13 2.87 157 0.02 1.00 1650
0.02 125 11.93 1.17 3.73 0.23 0.52 2.07 5.45 984 0.08 2.23 6882
0.03 125 13.24 0.72 2.40 0.21 0.74 2.47 6.91 1865 0.16 3.19 13285
0.04 125 14.29 0.59 2.03 0.18 0.40 2.54 7.90 3180 0.25 3.96 20402
0.05 125 19.20 0.15 0.38 0.09 0.27 2.68 11.13 10578 0.65 7.42 52478

Table 6.6. Collisions of inhomogeneous aggregates Il — results. Simulation results presented according to the four-population classification.
st”, and “tot” denote the largest and second largest fragments, the power-law, sub-resolution and total
fragment populations, respectively. The quantities E, m, and N are the total energy, the mass and the number of fragments, respectively.

” o«

The subscripts “1”, “2”, “pw”,

The standard deviation for the inhomogeneity Gaussian distribution is given by ¢, and the impact velocity by vy.
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6.3. Hard shells and aggregate bouncing

Giittler et al. (2010) divided a collision parameter space ranging from 10~!! to 10?g in projec-
tile mass and from 1078 to 102 m/s in collision velocity into sticking, bouncing and fragmenta-
tion events. Approximately one third of the logarithmic parameter space for collisions between
porous aggregates of comparable size was assumed to yield bouncing. In particular, for collision
velocities of 0.01 to 1m/s and projectile masses = 1g, bouncing is assumed to be the only out-
come. As a consequence, pre-planetesimal growth is halted at aggregates of roughly centimetre
size (“bouncing barrier”, Sec. 2.3.1). Giittler et al. (2010) based the boundaries of the bouncing
regime on theoretical considerations as well as on empirical grounds. According to their theoret-
ical model, the demarcation between sticking and bouncing was estimated by the equality of the
contact energy and the rebound energy (Eq. 12 in Giittler et al. 2010). For the estimation of the
contact area they assumed elastic deformation. As an empirical basis, two experimental studies
were utilised: Blum and Miinch (1993) conducted collision experiments with ZiSiO, aggregates
of intermediate porosity (initial filling factor ¢; = 0.26) which bounced for 0.15 up to vy = 1m/s
and HeiBelmann et al. (2007) collided millimetre sized cubes of highly porous SiO; (¢; = 0.15) at
vo = 0.4m/s, which rebounded (see also Sec. 3.1). Giittler et al. (2010) integrate these experiments
into their collision model assuming that the different material has no significant effect on the
mechanical properties (see also Sec. 2.2.1).

6.3.1. Homogeneous dust aggregates

In the first study I investigate the influence of porosity on the bouncing and sticking behaviour.
This is to assess whether the experiments with intermediate porosity (Blum and Miinch 1993)
and high porosity (HeiBelmann et al. 2007) can be combined into the collision map presented
by Giittler et al. (2010). A more detailed investigation on bouncing for different porosities and
projectile sizes is carried out in Sec. 6.4.

For this purpose, I conduct simulations for a homogeneous target and projectile and distinguish
the cases where both objects either feature an initial filling factor of ¢; = 0.15 (high porosity) or of
¢i = 0.35 (intermediate porosity). The impacting projectile has a radius r, = 0.6 x r¢ of the target
radius r;, which is roughly one decimetre. For both filling factor cases, the radii are chosen such
that the masses of both cases are comparable and thus also the kinetic energy of the impact. The
impact velocities vg are 0.1, 0.3, 0.5, and 1.0m/s. The initial particle distribution of the aggregates
is created by means of the initgrid program (Appx. A.3).

The resulting outcomes are shown in Fig. 6.22 for the high (left) and intermediate porosity cases
(right) as a cross section through the spherical aggregates. For the filling factor ¢; = 0.35 my
findings confirm the results of Blum and Miinch (1993): all collisions resulted in bouncing except
for the lowest velocity, where the aggregates are connected by a few SPH particles. However, this
connection can be destroyed very easily, which effectively leads to bouncing. From the figure
it can be seen that the filling factor in both the target and projectile is increased to ¢ ~ 0.48 in
a region whose size is increasing with impact velocity. With the latter the contact area is also
enlarged, which remains as a flattened spot on the impact site.

In contrast to the intermediate porosity case, for the high porosity ¢; = 0.15 (Fig. 6.22, left) I
cannot confirm the results of HeiBelmann et al. (2007): all collisions result in sticking. While
for the lowest velocity the contact area between both aggregates is very small and easy to break
apart, the contact area for higher impact velocities increases and both aggregates are merged.
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Figure 6.22. Hard shells I - homogeneous aggregates. Cross-section through the outcome of col-
lision simulations with homogeneous aggregates for high (¢; = 0.15, left) and intermediate
porosity (¢; = 0.35, right). The projectile radius is r, = 0.6 x r of the target radius. The collision
velocities are (a) 0.1, (b) 0.3, (c) 0.5, and (d) 1.0m/s. For both porosity cases, the aggregates in-
creasingly get compacted with higher velocities. While in the high porosity case all collisions
result in sticking, for intermediate porosity aggregates exclusively bouncing occurs (except for
the lowest velocity, where the aggregates remain connected by a string of particles). The high
porosity target also is deformed considerably, while the intermediate porosity target is only
flattened at the impact site.
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Figure 6.23. Hard shells Il - residual energy (homogeneous). Residual kinetic energy as fraction of
the initial kinetic energy in collisions with homogeneous aggregates as a function of collision
velocity vg. For the high porosity case (¢; = 0.15) the residual energy hardly changes with vy.
In collisions with aggregates of intermediate porosity (¢; = 0.35), less energy is dissipated for
bouncing events. In contrast, for almost sticking outcomes the dissipation is comparable to
the high porosity case.
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Figure 6.24. Hard shells I1I - filling factor (homogeneous). Filling factor ¢/¢; for collisions of ho-
mogeneous aggregates as a function of collision velocity. For the intermediate porosity case
(¢; = 0.35), ¢ hardly changes with increasing impact velocity. In contrast, for high porosity
(¢; = 0.15) a high degree of plastic deformation takes place and a filling factor of ~ 1.27 ¢; is

achieved.
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It is particularly interesting to note that for the high porosity case the filling factor in the impact
area is also increased to ¢ ~ 0.48 just as in the intermediate porosity case. According to Eq. 4.129,
this leads to an increased tensile strength in this region which prevents the separation of both
aggregates. Furthermore, because of the high porosity the compressive strength of the impactor
and target is very low, which follows from Eq. 4.128. This leads to a large extent of plastic de-
formation which becomes evident when comparing the cases with vy = 0.1m/s and vy = 1.0m/s.
For the latter the aggregate assumes a kidney shape. The deformation is not as strong in the
intermediate porosity case because these aggregates are less plastic.

Since kinetic energy is dissipated effectively in plastic deformations, the difference between high
and intermediate porosity is also evident looking at the residual kinetic energy for each simula-
tion (Fig. 6.23), which is given by the sum of translation energy and the internal energy (rotation
and vibration) of the remaining object(s). It is normalised by the initial kinetic energy. For the
high porosity case the remaining energy is nearly constant at ~ 18 %. In the case of bouncing for
aggregates of intermediate porosity less energy is dissipated: the residual kinetic energy is ~ 36 %
of the initial energy for vy = 0.3m/s and ~ 25% for vy = 0.5m/s. For the almost sticking cases ~ 18 %
of the initial energy remains in the system, just like in the high porosity case.

I also investigated the average filling factor of both objects compared to the initial filling factor
¢i. The result is shown in Fig. 6.24. While ¢ hardly increases to 1.024 ¢b; for the highest collision
velocity for the intermediate porosity aggregates, it rises to 1.27 ¢b; for the high porosity dust. This
is because at low collision velocities the dynamic pressure is below the compressive strength for
intermediate porosity objects 2(0.35) = 260 Pa in most parts of the aggregates and consequently
no plastic deformation takes place there. For the high porosity aggregates 2(0.15) = 7.4 Pa, and as
aresult even small dynamic pressures cause plastic deformation and consequential filling factor
increase in large parts of the aggregate.

The theoretical demarcation between sticking and bouncing by Giittler et al. (2010) makes the
following assumptions: (1) elastic deformation of the aggregates, (2) shear strength equals shear
modulus where both are constant for all filling factors, and (3) the filling factor in the contact
region is not changed in the collision. These assumptions are too simplistic.

(1) The assumption of elastic deformation of the aggregates is only valid for filling factors close to
the maximum filling factor. In particular for highly porous aggregates the deformation is highly
plastic and as a consequence the contact area between the aggregates is increased compared to
elastic contact (see e.g. Fig. 6.22, d).

