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Abstract

We present a new application designed for the visual exploration of
microarray data. It is based on an extension and adaption of par-
allel coordinates to support the visual exploration of large and high-
dimensional datasets. In particular, we investigate the visual analysis
of gene-expression data as generated by microarray experiments; We com-
bine refined visual exploration with statistical methods to a visual analyt-
ics approach, which proved to be particularly successful in this application
domain. We will demonstrate the usefulness on several multidimensional
gene-expression datasets from different bioinformatics applications.
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Abstract

We present a new application designed for the visual exploration of microarray data. It is based on an extension
and adaption of parallel coordinates to support the visual exploration of large and high-dimensional datasets. In
particular, we investigate the visual analysis of gene-expression data as generated by microarray experiments;
We combine refined visual exploration with statistical methods to a visual analytics approach, which proved to be
particularly successful in this application domain. We will demonstrate the usefulness on several multidimensional
gene-expression datasets from different bioinformatics applications.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Line and Curve Gener-
ation, Display Algorithms 1.3.6 [Computer Graphics]: Interaction Techniques J.3 [Life and Medical Sciences]:

Biology and Genetics

1. Introduction

The investigation of large high-dimensional datasets gen-
erated by recently developed high-throughput methods is a
very common task in bioinformatics. This is largely due to
the use of these methods in a wide variety of applications in
biology and medicine. The need for useful methods for such
investigations will become even more important as they be-
come a more and more common part of the daily work in
the bioscience and bio-engineering laboratories and hospi-
tals. For instance, microarray-based gene expression studies
generate data for several thousands of genes (data samples)
under numerous different conditions (dimensionality of the
data). The data itself is stored in the gene expression ma-
trix as the fundamental structure which we use as the basis
for our visual analysis. This matrix contains the expression
values of one gene under the different conditions in its rows
and the gene expression values of a certain condition in its
columns. Conditions imply a large variety of different mean-
ings, which can be external or internal stress factors (e.g.,
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heat or chemical irritation) under which the cell is growing,
pathological states of the cell, or mutated cells.

Note that the terminology of gene expression matrixes is
different from the standard terminology in the context of data
visualization. The term samples — in the context of bioinfor-
matics used to depict different conditions — is mapped to the
different dimensions. In contrast, the individual genes are
mapped to the data values (or data samples in the visualiza-
tion terminology). For this reason, we try to avoid the term
data sample when we depict the individual data points and
call the gene expression values data values.

There is a strong need for adequate methods to reveal rele-
vant effects that are latently contained in the data and to sep-
arate these from the noise attributed to the measuring proce-
dure. Several statistical methods already exist that attempt to
achieve this goal [ACPS06]. Nevertheless, the analysis of a
microarray-based gene expression experiment is still a very
challenging task. Often the application of only one method
is not successful and it is necessary to employ a number of
different methods [ACPS06]. This situation leads directly to
the design of comprehensive, flexible, and extendable soft-
ware systems to analyze microarray data. Nevertheless, a
consensus of the different analysis methods must be found
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to get reliable results. Therefore, it would be very beneficial
to have methods for the visual exploration of the data itself,
together with the associated deduced statistical parameters in
a common space. This leads to a visual analytics approach
that provides more insights in the structure of the data and
to prevent misleading impressions as much as possible at the
same time. In this paper, we introduce such a visual analyt-
ics approach to the analysis of high-dimensional microarray
data.

The remainder of this paper is organized as follows. After
briefly reviewing related work in Section 2, we introduce
the used variation of the parallel coordinates plot to visually
interpret the provided data (Section 3). Section 4 presents the
results of the visual analysis of the examined datasets, which
in turn will be discussed in Section 5. Finally, we present
our conclusions and point to future directions of research
(Section 6).

