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Zusammenfassung 
Die Perzeption und Regulation des zellulären Stickstoff- (N) und Kohlenstoff-(C) 

Gehalts ist essentiell für alle lebenden Organismen. Dabei soll die Superfamilie der 

PII Proteine, die hochkonserviert in Bakterien, Archaea, Algen und Pflanzen ist, eine 

entscheidende Rolle einnehmen. Aufgrund von Studien in Bakterien geht man 

davon aus, dass PII ein Sensor für den Stickstoff- und Kohlenstoff-Status ist. 

Obwohl die Funktion des PII Proteins in Bakterien relativ gut charakterisiert ist 

(Forchhammer and Selim, 2019), ist sehr wenig über diese Funktion in Pflanzen und 

vor allem in Arabidopsis thaliana (A. thaliana) bekannt.  

Um die Funktion des A. thaliana PII-Proteins zu verstehen, habe ich mich auf 

Expressions-, Lokalisations- und Interaktionsstudien fokussiert. Ich konnte zeigen, 

dass sich die Expression der PII mRNA abhängig von anorganischem Stickstoff 

unter Dauerlicht verändert. Physiologische Untersuchungen an PII-knockdown 

Mutanten, sowie an PII-Überexpressions-Linien, zeigten keine Anhaltspunkte für 

eine Deregulation des C/N-Stoffwechsels. Diese Beobachtung lässt eine zentrale 

Rolle des PII-Proteins für diese Prozesse in Pflanzen wenig wahrscheinlich 

erscheinen.  

Des Weiteren konnte ich zeigen, dass PII in Foci in Plastiden sowie im extra-

plastidären Raum in Vesikel-ähnlichen Strukturen lokalisiert, welche in 

Zusammenhang mit dem Proteinumsatz stehen könnten. Zudem konnte ich 

ausschließen, dass PII an Nukleoide und Stärkekörner lokalisiert. PII co-lokalisiert 

nicht nur mit den zuvor bekannten Interaktionspartnern N-Acetyl-L-Glutamat 

Synthase (NAGK), Biotin Carboxyl Transport Protein 1 (BCCP1), Biotin/Lipoyl 

Anhaftungsdomäne enthaltenden (BADC) Proteinen BADC2 und BADC3 in 

Plastiden, sondern auch mit der Körnchen-gebundenen Stärkesynthase I (GBSSI), 

der D-Aminosäure Transaminase 1 (DAT1), der kleinen Rubisco Untereinheit 

RBCS3B, sowie der Deoxyxylulose Synthase (DXS), der Deoxyxylulose 

Reductoisomerase (DXR) und partiell mit der Geranylgeranyl Diphosphat Synthase 

11 (GGPPS11). Mittels FRET-FLIM und BiFC konnte sogar eine Interaktion von PII 

mit sich selbst, NAGK, BCCP1, GBSSI, DAT1, RBCS3B, DXS und DXR festgestellt 

werden. 

Das Lokalisierungsmuster und die Interaktionen, die für das A. thaliana PII 

festgestellt wurden, sind ein Indiz für weitere bisher unbekannte Funktionen des PII 

Proteins in A. thaliana.  
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Summary 
The perception and regulation of the cellular content of nitrogen (N) and carbon (C) 

is essential for all living organisms. Though the superfamily of PII proteins that are 

highly conserved in bacteria, archaea, algae and plants, ought to play a crucial role. 

It is assumed from studies in bacteria that PII is a sensor of the nitrogen and carbon 

status Although the function of PII in bacteria is well characterised (Forchhammer 

and Selim, 2019), little is known about these function in plants and especially in 

A. thaliana.  

To understand the function of A. thaliana PII, I focussed on expression, localization, 

and interaction studies. Here I show that PII mRNA expression changes dependent 

on inorganic nitrogen under constant light. Physiological studies on PII knockdown 

mutants, and in addition with PII overexpression lines, revealed no evidence for the 

deregulation of the C/N-metabolism. This observation let appear a central role of the 

PII-protein for these processes in plants less probable. 

Furthermore, I could show that PII localizes to foci in plastids and in extraplastidic 

vesicle-like structures, which could be related to protein turnover. Further, I could 

exclude that PII localizes to nucleoids and starch granules. I could show that 

A. thaliana PII co-localizes not only with the already known interaction partners N-

acetyl-L-glutamate kinase (NAGK), the biotin carboxyl carrier protein 1 (BCCP1) and 

with the biotin/lipoyl attachment domain containing (BADC) proteins BADC2/3 in 

plastids but in addition with Granule-bound Starch Synthase I (GBSSI), D-Amino 

Acid Transaminase 1 (DAT1), one of the small Rubisco subunits RBCS3B, and 

Deoxyxylulose synthase (DXS), Deoxyxylulose reductoisomerase (DXR) and 

partially with the Geranylgeranyl diphosphate synthase 11 (GGPPS11). Using 

FRET-FLIM and BiFC studies, even an interaction of PII with itself, NAGK, BCCP1, 

GBSSI, DAT1, RBCS3B, DXS and DXR could be observed. 

The localization pattern and interactions observed for A. thaliana PII indicate further 

unknown regulatory functions of PII in A. thaliana. 
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1 Introduction 
The superfamily of PII proteins is highly conserved in nearly all bacteria, archaea, 

algae, and plants. It turned out in bacteria that these proteins are of central 

importance for the regulation of the cellular nitrogen-carbon homeostasis (Ninfa and 

Atkinson, 2000; Arcondéguy et al., 2001; Ninfa and Jiang, 2005; Leigh and 

Dodsworth, 2007; Forchhammer, 2008; Sant’Anna et al., 2009). Therefore, the 

speculation whether PII proteins fulfil a similar function in plants is tempting, which 

was the starting point of my thesis. 

1.1 The PII superfamily 

The superfamily of PII proteins is subdivided in the three main groups, GlnB, GlnK 

and NifI, dependent on sequence similarities, and a proposed fourth group, PII-NG 

(PII-new group) (Ninfa and Atkinson, 2000; Arcondéguy et al., 2001; Ninfa and 

Jiang, 2005; Leigh and Dodsworth, 2007; Forchhammer, 2008; Sant’Anna et al., 

2009).  

PII was first discovered by Shapiro (1969) as a component in peak-II as a glutamate 

synthetase (GS) deadenylylation stimulator in Escherichia coli (E. coli) (Shapiro, 

1969; Anderson et al., 1970). 

The first group GlnB, further referred to as PII, is encoded by glnB, which is common 

in nearly all bacteria, archaea, algae and plants, as the major form of PII proteins 

(Ninfa and Atkinson, 2000; Arcondéguy et al., 2001). 

GlnK, a close homologue of GlnB, is encoded by glnK that is absent in 

cyanobacteria, and forms the second group of PII proteins (Ninfa and Atkinson, 

2000; Arcondéguy et al., 2001; Forchhammer, 2004). In most bacteria, glnK is linked 

to amtB, which encodes the high affinity ammonium transporter AmtB, composing 

the glnK/amtB operon (van Heeswijk et al., 1996; Thomas et al., 2000).  

The third group of PII proteins is encoded by nifI. This group is distinct from GlnB 

and GlnK and only present in nitrogen-fixing anaerobic bacteria and nitrogen-fixing 

archaea (for review see: Leigh and Dodsworth (2007). There are two different 

groups of NifI proteins, nifI1 and nifI2, dependent on their linkage to the dinitrogenase 

genes nifK and nifD, and the dinitrogenase reductase gene nifH (Arcondéguy et al., 

2001; Leigh and Dodsworth, 2007). 

Sant’Anna et al. (2009) proposed a fourth group of PII proteins named PII-NG (PII 

new group) present in some bacteria. This group consists of proteins lacking the 



Structural features of PII   

6 
 

PROSITE signature typical for PII proteins and is linked to metal transporters 

(Sant’Anna et al., 2009).  

1.2 Structural features of PII 

All PII proteins crystallised to date, form homo- or in some cases heterotrimers 

composing different PII protein isoforms (de Mel et al., 1994; Carr et al., 1996; Jiang 

et al., 1997; Xu et al., 1998; Forchhammer et al., 1999; Chellamuthu et al., 2014). 

Most PII proteins bind to ATP (A. thaliana PII in Figure 1 B), 2-OG (first shown for 

E. coli PII by Shapiro (1969); Brown et al. (1971)), and ADP as cofactors. Whereas 

Mg2+-ATP binding promotes 2-OG binding, ADP binding negatively effects 2-OG 

binding (Jiang and Ninfa, 2009; da Rocha et al., 2013; Lapina et al., 2018). The 

ability to bind ADP is lost in plant PII proteins (reviewed in Lapina et al. (2018). The 

PII proteins GlnB and GlnK show high sequence and structural homology (Son and 

Rhee, 1987; Harrison et al., 1990; Tsinoremas et al., 1991; Liu and Magasanik, 

1993; Reith and Munholland, 1993; van Heeswijk et al., 1995; van Heeswijk et al., 

1996; Xu et al., 1998). The interaction site of both proteins to other proteins is the 

T-Loop, whereas the B-loop is important for PII homo- or heterotrimer formation 

(Figure 1) (Jiang et al., 1997; Jiang et al., 1997).  

 
In enteric bacteria, PII is post-translationally modified by uridylylation at position 

Tyr51 (Figure 1 A) by the bifunctional protein uridylyltransferase/ uridylyl-removing 

Figure 1: Scheme of conserved domains of PII proteins and crystal structure of A. thaliana 
PII. 
A) Scheme of conserved PII domains in higher plants and green algae (upper panel), and 
prokaryotes and red algae; chloroplast transit peptide (cTP) in green, N-terminal extension in blue, 
and C-terminal extension in red are unique to higher plants and green algae. Conserved region in 
yellow with T-loop in magenta. Conserved Residues within the T-loop: Ser49 (phosphorylated) and 
Tyr51 (uridylylated) in prokaryotes and red algae, and corresponding Ser in higher plants and green 
algae (Ser122* in A. thaliana PII (Smith et al., 2004)). B) Crystal structure of A. thaliana PII. Surface 
A represents site of interaction, comprising the T-loop. B-loop important for PII homo- or heterotrimer 
formation (Jiang et al., 1997; Jiang et al., 1997). Surface B comprises the N-terminus of PII. A) and 
B) are modified from Uhrig et al. (2009). 
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enzyme UTase/UR dependent on the nitrogen (N) and carbon (C) level (Brown et 

al., 1971; Mangum et al., 1973; Adler et al., 1975; Engleman and Francis, 1978; 

Francis and Engleman, 1978; Rhee et al., 1978; Mura et al., 1981; Mura and 

Stadtman, 1981; Garcia and Rhee, 1983; Bueno et al., 1985; Son and Rhee, 1987; 

Kamberov et al., 1995). Synechococcus and Synechocystis PII, although 

harbouring Tyr51, are not uridylylated at this position but are phosphorylated at 

Ser49 (Figure 1 A) (Forchhammer and Tandeau de Marsac, 1994, 1995; 

Forchhammer and Tandeau de Marsac, 1995a; Hisbergues et al., 1999; Spät et al., 

2015). Post-translational phosphorylation and thereby amount of phosphorylated PII 

in the trimer is dependent on nitrate, ammonium, and inorganic carbon level. Low 

nitrate, nitrite, and ammonium and high 2-OG concentrations lead to 

phosphorylation of PII, whereas increasing N concentrations lead to intermediate to 

full dephosphorylation (Forchhammer and Tandeau de Marsac, 1995; 

Forchhammer and Tandeau de Marsac, 1995a; Irmler et al., 1997; Forchhammer, 

2004; Kloft et al., 2005).  

Phosphorylation of PII was not detected so far in other cyanobacteria (reviewed in: 

Forchhammer and Selim (2019)), and evidence is missing for phosphorylation of 

Ser49 at corresponding Ser122 in A. thaliana (Figure 1 A) (Smith et al., 2004). 

A. thaliana and Castor bean PII are lacking the Tyr corresponding to the uridylylation 

site at position 124 and harbour a Phe instead (Hsieh et al., 1998).  

1.3 PII in bacteria 

In E. coli, PII interacts at high Gln levels with the histidine kinase and phosphatase 

NtrB, part of the E. coli two-component system, which in turn dephosphorylates the 

enhancer-binding transcription factor NtrC (Weiss and Magasanik, 1988; Ninfa and 

Bennett, 1991; Ninfa et al., 1993). By this, transcription of glnA is suppressed, which 

encodes GS. PII binds to the bifunctional GS adenylyltransferase (ATase) that 

adenylylates GS leading to its inactivation. At low ammonium level, 2-OG 

concentrations increase and Gln level decrease. PII gets uridylylated, interacts with 

ATase, leading to the activation of GS by deadenylylation. Uridylylated PII cannot 

interact with NtrB, which in turn leads to the phosphorylation of NtrC by NtrB and 

the initiation of glnA transcription (Shapiro, 1969; Brown et al., 1971; Mangum et al., 

1973; Bueno et al., 1985; Ninfa and Magasanik, 1986; Son and Rhee, 1987; Weiss 

and Magasanik, 1988; Atkinson et al., 1994; Kamberov et al., 1994; Kamberov et 

al., 1995).  
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In cyanobacteria, PII interacts with the transcriptional co-activator PII-interacting 

Protein X (PipX) in a 2-OG dependent manner (Burillo et al., 2004; Espinosa et al., 

2006). PipX interacts with the global transcription factor NtcA, which regulates gene 

expression in an N dependent manner as of e.g. PII, nitrogen-scavenging 

transporters, GS and GOGAT (Espinosa et al., 2006; Espinosa et al., 2007; Giner-

Lamia et al., 2017). PipX interacts with PII, preferentially bound to ADP, at low or 

intermediate 2-OG levels, grown on ammonia or nitrate. Alternatively, PipX interacts 

with NtcA, bound to 2-OG, under intermediate or high 2-OG levels grown on nitrate 

or N starvation, thereby NtcA is activated (Espinosa et al., 2006; Llácer et al., 2010; 

Zeth et al., 2014). Under N deprivation, activated NtcA increases PII expression 

(Giner-Lamia et al., 2017). Localization studies of PII and PipX in Synechococcus 

revealed, localization of both proteins in foci at night at a putatively low ATP/ADP 

ratio (Espinosa et al., 2018), that was shown to be important for interaction of PII 

with PipX (Zeth et al., 2014; Luddecke and Forchhammer, 2015).  

The first observed interaction partner of PII in cyanobacteria was the N-acetyl-L-

glutamate kinase (NAGK), identified in a yeast-two hybrid screen using 

Synechococcus sp. PCC 7942 proteins (Burillo et al., 2004; Heinrich et al., 2004). 

NAGK, encoded by argB, is a key enzyme of the ornithine/arginine pathway, 

catalysing the reaction from N-acetyl-L-glutamate to N-acetyl-L-glutamate-

phosphate and feedback regulated by L-Arg (reviewed in Cunin et al. (1986); 

Caldovic and Tuchman (2003)). The complex formation of two PII homotrimer with 

two NAGK homotrimer in a sandwich-like conformation promotes a higher enzyme 

activity of NAGK, which is furthermore slower feedback regulated by L-Arg 

(Maheswaran et al., 2004; Llácer et al., 2007; Beez et al., 2009). The ability of PII 

to bind 2-OG is dependent on Mg2+-ATP presence, whereas this is not the case for 

PII in the PII-NAGK complex. 2-OG at low concentration leads to an increased 

activity of NAGK in the PII-NAGK complex. Only dephosphorylated PII binds to 

NAGK with high affinity. ADP and 2-OG bound to all three PII proteins in the trimer 

lead to the dissociation of the two interaction partners (Heinrich et al., 2004; 

Maheswaran et al., 2004; Beez et al., 2009; Fokina et al., 2010).  

The interaction of PII with the biotinylated BCCP subunit of the ACCase, leading to 

its inhibition, was recently observed in E. coli and Synechocystis sp. PCC 6803 

(Rodrigues et al., 2014; Gerhardt et al., 2015; Hauf et al., 2016). This inhibitory effect 

is negatively regulated by 2-OG and uridylylation or phosphorylation of PII, 
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respectively (Rodrigues et al., 2014; Gerhardt et al., 2015; Hauf et al., 2016). In 

Synechococcus sp. PCC 7942, ACCase activity increases and thereby increased 

levels of lipid bodies could be observed when PII is absent (Verma et al., 2018). It 

is proposed, that PII regulates ACCase activity dependent on the carbon levels in 

the cells and in turn regulates the distribution of acetyl-CoA and 2-OG to the TCA 

cycle, GS/GOGAT cycle or fatty acid production (Forchhammer and Selim, 2019).  

1.4 PII in algae 

Genome mapping of the red alga Porphyra purpurea revealed a glnB sequence 

encoded in its chloroplast genome (Reith and Munholland, 1993), whereas PII is 

absent in other red algae genomes. In green algae and plants, PII is nuclear-

encoded but plastid localized (Hsieh et al., 1998; Uhrig et al., 2009; Baud et al., 

2010; Ermilova et al., 2013). In contrast to prokaryotes and red algae, green algae 

and higher plant PII reveal an additional N-terminal chloroplast transit peptide and 

domain extensions at the N- and C-terminus. The latter harbours the Q-loop that 

binds at low affinity to L-Gln (Figure 1) (Uhrig et al., 2009; Chellamuthu et al., 2014).  

Porphyra purpurea PII acts in a ATP/ADP and 2-OG dependent manner, interacts 

with NAGK, and increases its activity independent of L-Gln (Lapina et al., 2018). 

This is in contrast to the non-photosynthetic green alga Polytomella parva in which 

PII and NAGK interact in an effector molecule independent manner, but NAGK 

activation is glutamine-dependent as in most green algae and higher plants 

(Chellamuthu et al., 2014; Selim et al., 2019). The PII protein of the closely related 

green algae Chlamydomonas reinhardtii (Cr) (Ermilova et al., 2013) was shown to 

interact with NAGK (Chellamuthu et al., 2014) and in addition, with the BCCP 

subunit of the ACCase, thereby negatively regulating lipid body formation 

(Zalutskaya et al., 2015).  

PII of the green microalga Myrmecia incisa interacts with NAGK but not with 

BCCP1/2 in a yeast-two hybrid screen (Li et al., 2017). In addition, NAGK activity 

first increases and then decreases under N deprivation when 2-OG level increase 

and the PII-NAGK complex is disassembled (Li et al., 2017). 

1.5 PII in plants 

1.5.1 PII expression 
In contrast to bacteria, the role of PII in plants is barely understood. An in planta PII-

like protein (further referred as PII) from A. thaliana was first described by Hsieh et 

al. (1998). In A. thaliana, PII is a plastid-localized protein encoded by GLB1 (further 
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referred as PII), a single copy gene on chromosome IV of the nuclear genome 

(Hsieh et al., 1998). This is in contrast to the red alga Porphyra purpurea, where PII 

is plastome-encoded (Reith and Munholland, 1993).  

Expression of PII was shown to be positively regulated by light and sucrose. Addition 

of mannitol showed only a slight increase in PII expression in light, implying no 

dependency of PII expression to osmotic stress (Hsieh et al., 1998). PII expression 

is down regulated by dark and metabolites such as Gln, Glu and Asp in light on 

additional sucrose supply. In contrast, addition of sucrose in dark led to an increased 

expression (Hsieh et al., 1998). In addition, PII expression was shown to be affected 

by the transcription factor WRINKLED1 (WRI1), inducing expression of genes 

involved in fatty acid metabolism like BCCP1 (Baud et al., 2010).  

1.5.2 PII localization  
PII localization in chloroplasts in A. thaliana was first shown by Western blot 

analyses (Hsieh et al., 1998). PII from green algae and plants possess an N-terminal 

extension, predicted to be a chloroplast transit peptide by ChloroP (Nielsen et al., 

1997; Emanuelsson et al., 1999; Emanuelsson et al., 2000), that is missing in 

bacteria (for review (Uhrig et al., 2009)). In Oryza sativa leaves, OsPII tagged with 

the Green-Fluorescent Protein (GFP) localized to chloroplasts (Sugiyama et al., 

2004). Chloroplast-localization of AtPII was observed by immunohistochemically 

staining in A. thaliana suspension cells and seeds (Chen et al., 2006; Baud et al., 

2010). 

1.5.3 Phenotype of PII mutants 
To date, the role of PII in plants is still cryptic. Hsieh et al. (1998) could show 

dependency of PII expression in A. thaliana on sucrose and light and described an 

increased anthocyanin content in PII overexpression lines when grown on ½ MS 

media with 3% sucrose and 1 mM Gln as sole N source (Hsieh et al., 1998). In the 

past years, two T-DNA insertion lines of PII, PIIV1 (Ws-0) and PIIS2 (Col-0), were 

characterized (Ferrario-Mery et al., 2005). PIIV1 is a knockdown mutant, whereas 

PIIS2 is a knockout mutant with a T-DNA insertion in the fourth intron (Ferrario-Mery 

et al., 2005). Both mutants did not show a phenotype under non-limiting conditions, 

but higher sensitivity induced by higher nitrite uptake and accumulation on seed 

germination and seedling growth (Ferrario-Mery et al., 2005; Ferrario-Mery et al., 

2008). In response to ammonium resupply, both mutants showed reduced L-Arg, 

citrulline and ornithine contents after N starvation (Ferrario-Mery et al., 2006). 
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Under salt stress in Oryza sativa, downregulated PII contributed to an accumulation 

of amino acids and decrease of protein concentration (Xu et al., 2016). In Lotus 

japonicus, PII overexpression led to decreased N fixation under low N conditions. 

Under high N conditions, increased number of nodules as well as decreased 

ethylene content and increased citrulline content in nodules was observed 

(D'Apuzzo et al., 2015).  

1.5.4 Interaction partners of plant PII 
The interaction of PII with itself and the N-acetyl-L-glutamate kinase (NAGK), a key 

enzyme of the arginine biosynthesis, was first observed in Yeast-2 hybrid screens 

for Synechococcus sp. Strain PCC 7942, A. thaliana and Oryza sativa PII. This 

interaction is conserved from cyanobacteria to land plants and displays the best 

characterized interaction of plant PII (Burillo et al., 2004; Heinrich et al., 2004; 

Sugiyama et al., 2004; Chen et al., 2006; Ferrario-Mery et al., 2006; Mizuno et al., 

2007; Beez et al., 2009; Feria Bourrellier et al., 2009; Chellamuthu et al., 2013; 

Chellamuthu et al., 2014; Lapina et al., 2018; Selim et al., 2019). 

Crucial for the organisms in which PII interacts with NAGK found so far, is the 

hexameric structure of NAGK formed by two trimers (Ramón-Maiques et al., 2006). 

It was shown that NAGK plays a role in gametophyte function and embryo-

development and indeed localizes to plastids in A. thaliana (Huang et al., 2017).  

The interaction of A. thaliana PII and NAGK was shown to be dependent on Mg2+-

ATP binding of PII and leads to a reduced feedback regulation of NAGK by L-Arg 

(Chellamuthu et al., 2014). NAGK activation by PII is independent of L-Gln in 

A. thaliana, in contrast to other analysed green algae and plants, as Brassicaceae 

PII lacks three crucial AA in the Q-loop of the C-terminus and is thereby not able to 

bind L-Gln directly (Chellamuthu et al., 2014). In comparison to cyanobacteria, 

binding of 2-OG to PII was shown to have no effect on complex formation with NAGK 

(Chen et al., 2006; Ferrario-Mery et al., 2006). In in vitro assays, another study 

suggests that low amounts of 2-OG bound to AtPII might still be sufficient to 

perpetuate complex stability with NAGK, whereas the dissociation of AtPII from 

AtNAGK require lower 2-OG level in presence of NAG and L-Arg (Beez et al., 2009).  

In a pull-down assay performed with recombinant AtPII lacking the chloroplast 

transit peptide (cTP) sequence, purified from E. coli, NAGK and five new putative 

interaction partners were found. The putative interaction partners resembled two 

biotin carboxyl carrier proteins BCCP1 and BCCP2, a subunit of the plastid-localized 
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heteromeric Acetyl-CoA carboxylase (htACCase), catalysing the reaction of acetyl-

CoA to malonyl-CoA, and three BCCP-like (Biotin/lipoyl attachment domain-

containing (BADC)) proteins (Feria Bourrellier et al., 2010). The interaction of PII 

with the BCCP subunit of htACCase was shown to regulate htACCase activity 

negatively in in vitro assays in the presence of Mg2+-ATP, whereas 2-OG reverse 

the inhibition of htACCase by PII (Feria Bourrellier et al., 2010). BCCP1 and BCCP2 

were shown to have unidirectional redundant functions. BCCP1 is the main form 

and may fulfil BCCP2 functions but not vice versa. BCCP2 cannot complement 

bccp1 null alleles that are embryo lethal due to defects in gametophyte and pollen 

development (Li et al., 2011). The BADC proteins were shown to be antagonists to 

the BCCP proteins and irreversibly bind and inhibit the htACCase activity (Salie et 

al., 2016; Keereetaweep et al., 2018). 

1.6 Aim of the work 

The bacterial PII protein is a well-characterized protein involved in sensing of the 

carbon/nitrogen balance and the energy status (Ninfa and Atkinson, 2000; Ninfa and 

Jiang, 2005; Commichau et al., 2006; Huergo et al., 2013; Forchhammer and Selim, 

2019). Although the PII protein is conserved throughout evolution, its function in 

plants is still cryptic.  

To elucidate the function of the A. thaliana PII, I focused on expression, localization, 

and interaction studies.  