(2) Firstly, the shear modulus p(¢) governs the elastic properties of an aggregate and cannot
be estimated by the shear strength Y (¢), which is a plasticity quantity. According to Eq. 4.123
1(0.15) = 2250Pa and ©(0.35) = 4076 Pa, whereas according to Eq. 4.125, 4.128, and 4.129 the
shear strength is given by Y (0.15) = 88Pa and Y (0.35) = 735Pa. In contrast, Giittler et al. (2010)
estimate u = 632Pa. Secondly, they assume that the shear modulus is constant for all filling fac-
tors, but from ¢ = 0.15 to ¢ = 0.35 it rises by a factor of more than two. This means that the con-
tact area is larger for aggregates with higher porosity according to their Eq. 12. Thirdly, they apply
the static strength quantities, whereas the dynamic shear strength and compressive strength as
stated above are more appropriate (see Sec. 5.3.2 and 5.3.3). The incorrect estimate for the shear
modulus leads to smaller sticking thresholds. However, the assumption of an elastic deformation
is not valid for dust aggregates anyway.

(3) As it can be clearly seen in Fig. 6.22, the filling factor is highly increased in the contact area.
This leads to an increased tensile strength in this region (Eq. 4.129). An increased tensile strength,
however, also increases the contact energy, which promotes sticking.
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Figure 6.25. Hard shells IV - sticking and bouncing. Sticking and bouncing in collisions with hard
shells depending on impact velocity vy and hard shell fraction. Bouncing only occurs for ve-
locities < 0.2m/s and intermediate and large thicknesses of hard shells = 0.2r. For very thick
hard shells = 0.4r bouncing also occurs for vy = 0.2m/s.

I conclude that because of these effects in particular for highly porous dust aggregates the thresh-
old velocity for sticking is much larger than presented in Glittler et al. (2010). Consequently, the
parameter space where bouncing occurs is much smaller than assumed in this reference and
sticking dominates for low velocities and low filling factors.

The comparison of collisions with high and intermediate porosity show, that there are signifi-
cant differences regarding the sticking and bouncing behaviour. While aggregates of interme-
diate porosity tend to bounce at low collision velocities, highly porous aggregates tend to stick.
However, Heillelmann et al. (2007) observed bouncing for the latter. A possible reason for this is
the influence of hard shells of porous aggregates, which is presented in the next section.

6.3.2. Hard shell dust aggregates

HeiBelmann et al. (2007) found bouncing for aggregates with ¢; ~ 0.15 and collision velocities
v ~ 0.4m/s. However, in the preparation process of the dust aggregates for the collision exper-
iments the aggregates are compacted at their boundaries. This compaction creates a shell of
increased filling factor around the dust sample, which I refer to as “hard shell”. In this section,
the influence of hard shells of various thicknesses on the sticking and bouncing behaviour of
macroscopic dust aggregates is investigated.

I use the same setup as in the previous section regarding ratio of target and projectile radius and
collision velocity. Again, the mass of the projectile is chosen such that the impact energies are
comparable to those of the previous section. The thickness of the hard shell given as a fixed
fraction of target and projectile radii, respectively, i.e. 0.1, 0.2, 0.3, and 0.4 (see Fig. 6.26 a for an
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Figure 6.26. Hard shells V - hard shell aggregates. Cross-section through aggregates with a hard
shell of 0.4r. The hard shell has an intermediate filling factor (¢, = 0.35) and the interior is
highly porous (¢; = 0.15). The initial setup is shown in (a). The remaining cross-sections show
the situation after the impact with 0.1 (a), 0.3 (b), 0.5 (c), and 1.0m/s (d). Thus the velocities are
comparable to the simulations with homogeneous aggregates in Fig. 6.22.
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Figure 6.27. Hard shells VI — residual energy (hard shell). Residual kinetic energy normalised by
the initial kinetic energy in collisions with hard shells. The residual energy is plotted as a func-
tion of the hard shell fraction of the aggregates’ radii and the collision velocity. In bouncing
events less energy is generally dissipated. For sticking events the residual energy is compara-

ble to collisions with homogeneous aggregates.
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Figure 6.28. Hard shells VII - filling factor (hard shells). Filling factor ¢ normalised by the average
initial filling factor. Thin hard shells and high collision velocities lead to high filling factors. In

general the increase is in between the homogeneous cases.

201



sticking and
bouncing
conditions

residual energy

filling factor

6. Pre-Planetesimal Collisions

illustration). The core of both aggregates has a filling factor ¢; = 0.15, whereas the hard shell is
simulated with ¢, = 0.35. The masses of the target (1.3 kg) and projectile (0.27 kg) were kept fixed
to ensure equal impact energies for hard shells of different thicknesses. The aggregates with their
hard shells are set up using the initgrid particle distribution tool (Appx. A.3).

The simulation either resulted in sticking or in bouncing as depicted in Fig. 6.25, where bounc-
ing events are represented as circles and sticking events as crosses. The green surface indicates
the estimated parameter region for sticking, whereas yellow accounts for bouncing. From the
comparison with aggregates without hard shell (homogeneous ¢; = 0.15), which exclusively re-
sulted in sticking, it is evident that hard shells do have an influence on the bouncing behaviour of
dust aggregates. In particular for low collision velocities and thick hard shells bouncing occurs.
This is because for homogeneous aggregates with ¢; = 0.15 the compressive strength is very low
2(0.15) = 7.4Pa. As a consequence, nearly the entire kinetic energy of the impact is dissipated by
plastic deformation and nearly no elastic loading of the colliding objects is possible.

In contrast, for aggregates with hard shells (¢, = 0.35) the plastic deformation threshold is higher
for the shell £(0.35) = 260 Pa. During the impact, the shell is elastically loaded and the aggregates
rebound. However, in the immediate area around the impact site the deformation threshold
for the shell is exceeded and plastic deformation takes place in the hard shell. Material there is
compressed to filling factors ¢ ~ 0.47. Therefore, the tensile T'(¢) and shear Y (¢p) strengths are
increased in this region and counteract the bouncing. If this region of increased strength is too
small, a piece of the target is ripped off and sticks to the projectile. This situation is depicted in
Fig. 6.26 for a hard shell fraction of 0.4 and vy = 0.1m/s (b) and vy = 0.3m/s (c). In the first case, the
projectile mass is increased by 2.00 %, in the second case by 12.1 %.

In contrast, if the compressed area is sufficiently large, increased strengths prevent the projectile
from rebounding. This result is illustrated in Fig. 6.26 for vy = 0.5m/s (d) and vy = 1.0m/s (e). For
larger velocities I expect sticking until at even higher collision energies the target fragmentation
sets in.

From Fig. 6.25 it can be seen that for thin hard shells (~ 0.1r) no bouncing occurs at all. For
this thickness, two processes lead to sticking: a thin hard shell does not provide enough elastic
loading for rebound and the highly porous core gets more compacted. As a result, more kinetic
energy is dissipated. For thicker hard shells fractions (= 0.2r), elastic loading is sufficient for
bouncing at low collision velocities vy < 0.2.

Asin the previous section, the residual kinetic energy after the impact is the sum of the translation
energy and the internal energy in the final state. In Fig. 6.27 it is normalised by the initial energy
and plotted as a function of the collision velocity and hard shell fraction. For low collision veloc-
ities, the residual energy increases with the thickness of the hard shell. This is because in bounc-
ing collisions the pressure in the largest regions of the dust aggregates stays below the threshold
for plastic deformation. Thus, the occurring deformation is mainly elastic and reversible. For
higher impact energies, this threshold is exceeded in large parts of the aggregate. Hence, defor-
mation is mainly plastic and irreversible, which leads to a reduced residual energy (~ 22 % of the
initial kinetic energy for vy ~ 0.3m/s and ~ 18% for vy = 0.5m/s. In bouncing collisions, e.g. for
vg = 0.2m/s ~ 50% of the kinetic energy is not dissipated. The sticking event with a hard shell
thickness of 0.1 r and vy = 0.1m/s represents an intermediate state, where the residual energy is
~ 34 % of the initial kinetic energy.

The filling factor variation for the hard shell simulations is displayed in Fig. 6.28 as a function
of hard shell thickness and collision velocity. In this plot the filling factor is normalised by the
initial filling factor. In general it can be said that for thin hard shells and high collision velocities
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the filling factor is increased the most (up to ~ 1.18¢;). For vy = 0.5m/s the filling factor ranges
from ~ 1.04 to ~ 1.08 ¢b;. The lowest increase (~ 1.02 ¢b;) is reached for the thinnest hard shell and
the lowest collision velocity.

The outcomes of simulations with homogeneous and hard shell aggregates are now compared to
understand the influence of the latter:

(1) I take a look on the occurrence of bouncing. While homogeneous highly porous dust aggre-
gates (¢; = 0.15) never bounce in the investigated velocity regime (vy = 0.1 — 1.0m/s), homoge-
neous intermediate porosity aggregates (¢; = 0.35) always rebound. As it can be expected, a a
¢; = 0.15 aggregate with a hard shell of ¢p,, = 0.35 of produces some intermediate behaviour. In-
deed, aggregates with a hard shell bounce at low collision velocities. The velocity threshold for
bouncing increases with increasing hard shell thickness. In the preparation process of the dust
samples, HeiBelmann et al. (2007) created a hard shell. If this shell was thick enough it could ex-
plain the bouncing events for highly porous dust aggregates although the compressive strength
is very low.

