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ABSTRACT

In video see-through augmented reality, virtual objects are overlaid
over images delivered by a digital video camera. One particular
problem of this image mixing process is the fact that the visual ap-
pearance of the computer-generated graphics differs strongly from
the real background image. In typical augmented reality systems,
standard real-time rendering techniques are used for displaying vir-
tual objects. These fast, but relatively simplistic methods create an
artificial, almost “plastic-like” look for the graphical elements.

In this paper, methods for incorporating two particular camera
image effects in virtual overlays are described. The first effect is
camera image noise, which is contained in the data delivered by the
CCD chip used for capturing the real scene. The second effect is
motion blur, which is caused by the temporal integration of color
intensities on the CCD chip during fast movements of the camera
or observed objects, resulting in a blurred camera image. Graphi-
cal objects rendered with standard methods neither contain image
noise nor motion blur. This is one of the factors which makes the
virtual objects stand out from the camera image and contributes to
the perceptual difference between real and virtual scene elements.

Here, approaches for mimicking both camera image noise and
motion blur in the graphical representation of virtual objects are
proposed. An algorithm for generating a realistic imitation of im-
age noise based on a camera calibration step is described. A ren-
dering method which produces motion blur according to the current
camera movement is presented. As a by-product of the described
rendering pipeline, it becomes possible to perform a smooth blend-
ing between virtual objects and the camera image at their boundary.
An implementation of the new rendering methods for virtual objects
is described, which utilizes the programmability of modern graph-
ics processing units (GPUs) and is capable of delivering real-time
frame rates.

CR Categories: H.5.1 [Information Interfaces and Presenta-
tion]: Multimedia Information Systems—Aurtificial, augmented,
and virtual realities; 1.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

Keywords: augmented reality, rendering, photometric registra-
tion, photographic imperfections, image noise, motion blur, alias-
ing

1 INTRODUCTION

In augmented reality (AR), graphical objects are overlaid on top of
the view of the real world [2]. In video see-through augmented re-
ality, this is achieved by continually acquiring digital images from
a camera which captures the real environment. These camera im-
ages serve as background in the image mixing process, and the vir-
tual objects are rendered over them. In order to achieve a spatially
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correct overlay of the virtual scene elements, camera tracking tech-
niques are employed. Among the most popular and easy-to-use
tracking methods are vision-based tracking systems like the AR-
ToolKit [16] and ARTag [4].

In most augmented reality systems, standard real-time rendering
methods are used in order to generate the graphical representation
of virtual objects. Widespread graphics libraries like OpenGL or
high-level toolkits and scene graphs based on these libraries are of-
ten used for this task. While these standard renderers typically are
very fast and easy to integrate in an AR application, they also pro-
duce the characteristic artifacts of real-time computer graphics. The
generated representation of virtual objects is based on manually de-
fined artifical light sources and material parameters. Simple inter-
polation methods are used for spreading the computed color values
over the area of the polygons which make up the graphical objects
contained in the augmented environment. Moreover, artefacts like
strong aliasing at the outer boundary of virtual objects make them
easily discernible from the camera image.

Altogether, the virtual scene elements in an augmented environ-
ment typically have an artifical and almost “plastic-like”” look. This
leads to significantly different levels of realism of the camera im-
age and the graphical objects, which therefore stand out from the
background. This “realism gap” can be considered one of the main
challenges in rendering for augmented reality.

One effect contained in the digital camera image, which is not
present in the renderings of virtual objects, is image noise. This im-
age noise is generated by the CCD chip of the digital video camera
that is used for capturing images of the real environment. (CCD is
an acronym for charge-coupled device, which is the technical term
for the commonly used type of digital image sensor.) There are dif-
ferent physical reasons for this noise, e.g., photodiode sensitivity
variations and photon noise [14]. Depending on the quality of the
CCD chip and the environmental conditions, the impact of the noise
can vary from being a subtle phenomenon to a clearly discernible
variation in the digital video stream. Figure 1 shows an example of
camera image noise delivered by a webcam.

In this paper, a novel approach to rendering virtual objects,
which mimics the noise contained in the camera video stream, is
proposed. A simple calibration step is described, which measures
image variations relative to averaged color intensities in a static
scene. The characteristics of the camera image noise are then es-
timated as the mean and standard deviation of a normal distribu-
tion of variations in color channel intensities. These characteris-
tics are used in a modified augmented reality rendering pipeline,
which simulates noise when displaying virtual objects. This ani-
mated noise simulation contributes to equalizing the realism in the
camera image and the virtual objects.

A second peculiarity of images delivered by a digital video cam-
era is motion blur. Motion blur results from the temporal integration
of color intensities on the CCD chip [19]. If there is fast motion in
the captured scene, due to fast movement of the camera or observed
objects, color intensities corresponding to different real objects are
averaged in the image over time. This leads to a blurred reproduc-
tion of the real scene in the camera image. Figure 2 illustrates the
motion blur effect in an image acquired from a webcam.