Light and sucrose were shown to have a positive effect on PII expression, whereas 

certain L-AA have a negative effect on PII expression (Hsieh et al., 1998). To 

investigate the effect of inorganic N with or without sucrose in constant light, the 

activity of the PII promoter using a promoter GUS assay in stably transformed 

A. thaliana lines should be performed.  

The phenotype of the PII mutants PIIVI and PIIS2 was shown to be unaffected in 

regards of non-limiting conditions, whereas both mutants showed higher sensitivity 

to nitrite (Ferrario-Mery et al., 2005). To determine whether the PII mutant line PIIS2 

display any measurable phenotype in regard to inorganic N and sucrose availability, 

phenotypic analyses of this line grown under four different light conditions under 

limiting and non-limiting N/sucrose conditions and the growth phenotype with certain 

L-AA as additional N source, would give a hint on PII function. Furthermore, 

phenotypical analyses of PII rescue and overexpression lines should be performed. 
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A. thaliana PII was shown in immunohistochemical analyses to localize to plastids 

(Chen et al., 2006; Baud et al., 2010). The subcellular localization pattern of PII was 

not shown before in living plants. To study this localization pattern, localization 

analysis of PII fused to fluorescent proteins in transiently transformed 

N. benthamiana and stably transformed A. thaliana not only under non-limiting 

growth conditions but also under differential temperatures and light qualities should 

give a hint on PII action.  

The interaction partners of A. thaliana PII, NAGK, BCCP1/2 and BADC1-3 were 

analysed in in vitro studies (Burillo et al., 2004; Chen et al., 2006; Ferrario-Mery et 

al., 2006; Mizuno et al., 2007; Beez et al., 2009; Feria Bourrellier et al., 2009; Feria 

Bourrellier et al., 2010). To verify these interactions in vivo, first, co-localization 

experiments of PII with the known interaction partners in transiently transformed 

N. benthamiana and second, interaction studies using a Bimolecular Fluorescence 

Complementation (BiFC) assay (Grefen and Blatt, 2012) and Förster Resonance 

Energy Transfer (Forster, 1946) coupled with Fluorescence Lifetime Imaging 

Microscopy (FRET-FLIM) (Harter et al., 2012; Bücherl et al., 2014; Laptenok et al., 

2014; Peter et al., 2014; Hecker et al., 2015) should be performed. These in vivo 

co-localization and interaction studies would show that the proteins indeed co-

localize and interact in plastids. In addition, co-immunoprecipitation of PII with its 

interactome from stably transformed A. thaliana using GFP-traps (ChromoTek) 

could further verify these observations. 
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2 Results 
2.1 Expression studies of PII 

The expression of AtGLB1, hereinafter referred to as PII, is induced by light and 

sucrose and decreased by addition of L-Glu and L-Gln and in darkness (Hsieh et 

al., 1998). Although PII expression was shown to be affected by light, sucrose and 

amino acids, this was only shown in whole seedlings (Hsieh et al., 1998), and not in 

single organs.  

2.1.1 PII expression is induced under non-limiting N/C and decreases 
under limiting N/C conditions 

To analyse how PII is affected by inorganic nitrogen (N), I generated A. thaliana 

lines expressing β-glucuronidase (GUS) under the control of the endogenous PII 

promoter (pPII) of a size of 269 bp. The length of the promoter resembles the 

sequence between the annotated start codon of At4g01897 (3’-5’) and the PII 

(At4g01900) start codon. 

The promoter-GUS assays were performed in 10-day old seedlings using an 

A. thaliana line expressing GUS under the Cauliflower Mosaic Virus promoter 

(p35S) as a control. 

Seedlings grown on varying N and sucrose concentrations under constant light 

revealed differential activity of pPII in the cotyledons, leaves, hypocotyl and the root 

after GUS staining (Figure 2). Seedlings grown in constant light with 19.7 mM N 

(amount of NO3- and NH4+ in ½ MS) and additional sucrose as carbon (C) source, 

show induction of the pPII mainly in cotyledons and first leaves. Additionally, 

promoter activity could be observed in the hypocotyl and partially in the root (Figure 

2 A). The absence of sucrose addition leads to decreased promoter activity in 

cotyledons and first leaves, whereas activity in the hypocotyl and the root is not 

changed (Figure 2 B). The activity of pPII decreases under N limitation in 

comparison to non-limiting conditions (Figure 2 C-D). Furthermore, combined N and 

C limitation leads to hardly visible pPII activity (Figure 2 D). These observations 

show strong dependency of pPII activity not only to sucrose and light (Hsieh et al., 

1998) but also to N levels.  
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2.2 Phenotypical analyses of PIIS2 

Ferrario-Mery et al. (2005) showed, that the PII mutant lines PIIS2 and PIIV1 had 

no phenotype under non-limiting conditions, but showed higher sensitivity to nitrite 

(Ferrario-Mery et al., 2005).  

2.2.1 Effect of carbon and nitrogen metabolism under different light 
conditions on PIIS2 mutants 

The PII promoter activity revealed dependency of PII expression under varying N 

and C concentrations in seedlings (Figure 2). To analyse whether this effect is 

visible not only on promoter activity but also on protein level, I first performed a 

growth assay with Col-0 seedlings to assess the minimal N concentration at which 

Col-0 seedlings are still able to survive (Figure 3).  

Figure 2: N and sucrose control pPII activity. 
GUS expression in 10-day old seedlings grown on A) ½ MS + 1% sucrose, B) ½ MS, C) ½ MS-N + 
1% sucrose, D) ½ MS-N in constant light. Seedlings expressing GUS p35S or the 269 bp long pPII. 
GUS staining performed for ~42 h. 
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The growth assay revealed that at an N concentration of approximately 5 mM N in 

liquid ½ MS+1% sucrose, Col-0 seedlings showed slightly smaller seedlings with 

partially increased anthocyanin content (Figure 3).  

  
Therefore, I performed growth assays of Col-0 and PIIS2 on ½ MS-N +/- 1% sucrose 

with either 4.93 mM or 19.7 mM N under constant light, long day, short day or 

darkness on solid media (Figure 4). Measurement of root length revealed no 

significant growth differences between Col-0 and PIIS2 in root length, whereas 

hypocotyl length was significantly prolonged in PIIS2 grown on ½ MS-N+4.93 mM 

N in dark (Figure 4). No significant growth difference was observed in the other 

tested conditions (Figure 4) and 4.93 mM N in solid medium revealed less growth 

defects as in liquid medium.  

Figure 3: Col-0 show minor growth defects at 
4.93 mM N. 
Col-0 seedlings grown for 14 days in liquid ½ MS-
N with or without additional N (NH4NO3 and KNO3 
as N source). ½ MS-N + 19.7 mM N diluted 1:1 with 
½ MS-N. First lane represents 19.7 mM N to ~ 
0.019 mM N in second last lane. Last lane 
represents 0 mM N. 
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Therefore, I repeated the growth assay with ½ MS+1% sucrose containing 0 mM or 

19.7 mM N (Figure 5). Analysis of root length revealed significant differences under 

long day conditions on ½ MS-N+1% sucrose, where Col-0 showed a strong 

decrease in root length but sample size was low (n=8; Figure 5 B). Under dark, PIIS2 

seedlings showed only a minor but still significant reduction in hypocotyl length in 

comparison to Col-0 on ½ MS+1% sucrose (Figure 5 D). PIIS2 and Col-0 showed 

no significant differences in root length under constant light and short day (Figure 5 

A and C).  

Figure 4: Effect of N/C limiting conditions under differing light conditions on root length of 
Col-0 and PIIS2 
Root length [µm] of Col-0 and PIIS2 grown for 10 days on ½ MS-N media containing either 19.7 mM 
or 4.93 mM N +/- 1% sucrose grown under constant light (A), long day (B), short day (C) or dark 
conditions (D, E). For dark conditions additionally to hypocotyl length (D), root length (E) was 
measured. Asterisk indicate p < 0.05. 
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2.2.2 Sensitivity screen with amino acids as N source  
PII expression is influenced by amino acids (Hsieh et al., 1998). To answer the 

question whether amino acids as N source result in a changed phenotype, I grew 

Col-0 and PIIS2 on N limiting and non-limiting N conditions with or without L-Gln, L-

Glu and L-Arg as additional N source. In these analyses no phenotypical changes 

could be observed (Figure A 2).  

2.3 Generation and genetic analyses of PII mutants 

As phenotypical differences between Col-0 and PIIS2 were barely perceivable in the 

tested conditions, the question arose whether PIIS2 is really a knockout mutant. To 

verify this, RNA from seedlings of Col-0 and PIIS2 was extracted and reverse 

transcribed. Full-length transcript of PII in PIIS2 was detectable using five-times 

more PCR product, exhibiting that PIIS2 is in fact not a knockout but a knockdown 

mutant (Figure 6).  

Figure 5: Growth assay under N/C limiting conditions in varying light conditions 
Col-0 and PIIS2 grown for 10 days on ½ MS-N media with 19.7 mM or 0 mM N +/- 1% sucrose under 
constant light (A), long day (B), short day (C) or dark (D) conditions. For all light conditions except 
dark, root length was measured. For dark grown seedlings, hypocotyl length was measured. Asterisk 
indicate p < 0.05. 
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2.3.1 Generation of PII CRISPR/Cas line 
As mRNA expression of PII in PIIS2 was still detectable, I started to generate 

CRISPR/Cas knockout lines for PII with two template DNA sequences (Figure 7 A). 

Analysis of T1 plants transformed with either Construct 1 or Construct 2 in MTN2966 

revealed detectable CRISPR events neither by amplification, nor by sequencing. As 

single vectors of CRISPR/Cas constructs revealed no CRISPR event, I generated 

vectors carrying both constructs in tandem.  

The first trials of generating a PII knockout mutant yielded in no detectable CRISPR 

event. As the knockout mutation of the D-amino acid transaminase (DAT1) is not 

lethal (Suarez et al., 2019), I used DAT1 as a control. To test whether PII knockout 

could be lethal, I used CRISPR/Cas template DNA sequences from Li et al. (2013). 

Both template DNA sequences locate to the fourth exon of DAT1 (Figure 7 B). To 

have an additional marker for selection of transformants, we obtained a 

CRISPR/Cas vector of Christopher Grefen’s group (ZMBP, University of Tübingen) 

carrying a fluorescing seed marker. Double constructs for PII and DAT1 were 

transformed in MTN2966 and FastRed-CRISPR/Cas. The analyses of these 

transformants is in progress. 

Figure 6: PII mRNA expression in PIIS2 and Col-0 
RT-PCR analysis of full-length cPII cDNA fragment in 
PIIS2 (1) and Col-0 (2) of 14-day-old seedlings grown 
under long day conditions. 12.5 µL of PIIS2 and 2.5 µL of 
Col-0 PCR-Product were loaded on 1% Agarose-Gel. 
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2.3.2 No obvious phenotypic change of PII-overexpressor lines, rescue 
lines and knockdown mutant  

As the published knockdown and knockout mutants PIIV1 and PIIS2 displayed no 

apparent phenotype under nutrient non-limiting conditions (Ferrario-Mery et al., 

2005). 

I tried out if the ectopic overexpression of PII leads to any visible effects. Therefore, 

I generated several different PII overexpression lines in Col-0 WT and PIIS2 

background. The lines were grown under long day conditions. The analysed lines 

displayed no phenotypic change in rosette leaf stage until onset of flowering (Figure 

8 A-B). The individual lines displayed no homogenous phenotype in both 

approaches (Figure 8; Appendix: Figure A 8, Figure A 9). 

Figure 7: Genomic sequence of A. thaliana PII and DAT1. 
Genomic DNA sequences of A) PII and B) DAT1.  
Exons: black bars; introns: black lines; chloroplast transit peptide: green; primer binding sites: blue; 
5’UTR and 3’UTR: red; CRISPR/Cas9 template binding sites: dark violet; T-DNA insertion site: red 
upright line. Scale bar represents 100 bp. 
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Analysis of flowering onset revealed a later onset of flowering in approach one 

(Figure 9 A), but could not be confirmed in the second approach (Figure 9 B). 

Significant differences in flowering time could be observed for pUBQ::gPII-GFP T3 

4.3 in PIIS2 background in both approaches (Figure 9), whereas significant 

differences of the other lines could only be observed in the second approach (Figure 

9 B).  

Figure 8: Phenotype of Col-0, PIIS2 and respective overexpression and rescue lines of T3 
and T4 generation. 
Rosette leave stage phenotype of 4 ½ weeks old plants grown under long day conditions. 
A) Representative plants of first approach. B) Representative plants of second approach. 
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Figure 9: Flowering time of Col-0, PIIS2 and stable PII overexpression and rescue lines in 
A. thaliana Col-0 and PIIS2 grown under long day conditions. 
A) Flowering time of respective lines in first approach. B) Flowering time of respective lines in second 
approach. Student’s t-test revealed significant differences, *: p < 0.05, **: p < 0.01. 
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2.4 Localization studies of PII 

Although the subcellular localization of PII has been once shown in 

immunohistochemically analyses (Baud et al., 2010), such in vivo studies were still 

missing, yet. Additionally, the same holds true for in vivo interaction studies of PII. 

Therefore, I performed subcellular localization analyses of A. thaliana PII using 

different promoters, genomic and CDS versions of PII tagged with fluorescent 

proteins in transiently transformed N. benthamiana (Figure 10 A, D, E, Figure 11) 

and stably transformed lines of A. thaliana Col-0 (Figure 10 C-D, Figure 11 C).  

 

 
To analyse the subcellular localization of PII and the influence of the promoter, I 

made use of four different promoters: p35S, pUBQ10, pPII and an estradiol-

inducible promoter (pABind; (Bleckmann et al., 2010) (Figure 10, Figure 11). I 

generated six different versions of PII expression constructs. The coding DNA 

sequence (cPII) under the control of the p35S (Figure 10 A), pUBQ (Figure 10 B) 

and pABind (Figure 10 E) and additionally the genomic DNA sequence (gPII) under 

control of pUBQ (Figure 10 C) and the endogenous promoter of PII, pPII (Figure 10 

D).  

For co-localization analyses with known and putative new interactors, both genes 

were cloned into 2in1 vectors under the control of p35S (Figure 11), single vectors 

under control of either p35S (Figure 10 A) or pABind (Figure 10 E). All genes were 

tagged C-terminally with either GFP, RFP or mCherry (Figure 10, Figure 11). 

Figure 10: Schematic overview of used promoter, gene and fluorescent protein combination 
for localization assays of PII in A. thaliana and N. benthamiana. 
A) CDS of PII (cPII) or putative interaction partner (X) tagged with GFP or RFP under the control of 
the Cauliflower Mosaic virus (CaMV) 35S promoter (p35S). B) cPII tagged with GFP under the control 
of the UBQ10 promoter (pUBQ). C) Genomic PII (gPII) tagged with GFP under the control of the 
pUBQ. D) gPII tagged with GFP under the control of its endogenous promoter (pPII). E) GFP-tagged 
cPII or mCherry-tagged DAT1 under the control of an estradiol inducible promoter (pABind; 
generated by Marvin Braun). Diagonal stripes: promoter; grey box: linker sequence. 
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Figure 11: Schematic overview of 2in1 FRET vectors for localization and interaction assays 
of PII in N. benthamiana 
PII-GFP with mCherry-tagged A) GentR (Donor-only control), B) PII, C) NAGK, D) BCCP1, E) GBSSI, 
F) DAT1, G) RBCS3B (RB3B), H) DXS, I) DXR, J) GGPPS11 (G11). CDS versions of single genes. 
All constructs C-terminally tagged with GFP (only PII) or mCherry under the control of the CaMV 35S 
promoter. Diagonal stripes: promoter; grey box: linker sequence; dotted box: CaMV 35S terminator. 
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2.4.1 PII appears as foci in plastids 

2.4.1.1 PII localizes in foci in plastids independently of the used promoter 
Co-expression of gPII (Figure 12 A) or cPII tagged with GFP (Figure 12 B) under 

control of p35S with pt-rk (CD3-999; transit peptide of tobacco Rubisco C-terminally 

tagged with mCherry, (Nelson et al., 2007)) in transiently transformed 

N. benthamiana revealed localization of PII to foci in plastids. Nearly the same 

localization pattern of PII-GFP was observed for PII-GFP under control of its 

endogenous promoter in A. thaliana (Figure 12 C).  

 

 

Figure 12: PII-GFP localizes in aggregates to plastids of leaves of transiently transformed 
N. benthamiana and stably transformed A. thaliana. 
A) GFP-tagged gPII under control of pPII co-expressed with the mCherry-tagged transit peptide of 
tobacco Rubisco (CD3-999 pt-rk). B) GFP-tagged cPII under control of p35S localizes in foci to 
plastids co-expressing CD3-999 pt-rk. Confocal images were taken 2 days after transient 
transformation of N. benthamiana. Scale bar: 5 µm. C) GFP-tagged gPII under control of pPII in 
stably transformed A. thaliana localizes in foci to plastids. Magenta displays autofluorescence signal 
of plastids. Scale bar: 10 µm. 
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2.4.2 PII co-localizes with known and putative novel interaction partners 
in plastids 

The known interaction partners of PII proteins are quite conserved throughout 

kingdoms. The interaction of PII with the N-acetyl-L-glutamate kinase (NAGK) is the 

best-characterized interaction in A. thaliana (Chen et al., 2006; Ferrario-Mery et al., 

2006; Beez et al., 2009; Feria Bourrellier et al., 2009; Chellamuthu et al., 2014).  

To characterize the co-localization pattern of PII with known interaction partners, 

first the localization pattern of these interaction partners was observed. Localization 

analyses of NAGK, BADC2 and BADC3 revealed localization to plastids in 

aggregates when expressed without PII (Figure 13).  

 

 

Figure 13: NAGK, BADC2 and BADC3 tagged with RFP localize in aggregates in plastids 
of transiently transformed N. benthamiana. 
All genes expressed under the control of the p35S. A) NAGK-RFP localizes to plastids. B) BADC2-
RFP localizes to plastids. C) BADC3-RFP localizes to plastids. Scale bars: A) and C) 10 µm, B) 20 
µm. Confocal images were taken A) 2 days and B)-C) 3 days after transient transformation of 
N. benthamiana. White arrows indicate aggregates in plastids. 
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Further localization studies revealed co-localization of PII with itself, and the known 

interaction partners NAGK and BCCP1 in foci and throughout the whole chloroplast 

(Figure 14 B-D). Co-localization of PII with known interaction partners in foci, led to 

the question whether PII co-localizes with additional proteins in foci.  

  
Co-expression of PII-GFP with BADC2-RFP and BADC3-RFP, two published 

interactors of PII and antagonists of BCCP1/2 (Feria Bourrellier et al., 2010; Salie 

et al., 2016; Keereetaweep et al., 2018), confirmed co-localization of PII-GFP with 

BADC2-RFP (Figure 15 A, B) and with BADC3-RFP (Figure 15 C, D) in foci in 

plastids.  

Figure 14: PII co-localizes 
with known interaction 
partners in plastids of 
transiently transformed 
N. benthamiana using 2in1 
vectors. 
All genes under the control of 
p35S. A) PII-GFP alone 
localizes to plastids, B) cPII-
GFP co-localizes with PII-
mCherry. C) cPII-GFP co-
localizes with NAGK-mCherry. 
D) cPII-GFP co-localizes with 
BCCP1-mCherry.  
White arrows indicate 
aggregates; orange arrows 
indicate starch granule. Scale 
bar: 1 µm. Confocal images of 
single plastids were taken 2 
days after transient 
transformation of 
N. benthamiana. 
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Figure 15: PII-GFP co-localizes to plastids with BADC2-RFP and BADC3-RFP. 
A) cPII-GFP co-expressed with BADC2-RFP. Yellow rectangle indicates close-up view in B). B) 
Close-up view of A). C) cPII-GFP co-expressed with BADC3-RFP. Yellow rectangle indicates close-
up view in D). D) Close-up view of C). All genes under the control of p35S co-expressed for 3 days 
in transiently transformed N. benthamiana. White arrows indicate aggregates. A) and C) Scale bar: 
10 µm. B) and D) Scale bar: 5 µm. 
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2.5 Characterization of the PII foci 

The focal accumulation of the PII protein and its interactors in plastids opened the 

question whether this formation represents suborganellar structures in this 

compartment. 

2.5.1 PII foci are not localizing to nucleoids 
It is known for bacterial PII, that it is interacting with PipX (Burillo et al., 2004), a 

transcriptional co-regulator of the transcription factor NtcA (Espinosa et al., 2006; 

Chellamuthu et al., 2013). This points to a putative association of plant PII and 

especially A. thaliana PII to nucleoids, although a homologue of PipX is missing in 

plants (Chellamuthu et al., 2013).  

To clarify whether PII localizes to nucleoids, I did a DAPI staining, which was shown 

to stain plastidic nucleic acids, too (Newell et al., 2012). First experiments indicated 

co-localization of PII to DAPI stained nucleoids in plastids (Figure 16). A closer look 

on emission spectra of DAPI and GFP revealed overlay in the analysed range. In 

addition, the used 405 nm laser did not just excite DAPI but also GFP to comparable 

extent, indicating bleed-through of GFP signal into the DAPI channel. Yet another 

difficulty was the blue autofluorescence of plastids.  

 
Krupinska et al. (2014) used YO-PRO™-1, a propidium iodide derivative, to stain 

nucleoids of plastids. Nucleoid staining with YO-PRO™-1 of transiently transformed 

N. benthamiana leaves with P19 showed nucleoid localization in a punctate pattern 

in chloroplasts (Figure 17 A). Transiently transformed N. benthamiana leaves with 

PII-RFP exhibit nucleoid staining with YO-PRO™-1 next to PII aggregates in 

plastids, but no co-localization of PII and nucleoids (Figure 17 B). Therefore, we 

could exclude that PII is a part of nucleoids in plastids (Figure 14 B, D, Figure 19 A 

and Figure 17 B).  

Figure 16: PII-GFP co-localizes with DAPI stained nucleoids in chloroplasts of stomata cells. 
DAPI stained leaves of stably transformed A. thaliana expressing cPII-GFP and NAGK-mCherry 
under control of p35S. White arrows indicate co-localization of DAPI signal and PII-GFP.DAPI: blue, 
PII-GFP: green; NAGK-mCherry: magenta; Scale bar: 5 µm. 
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2.5.2 PII foci are not localizing on starch granules 
Another explanation for the localization pattern of PII-GFP in foci in plastids would 

have been that they are part of starch granules. To test this hypothesis, I co-

expressed PII with the granule-bound starch synthase I (GBSSI) that localizes to 

plastids and catalyses the reaction from ADP/UDP-Glucose to amylose (Nelson and 

Rines, 1962; Szydlowski et al., 2009)(for review: Ball et al. (1998)).  

GBSSI-GFP localizes to plastids in N. benthamiana (Figure 18 A, Figure A 11 A). 

Co-localization analyses of PII-GFP with GBSSI-mCherry revealed co-localization 

of both in foci to plastids. These foci were not localizing on starch granules but next 

to them (Figure 19 A). As a putative negative control, the co-localization of PII with 

the D-amino acid transaminase DAT1 (Suarez et al., 2019) was tested. DAT1 is 

involved in D-AA metabolism and catalyses the reaction from its major substrate D-

Met with pyruvate to D-Ala with 2-OG (Suarez et al., 2019) and is localizing in 

aggregates to plastids (Figure 18 B, Figure A 11 B).  

Figure 17: PII-RFP localizes next to nucleoids in chloroplasts of transiently transformed 
N. benthamiana mesophyll cells. 
A) YO-PRO™-1 Iodide stained nucleoids in transiently transformed N. benthamiana leaves with P19. 
Magenta indicates autofluorescence. B) YO-PRO™-1 Iodide stained nucleoids in transiently 
transformed N. benthamiana leaves expressing cPII-RFP under control of p35S. YO-PRO™-1 Iodide 
depicted in green. White arrows: nucleoids. 3 days after transient transformation in N. benthamiana 
leaf disks were fixed overnight and were stained with YO-PRO™-1 Iodide for 15 min. 
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Co-localization of PII-GFP with GBSSI-mCherry and DAT1-mCherry indicates 

putative interaction (Figure 19 A, B). PII-GFP localization, co-expressed with the 

known and putative interaction partners, is mainly unchanged in comparison to PII-

GFP expressed alone (Figure 14 A).  

   

2.5.3 PII localizes in vesicle-like structures at plastids and in cytoplasm 
PII-GFP localization was not only observed in plastids but also extra-plastidic in 

vesicle-like structures (Figure 20). This phenomenon reminds of protein degradation 

from plastids. To test the hypotheses that PII is part of such structures, I analysed 

Figure 18: GBSSI and DAT1 tagged with GFP localize to plastids of transiently transformed 
N. benthamiana. 
A) GBSSI-GFP localizes to plastids. Expression under the control of the p35S. B) DAT1-GFP 
localizes to plastids. Expression under the control of the pUBQ. 
White arrows: aggregates in plastids. Scale bars 10 µm. Confocal images were taken A) 2 days and 
B) 3 days after transient transformation of N. benthamiana. 

Figure 19: PII co-localizes with 
putative novel interaction partners in 
plastids of transiently transformed 
N. benthamiana using 2in1 vectors. 
A) cPII-GFP co-localizes with GBSSI-
mCherry. B) cPII-GFP co-localizes with 
DAT1-mCherry. All genes under the 
control of p35S. White arrows indicate 
aggregates; orange arrows indicate 
starch granule. Scale bar: 1µm. 
Confocal images of single plastids were 
taken 2 days after transient 
transformation of N. benthamiana. 
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co-localization of PII to proteins known to be related to autophagy-dependent and -

independent protein turn over.  

 

 
Rubisco localizes in extra-plastidic compartments named Rubisco containing bodies 

(RCBs), which are involved in autophagy-dependent protein turnover (Chiba et al., 

2003; Ishida et al., 2008; Izumi et al., 2010). Localization analyses of RBCS3B-RFP 

alone revealed localization to plastids in aggregates (Figure 21, Figure A 11). 