(2) A hard shell does not prevent sticking of dust aggregates. While homogeneous interme-
diate porosity aggregates (¢; = 0.35) never stick for the investigated velocity range, the highly
porous core lowers the velocity threshold for sticking. For vy = 0.5m/s the aggregates stick for
all eggshell thicknesses. This is because the impact energy is sufficient to plastically deform the
highly porous core, where energy is dissipated effectively. Thus, the projectile breaks through the
shell in these collisions.

(3) Hard shells seem to promote the ripping out of large chunks of the shell (see Fig. 6.26). The
reason for this could be the lower tensile strength T'(¢p) of the highly porous core. In the impact
process the filling factor is increased in the hard shell which is then bound more strongly to the
projectile than to the porous core. Thus, during rebound a piece of the hard shell is ripped off.
This behaviour could not be seen in collisions of homogeneous aggregates. There, the contact
area is only flattened during the impact (see Fig. 6.22).

(4) In bouncing collisions of hard shell aggregates the residual kinetic energy is much larger than
for bouncing of homogeneous aggregates (comparing Figs. 6.23 and 6.27). The dissipated energy
for sticking events is nearly equal.

(5) The relative filling factor increase for hard shell aggregates lies in between the maximum de-
fined by homogeneous highly porous aggregates and the minimum defined by homogeneous
aggregates of intermediate porosity. This is because of the hybrid nature of the hard shell aggre-
gate with respect to the filling factor.

6.3.3. Discussion and outlook

I have investigated the occurrence of sticking and bouncing for macroscopic and microscopic
aggregates. This study has been carried out to assess whether the bouncing regime for similar
sized porous aggregates proposed by Giittler et al. (2010) is realistic.

From collisions between decimetre sized spherical dust aggregates with homogeneous porosity
I have shown that bouncing is characteristic for aggregates of intermediate porosity (¢; = 0.35)
and collision velocities vy < 1m/s. For highly porous aggregates however, sticking is much more
frequent than stated by Giittler et al. (2010). This is because their theoretical sticking velocity
threshold is based on elastic deformation and a filling factor, which is assumed to be constant
during the collision. In particular highly porous aggregates are very plastic. This increases the
contact area between the collision parters and hence the contact energy. In addition, the filling
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factor in the contact region is increased resulting in an increased tensile strength there, which
in turn also increases the contact energy. The assumptions of Giittler et al. (2010) are only valid
for low or intermediate porosity, which is supported by their empirical basis (Blum and Miinch
1993).

There is experimental evidence (Heillelmann et al. 2007) which points to bouncing also of highly
porous aggregates. However, the outer regions of these aggregates are compressed while prepar-
ing the collision experiment. To assess the effect of this compacted shell, I have carried out sim-
ulations of dust aggregates with a hard shell of intermediate porosity and a highly porous core. I
have found that for the low collision velocities used by Heielmann et al. (2007) even a thin hard
shell could produce bouncing of the aggregates instead of sticking.

I conclude that in the collision parameter space bouncing is much less frequent than assumed
by Giittler et al. (2010) and that the bouncing barrier proposed by Zsom et al. (2010), who rely on
the former reference, could be less endangering for planetesimal formation than hypothesised
by the authors.

Nevertheless, hard shells may play an important role in the planet formation process. Experi-
mental evidence (Weidling et al. 2009) indicates that hard shells can be created in bouncing col-
lisions of macroscopic dust aggregates. Other experiments (T. Meisner, J. Teiser, and G. Wurm,
private communication) show that a highly porous macroscopic aggregate can acquire a hard
shell by accreting microscopic fractal aggregates while it moves through the protoplanetary disc.
In this process, the relative velocity between macroscopic body and microscopic aggregates de-
termines the filling factor of the hard shell: the higher the impact velocity the higher are the filling
factors of the shell. The results indicate that hard shells can be created by multiple sticking and
separation of two loosely bound highly porous aggregates.

I have shown that collisions between aggregates with hard shells only yield bouncing for low
collision velocities. The thinner the hard shell the lower the collision velocity has to be for the
aggregates to rebound. At higher collision velocities the projectile breaks through the hard shell
and energy is dissipated by compacting the highly porous core. Such collisions with velocities
below the fragmentation threshold result in sticking. Therefore, bouncing due to hard shells is
only an obstacle to collisional growth of pre-planetesimals if the collision velocities are low. Fur-
thermore, the velocity threshold between bouncing and sticking is lowered for aggregates with
a porous core and an intermediate porosity hard shell compared to homogeneous intermedi-
ate porosity aggregates. Therefore, even if dust aggregates acquire a hard shell by one of the
mentioned processes and rebound in low velocity collisions, they might stick at slightly higher
velocities.

The results of the presented studies encourage further investigation of the quantitative depen-
dence of the bouncing-sticking threshold on hard shell thickness and hard shell filling factor. In
addition, the influence of hard shells on the transition from sticking to fragmentation could be
investigated.

6.4. Head-on Collisions with Equal Porosity

In this section, I carry out head-on collisions of homogeneous spherical non-rotating pre-pla-
netesimals in the decimetre size regime. This setup represents an idealisation. (1) It is very un-
likely that realistic pre-planetesimals have a spherical shape. (2) Perfect head-on collisions are
extremely rare events and pre-planetesimal encounters most likely occur with non-zero impact
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parameter. (3) Macroscopic dust aggregates in the protoplanetary disc feature a collisional his-
tory and thus possess an inhomogeneous density structure (see also Sec. 6.2). In addition, the
target and projectile are unlikely to have the same porosity. (4) Dust aggregates in the protoplan-
etary disc environment might be rotating, e.g. because of a preceding grazing collision.
Nevertheless, it is worthwhile considering this idealised setup. (1) Because of its simplicity the
setting has a small number of free parameters: I consider porosity, impact velocity, and size ratio
of the aggregates. (2) The results from these simulations can be used directly in global dust co-
agulation models (see Sec. 3.3) as first estimates for parameter ranges which are not accessible
by laboratory experiments (see Sec. 3.1). (3) The findings from this study establish a basis from
which the effect of other parameters such as inhomogeneity or impact parameter can be studied.
This section has the following outline: in Sec. 6.4.1 I shortly describe the numerical setting and
how the final fragment distribution is evaluated. In Sec. 6.4.2 the simulation results are evaluated
according to the four-population model developed in Sec. 6.1. Finally, I summarise and discuss
the results in Sec. 6.4.3 and give an outlook on future projects.

6.4.1. Numerical setting and evaluation

Using the particle distribution generation tool initgrid (Appx. A.3) two spheres are positioned
in a distance such that they do not interact, i.e. the distance is ~ 2. The SPH particles of each
sphere are placed on a cubic lattice with lattice constant /. = 2.6 mm. According to the findings of
Sec. 5.2.2 the smoothing length is set to & = 3.75 x [, = 9.75mm. The setup is not perfectly head-
on: the projectile is shifted by 0.5 [ in the directions perpendicular to the collision axis. This is
to avoid particle interpenetration. The lattice planes of both spheres are parallel and perpen-
dicular to each other, respectively. In simulations with low resolutions (C. Schéfer, unpublished
data) this symmetry caused fragmentation along the planes. In the resulting particle distribu-
tions of fragmenting collisions presented here this behaviour is never observed because a higher
resolution is used.

The target radius is fixed at r; = 10cm whereas the projectile radius is varied from r, = 2cm to
rp = 10cm. The target is resting and the projectile velocity ranges from vg = 0.1m/s to v = 27.5m/s
which roughly represents the collision velocity range of decimetre sized dust aggregates for var-
ious size ratios (J.-E Gonzales, personal communication, see also Sec. 2.1.3). Both spherical ag-
gregates are homogeneous and feature the same initial filling factor ¢;. Three values are con-
sidered for this study: ¢; = 0.15 (high porosity), ¢; = 0.35 (intermediate porosity), and ¢; = 0.55
(low porosity). The filling factor of the high porosity case is close to the minimum filling factor
¢min = 0.12 of the ODC compressive strength (Eq. 5.4) and the low porosity case is close to its
maximum filling factor ¢pmax = 0.58. According to their filling factors and sizes the target and
projectiles have the masses and particle numbers specified in Tab. 6.7. The dust material is sim-
ulated by means of the porosity model presented in Sec. 4.3.4 with the calibrated parameters of
Ch. 5, in particular Tab. 5.8. In total 160 simulations are carried out for this study.