Here, a method for recreating motion blur in the graphical repre-
sentation of virtual objects is presented. The size and direction of
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Figure 1: Example of noise in the camera image. An image captured
with a webcam is shown. On the right hand side, an enlarged image
detail of a homogenuous image region is depicted with enhanced con-
trast. Contrast-enhanced representations of the three color channels
of the same image detail are also shown.

e

Figure 2: Example of motion blur in the camera image.

the blur is approximated based on the motion of the projected vir-
tual objects in camera image space in subsequent frames. An itera-
tive rendering algorithm then draws overlapping transparent copies
of the virtual scene element along the blur vector, resulting in a
visual effect similar to motion blur.

The implementation of both the image noise simulation method
and the motion blur renderer utilize the programmability of modern
graphics processing units (GPUs). The resulting rendering pipeline
is capable of generating output images at real-time frame rates.

The adaptation of the visual realism of virtual objects to the real-
ism of the camera image is a major challenge in augmented reality
rendering. Relatively little previous work exists in the area of spe-
cialized display algorithms for AR, and to date none has dealt with
camera image noise and motion blur effects. Therefore, the meth-
ods proposed in this paper represent a significant contribution to the
ongoing research in AR rendering.

In the remainder of this paper, an overview of related work is
given in Section 2. Section 3 discusses the new method for sim-
ulating camera image noise. The method for the smooth blend-
ing between camera image and virtual object pixels is presented in
Section 4. The motion blur rendering technique is described in Sec-
tion 5. Results obtained the new AR image generation methods are
presented in Section 6, and Section 7 concludes the paper with a
summary.

2 RELATED WORK

The methods proposed in this paper aim at adapting the visual real-
ism of virtual objects to the appearance of the camera image. They
can therefore be considered photometric registration techniques.
The photometric registration problem is defined as the task of adapt-
ing the illumination conditions and overall visual appearance of two
images. An early method for the correct automatic illumination of
virtual objects added to real images was described by Debevec [3].
Research has also been done into methods of analyzing the real
illumination conditions in an interactive augmented reality setup.
Examples of this approach include the work of Gibson et al. on
photometric reconstruction for mixed reality [11]. The system of
Kanbara and Yokoya analyzes the distribution of real light sources,
which is then used for adapting the representation of graphical ob-
jects [15]. Their method requires a special marker and mirror ball to
be visible in the camera image in order to compute the environment
light map. A similar technique, which also utilizes an acquired en-
vironment illumination map, was proposed by Agusanto et al. [1].
In their system, a mirror ball and special camera are used in a spe-
cific preparatory procedure for determining the lighting conditions
in the scene. Heymann et al. have described a GPU-accelerated
rendering technique for realistic illumination in AR based on infor-
mation from a captured mirror sphere [13].

An advanced type of photometric registration is the AR render-
ing method developed by Okumura et al. [17]. Their system also
applies blur to the graphical representation of virtual objects. How-
ever, this system is not designed to handle motion blur, but deals
with the blur caused by real objects being out of the focal plane of
the camera.

Recently, a different approach to equalizing the visual realism
of real and virtual scene elements was proposed. By applying sim-
ilar non-photorealistic stylization filters to both the camera image
and the computer-generated graphics, stylized augmented reality
generates a homogeneous visual appearance in the output video
stream [5, 8]. Algorithms for a cartoon-like [7] and a painterly
stylization [6] of augmented video streams have been presented. It
was shown that the application of a stylization filter in augmented
reality significantly reduced the discernability of virtual objects in
an experimental study [9]. Haller et al. developed a method for dis-
playing both the camera image and virtual objects in AR in a “loose
and sketchy” style [12].

The drawback of stylized augmented reality techniques is that
they significantly alter the camera image. Most types of artistic or
illustrative stylization remove details from the input image by cre-
ating large homogeneous regions or composing the output image
of relatively large brush strokes. While this is acceptable for some
applications, e.g. entertainment and art installations, generating a
stylized camera image is not appropriate in other scenarios. The
techniques presented in this paper do not have this disadvantage.
The virtual objects are adapted to the visual appearance of the cam-
era image, which is preserved in its original, unprocessed form.

3 IMAGE NOISE

In this paper, a model for simulating camera image noise is pre-
sented. It is assumed that a given digital camera capturing the back-
ground image for AR delivers a distinctive type of image noise. The
noise characteristics of this image noise are measured using a sim-
ple calibration step. These characteristics are described by a sim-
ple set of parameters. They are then used in an adapted rendering
pipeline for virtual objects in augmented reality, which recreates the
measured image noise.



3.1 Image Noise Model

In the literature, precise theoretical descriptions of CCD noise have
been discussed (e.g., see Withagen et al. [21]). However, such an
exact noise model can only be established based on elaborate mea-
surement procedures under controlled conditions. Moreover, With-
agen et al. conclude that the noise produced by a typical commer-
cially available webcam does not conform well to the common ex-
act noise model. Since most video see-through augmented reality
systems use commercially available webcams, a simplified noise
model, which can be estimated based on an uncomplicated calibra-
tion procedure, is used here.