2. Related Work

Parallel coordinates [Ins85] have been used in numerous ap-
plications to visualize multi-dimensional data. In the context
of biomedical applications are the WEAVE system that uses
parallel coordinates and scatter plots to visualize a 4D heart
simulation [GRW*00], and the SignatureSpace [PBMO05], in
which parallel coordinates are used to devise an initial clas-
sification for volume datasets. Cluster methods are another
popular technique to reduce the overdraw in parallel coor-
dinate displays. In addition, Johansson et al. used transfer
functions to compute textures that represent these clusters
with a certain emphasis [JLJCO5]. Fanea et al. combined star
glyphs with parallel coordinates to provide an additional in-
formation representation [FCIO5].

The importance of designing appropriate visualiza-
tion methods for bioinformatics was already discussed in
[RDC*02]. Furthermore, Gilbert et al. used in an early ap-
proach [GSVHOO] heatmaps, dendrograms (for cluster hier-
archies), and VRML models to represent the data, in par-
ticular the cyclicity of Spellman’s yeast cell cycle (see Sec-
tion 4). Since then, several papers address the visualization
for this application domain. Saraiya et al. [SNDOS5] stud-
ied the applicability of five different visualization tools for
microarray data. These tools focus on specific visualization
techniques such as heatmaps (Clusterview), parallel coordi-
nates (TimeSearcher), and a combination of several tech-
niques such as scatter plots, histograms, parallel coordi-
nates, and heatmaps (Hierarchical Clustering Explorer, Spot-
fire, GeneSpring). The dataset size of the explored datasets
ranged from 170 genes to 1060 genes (data points), and
the data dimensionality from three dimensions to 90 dimen-
sions. Their basic conclusion was that tools designed with a
specific context in mind do not perform very well for other
applications. Furthermore, they stressed the importance of
the supported interaction techniques to derive knowledge
from the data.

In 2003, Swayne et al. described the GGobi system that
provides several linked visualization techniques, including
parallel coordinates and scatter plots [SLBCO3]. Flexible
color-mapping is provided through (automatic) brushing and
statistical data can be provided through R [R D07]. One of
the strengths of GGobi is the use of animations or "tours"
to provide a quick overview of the data. While GGobi works
well with smaller datasets (e.g., Half-Marathon and Microar-
ray validation in Table 1), its response time becomes some-
what sluggish for larger ones. The actual problem, however,
is overplotting when too many data points are present.

Peeters et al. [PvdWFvWO04] presented a system that
combines an interactive visualization of DNA sequences
with provided annotation information. A more application-
specific system is PQuad, which visualizes differential pro-
tein expression data from mass spectroscopy using colored
horizontal line graphs to indicate the predicted positions of
the peptides and proteins along DNA strands [HSPWRO04].
GVis [HIS*05] focusses on the scalable visual representa-
tion at different hierarchy and abstraction levels. A less ab-
stract, more measurement specific system was presented by
Linsen et al. [LLBBOS5], who used colored height fields of
m/z-ratios and time.

An interesting application of the parallel coordinate plot
(PCP) was presented in Riibel et al. [RWK*06]. The Berke-
ley Drosophila Transcription Network Project (BDTNP) de-
veloped a suite to aid the quantitative, computational anal-
ysis of three-dimensional gene expression patterns of early
embryo states of Drosophila on a cellular resolution. The
PCPs employed here were used to investigate the expres-
sion levels of a couple of genes of every cell. One cell is
represented in the PCP by one polyline and the expression
levels of the different genes are assigned to the dimensions.
Some extensions are described to improve the reception of
interesting effects displayed by the data, for instance a three
dimensional extension of the PCP.

A framework for the visual integration of additional
meta-information of gene expression data was introduced
in [GDNOS5] and demonstrated in an application of the heat
colormap on the Mayday platform [DGNO6]. The enhanced
heatmap showed the clear advantages of the integration of
supplemental data from different sources for the visual ex-
ploration of microarray data.

3. Extending Parallel Coordinates

A well-known traditional technique for the visual represen-
tation of multidimensional datasets is the parallel coordinate
plot (PCP) introduced by Inselberg [Ins85]. In the field of
gene expression, the PCP is already established as a profile
plot of the expression values of genes along the experimen-
tal conditions. In this commonly employed kind of plot the
PCP remains restricted only to the visualization of the gene
expression data itself.