The end times of the simulations are chosen by visual control, i.e. a point in time is determined
when changes in the fragment distribution seize. Larger fragments are considered to be stable
when their internal SPH particle velocities are low. These estimations are qualitative and a more
quantitative criterion has to be found which is left to future work. For collisions with vy < 7.5m/s,
which covers most of the sticking and bouncing regimes, five times the crossing time is used
as a rough estimate for the simulated time. In the fragmentation regime with vy = 7.5m/s the
simulation is run for 0.7 to 1s. The final particle distribution is evaluated by means of the pro-
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Initial filling factor ¢i=0.15
Target radius re=10cm
Target mass m = 1.26kg
No. SPH part. target 238,238
SPH particle mass 5.27 x 10 %kg

projectile radius r

projectile mass m,

SPH particles projectile

2 0.0100 1,905
4 0.0803 15,234
5 0.157 29,794
6 0.271 51,477
8 0.643 121,979
10 1.26 238.238
Initial filling factor ¢i =0.35
Target radius re=10cm
Target mass m; =2.93kg
No. SPH part. target 238,238
SPH particle mass 1.23 x 10"°kg

projectile radius rp

projectile mass my,

SPH particles projectile

2 0.0234 1,905
4 0.187 15,234
5 0.366 29,794
6 0.633 51,477
10 2.93 238,238
Initial filling factor ¢; =0.55
Target radius re=10cm
Target mass m; =4.60kg
No. SPH part. target 238,238
SPH particle mass 1.93 x 10~°kg

projectile radius ry

projectile mass my,

SPH particles projectile

2 0.0368 1,905
4 0.294 15,234
6 0.995 51,477
10 4.60 238,238

Table 6.7. Initial parameters of the head-on collision series. The table lists the initial properties of
the spherical homogeneous non-rotating targets and projectiles used for the head-on collision
simulations in Sec. 6.4. The target and projectile masses change with their initial filling factors
¢; = 0.15 (top), ¢; = 0.35 (middle), and ¢; = 0.55 (bottom).
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gram fragment (see Appx. A.2). The resulting fragment distribution is categorised according to
the four-population model presented in Sec. 6.1, i.e. according to their mass the fragments are
classed as the largest fragment, the second largest fragment, a member of the power-law popu-
lation, or a member of the sub-resolution population.

6.4.2. Simulation results

The results of this broad study are shown as the final mass against collision velocity for the largest
fragment (Fig. 6.32), second largest fragment (Fig. 6.34), the power-law population (Fig. 6.35),
and the sub-resolution population (Fig. 6.36). The masses are normalised in a suitable way. The
figures are divided into the results for dust material of high porosity (¢); = 0.15, top), intermediate
porosity (¢; = 0.35, middle), and low porosity (¢; = 0.55, bottom). The different curves indicate
collisions with different projectile radii. In Fig. 6.33 the normalised mass of the largest fragment
is plotted over the momentum of the initial projectile for reasons of comparison. In the following
discussion I will identify the most important features of each fragment population with the main
focus on the effect of porosity.

Besides the analysis according to the four-population model I present snapshots of collisions
with different projectile radii in Fig. 6.29 (¢; = 0.15), Fig. 6.30 (¢b; = 0.35), and Fig. 6.31 (¢; = 0.55).
In Sec. 6.1 I have already pointed out that in any collision an interplay between sticking, bounc-
ing, and fragmentation processes takes place. While in the preceding sections these more illus-
trative terms have been used, I abandon them in this section. Instead I define a gain regime,
where the largest fragment is more massive than before the collision, a neutral regime where
the largest fragment possesses approximately the same mass as before the collision, and finally
a loss regime where the largest fragment has lost mass. The terms “sticking”, “bouncing”, and
“fragmentation” will exclusively be used for the respective physical processes from now on.
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Figure 6.29. Head-on collisions I — high porosity collision sequences. The homogeneous aggregates have an initial filling factor of ¢; = 0.15.
The projectiles with radii r, = 4cm (a), rp, = 6¢m (b), and rp = 10cm (c) hit a 10 cm target with a collision velocity of vy = 7.5m/s. From the
left to the right the simulation times are 0, 40, 80, and 160 ms. For the latter two panels, single SPH particles are removed for the purpose
of visibility. The filling factor is colour coded in this figure.
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Figure 6.30. Head-on collisions II — intermediate porosity collision sequences. The homogeneous aggregates have an initial filling factor of
¢i = 0.35. The projectiles with radii r, = 4cm (a) and r, = 6¢cm (b) hit a 10 cm target with a collision velocity of vg = 15m/s. From the left
to the right the simulation times are 0, 40, 80, and 160 ms. For the latter two panels, single SPH particles are removed for the purpose of
visibility. The filling factor is colour coded in this figure.
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Figure 6.31. Head-on collisions III - low porosity collision sequences. The homogeneous aggregates have an initial filling factor of ¢; = 0.55.
The projectiles with radii r, = 4cm (a), rp, = 6¢cm (b), and r, = 10cm (c) hit a 10 cm target with a collision velocity of vy = 5m/s. From
the left to the right the simulation times are 0, 40, 160, and 560 ms. For the latter two panels, single SPH particles are removed for the
purpose of visibility. The filling factor is colour coded in this figure.
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Largest fragment

I start with the variation of the mass of the largest fragment m; with collision velocity vy in
Fig. 6.32. The value of m; is normalised by the target mass m;. In this representation the gain
regime is indicated by m; m;! > 1, the loss regime by my m;! < 1, and the neutral regime by
mym;t=1.

In collisions with aggregates of high porosity (top) growth occurs in all collisions with vy < 7.5m/s.
In this gain regime the resulting mass is simply given by the sum of target and projectile mass.
However, at very low impact velocities the aggregates only touch each other and become con-
nected loosely (see also Sec. 6.3.1, in particular Fig. 6.22). The gain regime is explored explicitly
for collisions with projectile radii of 2, 6, and 10 cm and it can be assumed that the outcome will
be similar for other projectile radii. At vy ~ 6m/s to 8 m/s all curves (except r, = 2cm) start to drop
rapidly below m; m;! = 1. In this velocity range the transition from the gain regime to the loss
regime occurs. The transition starts where m; < m + my. There is a trend that larger projectiles
produce smaller largest fragments at the same impact velocity. The gain-loss transition velocity
seems to decrease with increasing impact velocity. Projectiles with radius 2 cm intrude deeply
into the target. At high impact velocities they cause material to be ejected from the impact site
and opposite to it. Although the projectile does not pierce the target, the impact launches elas-
tic waves which cause the ejection of material opposite to the impact site. This behaviour was
already seen in high velocity impact experiments (Paraskov et al. 2007).

In the intermediate porosity case (middle) a neutral regime appears for collision velocities vy <
1m/s, As already discussed in Sec. 6.1.1, the aggregate bouncing in the neutral regime is never
fully growth neutral and a small amount of mass is always transferred between the collision part-
ners. This effect causes small deviations from m; m;! = 1, which are marginal compared to the
target and projectile masses. The transition from the neutral to the gain regime starts where
my = my. From the given simulations it can not be assessed whether the neutral-gain transition
velocity depends on the projectile size. For higher velocities it is succeeded by a gain regime. The
transition from the gain to the loss regime is more spread out than in the high porosity case. For
the ¢; = 0.35 aggregates all curves (except r, = 2cm again) drop below m; m;' = 1 at velocities
between vy ~ 10m/s and 15m/s. As in the high porosity case, the gain-neutral transition velocity
decreases with increasing impact velocity.

Finally, in the low porosity case (bottom) one encounters a third type of transition: the neutral-
loss transition. In the velocity regime vy < 1m/s nearly growth neutral bouncing occurs for all pro-
jectile sizes. Between vy ~ 1m/s and 3m/s the neutral-loss transition takes place for all projectile
sizes. For large projectiles (6 and 10 cm) the target and projectile shatter, whereas for the smaller
projectile some parts of the projectile stick to the target. However in the latter collisions, more
mass is eroded from the target by ejection at and opposite the impact site such that mass loss of
the target results. In particular these simulations show that sticking processes do not necessarily
lead to pre-planetesimal growth. This issue has already been discussed in Sec. 6.1.