In this simplified noise model, it is assumed that the variation of
intensity in each color channel is normally distributed. We denote
the difference between the captured color channel value, ¢y, ),
and the ideal color channel value in the image of the actual scene,
i{.gb}> as channel variation vy, o )0 = ¢ 0 1 — if;. p}- This means
that the probability density function of the channel variation vy, ¢ 1
can be expressed with the well-known Gaussian function, as shown
in Equation 1. In the Gaussian function, the characteristics of the
normal distrubution are described by the mean, y;, and the stan-
dard deviation o;. The resulting f(v; ; l;, ;) is the likelihood of a
channel variation of v; from the ideal image color in a pixel. Note
that each color channel, {r,g,b}, is treated separately, which leads
to three different mean values and standard deviations, py, , ;1 and

Org,b}-
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As a refinement of the basic noise model introduced in Equa-
tion 1, different normal distributions are not only established for
each color channel, but different sets of distributions are used de-
pending on the overall pixel intensity. Some effects contributing
to CDD noise are proportional to the magnitude of the incoming
light signal (e.g., shot noise [21]). In the system proposed here, this
phenomenon is modelled by estimating several sets of normal dis-

tribution parameters, ,u{]r_g_ b} and G{]r_g_ b} The average intensity of

a captured image pixel, ¢(x,y), is computed as shown in Equation 2.

C_’(x,y) _ Cr(x,y) -|—Cg();y) ‘l'Ch(X,y)

The determined average intensity is then quantized into one of N
intensity bins, i.e., j = [¢/N]. In the current implementation of the
system, a number of intensity bins equal to a power of two is always
used. This means that image intensities are partitioned into N = 2¥
bins, each spanning an intensity range of the size 256/ 2k — 2(8-K)
for the typical 8-bit camera images. For each of the intensity bins,
a normal distribution is estimated, as shown in Equation 3. This
Gaussian function expresses the probability of a channel variation

v{ if the average intensity of the captured image pixel falls into the
intensity bin j.

! v —ufy
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3.2 Image Noise Calibration

An easy-to-use calibration step for determining the noise distribu-
tion parameters (,ulj , Gij ) for all channels i and all intensity bins j is
proposed. This calibration step is based on the principle of captur-
ing one or several arbitrary but static scenes with the webcam over

a duration of several frames. We refer to these static scenes as ref-
erence scenes, and the number of reference scenes is denoted as S.
For each of the reference scenes, several frames are recorded. The
number of these reference frames, for a reference scene s, is called
FS,se{l,...,S}

An interactive software tool was implemented, which allows the
user to capture reference scenes with arbitrary durations. This re-
sults in a series of stored reference frames /s with frame numbers
fs €{1,...,F°} within the image sequence captured for reference
scene s. Subsequently, the noise parameter estimation process is
started by the user.

At the beginning of the noise distribution parameter estimation,
average images are computed for the reference scenes. For each
reference scene, the average image a® is calculated according to

Equation 4. As shown in Equation 4, the pixel intensities rf * are
summed up over all frames f; of a reference scene for each color
channel i € {r,g,b}. The resulting sum is then devided by the num-
ber of reference frames in this scene, F*. This computation yields
the averaged image a* for reference scene s.

a(%y) = 45 ’Gfxy i€{ngb} se{l,....S} ¥

TMw

The average images a; are assumed to be the “ground truth”,
i.e., the ideal pixel values for the actual observed static scene. It is
now possible to determine the noise in each pixel of each reference

frame relative to its associated average image. The computation of

f‘

these measured color channel variations v;* is shown in Equation 5.

vy =rf () —ai(ry) s i€ {rg.b} fr€ {1 . F} (9)

As the next step, histograms of the color channel variations are
computed. For each color channel and each intensity bin, one his-
togram is constructed. This is achieved by iteratively processing the
color channel variations in all pixels of all reference frames. For a

given color channel variation vﬁ( y), the average intensity of the
associated average image pixel is calculated, ie., al(x,y). Subse-
quently, the corresponding intensity bin j = |a@/N| is determined.
The color channel variation is then counted as one occurrence of
the varation size vlf“ (x,y) in the histogram for color channel i and
intensity bin j.

The result of the histogram construction process are 3 - N his-
tograms, histogram! (v) with i € {r,g,b}, j € {0,...,N — 1}, and
v € {—255,...,255}. Note that each histogram has 511 entries for
measured color channel variations between -255 and 255, which
are the maximum possible variations in 8-bit images. The content
of each entry represents the number of occurrences of the corre-
sponding color channel variation. An example of a channel vari-
ation histogram is shown in Figure 3. In this plot, data measured
for a Sony EyeToy webcam are depicted. Only a single intensity
bin was used in this example (N=1). As illustrated in Figure 3, the
real noise distribution measured in the webcam image data indeed
resembles a normal distribution.

Finally, the noise distribution parameters are estimated from the
computed channel variation histograms. We use the maximum like-

lihood estimation for determining the mean values ,ul.j and standard

deviations Gij of the measured noise data. (For a description of the
maximum likelihood estimation, refer to [20].) The mean value is
computed as the sum of all color channel variations divided by the
number of pixels, as shown in Equation 6. In this equation, P/ is
the total number of pixels over all reference frames which fall into
intensity bin j. This number is established by updating correspond-
ing counter variables for each intensity bin during the histograms
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Figure 3: Channel variation histograms for the red, green and blue
channels measured for a Sony EyeToy webcam. Only one intensity
bin was used here (N=1). The number of reference scenes, S, was
5, and the total number of reference frames was 199. Only a limited
portion of the entire channel variation range is shown. Outside of
the depicted range, the histogram entries are close to zero or zero.

construction. The summation in Equation 6 is also performed over
all pixels in intensity bin j over all reference frames.