(© 2008 The Author(s)
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Unfortunately, the conventional PCPs do not scale well
with the number of data values. In particular, a large number
of data points will cause an overdraw problem, so that com-
mon patterns and details are hidden by the clutter of lines.
To address this issue, we extended the traditional PCP by
using transparency modulation [PBMO5], color-coding, and
linked additional data plots such as scatter plots, histograms,
and data tables, which we will discuss in more details be-
low. Similar density modulating approaches were introduced
by [WL97, AdOL04] and recently by [NHO6].

The transparency of the lines can be varied to uncover
common traits of data items along the different dimensions
of the data. In particular, the transparency can be modulated
globally for all polylines of the data values. Alternatively,
the transparency can be set specifically for each dimension,
taking into account the number of polylines passing through
a local area (bucket) of the axis.

The option to color-code the whole polyline of a data item
according to the data values of one dimension supports the
discovery of relations between the different data dimensions,
depending on the overdraw and the noise. In our novel appli-
cation SpRay, we support a number of different colormaps,
including the rainbow (hue) map, the more isometric lumi-
nance and saturation maps, and a heat (temperature) map.
Since we need additional cues to differentiate the polyline
bundles, the perceptually preferable grey-level-map is not
usable.

The visual exploration is further assisted by integrated
linked simultaneous views like scatter plots between dimen-
sions selected by the user and histogram plots of the indi-
vidual dimensions, similar to Doleisch et al.’s SimVis sys-
tem [DGHO3] aiming at flow simulation data. These plots
also take advantage of the color- and opacity-coding speci-
fied in the parallel coordinate plot.

In contrast to most other applications of parallel coordi-
nates, microarrays can produce invalid data values for some
dimensions (conditions/experiments), while generating valid
data values for other dimensions. Therefore, our system has
to deal with these situations. We address this situation by re-
placing the invalid data value by the average of the valid data
values for all experiments of the same gene, the common
mean imputation in gene expression analysis. All imputed
values can be marked in a specific color (e.g., red).

Note that while SpRay is aimed at gene expression data,
it is not limited to this kind of data; every multi-dimensional
data with or without invalid entries can be visualized with it.
It is implemented in C++, using OpenGL and QT to provide
good portability and good performance.

In the following, we demonstrate the usage of SpRay for
microarray data. For the purpose of illustration, we use an ar-
tificial 21-dimensional dataset that mimics phases of differ-
ent cell cycle related gene transcript profiles based on three
different clusters of noisy sine waves (Sinusoidal Demo, see

(© 2008 The Author(s)

Figure 1: Left: Straight forward parallel coordinate repre-
sentation of the full Sinusoidal Demo dataset. Right: Trans-
parency weighted representation of the full Sinusoidal Demo
dataset. Some structures are already visible through the
transparency modulation.

Table 1). This test example is similar to the first real world
example presented in the next section.

Figure 2: Left: Application of the rainbow (hue) colormap
to the first dimension. Right: After culling of the data points
of the base-line cluster, the high amplitude clusters become
nicely visible.

The Gaussian noise modulated both the phase shift and
the amplitude (Fig. 1 left). The first sinusoidal structures be-
come visible after tuning the transparency modulation to a
higher number of data values (Fig. 1 right). The used col-
ormap emphasizes these structures such that the noise level
can be reduced by removing the noise data points (Fig. 2
left). In particular the cluster on the base-line (low ampli-
tude) can now be easily removed to emphasize the remain-
ing clusters with a high amplitude which deviate from the
baseline (Fig. 2 right).