To assess the influence of the projectile mass on the mass of the largest fragment Fig. 6.33 shows
the variation of m; m;! with the momentum of the projectile pp- This representation reveals
that all transitions, i.e. the gain-loss transition in the high and intermediate porosity case, the
neutral-gain transition in the intermediate porosity case, and also the neutral-loss transition in
the low porosity case depend strongly on the mass of the projectile. The transition momentum
increases with increasing projectile size. Since in the context of planet formation the collision
velocity is the quantity which is most frequently used, I stick to this representation furtheron.
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Figure 6.32. Head-on collisions IV—mass against collision velocity (largest fragment). The mass of
the largest fragment m, is normalised by the target mass m;. The projectile radii r, and other
initial parameters are listed in Tab. 6.7. The homogeneous aggregates have an initial filling
factor ¢; = 0.15 (top), ¢p; = 0.35 (middle), and ¢; = 0.55 (bottom).
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Figure 6.33. Head-on collisions V — against projectile momentum (largest fragment). The mass of
the largest fragment m; is normalised by the target mass m;. The projectile radii r, and other
initial parameters are listed in Tab. 6.7. The homogeneous aggregates have an initial filling
factor ¢b; = 0.15 (top), ¢p; = 0.35 (middle), and ¢; = 0.55 (bottom).
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Second largest fragment

The most important features for pre-planetesimal growth are already identified in the figures of
the largest fragment. These turn up again in Fig. 6.34, which shows how the second largest frag-
ment varies with collision velocity. It is again split up into the high porosity (top), intermediate
porosity (middle), and low porosity (bottom) cases. The purpose of the second largest fragment
is the accurate mapping of bouncing collisions (see Sec. 6.1.2). For this reason the mass of the
second largest fragment m; is normalised by the mass of the projectile m;,. The neutral regime
where bouncing occurs is then represented by m; m,, 1 ~ 1. Pure sticking events without any
fragmentation can be identified by m, my, .o

Regarding the high porosity case, there is no second largest fragment in the gain regime 0.1 m/s <
vo < 6m/s, This is because the projectile sticks to the target in this regime and no fragments
are produced. The gain-loss transition is characterised by the appearance of a second largest
fragment. For radii rp < 6cm and vy ~ 10m/s the projectile pierces the target and the second
largest fragment is the projectile which has accreted material from the target (Fig. 6.29, b). For
this reason the second largest fragment is more massive than the initial projectile, i.e. my > m,.
For larger projectile radii the target and projectile shatter and m, < m,,. There is a trend that the
mass of the second largest fragment decreases with increasing projectile radius.

At low impact velocities vy < 1m/s the intermediate porosity case starts of with a neutral regime
where the projectile rebounds from the target with little mass transfer, so m; ~ m;,. Entering the
gain regime m, drops to zero indicating that the projectile sticks to the target. This marks the
neutral-gain transition at ~ 1m/s. Similar to the high porosity case the gain-loss transition can be
identified by the re-appearance of a second largest fragment. For all projectile radii the second
largest fragment is a product of a collision where the target and projectile shatter. As in the high
porosity case the mass of the second largest fragment decreases with increasing projectile size.
In the low porosity case the projectile rebounds with nearly unaltered mass and appears as the
second largest fragment for vy < 1m/s and all projectile radii. This represents the neutral regime.
For higher collision velocities the projectile rebounds from the target and due to induced elas-
tic waves both objects shatter (see also Fig. 6.31, in particular panel a). The mass of the sec-
ond largest fragment drops below m; m, 1 ~ 1. The second largest fragment may consist of any
fragment of the shattered fragment distribution and is not necessarily identical to a part of the
rebounded and shattered projectile.

Power-law population

I now turn to the variation of the mass of the power-law population with impact velocity in
Fig. 6.35. The figure displays the three porosity cases again. The mass of the power-law pop-
ulation is a suitable measure for the degree of fragmentation. For this reason I normalise m,, by
the total mass of the system miy to assess the mass fraction of the masses smaller than the mass
of the second largest fragment.

In all porosity cases the appearance of a power-law population indicates the onset of fragmenta-
tion. As already seen in the discussions for the largest and second largest fragments, fragmenta-
tion sets in at different collision velocities for different projectile radii. The larger the projectile
the lower the velocity for the transition to the loss regime. From the power-law population dia-
gram it is not evident whether this transition comes from the gain or neutral regime. For the low
porosity case, my,, at first increases and then decreases for the two largest projectile radii with
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Figure 6.34. Head-on collisions VI — mass against collision velocity (second largest fragment). The
mass of the second largest fragment m, is normalised by the projectile mass m,. The projectile
radii rp and other initial parameters are listed in Tab. 6.7. The homogeneous aggregates have
an initial filling factor ¢; = 0.15 (top), ¢; = 0.35 (middle), and ¢; = 0.55 (bottom).
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Figure 6.35. Head-on collisions VII - mass against collision velocity (power-law population). The
mass of the power-law population mp, is normalised by the total mass mq. The projectile
radii rp and other initial parameters are listed in Tab. 6.7. The homogeneous aggregates have
an initial filling factor ¢; = 0.15 (top), ¢; = 0.35 (middle), and ¢; = 0.55 (bottom).

216



6.4. Head-on Collisions with Equal Porosity

higher impact velocity. The curve for the 6 cm projectile in the intermediate porosity case shows
the same trend but a plateau appears in between the increase and decrease. At these impact en-
ergies the target and projectile are shattered to a very large degree such that the fragments reach
the lower resolution limit and a large number of single SPH particles are produced. Their mass
appears in the sub-resolution population as discussed below. In the high porosity case the curves
roughly saturate at a plateau value. For projectiles with r, = 5cm this value is ~ 0.7m. How-
ever, for higher collision velocities I expect the mass of the power-law population to decrease
transferring its mass to the sub-resolution population. The same increase-plateau-decrease be-
haviour is also expected for the intermediate porosity case. It is remarkable that hardly any mass
is stored in the power-law population in collisions with r, = 2cm in all porosity cases.

Sub-resolution population

At the end of this description I draw the reader’s attention to the variation of the sub-resolution
population with impact velocity in Fig. 6.36. The sub-resolution population is an indication of
sufficient resolution as well as an upper mass limit for the dust produced in the collision (see
Sec. 6.1.2). The figure shows the result of collisions for high porosity (top), intermediate porosity
(middle), and low porosity (bottom) again.

I note that a significant sub-resolution population appears at collision velocities larger than the
transition velocities to the loss regime in the other diagrams. This is because at lower collision
energies the fragments tend to break apart upon collision and contribute to the power-law pop-
ulation. With higher impact velocities the objects shatter more and more which results in an
increasing sub-resolution population. For the same collision velocity, the mass of the produced
sub-resolution population increases with increasing projectile radius which is particularly evi-
dent in the low porosity case. Again for collisions with the smallest projectile hardly any mass
ends up in the sub-resolution population. Only for the low porosity case is a significant amount
visible.

6.4.3. Discussion and outlook

In pre-planetesimal collisions kinetic energy is dissipated by breaking molecular bonds (see Sec.
2.2.3, 2.2.4 and 3.2). Macroscopically this is achieved by compacting and fragmenting an ag-
gregate. Since the compressive strength for most of the filling factor regime is smaller then the
(absolute value of the) tensile strength (see Fig. 5.24) the preferred way of energy dissipation for
aggregates of high and intermediate porosity is compaction. For filling factors where the com-
pressive strength exceeds the tensile strength fragmentation sets in. This filling factor is close to
maximum compaction.

In the preceding description of pre-planetesimal collisions three different regimes could be dis-
tinguished: the gain, neutral, and loss regime. The gain regime is only seen for high and inter-
mediate porosity aggregates. This is because the initial filling factor, which is significantly below
the maximum filling factor, permits compaction of the aggregates. The kinetic energy of the pro-
jectile is low enough such that most of the kinetic energy can be dissipated by compaction. The
compaction leads to increased filling factors at the contact area of both aggregates which causes
the projectile to stick to the target (see also Sec. 6.3, in particular Fig. 6.22, left, and Fig. 6.26, d
and e). In the low porosity case where the filling factor is close to the maximum, little energy can
be dissipated by compaction which prevents the sticking of aggregates.
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Figure 6.36. Head-on collisions VIII — mass against collision velocity (sub-resolution population).
The mass of the sub-resolution population mg; is normalised by the total mass m.¢. The pro-
jectile radii rp and other initial parameters are listed in Tab. 6.7. The homogeneous aggregates
have an initial filling factor ¢; = 0.15 (top), ¢; = 0.35 (middle), and ¢; = 0.55 (bottom).
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The neutral regime is visible in the intermediate and low porosity case. This is because this
regime is characterised by the rebound of the projectile. Bouncing requires a sufficient elastic
loading of the target and projectile without fragmentation. In both porosity cases the neutral
regime can be found at low collision energies. In the intermediate porosity case the collision en-
ergy is not sufficient for a compaction of the aggregates, which eventually leads to sticking, and
in the low porosity case the energy is too low to shatter the target and projectile.

The loss regime is present for all porosity cases. This is because at high collision velocities the ki-
netic energy cannot entirely be dissipated by compaction. The energy excess has to be dissipated
by fragmentation, which causes the loss regime.

Given the three regimes gain, neutral, and loss, six transitions are theoretically possible. How-
ever, the loss-gain and loss-neutral transitions are physically not reasonable. This is evident from
the above discussion. Fragmentation is the result of high velocity collisions and even smaller
fragments are produced at higher collision velocities.

The neutral-gain transition can be seen for aggregates of intermediate porosity at vo ~ 1m/s. It
can also be regarded as a transition from bouncing to sticking collisions. At sufficiently low col-
lision velocities only a small fraction of the projectile energy is dissipated by compaction and
a large part is stored in elastic loading, which is released in the rebound of the projectile. This
can be seen from the residual energy of the system (Fig. 6.11). With higher collision velocities the
contact area of the collision partners increases as well as the filling factors in this region. Together
with the fact that less energy is stored in elastic loading and is not available for rebound, the tran-
sition to sticking occurs (see also Sec. 6.3). Neutral-gain transitions can be expected for all initial
filling factors in an intermediate regime. I expect the transition velocity to decrease with the ini-
tial filling factor because the compaction threshold is lowered. This threshold velocity might also
vary slightly with projectile radius.