 

 
Ectopic co-expression of PII-GFP with one of the small subunits of Rubisco, 

RBCS3B, tagged with RFP revealed extra-plastidic localization of both proteins to 

vesicle-like structures at plastids and in the cytoplasm (Figure 22 A). We observed 

extra-plastidic localization of co-expressed PII-GFP not only with RBCS3B-RFP 

(Figure 22 A) but also with DAT1-RFP (Figure 22 B) in vesicle-like structures at 

plastids and in the cytoplasm.  

Figure 20: PII-GFP localizes to plastids in foci and in extra-plastidic vesicle-like structures 
in transiently transformed N. benthamiana leaves. 
PII-GFP expressed under control of p35S. Confocal images were taken 2 days after infiltration. White 
arrows: foci in plastids; yellow arrows: extraplastidic foci; blue arrows: plastids. 

Figure 21: RBCS3B-RFP localizes to plastids in transiently transformed N. benthamiana 
leaf cells. 
RBCS3B tagged with RFP was expressed under the control of the p35S. RBCS3B-RFP localizes to 
plastids. White arrows: aggregates in plastids. Scale bar: 10 µm. Confocal images were taken 2 days 
after infiltration. 
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Perello et al. (2016) showed that the Deoxyxylulose synthase (DXS), the 

Deoxyxylulose reductoisomerase (DXR) and the Geranylgeranyl-diphosphate 

synthase 11 (GGPPS11), three proteins of the isoprenoid pathway, localize in 

different manner in plastids. DXS and DXR localize in foci in plastids (Figure 23 A-

B), whereas GGPPS11 localizes throughout the plastid and forms no foci (Figure 23 

C) (Perello et al., 2016). The degradation of DXS and DXR is proposed to occur in 

different pathways (Pulido et al., 2013; Perello et al., 2016; Pulido et al., 2016): DXS 

degradation takes place via chaperones (Pulido et al., 2013; Pulido et al., 2016), 

whereas DXR is proposed to be degraded in Chloroplast vesiculation containing 

vesicles (CCVs), which are autophagy independent (Perello et al., 2016).  

Figure 22: PII localizes in foci in plastids and in vesicle-like structures next to plastids. 
A) PII-GFP and RBCS3B-RFP co-localize in foci in plastids and in vesicle-like structures next to 
plastids, both under the control of p35S. Confocal images were taken 2 days after transient 
transformation of N. benthamiana leaves. Scale bar: 10 µm. B) PII-GFP and DAT1-mCherry co-
localize throughout the plastid and in the extra-plastidic space. Both under the control of an estradiol-
inducible promoter. Estradiol induction 3 days after transient transformation of N. benthamiana 
leaves performed by Marvin Braun. 3D- image generated from Z-stack of confocal images taken 96 
h after induction. Scale bar: 5 µm. White arrows: foci in plastids; yellow arrow: extraplastidic 
localization in vesicle-like structures; blue arrow: plastids.  
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Co-expression revealed co-localization of PII-RFP with DXS-GFP, DXR-GFP and 

partially with GGPPS11-GFP in plastids (Figure 24 A-C), as GGPPS11-GFP does 

not form foci and localizes throughout the plastid (Figure 24 C).  

 

 

 

 

 

 

Figure 23: DXS-, DXR-, and GGPPS11-GFP localize to plastids of transiently transformed 
N. benthamiana leaf cells. 
A) 3D- image generated from Z-stack of DXS-GFP. DXS-GFP localizes to plastids. B) DXR-GFP 
localizes to plastids. C) 3D- image generated from Z-stack of GGPPS11-GFP.  
Expression of all genes under control of p35S. Scale bars: 10 µm. Confocal images were taken 3 
days after transient transformation of N. benthamiana. White arrows indicate aggregates in plastids. 
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2.5.4 PII is involved in autophagy in N. benthamiana 
PII putatively localizes not just with potential RCBs (Figure 22 A), which are 

autophagy-dependent but also with DXR that is degraded via CCVs, to putative 

CCVs, which are autophagy-independent (Figure 24 B) (Wang and Blumwald, 2014; 

Perello et al., 2016). As these are two different pathways for protein turnover, I 

analysed whether PII co-localizes with the cytoplasmic localized autophagy-related 

proteins Atg8e, Atg8g and NBR1 (Figure 25) (Contento et al., 2005; Hafren et al., 

2018; Ustun et al., 2018).  

Figure 24 PII co-localizes with DXS, DXR and partially with GGPPS11 in plastids of 
N. benthamiana. 
A) DXS-GFP and PII-RFP co-localize in foci in plastids. B) DXR-GFP and PII-RFP co-localize in foci 
in plastids and in extra-plastidic vesicle-like structures. C) GGPPS11-GFP localizes throughout 
plastids. PII-RFP localizes in foci in plastids. 
White arrow: foci in plastids; yellow arrow: extra-plastidic localization in vesicle-like structures, 
putative CCVs. Expression of all genes under control of p35S. Scale bars: 10 µm. Confocal images 
were taken 3 days after transient transformation of N. benthamiana. 
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Co-expression of PII-GFP with NBR1-RFP revealed partial co-localization in 

aggregates in the cytoplasm (Figure 26 A). The two Atg8 subforms Atg8e and Atg8g 

tagged with TagRFP localized in aggregates in the cytoplasm but also in a not 

aggregated form (Figure 25 B-C, Figure 26 B-C). PII-GFP co-localized with both 

subforms of Atg8 in aggregates in the cytoplasm and appeared in additional 

aggregates (Figure 26 B-C). The observed co-localization of PII with autophagy-

dependent protein turnover may indicate a role of PII in these pathways.  

Figure 25: NBR1, 
Atg8e and Atg8g 
localize to the 
cytoplasm in 
transiently 
transformed 
N.  benthamiana 
epidermal cells. 
A) NBR1-RFP localizes 
to the cytoplasm in 
vesicle-like structures. 
B) TagRFP-Atg8e 
localizes to the 
cytoplasm. C) TagRFP-
Atg8g localizes to the 
cytoplasm uniformly 
and in vesicle-like 
structures. All genes 
expressed under the 
control of p35S. Scale 
bar: 20 µm. 
Autofluorescence 
indicated in blue. 
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2.6 Dynamics of PII foci formation  

PII accumulates in foci but is also found in the rest of the plastid (Figure 14 B, Figure 

20 and Figure 22). This led me to the observation that PII-GFP formed foci with 

NAGK-mCherry within seconds to a few minutes in mesophyll cells of transiently 

transformed N. benthamiana (Figure 27).  

Visualization of foci formation kinetics revealed a fast onset of foci formation (Figure 

28) within seconds (Figure 28 A) and lead to an increase in foci size within minutes 

(Figure 28 B). This observation led to the question whether fast foci formation is 

dependent on light or temperature.  

Figure 26: PII-GFP co-localizes partially with autophagy-related proteins NBR1, Atg8e and 
Atg8g in transiently transformed N. benthamiana leaves. 
PII-GFP co-expressed with A) NBR1-RFP, B) TagRFP-Atg8e and C) TagRFP-Atg8g under the 
control of p35S. Scale bar: 5 µm A)-B) and 10 µm C). Autofluorescence indicated in blue. White 
arrows indicate co-localization; red arrows indicate no co-localization. A) Confocal image was taken 
2 days after transient transformation of N. benthamiana. B)-C) 3D- image generated from Z-stack of 
confocal images taken 2 days after transient transformation of N. benthamiana.  
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Figure 27: PII-GFP and NAGK-mCherry form foci within seconds in transiently transformed 
N. benthamiana mesophyll cells. 
A) PII-GFP and NAGK-mCherry localize throughout plastids. B) PII-GFP and NAGK-mCherry localize 
throughout plastids and in foci 1 min 36 sec after first image (A). Both genes expressed under the 
control of p35S using the 2in1 FRET vector. Confocal images were taken 2 days after transient 
transformation of N. benthamiana. 
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2.6.1.1 PII foci formation is partially dependent on temperature and light 
To investigate the dependency of fast foci formation to light or temperature, I 

analysed stably transformed A. thaliana PII-GFP plants expressing gPII-GFP under 

the control of pUBQ.  

Variation in PII-GFP fluorescence intensity levels in single plants of the analysed 

line prohibited quantification of this phenomenon. Therefore, only tendencies could 

be determined of PII foci formation in dependence to temperature and light. We 

observed PII-GFP forming foci with all tested conditions but not uniformly throughout 

all plant cells (Figure 29, Figure 30, Figure A 12, Figure A 13). PII-GFP localizes 

mainly in a uniform manner in the whole chloroplast in mesophyll cells and in foci in 

stomata cells when grown in dark at 8°C (Figure 29 B, Figure A 12 C-D). An increase 

in foci formation in chloroplasts of mesophyll cells was observed in dark at 23°C 

(Figure 29 A, Figure A 12 A-B), which was even more pronounced at 37°C (Figure 

29 C, Figure A 12 E-F). Increase of temperature seemed to promote partial foci 

formation of PII-GFP in chloroplasts of mesophyll cells.  

As foci formation is already visible at low temperatures and increases at higher 

temperatures in dark, I analysed PII-GFP localization exposed to blue, green, red 

and far-red light (Figure 30, Figure A 13).  

Under blue light, PII-GFP localization was mostly uniform throughout the 

chloroplasts of mesophyll cells with partial additional aggregation (Figure 30 A; 

Figure A 13 A-B).  

Figure 28: Kinetics of PII foci formation in transiently transformed N. benthamiana 
mesophyll cells. 
A) Single plane images of time series of PII-GFP and NAGK-mCherry kinetics. Scale bar: 10 µm.  
Confocal images were taken 2 days after transient transformation of N. benthamiana. 
B) Z-Stacks of time series of PII-GFP kinetics. Scale bar: 5 µm. Donor-only 2in1 FRET vector. 
Confocal images were taken 3 days after transient transformation of N. benthamiana. 
All genes expressed under the control of p35S using the 2in1 FRET vector.  
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Exposing seedlings to green light revealed PII-GFP localization in foci in plastids of 

stomata or epidermal cells (Figure 30 B). In mesophyll cells, an even distribution 

throughout plastids could be detected in most cells (Figure 30 B) but foci formation 

in plastids of mesophyll cells could be observed in few cells (Figure A 13 C-D).  

Interestingly, the same pattern in mesophyll cells emerged when exposed to red or 

far-red light (Figure 30 C, D, Figure A 13 F, H). Still, this pattern could not be 

observed in all mesophyll cells (Figure A 13 E, G). This indicates at least partial 

dependency of PII foci formation to light and temperature, which needs to be further 

examined.  

Figure 29: PII-GFP localization changes slightly in 6-day old seedlings after 24h in varying 
temperature conditions in A. thaliana expressing PII-GFP under the control of pUBQ. 
A) PII-GFP localization after 24h in dark at 23°C. B) PII-GFP localization after 24h in dark at 8°C. C) 
PII-GFP localization after 24h in dark at 37°C. 
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Figure 30: PII-GFP localization changes slightly in 6-day old seedlings after 24h in varying 
light conditions in A. thaliana expressing gPII-GFP under control of pUBQ. 
A) PII-GFP localization after 24h under blue-light. B) PII-GFP localization after 24h under green light.  
C) PII-GFP localization after 24h under red light. D) PII-GFP localization after 24h under far-red light. 
White arrows indicate foci in plastids. 
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2.7 Interaction studies 

The co-localization studies with PII raised the question if these observations are 

caused by direct interaction. In vivo interaction behaviour of plant PII had not been 

analysed to date. The analyses of interaction partners of AtPII was mainly performed 

with in vitro assays using recombinant PII without cTP (Chen et al., 2006; Feria 

Bourrellier et al., 2010). To investigate whether PII is interacting with known and 

putative novel interaction partners in planta, I made use of two fluorescent protein-

based interaction analysis methods in transiently transformed N. benthamiana. 

First, the Förster Resonance Energy Transfer (FRET) (Forster, 1946) combined with 

Fluorescence Lifetime Imaging Microscopy (FLIM) and second, the Bimolecular 

Fluorescence Complementation (BiFC), both utilizing 2in1 vectors (Grefen and 

Blatt, 2012; Hecker et al., 2015). Additionally, we applied GFP-traps of whole leaf 

extracts from stably transformed A. thaliana Col-0 with PII-GFP under control of the 

pUBQ as an alternative method for interaction analysis.  

2.7.1 FRET-FLIM 
The co-localization of PII with known and putative novel interaction partners 

observed in co-localization studies (Figure 14, Figure 15, Figure 19, Figure 22 A, 

Figure 24) led to the question whether these proteins are in fact interacting with PII. 

The fluorescence-based analyses using FRET-FLIM reveals whether a drop in the 

donor-lifetime and thereby an energy transfer to the acceptor occurs. This takes 

place when the two FP-tagged proteins are in a distance below 10 nm (Peter et al. 

(2014), for review see Ishikawa-Ankerhold et al. (2012)). FRET-FLIM analyses were 

used to investigate the reduction of fluorescence lifetime of the analysed PII-GFP 

co-expressed with known and putative interaction partners fused to mCherry. 

FLIM analyses revealed highly significant reduction of GFP fluorescence lifetime 

using PII-GFP as a donor with itself, NAGK, BCCP1, GBSSI and DAT1 fused to the 

acceptor mCherry in comparison to PII alone (PII-GFP co-expressed with GentR 

(Figure 31 A); Figure 31 G). These observations were also made using PII-GFP as 

a donor with NAGK, RBCS3B, DXS, DXR and GGPPS11 fused to the acceptor 

mCherry in rapidFLIM studies in comparison to PII alone (Figure 32 A; Figure 32 G).  

Although PII showed co-localization with DXR in foci in first co-localization studies 

(Figure 24 B), DXR-mCherry showed no foci formation in plastids using 2in1 vectors 

(Figure 32 E) and only a slight but significant reduction in GFP fluorescence lifetime 

in rapidFLIM studies (Figure 32 G). The reduction of GFP fluorescence lifetime 
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indicates interaction of PII to the tested proteins, which was further verified in BiFC-

interaction analyses (Figure 33). The highest reduction in GFP fluorescence lifetime 

was measured for PII co-expressed with NAGK, indicating a very close proximity of 

the fluorophores. 

   

Figure 31: Co-
localization and 
FRET-FLIM 
analyses of PII 
interactions with 
known and novel 
interaction partners 
in N. benthamiana 
using 2in1 FRET 
vectors. 
A) PII-GFP alone 
(Donor-only control). 
PII-GFP co-
expressed with B) PII-
mCherry, C) NAGK-
mCherry, D) BCCP1-
mCherry, E) GBSSI-
mCherry and F) 
DAT1-mCherry. G) 
Boxplot of GFP-
Fluorescence Lifetime 
decrease obtained in 
FLIM analyses; 
students t-test 
revealed p-values 
***<0.001. Expression 
of all genes under the 
control of p35S. 
FastLifetime images 
indicate decrease of 
GFP fluorescence 
lifetime depicted by a 
heat map from 2.5 to 
1.0 ns.  
Confocal images were 
taken and FLIM 
measurement were 
performed 2 days 
after transient 
transformation of 
N. benthamiana. 
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2.7.2 BiFC 
The reconstitution of YFP using the BiFC approach, is an alternative method to 

analyse the interaction of two proteins in vivo (Hu et al., 2002). Therefore, I 

performed BiFC analyses in stably transformed N. benthamiana using BiFC 

Figure 32: Co-
localization and 
FRET-FLIM 
analyses of PII 
interactions with 
known and novel 
interaction partners 
in N. benthamiana 
using 2in1 FRET 
vectors. 
A) PII-GFP alone 
(Donor-only control). 
PII-GFP co-
expressed with B) 
NAGK-mCherry, C) 
RBCS3B -mCherry, 
D) DXS-mCherry, E) 
DXR-mCherry and F) 
GGPPS11-mCherry. 
G) Boxplot of GFP-
Fluorescence Lifetime 
decrease obtained 
from rapidFLIM 
analyses; student’s t-
test revealed p-
values:* < 0.05, *** < 
0.001. Expression of 
all genes under the 
control of p35S. 
FastLifetime images 
indicate decrease of 
GFP fluorescence 
lifetime depicted by a 
heat map from 2.5 to 
1.0 ns.  
Confocal images were 
taken and FLIM 
measurement were 
performed 2 days 
after transient 
transformation of 
N. benthamiana. 
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constructs of PII with the same interaction candidates as in section 2.7.1 to further 

confirm the observed interactions. 

The reconstitution of YFP exclusively in foci in plastids was observed for all tested 

constructs (Figure 33 B-I), indicating interaction, except of PII with GGPPS11 

(Figure 33 J) and the donor-only control PII co-expressed with GentR (Figure 33 A). 

Although PII showed close proximity and putative interaction with GGPPS11 in 

FRET-FLIM (Figure 32 F-G), this could not be verified by BiFC analyses (Figure 33 

J).  
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2.7.3 GFP-trap 
It was not much known before about additional interaction partners of PII besides 

NAGK, BCCP1/2 and BADC1-3, and possible complex formation involving PII (Chen 

et al., 2006; Ferrario-Mery et al., 2006; Beez et al., 2009; Feria Bourrellier et al., 

2009; Feria Bourrellier et al., 2010; Chellamuthu et al., 2014).  

There is evidence for a broader range of putative interaction partners according to 

our FRET-FLIM and BiFC data (Figure 31, Figure 32 and Figure 33). To further 

verify this, I performed a GFP-trap assay to pull down interaction partners of PII in 

A. thaliana. The GFP-trap was performed with whole leaf extracts of five-week-old 

plants overexpressing PII-GFP under the pUBQ10. As a negative control, I used 

Col-0 expressing pt-gk, the transit peptide of tobacco Rubisco C-terminally tagged 

with GFP (Nelson et al., 2007).  

GFP-trap samples of whole leaf extracts revealed detectable bands for pt-gk at ~50 

kDa and for PII-GFP at 15 kDa, ~35 kDa and ~45 kDa (Fraction 6 in Figure 34 A-

C). Additional bands could be detected for PII-GFP in Western blot analyses (Figure 

34 C). Bands of predicted protein sizes of known and putative interaction partners 

of PII were cut out and were subjected to targeted mass spectrometry (MassSpec) 

analyses (Figure 34 B). Control samples were cut out from elution fraction of pt-gk 

(Figure 34 B).  

MassSpec-analysis of protein bands revealed high sequence coverage only for PII, 

either mGFP5-tagged at ~58.5 kDa, ~45.8 kDa, ~34.5 kDa, ~34 kDa and ~31.2 kDa, 

or alone at ~17.9 kDa, ~15.5 kDa and ~14.7 kDa (Table 1). The remaining hits 

resemble none of the known or the putative novel interaction partners of PII (Figure 

31, Figure 32, Figure 33 and Table 24: Appendix).  

Figure 33: BiFC analyses of PII with known and putative novel interaction partners in 
transiently transformed N. benthamiana using 2in1 BiFC vectors  
PII-nYFP co-expressed with C-terminal cYFP-tagged A) PII, B) NAGK, C) BCCP1, D) GBSSI, E) 
DAT1, F) RBCS3B, G) DXS, H) DXR, I) GGPPS11. M) PII-nYFP alone (Donor-only control) Free 
mRFP is used as transformation control. Expression of all genes under control of p35S. Confocal 
images were taken 3 days after transient transformation of N. benthamiana. Scale bar 5 µm. 
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Table 1: Hits against PII-mGFP5 and PII using MS-Fit ProteinProspector  
Protein size SDS-

PAGE (kDa) 
% 

coverage 
Protein name Protein size 

(kDa) 
58.5 6.4 PII-mGFP5 52.391 
45.8 64.2 PII-mGFP5 52.391 
45 14.2 PII-mGFP5 52.391 

34.5 26.9 PII-mGFP5 52.391 
34 30.5 PII-mGFP5 52.391 

31.2 26.7 PII-mGFP5 52.391 
17.9 20.9 PII (Nitrogen regulatory protein P-II homolog) 21.276 

Figure 34: SDS-PAGEs and Western 
blot of whole leaf extracts followed by 
GFP-trap from pt-gk (tobacco Rubisco 
cTP tagged with GFP) and 
pUBQ::cPII-GFP T1 #5 stably 
transformed in A. thaliana. 
A) Whole leaf extracts from five-week-old 
plants. SDS-PAGE of single fractions 
after GFP-trap.  
B) SDS-PAGE of eluates after GFP-trap 
(see 6 in A) for MassSpec-analyses. 
Single band detectable for pt-gk in fraction 
6 at ~50 kDa. Eluate of cPII-GFP trap 
revealed bands at ~45 kDa, ~35 kDa and 
15 kDa.  
C) Western blot of GFP-trapped leaf 
extracts with α-GFP. For pt-gk single band 
detectable in fraction 1 and 6 at ~40 -50 
kDa. For cPII-GFP bands detectable at 
~35 kDa and ~45 kDa in fraction 1, 2 and 
6. In elution fraction of cPII-GFP (6) 
additional bands are detectable. 
Fraction 1: Input; 2: Flow-through; 3: 
Wash 1; 4: Wash 2; 5: Wash 3; 6: Elution. 
15 µL per lane. 
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15.5 51 PII (Nitrogen regulatory protein P-II homolog) 21.276 
14.7 15.3 PII (Nitrogen regulatory protein P-II homolog) 21.276 

  



  Discussion 

49 
 

3 Discussion 
3.1 The function of PII as C/N sensor in plants 

The expression of PII is dependent on light and sucrose (Hsieh et al., 1998). We 

could show that the activity of the PII promoter is not only dependent on sucrose 

and light but in addition on inorganic N (Figure 2). Moreover, limiting N conditions 

lead to low promoter activity independent of sucrose. Hsieh et al. (1998) showed 

decreased PII levels with organic N sources like AAs in addition to sucrose (Hsieh 

et al., 1998). We could show that PII promoter activity increases with additional 

inorganic N. Light and sucrose without inorganic N are not sufficient to induce an 

increased promoter activity (Figure 2). At least for the onset of transcription, these 

data indicate that not only light and abundance of C sources like sucrose are 

essential but also inorganic N sources. The activity of the promoter depending on 

availability of C and inorganic N sources display a fine-tuning already on the 

transcriptional level. Transcriptional regulation of PII was at least shown for NtcA 

activated gene expression in cyanobacteria. But in contrast to our data, PII 

expression in cyanobacteria was induced in N deprived cells (Giner-Lamia et al., 

2017). 

The mutant line PIIS2 (Ferrario-Mery et al., 2005) displayed no apparent phenotype 

under the N and sucrose limiting conditions. The absence of a phenotype led to the 

question whether PIIS2 is an actual knockout mutant. RT-PCR of seedlings revealed 

low but detectable full-length PII mRNA in PIIS2 (Figure 6). As PII mRNA was still 

detectable, PIIS2 is not a knockout but a knockdown mutant. The detected mRNA 

may be sufficient for stable PII protein level and therefore, no reproducible changed 

phenotype is detected under the tested conditions for PIIS2. PIIS2 is the only 

characterized PII knockout line in Col-0 background (Ferrario-Mery et al., 2005). 

The effect of PII loss on plant development must be repeated with additional mutant 

lines. Hence, we generated PII CRISPR/Cas lines to clarify the role of PII in 

A. thaliana. The characterization of these lines revealed no CRISPR/Cas events so 

far.  

3.2 PII localizes to foci and may be involved in protein turnover 

We found in vivo that PII tagged with fluorescent proteins under the control of 

different promoters distributed all over the whole plastid, except of putative starch 

granules, but mainly in foci in plastids. During my studies I tried to relate this 

distribution pattern to known suborganellar structures in plastids. 
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These studies revealed, that PII is not localizing in starch granules, visualised 

indirectly in co-localization experiments (Figure 19 A). In addition, PII localization to 

plastoglobuli could be excluded, as PII is not present in the plastoglobuli proteome 

(Lundquist et al., 2012). Furthermore, we could exclude, that PII localizes to 

nucleoids in plastids (Figure 17 B), thus a PipX homologue is absent in plants 

(Chellamuthu et al., 2013).  

We observed a fast onset of foci formation within seconds in chloroplasts of 

N. benthamiana. Although there were slight differences in foci formation in PII 

overexpressing A. thaliana plants treated with different temperatures in the dark as 

well as with various light qualities at RT, the dependency of foci formation onset to 

temperature and light is still an open question. It was proposed, that cyanobacterial 

PII was modified post-translationally by phosphorylation via changes in the redox-

state of plastoquinone in the photosystem II (PSII) (Allen et al., 1981), but not by 

PSI, in the photosynthetic electron transport chain or by differential ammonia 

concentrations (Harrison et al., 1990; Tsinoremas et al., 1991). This change was 

observed after growth of cells at wavelengths preferred by PSII (Harrison et al., 

1990). A post-translational modification of A. thaliana PII could not be detected so 

far (Smith et al., 2004), indicating that PII foci formation may not be due to 

phosphorylation. Another possibility is that foci formation may be due to a change 

in effector molecule concentrations, as it has been shown for Synechococcus PII 

(Espinosa et al., 2018). It localizes in dark to foci at potentially low ATP to ADP level 

in a putative inactive stage (Espinosa et al., 2018). Therefore, this foci formation 

may represent an inactivation of PII or its interactors in planta. Binding of PII to 2-

OG mediates inactivation of the so far characterized interactions. When the 2-OG 

level is high in the foci, an opportunity to measure this could be the use of 2-OG, 

derivatized with o-phenylenediamine (OPG), resulting in a fluorescent derivative 

emitting at 420 nm (McNeill et al., 2005). The concentration or even foci formation 

of this derivative in the plastids, could give a further hint.  