Dataset #Data | #Dim’s #Mined
Points Data Points
Sinusoidal Demo 2850 21+0 850
Yeast Cell Cycle 6178 1843 approx. 800
Half-Marathon 345 8+10 13/6
Microarray Validation | 1921 6+3 17

Table 1: Overview of examined datasets. For each dataset,
we list the number of data points, the number of dimensions
(conditions + statistically derived conditions), and the rele-
vant data points.
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Genhe expression values

Figure 3: Yeast cell cycle dataset. The first 18 dimensions of this parallel coordinate plot (PCP) correspond to the gene
expression values measured by Spellman et al. at the 18 time points for the o factor arrested cells. The last three dimensions
correspond to the values obtained by the harmonic regression analysis (HRA): the coefficient of determination R?, the zero-
phase angle ¢q, and the amplitude A of the estimated curve (see Section 4 for details). The polylines of the PCP are colored by
the zero-phase dimensions, so that the periodic changes of the transcript levels of groups of genes can be very easily identified

(blue, green).

4. Analyzing Microarray Data

In the course of this study, we visually explored a number of
multi-dimensional data from gene expression experiments.
Three of these datasets are discussed in this section. The first
example focuses on the genes that are active during the yeast
cell cycle, and hence expose a similar cyclic pattern. For the
second example, SpRay is used as a tool to guide the sta-
tistical analysis of differential expression. It is furthermore
used to explore the effect of different statistical correction
methods to support the selection of the most appropriate one.
The third example illustrates how SpRay can be applied as a
quality tool for the validation of a new custom-made micro-
array. All three examples demonstrate typical daily use ap-
plications of microarray analysis.

Yeast Cell Cycle. The first dataset is well-known in bioin-
formatics and describes genes of the yeast Saccharomyces
cerevisiae that are influenced by the cell cycle (cycle-
regulated) [SSZ*98]. Spellman et al. investigated the peri-
odical variation of gene transcript levels in association with
the cell cycle in a comprehensive microarray-based analy-
sis. To get reliable gene expression signals, the cells from
yeast cultures were first synchronized by an arrest-release
synchronization method resulting in three different gene sets
(o, CDC15, elutriation). mRNA was extracted at consecutive
time points following synchronization, and gene expression
values of more than 6000 genes were measured using two-
color cDNA microarrays. In the case of the o arrest — which
is also the set that we are examining here —, samples from al-

(© 2008 The Author(s)
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together 18 time pointsT were taken [SC02]. The arrays were
scanned and the basic analysis was done with common meth-
ods for background correction, normalization, and quality
filtering of the spot signals. On top of this analysis, cyclic-
ity, correlation, and clustering procedures were employed to
quantify and characterize the association of the gene tran-
script levels with the cell cycle phases.

Spellman et al. found 800 genes which satisfy the min-
imum criterion for cell cycle regulation that was defined.
Follow up analysis of the response of these genes to induce a
certain cell phase and the analysis of promoter sites of these
genes showed further evidence for a cell cycle association
for a subset of these genes.

The yeast cell cycle dataset was closely examined in many
papers. Shedden and Cooper [SC02] re-analyzed the data
and derived a more specific conclusion. They found that
the randomization of data showed less strong periodic pat-
terns than the experimental data. Therefore, noise and ran-
dom data fluctuations could be ruled out to contribute to the
cyclicity of the data®.

In this paper, we only used the data of the o factor arrested
cells. We re-analyzed the data in a similar way to Shedden
and Cooper [SCO02] with a sinusoidal regression fit of cell
cycle genes. The expression values y(¢;) of a gene at time
points ¢; were least square fitted against a linear model with
the two harmonic basic curves:

y(tj) = Bssin (%tj) +Bccos (ZT—nt_,-) +rt;). (D)

To detect the sinusoidal expression pattern of genes accord-
ing to the cell development, the period T was set to the nom-
inal interdivision time of 66 minutes specified by Shedden
and Cooper [SCO02]. The value y(¢;) is decomposed using
Equation (1) into the interesting harmonic part:

h(t;) = Bssin (?tj) + Bccos (z%tt) , 2)

and the residual part r(¢;) that quantifies the aperiodic con-
tent of y; or oscillations with a significant different period in
comparison to the selected value of 7. To evaluate the qual-
ity of the fit to the model for every single gene, we calculated

T While the time point samples in this example itself — not all gene
expression data is taking samples at different time points — can be
represented as some sort of time-varying datasets, the combination
with the statistical derived values for the visual analysis is more flex-
ible in a parallel coordinate representation.