The gain-loss transition only exists for aggregates of high and intermediate porosity. This is be-
cause only these aggregates can be sufficiently compressed to allow for sticking and hence a gain
regime. As discussed above, the transition occurs when there is more kinetic energy than the
amount that can be dissipated by compaction. The energy excess leads to shattering and the sys-
tem enters the loss regime. The threshold velocity varies with projectile size for the same filling
factor and it is important to note that it also varies with initial filling factor. Very porous aggre-
gates can be compressed easily but they also fragment more easily. Aggregates of intermediate
porosity are more stable and feature higher gain-loss thresholds.

The neutral-loss transition is only visible for aggregates of low porosity. This is because only
low-porosity aggregates lack the ability to be compacted. This transition is characterised by a
rebounding projectile but the elastic waves induced in both objects cause them to shatter. It
is important to note that the neutral-loss transition velocity is much lower than the gain-loss
transition velocities of the high and intermediate porosity cases.

In the velocity and size range of the simulations presented no gain-neutral transition could be
identified. This might be because the minimum collision velocity vg = 0.1m/s of the considered
velocity range is too large. Giittler et al. (2010) assume a sticking-bouncing (gain-neutral) transi-
tion for vy ~ 1 x 10> m/s for comparable projectile sizes. However, this value is based on theoret-
ical considerations and might be much larger (see Sec. 6.3.1).

Since Giittler et al. (2010) presented the most comprehensive collection of laboratory experi-
ments with SiO, dust, I compare the simulation results to their findings of nearly equal sized
aggregates. For the sake of simplicity they do not distinguish between different filling factors
but categorise their aggregates into “porous” with ¢; < 0.40 and “compact” with ¢; > 0.40. For
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collisions of a porous projectile with a porous target, of a compact projectile with a compact
target, and of a compact projectile with a porous target they assume a bouncing-fragmentation
(neutral-loss) collision velocity of vy ~ 1m/s. The type of transition and the threshold velocity
more resemble my findings for aggregates with low porosity. I note that the inhomogeneity of
the aggregates might affect the velocity thresholds as shown in Sec. 6.2.

However, Giittler et al. (2010) find a bouncing-sticking (neutral-gain) transition at vy ~ 1m/s and
a sticking-fragmentation (gain-loss) transition at vy ~ 10m/s for collisions of a porous projectile
and a compact target. It remains unexplained why these results are different from the case of a
compact projectile hitting a porous target. From the symmetry of the system one would expect
the same transition thresholds. Nevertheless, these results resemble my collision outcomes for
aggregates of intermediate porosity (see also Sec. 6.1).

The simulation results of this section reveal that the assumptions by Giittler et al. (2010) are to
be revised. It is not sufficient to distinguish between porous and compact aggregates. The simu-
lated collisions show that not only do the threshold values for the transitions vary with the filling
factor, but so do transition. In addition the gain-loss transition threshold velocity, which is the
most important for pre-planetesimal growth, also varies with projectile size, which is most evi-
dent in the intermediate porosity case. The simulations also indicate that the gain-loss threshold
might be much higher than estimated by Giittler et al. (2010). This might be sufficient for pre-
planetesimals to break through the fragmentation barrier (see Sec. 2.3.1).

A more detailed and quantitative analysis of these data is left to future work. This has the fol-
lowing reasons: (1) a detailed analysis requires more simulations, in particular in the transition
regions. (2) In the loss regime fragmentation is dominant. Especially for the sizes of the largest
and second largest fragment in the transition regions, errors of the masses have to be estimated to
establish a profound collision model. This is because slight numerical fluctuations might deter-
mine the masses of these objects. To assess the statistics simulations with different lattice types,
lattice orientations, and also different resolutions have to be carried out for selected collisions.
The inhomogeneity damage model outlined in Sec. 6.2 might be useful for this investigation. (3)
It is still problematic to determine the end time of a fragmenting collision. Fragments might
break apart due to rotation on timescales larger than the collision time scale. Simulation runs
with a long time frame have to be carried out to assess the evolution of the fragments, in partic-
ular the mass distribution of the power-law population. On the basis of these example runs, the
error due to termination of the simulation can be estimated.

Once these issues are settled satisfactorily, a detailed collision model can be constructed. With
the aid of the velocity thresholds for the respective transitions, the mass variation for the largest
and second largest fragment with collision velocity can be determined with respect to the projec-
tile size and filling factor. In particular the curves in the loss regime can be fitted with power-laws.
Similar fit functions should be found for the masses of the power-law and sub-resolution popu-
lation. For the former the mass distribution can be fitted by a power-law and the dependence of
the fit parameters on projectile size and filling factor can be estimated. In this way the simplify-
ing assumptions of Giittler et al. (2010) can be improved and a detailed collision model can be
constructed.
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7.1. Summary and discussion

The subject of this thesis is the realistic simulation of pre-planetesimal material, the production
of a catalogue of pre-planetesimal collisions, and the design of a suitable transfer method of the
acquired data to global dust coagulation models in protoplanetary discs. This is to understand
the formation of kilometre sized planetesimals which are the seedlings for the planet formation
process. For this purpose I have reviewed the state of the art knowledge of planet formation
in Ch. 2. In particular, it has been pointed out that the existence of planetesimals is essential
for both the accretion and the gravitational instability hypothesis of planet formation. Thus,
the topic of this thesis is at the basis of any planet formation theory. In the further course it
has been demonstrated that pre-planetesimals of centimetre size are porous objects composed
of protoplanetary dust which are created from dust monomers by hit-and-stick, restructuring,
and compaction mechanisms. A suitable analogue for protoplanetary material is monodisperse
spherical SiO, dust. Because of increasing collision velocities the colliding pre-planetesimals
encounter three barriers on their way to planetesimals: the drift, bouncing, and fragmentation
barriers. The latter two are addressed in this thesis. In the course of the review it became evident
that the right mixture of sticking, bouncing, and fragmentation events is necessary to explain
both the dust features of late T Tauri discs and the formation of planets.

To explore a suitable method for the investigation of pre-planetesimal collisions and to assess
the potential ways of information transfer in this field I have reviewed some neighbouring meth-
ods in Ch. 3. Laboratory experiments yield valuable material parameters for the porosity model
of this thesis but the direct investigation of pre-planetesimal collisions is limited by the size of
the experimental apparatus. Molecular dynamics (MD) simulations directly simulate the inter-
actions between dust monomers and may also be a valuable source for material parameters, in
particular those which are hard to measure in the laboratory. However, because of limited com-
putational resources MD simulations are constrained to aggregates well below millimetre size.
Global dust coagulation models provide the big picture of planet formation in a protoplanetary
disc by simulating the size evolution from dust grains to planets using the laws for particle-gas in-
teraction. These simulations essentially lack data on the outcome of pre-planetesimal collisions.
Smoothed particle hydrodynamics (SPH) has been identified as the most suitable method to in-
vestigate pre-planetesimal collisions. Because of the continuum approach it possesses no upper
size limit for the simulated objects and due to its Lagrangian and particle nature it establishes a
natural frame of reference for fragmentation.

In Ch. 4 T have reviewed the SPH method. Since this thesis is concerned with the simulation of
solid material I have put a strong focus on solid body mechanics and its SPH implementation.
In the same chapter I have also described the applied porosity model. This model is based on
the approach by Sirono (2004) but has been significantly improved in this thesis. The compres-
sive strength and tensile strength relations were adopted by Sirono as simple power-laws derived
from toner particle measurements. Sirono utilised these relations for the simulation of a differ-
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ent material, namely porous ice. In this thesis the material relations have been replaced by more
realistic data from laboratory measurements for SiO, dust. Sirono’s damage model, which was
originally developed for brittle material, has been replaced by a different approach involving the
tensile strength. I have also shown that this approach makes the damage restoration model by
Sirono unnecessary. Since the strength quantities of the porosity model depend on the filling
factor, which is a dimensionless parameter, no length scale is introduced for the simulated ob-
jects. Therefore, I have proposed a new damage model which is based on the inhomogeneity
of the dust aggregates. The input parameter, which is simply the Gaussian distribution of the
filling factors, can be measured in the laboratory which was already demonstrated by Giittler
et al. (2009). Since pre-planetesimals are very likely to be inhomogeneous, this approach also
improves the realistic simulation of these objects.