. 1 . )
W=p X vilwy) s ie{ngb} ©)
all pixels
in bin j

The standard deviations for the channel varations are calculated
as shown in Equation 7. Again, a summation over all P’/ pixels
associated to intensity bin j is performed. However, this time the
squared differences between the channel variations and their mean
are summed up. The resulting sum is again divided by the total
number of relevant pixels, yielding the squared standard deviation

(Gl-j )2. (The squared standard deviation is equal to the variance of
the distribution.)

. 1 . . '
(Gi])ZZE Z (Vl!(xvy)_:uij)z ) le{r7g7b} (7)
all pixels
in bin j

In the implementation of the noise distribution parameters esti-
mation, optimized methods for the computation of the means and
standard deviations are used. These are possible due to the previ-
ously computed histogram data. Since the number of occurrences
of each channel variation is known, it is not necessary to loop over
all pixels in all reference frames again. Instead, the entries of the
histograms are iteratively processed. The summation terms are then
simply multiplied by the number of occurrences of this channel
variation. These expressions replace the corresponding number of
summation terms in Equations 6 and 7. The optimized computation
of the means and standard deviations is shown in Equation 8.

. 1 255 .
w = pi Z histogram (v) - v
v=-255
s . ) ®)
(6/)? = 7 2555 histogram! (v) - (v — u!)?
Yy
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The final output of the image noise calibration step are the mean

values /,Li] and the standard deviations Gij for all color channels i €
{r,g,b} and all intensity bins j € {0,...,N — 1}. This information
is then used for generating corresponding noise textures.

3.3 Generation of Noise Textures

The noise distribution parameters computed in the noise calibration
step are stored in a file. They are then read by the actual augmented
reality application, which uses an adapted rendering strategy for
displaying virtual objects with overlaid noise. In this application,
noise textures are generated during initialization as a preparation
step for the actual rendering algorithm.

The noise textures are generated as RGB textures, in which each
texel holds random channel variation values. These channel varia-
tions are generated such that they have a distribution corresponding
to the measured noise mean values and standard deviations. In order
to be able to store the channel variation values in the texture, they
are normalized to be in the 8-bit range of [0;255], corresponding to
channel variations between -128 and 127.

A special random number generator has to be used so that ran-
dom values with a normal distribution of a given mean and standard
deviation are generated. This is not possible with the standard C++
random number generator, which produces an uniform distribution
(i.e., each value in the random number range has the same prob-
ability). In the implementation of the system presented here, the
non-uniform random number generators library from [10] is used.
This library is capable of producing random numbers with a defin-
able normal distribution.

A user-defined parameter determines the size of the generated
noise textures. In the implementation of the system, quadratic tex-
tures with a side length equal to a power of two are always used.
For each of the intensity bins defined in the calibration step, a noise
texture is generated. The texels of each texture are computed in an
iterative process which loops over the entire area of the texture. The
values of the color channels of the currently regarded texel are ob-
tained from a normally distributed random number generator with

distribution parameters (‘Ltl] , Gij ). An example of a noise texture is
depicted in Figure 4.

Figure 4: Enlarged portion of a 512x512 noise texture generated
with the distribution parameters derived from the histogram shown
in Figure 3. A color channel variation of 0 is represented as 50% grey
(intensity level 128), negative channel variations are darker, positive
variations are brighter. The color channel varations shown here were
multiplied with the factor 8 in order to improve the visibility of the
noise data.

3.4 Incorporating Noise in the Rendering

After the noise textures have been generated, they are used in an
adapted rendering pipeline, which displays the virtual objects with



overlaid noise. This rendering system is based on a multipass ap-
proach. At first, the steps of a conventional AR pipeline, i.e., the
display of the camera image and the drawing of graphical objects,
are performed. The image data generated in these steps are read
back into texture memory. Then, an image processing step com-
bines the camera image, the rendered virtual objects, and the noise
textures into a final output image. Figure 5 shows an overview of
this rendering pipeline.

webcam

Camera image texture
D image I
Final image Output

composition |—¥ image
Rendering of stage

—_— virtual

objects
image texture +
depth texture

A
virtual objects ]
database !

camera pose

information Noise

textures

Figure 5: Diagram of the augmented reality rendering pipeline for
overlaying noise over the virtual objects.

In the first pass of the adapted AR display pipeline, the camera
image is rendered. This is typically done by a special function of
the augmented reality framework, which takes internal camera pa-
rameters like lens distortion into account. (For example, a special-
ized camera image display function is provided in the ARToolKit
library [16].) After the camera image has been rendered into the
currently invisible back frame buffer, it is read back into texture
memory. In the implementation of our system, this readback is
performed with the OpenGL function glCopyTexSubImage2D(),
which copies the color values of the rendered camera image into an
RGB texture.