I The first two synchronization methods (o, CDC15) produced
good reproducibility of the results, in contrast to the third method
(elutriation). Shedden and Cooper suggested in [SC02] that this may
be rather due to the stress response of the cells to the first two syn-
chronization methods, than normal variation of the transcript levels
inside an undisturbed yeast cell. This, however, does not limit the
use of visual analytics methods to extract information from the o
dataset.

(© 2008 The Author(s)

the coefficient of determination:
~ 2
g2 S5k _ (=)
= = ~
S5 L)
which measures the proportion of variability that is ex-
plained by the model SSgr (regression sum of squares) and
the total variability SS; (total sum of squares). The values of
R? lie between 0 and 1 n< R? < 1), where R*=1 implies
a perfect fit and R? = 0 no fit. For the visualization, we ex-
pressed the harmonic part A(f;) in a more descriptive way as
a single modulated and shifted sine wave:

3

h(t;) = A xsin <2—ﬂ:t[ +¢0) . “)
Ty

The amplitude A and the zero-phase angle ¢ are deter-
mined by the coefficients Bs and B¢ and can be calculated
with the help of the commonly known addition theorems of
trigonometry.

Figure 4: Selection of two groups of genes which show an
anti-correlated gene expression pattern along the cell cycle.

Figure 5: Scatter plot of dimensions R? (x-axis) against A
(v-axis) colored by dimension ¢g. Every point represents one
gene profile. The cluster shows an existing relation between
R? and A, but none with ®o.

Figure 3 shows the visual representation in SpRay; all
time points of the dataset are presented together with the
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deduced values R?, 0, and A. The coloring of all genes is
defined by the zero-phase angle ¢. The periodic changes in
gene activity can be very easily identified by visual exam-
ination. The visualization determined by the derived value
0o guides the user to a deeper insight of the data, for exam-
ple, which genes are active in the cell cycle. Through user-
interaction with SpRay, it is possible to emphasize further
different aspects of the data, for instance to search genes that
show a nearly anti-correlation pattern along the cell cycle.
Figure 4 shows the result of a specific zero-phase selection
on the ¢p-dimension.

More questions can be answered with the help of other
additional views that provide a more detailed view, such as
a scatter plot of appropriate dimensions, in particular if the
dimensions are not positioned next to each other. The scatter
plot of R? against the amplitude A colored by phase shift
0p can be used to determine if only expression profiles of a
high amplitude A achieve good R? values and how these are
related to the zero-phase angle ¢¢ (see Fig. 5). As we can see
in this figure, R? and A are highly correlated (both grow in
the same direction), while no pattern can be observed from
the ¢q colors.

Half-Marathon Dataset. The second dataset is taken from
a study [ZFD*05] that investigated the effects of an exhaust-
ing endurance exercise on the immune system. It is gen-
erally believed that a strong influence exists, which is at-
tributed to both a cellular shift in the composition of the
peripheral blood and to changes in gene expression levels.
That study used a custom-made cDNA-microarray of im-
mune and stress response related genes to investigate these
different aspects in a systematic way. Blood samples were
taken from eight well-trained male half-marathon runners
[38 £ 11.8 years, body mass index 23.6 + 1.8] in rest be-
fore the run (#p), immediately (up to 15 min) after the run
(t1), and 24 hours after the run ().

The most interesting effects were seen between the status
before the run (#p) and immediately after the run (#1), hence
only these time points are included in this investigation. The
study indicated interesting changes in the transcript level of
inflammatory genes and even more interesting evidence for
an association with the anti-oxidative defense. Both indicate
the higher stress level of the body. Here, however, we are
interested in evaluating the behavior of the ten different p-
value correction methods, as we will discuss below. Hence,
the time-related data was mapped into the dimension of the
respective runner and cannot be differentiated anymore in
this representation.