We observed PII localization not only intraplastidic in foci but also extraplastidic in 

vesicle-like structures. PII co-localizes with DAT1, RBCS3B and DXR intra- and 

extraplastidic in a putative autophagy dependent and/or independent manner 

(Figure 36). PII showed partial co-localization with autophagy related proteins. This 

may be another hint on PII acting as a molecular glue by interacting with many 

metabolic proteins, thereby either positively or negatively regulating their activity and 
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putatively “catch” proteins for protein degradation in foci in the cytoplasm. It was 

shown for RCBs, that a higher number of RCBs could be detected in plants grown 

on ½ MS without sucrose in comparison to ½ MS with sucrose in dark (Izumi et al., 

2010). A first approach could be the growth of stably transformed A. thaliana 

expressing PII-XFP on ½ MS media with and without sucrose and further 

characterization using fluorescence microscopy (Ishida et al., 2008). Additional 

treatment with concanamycin A, an inhibitor of the V-ATPase, used for targeting of 

proteins to the vacuole in a autophagy-dependent manner, could be used (Ishida et 

al., 2008). When PII-XFP foci are localizing to the vacuole, RBCS3B localization 

could be analysed in wild type and PII knockout lines, as Rubisco is linked to RCBs 

(Ishida et al., 2008). When RCBs are still detectable in a comparable amount to wild 

type in the vacuole, at least a direct connection involving PII in RCB formation may 

be excluded.  

The protein turn over via CCVs is autophagy-independent (Wang and Blumwald, 

2014). It was presumed for DXR that it is degraded via CCVs (Perello et al., 2016). 

Microscopic analyses revealed co-localization of PII with DXR in extraplastidic 

vesicle-like structures. This may indicate PII degradation or involvement in protein 

turn over via CCVs (Figure 36). Treatment of stably transformed A. thaliana 

expressing PII-XFP with concanamycin A, could lead to a loss in extraplastidic 

vesicle-like structure and a more diffuse distribution of PII in plastids, as it was 

reported for CCVs (Wang and Blumwald, 2014). As both scenarios are possible, this 

experiment should be performed preceding further characterization of the observed 

extraplastidic vesicle-like structures. 

3.3 Putative new functions for PII in plants 

3.3.1 PII interacts with proteins involved in diverse metabolic pathways 
In the past, interaction analyses of plant PII in yeast-2 hybrid screens or expressed 

in E. coli in a pull-down assay were performed using recombinant PII lacking the 

transit peptide (Sugiyama et al., 2004; Chen et al., 2006; Ferrario-Mery et al., 2006; 

Feria Bourrellier et al., 2009; Feria Bourrellier et al., 2010). 

Co-expression analyses revealed co-localization of PII with the already known 

interaction partners NAGK, BCCP1, BADC2 and BADC3. In addition, PII co-

localized with GBSSI, DAT1, DXS, DXR and RBCS3B and partially with GGPPS11, 

which were not described as putative interactors of PII, yet. Using FRET-FLIM and 

BiFC analyses, I could show that full-length PII is interacting in vivo with itself, NAGK 
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and BCCP1 in transiently expressed N. benthamiana. Furthermore, reduction of 

GFP fluorescence lifetime in FRET-FLIM and reconstitution of YFP in BiFC strongly 

indicate interaction of PII with GBSSI, DAT1, RBCS3B, DXS and DXR (Figure 36). 

These interactions were not described before.  

All these known and putative interactors are involved in metabolic pathways 

dependent on C and/or N availability (Krebbers et al., 1988; Dedonder et al., 1993; 

Szydlowski et al., 2011; Pulido et al., 2013; Perello et al., 2016; Pulido et al., 2016; 

Suarez et al., 2019). The mRNA expression of GBSSI increases during day and 

decreases at night. The protein level of GBSSI display no significant changes, 

whereas highest activity of the protein can be observed during day (Tenorio et al., 

2003). Targeting of GBSSI to starch granules is dependent on PTST (protein 

targeting to starch) (Seung et al., 2015). I did not observe localization of GBSSI on 

starch granules in N. benthamiana co-expressed with PII (Figure 19 A, Figure 35 B) 

as it was described for GBSSI localization in A. thaliana (Figure 35 A). The 

localization pattern of PII co-expressed wih GBSSI reminds of the localization 

pattern of the starch synthase IV (SSIV) that localizes next to starch granules 

(Figure 35; Szydlowski et al. (2009).  

   
As A. thaliana PTST is not co-expressed with PII-GFP and GBSSI-mCherry, the 

question remains, whether PII negatively regulates GBSSI activity in the absence of 

Figure 35: Localization 
pattern of Starch Synthase 
IV (SSIV), GBSSI, and 
GBSSI co-expressed with 
PII. 
A) SSIV-GFP and GBSSI-
GFP expressed in 
A. thaliana. Upper panel: 
SSIV-GFP localizes next to 
starch granules. Lower panel: 
GBSSI-GFP localizes on 
starch granules. 
Autofluorescence (chlor). 
Scale bar 2 µm. Modified 
from Szydlowski et al. (2009).  
B) PII-GFP and GBSSI-
mCherry localize next to 
starch granules indicated by 
orange arrow. Scale bar 1 
µm. Image identical to Figure 
19 A. 
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PTST or acts as a positive regulator of GBSSI. The observed interaction between 

PII and GBSSI has to be confirmed with co-expressed PTST in day/night cycle.  

D-Met is not only the precursor of D-Glu, D-Ala and L-Met (Gördes et al., 2013) but 

the major substrate of DAT1, preferentially catalysing the reaction from D-Met with 

pyruvate to D-Ala and 2-OG (Suarez et al., 2019). As PII directly binds 2-OG 

(Kamberov et al., 1995; Chellamuthu et al., 2014), PII may also sense the levels of 

2-OG produced by DAT1, thereby positively or negatively regulating DAT1 by direct 

interaction. At high levels of 2-OG, all binding sites in the PII trimer are possibly 

occupied and interaction of PII with DAT1 could be abolished. The activity of DAT1 

in presence of PII with 2-OG and/or pyruvate and respective D-AA with additional 

ATP should be analysed in in vitro enzymatic assays. 

RBCS3B is a small subunit of Rubisco (Krebbers et al., 1988; Dedonder et al., 

1993). Rubisco catalyses the reaction from Ribulose-1,5-bisphosphate with CO2 to 

3-D-Phosphoglycerate or in absence of CO2, Ribulose-1,5-bisphosphate with O2 to 

2-Phosphoglycolat and 3-D-Phosphoglycerate (for review see Bracher et al. 

(2017)). I could observe proximity and interaction of PII and RBCS3B in BiFC and 

FRET-FLIM studies. Rubisco needs bound Mg2+ to its carbamatylated L-Lys to be 

enzymatically active (Bracher et al., 2017). One possibility would be that PII, which 

directly binds Mg2+, is able to transfer its Mg2+ to Rubisco and thereby activate it. 

Enzymatic activity of Rubisco in presence of PII has to be validated.  

We observed co-localization of PII with three proteins of the isoprenoid pathway: 

DXS, DXR and GGPPS11. Although putative interaction was observed for PII with 

DXS and DXR, proximity to GGPPS11 was traced but no reconstitution of YFP in 

BiFC analyses. As these three proteins are part of the isoprenoid pathway (Perello 

et al., 2016), the effect of PII putatively interacting with DXS and DXR has to be 

revealed. For this, co-immunoprecipitation of PII with DXS and DXR has to be 

performed. 

Albeit PII was found to interact or at least show proximity to nearly all tested proteins, 

in MassSpec analyses of GFP-trapped samples none of the known and putative 

new interaction partners could be found. This finding did not confirm my 

observations of the interactions of PII, but still did not falsify them. The abundance 

of the interaction candidates may not be sufficient to detect them in this way. This 

should be analysed in future experiments. The interactions could be verified 
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alternatively by the usage of plant extracts of plants expressing PII and the putative 

interactor in co-immunoprecipitation experiments.  
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4 Conclusion and Outlook 
The promoter activity of PII is dependent on C/N availability. To investigate the effect 

not only on PII transcript level but also downstream pathways or regulated 

pathways, RNAseq experiments should be performed in PII knockout and 

overexpressor lines. Furthermore, Proteomics and Metabolomics experiments of 

these lines would provide further information on pathways controlled by PII directly 

and indirectly.  

 
PII forms foci in the intra- and extraplastidic space. This process is very fast, and 

the stimulus must be validated. One stimulus could be a change in the redox state 

of the plant, initiated by either light or temperature. Foci did not distribute uniquely 

in epidermal and mesophyll cells and varied between neighbouring cells and 

plastids. A small change in the molecular composition or redox state in the single 

cell or plastid may lead to the fast kinetics. For this, the redox-state of the cell may 

be crucial by changed levels of ammonia or by photo-damage induced by high light 

as it was proposed for cyanobacteria (Drath et al., 2008; Dai et al., 2014). In 

cyanobacteria, a change in the redox-state of PSII or a change in ammonia levels, 

led to post-translational phosphorylation of PII (Allen et al., 1981; Harrison et al., 

1990; Tsinoremas et al., 1991). Nevertheless, since evidence is missing for 

Figure 36: Model of PII action in protein turnover 
PII localizes to plastids and interacts with NAGK and BCCP1. Furthermore, it may interact with 
GBSSI, DAT1, RBCS3B, DXS and DXR. PII could co-localize with RBCS3B to autophagy dependent 
RCBs. Together with DXR, PII could localize to autophagy independent CCVs. PII could co-localize 
with DAT1 to either RCBs or CCVs. PII partially co-localizes with the autophagy proteins Atg8e and 
Atg8g and furthermore with NBR1 in the cytoplasm.  
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phosphorylation of A. thaliana PII (Smith et al., 2004), it remains an open question 

whether PII may sense a change in the redox-state and thereby forms foci. This 

change can be detected using redox-sensitive fluorescent proteins tagged with 

specific signal peptides, as Pt-GRX1-roGFP2 (Yu et al., 2013), composing of 

tobacco Rubisco cTP (Nelson et al., 2007), and NADPH-dependent glutathione/ 

glutaredoxin (GRX)-reduction oxidation sensitive GFP (Meyer et al., 2007; Gutscher 

et al., 2008). When a changed redox state of the plastids or even cells can be 

detected during foci formation, further analyses should be performed to elucidate 

the responsible effector molecule.  

The role of PII in A. thaliana remains cryptic although new putative interaction 

partners and changing subcellular localization patterns could be observed. The new 

putative interactions should be verified in the future using co-immunoprecipitation 

before further characterization of these interactions. Upcoming experiments should 

address dependency and activity of these new interactions on 2-OG and Mg2+-ATP. 

The proximity of PII with many enzymes involved in various metabolic pathways 

may reveal new unknown regulatory functions of PII.  

The localization and interaction studies and furthermore experiments regarding the 

phenotype have to be performed in a PII free environment. The endogenous PII 

from N. benthamiana could change the behaviour of A. thaliana PII. The co-

localization and interaction studies are performed with vectors consisting of the 35S 

promoter and plastids have only a small space of few µm, the import of massive 

amounts of proteins could lead to highly significant reduction of the GFP 

fluorescence lifetime. This is also true for the BiFC analyses. Co-

immunoprecipitation experiments with PII and known and novel interaction partners 

using the endogenous promoters should be performed with several grams of plant 

material to further investigate interactions. The lack of known and novel interaction 

partners after GFP-trap of whole leaf extracts could be due to the low abundance of 

these proteins. However, as MassSpec analyses was performed only with 

fragments cut out of the gel, this experiment should be repeated with more leaf 

material, and with the whole eluate fraction in an untargeted MassSpec approach.  

Two hypotheses of PII function in planta and especially A. thaliana could be 

mentioned. One is that the new interactions are just a subset of PII interactions and 

PII positively and/or negatively regulates a wide range of proteins in plastids at high 

to low affinity. One possibility is that the foci are not the place of activity of the 
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interactors but maybe aggregation prior to vesiculation and protein turnover 

(summarized in Figure 36). Another possibility is that interactions and activity of the 

interactors is high in foci, crowding all necessary effectors and metabolites for the 

metabolic pathways co-affecting each other. 

Second hypothesis includes actual interaction partners of PII, like NAGK, BCCPs, 

and BADCs, and false-positive interactions by proximity due to protein turnover 

pathways either autophagy-dependent or –independent with PII acting as a 

molecular glue or revealing new pathways involving PII as a fine-tuning protein. 

Quinary structures influence localization and interaction patterns of macromolecules 

resulting in a crowding effect (Wirth and Gruebele, 2013; Cohen and Pielak, 2017). 

This may explain the results of the MassSpec analyses of GFP-trapped samples of 

PII-GFP overexpressing plants, since mainly PII and PII-GFP are present in the 

eluate fraction (Figure 34, Table 1, and appendix: Table 24).  

One possibility to address the crowding effect is to make use of fluorescence 

recovery after photobleaching (FRAP), as it was shown for thylakoid membrane 

proteins (Kirchhoff et al., 2008). This method could be used to analyse the dynamics 

of single protein movement or even movement of multiple proteins.  

Although the regulatory function of PII on the intracellular C/N-homeostasis in plants 

could not be confirmed in this thesis, this question remains open. But especially the 

described interaction phenomena point to several putative novel functions of PII in 

A. thaliana and should be further investigated. 
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5 Material and Methods 
5.1 Material 

5.1.1 Genes 
If not specified otherwise, all tested genes were deriving from A. thaliana. 

Sequences were obtained from TAIR, GenBank or Rice genome project.  

PII (At4g01900), NAGK (At3g57560), BCCP1 (At5g16390), BADC2 (At1g52670), 

BADC3 (At3g15690.2), GBSS1 (At1g32900), DAT1 (At5g57850), RBCS3B.1 

(At5g38410.1), DXR (At5g62790), DXS (At4g155609), GGPPS11 (G11) 

(At4g36810), OsPII (Os05g04220.1) 

5.1.2 Oligonucleotides 
Oligonucleotides (Primers) used during PhD thesis were synthesized by 

biomers.net GmbH (Ulm, Germany). Complete list of used primers see 7.1.  

5.1.3 Vectors 
Complete lists of vectors used during this study, see 7.2. 

5.1.4 Bacterial Strains 

5.1.4.1 Escherichia coli 
Table 2: Escherichia coli strains used during thesis 
Strain Genotype origin 
NEB5α fhuA2 a(argF-lacZ)U169 phoA glnV44 

a80a(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 
hsdR17 

New England Biolabs 
(Frankfurt am Main, 
Germany) 

DH5α F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR 
nupG purB20 φ80dlacZΔM15 Δ(lacZYA-
argF)U169, hsdR17(rK

–mK
+), λ– 

Invitrogen Thermo 
Fisher Scientific 
(Carlsbad, USA) 

TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 
ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 
galE15 galK16 rpsL(StrR) endA1 λ- 

Invitrogen Thermo 
Fisher Scientific 
(Karlsruhe, Germany) 

DB3.1 F-gyrA462 endA1 ∆(sr1-recA) mcrB 
mrrhsdS20(rB-, mB-) supE44 ara14 galK2 lacY1 
proA2 rpsL20(Smr) xyl5 ∆leumtl1 

Invitrogen Thermo 
Fisher Scientific 
(Karlsruhe, Germany) 

ccdB-
survival 

F-mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 
ΔlacX74 recA1 araΔ139 Δ(ara-leu)7697 galU galK 
rpsL (StrR) endA1 nupG fhuA::IS2 

Invitrogen Thermo 
Fisher Scientific 
(Karlsruhe, Germany) 

5.1.4.2 Agrobacterium tumefaciens 
A. tumefaciens strain GV3101 with the genotype C58 (rif R) Ti pMP90 (pTiC58DT-

DNA) (gentR) Nopaline was used for transformation of N. benthamiana with plant 

expression vectors carrying genes of interest. For obtained lines used during this 

study, see 7.3. 
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5.1.5 Plants 
All Arabidopsis thaliana wild-type and mutant plants used in this study were ecotype 

Col-0. For generated lines and obtained lines used in this study, see 7.9. 

Nicotiana benthamiana was used for transient transformation of leaves. 

5.1.6 Kits and enzymes 

5.1.6.1 Kits 
Table 3: Kits used during thesis 
Kit application source 
Zymo Quick-RNA 
MiniPrep Kit 

RNA extraction for cDNA synthesis 
from Col-0 

Zymo Research (Irvine, 
USA) 

RNeasy Plant Mini 
Kit 

RNA extraction for cDNA synthesis 
from Col-0 and PIIS2 

QIAGEN N.V. (Venlo, the 
Netherlands) 

pENTR™/D-TOPO® Cloning of fragments Invitrogen, Thermo 
Fisher Scientific 
(Carlsbad, USA) 

Gel extraction 
MiniPrep Kit 

Elution of DNA fragments out of 
agarose-gel 

Genaxxon bioscience 
GmbH (Ulm, Germany) 

GeneJET Gel 
Extraction Kit 

Elution of DNA fragments out of 
agarose-gel 

Thermo Scientific™, 
Thermo Fisher Scientific 
(Waltham, USA) 

5.1.6.2 Restriction enzymes 
All used restriction enzymes were provided by Thermo Fisher Scientific (Karlsruhe, 

Germany) or New England Biolabs (Frankfurt am Main, Germany). 

5.1.6.3 Special enzymes 
Table 4: Special enzymes used during thesis 
DNA Polymerase application source 
NEB Taq DNA 
Polymerase 

Genotyping, control PCR New England Biolabs 
GmbH (Frankfurt am 
Main, Germany) 

Phusion™ High-
Fidelity DNA 
Polymerase 

Amplification of genes of interest 
for cloning into pENTR, and for 
sequencing 

Thermo Fisher Scientific 
(Waltham, USA) 

KOD Hot Start DNA 
Polymerase 

Amplification of genes of interest 
for BP reaction into pDONR221 

Merck KGaA (Darmstadt, 
Germany) 

T4 DNA Ligase Ligation of fragments for “classical” 
cloning 

Thermo Fisher Scientific 
(Waltham, USA) 

RevertAid H Minus 
Reverse 
Transcriptase 

cDNA synthesis Thermo Fisher Scientific 
(Waltham, USA) 

T4 DNA Polymerase Generation of blunt ends for 
ligation using 3’-5’ exonuclease 
activity 

Thermo Fisher Scientific 
(Waltham, USA) 

Shrimp Alkaline 
Phosphatase (SAP) 

Dephosphorylation of fragments for 
“classical” cloning  

Thermo Fisher Scientific 
(Waltham, USA) 

Gateway® BP 
clonase reaction mix 

BP reaction Invitrogen, Thermo 
Fisher Scientific 
(Carlsbad, USA) 
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Gateway® LR 
clonase reaction mix 

LR reaction Thermo Fisher Scientific 
(Waltham, USA) 

5.1.7 Dyes 
Table 5: Dyes used during thesis 
Dye Stock 

concentration  
Subcellular 
localization 

source 

DAPI 1 mg/mL Nucleus, nucleic 
acids 

Gift from FG Müller 

YO-PRO™-1 
iodide 

1 mM Nucleus, nucleic 
acids 

Thermo Fisher Scientific 
(Waltham, USA) 

5.1.8 Antibodies 
Table 6: Antibodies used during thesis 
antibody dilution organism company 
α-GFP 1:1000 mouse F. Hoffmann-La Roche AG (Basel, 

Switzerland) 
α-RFP (6G6) 1:1000 mouse ChromoTek GmbH (Planegg, Germany) 
α-RFP  1:3000 – 1:7000 Rabbit Invitrogen, Thermo Fisher Scientific 

(Carlsbad, USA) 
α-mouse-
HRP 

1:10000 goat Sigma-Aldrich (St. Louis, USA) 

α-mouse-AP 1:5000 goat Bio-Rad Laboratories, Inc. (Hercules, 
USA) 

α-rabbit-AP 1:5000 – 1:7000 goat Bio-Rad Laboratories, Inc. (Hercules, 
USA) 

5.1.9 Media, buffer and solutions 
If not specified otherwise, all chemicals used, were purchased from Carl Roth 

(Karlsruhe, Germany), Sigma-Aldrich (St. Louis, USA), AppliChem GmbH 

(Darmstadt, Germany) or Thermo Fisher Scientific (Waltham, USA). 

5.1.9.1 Growth media 
All media were autoclaved after preparation. 

 Growth media for bacteria 

Lysogeny broth (LB) medium (Luria/Miller) (according to: (Bertani, 1951; Luria 
and Burrous, 1957; Luria et al., 1960); modified by: Miller (1972)) 
Sodium chloride (NaCl)    10 g/L 

Tryptone      10 g/L 

Yeast extract      5 g/L 

Ad 1 L deionized H2O (dH2O). 

LB agar (Luria/Miller) 
NaCl       10 g/L 

Tryptone      10 g/L 

Yeast extract      5 g/L 
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Agar-Agar      15 g/L 

Ad 1 L dH2O. 

Super Optimal Broth (SOB) 
Bacto tryptone     20 g/L 

Yeast extract      5 g/L 

NaCl       0.5 g/L 

Potassium chloride (KCl)    2.5 mM 

2 M Mg2+-stock solution    1 % (add after autoclaving) 

pH 7.0 was adjusted with NaOH. Ad 1 L dH2O. 

Yeast extract broth (YEB) 
Beef extract      5 g/L 

Yeast extract      1 g/L 

Peptone      5 g/L 

Sucrose      5 g/L 

MgCl2       0.5 g/L 

Ad 1 L dH2O. 

 Plant growth media 

Plant growth media according to Murashige and Skoog (1962). 
Table 7: Murashige and Skoog media used during thesis 
Plant media V or g used for ½ MS source 
Murashige and Skoog basal 
salt 

2.13 g/L DUCHEFA Biochemie B.V. 
(Haarlem, the Netherlands) 

Murashige and Skoog 
micronutrient solution 

50 mL/L Sigma Aldrich (Carlsbad, 
USA) 

Murashige and Skoog 
nitrogen-free basal salt 

0.39 g/L bioPLUS from bioWORLD 
(Dublin, USA) 

Used macronutrient solutions to generate ½ MS with differing N 
concentrations 
Table 8: Macronutrient solutions used for ½ MS with differing N concentrations 
component Concentration 

stock 
Final concentration in ½ MS 

19.7 mM 
N 

4.93 mM 
N 

0 mM N 

M mM mM mM 
Ammonium nitrate (NH4NO3) 0.206 10.3 2.58 0 
Potassium nitrate (KNO3) 0.188 9.4 2.34 0 
Potassium hydroxide (KOH) 0.188 --- 7.06 9.4 
Calcium chloride 
(CaCl2 x 2 H2O) 

0.300 1.5 1.5 1.5 

Magnesium sulfate 
(MgSO4 x 7 H2O) 

0.150 0.750 0.750 0.750 
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Potassium dihydrogen 
phosphate (KH2PO4) 

0.080 0.625 0.625 0.625 

Optional component: 

Sucrose      1 % 

Additional component in solid MS media: 

Phytoagar      10 g/L 

pH 5.7 was adjusted with KOH. Ad 1 L dH2O. 

 Solutions for L-AA sensitivity screens 

50 mM L-Glu 
L-Glu       50 mM 

pH 7.0 was adjusted with KOH. Ad 1 L dH2O before sterile filtration. 

50 mM L-Gln 
L-Gln       50 mM 

pH 7.0 was adjusted with KOH and HCl. Ad 1 L dH2O before sterile filtration. 

50 mM L-Arg 
L-Arg       50 mM 

pH 7.0 was adjusted with HCl. Ad 1 L dH2O before sterile filtration. 

 Antibiotics 

Table 9: Antibiotics used during thesis 

5.1.9.2 Solutions and media 
If not stated otherwise, all solutions were adjusted to designated final volume with 

dH2O. 

 Solutions for generation of competent cells 

5.1.9.2.1.1 Solutions for generation of competent E. coli 

2 M Mg2+-stock solution 
MgCl2       1 M 

MgSO4      1 M 

Solution was sterile filtration and stored at 4°C. 

 Concentration 
E. coli (µg/mL) 

Concentration 
A. tumefaciens (µg/mL) 

Concentration 
plants (µg/mL) 

Ampicillin 50 -  
Kanamycin 50 50 50 
Spectinomycin 50 50-100 - 
Chloramphenicol 25 - - 
Rifampicin (DMSO) - 100 - 
Gentamycin - 40 - 
Hygromycin - - 25 
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RF1 
Rubidium chloride (RbCl)    100mM 

Manganese chloride (MnCl2)   50mM 

Potassium acetate     30mM 

CaCl2       10mM 

Glycerol      15% 

pH 5.8 was adjusted with acetic acid. Solution was sterile filtration and stored at 

4°C. 

RF2 
3-(N-morpholino)propanesulfonic acid (MOPS) 10mM 

RbCl       10mM 

CaCl2       75mM 

Glycerol      15% 

pH 6,1 – 6,4 was adjusted with KOH or HCl. Solution was sterile filtration and stored 

at 4°C. 

5.1.9.2.1.2 Solutions for generation of competent A. tumefaciens 

150 mM CaCl2 solution 
CaCl2       150mM 

Designated final volume was adjusted with dH2O. 

20 mM CaCl2 solution 
CaCl2       20mM 

 Solutions for work with DNA 

5.1.9.2.2.1 Solutions for gDNA extraction 

CTAB for gDNA extraction 
TRIS, pH 8.0 with HCl     100 mM 

NaCl        1.4 M 

EDTA        30 mM 

CTAB        2% (w/v) 

Edwards buffer (Edwards et al., 1991) 
TRIS, pH 7.5 with HCl    200 mM 

EDTA       25 mM 

NaCl       250 mM 

SDS       0.5 % 
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5.1.9.2.2.2 Nucleotide solution  

dNTPs (10 mM) 
dCTP       10 mM 

dATP       10 mM 

dGTP       10 mM 

dTTP       10 mM 

5.1.9.2.2.3 Solutions for small scale plasmid preparation 

Mini I 
Glucose      100 mM 

TRIS, pH 8.0 with HCl    50 mM 

EDTA, pH 8.0     10 mM 

RNase A was added to a final concentration of 10 µg/mL after autoclaving. 