Before the second pass of the rendering pipeline is executed, the
back frame buffer is cleared, so that it contains only black pix-
els. Next, the virtual objects of the augmented environment are
rendered. They are transformed according to the current estimated
camera pose, which is obtained for instance from the marker track-
ing component of the AR framework. After the virtual objects have
been rendered, the contents of the back frame buffer are again read
back into texture memory. This time, however, both the contents of
the RGB color buffer and the depth buffer are copied into separate
textures. (A specific depth texture format is provided by OpenGL
for making the readback of depth buffer contents possible.) Fig-
ure 6 depicts the color and depth buffer contents after rendering a
virtual butterfly model.

The image data acquired in the first two rendering passes are
then combined into the final output image. This step of the display
pipeline utilizes the programmability of modern graphics process-
ing units (GPUs). A specialized shader program, which performs
the required image processing operations, was developed. It was
implemented using the OpenGL Shading Language [18].

For each pixel in the output image, this noise shader looks up the
color and depth values at the corresponding location of the image
textures which were acquired in the previous rendering passes. It
then decides whether a virtual object pixel is to be rendered at the
current coordinates. This is achieved by comparing the obtained
depth value with the far limit of the depth range, which is stored in
the current OpenGL state. If the depth buffer value at a location is
less than the value of the depth range limit, a virtual object pixel
is present. If this is not the case, the camera image pixel obtained

(a) Frame buffer contents

(b) Depth buffer contents

Figure 6: Rendered representation of a virtual butterfly model. Both
the copied frame buffer texture and the depth buffer texture are
depicted. The contrast of the depth buffer image was enhanced in
order to improve the visibility. In the depth image, darker values
correspond to pixels closer to the viewer.

from the first rendering pass is displayed as the output of the final
image composition step.

In the implementation of the shader, the comparison of depth
values and selection of output pixels is performed with the step ()
and mix () functions provided by the OpenGL Shading Language.
The use of conditional branching is avoided, as it is a notoriously
slow operation on GPUs.

If a virtual object pixel has been detected at the current loca-
tion, its color values are modified based on the precomputed noise
textures. Initially, noise texture coordinates are defined such that
the textures are repeated over the entire area of the output image in
a straightforward manner. Then, random variations are applied to
the texture coordinates in order to create varying, animated noise
in the output video stream. Two types of variations are used in the
shader. First, random offsets are added to the texture coordinates.
This means that the noise textures are translated by a random vec-
tor. As the second variation, the texture coordinates are transformed
by a random rotation. This can easily be achieved by multiplying
the texture coordinates with the corresponding rotation matrix in
the shader. For each frame, a new random translation vector and
a new random rotation angle are determined. These random val-
ues are generated on the CPU by the software which manages the
image processing shader, and they are then passed to the shader
using shading language functionality. (Currently, existing imple-
mentations of the OpenGL Shading Language are not yet capable
of producing random values in a shader program.)

The resulting, randomly modified texture coordinates are then



used for looking up the channel varations in the noise texture. The
average intensity of the original virtual object pixel is computed,
and then the noise texture corresponding to the associated intensity
bin is selected. Finally, the channel variations stored at the deter-
mined texture coordinates in this texture are added to the color of
the output pixel.

The result of this process is the final output image. The camera
image is displayed as it was originally rendered. The virtual objects
are displayed with an overlaid animated noise texture, the charac-
teristics of which correspond to the data measured in the noise cal-
ibration step. Figure 7 shows the effect of the noise overlay on the
virtual butterfly model.

detail without
noise

detail with
noise

Figure 7: Rendering of the virtual butterfly model with overlaid noise.
(The contrast in the enlarged image details was enhanced in order
to improve the visibility of the noise.)

3.5 Refinements of the Noise Rendering Algorithm

After initial experiments, several refinements were introduced into
the described basic noise rendering pipeline. These were developed
based on an empirical assessment of the visual appearance of the
noise overlays generated by the display pipeline.

The first improvement allows for the possibility of adapting the
size of the noise texels. In the original pipeline, each noise texel
modifies exactly one output pixel. This does not correspond well
to the color variations in the camera image. In our experience, the
color variations in the camera image often affect patches of sev-
eral pixels. A possible explanation for this effect could be artifacts
generated by the camera image rendering process. This rendering
process displays a scaled and warped representation of the original
camera image data in order to take the internal camera parameters
into account. Figure 8, which shows the same image detail as de-
picted in Figure 7, illustrates the effect of magnifying the noise tex-
els. In this example, a noise texel magnification factor of 4.0 was
used, leading to a noise texel size of 4x4 pixels. In the implementa-
tion of the system, the noise texel magnifier is applied by dividing
the rotated and translated texture coordinates by the magnification
factor. Nearest neighbour interpolation is used for the texel lookup,
resulting in discrete quadratic patches in the output image which
are affected by a single noise texel. (Figure 8 also nicely demon-
strates the random rotation of texture coordinates described in the
previous section.)

As a second refinement of the original noise rendering pipeline,
a noise scaling factor, which can be defined by the user, was added.
The color channel variations obtained from the noise textures are

Figure 8: lllustration of the noise texel magnification factor. The
dotted white lines represent boundaries between (rotated) columns
and rows of noise texels. The solid white boxes highlight two indi-
vidual noise texels. For this image, a noise texel scaling factor of 4.0
was used.

multiplied with this factor before they are added to the virtual object
pixels in the noise shader. This way, the impact of the noise texture
can be manually adapted in order to achieve a stronger and more
visible effect.