The data of the eight male runners are interpreted as bi-
ological replicates and are assigned to 8 dimensions of the
PCP (see also Tab. 1). They are represented as the log-ratios

of the gene expression values at times 7y and #;: log (:fiz‘ ) .
0

10 added dimensions represent deduced statistical values;
mean and standard deviation of the log-ratios of all run-

Ho |SSS |SSD|BH |BY
DT TR YR Y VAR TR YRR TR AR

Selection range

Figure 6: Half-marathon dataset. The PCP displays in the
first 8 dimensions the log-ratios of the gene expression val-
ues of eight well-trained half-marathon runners before (1)
and after the run (t1). The following 10 dimensions corre-
spond to deduced statistical values (mean (m) and standard
deviation (sd) of the log-ratios, the raw p-value of a t-test
(p), and seven p-values corrected for multiple testing, see
Section 4 for details). The green line shows the 1.0-level for
the various p-values (no significance) and the red line shows
the O-level (full significance). This figure shows nicely that
the p-value of the majority of samples is of very low (yellow)
significance. The view of the PCP (with a color-coding ac-
cording to the p-value corrected after Bonferroni — marked
with vertical yellow line) shows very nicely the influence of
the different correction methods.

ners, the p-value of a t-test against the null hypothesis of
no difference in gene expression between the points in time
t1 and 7y, and seven p-values corrected by different meth-
ods to address the multiple testing problem (Bonferroni (B),
Holm (H), Hochberg (Ho), Sidak (SSS, SSD), Benjamini-
Hochberg (BH), and Benjamini-Yekutieli (BY)), which are
standard methods in bioinformatics®. Overall, we yield 18
dimensions resulting in 345 polylines for each gene.

The specific choice of an adequate correction method
is a non-trivial problem in the context of microarray data
analysis. If the correction method is too rigorous, many in-
teresting gene expression changes could be missed (high
false negative rate). Also, if the method is not strict enough,
too many false positives render the follow up investigations
time-consuming, extensive, and expensive. An applicable
trade-off must be found based on the goals of the study. Fig-
ure 6 gives a good impression of the eight measured values

§ Although all these methods are standard, the question which
methods are the most appropriate for a specific situation is still dis-
puted.

(© 2008 The Author(s)
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Figure 7: Scatter plot to compare the Bonferroni with the
Benjamini-Hochberg (top) and the Benjamini-Yekutieli (bot-
tom) correction methods for this set of expression profiles. In
the plots, the BH correction is obviously much less stringent
than the B correction and only somewhat less stringent than
BY.

Gene expression values m |sd |p |B |H [Ho SSSSSD|BH |BY
‘ L YRR YRR YA YA AR VHR YA R VAR |

_ Selection range

Figure 8: The same data is visualized as in Fig. 6, but all
genes with an insignificant difference between gene expres-
sion values (corrected (B) p-value larger than 0.99, vertical
yellow line) are now culled.

and the ten deduced statistical parameters. The isomorphic
luminance-based two-color-coding is defined by the dimen-
sion that represents the Bonferroni corrected p-values. This
method is the most rigorous and was selected for the study
to get very reliable results and a very low false positive rate.
The most interesting genes are genes whose corrected p-
values fall below the defined level of statistical significance,
which was predefined to 0.05 in this study. As we can see
in Figure 6, the most interesting genes are largely hidden
by the great amount of other gene data values. Hence, it is

(© 2008 The Author(s)

Gene expressiorn values m sd (p |[B |H |Ho |SSS|SSD|BH |BY
DV VIR VR Y R T VR U Y

L

Selection range

Figure 9: This plot emphasize the significant genes (red)
of the study (corrected (B) p-value smaller than 0.2, vertical
yellow line).

necessary to prevent the irrelevant genes from being repre-
sented in the plots (see Fig. 8, near the green horizontal line)
and to emphasize the most interesting genes (see Fig. 9, red
colored samples). Note that the red colored expression val-
ues here show the 0.2 significance level (13 data points in
Tab. 1). The highly significant 6 data points with a p-value
(correct after Bonferroni) of 0.05 is the lower sub-section
close to the O-level-line.