To validate the porosity model and to test the correct functionality of the code (Ch. 5), I have
performed an intensive calibration process with the aid of three benchmark experiments. At the
same time these have been carried out in the laboratory by collaborators. Firstly, the compaction
properties have been tested by a glass sphere dropped into a dust sample. Secondly, the elastic
properties have been checked by a dust sphere rebounding from a solid surface. Thirdly, the
correct reproduction of fragmentation has been verified by a dust sphere shattering at a solid
surface. In the calibration process it has turned out that some empirical material relations could
not be measured and others were measured statically which has made them inapplicable to dy-
namic pre-planetesimal collisions. For this reason the benchmark experiments have been used
to determine the missing relations by means of parameter studies. In this course, the dynamic
compressive strength, the dynamic shear strength, and the bulk modulus, which are hard to mea-
sure empirically, have been determined with the aid of numerical simulations. As a byproduct,
this procedure may serve as an example of how empirically inaccessible material parameters
become accessible by joining computational and laboratory methods. For this determination a
number of benchmark features had to be sacrificed. However, the number of benchmark fea-
tures were larger than the material relations to determine. The remaining attributes have been
used to validate the porosity model. Eventually, the three benchmark experiments, which test for
very different physical properties (compaction, bouncing, fragmentation), could by simulated
quantitatively correct with one consistent set of material relations. This result has been consid-
ered as a sufficient criterion for a successful calibration. The harvest of this validation process is
the only functional code and porosity model currently available, which is capable of the quan-
titatively correct simulation of bouncing, compaction, and fragmentation of highly porous dust
in the astrophysical context. In particular, rebounding macroscopic dust aggregates have been
simulated for the first time. The results of this fruitful collaboration between numerics and lab-
oratory physics yielded two publications (Giittler et al. 2009, Geretshauser et al. 2010).

In Ch. 6 I have presented results which are directly relevant for pre-planetesimal collisions. For
the transfer of collision data to global coagulation models a suitable format has to be chosen.
Since for planetesimal formation the right mixture of sticking, bouncing, and fragmentation
events might be crucial, this format has to be accurate enough to capture the most important
collision outcome features but at the same time simple enough to be implementable in coagu-
lation models. In Sec. 6.1 I have mapped existing simulation data to the most elaborate collision
format available, which distinguishes between several types of sticking, bouncing, and fragmen-
tation events. However, the analysis of my simulation data has revealed that sticking, bounc-
ing, and fragmentation can occur in the very same collision because they are physical processes.
I have come to the conclusion that the existing categorisation represents a too qualitative ap-
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proach to classify collision data. For this reason I have developed a more quantitative model,
the four-population model. By their mass I distinguish between the largest fragment, the second
largest fragment, a power-law population, and a sub-resolution population. I have shown that
the four-population model encompasses previous classification attempts in a closed format. In
addition transitions between previous rigid categories can be mapped with the new quantitative
approach, which demonstrates the high accuracy of the four-population model. Finally, I have
applied this format to my simulation data and showed the applicability and functionality of the
new model. The four-population model with its closed form is a simple and accurate mapping
format for any method producing collision data such as laboratory experiments, molecular dy-
namics simulations, and numerical continuum methods. It has the potential to significantly im-
prove the information transfer between the latter disciplines and global dust coagulation models.
In Sec. 6.2 I have presented the first results from simulations with the inhomogeneity damage
model. I have demonstrated that inhomogeneous dust aggregates are more prone to fragmen-
tation. In particular a collision which has resulted in the growth of the aggregate for the homo-
geneous case has yielded catastrophic disruption for a small degree of inhomogeneity. I have
analysed the data by means of the four-population model. This has confirmed that smaller frag-
ments result for a larger degree of inhomogeneity, which has exhibited the correct functionality
of the damage model. It is very likely that pre-planetesimals have a collisional history and thus
are inhomogeneous. The simulations have suggested that the collisional history might lead to
more fragile aggregates. This has to be considered in pre-planetesimal collisions. The inhomo-
geneity damage model might be used to introduce a length scale to the current porosity model
and solve its scaling problem. Furthermore, the input parameters of the proposed damage model
are easier to determine in the laboratory than for other damage models.

The bouncing barrier possibly represents a serious obstacle to planetesimal formation. Section
6.3 has been devoted to this topic. The discovery of this bouncing barrier is based on a collision
model originating from a collection of laboratory experiments, which were extrapolated by the-
oretical considerations. I have shown that the laboratory data on which this barrier is founded
might overestimate the occurrence of rebound events. This is because bouncing as collision out-
come strongly depends on the filling factor, which is not sufficiently taken into account in the
previous collision model. Furthermore, my discussion exhibits that simplistic assumptions in the
theoretical considerations lead to a bias with respect to bouncing. I have also demonstrated that
hard shells have a strong influence on the bouncing properties of an aggregate. Hard shells, cre-
ated unintentionally in the preparation of highly porous aggregates for the experiments, might
lead to a wrong picture regarding bouncing. The results from this section show that the bounc-
ing barrier might be caused by a spurious bias of the laboratory experiments and that rebound
might not seriously endanger planetesimal formation.

Concluding Ch. 6, I have performed a large number of head-on collision simulations of homoge-
neous aggregates in Sec. 6.4. The analysis of this data has been performed by means of the four-
population model. I have distinguished between simulations which lead to pre-planetesimal
growth (“gain”), which are growth neutral (“neutral”), and which lead to catastrophic disruption
(“loss”). I have shown that depending on the filling factor of the aggregates there exist different
types of transitions: gain-loss, neutral-gain, and neutral-loss. I have also demonstrated that the
thresholds for these transitions strongly depend on the filling factor and on the projectile size.
Both have not yet been taken into account in global dust coagulation simulations although it is
of crucial importance for planetesimal formation.

In conclusion, this thesis has developed two powerful tools for the investigation of pre-plane-
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tesimal collisions: a code and porosity model, which have been calibrated to a high degree of
accuracy and which includes an extension for inhomogeneity, and a simple and accurate map-
ping model to classify the produced simulation outcome. These tools have been applied to assess
the danger of the bouncing barrier for planetesimal formation and the influence of the inhomo-
geneity of dust aggregates on the collision outcome. In addition, a large dataset of the collision
outcome of head-on collisions has been produced and quantitatively classified according to the
four-population model. All investigations emphasise the importance of considering the filling
factor of pre-planetesimals in dust coagulation models.

7.2. Outlook

This thesis offers many prospects for future work. Continuing the analysis of Sec. 6.4.2, all tools
offered by the four-population model can be applied to the existing dataset of head-on collisions.
After estimates for the respective errors are found, the variation of each population with colli-
sion velocity can be modelled using suitable fit functions. In addition, the mass distributions
of the resulting power-law populations can be determined. In particular the parameter region
around the threshold velocities of the transitions should be studied in more detail. Expanding
the parameter space, more filling factors should be studied and the variation of the transition
thresholds as well as the variation of the fragment population features with filling factor should
be investigated. It is very likely that pre-planetesimal collisions occur off-centre and that both
aggregates possess a different filling factor. Therefore, the effect of a non-zero impact parameter
(Fig. 7.1) and different porosities can be studied building on a reliable basis of head-on collisions.
In addition, the rotation of aggregates produced in off-centre collisions might affect the collision
outcome: spinning pre-planetesimals might fall apart due to their rotation and even the head-
on collision of two rotating aggregates might produce a fragment distribution which is different
from the non-rotating case.

Since the number of laboratory experiments with SiO, dust is constantly increasing, other bench-
mark tests could be carried out to further validate the porosity model. In particular high-velocity
impacts could be carried out to explore the limits of the current isothermal model. Using the ex-
isting porosity model and the calibration method developed in this thesis, the code could be cal-
ibrated for the simulation of other dust materials such as irregular SiO, or diamond dust (Blum
et al. 2006b). Simulations with these new materials could be carried out and classified by means
of the four-population model. This is to assess the effect of different materials on the outcome of
pre-planetesimal collisions. The results could be compared to those presented in this thesis and
delivered to global coagulation simulations. In turn, global coagulation models could constrain
collision outcomes in critical parameter ranges which allow for planetesimal formation. Utilis-
ing the solid body SPH code, material parameters could be varied until these desired collisional
outcomes are produced. Approaching this “inverse problem”, it could be assessed whether plan-
etesimal formation by coagulation is possible with a realistic material and what the properties
of this material must be. The four-population model should be adopted for categorising experi-
ments and simulations to assess its value for the information transfer between dust coagulation
models and dust collisions.