Mini II 
Sodium hydroxide (NaOH)    0.2 M 

SDS       1 % 

Mini III 
Potassium acetate (CH3CO2K)    3 M 

pH was adjusted to pH 5.5 with acetic acid.  

 Solutions for chloroplast isolation 

Isolation medium 
Sorbitol      0.3 M 

MgCl2       5 mM 

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) 

       5 mM 

EDTA       5 mM 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH 8 with KOH 

       20 mM 

Sodium hydrogen carbonate (NaHCO3)  10 mM 

Gradient mix 
HEPES, pH 8 with NaOH    25 mM 

EDTA       10 mM 

Sorbitol       3 % (w/v) 
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Percoll solution 
Bovine serum albumin (BSA)    1 % 

Polyethylene glycol (PEG) 3350    3 % 

Ficoll 400       1 % 

Percoll® (Amersham biosciences, GE healthcare (Chicago, USA))   

        95 % (w/v) 

85 % Percoll solution 
Percoll solution      85 % 

Gradient mix       15 % 

42 % Percoll solution 
Percoll solution      42 % 

Gradient mix       58 % 

HEPES-Sorbitol-medium 
Sorbitol      0.3 M 

HEPES      50 mM 

 Solutions for work with proteins 

5.1.9.2.4.1 Solutions for GFP/RFP-trap 

Lysis buffer 
TRIS, pH 7.5 with HCl    10 mM 

NaCl       150 mM 

EDTA       0.5 mM 

NP-40 (Igepal CA-630)    0.5 % 

To 10 mL Lysis buffer: 

Complete Protease-Inhibitor   1 tablet 

Phenylmethylsulfonyl fluoride (PMSF)  1 mM 

Wash buffer 
TRIS, pH 7.5 with HCl    10 mM 

NaCl       150 mM 

EDTA       0.5 mM 

 Solutions for electrophoresis 

5.1.9.2.5.1 Solutions for DNA agarose gel-electrophoresis and agarose gel 

50 X TAE 
TRIS       2 M 
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Acetic acid      1 M 

EDTA       50 mM 

pH 8.0 

1 X TAE 
TRIS       40 mM 

Acetic acid      20 mM 

EDTA       1 mM 

1 % Agarose gel 
Agarose      1 % (w/v) 

1 X TAE was added to designated final volume. Gel was boiled and supplemented 

with 1-2 drops of 0.07 % ethidium bromide (EtBr) solution (AppliChem GmbH 

(Darmstadt, Germany)). 

2 % Agarose gel 
Agarose      2 % (w/v) 

1 X TAE was added to designated final volume. Gel was boiled and supplemented 

with 1-2 drops of EtBr solution. 

5.1.9.2.5.2 Size standards 

5.1.9.2.5.2.1 DNA size standard 

λ-PstI DNA marker 
λ-DNA (0.3 µg/µL)     415 µL 

PstI       5 µL 

Orange buffer     83 µL 

dH2O       327 µL 

Incubation overnight at 37 °C. After incubation, addition of: 

Orange Dye      415 µL 

Heat inactivation at 65 °C for 10 min. Storage at -20°C. 

5.1.9.2.5.2.2 Protein size standard 

Spectra™ Multicolor Broad Range Protein Ladder was used for SDS-PAGE and 

was purchased from Thermo Fisher Scientific. 

5.1.9.2.5.3 Loading dyes for gel-electrophoresis 

5.1.9.2.5.3.1 Loading dye for DNA agarose-gel-electrophoresis 

Orange Dye 
Glycerol        60 % 
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2-Amino-2-(hydroxymethyl)propane-1,3-diol (TRIS)-HCl 10 mM 

Orange G        0.15 % 

Ethylenediaminetetraacetic acid (EDTA)    60 mM 

5.1.9.2.5.3.2 Loading dyes for protein gel-electrophoresis 

2X sample buffer (according to ChromoTek manual for RFP-Trap) 
TRIS, pH 6.8 with HCl    120 mM 

Glycerol      20% 

Sodium dodecyl sulfate (SDS)   4% 

Bromophenol blue     0.04% 

β-mercaptoethanol     10% 

2X sample buffer containing dithiothreitol (DTT) 
TRIS, pH 6.8 with HCl    100 mM 

Glycerol      20% 

SDS       4% 

Bromophenol blue     0.2% 

DTT       200 mM 

Designated final volume was adjusted with dH2O. 

5.1.9.2.5.4 Solutions for SDS-Polyacrylamide gel electrophoresis (PAGE) 

Bottom buffer 
TRIS, pH 8.8      1 M 

SDS       0.27 % 

Buffer was sterile filtrated. 

Upper buffer 
TRIS, pH 6.8      0.25 M 

SDS       0.2 % 

Buffer was sterile filtrated. 

Acrylamide running gel (1 gel) 
Table 10: SDS-Polyacrylamide running gel compositions used during thesis 
Ingredient 12.5 % acrylamide 10 % acrylamide 
30% acrylamide/bis-acrylamide 
(37.5:1) solution 

2.5 mL 2 mL 

H2O 1.2 mL 1.7 mL 
Bottom buffer 2.25 mL 2.25 mL 
10 % ammonium persulfate (APS) 50 µL 50 µL 
Tetramethylethylenediamine 
(TEMED) 

4 µL 4 µL 
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Acrylamide stacking gel (1 gel) 
Table 11: SDS-Polyacrylamide stacking gel composition used during thesis 
Ingredient 4.5 % acrylamide 
30% acrylamide/bis-acrylamide (37.5:1) 
solution 

0.3 mL 

H2O 0.7 mL 
Upper buffer 1 mL 
10 % ammonium persulfate (APS) 10 µL 
Tetramethylethylenediamine (TEMED) 2 µL 

10 X SDS running buffer 
TRIS       250 mM 

Glycine      2.5 M 

SDS       1 % 

1 X SDS running buffer 
TRIS       25 mM 

Glycine      0.25 M 

SDS       0.1 % 

5.1.9.2.5.5 Coomassie staining of SDS-polyacrylamide gel 

Coomassie staining solution 
Coomassie Brilliant Blue R-250   0.05% (w/v) 

2-propanol      25 % (v/v) 

Acetic acid      10 % (v/v) 

dH2O       65 % (v/v) 

Coomassie destainer 
Acetic acid      10 % 

 Western blot buffer and solutions 

10 X Transfer buffer 
TRIS. pH 8.8 with HCl    250 mM 

Glycine      1.92 M 

1 X Transfer buffer 
TRIS       25 mM 

Glycine      192 mM 

Ethanol      20 % 

TRIS-buffered saline (TBS) 
TRIS-HCl, pH 7.5     50 mM 

NaCl       150 mM 
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TBS-Tween 
Added to TBS 

Tween-20      0.05 % 

Blocking solution 
Skim milk powder     5 % 

Alkaline Phosphatase (AP) buffer 
TRIS       12.144 g/L 

NaCl       5.844 g/L 

MgCl2       1.0165 g/L 

pH was adjusted to 9.5 with NaOH/HCl.  

Nitro blue tetrazolium chloride (NBT) (5%) 
NBT       5% 

Solved in 70% Dimethylformamide (DMF) 

5-Bromo-4-chloro-3-indolyl phosphate (BCIP) (5 %) 
BCIP (5%)      5% 

Solved in 100 % DMF 

Detection buffer for AP 
AP-buffer      10 mL 

NBT (5 %)      66 µL 

BCIP (5 %)      33 µL 

Detection buffer of horseradish peroxidase (HRP) 
Detection of HRP was performed with Amersham ECL™ Prime Western blotting 

detection reagent solution A (Luminol Solution) and solution B (peroxide solution) 

according to manufacturer’s manual. 

5.1.9.3 Solutions and buffer for work with plants 

 Solutions for transient infiltration of N. benthamiana leaves 

Stock solutions for AS medium 
2-morpholin-4-ylethanesulfonic acid (MES)-KOH buffer, pH 5.8 1 M in dH2O 

Magnesium chloride (MgCl3)      1 M in dH2O 

4'-Hydroxy-3',5'-dimethoxyacetophenone (Acetosyringone)  150 mM in 

DMSO 

AS medium  
1M MES-KOH buffer, pH 5.8   1 % (v/v) 
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1M MgCl3      1 % (v/v) 

150 mM Acetosyringone    0.1 % (v/v) 

 Solutions for stable transformation of A. thaliana 

AraAS medium  
Sucrose       5 % 

Silwett L-77      0.01 % 

200 mM Acetosyringone    0.05 % 

(Glucose       tip of spatula) 

MgSO4       tip of spatula 

 Sterilisation of A. thaliana seeds 

5.1.9.3.3.1 Sterilisation of A. thaliana seeds using Ethanol 

70 % Ethanol supplemented with Triton X-100 
Ethanol      70 % 

Triton X-100      0.05 % 

5.1.9.3.3.2 Sterilisation of A. thaliana seeds using chloric gas 

Sodium hypochlorite/ HCl solution 
37 % HCl      1.5 mL 

12 % Sodium hypochlorite (NaClO)  50 mL 

 Solutions and buffer for GUS staining: 

Phosphate buffer for GUS-assay 
Sodium hydrogen phosphate (Na2HPO4)  34.2 mM 

Sodium dihydrogen phosphate (NaH2PO4) 15.8 mM 

Triton X-100      0.25 % 

5-Bromo-4-chloro-1H-indol-3-yl β-D-glucopyranosiduronic acid (X-Gluc) 
solution 
Potassium ferrocyanide    0.5 mM 

Potassium ferricyanide    0.5 mM 

X-Gluc      1 mM 

 Solutions for DAPI and YO-PRO™-1 iodide staining 

20 X Sodium chloride sodium citrate (SSC) solution 
NaCl       3 M 

Sodium citrate     300 mM 
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2 X SSC 
NaCl       0.3 M 

Sodium citrate     30 mM 

pH 7.0 

2 X SSC with 4 % Formaldehyde 
NaCl       0.3 M 

Sodium citrate     30 mM 

Formaldehyde     4 % 

pH 7.0 

SSC/glycerol solution 
2 X SSC      50% 

Glycerol      50 % 

5.1.10 Equipment 
For most experiments, standard equipment of a molecular biology laboratory was 

used. For imaging of dark grown seedlings (Figure 5) NightShade LB 985 from 

Berthold Technologies GmbH & Co.KG (Bad Wildbad, Germany) was used. 

5.1.11 Software 
Matlab The MathWorks Inc. (Natick, USA) 

Box plots of hypocotyl and root growth, flowering time, and FLIM measurements 

were generated with Matlab. Script written with the help of Xuan Tran Vi Le and 

MathWorks forum. 

Adobe Creative Suite CS6 Design Standard Adobe Inc. (San Jóse, USA) 

Adobe Acrobat Reader DC Adobe Inc. (San Jóse, USA) 

GIMP The GIMP Developer 

ImageJ Wayne Rasband, National institute 

of Health 

Fiji (Fiji is just ImageJ) Schindelin et al. (2012), based on 

ImageJ 

ZEN Carl Zeiss Microscopy GmbH 

(Jena, Germany) 

Leica Application Suite X (LAS X)  Leica Microsystems GmbH 

(Wetzlar, Germany) 

Leica Application Suite AF Lite (LAS AF Lite)  Leica Microsystems GmbH 

(Wetzlar, Germany) 
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CLC Main Workbench 8 CLC bio, Qiagen (Aarhus, 

Denmark) 

ApE (A plasmid Editor) M. Wayne Davis 

5.1.12 Internet Resources 
PubMed, BLAST National Center for Biotechnology 

Information (NCBI) 

Information about Arabidopsis genes and lines www.arabidopsis.org (TAIR) 

Information about Arabidopsis expression profiles  

Arabidopsis eFP Browser, 

https://bar.utoronto.ca/efp/cgi-

bin/efpWeb.cgi 

Information about Rice genes http://rice.plantbiology.msu.edu/; 

Rice genome annotation project, 

Kawahara et al. (2013) 

MS-Fit ProteinProspector http://prospector.ucsf.edu 

ChloroP 1.1 Emanuelsson et al. (1999) 

TargetP 2.0 Almagro Armenteros et al. (2019) 

Spectral information Spectra-Viewer from Thermo 

Fisher Scientific (Karlsruhe, 

Germany) 

5.1.13 Stereomicroscopy 
Leica MZFLIII fluorescence stereomicroscope Leica Microsystems GmbH 

(Wetzlar, Germany) 

5.1.14 Laser scanning confocal microscopy 
For confocal imaging, three Laser scanning confocal microscopy systems were 

used: 

Zeiss LSM880 Airyscan Carl Zeiss Microscopy GmbH 

(Jena, Germany) 

Leica TCS SP2 Leica Microsystems GmbH 

(Wetzlar, Germany) 

Leica TCS SP8 Leica Microsystems GmbH 

(Wetzlar, Germany) 
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5.2 Methods 

5.2.1 Cell biological techniques 

5.2.1.1 Work with E. coli  
Growth conditions of used organisms are specified below. 

 Growth conditions for E. coli 

E. coli was grown either in liquid LB media on a rotator or on LB agar plates 

containing appropriate antibiotics at 37°C overnight. 

 Generation of chemical competent E. coli cells 

Chemical competent E. coli cells were generated according to protocol described in 

Dautel (2016) based on protocols described by Hanahan (1983); Hanahan et al. 

(1991). 

 Transformation of chemical competent E. coli cells 

Transformation of chemical competent E. coli cells was performed with 

modifications according to protocol I in Sambrook et al. (1989); Froger and Hall 

(2007). Following modifications were applied: 950 µL LB media was used instead of 

500 µL SOB or SOC media. Transformed cells were incubated at 37°C for 1 h prior 

to platting on LB plates.  

5.2.1.2 Work with A. tumefaciens 

 Growth conditions for A. tumefaciens GV3101 

A. tumefaciens was grown either in liquid LB media in a rotator at 28°C overnight or 

on LB agar plates containing appropriate antibiotics at 28°C for two to three days. 

 Generation of chemical competent A. tumefaciens GV3101 cells 

Chemical competent A. tumefaciens GV3101 cells were generated according to 

protocol from Dautel (2016). 

 Transformation of chemical competent A. tumefaciens GV3101 

Transformation of chemical competent A. tumefaciens GV3101 cells was performed 

according to protocol from Dautel (2016) with the modification that LB medium was 

used instead of YEB medium. 

 Glycerol stocks of transformed A. tumefaciens GV3101 

Cryotubes (1.5 mL) were filled with 0.5 mL glycerol, before autoclaving. 0.5 mL of 

an overnight culture of A. tumefaciens GV3101 strains were pipetted into cryotube 
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with glycerol and were mixed. Cryotubes were closed, frozen in liquid N2 and stored 

at -80°C. 

 Verification of positive transformants in A. tumefaciens GV3101 

Single colonies were either subjected to PCR or inoculated in LB media. Inoculated 

LB media was placed in a rotator overnight at 28°C. Small scale plasmid preparation 

was performed (see section 5.2.2.3) followed by transformation in chemical 

competent E. coli cells (see section 5.2.1.1.3), and inoculation of E. coli overnight 

cultures of single colonies at 37°C. Small scale plasmid preparation was performed 

(see section 5.2.2.3) prior to restriction site analyses (see section 5.2.2.5.4), and 

DNA agarose gel-electrophoresis (see section 5.2.2.5.5). 

5.2.1.3 Work with A. thaliana 

 Sterilisation of A. thaliana seeds 

5.2.1.3.1.1 Sterilisation of A. thaliana seeds using chloric gas 

Seeds of A. thaliana were filled into 1.5 mL Eppendorf tubes until maximum fill of 

500 µL. Tubes were placed in desiccator with open lids. 50 mL of 12 % NaClO and 

1.5 mL 37 % HCl were filled in a beaker in the desiccator. Afterwards, the lid of the 

desiccator was closed, and samples incubated for 3 h in chloric gas. Vents were 

opened, allowing gas exchange until the next day. Tubes were taken out and were 

closed properly the next day. 

5.2.1.3.1.2 Sterilisation of A. thaliana seeds using Ethanol 

Seeds of A. thaliana were filled into 1.5 mL Eppendorf tubes. 1 mL of 

70% Ethanol+0.05 % Triton X-100 were added, and tubes were shaking for 20 to 

30 min. Ethanol was replaced by 100% Ethanol and were shook for 8 min. Seeds 

were pipetted on sterile filter paper and were dried. 

 General growth conditions for A. thaliana 

A. thaliana was grown in the green house under long day conditions (16 h/light at 

18°C, 8 h/dark at 15°C, humidity: 55-60%) on T- and R-soil mixed with sand 

(10:10:1) according to central facility manual. 

 Stable transformation of A. thaliana using floral dipping 

Stable transformation of A. thaliana was performed according to the “floral dip 

method” from Clough and Bent (1998). The Floral Dipping procedure was done 

twice within two to three days. 
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 Screen for T-DNA insertions 

A. thaliana seeds were sown on ½ MS plates containing appropriate antibiotics, for 

selection of T-DNA insertion, and were stratified for two to three days in dark at 4°C. 

Seedlings were grown under constant light at 22°C and were analysed by 

fluorescence using a stereomicroscope with UV-lamp, or by PCR using gDNA 

extracts (see section 5.2.2.2, 5.2.2.4). 

 Sensitivity screens 

L-AA sensitivity screens were performed according to protocol described by Gördes 

et al. (2013) with following modifications. For L-AA sensitivity screens, one seed per 

well of A. thaliana Col-0 or PIIS2, was sown in 96-well microtiter plates containing 

150 µL of liquid ½ MS media +/- N (according to Table 7, and Table 8) +/- L-Glu, L-

Gln, and L-Arg, respectively, prior to stratification for two days at 4°C in dark. After 

stratification, seedlings were grown under long day conditions (16 h day/ 8 h night) 

at ~22°C for 14 days.  

For minimal N concentration in ½ MS media, a dilution series of ½ MS+1% sucrose 

with self-made ½ MS-N+1% sucrose in a ratio from 1:1 from lane to lane was 

prepared. Lane one contained ½ MS+1% sucrose, and lane twelve 

½ MS- N+1% sucrose. Sowing and germination of seeds took place as described in 

the preceding paragraph.  

 Hypocotyl and root growth analyses 

For phenotypic analyses of A. thaliana Col-0 and PIIS2, seeds were sown on plates 

containing solid ½ MS media +/- N (according to Table 7, and Table 8) and +/- 

1% sucrose and were stratified in darkness at 4°C. After two days, one set of plates 

were either placed in constant light, long day (16h light/ 8h dark), short day (8h light/ 

16h dark) or darkness, respectively. For dark treatment, plates of the first approach 

(Figure 4) were placed in a dark chamber. For the second approach, plates were 

placed in NightShade LB 985 (Figure 5). First approach: light grown seedlings were 

scanned every day for 10 days, dark grown seedlings were marked and scanned at 

day 0 and 10. Second approach: light grown seedlings were scanned every day until 

day 5, afterwards at day 7, 8 and 10. Dark grown seedlings were imaged every day 

in the NightShade, and were scanned at day 0 and 10. Statistical analysis was 

performed using two-sided Student’s t-test in Microsoft Excel and Matlab. Box plots 

were generated in Matlab. 
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 Phenotypic analyses 

For phenotypic analyses of A. thaliana Col-0, PIIS2, and overexpression lines in 

PIIS2 or Col-0 background, seeds were sown on ½ MS media and were stratified in 

dark at 4°C. After two days, plates were placed in a long day phytochamber (16 h 

light at 20°C, 8 h dark at 18°C, humidity: 40%) for 11 days. Overexpression lines 

were screened for GFP-fluorescence using a stereomicroscope consisting of a UV-

lamp. Single seedlings were pricked in pots with GS90 soil supplemented with 

Confidor, were covered with a hood for three days, and placed again in the long day 

phytochamber. Plants were marked at starting point of flowering and imaged 

regularly using a Canon PowerShot SX150 IS. 

 Light and temperature treatment 

A. thaliana line Col-0 x pUBQ::gAtPII-GFP T2 10.2 was sown on ½ MS media and 

stratified in dark at 4°C for one night. Plates were grown for one day in constant light 

at 23°C. Afterwards, plates were placed in black boxes in constant light at 22°C for 

three days. One plate per condition was placed for temperature treatment in dark at 

8°C, 23°C, and 37°C, and for light treatments in BL (23°C), GL, RL (22°C), and FRL 

(23°C). Each treatment was performed for 24 h. Seedlings were harvested, pre-fixed 

for 4 h in 2 X SSC+4% Formaldehyde, fixed by vacuum infiltration three times for 

15 sec, and additionally incubated for 30 min. Seedlings were transferred to 6-well 

plate containing 2 X SSC and were washed over night. After overnight wash step, 

seedlings were washed twice with 2 X SSC for 1 h and mounted on dH2O on object 

slides and were covered with cover glasses. Imaging was performed at Zeiss 

LSM880, see section 5.2.1.7. Growth conditions and light treatment according to 

Sweere et al. (2001). 

 Histochemical GUS-Assay 

Histochemical GUS-assays were performed according to Martin et al. (1992) and 

Naleway (1992). 

A. thaliana seedlings stably transformed with the GUS gene under the endogenous 

PII promoter or the 35S promoter were grown for 14 days under constant light at 

~21°C on ½ MS media +/- N and +/- sucrose. Seedlings were harvested, were 

placed in 6-well plates with 3 mL X-Gluc solution and vacuum infiltrated three times 

for 15 sec at 300 mbar. Then these plates were taken out, closed and sealed with 

Parafilm. Seedlings were incubated in X-Gluc solution for 42 h at 37°C. After 

incubation time, X-Gluc solution was removed, and 70 % Ethanol was added to 
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destain the seedlings. Plates were sealed again with Parafilm and were placed at 

37°C. Destaining was repeated three times. Seedlings were mounted on 

SSC/glycerol solution on object slides and were covered with cover slips. Seedlings 

were imaged with a Canon D80 camera. 

 Chloroplast isolation 

Chloroplast isolation of A. thaliana was performed according to protocols described 

by Somerville et al. (1981); Bartlett et al. (1982); Meurer et al. (1996); Meurer et al. 

(2002). 

Leaf material of A. thaliana was harvested in 50 mL Falcon tubes and was placed 

on ice. 10 mL Isolation medium was added, and leaf material was homogenised with 

an IKA ULTRA-TURRAX® for 1 sec on ice. Homogenised material was filtered 

through gauze (16 µm pore width) and was collected in a fresh 50 mL Falcon tube. 

Intact leaf material was collected from gauze and homogenisation steps were 

repeated. Falcon tubes harbouring samples were tared with Isolation medium and 

centrifuged at 368.9 g for 6 min at 4°C without break. Supernatant was discarded; 

pellet was resuspended in remaining liquid, and tube was placed on ice. Percoll 

gradient was prepared in 15 mL Falcon tubes consisting of 3 mL 85 % Percoll 

solution overlaid with 7 mL 42% Percoll solution. Resuspended pellet was pipetted 

on Percoll gradient and centrifuged at 1475 g for 12 min at 4°C without brake. Intact 

chloroplasts were pipetted carefully into fresh 15 mL Falcon tube, supplemented 

with Isolation medium and inverted carefully. Sample was centrifuged at 4°C at 370 

g for 8 min without brake. Supernatant was discarded. Pellet was resuspended in 

100 µL HEPES/Sorbitol medium and frozen in liquid N2. Samples were stored at -

80°C. 

5.2.1.4 Work with N. benthamiana 

 Growth conditions for N. benthamiana 

N. benthamiana plants, used for transient infiltration, were grown in the green house 

under long day conditions (14 h light at 23°C, 10 h dark at 20°C, humidity: 60%) on 

P-soil. 

 Transient transformation of N. benthamiana leaves with A. tumefaciens 

Leaves of three to four week old N. benthamiana were transiently transformed with 

A. tumefaciens GV3101 (Koncz and Schell, 1986) carrying plasmids of interest 

using syringe mediated infiltration (Schöb et al., 1997; Sparkes et al., 2006). Growth 
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of A. tumefaciens and infiltration was performed according to protocol described in 

Hecker et al. (2015) derived from protocols of Schöb et al. (1997); Sparkes et al. 

(2006); Grefen et al. (2008); Blatt and Grefen (2014) with following modifications. 

Cells were not washed with sterile H2O before resuspension in AS medium. 

Transiently transformed leaves were imaged with Leica TCS SP8 and Zeiss 

LSM880 Airyscan after two to three days of infiltration (see section 5.2.1.7). 

5.2.1.5 DAPI staining 
DAPI staining was performed modified according to Newell et al. (2012). Seedlings 

stably transformed with pFRET-PII-NAGK were vacuum infiltrated three times for 15 

sec at 300 mbar prior to 15 min incubation. 

5.2.1.6 DAPI and YO-PRO™-1 iodide staining 
Modified YO-PRO™-1 iodide staining was performed according to Krupinska et al. 