Self1self experiments

ColormapI

Figure 10: Microarray validation dataset. The first five di-
mensions represent the self-self experiments (SEq, ..., SEs),
the sixth dimension the physical training (PT), followed by
the statistical dimensions flags (F), mean deviation (Dg), and
relevance (Rg). The green line indicates the zero level and
the vertical red and yellow lines indicate the brushing selec-
tions. Note that the vertical axis is logarithmically scaled.
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Validation of Custom-made Microarray. The third exam-
ple analyzes a dataset that was generated to validate a new
custom-made microarray. This microarray was developed as
an enhanced successor of the array which was used in the
half-marathon study above. The dataset consists of five self-
self experiments (the first five dimensions of the PCP) and
a real experiment (the sixth dimension of the PCP). Self-
self experiments use the same biological material for both
channels of one microarray slide and addresses the techni-
cal sources of the signal error. Consequently, no differential
gene expressions should be detected and all measured log-
ratios are supposed to be near zero. Nevertheless, the mi-
croarray analysis exposes a few extreme outliers which sug-
gest a difference in gene expression (see Fig. 10). The real
experiment compares the material from two saliva samples
which were taken immediately before and after an extensive
physical training. In this case, it was expected to see real
changes in the expression levels of different genes.

Figure 11: Scatter plot of self-self SE, experiment (x-axis)
and physical training experiment (PT, y-axis) before (left)
and after removal of the log-ratios of the expression val-
ues with medium reliability flags set (right and Fig.13). The
physical training experiment one shows a more compact (red
ellipsoid) distribution.

_ '

Figure 12: Histograms of self-self experiment (SE,, left)
and physical training experiment (PT, right). The PT shows
a more broader distribution as SE; or the other (not shown)
self-self experiments.

The comparison of the physical training experiment to the
self-self experiments shows a slightly smaller range of all
measured values for the first one, but these values are some-
what broader distributed over this range. This can be seen
easily in PCP (Fig. 10), the scatter plots (Fig. 11), and the
histogram plots (Fig. 12). It clearly depicts the difference of
the technical and biological signals.

Self:self experiments

\ Selection range’

//
/
Colorma

Figure 13: The same data is visualized as in Fig. 10. Log-
ratios of the expression values with a high set flag (not reli-
able) are are colored with a yellow luminance variation, and
log-ratios with a low (or no) set flag (reliable) are colored
with a blue luminance variation. All other log-ratios are re-
moved.

To get a better understanding of the observed effects, three
statistical parameters were added (the last three dimensions).
For the first one we computed for each gene the fraction of
flags set across all six experiments. These flags are the result
of an image analysis (performing spot detection and signal
extraction) of the microarray slides and indicate a problem-
atic signal quality. A gene with no flag set across all exper-
iments has the most reliable signal quality, while the genes
that had a flag set in each experiment (altogether 12“) have
the worst reliable signal qualities. Figure 13 shows the PCP
after keeping only the very unreliable (high flag rate, yellow)
and very reliable expression values (low flag rate, blue). This
figure shows the success of the image analysis flagging; re-
liable (blue) values of the self-self experiments consistently
deviate only lightly from the zero level, while the majority
of unreliable values (yellow) deviate significantly.

The second statistical dimension, Dy, is the mean M; ; of
the log-ratios for a certain gene g along all self-self experi-
ments i (with N = 5):

1 N
Dy = N Y M 3)

i=1
Genes with D, deviating substantially from the expected

value of zero indicate here a problematic quality.

The final statistical dimension combines the previous de-
viation metric with the values of the physical training exper-

9 To avoid a measurement bias, each experiment is actually per-
formed twice ("dye swap").

(© 2008 The Author(s)
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Self-self experiments

Selection range ‘

Colorma]

Figure 14: The same data is visualized as in Fig. 10, but all
log-ratios of the expression values with a low relevance are
removed.

iment such that genes with an high log-ratio |M§ T in physi-
cal training and a low Dy are emphasized:
PT
M |

Ry = Dy (6)

Here, large values R, indicate interesting biological signals.