Finally, experiments with the original noise rendering system re-
vealed that the changes in the noise overlay happened too often.
This resulted in a strong flickering effect instead of a natural noise-
like appearance. Therefore, a frame counter with a user-definable
update delay d was introduced. Thanks to this counter, the random
variations of the texture coordinates (i.e., random offset and rota-
tion angle) are updated only every d frames. This results in a more
slowly varying noise, which corresponds better to the noise in the
camera image.

4 ANTIALIASING

As a by-product of the new noise rendering pipeline, it becomes
possible to perform a smooth blending between virtual objects and
the camera image. Due to the preceding readback of color and depth
buffer contents, all the data required for such an antialiasing step are
available.

In order to be able to perform the blending, a 3x3 neighbourhood
of color and depth texels is looked up for each output pixel. For
each of the texels in the neighbourhood it is then decided whether
a virtual object or the camera image is visible at that location. As
described in Section 3.4, this can be determined with a simple com-
parison of the obtained depth value with the far depth range limit.
The computation of this decision variable D(x,y) at the location
(x,y) is shown in Equation 9. In this equation, the resulting deci-
sion variable is assigned a value of one if the depth value at this
location, depth(x,y), is less than the current far depth range limit,
depthRange¢q,. In this case, a virtual object pixel has been de-
tected. Otherwise, a value of zero is assigned to D(x,y), which
indicates that a camera pixel is detected there.

_ | 1, depth(x,y) < depthRange s,y
D(x,y) 7{ 0, otherwise ®

If a camera image pixel was detected at the currently regarded lo-
cation, i.e., D(x,y) =0, the color value of the corresponding camera
image texel is used as output. Otherwise, the result of the blending
operation is used. This blending is computed as shown in Equa-
tion 10. The blending operation is designed so that an averaging
of color values is only done for boundary pixels, i.e., those virtual
object pixels which have adjacent camera pixels. For such a virtual
object boundary pixel, only the neighbouring camera image pixels
are taken into account for the blending, while adjacent virtual object
pixels are ignored.

Therefore, a sum of camera image pixels c(x+ i,y + j) is com-
puted over the 3x3 neighbourhood as in Equation 10. Only those



pixels, for which a depth decision variable D(x + i,y + j) of zero
has been determined (i.e., camera pixels), are taken into account.
The color of the central virtual object pixel, v(x,y), is also added to
the result of this summation. The resulting summed up color data is
then divided by factor n, which is equal to the number pixels which
where included in the summation (i.e., the number of adjacent cam-
era image pixels plus one). The final result is the antialiased virtual
object boundary pixel color b(x,y).

b(x,y) = % (v(x,y)+ 21: t (1=D(x+i,y+j)) clx+i,y+j)

i=—1 j=—1

(10)

Due to this averaging of color values between virtual object

boundary pixels and adjacent camera image pixels, a smooth blend-

ing is performed at the object boundaries. This effect is illustrated
in Figure 9.

original rendering

smoothed
object border

Figure 9: Smooth blending at the boundary of the virtual butterfly
model. As shown on the right hand side, the aliasing between the
camera image and the virtual object is reduced significantly by aver-
aging the color values. (In this example, a smoothing factor f = 0.8
was used.)

As arefinement of the described blending procedure, a smooth-
ing factor B € [0; 1] was introduced. This smoothing factor is used
for mixing the original virtual object color into the output pixel with
a percentage of (1 — ). In this way, the impact of the smoothing
effect can be adapted by the user.

5 MOTION BLUR

The second camera image effect which is treated in this paper is
motion blur. As explained in Section 1, motion blur results from
the temporal integration of pixel intensities. If there is fast move-
ment in the observed scene, colors corresponding to different real
objects are averaged, leading to a blurred camera image. Such fast
movements in the image can be caused by both changes of the cam-
era pose and moving objects in the scene.

In addition to the noise renderer described in Section 3, we there-
fore propose a second new display technique for virtual objects in
AR, which takes motion blur into account. In order to be able to
mimic the effects of motion blur in the camera image, the magni-
tude and direction of the blurring have to be known. Our system
uses an uncomplicated method for approximating this motion blur
vector based on the available camera pose information.

The current implementation of our method can render motion
blur for a single virtual object. It could, however, be easily extended
for handling several objects. In a preprocessing step, the geometric
center of the virtual model is computed. This is achieved by finding
the bounding box of the model, i.e., the maximum and minimum
occurring vertex coordinates. The geometric center of the model

is then determined by calculating the center between the maximum
and minimum coordinates for each coordinate axis.

During the runtime of the augmented reality system, a blur vec-
tor is estimated in every frame. This approximated blur vector is
defined as the two-dimensional motion of the center of the virtual
object in image space. The computation of this vector is shown in
Equation 11. In this equation, the 2D position of the virtual object at
time ¢ is denoted as pos(t). This position is determined by project-
ing the geometric center of object, center, into image space. The
projection operation, expressed as pro jpyse(;), is performed accord-
ing to the currently estimated camera pose, Pose(r). This camera
pose is the same as that used for rendering the virtual objects in the
AR scene.