(2014). Small leaf disks of transiently transformed leaves of N. benthamiana with 

PII-RFP+P19 or P19 (see section 5.2.1.4.2) were cut out three days after infiltration 

and incubated in 2 X SSC +/- RNase A (10 µg/mL), or 2 X SSC+1 X DNase I buffer 

+ DNase I (100 U/mL), in for 4 h at 37°C. Leaf disks were vacuum infiltrated three 

times for 15 sec at 300 mbar in 2 X SSC+4% formaldehyde and further incubated 

for 15 min. Leaf disks were washed three times in 2 X SSC and stained with DAPI 

(1:1000)/ YO-PRO™-1 iodide (5 µg/mL) in 2 X SSC overnight. Stained leaf disks 

were washed 1 X with 1 X SSC, were mounted on SSC/glycerol solution on object 

slides and were covered with cover slips. Imaging was performed with Zeiss 

LSM880 Airyscan. 

5.2.1.7 Confocal laser scanning microscopy 

 Imaging of fluorophores 

Confocal imaging was performed with Leica TCS SP8 and Zeiss LSM880 Airyscan 

with a 63X/NA1.2 objective. An Argon laser was used for excitation of GFP/ YO-

PRO™-1 iodide at 488 nm and YFP at 514 nm. For excitation of mCherry, RFP and 

Chlorophyll, a DPSS 561 nm laser was used. DAPI was excited with a 405 nm diode 

laser. 

Emission was usually detected at following spectra: 

DAPI       418-446 nm 

GFP       499-544 nm 

YO-PRO™-1 iodide     499-526 nm 

YFP       517-553 nm 
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mCherry/RFP     591-618 nm 

Chlorophyll      651-735 nm 

Images were processed using Fiji. 

 Interaction studies 

5.2.1.7.2.1 BiFC 

BiFC measurements were performed with transiently transformed N. benthamiana 

leaves (see section 5.2.1.4.2) expressing 2in1 pBiFC vectors carrying genes of 

interest (see Table 21) three days after infiltration according to modified protocol of 

Grefen and Blatt (2012). Internal RFP control was not used for ratiomeric 

measurements but as transformation control. Images were processed using Fiji. 

5.2.1.7.2.2 FRET-FLIM 

FRET-FLIM measurements were performed with Leica TCS SP8 equipped with 

SymPhoTime software (PicoQuant GmbH (Berlin, Germany)) using transiently 

transformed N. benthamiana leaves with A. tumefaciens GV3101 (see section 

5.2.1.4.2) carrying 2in1 pFRET vectors with C-terminally GFP-tagged PII and C-

terminally mCherry-tagged known and novel interaction partners (see Table 20). 

FLIM measurements were performed according to Ladwig et al. (2015) and Hecker 

et al. (2015). FLIM measurements of two biological replicates were performed for 

five to six regions containing plastids in the epidermis until acquisition of 700 

photons in the brightest point (Figure 31). For FastFLIM measurements using 

rapidFLIM two biological replicates were performed for five to six regions containing 

plastids in the epidermis until acquisition of 1000 photons in the brightest point 

(Figure 32). Statistical analyses were performed using two-sided Student’s t-test in 

Microsoft Excel and Matlab. Box plots were generated in Matlab. Images were 

processed using Fiji. 

5.2.2 Molecular biological techniques 

5.2.2.1 RNA extraction and cDNA synthesis 

 RNA extraction 

Plant leaves of wild type and mutant lines in A. thaliana Col-0 ecotype were frozen 

in liquid N2 and shred with glass beads (Ø 2.1 mm). For the extraction the Zymo 

Quick-RNA MiniPrep Kit was used according to manufacturer’s protocol. 
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 cDNA synthesis 

For cDNA synthesis of RNA extracts was performed with Oligo(dT)18 Primer 

(Thermo Fisher Scientific (Waltham, USA)) were applied. First strand synthesis was 

performed according to the first two steps of “First Strand cDNA Synthesis Protocols 

(E6300)” from New England Biolabs GmbH (Frankfurt am Main, Germany). Further 

protocol for cDNA synthesis using RevertAid H Minus Reverse Transcriptase was 

performed according to manufacturer’s protocol. 

5.2.2.2 gDNA extraction 
Genomic DNA of wild type and mutant lines in A. thaliana Col-0 ecotype were 

extracted according to protocol for gDNA extraction using Edwards buffer by 

Edwards et al. (1991), or using the CTAB method by Doyle and Doyle (1987).  

5.2.2.3 Small scale plasmid preparation 
Small scale plasmid preparation was performed according to modified alkaline lysis 

protocol originally derived from Bimboim and Doly (1979).  

5.2.2.4 Polymerase chain reaction (PCR) 

 Amplification of fragments using polymerase chain reaction 

DNA-Fragments were amplified from either cDNA or gDNA of A. thaliana Col-0 or 

mutant lines, or from vectors containing sequence of interest. For classical cloning, 

fragments were amplified with restriction sites of interest. PCR pipetting schemes 

and programs according to manufacturer’s manual of used DNA polymerases.  

 Site directed mutagenesis 

Site directed mutagenesis was performed according to protocol in Heunemann 

(2016). 

Two single PCR approaches with only primer were set up using Phusion polymerase 

with an annealing time at 65°C (manual see Thermo Fisher Scientific (Waltham, 

USA)). Each approach was set in the thermocycler for 5 cycles. Afterwards, both 

PCR approaches were fused and were placed back in the thermocycler for 

additional 15 cycles. 1 µL of DpnI was added to PCR approach and was digested 

overnight at 37°C. 5 µL of PCR product was transformed in E. coli DH5α. 
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5.2.2.5 Cloning procedures 

 pENTR™/D-TOPO® reaction  

pENTR™/D-TOPO® reaction was performed according to the pENTR™ Directional 

TOPO® Cloning Kits manual from Invitrogen, a Thermo Fisher Scientific brand 

(Carlsbad, USA), using ¼ of the designated volumes. 

 Classical cloning 

5.2.2.5.2.1 Restriction digest of fragments 

Fragments were either amplified before restriction digest or generated by restriction 

digest of vectors harbouring fragment of interest with respective restriction sites. 

Restriction digest was performed according to manufacturer’s manual from Thermo 

Fisher Scientific (Waltham, USA). For pipetting scheme of restriction digest of 

vectors see section 5.2.2.5.4. For restriction digest of fragments generated by PCR, 

5 µL of PCR product was used instead of 1 µL plasmid DNA, remaining contents 

see section 5.2.2.5.4. 

5.2.2.5.2.2 Gel elution 

Gel elution of digested fragments was performed according to manufacturer’s 

manual for Gel extraction MiniPrep Kit from Genaxxon, or for GeneJET Gel 

Extraction Kit from Thermo Fisher Scientific, respectively.  

5.2.2.5.2.3 Generation of blunt ends for ligation 

Gel eluate fraction of fragment of interest was supplied with T4 DNA polymerase 

according to manufacturer’s manual using the 3’-5’ exonuclease activity to generate 

blunt ends. 

5.2.2.5.2.4 Dephosphorylation of fragments 

One fragment was dephosphorylated prior to ligation using Shrimp Alkaline 

Phosphatase according to manufacturer’s manual from Thermo Fisher Scientific 

(Waltham, USA). 

5.2.2.5.2.5 Ligation 

Fragments were ligated with T4 DNA ligase in an insert to vector ratio of 5:1 for up 

to three days at 16°C according to manufacturer’s manual from Thermo Fisher 

Scientific (Waltham, USA), prior to transformation of 5 µL into E. coli. 

 Gateway® cloning 

Gateway® cloning was performed according to the Gateway® Technology manual 

from Invitrogen, a Thermo Fisher Scientific brand (Carlsbad, USA). 
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5.2.2.5.3.1 Amplification of attB-sites 

Primer containing designated attB-sites with flanking 18 bp of gene of interest were 

ordered from biomers.net GmbH (Ulm, Germany). Amplification of attB-site 

containing fragments was performed according to manufacturer’s manual for KOD 

Hot Start DNA Polymerase, from Novagen®, trademark of Merck KGaA (Darmstadt, 

Germany). 

5.2.2.5.3.2 BP reaction 

Gateway® BP reaction performed according to the Gateway® Technology manual 

from Invitrogen, a Thermo Fisher Scientific brand (Carlsbad, USA), using ¼ of the 

designated volumes, and dH2O instead of TE. 

5.2.2.5.3.3 LR reaction 

Gateway® BP reaction performed according to the Gateway® Technology manual 

from Invitrogen, a Thermo Fisher Scientific brand (Carlsbad, USA), using ¼ of the 

designated volumes, and dH2O instead of TE. 

5.2.2.5.3.4 Multisite LR reaction 

Multisite LR reaction was performed for FRET-FLIM and BiFC constructs according 

to Grefen and Blatt (2012). 

 Restriction site analyses 

Restriction site analyses according to manufacturer’s manual from Thermo Fisher 

Scientific (Waltham, USA) and New England Biolabs GmbH.  

 DNA agarose gel-electrophoresis 

DNA agarose gel-electrophoresis was performed according to Sambrook et al. 

(1989). 

5.2.2.6 Plant protein purification 
Plant material was harvested in 2-mL Eppendorf tubes with six glass beads (Ø 2.1 

mm) and frozen in liquid N2 before storage at -80°C. Frozen samples were shredded 

using the universal mixer Silamat® S6. 

 GFP/RFP-trap 

GFP/RFP-trap was performed with ChromoTek GFP-Trap® Magnetic Agarose or 

RFP-Trap® Magnetic Agarose according to manufacturer’s manual with following 

modifications. Shredded frozen plant material was supplemented with 1 mL Lysis 

buffer, was mixed and was incubated on ice for 1 h. Lysate was centrifuged at 16100 

g for 10 min at 4°C. 1 mL of supernatant was transferred to equilibrated magnetic 
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agarose beads. Sample of each fraction was supplemented with 2X sample buffer 

and was boiled at 65°C for 15 min. 

 SDS-PAGE 

SDS-PAGE was performed according to Laemmli (1970). SDS-Polyacrylamide gel 

was stained with Coomassie staining overnight and was destained with Destainer 

solution until gel background showed no blue colour. 

 Western blot using PVDF membranes 

Western blot was performed with wet blot analyses using PVDF membranes based 

on protocol by Towbin et al. (1979). 

Detection was performed either with detection buffer for AP or for HRP. For 

detection of AP, detection buffer of AP was mixed, was spilled on membrane and 

was incubated in dark until bands were visible. Reaction was stopped after washing 

the membrane 2-3 times with H2O. For detection of HRP, Amersham ECL™ Prime 

Western blotting detection reagent solution A (Luminol Solution) and solution B 

(peroxide solution) were mixed according to manufacturer’s manual. Membrane was 

placed in a bag and was floated with detection buffer. Membrane was placed in 

chemiluminescence detection chamber and was excited until signal was detectable. 

 MassSpec analyses 

MassSpec analyses was performed by Dr. Edda von Roepenack-Lahaye (ZMBP 

Central facilities, University of Tübingen) with single bands of sizes of interest 

according to size of known and putative new interaction partners (see 7.17) in eluate 

fractions cut out from SDS-Polyacrylamide gel after Coomassie staining. 

Single bands were crumbled using a 1000 µL tip and was washed once for 15 min 

with 300 µL 5 mM ammonium bicarbonate (ABC) buffer in 50 % acetonitrile in an 

ultra-sonic bath. Afterwards, sample was washed once for 10 min in 300 µL 

acetonitrile. To reduce disulphide (S-S) bridges, sample was supplemented with 100 

µL 20 mM ABC buffer + 10 mM DTT for 45 min at 56°C. To alkylate the thiol (-SH) 

groups, first, DTT was removed by addition of 100 µL 55 mM iodoacetamide in 20 

mM ABC buffer for 30 min at RT in dark. Sample was washed with 300 µL 5 mM 

ABC buffer in 50% acetonitrile for 15 min in an ultra-sonic bath and further with 300 

µL acetonitrile for 10 min. 

Digestion of pelleted samples was performed with 13 µL 0.02 µg/µL trypsin in 40 

mM ABC buffer in 9% acetonitrile until gel crumbles were swollen. 12 µL 40 mM 
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ABC buffer in 9% acetonitrile was added and samples were placed at 37°C 

overnight. Samples were cooled down in the fridge the next morning, were 

centrifuged and were transferred to LCMS-inserts. 15 µL of 50 % acetonitrile with 

0.1 % formaldehyde and 3.6 µM Leu-enkephalin were added to remaining pellet 

crumbles, were incubated in the ultra-sonic bath for 5 min, were centrifuged and 

transferred to LCMS-inserts harbouring the remaining sample. LC-MS of samples 

was performed with ESI-Q-TOF tune-file metabolomics positive mode, inlet 

proteomics and MS proteomics, with water files in between the digest samples.  

Dr. Edda von Roepenack-Lahaye performed analysis of MS-data. Masses detected 

by MS were analysed further with MS-Fit ProteinProspector 

(http://prospector.ucsf.ed) using SwissProt.2017.11.01 database according to 

Jiménez et al. (1998).
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7 Appendix 
7.1 Primers used during thesis 

7.1.1 Primers for amplification of gene of interest followed by cloning into 
pENTR™/D-TOPO® or classical cloning into pENTR-MCS 

Table 12: Primers used for amplification for cloning into pENTR™/D-TOPO® and pENTR-
MCS during thesis 

Primer name Sequence 5’-3’ usage 
AtGLB1-Start 5’-caccATGGCGGCGTCAATGACGAAAC-3’ Amplification of cPII gPII or cTPPII for 

cloning into pENTR™/D-TOPO® 
NK_AtGLB1-Start 5’-caccATGGCGGCGTCAATGACGAAAC-3’ Amplification of cPII or gPII for 

cloning into pENTR™/D-TOPO®, 
genotyping and cDNA level in PIIS2 
and Col-0 

AtGLB1-End 5’-AGACGGTGAAAGCATATCACCAG-3’ Amplification of cPII, gPII or 
pAtPII::gAtPII without stop codon for 
cloning into pENTR™/D-TOPO®, 
genotyping and cDNA level in PIIS2 
and Col-0 

NK_proAtPIIstart 5’-caccTTTTGTTTCACCTTAACCAG-3’ Amplification of pPII or pPII::gPII for 
cloning into  pENTR™/D-TOPO® 

NK_proATPIIend 5’-CCATGATTCTAGTTTTTTTTTTAACAC-3’ Amplification of pPII for cloning into 
pENTR™/D-TOPO® 

NK_AtPIIdelta-
start2 

5’-
CACCATGCAAATATCTTCTGATTATATTCC-
3’ 

Amplification of ∆AtPII lacking cTPPII 
with ATG start codon for cloning into 
pENTR™/D-TOPO® 

AtNAGK-Start 5’-caccACCGTATCAACACCACCTTC-3’ Amplification of NAGK for cloning 
into pENTR™/D-TOPO® 

AtNAGK-End 5’-TCCAGTAATCATAGTTCCAGCTC-3’ Amplification of NAGK without stop 
codon for cloning into pENTR™/D-
TOPO® 

NK_AtNAGKstart 5’-
caccATGGCCACCGTCACATCCAATGCTTC-
3’ 

Amplification of NAGK for cloning 
into pENTR™/D-TOPO® 

NK_AtNAGKend 5’-TCCAGTAATCATAGTTCCAGCTCCTTC-3’ Amplification of NAGK without stop 
codon for cloning into pENTR™/D-
TOPO® 

NK_AtNAGKstop 5’-
TTATCCAGTAATCATAGTTCCAGCTCCTTC-
3’ 

Amplification of NAGK for cloning 
into pENTR™/D-TOPO® 

NK_AtBCCP1start 5’-
ATGGCGTCTTCGTCGTTCTCAGTCACATCT
-3’ 

Amplification of BCCP1 for cloning 
into pENTR™/D-TOPO® 

NK_AtBCCP1start
-2 

5’-
caccATGGCGTCTTCGTCGTTCTCAGTCAC-
3’ 

Amplification of BCCP1 for cloning 
into pENTR™/D-TOPO® 

NK-BCCP1end 5’-CGGTTGAACCACAAACAGAGGAGTGTC-
3’ 

Amplification of BCCP1 for cloning 
into pENTR™/D-TOPO® 

NK_At1g52670-
start 

5’-caccATGAATTCCTGTAGCTTAGGAG-3’ Amplification of BADC2 (At1g52670) 
for cloning into pENTR™/D-TOPO® 

NK_At1g52670-
end 

5’-CTGAAGCTTCTTGATGCCAGGA-3’ Amplification of BADC2 (At1g52670) 
for cloning into pENTR™/D-TOPO® 

NK_At3g56130-
start 

5’-caccATGGCGTCTTCTGCAGCTC-3’ Amplification of BADC3 
(At3g15690.2) for cloning into 
pENTR™/D-TOPO® 

NK_At3g56130-
end 

5’-CTGGATGTTGATGTCGTGGA-3’ Amplification of BADC3 
(At3g15690.2) for cloning into 
pENTR™/D-TOPO® 

NK_RGCS1A-FP 5’-caccATGGCTTCCTCTATGCTCTCTTCCG-
3’ 

Amplification of RBCS3B.1 
(At5g38410.1) for cloning into 
pENTR™/D-TOPO® 
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NK_RGCS1A-RP 5’-ACCGGTGAAGCTTGGTGGCTTGTAGG-3’ Amplification of RBCS3B.1 
(At5g38410.1) for cloning into 
pENTR™/D-TOPO® 

NK_U6-FP 5’-caccAGAAATCTCAAAATTCCGGCA-3’ Amplification of Construct1 and 
Construct 2 of PII and DAT1 
CRISPR/Cas constructs for cloning 
into pENTR™/D-TOPO® 

NK_sg-RP 5’-TAATGCCAACTTTGTACAAGAAAGC-3’ Amplification of Construct1 and 
Construct 2 of PII and DAT1 
CRISPR/Cas constructs for cloning 
into pENTR™/D-TOPO® 

NK_Sac-D1-C2-FP 5’-
GGAACCCAATTCGAGCTCAGAAATCTCAA
AATTCCGGCAGAAC-3’ 

Amplification of Construct1 and 
Construct 2 of DAT1 CRISPR/Cas 
constructs containing restriction 
sites restriction enzyme-based 
cloning into pENTR-MCS 

NK_Acc65I-D1-C2-
RP 

5’-
AGGATCCCGGGTACCTAATGCCAACTTTG
TACAAGAAAGC-3’ 

Amplification of Construct1 and 
Construct 2 of DAT1 CRISPR/Cas 
constructs containing restriction 
sites restriction enzyme-based 
cloning into pENTR-MCS 

NK_SacI-D1-C2-
RP 

5’-
GCGGGAGCTCGAATTGGGTTCCTAATGCC
AACTTTGTACAGGA-3’ 

Amplification of Construct1 and 
Construct 2 of DAT1 CRISPR/Cas 
constructs containing restriction 
sites restriction enzyme-based 
cloning into pENTR-MCS 

NK_EcoRI-C1-FP 5’-
ACCATGGAATTCCCGCATAGAAATCTCAAA
ATTCCGGCAGAAC-3’ 

Amplification of Construct1 and 
Construct 2 of DAT1 CRISPR/Cas 
constructs containing restriction 
sites restriction enzyme-based 
cloning into pENTR-MCS 

7.1.2 Primers for amplification of gene of interest followed by BP reaction 
into pDONR221-P1P4 or pDONR221-P3P2 

Table 13: Primers used for amplification of attP-site containing fragments for BP reaction 
into pDONR221-P1P4 and pDONR221-P3P2 

Primer name Sequence 5’-3’ usage 

NK_attP2P3-
PIIstart 

5’-
GGGGACAACTTTGTATAATAAAGTTGTAA
TGGCGGCGTCAATGACG-3’ 

Amplification of PII with attP3 and 
attP2 attachment sites for BP 
reaction into pDONR221-P3P2 

NK_attP2P3-
PIIend 

5’-
GGGGACCACTTTGTACAAGAAAGCTGGG
TTAGACGGTGAAAGCATATC-3’ 

Amplification of PII with attP3 and 
attP2 attachment sites for BP 
reaction into pDONR221-P3P2 

NK_attP1P4-
PIIstart 

5’-
GGGGACAAGTTTGTACAAAAAAGCAGGC
TTAATGGCGGCGTCAATGACG-3’ 

Amplification of PII with attP1 and 
attP4 attachment sites for BP 
reaction into pDONR221-P1P4 

NK_attP1P4-
PIIend 

5’-
GGGGACAACTTTGTATAGAAAAGTTGGGT
GAGACGGTGAAAGCATATC-3’ 

Amplification of PII with attP1 and 
attP4 attachment sites for BP 
reaction into pDONR221-P1P4 

NK_cTP-AtPII-
P1P4-RP 

5’-
GGGGACAACTTTGTATAGAAAAGTTGGGT
GGGCACTAACGACAGGTAA-3’ 

Amplification of cTPPII with attP1 
and attP4 attachment sites for BP 
reaction into pDONR221-P1P4 

NK_attP1P4-
NAGKstart 

5’-
GGGGACAAGTTTGTACAAAAAAGCAGGC
TTAATGGCCACCGTCACATCC-3’ 

Amplification of NAGK with attP1 
and attP4 attachment sites for BP 
reaction into pDONR221-P1P4 

NK_attP1P4-
NAGKend 

5’-
GGGGACAACTTTTGTATAGAAAAGTTGGG
TGTCCAGTAATCATAGTTCC-3’ 

Amplification of NAGK with attP1 
and attP4 attachment sites for BP 
reaction into pDONR221-P1P4 

NK_attP1P4-
BCCP1start 

5’-
GGGGACAAGTTTGTACAAAAAAGCAGGC
TTAATGGCGTCTTCGTCGTTC-3’ 

Amplification of BCCP1 with attP1 
and attP4 attachment sites for BP 
reaction into pDONR221-P1P4 

NK_attP1P4-
BCCP1end 

5’-
GGGGACAACTTTGTATAGAAAAGTTGGGT
GCGGTTGAACCACAAACAG-3’ 

Amplification of BCCP1 with attP1 
and attP4 attachment sites for BP 
reaction into pDONR221-P1P4 
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NK_P1P4-GBSSI-
FP 

5’-
GGGGACAAGTTTGTACAAAAAAGCAGGC
TTAATGGCAACTGTGACTGCT-3’ 

Amplification of GBSSI with attP1 
and attP4 attachment sites from 
pH7FWG2.0-GBSSI for BP reaction 
into pDONR221-P1P4 

NK_P1P4-
GBSSIend-RP 

5’-
GGGGACAACTTTGTATAGAAAAGTTGGGT
GCGGCGTCGCTACGTTCTC-3’ 

Amplification of GBSSI with attP1 
and attP4 attachment sites from 
pH7FWG2.0-GBSSI for BP reaction 
into pDONR221-P1P4 

NK_P1P4-DA1-FP 5’-
GGGGACAAGTTTGTACAAAAAAGCAGGC
TTAATGGCAGGTTTGTCGCTG-3’ 

Amplification of DAT1 with attP1 
and attP4 attachment sites from 
pUBQ-DAT1(Col-0)-GFP for BP 
reaction into pDONR221-P1P4 

NK_P1P4-DA1-RP 5’-
GGGGACAACTTTGTATAGAAAAGTTGGGT
GGTAAGGAACAAGAACACG-3’   

Amplification of DAT1 with attP1 
and attP4 attachment sites from 
pUBQ-DAT1(Col-0)-GFP for BP 
reaction into pDONR221-P1P4 

NK_RGCS1A-
P1P4-FP 

5’-
GGGGACAAGTTTGTACAAAAAAGCAGGC
TTAATGGCTTCCTCTATGCTC-3’ 

Amplification of RBCS3B.1 with 
attP1 and attP4 attachment sites 
from pENTR-RBCS3B.1 for BP 
reaction into pDONR221-P1P4 

NK_RGCS1A-
P1P4-RP 

5’-
GGGGACAACTTTGTATAGAAAAGTTGGGT
GACCGGTGAAGCTTGGTGG-3’ 

Amplification of RBCS3B.1 with 
attP1 and attP4 attachment sites 
from pENTR- RBCS3B.1 for BP 
reaction into pDONR221-P1P4 

NK_attP1-FP-DXS 5’-
GGGGACAAGTTTGTACAAAAAAGCAGGC
TTAATGGCTTCTTCTGCATTT-3’ 

Amplification of DXS with attP1 and 
attP4 attachment sites from 
pH7FWG2,0-DXS for BP reaction 
into pDONR221-P1P4 

NK_attP4-RP-DXS 5’-
GGGGACAACTTTGTATAGAAAAGTTGGGT
GAAACAGAGCTTCCCTTGG-3’ 

Amplification of DXS with attP1 and 
attP4 attachment sites from 
pH7FWG2,0-DXS for BP reaction 
into pDONR221-P1P4 

NK_attP1-FP-DXR 5’-
GGGGACAAGTTTGTACAAAAAAGCAGGC
TTAATGACATTAAACTCACTA-3’ 

Amplification of DXR with attP1 and 
attP4 attachment sites from 
pH7FWG2,0-DXR for BP reaction 
into pDONR221-P1P4 

NK_attP4-RP-DXR 5’-
GGGGACAACTTTGTATAGAAAAGTTGGGT
GTGCATGAACTGGCCTAGC-3’ 

Amplification of DXR with attP1 and 
attP4 attachment sites from 
pH7FWG2,0-DXR for BP reaction 
into pDONR221-P1P4 

NK_attP1-FP-G11 5’-
GGGGACAAGTTTGTACAAAAAAGCAGGC
TTAATGGCTTCAGTGACTCTA-3’ 

Amplification of GGPPS11 with 
attP1 and attP4 attachment sites 
from pCambia-G11 (GGPPS11) for 
BP reaction into pDONR221-P1P4 

NK_attP4-RP-G11 5’-
GGGGACAACTTTGTATAGAAAAGTTGGGT
GGTTCTGTCTATAGGCAAT-3’ 

Amplification of GGPPS11 with 
attP1 and attP4 attachment sites 
from pCambia-G11 (GGPPS11) for 
BP reaction into pDONR221-P1P4 