Figure 14 demonstrates the effect of this relevance metric.
The irrelevant expression values are removed (yellow selec-
tion), while the relevant ones (red) are maintained. This fig-
ure shows also nicely how the values classified as relevant
expose a high deviation from the zero level for the physical
training experiment (PT), and a small deviation for the self-
self experiments. Some of these relevant values, however, are
also classified as not reliable by the image analysis metric.
These outliers are not uncommon for measured microarray
data.

5. Discussion

SpRay supports the visual exploration of high-dimensional
data, such as microarray data, using parallel coordinates and
other information visualization methods. Trends and clus-
ters can be explored through the application of specific trans-
parency modulations and colormaps. However, often the raw
data does not provide enough structure to allow a compre-
hensive analysis. Therefore, we combine visual exploration
with statistical analysis methods. This combination allows
to discover relations that were difficult to reveal with visual
methods alone, since it allows the identification of irrelevant
data, which can henceforth be removed from the visual rep-
resentation.

Another valuable advantage of this combination is the
possibility of visualizing the effect of the various analysis
methods, as we have shown with the half-marathon dataset.

(© 2008 The Author(s)

Reliability or instability of the individual methods can be ex-
amined and considered for a specific application and allows
this way a better understanding of them. The essence of the
different correction methods is nicely depicted in all plots of
the Half-Marathon dataset (Figs. 6 - 9). The lower span of
the raw p-values (p) delivered by the t-test are spread by all
correction methods over a greater area. The most rigorous
method, and therefore the largest spread of the lower area, is
produced by the Bonferroni correction (B). All other meth-
ods cause an increasingly smaller spread (H, Ho, SSS, SSD)
or a significantly different spread for less rigorous correction
methods such as Benjamini-Hochberg (BH) and Benjamini-
Yekutieli (BY), which (for our study) emphasize too much
on the samples with too little significance (yellow coloring).
This significant difference is also visible in the scatter plots
of B against BH, and B against BY (Fig. 7). Note, however,
that the relationship (vertical sorting) of the expression val-
ues between the conditions has not changed through-out the
correction methods.

The third example showed how a new custom-made mi-
croarray can be validated using SpRay. We showed that vir-
tually all outliers of the self-self experiments could be de-
tected by the reliability flags and all relevant expression val-
ues were detected by the relevance metric. A visual explo-
ration on the experiment data alone would have probably in-
dicated (wrongly) a dysfunctional microarray.

As mentioned in Section 3, SpRay provides a diverse set
of colormaps to be applied to the different dimensions of
the parallel coordinates. One of them is the rainbow (hue)
map. Although the use of the rainbow map in visualization
is highly disputed [BTO7], since it may suggest closeness
or distance to equally distant values, we found that it pro-
vides a good mechanism to differentiate the different gene
expression values over the many conditions (yeast cell cycle
dataset). For the other two studies, however, we used lumi-
nance variations between two colors (blue/yellow). Note that
for all experiments, we are only looking for the qualitative
differentiation, not for a quantitative one.

6. Conclusion and Future Work

In this paper, we presented an approach that combines vi-
sual exploration techniques with statistical analysis methods
to extract meaningful information from microarray data. In
particular this tight integration of statistical analysis with in-
teractive visual exploration — now integrated into the emerg-
ing approach of visual analytics — proved to be very powerful
and useful. This approach provides an integrated visualiza-
tion of the original data and the statistically derived value.
By visualizing the effect on the data and the derived values
at the same time, it allows also the quick validation and eval-
uation of statistical methods on their appropriateness, which
may lead to a more standardized approach to the analysis of
microarray data.

SpRay provides numerous statistical analysis methods,
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which are used in this paper to combine visual exploration
and statistical analysis to visual analytics. If, however, more
methods are required, a direct link between SpRay and R (an
important analysis system in bioinformatics) opens up the
full statistical functionality of R.

Although overplotting has been addressed through the use
of color-maps and opacity modulation, large datasets will
still suffer from it. Hence, our future work will particularly
focus on solutions to this issue.
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