The projected 2D position of the object center is calculated in
every frame, and the last determined position is stored. It is there-
fore possible to compute the difference between the last position,
pos(t — 1), and the current position, pos(). This difference vector
represents the 2D motion of the virtual object in image space and is
used as an approximation for the blur vector.

pOS(t) = prOjPose(l‘) (Center)
11
blurVector(t) = pos(t) — pos(t — 1)

5.1 Rendering Motion Blur

In every frame, the rendering system decides whether to display the
virtual object with or without motion blur. This is done by com-
paring the length of the blur vector with two thresholds. The first
threshold defines the minimum object movement required to make
the use of motion blur useful (typically between 5 and 10 pixels).
The second threshold helps to ignore blur vectors resulting from an
erratic pose estimation, e.g., if no useful pose data was delivered
by the marker tracking component due to an occluded marker. This
second threshold is typically rather large, well beyond 100 pixels.
The motion blur technique is applied only if the length of the blur
vector is between these two thresholds.

If motion blur rendering is to be applied in a time step, an
adapted display method is used. This display method is based
on separately generated image and depth textures containing the
virtual object, similar to the rendering pipeline described in Sec-
tion 3.4. The virtual object is rendered in a separate step according
to the current camera pose, and the resulting color and depth buffer
contents are copied into texture memory. Subsequently, the camera
image is rendered, overwriting the contents of the frame buffer. The
camera image serves as background for the motion blur rendering
technique.

The simulated motion blur effect is created by repeatedly blend-
ing the virtual object texture over the camera image at different po-
sitions. These positions are obtained by adding offsets to the 2D
position of the object, pos(r). We assume that the computed blur
vector represents the magnitude and direction of the current object
motion. (We make this assumption despite the fact that the blur vec-
tor is estimated based on retrospective data. This is, however, only
a minor simplification and has proven to deliver a good approxima-
tion of the motion blur.) Object rendering positions are generated
along a line which is centered at the current object position and has
the same length and direction as the blur vector.

The first center position for blending the virtual object texture
over the camera image is located at pos(t) — 0.5 - blurVector(t),
i.e., at the beginning of the line. Then, new center positions are
iteratively computed by adding a vector with the same direction as
the blur vector to the current position. This vector has a length of
stepSize, which is a user-definable variable determining the dis-
tance between two copies of the virtual object. Therefore, the
current center position is modified by the addition of the vector



stepSize - blwvecmr(’)‘ in each iteration. This loop is iterated un-

TblurVector(1)|
til the end of the line at pos(t) + 0.5 - blurVector(t) is reached. We
typically use a step size of close to one pixel for the generation of
the center positions. An illustration of virtual object blending center
positions for an example blur vector is shown in Figure 10.

Blur vector:

Generated center positions:

A

-

X

1©
S SO -
eQ Q el
V X

center positions
for rendering

Figure 10: During the motion blur rendering process, multiple copies
of the virtual object are rendered. These copies are centered at
positions along a line with the same length and direction as the
blur vector. This line is centered at the current projected 2D object
position. The center positions are generated with a definable step
size.

At each of the generated center positions, a copy of the virtual
object is drawn. A special shader program is used, which uses the
previously rendered virtual object texture as input data. This shader
program performs the same depth test as described in Section 3.4
and 4, and it only displays virtual object pixels. This is necessary
so that the black background from the virtual object rendering pass
is ignored in the display process. Each copy of the virtual object
is drawn semitransparently over the image using OpenGL blend-
ing. The transparency used for each copy, expressed by the alpha
value, depends on the number of copies. It is calculated as shown
in Equation 12. In this equation, at first the number of virtual object
copies, numSteps, is calculated. The alpha value is then computed
as 1 divided by numSteps.

|blurVector(t)| J

Steps =
nmsteps { stepSize

12)
_ 1
" numSteps

In addition to the copies of the virtual objects spread along the
blur vector, another copy is rendered at the original center location.
This copy is displayed with a much greater opacity (i.e., a large
alpha value). It prevents the camera image from shining through
the blurred virtual object. An example of the simulated motion blur
effect is shown in Figure 11.

6 RESULTS

We have tested the noise calibration method with several different
webcams. Here, we present noise distribution parameters for two
models. The first is a Sony Eye Toy USB webcam. The second
is a Unibrain Fire-i camera, which uses the Firewire interface for
transferring the video stream. In these experiments, four intensity

(a) Without motion blur

(b) With motion blur

Figure 11: Example of the motion blur effect demonstrated with the
virtual butterfly model. Note that the object is displayed without
blur by the conventional renderer (Fig. 11(a)), although motion blur
is clearly visible in the camera image.

bins were used (N=4). Figure 12 contains plots of the standard de-
viations of the noise distributions for the Sony Eye Toy camera. As
shown in the figure, the standard deviations are different for each
color channel. While the standard deviations of the noise distribu-
tions are smaller in the case of the green channel, they are larger for
the red and blue channels. The standard deviations also depend on
the intensity bin, with a peak at the second intensity bin. Figure 13
depicts the estimated standard deviations of the noise distributions
for the blue color channel of the Unibrain Fire-i camera. It illus-
trates that the characteristics of the noise delivered by this camera
are different from the Sony Eye Toy webcam. The mean values of
the distributions have are not depicted in these diagrams. They are
almost zero, as it is to be expected from the differences between im-
age intensities in a video sequence and the corresponding average
image.