A major improvement of the existing porosity model would be the inclusion of proper thermody-
namics. This is the basis of the realistic simulation of phase transitions such as sintering, freez-
ing, melting, and vaporisation. The thermodynamic expansion allows supersonic impacts to be
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Figure 7.1. Collision with impact parameter. The homogeneous aggregates have an initial filling
factor of ¢; = 0.15. The projectile with radius r, = 6¢m hits a 10 cm target with a collision
velocity of vy = 7.5m/s. The impact parameter in this collision is b = 4cm. From the top left to
the bottom right the simulation times are 0, 40, 200, 400 and 800 ms. The filling factor is colour
coded in this figure.

considered as well as different protoplanetary disc environments very close and very far from
the host star. The enhanced porosity model can then be calibrated for the simulation of porous
ice and dust-ice mixtures. Due to its static dipoles ices might increase the sticking properties
of pre-planetesimals and support planetesimal formation. The correct functionality might be
tested by comparison with laboratory benchmark experiments as well as numerical results from
simulations with different porosity models. After sufficient testing, the new porosity model can
be applied to investigate the collision outcome of ices, ice-silicate mixtures, and ice-coated dust
aggregates and compare them to results involving pure dust aggregates. This allows a profound
study of pre-planetesimal collisions in promoting regions, such as near or outside the snowline,
to be carried out.
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A. Computer programs and evaluation
tools

A.1. Particle distribution evaluation tool sph3Deval

The evaluation program by Roland Speith transforms an SPH particle distribution back into the
frame of continuous physical quantities. This is achieved by averaging the values of the con-
tributing SPH particles on a user defined grid. The contributing particles are found by a nearest
neighbour search for the given grid point where the smoothing length is taken into account. The
evaluation methods include computing the arithmetic mean and averaging according to the SPH
algorithm. The evaluation grids can be 1D, 2D, or 3D. The user can choose between cartesian,
cylindrical, and polar coordinates. The evaluation parameters are specified in the file eval . grid.
The program expects ASCII input from standard input in the format presented in Tab. A.1. The
output is directed to standard output in the format shown in Tab. A.2.

dim X y zZ MspH h P f fn
1D 1 2 3 4 5 .. n+4
2D 1 2 3 4 5 ) n+5
3D 1 2 3 4 5 6 7 n+6

Table A.1. Input format of the particle distribution evaluation tool sph3deval. The quantities x,
¥, and z are the cartesian coordinates of the SPH particles, mgpy their mass, # the smoothing
length and p their density. fj ... f,; are additional functional values to be evaluated.

dim Xg Vg Zg I bil fn
1D 1 2 3 n+2
2D 1 2 3 4 n+3
3D 1 2 3 4 5 n+4

Table A.2. Output format of the particle distribution evaluation tool sph3deval. The barred val-
ues represent the averages at the specified grid points which have the coordinates xg, yg, and
Zg-

A.2. Fragment distribution evaluation tool fragment

The fragment evaluation tool fragment by Roland Speith is based on the program sph3deval
of Appx. A.1. It is designed to evaluate an SPH particle distribution originating from a collision.
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Fragments are identified by their constituting sets of SPH particles which interact due to smooth-
ing length overlap. The program computes the physical quantities of each fragment and writes
them to the output file. The code accepts 1D, 2D, and 3D particle distributions.

From the standard input fragment expects the SPH particle distribution in the format presented
in Tab. A.3. The output is written to fragment . dat in the format shown in Tab. A.4.

dim X y 4 Uy vy v, mspy h il ... fn

1D 1 2 3 4 5 n+4
2D 1 2 3 4 5 6 7 n+6
3D 1 2 3 4 5 6 7 8 9 n+7

Table A.3. Input format of the fragment evaluation tool fragment. The quantities x, y, and z
denote the SPH particle positions and vy, vy, and v, the velocity components of each particle.
The SPH particle mass is represented by mspy. The value of # is the smoothing length. The
functional values f; ... f,, are particle properties which are to be averaged over each fragment.

dim| nf nl; oyttt v§, vl mb Lf Ll; Lf E . A .. fn

1D | 1 2 3 4 5 6 7 8 ... n+7
2D | 1 2 3 4 5 6 7 8 9 10 11 ... n+10
3D | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... n+13

Table A.4. Output format of the fragment evaluation tool fragment. The quantities nf and n;
denote the fragment number and number of SPH particles of each fragment, respectively. The
cartesian coordinates of the centre of mass of each fragment are denoted by xf, y', and z'. Its
velocity components are vf, v§,, and v. The quantities LI, Lg,, and Lf represent the angular

momentum of each fragment with respect to the centre of mass. The total fragment mass is

given by m' and E! , stands for the internal kinetic energy stored in rotational and vibrational
degrees of freedom. The values fi ... f, stand for other properties which are to be averaged
over the fragment, e.g. the density.

A.3. Particle distribution tool initgrid

The particle distribution tool initgrid was developed for this thesis. It creates the initial SPH
particle distribution for parasph (Appx. A.4). The SPH particles can be positioned on a cubic,
face-centred, and body-centred lattice in 3D, on a square and triangular lattice in 2D, and on
a line in 1D. The average distance of the particles is determined by the lattice constant. The
program features different object geometries such as sphere, hemisphere, box, and cylinder in
3D and circle, hemicircle, and rectangle in 2D. The geometrical objects can be assigned different
positions, velocities, and spins about an arbitrary axis. The material parameters of the objects
include porous, bulk, and critical densities, material flags, and bulk modulus to suite the porosity
model implementation of parasph. In particular the density and mass of an SPH particle are
constructed to be consistent with the SPH sum. Each object can be assigned a fixed boundary
on an arbitrary side. The boundary may be rigid or a region of smoothly increasing artificial
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viscosity. All objects can be coated with hard or soft shells. The transition between core and
shell may be continuous or discontinuous. Objects of homogeneous density may be created
as well as inhomogeneous objects where the filling factor distribution assumes the shape of a
Gaussian. The standard deviation of the Gaussian is supplied as an input parameter. The output
of initgrid is a file in ASCII or HDF5 format.

A.4. Parallel SPH code parasph

The parallel SPH code parasph was developed by M. Hipp and already described by Hipp and
Rosenstiel (2004) and Schéfer (2005). It is based on the ParaSPH library by Bubeck et al. (1998,
1999). This is a set of routines developed for an easier and faster handling of parallel particle
codes. By means of this library the physical problem and the parallel implementation are clearly
separated. ParaSPH features domain decomposition, load balancing, nearest neighbour search,
and inter-node communication. The adaptive Runge-Kutta-Cash-Karp integrator has been used
for the simulations presented in this thesis. The parallel implementation utilises the Message
Passing Interface (MPI) library. Test simulations yielded a speedup of 120 on 256 single core
processors of a Cray T3E and of 60 on 128 single core processors on a Beowulf-Cluster. The code
is described in detail by M. Hipp (PhD thesis, in prep.).

Schifer (2005) extended the code by M. Hipp for the simulation of elasticity and plasticity includ-
ing the time evolution of the deviatoric stress tensor, which costs a large amount of computing
time. He also implemented the first version of the porosity model after Sirono (2004) and the
Murnaghan and Tillotson equation of state. With respect to numerics an adaptive second or-
der Runge-Kutta, and an Euler integrator was added. Moreover, the SPH enhancements such as
additional artificial stress and XSPH were implemented.

Within the frame of this thesis, I corrected and improved the porosity model implementation
and added a treatment of fixed boundaries. HDF5 was included as a compressed input and out-
put file format with increased accuracy, which decreases the amount of required storage space
considerably. I described the flags and parameters of parasph in detail in Geretshauser (2006).
The modified porosity model contains the following parameters for a problem with the dimen-
sion dim:
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A. Computer programs and evaluation tools

description symbol Type variable (Pparts. ...)

position r vector(dim) p

velocity v vector(dim) v

mass m scalar m

density o scalar rho

reference density Py scalar rho_Oprime

upper critical density : scalar rho_c_pos

lower critical density [N scalar rho_c_neg

bulk density 0o scalar rho_0

pressure p scalar press

smoothing length hsml scalar hsml

number of

interaction partners noip scalar noip

intrinsic energy e scalar e

material type mt scalar mt

damage d scalar damage
noaf scalar noaf

local strain €loc scalar local_strain

bulk modulus K scalar K

deviatoric stress tensor S matrix(dim x dim) S

number of flaws nof scalar nof

flaws flaw vector(nof) flaw

Acceleration due to:

physical viscosity visk vector(dim) visk

artificial viscosity artvisk vector(dim) artvisk

stress tensor acco vector(dim) accelS

hydrostatic pressure accP vector(dim) accP

deviatoric stress tensor accDST vector(dim) accDST

Table A.5. Input and output quantities of the particle distribution files. These values are specified
for each particle of the SPH particle distribution.
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dim r v m p p, ps p; po e mt d K S nof flaw
Ty Ty Tz Ux Uy U
1D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2D 1 2 3 4 5 6 7 8 10 11 12 13 14 15...18 19 20
3D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17...25 26 27
dim r A m p py, pf p; po p hsml noip e mt d noaf g K S nof flaw
rx Ty Tz Ux Uy U
1D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2D 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19...22 23 24 25
3D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21...29 30 31 32
dim visk artvisk acco accP accDST
X Yy z X y z X y zZ X y z X y z
1D 1 2 3 4
2D 1 2 3 4 5 6 7 8 9 10
3D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table A.6. Structure of the parasph particle distribution files. The table shows the structure of the input (top), output (middle), and accel-

eration (bottom) files of the SPH particle distribution. The quantities are explained in Tab. A.5.
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