7.1.3 Primers for site directed mutagenesis of AtPII to generate AtPII-OsQ 
Table 14: Primers used for site directed mutagenesis of AtPII to generate AtPII-OsQ 

Primer name Sequence 5’-3’ usage 
NK_AtPII-Q-FP2 5’-

GGGCTAGCTGATATGCTTTCACCGTCTAA
G-3’ 

Site directed mutagenesis of AtPII to 
obtain AtPII-OsQ; 3 AA were 
inserted 

NK_AtPII-Q-RP2 5’-
AGCTAGCCCACCAGTCATCTTCTCTGCTT
TCTC-3’ 

Site directed mutagenesis of AtPII to 
obtain AtPII-OsQ; 3 AA were 
inserted 

7.1.4 Primers used for genotyping and/or sequencing 
Table 15: Primers used for genotyping and/or sequencing 

Primer name Sequence 5’-3’ usage 
NK_AtPIIseq-start 5’-ATGGCGGCGTCAATGAC-3’ Amplification of genomic PII for 

sequencing of CRISPR/Cas event 
NK_PIIfor2 5’-GACCAAGTGGAATCTGTAATC-3’ Amplification of CDS of PII for 

analysis of PII mRNA level in PIIS2 
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NK_PIIrev2 5’-TCACATCAGAAACAGTAACACCT-3’ Amplification of CDS of PII for 
analysis of PII mRNA level in PIIS2 

NK_AtPIIseq-rev 5’-ACAGTAACACCTCGAATCC-3’ Amplification of genomic PII for 
sequencing of CRISPR/Cas event 

NK_GBSSI-Fpseq 5’-CATTGCTACAAACGAGGAG-3’ Sequencing of GBSSI 
NK_C1-2seq 5’-TCTCTCCACAACACCATT-3’ Genotyping of CRISPR/Cas plants to 

check for T-DNA insertion on the  
NK_Bar-RP 5’-TCAGATCTCGGTGACGGGCAG-3’ Genotyping of CRISPR/Cas plants to 

check for T-DNA 
M13-FP 5’-TGTAAAACGACGGCCAGT-3’ Sequencing of pENTR vectors 
M13-RP 5’-CAGGAAACAGCTATGACC-3’ Sequencing of pENTR vectors 
pc3.1GFP-Topo-
RP 

5’-CCCATTAACATCACC-3’ Sequencing of pUBQ vectors 
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7.2 Vectors used during this thesis 

7.2.1 Vectors for cloning and expression in plants provided by other 
sources 

Table 16: Vectors for cloning and expression in plants provided by other sources 
Name Resistance Source Usage 
 Bac. plant   

pENTR™/D-TOPO® Kan --- Thermo Fisher 
Scientific  

Cloning for Destination vectors 

pUBQ10-Dest (#1757) Spec Kan Gateway cassette 
from invitrogen, 
generated by Achim 
Hahn, derived from 
pUGT1kan+ vector 
from Karin 
Schumacher 

Expression of C-terminal GFP-tagged 
proteins in plants 

pMDC107 (#688) Spec Hyg Curtis and 
Grossniklaus (2003) 

Expression in plants 

pMDC163 (#695) Spec Hyg Curtis and 
Grossniklaus (2003) 

Expression in plants 

pH7FWG2,0-Dest 
(#1082) 

Spec Hyg Karimi et al. (2002) Expression in plants 

pB7RWG2,0-Dest 
(#999) 

Spec PPT Karimi et al. (2002)  Expression in plants 

pFRETgc-2in1-CC 
(#3063) 

Spec PPT Hecker et al. (2015) Expression in plants 

pBiFCt-2in1-CC 
(#3068) 

Spec --- Grefen and Blatt 
(2012) 

Expression in plants 

pDONR221-P1P4 
(#3061) 

Kan --- Invitrogen Thermo 
Fisher Scientific 
(Carlsbad, USA) 

BP Reaction for 2in1 vectors 

pDONR221-P3P2 
(#3062) 

Kan --- Invitrogen Thermo 
Fisher Scientific 
(Carlsbad, USA) 

BP Reaction for 2in1 vectors 

MTN2966-Dest Spec PPT Vector provided by J. 
Kieber cloned by 
Marc Nishimura from 
Dangl lab 

Destination vector for LR reaction of 
CRISPR/Cas constructs 

pDe-CAS9-FastRed-
Dest 

Spec PPT Gift from Christopher 
Grefen 

Destination vector for LR reaction of 
CRISPR/Cas constructs 

17ABBIGP_Construct1
_pMA-T 

Amp --- Synthesized by 
Invitrogen Thermo 
Fisher Scientific 
(Carlsbad, USA) 

Cloning of CRISPR/Cas constructs 

17ABBIGP_Construct2
_pMA-T 

Amp --- Synthesized by 
Invitrogen Thermo 
Fisher Scientific 
(Carlsbad, USA) 

Cloning of CRISPR/Cas constructs 

18ABOQXP_DAT1-
Protospacer1_pMA-RQ 

Amp --- Synthesized by 
Invitrogen Thermo 
Fisher Scientific 
(Carlsbad, USA) 

Cloning of CRISPR/Cas constructs 

18ABOQXP_DAT1-
Protospacer2_pMA-RQ 

Amp --- Synthesized by 
Invitrogen Thermo 
Fisher Scientific 
(Carlsbad, USA) 

Cloning of CRISPR/Cas constructs 

pENTR-DAT1(Col) Kan --- Juan Suarez Amplification for 2in1 vectors 
pUBQ10-DAT1(Col-0)-
GFP 

Spec Kan Juan Suarez Expression in plants 

pUBQ10-DAT1(Ler)-
GFP 

Spec Kan Juan Suarez Expression in plants 

pENTR-cAtPII Kan --- Juan Suarez, 
Benedikt Fischer 

LR reaction in destination vector 
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pENTR-cAtPIIend Kan --- Juan Suarez, 
Benedikt Fischer 

LR reaction in destination vector 

pENTR-L1-GentR-L4 Kan --- Grefen and Blatt 
(2012) 

Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and 
pBiFCt-2in1-CC; generation of donor 
only vectors 

pH7FWG2.0-GBSSIend  Spec Hyg Gift from Szydlowski 
et al. (2009) 

Expression in plants 

pCambia-G11 
(GGPPS11) 

Kan --- Gift from Manuel 
Rodriguez-
Concepcion; Perello 
et al. 2016 

Expression in plants 

pB7FWG2,0-DXS Spec Hyg Gift from Manuel 
Rodriguez-
Concepcion; Perello 
et al. 2016 

Expression in plants 

pB7FWG2,0-DXR Spec Hyg Gift from Manuel 
Rodriguez-
Concepcion; Perello 
et al. 2016 

Expression in plants 

CD3-999 pt-rk 
(Plastids, mCherry) 

Kan  from Nelson et al. 
(2007) 

Expression in plants 

pABindGFP-cAtPIIend Spec Hyg Marvin Braun  Localization analyses in transiently 
transformed N. benthamiana and 
stably transformed in A. thaliana 

pABindmCherry-
cAtPIIend 

Spec Hyg Marvin Braun Localization analyses in transiently 
transformed N. benthamiana 

pABindmCherry-
DAT1end 

Spec Hyg Marvin Braun Localization analyses in transiently 
transformed N. benthamiana 

7.2.2 Used pENTR vectors for cloning into destination vectors generated 
during this thesis 

Table 17: Used pENTR vectors for cloning into destination vectors generated during this 
thesis 

Construct Resistanc
e bacteria 

origin usage 

pENTR-pAtPII  Kan This study LR reaction in destination vector 
pENTR-gAtPII Kan This study LR reaction in destination vector 
pENTR-pAtPII::gAtPII Kan This study LR reaction in destination vector 
pENTR-cAtPII+OsQ Kan This study LR reaction in destination vector 
pENTR-NAGKend Kan This study LR reaction in destination vector 
pENTR-BCCP1 Kan This study LR reaction in destination vector 
pENTR-BCCP1end Kan This study, Benedikt 

Fischer 
LR reaction in destination vector 

pENTR-BCL1end 
(BADC3) 

Kan This study LR reaction in destination vector 

pENTR-BCL2end 
(BADC2) 

Kan This study LR reaction in destination vector 

pENTR-RBCS3B Kan This study LR reaction in destination vector 
pENTR-MCS  Kan This study; derived 

from HindIII digested 
multiple cloning site 
containing pENTR-
D1 (Kolukisaoglu 
and Krieger et al., 
unpublished)  

Classical cloning of CRISPR/Cas 
constructs 

pENTR-MCS-Construct 1 Kan This study LR reaction in destination vector 
pENTR-MCS-Construct 2 Kan This study Classical cloning of Construct 2 into 

pENTR-MCS-Construct 1; LR reaction 
in destination vector 

pENTR-MCS-Construct1-
Construct2 

Kan This study, Leander 
K. W. Rohr 

LR reaction in destination vector 

pENTR-MCS-DAT1_C1-
C2 

Kan This study, Xuan 
Tran Vi Le 

LR reaction in destination vector 
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7.2.3 pENTR vectors derived from BP reaction of attB-site containing PCR 
fragments with pDONR221-P1P4 and pDONR221-P3P2 for LR in 2in1 
destination vectors  

Table 18: pENTR vectors derived from BP reaction of attB-site containing PCR fragments 
with pDONR221-P1P4 and pDONR221-P3P2 for LR in 2in1 destination vectors 

Construct Resistance 
bacteria 

origin usage 

pENTR-L3L2-PIIend Kan This study, 
Benedikt Fischer 

Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

pENTR-L1L4-PIIend Kan This study, 
Benedikt Fischer 

Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

pENTR-L1L4-NAGKend Kan This study, 
Marius Harter 

Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

pENTR-L1L4-BCCP1end Kan This study, 
Marius Harter 

Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

pENTR-L1L4-GBSSI Kan This study Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

pENTR-L1L4-DAT1 Kan This study  Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

pENTR-L1L4-RBCS3B.1 Kan This study Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

pENTR-L1L4-DXS Kan This study Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

pENTR-L1L4-DXR Kan This study Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

pENTR-L1L4-GGPPS11 
(G11) 

Kan This study  Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

pENTR-L1L4-cTP Kan This study Multisite LR reaction in destination 
vectors pFRETgc-2in1-CC and pBiFCt-
2in1-CC 

7.2.4 Expression vectors for localization analyses and stable 
transformation into plants 

Table 19: Expression vectors for localization analyses and stable transformation into plants 
Construct Resistance origin usage 
 Bact. plant   
pMDC107-pAtPII::gAtPII-
GFP 

Kan Hyg This study Localization analyses in transiently 
transformed N. benthamiana and stably 
transformed in A. thaliana 

pUBQ10-cAtPII-GFP Spec Kan This study Localization analyses in transiently 
transformed N. benthamiana and stably 
transformed in A. thaliana 

pUBQ10-gAtPII-GFP Spec Kan This study Localization analyses in transiently 
transformed N. benthamiana and stably 
transformed in A. thaliana 

pH7FWG2,0-cAtPII-GFP Spec Hyg This study Localization analyses in transiently 
transformed N. benthamiana and stably 
transformed in A. thaliana 

pB7RWG2-PIIend Spec Hyg This study Localization analyses in transiently 
transformed N. benthamiana and stably 
transformed in A. thaliana 
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pMDC163-pAtPII::GUS Kan Hyg This study Localization analyses in transiently 
transformed N. benthamiana 

pH7FWG2,0-cAtPII+OsQ-
GFP 

Spec Hyg This study Localization analyses in transiently 
transformed N. benthamiana and stably 
transformed in A. thaliana 

pB7RWG2-NAGKend Spec PPT This study  Localization analyses in transiently 
transformed N. benthamiana 

pB7RWG2,0-BCL1end 
(BADC3) 

Spec Hyg This study, 
Benedikt Fischer 

Localization analyses in transiently 
transformed N. benthamiana 

pB7RWG2,0-BCL2end 
(BADC2) 

Spec Hyg This study, 
Benedikt Fischer 

Localization analyses in transiently 
transformed N. benthamiana 

pB7RWG2,0-RBCS3B.1 Spec PPT This study Localization analyses in transiently 
transformed N. benthamiana 

7.2.5 Expression vectors for FRET-FLIM analyses 
Table 20: Expression vectors for FRET-FLIM analyses 

Construct Resistance  origin usage 
 Bact. plant   
pFRETcg-CC-PII-PII Spec PPT This study, 

Benedikt Fischer 
FRET-FLIM in transiently transformed 
N. benthamiana, stable transformation 
into A. thaliana 

pFRETcg-CC-NAGK-PII Spec PPT This study, 
Benedikt Fischer 

FRET-FLIM in transiently transformed 
N. benthamiana, stable transformation 
into A. thaliana 

pFRETcg-CC-BCCP1-PII Spec PPT This study  FRET-FLIM in transiently transformed 
N. benthamiana, stable transformation 
into A. thaliana 

pFRETcg-CC-GBSSI-PII Spec PPT This study, 
Benedikt Fischer 

FRET-FLIM in transiently transformed 
N. benthamiana, stable transformation 
into A. thaliana 

pFRETcg-CC-DAT1-PII Spec PPT This study, 
Benedikt Fischer 

FRET-FLIM in transiently transformed 
N. benthamiana and stably transformed 
into A. thaliana 

pFRETcg-CC-RBCS3B.1-
PII 

Spec PPT This study FRET-FLIM in transiently transformed 
N. benthamiana 

pFRETcg-CC-DXS-PII Spec PPT This study FRET-FLIM in transiently transformed 
N. benthamiana 

pFRETcg-CC-DXR-PII Spec PPT This study FRET-FLIM in transiently transformed 
N. benthamiana 

pFRETcg-CC-G11-PII Spec PPT This study FRET-FLIM in transiently transformed 
N. benthamiana 

pFRETcg-CC-GentR-PII Spec PPT This study, 
Benedikt Fischer 

FRET-FLIM in transiently transformed 
N. benthamiana, stable transformation 
into A. thaliana 

7.2.6 Expression vectors for BiFC analyses 
Table 21: Expression vectors for BiFC analyses 

Construct  Resistance  
bacteria 

origin usage 

pBiFCt-CC-PII-PII Spec This study BiFC analyses in transiently 
transformed N. benthamiana 

pBiFCt-CC-PII-NAGK Spec This study BiFC analyses in transiently 
transformed N. benthamiana 

pBiFCt-CC-PII-BCCP1 Spec This study BiFC analyses in transiently 
transformed N. benthamiana 

pBiFCt-CC-PII-GBSSI Spec This study, 
Benedikt Fischer 

BiFC analyses in transiently 
transformed N. benthamiana 

pBiFCt-CC-PII-DAT1 Spec This study, 
Benedikt Fischer 

BiFC analyses in transiently 
transformed N. benthamiana 

pBiFCt-CC-PII-RBCS3B.1 Spec This study BiFC analyses in transiently 
transformed N. benthamiana 

pBiFCt-CC-PII-DXS Spec This study BiFC analyses in transiently 
transformed N. benthamiana 

pBiFCt-CC-PII-DXR Spec This study BiFC analyses in transiently 
transformed N. benthamiana 
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pBiFCt-CC-PII-G11 Spec This study BiFC analyses in transiently 
transformed N. benthamiana 

pBiFCt-CC-PII-Gent Spec This study, 
Benedikt Fischer 

BiFC analyses in transiently 
transformed N. benthamiana 

7.2.7 Expression vectors for CRISPR/Cas9 
Table 22: Expression vectors for CRISPR/Cas9 

Construct Resistance origin usage 

 Bact. plant   
MTN2966-MCS-Construct 
1 

Spec PPT This study Genome editing of stably transformed 
A. thaliana, generate PII knock-out 
mutant 

MTN2966-MCS-Construct 
2 

Spec PPT This study Genome editing of stably transformed 
A. thaliana, generate PII knock-out 
mutant 

MTN2966-MCS-
Construct1-Construct2 

Spec PPT This study, 
Leander K. W. 
Rohr 

Genome editing of stably transformed 
A. thaliana, generate PII knock-out 
mutant 

pDe-CAS9-FastRed-PII-
C1-C2 

Spec PPT This study Genome editing of stably transformed 
A. thaliana, generate PII knock-out 
mutant 

MTN2966-MCS-DAT1_C1-
C2 

Spec PPT This study Genome editing of stably transformed 
A. thaliana, generate DAT1 knock-out 
mutant 

pDe-CAS9-FastRed-DAT-
C1-C2 

Spec PPT This study Genome editing of stably transformed 
A. thaliana, generate DAT1 knock-out 
mutant 

 

7.3 A. tumefaciens strains obtained during thesis 

Stroke out A. tumefaciens strains containing TagRFP-Atg8e, TagRFP-Atg8g, and 

NBR1-RFP were provided by Dr. Suayib Üstün (ZMBP, University of Tübingen). 



Generation of pENTR-MCS-C1-C2 for CRISPR event in PII
   

106 
 

7.4 Generation of pENTR-MCS-C1-C2 for CRISPR event in PII 

 
 

Figure A 1: Vector maps of pENTR-MCS-Construct1 and -Construct 2 to generate pENTR-
MCS-C1-C2 for PII. 
For generation of pENTR-MCS-C1-C2 A) pENTR-MCS-Construct1 was used as vector backbone. A) 
pENTR-MCS-Construct1 was digested with SmaI and SalI to linearize the vector and generate sites of 
interest. B) pENTR-MCS-Construct2 was digested first with EcoRI and EcoRV. After gel elution, 
fragment of interest was supplemented with T4 DNA Polymerase to generate a blunt end at EcoRI 
restriction site. Fragment was further digested with SalI.  
After gel elution of A) and fragment of B), fragments were ligated to generate pENTR-MCS-C1-C2. 
Vector maps were generated with ApE. 
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7.5 Graphic map of generated pENTR vectors 

 
Figure A 2: pENTR™/ constructs harbouring gene of interest were generated using 
pENTR™/D-TOPO® with corresponding pENTR™/D-TOPO® reaction. 
Single genes of interest: PII, NAGK, BCCP1, BADC2, BADC3, RBCS3B.1.  
pENTR™/D-TOPO® reaction with PCR fragments of genes of interest generated from either gDNA 
of cDNA. Vector maps were generated with ApE. 
 

  



Graphic map of generated pENTR-L1L4 and pENTR-L3L2 vectors
   

108 
 

7.6 Graphic map of generated pENTR-L1L4 and pENTR-L3L2 vectors 

 
  

Figure A 3: Graphic map of pENTR-L1L4 and pENTR-L3L2 generated with BP reaction of 
pDONR221-P1P4 and pDONR221-P3P2, respectively 
A) pENTR-L1L4 harbouring genes of interest for later mCherry- and cYFP-tagged constructs, 
respectively. Genes of interest: PII, NAGK, BCCP1, GBSSI, DAT1, RBCS3B.1, DXS, DXR and 
GGPPS11. B) pENTR-L3L2 harbouring PII for later GFP- and nYFP-tagged constructs, respectively. 
Graphic maps generated with ApE. 
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7.7 Overview of used expression vectors 

  

Figure A 4: Graphic maps of used pMDC163-pPII::GUS, pMDC107-pPII::gPII and 
pUBQ10::cPII-GFP used for expression and localization analyses, respectively. 
A) pMDC163-pPII::GUS, B) pMDC107-pPII::gPII, C) pUBQ10::cPII-GFP. Graphic maps generated with 

ApE. 
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7.8 Graphic map of pFRET and pBiFC 2in1 vectors generated during 
thesis 

 
  

Figure A 5: Graphic map of pFRETcg-2in1 and pBiFCt-2in1-CC harbouring genes of interest 
A) pFRETcg-2in1 and B) pBiFCt-2in1-CC harbouring genes of interest at annotated 

sites. PII tagged with A) GFP, and B) nYFP, respectively. Genes of interest PII, NAGK, 

BCCP1, GBSSI, DAT1, RBCS3B.1, DXS, DXR, GGPPS11 and GentR tagged with A) 

mCherry, and B) cYFP, respectively. Graphic maps were generated with ApE. 
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7.9 A. thaliana lines used during thesis 

Table 23: A. thaliana lines used during thesis 
A. thaliana line origin usage 
Col-0 Nottingham Arabidopsis Stock 

Centre (NASC) or Arabidopsis 
Biological Resource Center 
(ABRC) 

Phenotypic analyses, RNA 
extraction, amplification of 
genomic and coding 
sequences 

PIIS2 SALK line from Nottingham 
Arabidopsis Stock Centre (NASC) 

Phenotypic analyses, RNA 
extraction 

pt-gk From Nelson et al. (2007) 
provided by NASC 

GFP-trap 

Col-0 x pUBQ::cAtPII-GFP T1 #5 Stable transformation of Col-0 
generated during this thesis 

GFP-trap 

Col-0 x pUBQ::gAtPII-GFP T2 10.2 Stable transformation of Col-0 
generated during this thesis 

Temperature and light 
treatment, phenotypic 
analyses 

Col-0 x pAtPII::gAtPII-GFP T2 1.5 Stable transformation of Col-0 
generated during this thesis 

Localization studies 

Col-0 x pUBQ::gAtPII-GFP T2 9.4 Stable transformation of Col-0 
generated during this thesis 

Phenotypic analyses 

Col-0 x pUBQ::gAtPII-GFP T2 2.10 Stable transformation of Col-0 
generated during this thesis 

Phenotypic analyses 

Col-0 x pUBQ::cAtPII-GFP T2 2.4 Stable transformation of Col-0 
generated during this thesis 

Phenotypic analyses 

Col-0 x pUBQ::cAtPII-GFP T2 9.5 Stable transformation of Col-0 
generated during this thesis 

Phenotypic analyses 

Col-0 x pUBQ::cAtPII-GFP T2 4.2 Stable transformation of Col-0 
generated during this thesis 

Phenotypic analyses 

Col-0 x pAtPII::gAtPII-GFP T2 1.6 Stable transformation of Col-0 
generated during this thesis 

Phenotypic analyses 

Col-0 x pAtPII::gAtPII-GFP T2 4.5 Stable transformation of Col-0 
generated during this thesis 

Phenotypic analyses 

Col-0 x p35S::cAtPII-GFP T2 1.2.7 Stable transformation of Col-0 
generated during this thesis 

Phenotypic analyses 

Col-0 x p35S::cAtPII-GFP T2 1.4.8 Stable transformation of Col-0 
generated during this thesis 

Phenotypic analyses 

PIIS2 x pUBQ::gAtPII-GFP T2 1.6 Stable transformation of PIIS2 
generated during this thesis 

Phenotypic analyses 

PIIS2 x pUBQ::gAtPII-GFP T2 4.3 Stable transformation of PIIS2 
generated during this thesis 

Phenotypic analyses 

PIIS2 x pUBQ::gAtPII-GFP T2 7.1 Stable transformation of PIIS2 
generated during this thesis 

Phenotypic analyses 

PIIS2 x pUBQ::cAtPII-GFP T2 1.1 Stable transformation of PIIS2 
generated during this thesis 

Phenotypic analyses 

PIIS2 x pUBQ::cAtPII-GFP T2 3.4 Stable transformation of PIIS2 
generated during this thesis 

Phenotypic analyses 

PIIS2 x pAtPII::gAtPII-GFP T2 3.3 Stable transformation of PIIS2 
generated during this thesis 

Phenotypic analyses 

PIIS2 x pAtPII::gAtPII-GFP T2 5.3 Stable transformation of PIIS2 
generated during this thesis 

Phenotypic analyses 

PIIS2 x pAtPII::gAtPII-GFP T3 2.4.1 Stable transformation of PIIS2 
generated during this thesis 

Phenotypic analyses 

PIIS2 x pAtPII::gAtPII-GFP T3 2.4.2 Stable transformation of PIIS2 
generated during this thesis 

Phenotypic analyses 
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7.10 Sensitivity screens using L-Gln as additional N source 

 
  

Figure A 6: Growth assay of L-Gln dilution series as additional N source. 
14-day old seedlings of Col-0 (A) and PIIS2 (B) grown on ½ MS+1% sucrose with or without L-Gln 
as additional N source under long day conditions. First lane represents 10 mM L-Gln. L-Gln was 
diluted 1:1 with ½ MS+1% sucrose from lane to lane, starting with 10 mM L-Gln to ~ 0.009 mM L-
Gln in the second last lane. Last lane represents 0 mM L-Gln. A) Col-0; B) PIIS2. 
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7.11 Sensitivity screen using L-Glu, L-Gln and L-Arg as additional N 
source in N limiting and non-limiting media 

 
  

Figure A 7: Amino acid sensitivity screen using L-Glu, L-Gln or L-Arg as additional N source 
in N deficient or non-deficient media. 
Col-0 (A, C) and PIIS2 (B, D) grown on A)-B) 4.93 mM N in ½ MS-N+1% sucrose or C)-D) 19.7 mM 
N in ½ MS-N+1% sucrose with 0, 2.5, 5, and 10 mM L-Glu, L-Gln and L-Arg as additional N source. 
4.93 mM N or 19.7 mM N in ½ MS-N+1% sucrose and ½ MS+1% sucrose without additional L-AA 
as controls. 
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7.12 Overview of phenotype of plants analysed during phenotypic 
analyses 

 

 
 

Figure A 8: Overview of T3 and T4 plants of phenotypic analysis in approach 1 
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Figure A 9: Overview T3 and T4 plants of phenotypic analysis in approach two 
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7.13 Localization pattern of PII-OsQ-GFP under control of the 35S 
promoter in transiently transformed N. benthamiana 