The estimation of the distribution parameters in the noise calibra-
tion step typically takes between several seconds and some minutes
of computation time, depending on the number and resolution of the
reference frames. The parameter estimation, however, is a prepro-
cessing step, and does not have a negative impact on the real-time
performance of the AR system. The estimated noise distribution
parameters are persistently stored in a file and are loaded during
the initialization of the AR application. The noise calibration re-
sults shown in Figure 12 and 13 were obtained from more than 500
reference frames at a resolution of 640x480 pixels for each camera.

The new rendering methods for AR were tested with several vir-
tual models, one of them being the virtual butterfly used in the pre-
ceding sections. Another model used in the experiments was the
virtual model of a hamburger. Figure 14 shows the virtual ham-
burger model and the effect of the simulated noise overlay. Bench-
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Figure 12: Standard deviations of the noise distributions for the Sony Eye Toy webcam.
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Figure 13: Standard deviations of the noise distributions for the blue
color channel of the Unibrain Fire-i webcam.

mark measurements have shown that the noise overlay method has
only a very small impact on the frame rate. With conventional AR
rendering, frame rates of close to 30 fps were measured (an average
of 29.78 fps over 510 frames). With noise rendering turned on, the
measured frame rate only dropped to 29.33 fps (averaged over 500
frames). The benchmarks described in this section were performed
on a computer with a Pentium 4 processor running at 2.8 GHz using
a graphics card with an NVidia GeForce FX 6600 GT chipset. The
Unibrain Fire-i webcam, which delives images at a resolution of
640x480 pixels at a rate of 30 Hz, was used for the measurements.

Figure 15 illustrates the smooth blending of virtual object border
pixels in the case of the hamburger model. In our implementation
of the system, the noise overlay and antialiasing techniques have
been combined into a single image processing shader. Therefore,
the aforementioned benchmarks for the noise shader include the
computation time required for the antialiasing method.

The effect of the motion blur rendering method on the virtual
hamburger is depticed in Figure 16. Note that the simulated motion
blur rendered for the virtual model corresponds very well to the
real motion blur in the camera image. The motion blur technique
has a measurable impact on the rendering performance, but is still
capable of delivering real-time frame rates. The performance of
the motion blur rendering technique strongly depends on the of the
length of the blur vector, which determines the number of virtual
object copies to be drawn. We measured an average frame rate of
24.36 fps for typical fast motions over a sequence of 520 frames.

7 CONCLUSIONS

In this paper, we have presented techniques for mimicking two
types of camera image imperfection; image noise and motion blur.
Moreover, a method for the smooth blending between virtual ob-
jects and the background was described. These new AR rendering

with overlaid
noise

conventional
rendering

Figure 14: Virtual hamburger model in an augmented environment
rendered with overlaid noise. The image details at the bottom com-
pare the conventional rendering of the hamburger and the version
with overlaid noise. (The contrast of the details was enhanced to
improve visibility.)

techniques have been implemented on the GPU and achieve real-
time frame rates.

A simple model for describing camera image noise was intro-
duced. Several simplifications of the full theoretical noise model
were used, including the assumption that noise in the individual
color channels can be described independently. The presented cal-
ibration method does not try to acquire a geometric description of
the noise (i.e., the size and shape of the color variations). Instead,
the noise texel magnifier creates larger patches of identical color
varation. The presented noise model has proven to be a useful and
easy-to-use description of image noise. The noise renderer creates
a subtle, but perceivable, effect in the output video stream, which
helps to equalize the level of realism in the virtual object and cam-
era image.

The motion blur display method uses an approximation of the
blur vector, which is based on changes of the estimated camera
pose. Since this camera pose estimation is evaluated, the motion



No antialiasing  With antialiasing

Figure 15: The effect of the smooth blending between camera image
and virtual object illustrated for a detail of the hamburger model.

Figure 16: Motion blur applied to the hamburger model.

blur technique can be affected by the tracking lag of the system.
Moreover, our current implementation of the motion blur renderer
only takes the projected two-dimensional motion of the virtual ob-
ject into account. Motion blur induced by a quickly changing dis-
tance between the camera and the virtual object position is not sim-
ulated. Such an extension, however, could be added to the system
rather easily. The presented motion blur display algorithm gener-
ates a good approximation of the motion blur effect under most cir-
cumstances. This technique, therefore, also contributes to making
the camera image and virtual object look more similar.

The problem of specialized rendering methods is one of the main
challenges in augmented reality. In this area, the task of equaliz-
ing the visual realism in the camera image and the virtual objects
is very important. Nonetheless, the topic of adapted rendering al-
gorithms for AR has received relatively little attention in the past
compared to other main research directions. With this paper, we
hope to contribute to the ongoing research in this area and inspire
further investigations into the problem.
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