 
  

p35S::PII-OsQ CD3-999 pt-rk merge 

Figure A 10: PII-OsQ-GFP localizes in foci in leaves of transiently transformed N. benthamiana 
PII with reconstituted three amino acids of the Oryza sativa Q-loop tagged with GFP co-expressed with 
CD3-999 pt-gk localizes to plastids. Confocal images were taken three days after transient infiltration in 
N. benthamiana leaves. 
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7.14 Localization of GBSSI-GFP, DAT1-GFP and RBCS3B 

 
 

Figure A 11: GBSSI-GFP, DAT1-GFP and RBCS3B-RFP localize in aggregates to plastids 
of transiently transformed N. benthamiana leaf cells. 
A) GBSSI-GFP localizes to plastids. Expression under the control of the p35S. B) DAT1-GFP 
localizes to plastids. Expression under the control of the pUBQ. C) RBCS3B-RFP localizes to 
plastids. RBCS3B-RFP was expressed under the control of the p35S.  
White arrows: aggregates in plastids. Scale bars A) and C) 10 µm, B) 5 µm. Confocal images were 
taken 2 days after transient transformation of N. benthamiana. 
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7.15 Localization of PII-GFP after temperature and light treatment 

 

Figure A 12: PII-GFP localization changes slightly in 6-day old seedlings after 24h in varying 
temperature conditions in A. thaliana expressing PII-GFP under the control of pUBQ. 
A) – B) PII-GFP localization after 24h in dark at 23°C. C) – D) PII-GFP localization after 24h in dark 
at 8°C. E) – F) PII-GFP localization after 24h in dark at 37°C. 
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Figure A 13: PII-GFP 
localization changes 
slightly in 6-day old 
seedlings after 24h in 
varying light conditions in 
A. thaliana expressing 
gPII-GFP under control of 
pUBQ. 
A)-B) PII-GFP localization 
after 24h under blue-light.  
C)-D) PII-GFP localization 
after 24h under green light.  
E)-F) PII-GFP localization 
after 24h under red light.  
G)-H) PII-GFP localization 
after 24h under far-red light. 
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7.16 GFP-trap of isolated chloroplasts expressing PII-GFP 

   
  

Figure A 14: SDS-PAGEs and 
Western blot of chloroplast extracts 
followed by GFP-trap from pt-gk 
(tobacco Rubisco cTP tagged with 
GFP) and pUBQ-cPII-GFP T1 #5 
stable transformed in A. thaliana 
Col-0 
A) SDS-PAGE of single fractions after 
GFP-trap. Signal detectable in fraction 
1 and 2 for both samples at ~ 70 kDa.  
B) SDS-PAGE of eluates after GFP-trap 
for MassSpec-analyses. No signal 
detectable. 
C) Western blot of GFP-trapped 
chloroplast extracts with α-GFP. 
Incubation time 3h. GFP-signal 
detectable for cPII-GFP at ~ 45kDa in 
fraction 1, 2 and 6. Additional bands 
detectable at ~140 kDa, ~100 kDa and 
~30 kDa in eluate of cPII-GFP. For pt-
gk, detectable signal could be observed 
only at ~70 kDa and ~50 kDa in fraction 
1 and 2. Same signal observed for cPII-
GFP in fractions 1, 2 and 6. 
Fraction 1: Input; 2: Flow-through; 3: 
Wash 1; 4: Wash 2; 5: Wash 3; 6: 
Elution. 15 µL per lane. 
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7.17 Predicted protein sequences of proteins of interest 

Protein sequences of PII and known and putative novel interactors. Predicted cTP 

(TargetP and ChloroP) sequences underlined. 
PII-mGFP5 
Protein sequence with cTP and mGFP5 53.392 kDa (48.815 kDa without cTP): 
MAASMTKPISITSLGFYSDRKNIAFSDCISICSGFRHSRPSCLDLVTKSPSNNSRVLPVVSAQISSDYIPDSKFYK

VEAIVRPWRIQQVSSALLKIGIRGVTVSDVRGFGAQGGSTERHGGSEFSEDKFVAKVKMEIVVKKDQVESVINT

IIEGARTGEIGDGKIFVLPVSDVIRVRTGERGEKAEKMTGDMLSPSKGGRADPAFLYKVVMGRPRRSTRVDSR

YPTSQIQGDIIMSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTF

TYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL

GHKLEYNYNSHNVYIMADKQKNGIKANFKTRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKD

PNEKRDHMVLLEFVTAAGITHGMDELYK 

Free mGFP5 26,859 kDa 
MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFTYGVQCFSR

YPDHMKRHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYN

SHNVYIMADKQKNGIKANFKTRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHM

VLLEFVTAAGITHGMDELYK 

PII At4g01900 
Protein sequence with cTP 21.276 kDa: 
MAASMTKPISITSLGFYSDRKNIAFSDCISICSGFRHSRPSCLDLVTKSPSNNSRVLPVVSAQISSDYIPDSKFYK

VEAIVRPWRIQQVSSALLKIGIRGVTVSDVRGFGAQGGSTERHGGSEFSEDKFVAKVKMEIVVKKDQVESVINT

IIEGARTGEIGDGKIFVLPVSDVIRVRTGERGEKAEKMTGDMLSPS 

Protein sequence without cTP according to ChloroP, 14.699 kDa: 

AQISSDYIPDSKFYKVEAIVRPWRIQQVSSALLKIGIRGVTVSDVRGFGAQGGSTERHGGSEFSEDKFVAKVKM

EIVVKKDQVESVINTIIEGARTGEIGDGKIFVLPVSDVIRVRTGERGEKAEKMTGDMLSPS 

NAGK At3g57560 
Protein sequence with cTP 36.595 kDa (31.161 kDa without cTP): 
MATVTSNASPKSFSFTVSNPFKTLIPNKSPSLCYPTRNKNHHRLGFSIKATVSTPPSIATGNAPSPDYRVEILSE

SLPFIQKFRGKTIVVKYGGAAMTSPELKSSVVSDLVLLACVGLRPILVHGGGPDINRYLKQLNIPAEFRDGLRVT

DATTMEIVSMVLVGKVNKNLVSLINAAGATAVGLSGHDGRLLTARPVPNSAQLGFVGEVARVDPSVLRPLVDY

GYIPVIASVAADDSGQAYNINADTVAGELAAALGAEKLILLTDVAGILENKEDPSSLIKEIDIKGVKKMIEDGKVAG

GMIPKVKCCIRSLAQGVKTASIIDGRRQHSLLHEIMSDEGAGTMITG 

BCCP1 At5g16390 
Protein sequence with cTP 29.614 kDa (21.011 kDa without cTP): 
MASSSFSVTSPAAAASVYAVTQTSSHFPIQNRSRRVSFRLSAKPKLRFLSKPSRSSYPVVKAQSNKVSTGASS

NAAKVDGPSSAEGKEKNSLKESSASSPELATEESISEFLTQVTTLVKLVDSRDIVELQLKQLDCELVIRKKEALP

QPQAPASYVMMQQPNQPSYAQQMAPPAAPAAAAPAPSTPASLPPPSPPTPAKSSLPTVKSPMAGTFYRSPA

PGEPPFIKVGDKVQKGQVLCIVEAMKLMNEIESDHTGTVVDIVAEDGKPVSLDTPLFVVQP 

BCCP2 At5g15530 
Protein sequence with cTP 27.280 kDa (17.911 kDa without cTP): 
MASLSVPCVKICALNRRVGSLPGISTQRWQPQPNGISFPSDVSQNHSAFWRLRATTNEVVSNSTPMTNGGY

MNGKAKTNVPEPAELSEFMAKVSGLLKLVDSKDIVELELKQLDCEIVIRKKEALQQAVPPAPVYHSMPPVMAD
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FSMPPAQPVALPPSPTPTSTPATAKPTSAPSSSHPPLKSPMAGTFYRSPGPGEPPFVKVGDKVQKGQIVCIIE

AMKLMNEIEAEKSGTIMELLAEDGKPVSVDTPLFVIAP 

BADC1 At3g56130 
Protein sequence with cTP 29.577 kDa (23.565 kDa without cTP): 
MASSAALGSLHQTLGSAINSQSEVHSLSGNWSASGNSCVPRWRLSNRNSNYRLVLRAKAAKSSTTTISDGSS

DASVSDGKKTVRRITFPKEVEALVHEMCDETEVAVLQLKVGDFEMNLKRKIGAATNPIPVADISPTVAPPIPSEP

MNKSASSAPSPSQAKPSSEKVSPFKNTSYGKPAKLAALEASGSTNYVLVTSPAVGKFQRSRTVKGKKQSPSC

KEGDAIKEGQVIGYLHQLGTELPVTSDVAGEVLKLLSDDGDSVGYGDPLVAVLPSFHDINIQ 

BADC2 At1g52670 
Protein sequence with cTP 29.575 kDa (24.221 kDa without cTP): 
MNSCSLGAPKVRIFATNFSRLRCGNLLIPNNQRLFVDQSPMKYLSLRTTLRSVKAIQLSTVPPAETEAIADVKDS

DETKSTVVNTHLMPKSSEVEALISEITDSSSIAEFELKLGGFRLYVARKLTDESSPPPQQIQPVVAASATPEGVH

TNGSATSSSLAITKTSSSSADRPQTLANKAADQGLVILQSPTVGYFRRSKTIKGKRTPTICKEKDIVKEGQVLCY

IEQLGGQIPVESDVSGEIVKILREDGEPVGYNDALITVLPSFPGIKKLQ 

BADC3 At3g15690.2 
Protein sequence with cTP 28.170 kDa (22.224 kDa without cTP): 
MASCSLGVPKIKISAVDLSRVRSGSLLIPYNQRSLLRQRPVKYLSLKTTFGSVKAVQVSTVPTAETSATIEVKDS

KEIKSSRLNAQLVPKPSEVEALVTEICDSSSIAEFELKLGGFRLYVARNIADNSSLQPPPTPAVTASNATTESPE

SNGSASSTSLAISKPASSAADQGLMILQSPKVGFFRRSKTIKGKRLPSSCKEKDQVKEGQILCYIEQLGGQFPIE

SDVTGEVVKILREDGEPVGYNDALISILPSFPGIKKLQ 

GBSS1 At1g32900  
Protein sequence with cTP 66.881 kDa (58.483 kDa without cTP): 
MATVTASSNFVSRTSLFNNHGASSCSDVAQITLKGQSLTHCGLRSFNMVDNLQRRSQAKPVSAKSSKRSSKV

KTAGKIVCEKGMSVIFIGAEVGPWSKTGGLGDVLGGLPPALAARGHRVMTICPRYDQYKDAWDTCVVVQIKV

GDKVENVRFFHCYKRGVDRVFVDHPIFLAKVVGKTGSKIYGPITGVDYNDNQLRFSLLCQAALEAPQVLNLNS

SKYFSGPYGEDVVFVANDWHTALLPCYLKSMYQSRGVYMNAKVVFCIHNIAYQGRFAFDDYSLLNLPISFKSS

FDFMDGYEKPVKGRKINWMKAAILEAHRVLTVSPYYAQELISGVDRGVELHKYLRMKTVSGIINGMDVQEWNP

STDKYIDIKYDITTVTDAKPLIKEALQAAVGLPVDRDVPVIGFIGRLEEQKGSDILVEAISKFMGLNVQMVILGTGK

KKMEAQILELEEKFPGKAVGVAKFNVPLAHMITAGADFIIVPSRFEPCGLIQLHAMRYGTVPIVASTGGLVDTVK

DGYTGFHIGRFNVKCEVVDPDDVIATAKAVTRAVAVYGTSAMQEMVKNCMDQDFSWKGPARLWEKVLLSLN

VAGSEAGTEGEEIAPLAKENVATP 

DAT1 At5g57850 
Protein sequence with cTP 41.066 kDa (34.464 kDa without cTP): 
MAGLSLEFTVNTWNLRSLSQVPCPLRHGFRFPRRLTRRRTILMCSDSSSQSWNVPVLSSYEVGERLKLARGG

QQFLAMYSSVVDGITTDPAAMVLPLDDHMVHRGHGVFDTALIINGYLYELDQHLDRILRSASMAKIPLPFDRETI

KRILIQTVSVSGCRDGSLRYWLSAGPGDFLLSPSQCLKPTLYAIVIKTNFAINPIGVKVVTSSIPIKPPEFATVKSV

NYLPNVLSQMEAEAKGAYAGIWVCKDGFIAEGPNMNVAFVVNGGKELVMPRFDNVLSGCTAKRTLTLAEQLV

SKGILKTVKVMDVTVEDGKKADEMMLIGSGIPIRPVIQWDEEFIGEGKEGPIAKALLDLLLEDMRSGPPSVRVLV

PY 

RBCS3B At5g38410 
Protein sequence with cTP 20.840 kDa (15.456 kDa without cTP): 
MASSMLSSAAVVTSPAQATMVAPFTGLKSSAAFPVTRKTNKDITSIASNGGRVSCMKVWPPIGKKKFETLSYL

PDLSDVELAKEVDYLLRNKWIPCVEFELEVINTKHGFVYREHGNTPGYYDGRYWTMWKLPLFGCTDSAQVLK

EVEECKKEYPGAFIRIIGFDNTRQVQCISFIAYKPPSFTEA 
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DXR At5g62790 

Protein sequence with cTP 54.230 kDa (44.977 kDa without cTP): 
MTLNSLSPAESKAISFLDTSRFNPIPKLSGGFSLRRRNQGRGFGKGVKCSVKVQQQQQPPPAWPGRAVPEA

PRQSWDGPKPISIVGSTGSIGTQTLDIVAENPDKFRVVALAAGSNVTLLADQFSGSIISKIVLTRYVSDQTREIRR

FKPALVAVRNESLINELKEALADLDYKLEIIPGEQGVIEVARHPEAVTVVTGIVGCAGLKPTVAAIEAGKDIALAN

KETLIAGGPFVLPLANKHNVKILPADSEHSAIFQCIQGLPEGALRKIILTASGGAFRDWPVEKLKEVKVADALKH

PNWNMGKKITVDSATLFNKGLEVIEAHYLFGAEYDDIEIVIHPQSIIHSMIETQDSSVLAQLGWPDMRLPILYTMS

WPDRVPCSEVTWPRLDLCKLGSLTFKKPDNVKYPSMDLAYAAGRAGGTMTGVLSAANEKAVEMFIDEKISYL

DIFKVVELTCDKHRNELVTSPSLEEIVHYDLWAREYAANVQLSSGARPVHA 

DXS At4g15560 
Protein sequence with cTP 76.835 kDa (70.731 kDa without cTP): 
MASSAFAFPSYIITKGGLSTDSCKSTSLSSSRSLVTDLPSPCLKPNNNSHSNRRAKVCASLAEKGEYYSNRPP

TPLLDTINYPIHMKNLSVKELKQLSDELRSDVIFNVSKTGGHLGSSLGVVELTVALHYIFNTPQDKILWDVGHQS

YPHKILTGRRGKMPTMRQTNGLSGFTKRGESEHDCFGTGHSSTTISAGLGMAVGRDLKGKNNNVVAVIGDG

AMTAGQAYEAMNNAGYLDSDMIVILNDNKQVSLPTATLDGPSPPVGALSSALSRLQSNPALRELREVAKGMT

KQIGGPMHQLAAKVDEYARGMISGTGSSLFEELGLYYIGPVDGHNIDDLVAILKEVKSTRTTGPVLIHVVTEKG

RGYPYAERADDKYHGVVKFDPATGRQFKTTNKTQSYTTYFAEALVAEAEVDKDVVAIHAAMGGGTGLNLFQR

RFPTRCFDVGIAEQHAVTFAAGLACEGLKPFCAIYSSFMQRAYDQVVHDVDLQKLPVRFAMDRAGLVGADGP

THCGAFDVTFMACLPNMIVMAPSDEADLFNMVATAVAIDDRPSCFRYPRGNGIGVALPPGNKGVPIEIGKGRIL

KEGERVALLGYGSAVQSCLGAAVMLEERGLNVTVADARFCKPLDRALIRSLAKSHEVLITVEEGSIGGFGSHV

VQFLALDGLLDGKLKWRPMVLPDRYIDHGAPADQLAEAGLMPSHIAATALNLIGAPREALF 

GGPPS11 At4g36810 
Protein sequence with cTP 40.175 kDa (34.029 kDa without cTP): 
MASVTLGSWIVVHHHNHHHPSSILTKSRSRSCPITLTKPISFRSKRTVSSSSSIVSSSVVTKEDNLRQSEPSSFD

FMSYIITKAELVNKALDSAVPLREPLKIHEAMRYSLLAGGKRVRPVLCIAACELVGGEESTAMPAACAVEMIHT

MSLIHDDLPCMDNDDLRRGKPTNHKVFGEDVAVLAGDALLSFAFEHLASATSSDVVSPVRVVRAVGELAKAIG

TEGLVAGQVVDISSEGLDLNDVGLEHLEFIHLHKTAALLEASAVLGAIVGGGSDDEIERLRKFARCIGLLFQVVD

DILDVTKSSKELGKTAGKDLIADKLTYPKIMGLEKSREFAEKLNREARDQLLGFDSDKVAPLLALANYIAYRQN 
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7.18 Top hits that are not present in negative control obtained from 
masses of MassSpec analyses  

Table 24: Hits revealed by M+H+ values obtained from MassSpec-analyses of Col-0 x 
pUBQ-cPII-GFP T1 #5 using ESI-Q-TOF, in silico analyses performed with MS-Fit 
ProteinProspector using SwissProt.2017.11.01 database 

Protein 
size SDS-

PAGE 
(kDa) 

hit 
# 

% 
coverage 

Protein name Protein 
size 

(kDa) 

70.7 1 3.9 Protein LAZ1 54.712  
3 3.6 Protein indeterminate-domain 16 41.481  
4 2.3 Pentatricopeptide repeat-containing protein At5g27270 117.452  
5 2.7 PHD finger protein At1g33420 78.095  
6 4.6 Synaptotagmin-4 63.609  
8 3.7 Decapping nuclease DXO homolog, chloroplastic 60.382  
9 2.9 Probable indole-3-acetic acid-amido synthetase GH3.1 66.735  
10 1.9 DNA topoisomerase 1 alpha 102.800 

58.5 2 11.5 Chloroplastic group IIA intron splicing facilitator CRS1, 
chloroplastic 

83.591 

 
5 6.4 Kinesin-like protein KIN-6 108.254  
6 17.5 Actin-1 41.798  
7 17.5 Actin-3 41.798  
8 13.5 Mitochondrial import inner membrane translocase 

subunit TIM44-1 
54.300 

45.8 1 62.8 PII (Nitrogen regulatory protein P-II homolog) 21.276  
2 12.6 Calmodulin-interacting protein 111 111.520  
3 12.7 Kinesin-like protein KIN-7G 119.335  
4 9 Glutamate receptor 3.4 107.208  
5 7.8 ATPase 4, plasma membrane-type 105.718  
6 8.7 Kinesin-like protein KIN-7K, chloroplastic 108.468  
7 10.1 Kinesin-like protein KIN-UC 117.376  
8 17.4 Pentatricopeptide repeat-containing protein At4g21170 67.093  
9 14.2 Protein WEAK CHLOROPLAST MOVEMENT UNDER 

BLUE LIGHT-like 2 
84.454 

 
10 14.8 Kinesin-like protein KIN-4B 118.763 

45 1 17.9 PII (Nitrogen regulatory protein P-II homolog) 21.276  
2 8.1 Casein kinase 1-like protein 13 53.205  
3 8 Putative F-box protein At1g19160 40.402  
4 4.7 Ubiquitin-like modifier-activating enzyme atg7 76.522  
5 3.8 BTB/POZ domain-containing protein At1g67900 70.315 

 
6 7 Glutathione S-transferase F9 24.146  
8 5.9 Purple acid phosphatase 17 38.297  
9 4.7 Phosphate transporter PHO1 homolog 4 86.986  
10 6.9 Casein kinase 1-like protein 8 54.441 

34.5 1 14 Peptide methionine sulfoxide reductase B8 15.430  
2 13.9 Peptide methionine sulfoxide reductase B7 15.457  
3 3.1 ATPase 9, plasma membrane-type 105.209 
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4 6.3 PHD finger protein At1g33420 78.095  
5 4.3 DNA mismatch repair protein MSH5 91.124  
7 4.2 Pentatricopeptide repeat-containing protein At2g36980, 

mitochondrial 
69.098 

 
8 6.8 Cyclic dof factor 5 44.007  
9 4.8 GTP-binding protein OBGC, chloroplastic 75.648  
10 9 F-box/kelch-repeat protein At4g39753 44.958 

34 1 14 Peptide methionine sulfoxide reductase B8 15.430  
2 13.9 Peptide methionine sulfoxide reductase B7 15.457  
3 6.2 Protein LAZ1 54.712  
4 3.1 ATPase 9, plasma membrane-type 105.209  
5 6.3 PHD finger protein At1g33420 78.095  
6 4.3 DNA mismatch repair protein MSH5 91.124  
7 4.2 Pentatricopeptide repeat-containing protein At2g36980, 

mitochondrial 
69.098 

 
8 6.8 Cyclic dof factor 5 44.007  
9 4.8 GTP-binding protein OBGC, chloroplastic 75.648 

31.2 1 5.7 PHD finger protein At1g33420 78.095  
2 9.8 Casein kinase 1-like protein 13 53.205  
5 6 H/ACA ribonucleoprotein complex subunit 4 63.027  
6 7.4 Uridine 5'-monophosphate synthase 51.851  
7 6.9 UDP-glucuronate 4-epimerase 2 48.134  
8 8.5 Casein kinase 1-like protein 8 54.441  
9 18.9 Uncharacterized mitochondrial protein AtMg01030 12.928  
10 16.8 PII (Nitrogen regulatory protein P-II homolog) 21.276 

24.2 3 8.3 Casein kinase 1-like protein 13 53.205  
4 13.6 Putative F-box protein At2g11200 17.671  
7 18.9 Uncharacterized mitochondrial protein AtMg01030 12.928 

 
8 8.1 Casein kinase 1-like protein 10 50.381  
9 3.8 DEAD-box ATP-dependent RNA helicase 13 93.987  
10 9 F-box protein At1g48060 42.267 

23.6 2 5.6 GDSL esterase/lipase At2g36325 39.959  
3 3.2 Sialyltransferase-like protein 2 49.481  
4 5.4 RING-H2 finger protein ATL8 19.919  
5 4.5 F-box protein At3g60790 55.928  
6 4.2 Mitochondrial import inner membrane translocase 

subunit TIM44-1 
54.300 

 
7 3.9 F-box/LRR-repeat protein At5g02910 51.847  
8 2.4 DNA topoisomerase 1 alpha 102.800  
9 4.8 Probable galacturonosyltransferase 11 61.879  
10 6.9 Methyl-CpG-binding domain-containing protein 1 23.153 

22.2 1 15.7 Acetyl-coenzyme A carboxylase carboxyl transferase 
subunit alpha, chloroplastic 

85.307 

 
2 10.9 Gamma-tubulin complex component 4 85.908  
4 9.4 Protein TIC110, chloroplastic 112.122  
5 23.9 Probable serine/threonine-protein kinase PBL1 43.088 
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6 14.6 Protein ACTIVITY OF BC1 COMPLEX KINASE 8, 

chloroplastic 
86.024 

 
7 9.9 E3 ubiquitin-protein ligase BRE1-like 2 103.397  
8 11.1 Factor of DNA methylation 4 85.868  
10 12.1 FT-interacting protein 1 91.004 

21 1 13.6 Putative F-box protein At2g11200 17.671  
2 3.8 DEAD-box ATP-dependent RNA helicase 13 93.987  
6 9.7 Bet1-like protein At1g29060 15.102  
7 7.1 CRIB domain-containing protein RIC1 24.140  
8 3.5 UDP-glycosyltransferase 73B5 54.185  
9 4.7 65-kDa microtubule-associated protein 5 62.654 

17.9 1 20.9 PII (Nitrogen regulatory protein P-II homolog) 21.276  
2 8 Alanine--glyoxylate aminotransferase 2 homolog 1, 

mitochondrial 
51.953 

 
3 4.4 Cytochrome P450 71B35 57.322  
4 7.1 Uncharacterized protein At1g10890 33.696  
6 3.4 DEAD-box ATP-dependent RNA helicase 13 93.987  
7 4.5 Glyceraldehyde-3-phosphate dehydrogenase GAPCP1, 

chloroplastic 
44.831 

 
8 5.3 Zinc finger CCCH domain-containing protein 54 28.176  
9 5.8 Uncharacterized GPI-anchored protein At5g19230 20.511  
10 5.8 CRIB domain-containing protein RIC1 24.140 

15.5 1 51 PII (Nitrogen regulatory protein P-II homolog) 21.276  
2 5.7 Protein STICHEL-like 1 124.892  
3 8.4 Protein WEAK CHLOROPLAST MOVEMENT UNDER 

BLUE LIGHT-like 2 
84.454 

 
5 7.5 Putative ion channel POLLUX-like 2 92.211  
6 5.5 CSC1-like protein At4g15430 87.168  
7 7.8 AP-1 complex subunit gamma-1 96.470  
8 11.1 Asparagine synthetase [glutamine-hydrolyzing] 2 65.030 

 
9 5.4 Phosphatidylinositol/phosphatidylcholine transfer 

protein SFH9 
66.626 

14.7 1 15.3 PII (Nitrogen regulatory protein P-II homolog) 21.276  
2 13.6 Putative F-box protein At2g11200 17.671  
4 3.8 DEAD-box ATP-dependent RNA helicase 13 93.987  
5 7.3 60S ribosomal protein L6-3 26.107  
6 5.5 AAA-ATPase At2g46620 55.911  
8 3.3 Protein STICHEL-like 1 124.892  
10 10.4 Bet1-like protein At1g29060 15.102 
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